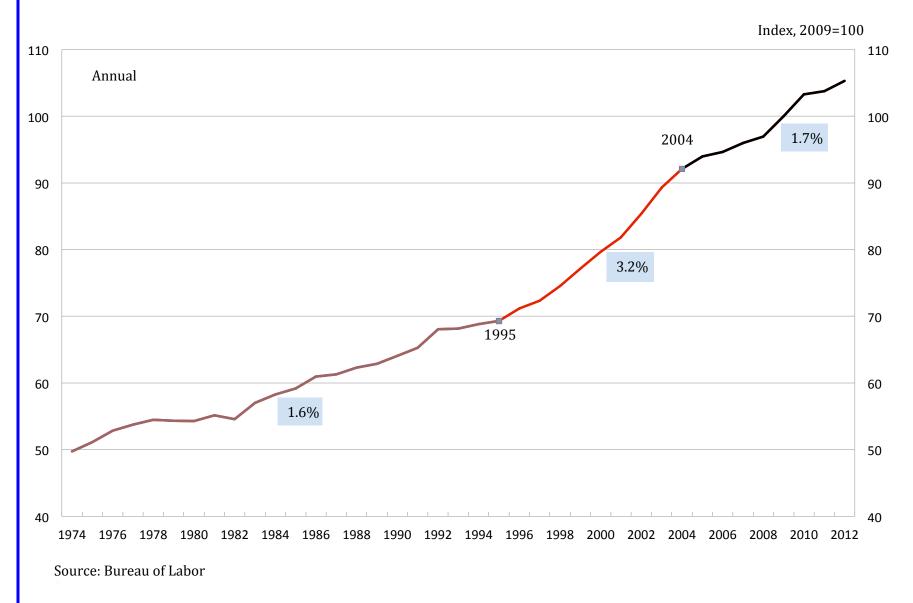
# Is the Information Technology Revolution Over?\*

Dan Sichel
Wellesley College and NBER


Presented at UNSW Economic Measurement Group Workshop Sydney Australia November 28-29, 2013

#### Today's Talk

- Results based on recent research with *David Byrne* (Federal Reserve Board) and *Stephen Oliner* (UCLA and American Enterprise Institute).\*
  - "Is the Information Technology Revolution Over?" <a href="http://www.csls.ca/ipm/ipm25.asp">http://www.csls.ca/ipm/ipm25.asp</a>
  - Also, see "The GPT Behind IT: What is Happening to Semiconductor Prices?"

<sup>\*</sup> The views express are those of the authors alone and should not be attributed to the Board of Governors of the Federal Reserve or other members of its staff.





## Why did productivity growth in the U.S. slow after 2004?

- Housing bubble and financial crisis?
- Secular stagnation? Slowdown in innovation?
- End of ICT revolution?
  - Focus for today
  - Three types of evidence
    - Growth accounting
    - GPT: Semiconductors (IARIW-UNSW paper from Tuesday)
    - Steady-state projections

### **Growth Accounting**

Decomposition of output/hour ("use of IT")

$$\dot{Y} - \dot{H} = \sum_{j} \alpha_{j}^{K} \left( \dot{K}_{j} - \dot{H} \right) + \alpha^{L} \dot{q} + M \dot{F} P,$$

Decomposition of MFP growth ("production of IT")

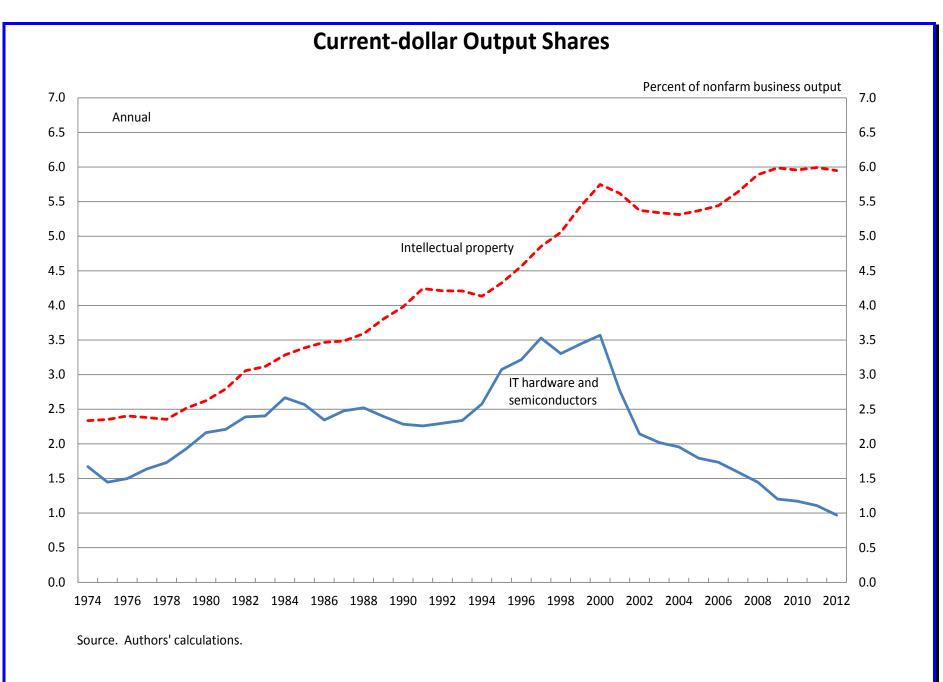
$$M\dot{F}P = \sum_{i} \mu_{i} M\dot{F}P_{i} + \mu_{S} M\dot{F}P_{S},$$

## **Types of Capital**

- IT hardware
  - Computers and peripheral equipment
  - Communication equipment
- Intellectual property products
  - Software
  - R&D spending
  - Entertainment, literary, and artistic (ELA) originals
- Other capital
  - All equipment other than IT
  - Nonresidential structures and rental housing
  - Inventories
  - Land

#### **Data and Related Issues**

- Data cover 1974-2012 for the nonfarm business sector.
- Rely heavily on data published by BLS and BEA.
- Have incorporated major revision of GDP data from this summer
  - Added R&D and ELA originals
  - BEA and BLS haven't yet published much of the detailed data needed for our analysis. Approximated missing data.
- Use dual approach with prices to estimate sectoral MFP growth.


# **Selected Contributions to Growth of Output per Hour**

|                                                | 1974-<br>1995 | 1995-<br>2004 | 2004-<br>2012 |
|------------------------------------------------|---------------|---------------|---------------|
| Growth of output per hour (percent)            | 1.58          | 3.16          | 1.67          |
| Contributions <sup>a</sup> (percentage points) |               |               |               |
| Capital deepening                              | .85           | 1.39          | .82           |
| IT hardware                                    | .28           | .52           | .18           |
| Intellectual property                          | .24           | .37           | .25           |
| Other                                          | .33           | .49           | .39           |
| MFP                                            | .41           | 1.56          | .39           |
| IT hardware and semiconductors                 | .30           | .59           | .20           |
| Intellectual property                          | .06           | .13           | .08           |
| Other sectors                                  | .06           | .85           | .12           |
| Labor composition                              | .25           | .21           | .31           |

Note: NFB sector. Detail may not sum to totals because of rounding. a. Excludes the effects of cyclical influences on MFP growth.

#### **IT Hardware and Semiconductors**

- Contributions of MFP growth in production of IT hardware and semiconductors declined dramatically.
  - Slower pace of MFP growth in these sectors
  - Decline in US output shares for these sectors



# Detail, Capital Deepening Contributions to output/hr (percentage points)

| 1974- | 1995-                    | 2004-                                                                                                                       |
|-------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 1995  | 2004                     | 2012                                                                                                                        |
|       |                          |                                                                                                                             |
| .24   | .37                      | .25                                                                                                                         |
| .05   | .06                      | .07                                                                                                                         |
| .02   | .03                      | .02                                                                                                                         |
| .17   | .28                      | .16                                                                                                                         |
|       |                          |                                                                                                                             |
| .28   | .52                      | .18                                                                                                                         |
| .21   | .39                      | .10                                                                                                                         |
| .07   | .13                      | .08                                                                                                                         |
|       | .24<br>.05<br>.02<br>.17 | .24       .37         .05       .06         .02       .03         .17       .28         .28       .52         .21       .39 |

Note: Detail may not sum to totals because of rounding.

# **Detail, MFP Growth (percentage points)**

|                                | 1974- | 1995- | 2004- |
|--------------------------------|-------|-------|-------|
|                                | 1995  | 2004  | 2012  |
|                                |       |       |       |
| Intellectual property          |       |       |       |
| R&D                            | .38   | 1.25  | 08    |
| ELA originals                  | .48   | 1.47  | 2.04  |
| Software                       | 5.63  | 3.72  | 2.40  |
| IT hardware and semiconductors |       |       |       |
| Computer hardware              | 15.4  | 14.0  | 8.5   |
| Communication equipment        | 5.6   | 6.8   | 3.5   |
| Semiconductors                 | 26.3  | 44.3  | 26.4  |
| NFB                            | .41   | 1.56  | .39   |

Note: Detail may not sum to totals because of rounding.

#### **Steady-State Projections**

- Use a multi-sector growth model to translate assumptions for underlying pace of technical advance (MFP) in each sector into growth rate of output/hour.
- Similar to single-sector Solow model.

$$\dot{Y} - \dot{H} = \sum_{i} \left[ \left( \alpha_{i}^{K} / \alpha^{L} \right) \left( M \dot{F} P_{i} + \beta_{i}^{S} M \dot{F} P_{S} \right) \right] + \dot{q} + M \dot{F} P,$$

$$M\dot{F}P = \sum_{i} \mu_{i} M\dot{F}P_{i} + \mu_{S} M\dot{F}P_{S}.$$

#### **Growth Model Parameters**

- Choose plausible lower- and upper bound values
  - o Historical record
  - o Judgment
  - o Details in appendix table of paper

#### **Key parameters**

- MFP growth in ICT. Set relative price change:
  - Lower bound is 0.8 times average from 1974-2012
  - Upper bound is **1.2** times average from 1974-2012
- MFP growth outside of ICT
  - Lower bound = rate from 2004-2012 = 0.06 pct pt
  - Output Description 
    Output
- Labor composition: 0.0 0.14 pct pt.
  - Range around Jorgenson's estimate of 0.07 pct pt
  - Compared with 0.34 pct pt from 2004-2012

# Steady-State Results for Growth in Output per Hour

- Results for alternative parameter values:
  - Lower-bound: 0.88% per year
  - Upper bound: 2.82% per year
  - Midpoint: 1.80% per year. Baseline scenario in the paper.
- Baseline outlook compared to history:
  - A touch faster than 2004-2012 rate
  - About ½ percentage point slower than average since 1889
- Baseline outlook compared to other forecasts:
  - In about the middle of the range.
  - Lowest is Gordon at 1.55%; highest is CBO at 2.1%

# Steady-State Decomposition of Growth in U.S. Labor Productivity Non-farm Business Sector

|           | <b>History 2004-12</b> | SS: Baseline | SS: 2 <sup>nd</sup> Wave |
|-----------|------------------------|--------------|--------------------------|
|           |                        |              |                          |
| %ch (Y/L) | 1.56                   | 1.80         |                          |
|           |                        |              |                          |
| Cap deep  | .74                    | 1.03         |                          |
|           |                        |              |                          |
| Lab comp  | .34                    | .07          |                          |
|           |                        |              |                          |
| MFP       | .48                    | .70          |                          |
| IT        | .29                    | .38          |                          |
| Other     | .05                    | .33          |                          |
|           |                        |              |                          |

# **Trends in Semiconductor Technology and Prices**

IARIW-UNSW paper

- Measures of technical progress in semiconductors indicate continued rapid progress.
- Hedonic price index suggests price declines have been about 30 percent per year (in contrast to PPI which shows almost no price decline).
- Suggests innovation in ICT could continue at a substantial pace.

#### **Second-Wave Scenario**

- Syverson (2013): productivity gains from electricity in fits and starts.
- Second-wave: combined benefit from "big data" and mobile devices.
- Use steady-state machinery to analyze a more optimistic outlook.
  - Boost MFP growth in ICT-producing sectors (by assuming moderately faster declines in prices of ICT goods).
  - Assume spillover benefits raise MFP growth in other sectors (by raising annual growth from 0.35% to 0.6%).
- Second-wave alternative: 2.5% growth in output per hour.

# Steady-State Decomposition of Growth in U.S. Labor Productivity Non-farm Business Sector

|           | <b>History 2004-12</b> | SS: Baseline | SS: 2 <sup>nd</sup> Wave |
|-----------|------------------------|--------------|--------------------------|
|           |                        |              |                          |
| %ch (Y/L) | 1.56                   | 1.80         | 2.47                     |
|           |                        |              |                          |
| Cap deep  | .74                    | 1.03         | 1.34                     |
|           |                        |              |                          |
| Lab comp  | .34                    | .07          | .07                      |
|           |                        |              |                          |
| MFP       | .48                    | .70          | 1.06                     |
| IT        | .29                    | .38          | .46                      |
| Other     | .05                    | .33          | .60                      |
|           |                        |              |                          |

#### **Conclusions**

- ICT contributions to productivity growth much smaller since 2004.
- Baseline steady-state outlook for labor productivity growth of 1.8%.
- But, growth outlook not set in stone.
  - Second ICT wave is possible.
    - Continued semiconductor technical advance and price decline.
  - Future brighter if sensible action on education, R&D, immigration, infrastructure, and fiscal issues.
- No, ICT revolution is not over.