Banking Integration Indicators: Is Full Integration Desirable?

Iván Arribas¹ Francisco Pérez¹ Emili Tortosa-Ausina²

¹Universitat de València and Ivie (Spain)

²Universitat Jaume I and Ivie (Spain)

EMG Workshop, Sydney, November 28nd, 2013

- Background
- 2 Motivation
- 3 Indicators of banking integration
 - Degree of bank openness
 - Degree of bank connectedness
 - Degree of banking integration
- 4 Controlling for distance
- 5 Statistical sources and selected variables
- 6 Results
 - Degree of bank openness, connectedness and integration
 - Banking integration and economic performance
- Concluding remarks

- Background
- 2 Motivation
- Indicators of banking integration
 - Degree of bank openness
 - Degree of bank connectedness
 - Degree of banking integration
- 4 Controlling for distance
- 5 Statistical sources and selected variables
- 6 Results
 - Degree of bank openness, connectedness and integration
 - Banking integration and economic performance
- Concluding remarks

- Part of a larger initiative consisting of constructing indicators of economic integration which take into account:
 - The new approaches which try to measure the different aspects of globalization (e.g., the KOF index).
 - The new approaches which try to measure economic globalization from a network analysis perspective (e.g., De Benedectis and Tajoli, 2010; Kali and Reyes, 2007; etc.).
 - The approaches which define a Standard of Perfect International Integration (e.g., Frankel, 2000).
 - The approaches which consider geographic neutrality ideas (Kunimoto, 1977; Krugman, 1996).
 - The interest was not only to measure trade but also financial integration and banking integration.

- The results have been disseminated using different ways, including:
 - Constructing a database (INTEGRA), which is available via the Ivie and BBVA Foundation's webpages.
 - Monograph, which collects all the different results.

LA MEDICIÓN DE LA INTECRACIÓN COMERCIAL EN UNA ECONOMÍA GLOBALIZADA

Unfortunately, it's in Spanish.

- Background
- 2 Motivation
- 3 Indicators of banking integration
 - Degree of bank openness
 - Degree of bank connectedness
 - Degree of banking integration
- 4 Controlling for distance
- 5 Statistical sources and selected variables
- 6 Results
 - Degree of bank openness, connectedness and integration
 - Banking integration and economic performance
- Concluding remarks

- International economic integration has advanced rapidly both in trade and finance:
 - Trade globalization (trade in goods and services):
 - Rapid advances before 1914, and over the last 50 years.
 - Much of the progress of the last half-century has offset the inter-war decline.
 - Financial globalization (trade in assets):
 - Rapid advances over the last 35 years.
 - Its progress depends on the market considered—financial/banking.

- <u>Europe</u>: an explicit agenda to enhance monetary and financial integration (SEM, 1992; FSAP, 1998; euro).
 - Expected results of enhanced financial integration and removal of barriers to the cross-border financial trade:
 - Price convergence between different geographic markets.
 - Increasing cross-border allocation of investment.
- However, the international financial crisis is casting doubts on the alleged benefits of financial integration.

- The crisis has actually fuelled the debate on the impact of international financial integration (IFI) on growth:
 - Some authors conclude it is a stylized fact that there is actually no correlation between long-run economic growth and financial integration (Rodrik and Subramanian, 2009).
 - Others argue that failing to find the expected positive effects of IFI on growth is not a failure but an opportunity (Kose, Prasad, Rogoff and Wei).

 We argue that, under these circumstances, measuring financial integration is still relevant, and that there is still scope for its improvement.

- Actually, there is a lack of consensus as to how to measure the extent of financial integration:
 - Price-based indicators:
 - Advantages: a great deal of information (equity and bonds markets).
 - Disadvantages: arbitrage may not always work; in the case of banking, it is often impossible to verify whether the LOOP holds (lack of data and wide differences in banking products).
 - Quantity-based indicators:
 - Advantages: closer concept to de facto financial integration—as opposed to de jure financial integration.
 - Disadvantages: less information, more difficult to collect and compare.

- We focus on quantity-based indicators:
 - More appropriate when evaluating retail banking integration.
 - This type of integration is particularly relevant in some specific contexts such as Europe—where talks about deeper banking integration are underway.

- Our quantity-based indicators of integration take into account some recent approaches by the network analysis literature to study the World Trade Web.
- Specifically, among their most prominent features we find that:
 - 1 It is a benchmark that considers not only openness but also the architecture of financial banking connections.
 - It establishes that integration requires the development of a complete and geographically unbiased network that connects banking systems.
 - It allows to measuring the gap between the actual and potential levels of banking integration.

- Even Nobel laureates have advocated for measures of IFI that consider the international financial system as a network:
 - For instance, Stiglitz makes a comparison with the design of electric networks, where a failure in one part of the system can lead to system-wide failure.
 - Analogously, in the international financial network, a failure in one part of the global economic system might cause a global "meltdown".

- Under these circumstances, our goals are as follows:
 - To introduce a modified version of our quantity-based indicators of banking integration taking into account:
 - The role of distance.
 - A richer set of countries—22 bank countries and 207 customer countries.
 - A more updated sample which includes pre-crisis and crisis years.
 - To present some (preliminary) results on the links between banking integration and economic performance:
 - For this, we will use quantile regression (Koenker, 1978), since the effects might differ for richer and poorer countries.

- Background
- 2 Motivation
- 3 Indicators of banking integration
 - Degree of bank openness
 - Degree of bank connectedness
 - Degree of banking integration
- 4 Controlling for distance
- 5 Statistical sources and selected variables
- 6 Results
 - Degree of bank openness, connectedness and integration
 - Banking integration and economic performance
- Concluding remarks

Degree of bank openness

• Degree of bank openness of $i \in N$:

$$DBO_{i} = \sum_{j \in N} DBO_{ij} = \frac{\sum_{j \in N} X_{ij}}{\widehat{X}_{i}}$$
 (1)

where

 X_{ij} : cross-border bank asset trade between i and j

 X_i : size of i's banking system, i.e. total bank assets of i

$$\widehat{X}_i = X_i - a_i X_i$$
 (home bias-corrected bank assets) $a_i = X_i / \sum_{j \in N} X_j$ $X_{ii} \neq 0$

Degree of bank connectedness

- Cross-border bank asset trade between two countries in a "perfectly" connected network is proportional to the size of the banking system in the customer country.
- $\alpha_{ij} = X_{ij} / \sum_{j \in N} X_{ij}$: relative asset trade between i and j. $A = (\alpha_{ij})$: matrix of <u>actual</u> relative asset trade volumes.
- β_{ij} : relative weight of j's banking system when i is excluded,

$$\beta_{ij} = \frac{X_j}{\sum_{k \in N \setminus i} X_k}$$

 $B = (\beta_{ij})$: matrix of <u>potential</u> or <u>theoretical</u> relative asset trade volumes.

- Our indicator of connectedness measures the gap between actual and potential asset trade volumes.
- Degree of bank connectedness:

$$DBC_{i} = \frac{\sum_{j \in N} \alpha_{ij} \beta_{ij}}{\sqrt{\sum_{j \in N} (\alpha_{ij})^{2}} \sqrt{\sum_{j \in N} (\beta_{ij})^{2}}}.$$
 (2)

- $DBC_i \rightarrow 0$ if asset trade takes place "disproportionately".
- $DBC_i \rightarrow 1$ if i is proportionally connected—i.e. according to the theoretical potential.

Degree of banking integration

Degree of banking integration:

$$DBI_i = \sqrt{DBO_i \cdot DBC_i}$$
 (3)

- Ranges in the (0,1) interval.
- Decomposing $1 = \sqrt{DBO_i/DBI_i}\sqrt{DBC_i/DBI_i}$ allows ascertaining which the largest component is.

- Background
- 2 Motivation
- 3 Indicators of banking integration
 - Degree of bank openness
 - Degree of bank connectedness
 - Degree of banking integration
- 4 Controlling for distance
- 5 Statistical sources and selected variables
- 6 Results
 - Degree of bank openness, connectedness and integration
 - Banking integration and economic performance
- Concluding remarks

- Some recent contributions have stressed the high correlation between trade in goods and trade in assets, including:
 - Aviat and Coeurdacier (JIE, 2007).
 - Coeurdacier (JIE, 2009).
 - Coeurdacier and Martin (JJIE, 2009).
- Simultaneously, trade is still strongly determined by distance, as shown in numerous contributions—notably, those focusing on the persistence of distance (Disdier and Head, 2008).
 - These arguments would imply that distance may be playing a role as a determinant of cross-border asset holdings.

 Therefore, we construct distance-corrected indicators, in order to control for this distance effect.

Country *i*'s share of bank assets correcting for distance, based on Samuelson's iceberg transportation costs:

$$r_i = \frac{(X_i/d_{ii}^{\theta})}{\sum_{j \in \mathcal{N}} (X_j/d_{ij}^{\theta})} \tag{4}$$

where

 d_{ii} : internal distance for country i.

 d_{ij} : distance from country i to country j.

 θ : distance's weight (0: distance is irrelevant/geographic

neutrality/zero-gravity model; 1: distance matters).

- Using r_i instead of a_i indicates that if a banking system j of size X_j gets as close to banking system i as possible, then its size will be reduced to X_j/d_{ij} .
- We are "obliged" to use internal distances (dii) in order to avoid the distance effect to be affected by the units of measurement.

Degree of bank openness, distance-corrected

• Degree of openness of $i \in N$:

$$DBO_i^d = \sum_{j \in N} DBO_{ij}^d = \frac{\sum_{j \in N} X_{ij}}{\widehat{X}_i^d}$$
 (5)

where

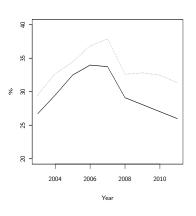
 X_{ij} : cross-border bank asset trade between i and j

$$\widehat{X}_i^d = X_i - r_i X_i$$
 (home and distance bias-corrected bank assets) $X_{ii} \neq 0$

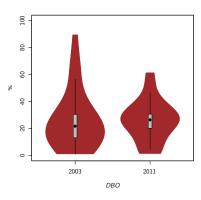
Degree of balanced connectedness, distance-corrected

• Relative weight of *j* in a world where *i* is not considered:

$$\beta_{ij}^{d} = \frac{X_j/d_{ij}^{\theta}}{\sum_{k \in N \setminus i} (X_k/d_{ik}^{\theta})}$$
 (6)

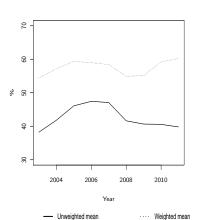

 The rest of indicators and expressions remain unchanged, or are changed equivalently—so we also have DBC^d and DBI^d.

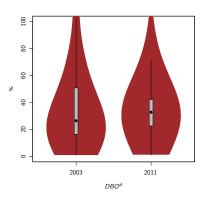
- Background
- 2 Motivation
- 3 Indicators of banking integration
 - Degree of bank openness
 - Degree of bank connectedness
 - Degree of banking integration
- 4 Controlling for distance
- 5 Statistical sources and selected variables
- 6 Results
 - Degree of bank openness, connectedness and integration
 - Banking integration and economic performance
- Concluding remarks


- We use data on bilateral bank asset trade (foreign claims).
- Database: BIS (Bank for International Settlements), ECB and other central banks.
- 22 bank countries, accounting for:
 - 79.7% of international banking markets.
 - Includes most OECD countries.
- 207 customer countries.
- Period: 2003 to 2011.
- Variable selected to measure banking integration: cross-border claims (assets held abroad by banks of a given country).

- Background
- 2 Motivation
- Indicators of banking integration
 - Degree of bank openness
 - Degree of bank connectedness
 - Degree of banking integration
- 4 Controlling for distance
- 5 Statistical sources and selected variables
- 6 Results
 - Degree of bank openness, connectedness and integration
 - Banking integration and economic performance
 - Concluding remarks

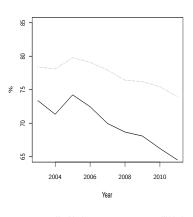
Degree of bank openness, DBO

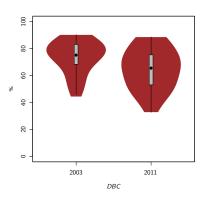



Unweighted mean

Weighted mean

Degree of bank openness, distance-corrected, DBO^d

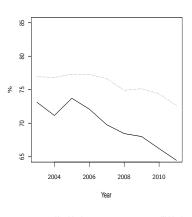


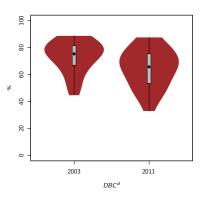


DBO, DBC and DBI

Banking integration and economic performance

Degree of bank connectedness, DBC

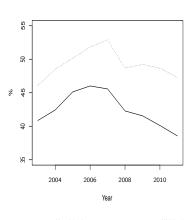


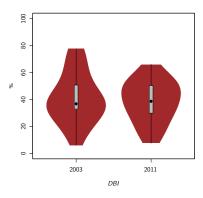


Unweighted mean

· · Weighted mean

Degree of bank connectedness, distance-corrected, DBC^d

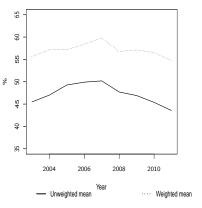

Unweighted mean

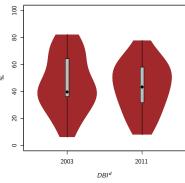

· · Weighted mean

DBO, DBC and DBI

Banking integration and economic performance

Degree of bank integration, DBI





Unweighted mean

· · Weighted mean

Degree of bank integration, distance-corrected, DBI^d

1st summary of results Evolution of descriptive statistics

- On average, the crisis has had a remarkable effect—both weighted and unweighted.
- The violin plots indicate that dispersion is shrinking—although the median is actually higher.
- The trends are corroborated both for DBO and DBC—the decline is sharper for DBC.
- Controlling for distance show different results—the effect of the crisis is dimmed, and dispersion is much higher.
 - This might suggest the crisis is affecting particularly asset trade with faraway countries.

2nd summary of results Results for individual countries

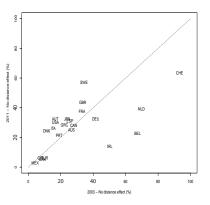
- Disparities are strong, for both DBO and DBC. Some specific trends:
 - The indicators for some countries have declined sharply—IRL, BEL, NLD, DEU, CHE.
 - In other cases, the decline is less marked, or focuses in one indicator only (FRA, SWE, DNK).
 - Non-euro area countries (GBR) and non-EU countries (USA, JPN, CAN) show positive tendencies during the crisis years.

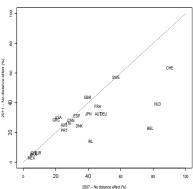
Banking integration and economic performance

Degree of bank openness, $DBO^{\theta=0}$ and $DBO^{\theta=1}$ Years 2003, 2007 and 2011

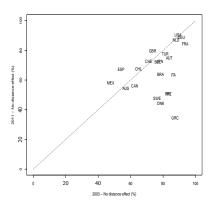
	$DBO^{ heta=0}$				$DBO^{ heta=1}$		
Country	2003	2007	2011	2003	2007	2011	
Belgium	64.23	75.11	21.02	72.16	85.04	23.37	
Canada	24.52	25.88	26.25	25.35	26.98	27.57	
Denmark	7.92	31.06	22.67	9.28	36.95	27.31	
France	29.83	42.61	35.80	35.08	50.53	42.75	
Ireland	47.74	38.89	12.19	55.37	48.13	14.65	
Japan	20.92	37.04	30.68	140.64	162.25	190.57	
Netherlands, The	66.46	79.52	37.37	80.43	96.82	47.81	
Sweden	30.60	53.39	55.38	33.55	58.87	62.54	
Switzerland	89.80	86.79	61.67	125.89	120.50	87.00	
United Kingdom	30.03	36.07	41.76	43.42	53.92	62.50	
United States	13.46	18.24	28.47	19.44	24.97	38.95	

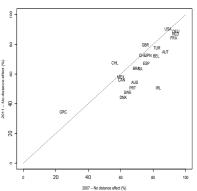
Banking integration and economic performance


Degree of bank connection, $DBC^{\theta=0}$ and $DBC^{\theta=1}$ Years 2003, 2007 and 2011


	$(DBC^{ heta=0})$			$(DBC^{ heta=1})$		
Country	2003	2007	2011	2003	2007	2011
Belgium	73.60	78.80	70.41	87.14	90.55	78.21
Canada	59.10	57.19	54.45	65.22	64.09	61.33
Denmark	75.14	58.10	42.60	77.13	70.64	53.19
France	90.34	89.39	82.66	90.55	92.81	88.17
Ireland	81.02	80.64	48.81	90.89	87.20	53.00
Japan	75.05	73.99	70.92	78.40	80.78	76.05
Netherlands, The	84.69	90.55	85.15	87.80	90.47	88.47
Sweden	72.56	60.58	45.86	80.59	81.95	72.02
Switzerland	67.71	70.02	70.80	85.23	86.87	81.91
United Kingdom	70.00	71.70	77.93	75.17	76.98	81.68
United States	85.85	85.80	88.68	86.27	86.81	89.11

3rd summary of results The role of distance


- When controlling for distance, the effects are different for DBO and DBC:
 - DBO vs. DBO^d : for some particular countries the effect is strong (JPN and, to a lesser extend, CHE).
 - This would indicate that the cross-border assets trade of JPN with its neighbors is too high—according to our benchmark.
 - DBC vs. DBC^d: for most countries, the effect is irrelevant.
 - However, some particular countries are actually <u>less</u> integrated when controlling for distance (USA, GBR). This would indicate that their asset trade is too high with small and distant countries.


Degree of bank openness (DBO), pre-crisis and crisis years

Degree of bank connectedness (DBC), pre-crisis and crisis years

4th summary of results Pre-crisis vs. crisis years

- In the case of distance-uncorrected indicators:
 - For both time comparisons (2003 vs. 2007, 2007 vs. 2011) euro area countries dominate the area below the main diagonal—strongly affected by the crisis.
 - This result holds for both DBO and DBC, yet in the case of DBO there are some countries strongly affected (NLD, BEL, IRL and, outside the euro area, CHE).
- In the case of distance-corrected indicators:
 - The impact of the crisis is alleviated for euro area countries—suggesting the cross-border asset trade is shifting towards more distant countries.

An empirical model of growth

 The choice of variables of our starting model is based on recent contributions by Henderson et al. (EJ 2012; EER 2013):

$$y_{it} = \alpha + \beta_i + \gamma_t + \delta DBX_{it} + \nu Z_{it} + \epsilon_{it}$$
 (7)

where

 y_{it} : GDP/N, GVA/L, K/L of country i in time t

 β_i, γ_t : individual and time effects

 DBX_{it} : banking integration variables ($DBO, DBC, DBI, DBO^d, DBC^d, DBI^d$)

Zit control variables

 ϵ_{it} error term

Using regression quantiles

- Given the concerns raised in the literature as to the differential effects of IFI at different stages of economic development we use a different empirical strategy based on quantile regression:
 - Results are more robust to departures from normality, outliers and fat tails.
 - It yields results more informative than the average—we will understand whether the effect of banking integration varies for richer and poorer countries.

Summarizing regression results:

- Results can be exploited from several angles:
 - Integration indicator considered: DBO, DBC or DBI.
 - <u>Distance parameter</u>: distance-corrected vs. distance-uncorrected indicators (i.e. *DBO*, *DBC* and *DBI* vs. *DBO*^d, *DBC*^d and *DBI*^d).
 - Economic performance measure: GDP/N, GDP/L (VA/L) or $\overline{K/L}$.
 - Levels/growth rates.
 - Quantile (τ) , taking into account that both significance and magnitude can vary according to the quantile.

Results using regression quantiles Effect on GDP/N, levels

	Quantile (au)								
Covariates	0.05 (poorest)	0.10	0.25	0.50	0.75	0.90	0.95 (richest)		
DBO	2.162 (1.961,2.218)	2.144 (2.091,2.412)	1.570 (1.292,2.368)	1.080	0.601	0.595 (0.194,0.867)	0.586		
DBO ^d	0.881	0.675	0.412 (0.284,0.792)	0.371 (0.172,0.560)	0.347 (-0.003,0.671)	0.232	0.337		
DCB	3.559 (2.038,4.176)	3.546 (2.153,3.758)	0.917 (0.397,2.075)	-0.058 (-0.456,0.201)	-0.437 (-0.631,-0.160)	-0.170 (-0.365,0.260)	0.216 (-0.482,0.764)		
DCB^d	3.497 (2.065,4.003)	3.384 (1.875,3.763)	0.603 (-0.004,2.124)	-0.071 (-0.471,0.207)	-0.452 (-0.666, -0.145)	-0.209 (-0.707,0.566)	0.667 (-1.202,0.939)		
DBI	2.558 (2.538,2.675)	2.680	2.698	1.882 (1.241,2.705)	1.154 (0.586,1.912)	0.765	0.651 (0.453,2.021)		
DBI ^d	2.325 (2.187,2.618)	2.371 (2.310,2.519)	2.341 (2.014,2.531)	2.021 (1.023,2.556)	1.204 (0.249,1.615)	0.689 (3.520000e-01,1.150)	0.517 (0.367,2.021)		

Banking integration and economic performance

Results using regression quantiles Effect on GDP/L, levels

	Quantile (au)								
Covariates	0.05 (poorest)	0.10	0.25	0.50	0.75	0.90	0.95 (richest)		
DBO	2.303	2.244 (2.181,2.331)	1.836 (1.625,2.379)	1.116	0.884	1.199	1.281		
DBO ^d	0.840 (0.670,0.858)	0.717	0.437	0.237	0.443 (0.052,0.638)	0.558	0.828		
DCB	3.379 (1.670,4.189)	3.469 (2.092,3.801)	0.968 (0.251,1.535)	-0.091 (-0.264,0.089)	-0.266 (-0.418,0.020)	-0.114 $(-1.226,0.444)$	0.108 (-1.973,1.232)		
DCB^d	3.284 (1.623,4.045)	3.420 (1.972,3.739)	0.838 (0.157,1.397)	-0.128 (-0.261,0.080)	-0.272 (-0.420,0.038)	-0.204 (-1.829,0.432)	0.268		
DBI	2.379 (2.324,2.996)	2.709	2.813 (2.587,3.009)	2.112 (1.113,2.850)	1.528 (0.481,1.816)	1.464 (1.170,1.809)	1.553 (1.217,1.733)		
DBI ^d	2.251 (2.088,2.633)	2.452 (2.239,2.586)	2.386 (2.263,2.648)	1.426 (0.727,2.769)	1.296 (0.298,1.925)	1.441 (1.187,1.616)	1.416 (1.193,1.551)		

Banking integration and economic performance

Results using regression quantiles Effect on K/L, levels

	Quantile (au)								
Covariates	0.05 (poorest)	0.10	0.25	0.50	0.75	0.90	0.95 (richest)		
DBO	1.725	1.981 (1.724,2.602)	1.689	0.970	0.845	1.033	1.122		
DBO ^d	0.846	0.737	0.401 (0.345,0.724)	0.178 (0.115,0.560)	0.448 (0.085,0.674)	0.673	0.531 (0.429,2.207)		
DCB	2.611 (1.333,3.571)	3.198 (1.521,3.417)	0.756 (-0.032,1.418)	-0.202 (-0.461,-0.017)	-0.540 (-0.742,-0.254)	-0.929 (-1.411,0.002)	0.576 (-1.830,1.046)		
DCB^d	2.492 (1.388,3.453)	3.284 (1.406,3.426)	0.789	-0.184 (-0.496,0.050)	-0.426 (-0.823, -0.140)	-0.905 (-1.477,0.085)	0.502 (-1.896,1.053)		
DBI	2.124 (1.963,2.954)	2.541 (2.019,2.721)	2.454 (2.102,2.593)	1.257	1.338 (0.948,1.893)	1.431 (1.149,2.153)	1.214		
DBI ^d	1.813 (1.782,2.661)	2.276 (1.870,2.491)	2.213 (1.918,2.420)	1.497 (0.591,2.712)	1.266 (0.378,1.937)	1.548 (1.063,1.750)	1.419 (0.901,1.893)		

Summary of regression results:

- In the case of distance-uncorrected indicators:
 - <u>DBO</u>: the impact is positive throughout quantiles—although it is much stronger for poorer countries. This result holds for GDP/N, GDP/L and K/L.
 - <u>DBC</u>: the impact is positive only for the poorest countries, and it can be even negative for the richest ones. The result is similar for GDP/N, GDP/L and K/L.
 - <u>DBI</u>: the effect of <u>DBO</u> dominates, and the impact of <u>DBI</u> is positive across quantiles, and across macroeconomic indicator. However, the discrepancy between richer and poorer countries holds.
- In the case of distance-corrected indicators:
 - When controlling for distance, results are similar—with the exception that for DBO the discrepancies among richer and poorer countries diminish.

Banking integration and economic performance

Results using regression quantiles Effect on GDP/N, growth rates

	Quantile (au)							
Covariates	0.05 (slow growth)	0.10	0.25	0.50	0.75	0.90	0.95 (high growth)	
DBO	0.065	0.000	0.002	-0.024	-0.055	-0.174	-0.099	
	(-0.240,0.122)	(-0.014,0.054)	(-0.024,0.022)	(-0.042,0.011)	(-0.116,-0.018)	(-0.198,-0.059)	(-0.220, -0.066)	
DBO^d	-0.049	-0.041	-0.019	-0.015	-0.031	-0.066	-0.064	
	(-0.079, -0.030)	(-0.069, -0.004)	(-0.060, -0.001)	(-0.039,0.008)	(-0.049,-0.001)	(-0.087,0.000)	(-0.076,0.032)	
DCB	0.020	0.019	0.006	-0.019	-0.079	-0.250	-0.261	
	(-0.063,0.208)	(-0.051,0.105)	(-0.044,0.093)	(-0.042,0.039)	(-0.152,0.002)	(-0.371,0.033)	(-0.507,0.198)	
DCB^d	0.020	0.022	0.016	-0.021	-0.069	-0.256	-0.271	
	(-0.057,0.215)	(-0.040,0.109)	(-0.050,0.118)	(-0.042,0.041)	(-0.143,0.002)	(-0.373,0.031)	(-0.507,0.209)	
DBI	0.125	0.030	0.007	-0.044	-0.104	-0.231	-0.178	
	(-0.179,0.185)	(-0.044,0.148)	(-0.043,0.045)	(-0.075,-0.006)	(-0.154,-0.041)	(-0.242,-0.148)	(-0.261, -0.110)	
DBI ^d	$0.000 \ (-0.174, 0.193)$	-0.003 $(-0.103, 0.122)$	$0.006 \ (-0.045, 0.049)$	-0.038 (-0.063,-0.005)	-0.094 (-0.152,-0.040)	-0.215 $(-0.224, -0.107)$	-0.097 (-0.269,-0.087)	

Banking integration and economic performance

Results using regression quantiles Effect on GDP/L, growth rates

	Quantile (au)								
Covariates	0.05 (slow growth)	0.10	0.25	0.50	0.75	0.90	0.95 (high growth)		
DBO	0.067 (-0.244,0.110)	0.010	0.008	-0.023 (-0.046,-0.007)	-0.048 (-0.083,-0.013)	-0.157 (-0.175,-0.065)	-0.136 (-0.220,-0.057)		
DBO^d	-0.054 (-0.092,-0.021)	-0.031 (-0.064,0.006)	-0.007 (-0.045,0.000)	-0.014 (-0.044,-0.005)	-0.030 (-0.042,0.007)	-0.056 (-0.068,-0.011)	-0.059 (-0.076,0.012)		
DCB	0.012 (-0.136,0.132)	-0.016 (-0.057,0.055)	0.003 (-0.044,0.055)	-0.026 (-0.045,0.004)	-0.103 (-0.161,-0.012)	-0.214 (-0.314, -0.033)	-0.268 (-0.516,0.192)		
DCB^d	0.017 (-0.100,0.185)	-0.008 (-0.059,0.060)	0.004 (-0.030,0.057)	-0.026 (-0.046,0.003)	-0.106 (-0.160, -0.012)	-0.216 (-0.308,-0.060)	-0.257 (-0.506,0.190)		
DBI	0.068 (-0.216,0.192)	0.040 (0.005,0.130)	0.014 (-0.015,0.045)	-0.040 (-0.074,-0.016)	-0.091 (-0.140, -0.053)	-0.209 (-0.227,-0.128)	-0.163 (-0.274, -0.127)		
DBI ^d	0.042 $(-0.165, 0.152)$	0.023 $(-0.072, 0.063)$	0.008 (-0.029,0.045)	-0.042 $(-0.083, -0.017)$	-0.092 $(-0.137, -0.042)$	-0.189 $(-0.222, -0.102)$	-0.117 (-0.276,-0.098)		

Banking integration and economic performance

Results using regression quantiles Effect on K/L, growth rates

	Quantile (au)							
Covariates	0.05 (slow growth)	0.10	0.25	0.50	0.75	0.90	0.95 (high growth)	
DBO	0.077 (-0.331,-0.175)	0.021 (-0.231,0.138)	0.016 (-0.034,0.051)	-0.002 (-0.041,0.017)	-0.036 (-0.083,0.013)	-0.106 (-0.213,0.002)	-0.001 (-0.239,0.105)	
DBO ^d	-0.044 (-0.169,-0.019)	-0.065 (-0.085,-0.034)	-0.040 (-0.081,0.014)	-0.001 (-0.052,0.015)	-0.026 (-0.054,0-007)	-0.030 (-0.071,0.040)	0.003 (-0.101,0.054)	
DCB	0.102 (-0.313,0.303)	-0.006 (-0.111,0.208)	-0.040 (-0.148,0.057)	-0.027 (-0.117,0.025)	-0.104 (-0.135,-0.030)	-0.231 (-0.386,-0.035)	-0.365 (-0.536, -0.060)	
DCB^d	0.102 $(-0.321, 0.421)$	0.068 (-0.130,0.205)	-0.009 (-0.133,0.122)	-0.028 (-0.109,0.025)	-0.096 $(-0.146, -0.031)$	-0.234 (-0.403,-0.045)	-0.426 (-0.541,-0.061)	
DBI	-0.131 $(-0.355, 0.270)$	0.009 (-0.240,0.216)	-0.016 (-0.076,0.047)	-0.024 (-0.073,0.006)	-0.069 (-0.151,-0.025)	-0.248 (-0.262,-0.092)	-0.251 (-0.332,-0.015)	
DBI ^d	-0.103 $(-0.260,0.176)$	-0.143 $(-0.225,0.081)$	-0.035 $(-0.143,0.031)$	-0.031 $(-0.108,0.003)$	-0.082 $(-0.171, -0.030)$	-0.193 $(-0.275, -0.131)$	-0.266 (-0.284,-0.006)	

Summary of regression results:

- In the case of distance-uncorrected indicators:
 - <u>DBO</u>: the impact varies depending on the quantile. It is negative and significant only for high-growth countries. This result holds for GDP/N and GDP/L—for K/L it is not significant.
 - <u>DBC</u>: similarly to <u>DBO</u>, the impact is negative yet only for the highest-growth countries. The result is similar for <u>GDP/N</u>, <u>GDP/L</u> and, in this case, <u>K/L</u> as well.
 - <u>DBI</u>: since the effects of <u>DBO</u> and <u>DBC</u> are similar, the impact of <u>DBI</u> is also negative and significant only for the highest quantiles.
 The result is robust to the macroeconomic indicator considered.
- In the case of distance-corrected indicators, results change only slightly.

Outline

- Background
- 2 Motivation
- 3 Indicators of banking integration
 - Degree of bank openness
 - Degree of bank connectedness
 - Degree of banking integration
- 4 Controlling for distance
- 5 Statistical sources and selected variables
- 6 Results
 - Degree of bank openness, connectedness and integration
 - Banking integration and economic performance
- Concluding remarks

- This article has dealt with the analysis of international banking integration using indicators of both openness and connectedness.
 - Our effort takes into account the contributions of recent approaches based on network analysis, i.e. treating the international banking system as a web.
- Our paper has made some contributions to previous analysis, namely,
 - Analyzing the role of distance.
 - Evaluating the evolution of the indicators in pre-crisis and crisis years.
 - Analyzing the effect of the indicators on economic performance.

- Regarding the indicators,
 - Overall, they are dominated by a great deal of heterogeneity.
 - There is a clear euro area (and Europe) effect—the countries most affected by the crisis.
 - Both indicators (openness and connectedness) are affected, yet to different degrees.
 - The distance seems also to be playing a role, especially for some particular countries—although DBO is more affected that DBC.

- Regarding the effects of indicators on economic performance:
 - The effects vary strongly when analyzing levels or growth rates.
 - In the case of levels, the effect is generally positive; in the case of growth rates, it is negative—but only for high-growth countries.
 - Results also vary strongly across quantiles—both the significance or magnitude.
 - The impact of the different indicators (DBO, DBC and DBI) also varies.
 - Results are also quite robust across the different economic performance magnitudes considered—especially GDP/N and GDP/L.

Background Motivation Indicators Controlling for distance Statistical sources and selected variables Results Concluding remarks

Therefore, is (full) financial integration desirable?