
Modeling Municipal Yields with (and without)
Bond Insurance

Ethan Namvar, Xiaoxia Ye, and Fan Yu∗

This Version: October 10, 2015

∗Namvar is from the University of California, Berkeley (namvar@haas.berkeley.edu), Ye is from Stockholm
University (xiaoxia.ye@sbs.su.se), and Yu is from Claremont McKenna College (fyu@cmc.edu). We wish to
thank Darrell Duffi e and Francis Longstaff for helpful discussions. The HPC resources provided by the
National Supercomputer Centre in Sweden (NSC) at Linköping University are gratefully acknowledged. The
computations in the paper were partially performed with these resources.



Modeling Municipal Yields with (and without)
Bond Insurance

Abstract

We develop an intensity-based model of municipal yields with (and without) bond insur-

ance, making simultaneous use of the credit default swap (CDS) premiums of the insurers

and both insured and uninsured municipal bond transactions. We estimate the model using

61 issuers with relatively continuous municipal bond trading from July 2007 to June 2008,

and decompose the bond yield based on the estimated parameters. The model fits municipal

yields as well as Duffee (1999)’s for corporate yields, and the decomposition reveals that

the liquidity component plays a dominant role in the municipal yield spread, and is some-

what larger for insured bonds than uninsured bonds. Towards the end of the sample period,

our model reproduces the “yield inversion”phenomenon documented by Bergstresser et al.

(2010).



1 Introduction

The municipal bond insurance industry, long dominated by the big four of MBIA (Municipal

Bond Insurance Association), Ambac (American Municipal Bond Assurance Corp.), FSA

(Financial Security Assurance Inc.), and FGIC (Financial Guaranty Insurance Company),

suffered a dramatic meltdown during the great recession for insuring structured finance

products. While more than half of new municipal bonds were issued with credit enhancement

in 2007, the so-called insurance penetration fell to 18 percent in 2008 and only 3.5 percent

in 2012. The industry has changed significantly after the financial crisis, with many of the

original players either having gone out of business or still sidelined by crisis-related legal

problems. The new players, which are still trying to establish a reputation, include AGM

(Assured Guaranty Municipal Corp.), BAM (Build America Mutual Assurance Company),

and National (National Public Finance Guarantee Corp.). These insurers currently carry

AA ratings according to the S&P’s and lower ratings like A or Baa according to Moody’s.1

A great deal can be learned from what happened to the municipal bond insurers, also

called monolines, during the financial crisis. Intuitively, the default risk of an insured mu-

nicipal bond should be a function of the credit quality of both the issuer and the monoline,

as well as how closely they are correlated with each other. In the pre-crisis years, the big

four carried AAA ratings and rating agencies simply let insured bonds assume the top-notch

ratings of the monolines; few people cared about quantifying the risk of insured municipal

bonds. During the financial crisis and thereafter, a much greater variation in monoline credit

quality has become the norm. It is therefore important, for both rating and valuation pur-

poses, to develop a systematic understanding of the risk of municipal bonds subject to bond

insurance. Yet, we continue to see the S&P’s assigning an insurer’s credit rating to every

issue that it insures, which suggests that rating agencies still suffer from a lack of rigorous

methodology for evaluating the risk of insured municipal bonds.2

1BAM was created by former FSA employees in July 2012 and has been rated AA by the S&P’s since
its inception. AGM was formed when Assured Guaranty acquired FSA in 2009 and has been rated AA
since March 2014. Finally, National is owned by MBIA and has been rated AA- since March 2014. For
further background of the municipal bond insurance industry, see Wells Fargo (2008), Moldogaziev (2013),
and Renick and Bonello (2014).

2In principle, it is clearly possible for an insured bond to achieve a higher rating than that of the insurer.
For example, assuming that defaults are independent events, a Ba-rated insurer insuring a bond with an
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We begin our analysis by regressing the municipal bond yield on a collection of bond

characteristics, some known to proxy for bond liquidity, as well as a dummy variable indi-

cating whether the bond is insured or uninsured; in the case of insured bonds, we also include

the CDS premium of the corresponding monoline. Because of the diffi culty in gathering ac-

counting and financial information at different levels of municipalities, we use issuer-level

fixed effects to control for the average issuer credit quality within our sample period. In

another version of the regression, we identify a small number of municipal issuers that are

traded in the CDS market and use their CDS premiums as a time-varying proxy for their

intrinsic credit quality. Results indicate that the municipal bond yield is positively related

to the age of the bond and the CDS premiums of the issuer and the insurer, and negatively

related to the insurance dummy.

Based on these intuitive findings, we develop an intensity-based model for municipal

yields, taking into account that insured bonds will not suffer any loss unless the issuer and

the insurer both default before bond maturity. We model both defaults as doubly stochastic

Poisson processes (Lando, 1998) that are independent given their intensities, allowing for

the intensities to be correlated. Furthermore, our model can accommodate two features that

are crucial in fitting municipal yields. First, the municipal bond market is known to be

plagued by illiquidity in the form of high transaction costs and dealer markups, and the lack

of transparency and dealers’substantial market power have been suggested as the underlying

cause (see Harris and Piwowar 2006 and Green et al. 2007). To address this concern, we

estimate an aggregate liquidity factor using all municipal bond transactions following the

procedure of Driessen (2005), allowing for a direct compensation for the lack of liquidity

in municipal yields as well as letting the default intensity load on the liquidity factor. In

terms of modeling flexibility, while insured and uninsured bonds with the same issuer share a

common default intensity, they can have different exposures to the aggregate liquidity factor.

Second, we note that the state of the world in which an insured municipal bond suffers a

loss of capital can look quite different from the one in which an issuer is defaulting on its

intrinsic rating of Ba would lower the probability of bond default to 0.01 percent per year, assuming a default
rate of one percent per year for Ba-rated firms (see Exhibit 27 in Ou, 2011). This would allow the insured
bond to easily clear the threshold for an Aa rating. While the independent default assumption needs to be
relaxed, the basic message of the above example comes through even if defaults are correlated.
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uninsured bond. While the latter is likely to be caused by idiosyncratic risk, the former

requires the default of both the issuer and the insurer, which makes it much more likely to

be systematic in nature. Therefore, it seems sensible to assume that insured bonds have a

greater loss-given-default (LGD), or a lower recovery rate, than uninsured bonds.

To facilitate the estimation of our model, we specify the default intensities of the is-

suer and the monoline, as well as the liquidity factor, as squared-root diffusions or sums

of independent squared-root diffusions. This allows for closed-form formulas for monoline

CDS premiums and both insured and uninsured municipal bond prices, which produce the

measurement equations in an Unscented Kalman Filter (UKF) procedure. Our estimation

proceeds in three steps. In Step 1, we use the entire panel of municipal bond transaction

prices to construct short-term and long-term “liquidity spreads,”exploiting bond age as an

empirical proxy of bond liquidity, and extracting a single liquidity factor from these spreads.

In Step 2, we estimate the default intensity for each of the four major monolines using the

time-series of their respective CDS premiums. Each of the monoline default intensities is

allowed to load on the liquidity factor, which is important because liquidity in the municipal

bond market began to dry up around the same time when default concerns arose for the

monolines. In Step 3, we select one municipal bond issuer and use the time-series of all of

its bond transactions (both insured and uninsured bonds must be present) to estimate its

default intensity, along with the differential liquidity exposures and recovery rates of insured

and uninsured bonds. We implement this procedure using data from July 2007 to June 2008

for 61 municipal bond issuers, which include 17 states, 17 cities, and 17 local school districts,

among others.3

Our results show that the model fits municipal bond prices quite well. The median

RMSE in terms of bond yields is around 12 bps for insured bonds and 9 bps for uninsured

bonds, similar to that of Duffee (1999) from fitting the corporate bond yields of 161 firms.

For the median issuer, the issuer-specific part of the default intensity is mean-reverting

3These issuers are selected because their bonds have relatively continuous trading, thus offering good
coverage of pricing data. We focus on 2007-08 because there is very little fluctuation in monoline CDS
premiums prior to this period, and these monolines were essentially out of business with extremely high
CDS premiums thereafter. A timeline of rating agencies’monoline-related rating actions during 2007-08 can
be found at http://afgi.org/resources/Subprime_Crisis_Timeline.pdf.
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under the physical measure with a long-run mean of 55 bps, and is explosive under the

risk-neutral measure, implying an upward-sloping default-related yield component, similar

to Duffee’s findings for investment-grade corporate issuers. As expected, we find much lower

recovery rates on insured bonds than those on uninsured bonds. The average recovery rate

for insured bonds is 0.142 while that of uninsured bonds is 0.526, the latter being consistent

with Moody’s historical muni recovery rates. Using the estimated model parameters for the

61 issuers, we decompose the municipal yield spread of a hypothetical bond into default and

liquidity components. We find that the liquidity component plays a dominant role in the

decomposition, accounting for nearly 80 percent of the yield spread for uninsured bonds and

even higher percentages for insured bonds.4 For the median issuer, the liquidity component

of insured bonds is about 15 bps larger than that of uninsured bonds. For the selected few

issuers with good CDS coverage, we find that their bond-implied default intensities resemble

the CDS-implied counterparts, but there are also substantial differences that might tempt a

fixed income arbitrageur.

The extant literature on municipal bonds has had to contend with several interesting

puzzles. First, the long-end of the municipal yield curve appears too high relative to the

Treasury yield curve using the marginal tax rate implied at the short-end. Green (1993)

resolves this tension by showing that investors can structure a bond portfolio to replicate

the pre-tax cash flows of a taxable bond, while at the same time lowering the tax burden

on its coupon payments. Because long-term bonds generate most of their cash flows from

coupons, this strategy is more effective at long maturities, pulling down taxable yields relative

to tax-exempt yields at the long end.5 We take as given the relation between after-tax and

pre-tax discount factors in Green’s model, while leaving the marginal tax rate as one of the

parameters to be estimated.

Recently, Bergstresser et al. (2010) document a second puzzle in municipal bonds. Specifi-

4This stands in contrast with the yield spread decomposition for corporate bonds– Longstaff et al. (2005)
find liquidity to account for up to 50 percent of the yield spread for bonds rated AAA/AA, while the
percentages are lower on bonds rated below AA.

5Chalmers (1998) examines the relative yields of Treasury bonds and pre-funded municipal bonds (those
backed by Treasury bonds). He finds that these municipal yields display the same tendency to be too high
relative to Treasury yields, concluding that default risk does not explain the muni puzzle. Wang et al. (2008)
introduce default and liquidity components into Green’s model and show that the estimated tax rate is stable
across maturity and credit rating.
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cally, they use cross-sectional regressions to show that bonds insured by “troubled monolines”

have higher yields than uninsured bonds with the same S&P’s issuer credit rating, both dur-

ing and after the great financial crisis. Moreover, they use Green et al. (2007)’s method to

show that municipal bond dealers charge a higher markup on sales to customers for these

insured bonds than uninsured bonds. Consistent with their finding, our results from the

top 61 municipal bond issuers demonstrate that insured bonds command a somewhat larger

liquidity discount than uninsured bonds, and this difference results in yield inversion at the

end of our sample period, when some of the monolines became “troubled.”

Our study is similar to Longstaff (2011) in the sense that both exploit term structure

modeling techniques to extract information from municipal bond yields. While Longstaff

focuses on the very short-end through municipal swaps and infers a time-varying marginal

tax rate (as well as its risk premium) embedded in the one-week MSI (Municipal Swap Index)

rate, our model is estimated using municipal bonds of all maturities and considers the effect

of tax-exemption, default, liquidity, and insurance on municipal bond yields. Though our

tax rate is treated as a constant, our median estimate of 50 percent during our sample period

of 2007-08 is close to Longstaff’s time-varying estimate for the same period.

Another study that is similar to ours is Wang et al. (2008), who decompose munici-

pal yields into liquidity and non-liquidity components by estimating an extension of Green

(1993)’s model that accounts for sensitivities of the municipal yield to an aggregate liquidity

factor. They do not model the time variation of default risk or the effect of bond insur-

ance. Moreover, they estimate a much smaller liquidity component than ours because their

estimates only include the part of the liquidity discount that covaries with the aggregate

liquidity factor. In contrast, our liquidity discount incorporates a constant term as well

as sensitivity to the liquidity factor. The constant part of the liquidity discount cannot

be separated from the issuer’s credit risk if not for the presence of insured bonds in our

estimation– as the insurer’s credit risk approaches zero, the insured bond becomes virtually

risk-free, and its yield above and beyond the risk-free level must be attributed to a liquidity

discount. Once we pin down the liquidity discount for insured bonds, the issuer default risk

can be estimated. Then, since uninsured bonds share the same issuer default intensity with

insured bonds, their liquidity discount can also be identified. Thus, the necessity for the
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joint estimation of insured and uninsured bonds is a unique feature of our approach.

Last but not least, Ang et al. (2014) extract a daily zero-coupon yield curve from all

pre-funded (hence default-free) municipal bonds and adjust the curve downward for the

liquidity difference between pre-funded and regular bonds. They then use this adjusted

zero curve to compute a default-free yield for any regular municipal bond. They also use

the highest federal income tax rate to infer an after-tax yield for a hypothetical Treasury

bond with the same cash flows as the municipal bond under consideration. These two yield

benchmarks allow for a decomposition of any municipal yield into default, liquidity, and tax

components. One difference between our methodology and Ang et al. (2014)’s is that our

yield decomposition derives from an intensity-based model exploiting the pricing of a single

issuer’s insured and uninsured bonds, without relying on zero curves constructed from groups

of municipal bonds that could potentially differ in their credit risk. Another difference is

that the tax rate in our model is a parameter to be calibrated at the issuer level, which allows

for clientele effects across municipal issuers. Looking beyond these differences, however, the

dominant proportion of the liquidity component in the municipal yield spread is a finding

shared by both papers.

The remainder of our paper is organized as follows. Section 2 explains the sources of

our data and offers a preliminary analysis of municipal bond yields using panel regressions.

Section 3 then presents an intensity-based model of municipal bond pricing with the afore-

mentioned elements of default, liquidity, and insurance. Section 4 contains the results of

model estimation and the ensuing municipal yield decomposition. We conclude with Sec-

tion 5.

2 Preliminary Analysis

In this section, we use panel regressions to gain some insights into the various determinants

of municipal bond yields, which will be useful for the development of a formal model.
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2.1 Data

In Figure 1, we plot the five-year CDS premiums of Ambac, FGIC, FSA, and MBIA, the

four major municipal bond insurers, from January 2007 to December 2008. Evidently, the

premiums were extremely low and stable prior to July 2007 for all four monolines, but

reached dizzying heights in 2008. In particular, FGIC’s five-year premium stayed above

5,000 bps for most of the second half of 2008, and Ambac and MBIA’s were over 2,000 bps

in extended stretches as well. The only exception is FSA, presumably because it was the only

major monoline to have reduced its exposure to structured credit products by half between

1995 and 2010 (Moldogaziev, 2013). While we intend to exploit changes in monoline credit

quality in our estimation of the effect of bond insurance, variations of this magnitude could

necessitate more sophisticated econometric specifications, such as those with regime switches

and jumps, that would overly complicate our simple setup. Because of this concern, we limit

our sample period to July 2007 to June 2008, where monoline CDS premium variations are

substantial but not excessively large.

To select the municipal bonds used in our analysis, we apply several filters to those

included in the Mergent Municipal Bond Securities Database. Specifically, we select tax-

exempt investment-grade general obligation bonds with semi-annual fixed coupons and no

embedded options or sinking fund provisions. In addition, these bonds must be either unin-

sured or insured by Ambac, FGIC, FSA, or MBIA.6 We then match the characteristics

of these bonds with corresponding trades in the MSRB (Municipal Securities Rulemaking

Board) historical transactions data, which has been used in virtually all muni-related research

since mandatory trade reporting by municipal bond dealers began in 1997. Three types of

trades are reported in the MSRB data: dealer sales to customers, dealer purchases from

customers, and inter-dealer transactions. We focus exclusively on dealer sales to customers

because 1) these are the majority among the three types of trades, and 2) we want to avoid

modeling the bid-ask bounce. This procedure results in a total of 441,103 dealer-to-customer

sales on 64,771 bonds from 7,425 unique municipal bond issuers during our one-year sample

6In the 2008 version of the Mergent Municipal Bond Securities Database, there are 2.28 million unique
securities, about half of which are insured. Among the insured bonds, approximately 90 percent are insured
by the four major monolines. The percentages are: 26 percent (MBIA), 25 percent (FSA), 22 percent
(Ambac), and 17 percent (FGIC).
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period.

2.2 Summary Statistics

Panel (a) of Table 1 shows that the median bond in our sample is 2.91 years old and has

a yield-to-maturity of 3.42 percent, a coupon rate of four percent, a maturity of 4.58 years,

and an issue size of $2.62 million. The median trade size is $50,000. While both the trade

size and issue size seem small, they are highly positively skewed with the means much larger

than the medians, and the standard deviations in turn much larger than the means. For

more detailed summary statistics and sample composition, the reader is referred to existing

studies such as Downing and Zhang (2004), Harris and Piwowar (2006), Green et al. (2007),

Bergstresser et al. (2010), and Chung et al. (2015), since all of these studies make use of the

same MSRB transactions data from which our sample is derived.

Panel (b) of Table 1 then computes the average yield by bond insurer and Moody’s bond

rating (categories with fewer than 100 observations are omitted). It seems that Ambac,

FSA, and MBIA have a different business model from FGIC. While the first three monolines

have long maintained their AAA credit rating and are able to “rent out”this top rating to

the bonds that they insure, FGIC is content with letting its credit rating fluctuate below

the top and insuring lower quality bonds. Comparing the average yields of insured and

uninsured bonds, it seems that uninsured bonds have lower yields. This is not the “yield

inversion” phenomenon documented by Bergstresser et al. (2010), however. All it means

here is that perhaps bond insurance enables an insured bond to barely clear the threshold

for the rating that it received, hence its yield is expected to come in at the high end among

all bonds with that rating. To examine yield inversion, we should really compare yields on

insured and uninsured bonds that share the same issuer, which we will do below in our panel

regressions, or at least compare yields on insured and uninsured bonds with the same issuer

credit quality, which is what Bergstresser et al. (2010) did when they used S&P’s underlying

issuer credit rating.7

7It is still possible that the intrinsic credit quality of issuers of insured bonds is systematically lower than
that of issuers of uninsured bonds, even when they share the same intrinsic issuer credit rating. For example,
if investors treat all insured Aaa-rated bonds the same and insurers charge the same fee for lending their Aaa
rating to Aa-rated issuers, then the lower quality ones among Aa-rated issuers will be more likely to demand
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The bond rating that we use to generate Panel B comes from Mergent and represents

Moody’s bond rating at issuance, which may not be an accurate representation of the credit

quality of a bond at the time of observation. We have two responses to this concern. First,

the estimation of our intensity-based model uses the time-series of bond price observations

for a single issuer and does not require bond rating at all. Second, for a selected subset of

bond issuers, we have a superior proxy for credit quality– the CDS premium of the issuer.

This will be useful in the panel regressions below.

2.3 Regression Analysis of Municipal Bond Yields

To get a closer look at the determinants of municipal bond yields, we conduct the following

panel regression:

yijkts = αj + βs + di (a0 + a1CDSks) + γ
′
bond characteristicsit + εijkts, (1)

where i, j, k, t, and s denote bond, issuer, insurer, time of trade, and date of trade, re-

spectively, di = 1 for insured bonds and zero otherwise, and CDSk denotes the five-year

CDS premium of the monoline k that provides insurance for an insured bond i. Among the

bond characteristics are coupon rate, maturity, issue size, trade size, and age. We take the

logarithm of issue size and trade size because of the large positive skewness documented in

Table 1. Of course, we entertain the intuitive conjecture that a0 < 0 and a1 > 0, mean-

ing that bond insurance generally reduces the municipal bond yield, but that the effect is

weakened by the insurer’s declining credit quality.

Note that the issuer-level fixed effects account for the average issuer credit quality during

our (relatively short) sample period, the trading day-level fixed effects incorporate market-

wide changes that affect the yields on all municipal bonds, and the bond-level and trade-level

characteristics allow for heterogeneity in yields across bonds that share the same issuer. Still,

one might be concerned that there is no explanatory variable that captures the time-varying

issuer credit quality– to the extent that issuer credit quality is correlated with monoline

credit quality, we can see a biased estimate of a1. To address this issue, we identify 30

bond insurance, because the potential cost savings are greater for them. However, Bergstresser et al. (2015)
seem to rule out this possibility using evidence from subsequent rating migrations.
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municipal bond issuers that have CDS coverage during 2007-08, and we include their CDS

premiums in the enhanced specification below:

yijkts = αj + βs + di (a0 + a1CDSks) + a2CDSis + γ
′
bond characteristicsit + εijkts. (2)

The trade-off is that the sample size becomes much smaller.

Yet another criticism for yield regressions in general is that a linear specification cannot

account for the inherently nonlinear relation between the bond yield and its explanatory

variables. We address this concern by creating Aaa-, Aa-, and A-rated subsamples of short-

term (maturity less than or equal to five years) and long-term (maturity greater than five

years) bonds using Moody’s initial bond ratings from Mergent, where the level of credit

risk within each subsample is relatively homogeneous. Although some bonds could be mis-

classified because their ratings may have changed, the extent of such changes is expected to

be small based on Moody’s historical rating transitions for municipal bonds (see Exhibit 4

in Tudela et al., 2015).

To our knowledge, there are two existing studies of municipal bond yields and insurance-

related effects using the MSRB data and a regression-based methodology. Chung et al.

(2015) use a panel regression like ours with the monoline CDS premium, but they include

neither uninsured bonds nor issuer-level fixed effects. Therefore, their results are silent on

the relation between insured and uninsured bond yields, and could be affected by omitted

variables that capture the differences in credit quality across the issuers. Bergstresser et al.

(2010) conduct monthly cross-sectional regressions of the bond yield on a “troubled insurer”

dummy using groups of both insured and uninsured bonds with the same S&P’s issuer credit

rating. They are mainly focused on the differences between insured and uninsured bond

yields over time, especially during the financial crisis. The main issue with their approach, of

course, is that the credit quality of insured and uninsured bond issuers can be systematically

different even within the same rating category.

The results of our regressions are presented in Table 2. Focusing first on the insurance

effects, we find that the coeffi cient on the insurance dummy is mostly negative and significant

and ranges from 4 to 11 bps. The coeffi cient on the monoline five-year CDS premium is mostly
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positive and significant, though the magnitude is small given the large swing of monoline

credit quality during 2007-08. Nonetheless, the size of the coeffi cient implies a 2 to 12 bps of

increase in the municipal bond yield for every 1,000 bps of increase in the monoline five-year

CDS premium. Interestingly, the larger values among the estimates of a0 are associated with

A-rated bonds, indicating that there is greater room for yield reduction from bond insurance

among the lower quality issuers. Furthermore, the larger values among the estimates of

a1 are associated with Aaa-rated bonds, suggesting that insured bonds that attain the top

rating are the most sensitive to their insurers’credit quality.

In the regression with issuer CDS premiums, we group all bonds together because the

sample size is much smaller. This regression shows a close to one-to-one relation between the

issuer CDS premium and the municipal bond yield– the coeffi cient is 0.01 percent, or one

bp, for every one bp increase in the issuer CDS premium. Meanwhile, the insurance dummy

has a coeffi cient of −0.078, which is significant at the one-percent level. Interestingly, the

effect of the monoline CDS premium weakens and is no longer statistically significant. We

do know through additional analysis, however, that this is more likely to be attributed to the

reduction in sample size than the correlation between monoline and issuer CDS premiums.

Moving on to variables usually considered as indicators of bond liquidity, we find that

there is no consistent relation between the bond yield and the issue size of the bond. Trade

size, on the other hand, has a consistently negative and significant coeffi cient among short-

term bonds. This fits well with the empirical findings that municipal bond trading costs and

dealer markups are a downward-sloping function of trade size (Harris and Piwowar, 2006;

Green et al., 2007). However, trade size is not significant when we use a long-term bond

sample. In contrast, bond age is positive and significant for short-term bonds, and is positive

and significant in the Aaa-rated long-term bond sample, which contains the majority of the

long-term bonds. It appears that bond age is the most robust proxy for bond liquidity among

the three that we have considered.

Overall, our panel regressions offer many interesting insights into the necessary ingredi-

ents for pricing municipal bonds; they demonstrate that issuer default risk, monoline default

risk, and liquidity effects all play a role. Yet, a linear specification can only be stretched

so far. For example, it would be silly to extrapolate the monoline CDS premium into the
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10,000 bp range using the estimate for a1 just because that level was reached by FGIC dur-

ing 2008. Similarly, the one-to-one relation between the municipal bond yield and the issuer

CDS premium is likely to break down when the monoline CDS premium is extremely low.

While these can all be addressed in ad hoc ways in a regression-based framework, we will

now turn to the construction of a formal municipal bond pricing model.

3 Model

Our model for the pricing of municipal bonds contains several novel features beyond the

standard reduced-form model with latent issuer default factors (e.g., Duffee, 1999). First, we

incorporate the credit enhancement provided by the monolines for insured bonds. Second,

we estimate an aggregate liquidity factor and allow it influence the pricing of individual

municipal bonds. Third, our model accounts for the correlation between the aggregate

liquidity factor and the default intensities of the monolines and the bond issuers.8 Fourth,

we allow for differential recovery rates and liquidity discounts for insured and uninsured

bonds.

3.1 Aggregate Liquidity Factor

For now, it suffi ces to assume the existence of an aggregate municipal bond liquidity factor

lt, which follows a square-root diffusion with parameters (αl, βl, σl) under the risk-neutral

measure:

dlt = (αl − βllt) dt+ σl
√
ltdZl,t. (3)

The detailed procedure for the construction of this factor is explained in the next section on

model estimation.
8This feature is important as municipal bond liquidity likely experienced negative shocks during the

financial crisis period of 2007-08, when the market became increasingly concerned about corporate and
municipal default risk. In this sense, our modeling framework is an improvement over that of Longstaff et al.
(2005) and Driessen (2005), who treat their bond liquidity factor as independent of the credit risk factors.

12



3.2 Monoline CDS Pricing

We assume that the default intensity of the monoline λm,t is given by the following:

λm,t = c0 + c1lt + λ
′

m,t, (4)

with λ
′
m,t following a square-root diffusion under the risk-neutral measure with parameters

(αm, βm, σm):

dλ
′

m,t =
(
αm − βmλ

′

m,t

)
dt+ σm

√
λ
′
m,tdZm,t, (5)

and Zm,t being independent of Zl,t. The parameter c1 incorporates the potential correlation

between the monoline default intensity and the aggregate liquidity factor.

For simplicity, we also assume that the default-free interest rate rt is independent of other

random sources in the model, and that the price of a default-free zero-coupon bond with a face

value of $1 and maturity t is D (t). With payment dates denoted as 0 < t1 < t2 < · · · < tn,

the default time τm, and the CDS premium cm, the present value of future quarterly CDS

premium payments is:

cm
4
E

(
n∑
i=1

e−
∫ ti
0 rsds1{τm>ti}

)
=
cm
4

n∑
i=1

D (ti)E
(
e−

∫ ti
0 λm,sds

)
=
cm
4

n∑
i=1

D (ti) Φm (ti) , (6)

where

Φm (t) = Am (t)Al (t; c1) exp
(
−c0t+Bm (t)λ

′

m,0 +Bl (t; c1) c1l0

)
,

Am (t) = A (t;αm, βm, σm, 1) ,

Bm (t) = B (t; βm, σm, 1) ,

Al (t; z) = A (t;αl, βl, σl, z) ,

Bl (t; z) = B (t; βl, σl, z) ,

and the functions A and B are defined in Appendix A.

On the other hand, the present value of the CDS seller’s protection payment is:

E
(
e−

∫ τm
0 rsds1{τm≤tn}Wm,τm

)
, (7)
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where

Wm,τm = wm − cm
(
t− x4τmy

4

)
.

In this expression, wm is a constant reflecting the LGD of the bonds underlying the monoline

CDS contracts.9 The term being subtracted from wm reflects the accrued CDS premium from

the previous payment date to the time of default, with x4τmy denoting the largest integer
smaller than 4τm. We can rewrite (7) as:∫ tn

0

D (t) Ψm (t)Wm,tdt, (8)

where

Ψm (t) = [c0Am (t)Al (t; c1) + Am (t) (Gl (t; c1) +Hl (t; c1) c1l0)

+ Al (t; c1) (Gm (t) +Hm (t)λ
′

m,0)] exp
(
−c0t+Bm (t)λ

′

m,0 +Bl (t; c1) c1l0

)
,

Gm (t) = G (t;αm, βm, σm, 1) ,

Hm (t) = H (t;αm, βm, σm, 1) ,

Gl (t; z) = G (t;αl, βl, σl, z) ,

Hl (t; z) = H (t;αl, βl, σl, z) ,

and the functions G and H are defined in Appendix A. Note that we have relied on the

independence between lt and λ
′
m,t when deriving the expressions for Φm (t) and Ψm (t).

Equating (6) and (8), we can solve for the CDS premium as a function of the current

value of the factors, λ
′
m,0 and l0. In general, if we choose a finer set of grid points, 0 = s0 <

s1 < · · · < sm = tn, ∆t apart from each other, to approximate the integral in (8), the CDS

premium will be:

cm =
wm∆t

∑m
j=1D (sj) Ψm (sj)

1
4

∑n
i=1D (ti) Φm (ti) + ∆t

∑m
j=1 D (sj) Ψm (sj)

(
sj − x4sjy

4

) . (9)

When these grid points coincide with the quarterly CDS premium payment dates, ∆t = 1/4,

9For pricing CDS contracts, it is conventional to assume a constant fractional recovery of the bond’s par
value. We assume 40 percent, which means that we set wm = 0.6. Our later results are not sensitive to
changes in this parameter.
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the accrued premium term vanishes, and (9) simplifies to:

cm =
wm
∑n

i=1D (ti) Ψm (ti)∑n
i=1D (ti) Φm (ti)

. (10)

Alternatively, if we follow Berndt et al. (2008) to use the midpoints between the quarterly

payments, then letting si = (ti−1 + ti) /2, i = 1, 2, . . . , n, we have:

cm =
wm
∑n

i=1D (si) Ψm (si)∑n
i=1 D (ti) Φm (ti) + 1

8

∑n
i=1D (si) Ψm (si)

. (11)

In practice, the second approximation is much more accurate and we use it in the rest of our

empirical analysis.

3.3 Municipal Bond Pricing

We assume that a municipal issuer with intrinsic default time τi and default intensity λi

issues zero-coupon bonds with maturity T . Moreover, these bonds are insured by a monoline

insurer, so that the promised principal will be repaid if either the issuer or the monoline

remains healthy before T (assuming zero recovery given default). Therefore the payoff of the

bond is:

XT = 1{τi>T or τm>T}. (12)

With municipal bonds, we need to use the after-tax discount factor M (T ), which rep-

resents the present value of an after-tax dollar at time T , to discount the payoffs. Let the

marginal tax rate be η. According to Green (1993, equation 33), M (T ) can be obtained

through the pre-tax discount factor D (T ), which in turns comes from bootstrapping Trea-

sury bond yields:

M (T ) =
D (T )

1− η (1−D (T ))
. (13)

The price of the insured municipal zero-coupon bonds with maturity T is then given as:

v (T )

M (T )
= E

(
1{τi>T or τm>T}

)
= E

(
e−

∫ T
0 λi,sds + e−

∫ T
0 λm,sds − e−

∫ T
0 (λi,s+λm,s)ds

)
. (14)
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The above result invokes the independence between the risk-free rate and the default intensi-

ties. In addition, we follow the standard assumption in reduced-form credit risk models– that

the default times of the issuer and the monoline are independent given their intensities.

To allow for a liquidity discount driven by the aggregate liquidity factor, we extend the

above pricing relation slightly so that:

v (T )

M (T )
= E

[
e−

∫ T
0 γi,sds

(
e−

∫ T
0 λi,sds + e−

∫ T
0 λm,sds − e−

∫ T
0 (λi,s+λm,s)ds

)]
, (15)

where the liquidity discount

γi,t = c2 + c3lt. (16)

To further evaluate the expectation in the above equation, we allow for the possibility

that the default intensity of the municipal issuer is correlated with the aggregate municipal

bond liquidity factor,

λi,t = c4 + c5lt + hi,t, (17)

with hi specified as a square-root process under the risk-neutral measure:

dhi,t = (αi − βihi,t) dt+ σi
√
hi,tdZi,t, (18)

where Zi is independent of Zm driving λ
′
m as well as Zl driving the liquidity factor l. Together,

(17) and (4) complete a one-factor specification for the default intensities of the monoline

and bond issuer, with the liquidity factor as the source of correlated intensities. Diagnostics

tests in the results section will show that this is an adequate description of the comovement

of the intensities.
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Under these assumptions, we have:

E
(
e−

∫ T
0 (λi,s+c3ls)ds

)
= Al (T ; c3 + c5)Ai (T ) exp (−c4T +Bl (T ; c3 + c5) (c3 + c5) l0 +Bi (T )hi,0) , (19)

E
(
e−

∫ T
0 (λm,s+c3ls)ds

)
= Al (T ; c3 + c1)Am (T ) exp

(
−c0T +Bl (T ; c3 + c1) (c3 + c1) l0 +Bm (T )λ

′

m,0

)
, (20)

E
(
e−

∫ T
0 (λi,s+λm,s+c3ls)ds

)
= Al (T ; c3 + c1 + c5)Am (T )Ai (T )×

exp
(
− (c0 + c4)T +Bl (T ; c3 + c1 + c5) (c3 + c1 + c5) l0 +Bm (T )λ

′

m,0 +Bi (T )hi,0

)
. (21)

As with previous definitions, we have

Ai (t) = A (t;αi, βi, σi, 1) ,

Bi (t) = B (t; βi, σi, 1) .

We now extend the notation above to denote the price of a municipal bond with maturity

T , coupon rate c, and recovery rate δ as v (T, c, δ). Here, it is assumed that for each unit of

promised payment at t (including both principal and coupon payments), a fraction δ units

are paid at t when default occurs before t. This is the well-known “recovery of Treasury”

assumption introduced in Jarrow and Turnbull (1995) (refer to the appendix of Duffee (1999)

for a similar treatment of corporate bonds). It implies that:

v (T, c, δ) = δM (T, c) + (1− δ) v (T, c, 0) , (22)

where

M (T, c) =
n∑
i=1

M (Ti) c+M (T ) (23)

is the price of a hypothetical default-free municipal bond with coupon dates Ti, i = 1, 2, . . . , n,

maturity T and coupon rate c, and

v (T, c, 0) =
n∑
i=1

v (Ti, 0, 0) c+ v (T, 0, 0) (24)
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is the price of a defaultable municipal bond with coupon dates Ti, i = 1, 2, . . . , n, maturity

T , coupon rate c, and zero recovery. With v (T, 0, 0) given in (15), (22)-(24) complete the

specification of insured municipal coupon bond pricing.

We should note that in (22), the first term on the right hand side reflects cash flows that

will be received by bondholders regardless of default. Because of its risk-free nature, we do

not apply a liquidity discount to this term. The second term, however, is affected by the

default risk of the bond, and is therefore subject to a liquidity discount through (24) and

(15). This treatment differs from Longstaff et al. (2005), who apply a liquidity discount to

the entire bond price, including promised coupon and principal payments, as well as the

fractional recovery of the bond’s face value. While this difference is likely to be immaterial

for our results, it does imply a less direct connection between the assumed liquidity discount

γi,t and the liquidity component of municipal bond yields in our case, since the latter is also

affected by the recovery rate through (22). A discussion of this subtlety can be found in

Section 4.4 below.

So far, we have focused on the pricing of insured bonds. The pricing of an uninsured

municipal zero-coupon bond with zero recovery is given by:

v (T )

M (T )
= E

(
e−

∫ T
0 (λi,s+γi,s)ds

)
, (25)

which can simply be considered as a special case of (15) with λm,t set to a very large value.

The corresponding uninsured coupon bond with non-zero recovery can be dealt with similarly

using (22)-(24). In the empirical estimation of our model, we will allow the liquidity discount

and recovery rate to differ across insured and uninsured bonds. This means that the liquidity

discount in (15) and (25), as well as the recovery rate in (22), will subsequently be labelled

by “in”for insured bonds and “un”for uninsured bonds.

3.4 Identification Issues

3.4.1 Liquidity Discounts

Comparing the pricing of insured bonds in (15) and uninsured bonds in (25), we see that

insured bond pricing naturally incorporates variations of monoline credit quality as reflected
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in the monoline default intensity λm, while this does not (and it should not) enter the pricing

of uninsured bonds. Also, the same issuer default intensity λi enters both equations, although

in different ways as it interacts with the effect of λm in the case of insured bonds. On the

other hand, we are completely free to allow different liquidity discounts, γuni = cun2 + cun3 lt

and γini = cin2 + cin3 lt, for the two types of bonds. In fact, Bergstresser et al. (2010) suggest

that lower liquidity on insured bonds could be the reason why their yields were higher than

those on otherwise similar uninsured bonds during as well as after the financial crisis.

The uninsured bond’s liquidity parameters (cun2 , cun3 ), however, cannot be identified from

uninsured bond prices alone. This can be seen through (25), where we have the sum of the

issuer intensity and the uninsured bond’s liquidity discount:

λi,t + γuni,t = cun2 + c4 + (cun3 + c5) lt + hi,t. (26)

Using uninsured bond prices, therefore, we can only identify cun2 + c4 and cun3 + c5, but not

each coeffi cient separately. With insured bonds, however, the crucial middle term in (15)

contains:

λm,t + γini,t = cin2 + c0 +
(
cin3 + c1

)
lt + λ

′

m,t. (27)

Since c0 and c1 have been identified in an earlier stage of monoline intensity estimation

using CDS data, the insured bond’s liquidity parameters (cin2 , c
in
3 ) can be identified using

insured bond prices alone. This means that the issuer intensity parameters (c4, c5) are now

identifiable using insured bonds, and consequently (cun2 , cun3 ) can also be pinned down. This

discussion therefore shows the importance of using insured and uninsured bonds jointly in

our model estimation.

3.4.2 Recovery Rates

Another ingredient of our model that can help bring insured and uninsured bond yields

closer is the recovery rate. On the surface, it seems paradoxical for insured and uninsured

bonds issued by the same municipality to command different recovery rates. After all, there

are no systematic differences in seniority between these bonds, and both are backed by the

same municipal assets and tax revenues. However, the (much less likely) states of the world
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in which an insured bond suffers a loss of capital are probably quite different from those

(more general cases) in which a municipality is defaulting on its uninsured obligations. For

instance, when Orange County, California, defaulted in 1994, it ranked as the largest munic-

ipal bankruptcy at the time. While it was the Fed’s interest rate actions that precipitated

the loss on the Orange County Investment Pool, the bankruptcy was ultimately attributed

to the investment decisions of a rogue county treasurer. What this means is that municipal

default risk is generally not very systematic.10

While a significant number of the 80 municipal defaults during 1970-2014 (see Tudela

et al., 2015) involved insured bonds, all but two were repaid in full by the monolines. The

two exceptions are the sewer bonds of Jefferson County, Alabama insured by XLCA and

FGIC, and the Las Vegas Monorail bonds insured by Ambac. Both defaults occurred during

or shortly after the great financial crisis, and Moody’s ultimate recovery rates on these bonds

are 54 percent and two percent, respectively. The fact that the monolines had never failed

to fully repay any defaulted insured bonds from their inception in 1971 to 2008, a period

of nearly 40 years, suggests two implications. First, there was virtually no historical data

to estimate recovery rates on insured bonds reliably before the financial crisis. The two

observations we now have are certainly consistent with the bimodal distribution of muni

recovery rates estimated by Tudela et al. (2012, Exhibit 17), with the two modes very close

to either zero or one. Second, investors probably considered the joint default of a municipal

issuer and the monoline that insures its bonds to be so unlikely that it is essentially an

“end-of-the-world” scenario where nothing can be recovered. In any case, we will let the

empirical data speak to the risk-neutral recovery rates implied from insured and uninsured

bonds.
10This general sense also comes through by inspecting the number of municipal defaults during 1970-2014

(Exhibit 11 in Tudela et al., 2015). Annual defaults were generally few and there was no dramatic increase
in the early 1990s, the early 2000s, or during 2008-09 for the recent great recession. This stands in sharp
contrast with the temporal pattern of corporate defaults (Exhibit 1 in Ou, 2011).
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4 Empirical Results

4.1 Liquidity Factor

The first step of our estimation is to construct an aggregate municipal bond liquidity factor.

We do this by exploiting the relation between the municipal bond yield and the age of

the bond as shown in Table 2. Our procedure follows Driessen (2005), who identifies a

similar relation between bond yield and bond age among corporate bonds. Building upon

the regression results, we plot the bond yield against bond age separately for short-term

(maturity ≤ 5 years) and long-term (maturity > 5 years) bonds. Figure 2 shows that, for

both short-term and long-term bonds, bond yield initially increases with age, but then the

relation becomes downward-sloping or flat when age is greater than three years (the median

bond age is 2.91 in Table 1). The same figure also reveals that bond yield increases with age

among the older bonds in our sample.

Taking advantage of these more detailed findings, we form four municipal bond portfolios

for each day in our sample. Specifically, the first portfolio P1 contains all bonds with maturity

≤ 5 years and 7 years ≤ age < 10 years, the second portfolio P2 contains all bonds with

maturity > 5 years and 7 years ≤ age < 10 years, the third portfolio P3 contains all bonds

with maturity ≤ 5 years and age ≥ 10 years, and the fourth portfolio P4 contains all bonds

with maturity > 5 years and age ≥ 10 years. The first two portfolios are equally-weighted,

while the latter two are weighted to match the average duration and rating distribution of

the first two portfolios. This way, the average yield differences between P3 and P1 and

between P4 and P2 reflect only differences in bond liquidity and not interest rate risk or

credit risk. We plot the short-term liquidity spread (P3-P1) and long-term liquidity spread

(P4-P2) in Figure 3. We can see that both spreads exhibit an upward trend over the sample

period, and that the long-term spread is generally higher than the short-term spread.

Next, we treat these daily “liquidity spreads” as if they were zero-coupon bond yields

with maturities set to equal the variable durations of P1 and P2, respectively. We then

assume that these yields are generated by a one-factor CIR model and proceed to estimate

the liquidity factor and its parameters using a standard Kalman Filter, since the mapping

from the factor to the zero-coupon bond yield is an affi ne function. We assume an extended
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affi ne market price of risk (Cheridito et al., 2007) so that the liquidity factor process under

the P -measure is:

dlt =
(
αPl − βPl lt

)
dt+ σl

√
ltdZ

P
l,t, (28)

We estimate the liquidity factor parameters as: αPl = 0.004, βPl = 2.423, σl = 0.106,

αl = 0, and βPl = −0.487. The physical parameters αPl and β
P
l imply a mean-reverting

process under P with a long-run mean of around 17 bps. In contrast, the risk-neutral

parameters αl and βl suggest an explosive process that explains the higher liquidity spread

at the long maturities. The time-series of the filtered liquidity factor is represented in

Figure 3. Like the liquidity spreads, it also exhibits an upward trend through the sample

period, starting around 5 bps in July 2007 and rising above 20 bps in April and June 2008.

4.2 Monoline Default Intensities

The second step of our estimation is to extract the default intensities of the four major

monolines using their CDS contracts. Equation (11) maps the state variables λ
′
m,t and lt into

the monoline CDS premium at time t. For the value of lt, we simply substitute for the filtered

liquidity factor from the preceding estimation, assuming that it is observed without error.

Therefore, this is effectively a one-factor model of λ
′
m,t that can again be estimated using

the Kalman Filter. However, the standard KF cannot be used here because the mapping

(11) is nonlinear. In this case, one approach is to linearize the so-called “measurement

equation”around the long-run mean or the one-period-ahead forecast of the state variable

and then apply the standard KF. This “Extended Kalman Filter” (EKF) has been used

by Duffee (1999) to estimate an intensity-based model for corporate bond pricing. We,

however, use another related approach called the “Unscented Kalman Filter”(UKF), which

better addresses nonlinearities in the measurement equation (see Appendix B for details of

the UKF).

We specify the dynamics of λ
′
m,t under the physical measure using the same extended

affi ne market price of risk as what we did for the liquidity factor:

dλ
′

m,t =
(
αPm − βPmλ

′

m,t

)
dt+ σm

√
λ
′
m,tdZ

P
m,t, (29)
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where ZP
m,t is independent of Z

P
l,t. This allows us to write down a discretized “transition

equation”for the square-root process, also required for the KF estimation. Finally, we con-

duct the estimation using monoline CDS premiums of the following maturities: six months,

one, two, three, four, five, seven, and ten years. We assume that the five-year CDS premium,

usually the most highly traded maturity, is observed without error, and use it to infer the

value of the state variable λ
′
m,t. The CDS premiums of other maturities are assumed to

contain measurement errors.

Table 3 presents the estimated parameters for the four monolines and Figure 4 compares

the actual and model-implied three-year and ten-year CDS premiums. Graphically, we can

see that the fitting performance is quite good for Ambac, FSA, and MBIA even though

their CDS premiums exhibited very large variations over the sample period. This good

performance is also reflected in “VR,”or one minus the ratio of the variance of CDS pricing

errors to the variance of actual CDS premiums, which is above 0.99 in these three cases.

We also compute the “relative RMSE,”or the root mean squared CDS pricing error divided

by the sample average of actual CDS premiums, which is below 12 percent in these three

cases. For comparison purposes, the bid-ask spread in the CDS market is around five to ten

percent of the CDS premium in recent years, and this percentage can become even higher

for top quality obligors with very low CDS premiums. Therefore, the pricing errors in these

three cases are certainly within the margin of tolerance.

We do note the relatively poor fitting performance for FGIC both graphically and as

reflected in the lower VR and higher relative RMSE. FGIC has the highest level of CDS

premiums among the four monolines, and its short-term CDS premiums (six-month and one-

year) exceeded 10,000 bps in June 2008. Therefore, we did not expect great performance

from such a simple specification to begin with. In fact, while a one-factor model like ours

can match the level of the CDS curve well (e.g., the five-year CDS premium), it has limited

ability in matching the slope of the CDS curve. Specifically, the risk-neutral drift of λ
′
m,t is

αm−βmλ
′
m,t, which for positive αm and βm will generate a positive slope when the CDS level

is low and a negative slope when the CDS level is high. But the relation between the CDS

level and slope within our one-factor model is deterministic– explaining deviations from this

relation would likely require an additional stochastic factor.
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Among the model parameters, we see that αPm > 0 and βPm < 0 imply an explosive λ
′
m,t

process under P for Ambac, FSA, and MBIA, which is certainly consistent with their rising

CDS levels during our sample period (see Figure 1). For FGIC, the drift of λ
′
m,t under P is

positive except for its highest values in excess of 10,000 bps, which is also consistent with

the sample path of its CDS premium. For the risk-neutral parameters, αm and βm are both

positive for Ambac, FSA, and MBIA, implying mean-reverting behavior with implications

for the slope of the CDS curve as we have just discussed. In the case of FGIC, it has αm > 0

and βm < 0, rendering the drift always positive and suggesting that the model may have

trouble simultaneously matching a positive slope when the CDS level is low and a negative

slope when the CDS level is high.

For the volatility parameter σm, we find similar estimates among Ambac, FSA, and

MBIA, and a much higher one for FGIC, again consistent with casual observations of their

CDS premiums. Lastly, we recall that the parameter c1 measures the sensitivity of the

monoline default intensity to the liquidity factor. Our estimates of c1 (positive in all cases)

are close to zero for FSA, similar and close to one for Ambac and MBIA, and five times

larger still for FGIC.

4.3 Issuer Parameters

The third and final step of our estimation is to identify the parameters associated with

the municipal bond issuers. For each issuer i, the parameters to be estimated include(
αi, βi, σi, α

P
i , β

P
i

)
for hi,t, the issuer-specific component of the default intensity λi,t; (c4, c5),

the part of the default intensity linear in the liquidity factor; (cin2 , c
in
3 , c

un
2 , cun3 ), the liquid-

ity discounts of uninsured and insured bonds; (δin, δun), the recovery rates of insured and

uninsured bonds; and η, the marginal tax rate.11 Consistent with previous assumptions, the

physical dynamics of hi,t follows:

dhi,t =
(
αPi − βPi hi,t

)
dt+ σi

√
hi,tdZ

P
i,t, (30)

11Besides these 14 parameters, we need the initial value of the state variable (assuming an initial variance
of zero) to start the UKF recursion, and the two variances of pricing errors for insured and uninsured bonds,
respectively. Therefore, we have a total of 17 parameters for each issuer.
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where ZP
i,t is independent of both Z

P
l,t and Z

P
m,t.

The pricing formulas (15) and (25) map lt, λ
′
m,t, and hi,t into prices of insured and

uninsured muni zeros. As before, we substitute out lt and λ
′
m,t using their filtered values,

leaving this as a one-factor model of hi,t that can be estimated using the UKF. While the

UKF procedure does not require regularly-spaced bond price observations, there needs to be

enough of them to span the sample period as well as provide enough variation to pin down

the large number of model parameters. Our procedure for selecting the issuers is as follows:

First, for bonds with multiple dealer sales within the same trading day, we consolidate them

into one observation using simple averaging. Second, we screen for issuers with at least

100 observations that include both insured and uninsured bonds, which are relatively evenly

distributed over our sample period. To speed up computation, for cases where there are more

than 100 observations, we truncate the data so that only bonds with the highest number of

observations are kept. This procedure results in a sample for model estimation that contains

61 issuers.

Table 4 summarizes the estimation results. Because of the large number of issuers, we

only present the first quartile, median, third quartile, and mean of the parameter estimates.

First, we focus on the general performance of our model as measured by the VR and the

relative RMSE. Across the 61 issuers, the median VR is 0.964 for insured bonds and 0.985 for

uninsured bonds, showing that the model-generated bond price leaves less than four percent

of the variation of the actual bond price unexplained for the median municipal bond issuer.

Perhaps more direct for interpretation is the median value of the relative RMSE, which

equals 0.617 percent and 0.439 percent for insured and uninsured bonds, respectively. Table 1

shows that the average maturity of the bonds included in our regression analysis is 5.6 years.

Assuming a modified duration of five years, the corresponding RMSE in terms of bond yields

would be around 12 bps for insured bonds and 9 bps for uninsured bonds. In comparison,

the median bond yield RMSE across 161 corporate bond issuers is around 10 bps in Duffee

(1999). Interestingly, Duffee’s model contains two default-free factors filtered from a previous

stage from Treasury bonds that together with an issuer-specific factor drive corporate bond

yields. Ours, on the other hand, contains one liquidity factor and one monoline default factor

filtered from previous estimations that together with an issuer-specific factor drive municipal
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bond yields. We now know that our model performs just as well as Duffee’s model– at least

for explaining the yields on the most highly traded municipal bonds.

Turning our attention to the parameters of the hi,t process, we see that the physical

parameters αPi and β
P
i are mostly positive, with the median parameters implying a long-run

mean for hi,t of 55 bps (0.076/13.842). On the other hand, the risk-neutral parameter αi

is uniformly close to zero and βi is mostly negative, suggesting that hi,t is explosive under

the Q measure. Thus the representative profile for our municipal issuer resembles a highly

rated corporate issuer with low and upward-sloping credit spreads (see Section 5 in Duffee,

1999, for relevant discussions). This is not surprising when our 61 issuers include 17 states,

17 cities, and 17 school districts that all have high credit quality.

Our issuer default intensity also includes a constant term c4, which is close to zero for

most issuers, plus c5 times the liquidity factor. We see that c5 seems to be negatively skewed

based on its Q1, median, and Q3, yet its mean is slightly positive. In any case, its magnitude

is much smaller than c1, which captures a strong positive dependence on the liquidity factor

for the monoline default intensity. This suggests that the correlation between issuer credit

risk and aggregate bond liquidity should not be a compelling concern for the modeler.

The remaining issuer parameters pertain to liquidity discounts, recovery rates, and the

marginal tax rate, and their estimates offer interesting insights into the pricing of municipal

bonds. For the liquidity discount parameters, we find γuni,t = cun2 + cun3 lt to be much larger

than γini,t = cin2 + cin3 lt across virtually the entire distribution of the parameters (e.g., Q1,

median, Q3, and mean). Also, c2 and c3 are mostly positive for both insured and uninsured

bonds, consistent with a discount of the bond value due to liquidity risk. Do these results

imply, then, that insured bonds are generally much more liquid than uninsured bonds in the

sense that they are discounted less? Surprisingly, the answer based on our decomposition of

the muni yield is “No.”We will return to this question in the next subsection.

We find robust evidence that the recovery rate of insured bonds is heavily concentrated

at zero with an average value across 61 issuers of 0.142, suggesting that investors expect

little when the bond issuer and the bond insurer both default. In fact, both the Q1 and

the median of the recovery rate for insured bonds are equal to zero, suggesting that our

UKF procedure settled for a corner solution for the recovery rate of insured bonds in many
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cases. In contrast, the recovery rate for uninsured bonds seems to follow a rather tight

distribution around the mean value of 0.526 and median value of 0.581. Interestingly, a

recent Moody’s municipal bond default and recovery study (Tudela et al., 2012) computes

an average recovery rate of 65 percent based on 71 defaults from 1970 to 2011. It also shows

that the recovery rate follows a bimodal distribution with one mode close to zero and the

other mode close to one. There is no doubt that many cases where the recovery rate is

exactly one include insured bonds that are made whole by the monolines. Therefore, the

recovery rate on uninsured bonds is likely to be lower. Our estimate of the recovery rate for

uninsured bonds is therefore consistent with Moody’s data.

Our estimate of the marginal tax rate η also follows a tight distribution with a mean value

of 0.504 and a median value of 0.501. Longstaff (2011) estimates the marginal tax rate from

municipal swaps that exchange the seven-day MSI rate for a fraction of the LIBOR rate.

His estimate is time-varying and averages to about 40-50 percent during the 2007-08 period,

which is consistent with our estimates obtained from a difference source– the municipal bond

market. Borrowing an argument from Longstaff (2011), many of our 61 issuers are states,

counties, cities, and local school districts. The investors in bonds issued by these entities

likely differ in terms of their geographic locations. Therefore, our tax rate estimate probably

reflects the aggregate federal, state, and local income tax burden of the marginal investor in

these bonds. It is not diffi cult to conjure up an example where the total tax rate faced by

an investor is close to our median estimate of 50 percent.

4.4 Decomposing Insured and Uninsured Bond Yields

Using the estimated model parameters, we now perform a decomposition of the municipal

bond yield into default-free, default, liquidity, and insurance components (if the bond is

insured). Our methodology is as follows. First, we note that the bond yield depends on the

bond maturity and coupon rate, which are generally not the same across issuers. Therefore,

we hold fixed a “hypothetical bond”with a maturity of 4.2 years and coupon rate of 5.25

percent, and use the model parameters to compute the municipal yield components. This

way, the decomposition is solely attributed to the (issuer-specific) model parameters and not
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differences in bond characteristics.

For each issuer and each day in the sample period, given the estimated tax rate and the

Treasury discount factors, we use (13) to calculate the yield of a “default-free”municipal

bond yield, y0. We then switch on the issuer default intensity (with the recovery rate for

insured bonds) while keeping the liquidity discount at zero and allowing for no bond insur-

ance. This generates an updated bond yield of y1. Then, while still keeping the liquidity

discount at zero, we introduce the effect of the bond insurer. We assume that the hypo-

thetical bond is insured by either FSA or MBIA, because we want to examine the effect

of monoline credit quality on the yield decomposition, knowing that MBIA’s credit quality

became much worse than FSA’s during our sample period. We update the bond yield to y2

after this step. Finally, we turn on the liquidity discount for insured bonds and compute

the bond yield in the full model as y3. We define the “default”component as y1 − y0, the

“default+insurance”component as y2− y0, and the “liquidity”component as y3− y2.12 The

total of the “default+insurance” and “liquidity” components is y3 − y0, or the total yield

spread of the hypothetical insured municipal bond. For the hypothetical uninsured bond,

we have the same default-free yield, but use the recovery rate for uninsured bonds with the

same issuer default intensity to compute a different default component, and we turn on the

liquidity discount for uninsured bonds after that to obtain the liquidity component.

Table 5 summarizes the sample averages of the municipal yield components. First looking

across all 61 issuers, we see that the liquidity component takes up a dominant share of the

total yield spread for municipal bonds. For uninsured bonds, the median components show

that the fraction of yield spread attributed to liquidity is 79 percent (1.240/ (1.240 + 0.329)),

with 21 percent attributed to default. For insured bonds, since bond insurance has the effect

of sharply reducing the default component (compare the “def”column with the “def+ins”

column), the share of the yield spread attributed to liquidity is even higher– for the median

case, this is 91 or 96 percent depending on the insurer.13 For a similar decompositions

of corporate bond yield spreads, Longstaff et al. (2005, Table 4) find that AAA/AA-rated

12We find that the liquidity component is not sensitive to whether FSA or MBIA is used in the second
step. In other words, while the choice of the insurer affects y3, it does not have a significant effect on y3−y2.
13For example, for the case of MBIA, the liquidity share of the yield spread for the median case is

1.392/ (1.392 + 0.143) ≈ 0.91.
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issuers have an average default component of 0.533 percent out of an average total yield

spread of 1.036 percent relative to Treasury yields. While our municipal issuers have a lower

default component of 0.329 percent, the liquidity component is much larger, boosting the

total yield spread against a hypothetical default-free muni yield to 1.569 percent.

One interesting result is that the default component of insured bonds (not yet having

incorporated insurance effects) is higher than that of uninsured bonds. This is apparently

because the recovery rate on insured bonds are much lower than that on uninsured bonds,

while they share the same issuer default intensity. In fact, different recovery rates are also

the reason why the liquidity component for insured bonds is somewhat higher than that of

uninsured bonds even though the c2 and c3 estimates of uninsured bonds are much larger than

those of insured bonds (see Table 4). Specifically, (22) shows that the price of a municipal

zero with recovery rate δ is equal to 1 − δ times the price of a municipal zero with zero

recovery plus δ times the price of a default-free zero. While the first part is subject to a

liquidity discount following (15), the default-free part is not. Therefore, while it is true that

c2 and c3 are much bigger for uninsured bonds, the associated liquidity discount is only

applied to part of the total bond price when the median recovery rate estimate for uninsured

bonds is about 0.5. In contrast, the median recovery rate estimate for insured bonds is zero,

and the liquidity discount for insured bonds is applied to the entire bond price. In the end,

our calculation reveals that the liquidity component is about 15 bps larger for insured bonds

of the median issuer than for uninsured bonds (1.392 vs. 1.240).

Our 61 issuers include 17 states, 17 cities, and 17 unified school districts.14 Table 5 also

summarizes the sample averages of the yield components for each of these three groups. There

is little difference that sets these three types apart from each other, perhaps because they

all have high credit qualities. We do see, however, that state-issued (city-issued) uninsured

bonds have the lowest (highest) level of default component among the three groups. Also,

city-issued uninsured bonds have the lowest liquidity component, suggesting that they are

the most liquid among the three groups.

14Also included are five counties and five state-level public finance entities.
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4.5 Time Variation of Yield Components

Examining the sample averages of the yield components gives us a good sense of the relative

importance of default vs. liquidity and the effect of bond insurance a la FSA vs.MBIA. In

the latter comparison, Table 5 shows that having FSA (instead of MBIA) as the bond insurer

can lower the bond yield by around 10 bps (0.071 vs. 0.172) for the average issuer. In this

subsection, we focus on how these yield components change over time.

Figure 5 plots the median yield spread components for the hypothetical bond over our

sample period. The left-hand-side (right-hand-side) panels assume MBIA (FSA) as the

insurer. We begin our discussion with the case of MBIA. In Panel (a), we see that the

default component of the uninsured bond is much larger than the def+ins component of the

insured bond at the beginning of our sample period. This is because the CDS premium of

MBIA is low during 2007. However, the gap between the two components begins to narrow

at the end of 2007 because of MBIA’s deteriorating financial conditions.15 Panel (a) also

shows that the liquidity component of the insured bond is visibly higher than that of the

uninsured bond during the first half of our sample period. However, the uninsured bond

is more sensitive to the aggregate liquidity factor, which causes its liquidity component to

catch up to that of the insured bond toward the end of our sample period.16 With these

components coming so close to each other, it is not surprising that Panel (e) shows that

yield inversion occurs more frequently after April 2008. In contrast, we do not see as many

incidences of yield inversion in Panel (f) for the case of FSA because its credit quality did

not decline as much as MBIA’s. Notably, the def+ins component of Panel (b) is much lower

than that of Panel (a).

Our purpose here is to articulate the conditions under which yield inversion can occur.

According to the numerical example just presented, those conditions have to do with a rapidly

15Another reason why the def+ins component of insured bonds can rival or even exceed the default
component of uninsured bonds is the lower constant recovery rate we estimate for insured bonds. When the
insurer is “teetering on default,”as was the case with Ambac, MBIA, and FGIC in the middle of 2008, the
recovery rate on insured bonds must be very similar to that of uninsured bonds by definition. Therefore, if
we properly model this behavior through time-varying recovery rates, our model would not have produced
such an “inversion”of the default components. We leave this model extension to future research.
16Note that in Table 4, the median value of cun3 is 1.029, much larger than the median value of cin3 , which

is 0.107.
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declining insurer credit quality as well as liquidity discounts that are greater for insured

bonds. While our median parameter values are consistent with the liquidity component of

insured bonds being about 15 bps higher than that of uninsured bonds, we must point out

that these estimates are based on 61 most liquid municipal issuers. Our approach cannot

be used to uncover yield inversion in the general population of hundreds of thousands of

municipal bonds that are rarely traded. Having said that, Bergstresser et al. (2010, Table

15)’s regression estimate of the additional dealer markup for bonds insured by “troubled

monolines” is around 10-15 bps during the first half of 2008, quite similar to the median

estimate of the liquidity gap between insured and uninsured bonds in our smaller sample.

4.6 Bond-Implied vs CDS-Implied Default Intensities

Although liquidity is the largest component by far in the municipal yield spread, an exami-

nation of its default component can also yield many insights. This is especially true when we

compare the bond-implied default intensity side-by-side with its CDS-implied counterpart,

whenever we have CDS trading for municipal issuers. Unfortunately, CDS trading activities

in municipalities only picked up at the end of 2007, most likely as investors began reacting to

the monoline debacle. This means that we can only conduct this comparison for a selected

few issuers. Specifically, we assume the same functional form for the CDS-based default

intensity as in (17),

λcdsi,t = ccds4 + ccds5 lt + hcdsi,t ,

and of course we estimate its parameters from the CDS premiums of the municipality, not

from its bonds. Procedurally, this estimation is identical to the estimation of the default

intensities of the monolines.

Figure 6 plots the CDS-implied default intensity against the bond-implied default inten-

sity that we estimated earlier. The figure presents three cases: the State of California, the

City of New York, and the State of Illinois. NYC and California are the top two issuers in

our sample by the number of bonds traded. All three are selected because they have good

CDS coverage from July 2007 to June 2008.17 All three panels of Figure 6 reveal qualitatively

17Several other states also had CDS trading during this period. However, the trading was usually very
thin, with only one or two maturities available, and with zero or spotty coverage before 2008.
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similar patterns. Before November 2007, the CDS intensities of all three states were low and

stable, presumably because investors did not worry about the default risk of large municipali-

ties. In contrast, the muni bond market was showing higher volatility during this period, and

one could find portfolio managers giving advice about “opportunities” in municipal bonds

because their yields were rising relative to Treasuries (see Lim, 2007). Between November

2007 and April 2008, however, the CDS intensities began to rise and shadow movements

in the bond intensities closely. Comparing the two intensities during this period, it seems

that the bond intensity is much more volatile than the CDS intensity, perhaps due to the

measurement noise in the muni bond prices. Nevertheless, the close relation between the

two gives us confidence that one could still meaningfully extract default-related information

from muni bonds, even when this is a market known for its illiquidity.

Figure 6 also shows an interesting divergence between the two intensities after April

2008. While the bond intensity precipitously declined, the CDS intensity flattened and even

increased. An inspection of the ratio of the Bloomberg 10-year AAA muni yield to the

10-year Treasury yield confirms a decline into June 2008. Therefore, while the CDS market

remained pessimistic about the credit risk of large municipalities, the municipal bond market

“disagreed.”Interestingly, a fixed income arbitrageur who traded on this divergence would

probably have profited, because the same muni-to-Treasury yield ratio rose dramatically

during July to December 2008. In this case, the CDS market turned out to be correct.

4.7 Testing the Independence Assumptions

Several important assumptions in our model for the dynamics of issuer and monoline default

intensities, as summarized in (17) and (4), are the independence between λ
′
m,t and lt, hi,t and

lt, and λ
′
m,t and hi,t. We therefore compute these correlations using the filtered estimates

of the state variables. Since some of the intensities exhibit non-stationary behavior under

the physical measure, we take the first difference of the state variables before computing the

correlations.

Table 6 provides supportive evidence of the independence assumptions. The last row

shows the correlations between lt and each individual λ
′
m,t as well as the first and second
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principal components (PCs) of the four λ
′
m,t’s. The absolute values of these correlations are

all below 0.18. The last column shows the summary statistics of the correlations between lt

and hi,t, with a Q1, median, Q3, and mean of −0.059, 0.01, 0.069, and 0.006, respectively.

Finally, the correlations between hi,t and each λ
′
m,t as well as the two PCs have quartiles

and means that never exceed 0.13 in absolute value. These low correlations suggest that

our one-factor structure describes the comovement of the liquidity factor, the four monoline

intensities, and the 61 issuer intensities well.

5 Concluding Remarks

We construct an intensity-based model of municipal yields, similar to that of Duffee (1999)

for pricing corporate bonds, but with features unique to the municipal bond market. One

important feature is that a significant percentage of municipal bonds carry bond insurance,

and their pricing is likely influenced by the credit quality of the insurer besides that of the

municipal issuer. Another important feature is that municipal bonds trade infrequently, and

their pricing is probably subject to substantial liquidity discounts.

We estimate the model in steps, first constructing an aggregate liquidity factor and esti-

mating the default intensities of bond insurers from their CDS curves, and then disentangling

issuer default risk, bond recovery rates, and liquidity discounts using insured and uninsured

bond transactions of 61 issuers from July 2007 to June 2008. We find that the model gener-

ates pricing errors similar to that of Duffee (1999) for 161 issuers of corporate bonds, with a

median RMSE of 9-12 bps. We use the model to decompose the municipal bond yield into

default-free, default (with or without bond insurance), and liquidity components. Results in-

dicate that the liquidity component accounts for more than 80 percent of the municipal yield

spread, and that the median liquidity component is about 15 bps higher for insured bonds

than uninsured bonds. The latter finding can generate “yield inversion”towards the end of

our sample period, when bond insurers’credit quality worsened. Other interesting findings

include an estimated marginal tax rate that is consistent with Longstaff (2011)’s estimates

based on municipal swaps, recovery rates on uninsured bonds consistent with Moody’s his-

torical estimates but much lower recovery rates on insured bonds, and bond-implied default
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intensities that resemble CDS-implied counterparts for issuers that have CDS trading.

These findings suggest that an intensity-based model like ours can be used to extract

meaningful information about marginal tax rates, default probabilities, bond recoveries, and

liquidity premiums from municipal bond prices. While many aspects of our model can be

improved, we hope that it can serve as a useful tool and benchmark for academic researchers

and industry practitioners interested in assessing the risks of municipal bonds.
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Appendices

A Definition of Functions A, B, G, and H

Following Longstaff et al. (2005), for a default time τ with intensity λ described by a square-

root process,

dλt = (α− βλt) dt+ σ
√
λtdZt,

the expectations below, which are useful in the computation of CDS premiums and municipal

bond prices, can be evaluated as:

E
(
e−

∫ t
0 cλsds

)
= A (t;α, β, σ, c) eB(t;β,σ,c)cλ0 ,

E
(
cλte

−
∫ t
0 cλsds

)
= (G (t;α, β, σ, c) +H (t;α, β, σ, c) cλ0) eB(t;β,σ,c)cλ0 .

When β2 + 2cσ2 > 0,

A (t;α, β, σ, c) = e
α(β+φ)

σ2 t

(
1− κ

1− κeφt

) 2α
σ2

,

B (t; β, σ, c) =
β − φ
cσ2

+
2φ

cσ2 (1− κeφt) ,

G (t;α, β, σ, c) =
αc

φ

(
eφt − 1

)
e
α(β+φ)

σ2 t

(
1− κ

1− κeφt

) 2α
σ2 +1

,

H (t;α, β, σ, c) = e
α(β+φ)+φσ2

σ2 t

(
1− κ

1− κeφt

) 2α
σ2 +2

,

and

φ =
√

2cσ2 + β2, κ =
β + φ

β − φ.

Note that H (t) = −A (t)B
′
(t) and G (t) = −A′

(t).
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When β2 + 2cσ2 < 0,

A (t;α, β, σ, c) = e
αβ

σ2 t

(
φ̄

|ϕ (t)|

) 2α
σ2

, B (t; β, σ, c) = −
2 tan

(
φ̄t
2

)
φ̄+ β tan

(
φ̄t
2

) ,
G (t;α, β, σ, c) = − αφ̄

2α
σ2 e

αβ

σ2 t

σ2 |ϕ (t)|(1+ 2α
σ2 ){

β |ϕ (t)|+ φ̄ signum (ϕ (t))

[
φ̄ sin

(
φ̄t

2

)
− β cos

(
φ̄t

2

)]}
,

H (t;α, β, σ, c) = e
αβ

σ2 t

(
φ̄

|ϕ (t)|

) 2α
σ2 tan2

(
φ̄t
2

)
+ 1(

1 +
β tan

(
φ̄t
2

)
φ̄

)2 ,

where ϕ (t) = β sin
(
φ̄t
2

)
+ φ̄ cos

(
φ̄t
2

)
, φ̄ =

√
−2cσ2 − β2, and

signum (z) =

{ z
|z| if z 6= 0

0 if z = 0
.

B Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is a well-developed technique, widely applied in state

estimation, neural networks, and nonlinear dynamic systems (see, e.g., Haykin et al., 2001

and Simon, 2006). Since the measurement equations in the state space formulation are

nonlinear (for both CDS premiums and municipal bond prices) in this paper, the UKF is

the natural choice for our estimation procedure. The state space (one-dimensional transition

and m-dimensional measurements) is given by the following system:

Transition equation

Xt = T Xt−∆t + Θ +
√
Vtet, et ∼ N (0, 1) ,

where Xt represents either λ
′
m,t or ht depending on estimating the CDS model or the

municipal bond model, T and Θ are given by discretizing λ
′
m or hi, and Vt is given by

matching the variance of the innovation term in the discretized state dynamic.
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Measurement equation

yt = G (Xt) + ζt, ζt ∼ N (0m×1,Sm×m) ,

where G(·) is a nonlinear function of the state variable, giving the CDS premiums or

the municipal bond prices, ζt is the pricing error, and S is a diagonal covariance matrix

with positive and distinct diagonal elements.

The essence of the UKF (Chow et al., 2007) used in this paper can be summarized briefly

as follows. For each measurement time t, a set of deterministically selected points, termed

sigma points, are used to approximate the distribution of the current state estimated at

time t using a normal distribution with a mean vector Xt|t−∆t and a covariance matrix that

is a function of the state covariance matrix, PX,t−∆t|t−∆t, and the conditional covariance

Vt.18 Sigma points are specifically selected to capture the dispersion around Xt|t−∆t, and

are then projected using the measurement function G (·), weighted, and then used to update

the estimates in conjunction with the newly observed measurements at time t to obtain Xt|t

and PX,t|t .

Next, we outline the detailed UKF algorithm:

1. Initialization19

X0|0 = Constant,

P0|0 = 0.

18In the typical UKF setting, both transition and measurement equations are nonlinear. Hence, to compute
the ex-ante predictions of the state variables’mean and variance, sigma points are needed to approximate
the distribution of the previous state estimates. However, in our paper, the transition equations are linear.
Therefore, we can directly compute the ex-ante predictions as in the standard Kalman Filter, without needing
sigma points at this stage.
19Normally, the UKF is initialized at the unconditional mean and variance of the state variable. However,

in the current case, the state variable is typically a non-stationary (explosive) process with no finite uncon-
ditional mean and variance. So in our case, we initialize the UKF at a constant parameter to be estimated
with zero variance. This essentially assumes that by searching for the starting point of the UKF using the
MLE criterion, we know exactly where the UKF starts.
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2. Ex-ante predictions of the state

Xt|t−∆t = T Xt−∆t|t−∆t + Θ,

PX,t|t−∆t = T PX,t−∆t|t−∆tT ′ +Vt.

3. Selecting sigma points

Given the ex-ante prediction of the state variable Xt|t−∆t, three sigma points are se-

lected as follows:

χt|t−∆t =
[
χ0,t−∆t χ+,t−∆t χ−,t−∆t

]
,

where

χ0,t−∆t = Xt|t−∆t,

χ+,t−∆t = Xt|t−∆t +
√

(1 + ϑ)
(
T
√
PX,t−∆t|t−∆t +

√
Vt

)
,

χ−,t−∆t = Xt|t−∆t −
√

(1 + ϑ)
(
T
√
PX,t−∆t|t−∆t +

√
Vt

)
.

The term ϑ is a scaling constant given by

ϑ = η2 (1 + %)− 1,

where η and % are user-specified constants in this paper, with η = 0.001, and % = 2.

Since the values of these constants are not critical in our case, we omit a detailed

description for the sake of saving space. Readers are referred to Chow et al. (2007) or

Chapter 7 in Haykin et al. (2001) for further details.

4. Transformation of sigma points by way of the measurement function (predictions of

measurements)

χt|t−∆t is propagated through the nonlinear measurement function G (·):

Yt|t−∆t = G
(
χt|t−∆t

)
,

where the dimension of Yt|t−∆t is m × 3. Then, define the set of weights for the
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covariance estimates as:

W (c) = diag

[
ϑ

1+ϑ
+ 1− η2 + 2 ,

1

2 (1 + ϑ)
,

1

2 (1 + ϑ)

]
3×3

,

and obtain weights for the mean estimates as follows:

W (m) =


ϑ

1+ϑ
1

2(1+ϑ)
1

2(1+ϑ)


3×1

.

The predicted measurements and associated variance and covariance matrices are com-

puted as follows:

yt|t−∆t = Yt|t−∆tW
(m),

Pyt|t−∆t =
[
Yt|t−∆t − 11×3 ⊗ yt|t−∆t

]
W (c)

[
Yt|t−∆t − 11×3 ⊗ yt|t−∆t

]′
,

PXt,yt =
[
χt|t−∆t − 11×3 ⊗Xt|t−∆t

]
W (c)

[
Yt|t−∆t − 11×3 ⊗ yt|t−∆t

]′
.

5. Kalman gain and ex-post filtering state update

With the output from Step 4, actual observations are finally brought in, and the

discrepancy between the model’s predictions and the actual observations is weighted

by a Kalman gain Ξt to yield ex-post state and covariance estimates as follows:

Ξt = PXt,ytP
−1
yt|t−∆t,

Xt|t = Xt|t−∆t + Ξt

(
yt − yt|t−∆t

)
,

PX,t|t = PX,t|t−∆t − ΞtPyt|t−∆tΞ
′
t,

yt|t = G
(
Xt|t
)
.
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Table 1: Summary statistics of insured and uninsured bonds

This table presents the summary statistics of various characteristics of insured and uninsured bonds used in our regression analysis. Panel (a) shows

the first quarter (Q1), median, third quarter (Q3), mean, and standard deviation (Stdev) of the yield, coupon, maturity, offering amount (in $1,000),

trade size (in $1,000), and age (in years); Panel (b) shows the average yield and number of observations of insured bonds (insured by Ambac, FGIC,

FSA, and MBIA) and uninsured bonds across different ratings: Aaa, Aa1, Aa2, Aa3, A1, A2, A3, Baa1, Baa2, Baa3.

(a) Bond characteristics

Q1 Median Q3 Mean Stdev

Yield (%) 3.00 3.42 3.75 3.39 0.67

Coupon (%) 3.50 4.00 5.00 3.87 1.63

Maturity (years) 2.42 4.58 7.35 5.60 4.63

Offering amount ($1,000) 921 2,620 10,300 13,700 93,200

Trade size ($1,000) 20 50 100 224 1,111

Age (years) 0.12 2.91 5.13 3.63 4.18

(b) Average yields and observations (in parentheses) across ratings

Ambac FGIC FSA MBIA Uninsured

Aaa 3.5 3.39 3.46 3.29
(29,067) (91,132) (64,857) (71,252)

Aa1 3.81 3.22
(2,659) (25,582)

Aa2 3.47 3.21
(5,070) (24,176)

Aa3 3.52 3.34
(10,677) (58,350)

A1 3.61 3.42
(7,275) (23,240)

A2 3.53 3.13
(4,357) (1,347)

A3 3.43 3.36
(3,668) (768)

Baa1 3.91 3.44
(722) (295)

Baa2 3.59 3.85
(708) (186)

Baa3 3.73 4.03
(13,755) (1,761)
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Table 2: Panel regressions of municipal bond yields

This table presents the results of the panel regressions of municipal bond yields. The results for bonds with maturities shorter than five years (larger

than five years) are shown in columns two to four (five to seven). The results of the regression with issuer CDS premiums are shown in the last

column. Robust standard errors adjusted for clustering at the issuer level are in parenthese. *, **, and *** denote significance at the ten-percent,

five-percent, and one-percent level, respectively.

Maturity <= 5 yrs Maturity > 5 yrs
All with CDS

A Aa Aaa A Aa Aaa

Coupon
-0.012* -0.032*** -0.03*** -0.035 -0.027** -0.047*** -0.024**
(0.0068) (0.0089) (0.0039) (0.021) (0.011) (0.0051) (0.011)

Maturity
0.12*** 0.084*** 0.081*** 0.11*** 0.1*** 0.096*** 0.13***
(0.011) (0.0087) (0.0023) (0.0086) (0.0048) (0.0027) (0.011)

Ln(amount)
-0.012*** -0.0078 0.0069* -0.00063 0.017*** 0.0056 0.0021
(0.0041) (0.0059) (0.0036) (0.0065) (0.0049) (0.0064) (0.013)

Ln(tradesize)
-0.041*** -0.044*** -0.037*** 0.0046 0.00094 -0.0015 -0.033***
(0.0051) (0.0067) (0.0023) (0.0036) (0.0017) (0.002) (0.0072)

Age
0.007*** 0.011*** 0.013*** -0.00046 0.0062 0.0096*** 0.0049
(0.00095) (0.001) (0.0016) (0.0011) (0.0045) (0.0024) (0.0047)

Insured
-0.11*** -0.036** -0.043* -0.1*** -0.037 -0.037 -0.078***
(0.025) (0.017) (0.023) (0.028) (0.027) (0.041) (0.027)

Insurer 5yr CDS
0.000032*** 0.000017 0.000072*** 0.000074*** 0.000068*** 0.00012*** 0.000025
(0.0000077) (0.000012) (0.000013) (0.0000097) (0.0000075) (0.000022) (0.000016)

Issuer 5yr CDS (bp)
0.01***
(0.0015)

Time FE yes yes yes yes yes yes yes
Issuer FE yes yes yes yes yes yes yes
Adj. R2 0.61 0.62 0.61 0.87 0.84 0.86 0.73
Obs 21,930 73,147 129,718 16,512 45,623 110,406 12,692
Issuers 975 1,388 5,700 426 716 3,791 22
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Table 3: Parameter estimates of the monoline default intensities

This table presents the parameter estimates of the default intensities, λm,t, of the four monolines:
Ambac, FGIC, FSA, and MBIA. The standard errors are presented in parentheses. “ave VR”is the
variance ratio averaged across CDS maturities, where the variance ratio is defined as one minus the
ratio of the variance of pricing errors to the variance of actual CDS premiums. “rel RMSE”is the
ratio of the root mean squared CDS pricing error to the sample average of actual CDS premiums.
“rel RMSE”is in percentages.

α β σ αP βP c0 c1
ave VR rel RMSE %

Ambac
0.002 0.010 0.348 0.006 -3.339 -0.001 1.036

1.00 6.05
(0.00) (0.00) (0.00) (0.02) (0.84) (0.00) (0.11)

FGIC
0.004 -0.386 0.915 0.634 0.604 -0.011 5.312

0.96 33.24
(0.00) (0.05) (0.02) (0.30) (1.47) (0.01) (1.54)

FSA
0.002 0.041 0.304 0.039 -1.171 0.000 0.029

0.99 8.85
(0.00) (0.01) (0.01) (0.03) (1.96) (0.00) (0.01)

MBIA
0.003 0.045 0.348 0.011 -4.391 0.002 1.006

0.99 11.71
(0.00) (0.00) (0.00) (0.02) (0.68) (0.00) (0.29)
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Table 4: Summary of the parameter estimates of the municipal bond pricing model

This table summarizes the parameter estimates and fitting performance of the municipal bond
pricing model for 61 issuers. “Q1” (“Q3”) is the 25th (75th) percentile of the sample. “(in)”,
“(un)”, and “(all)”represent results of insured bonds, uninsured bonds, and all bonds, respectively.
“VR”denotes the variance ratio, defined as one minus the ratio of the variance of pricing errors to
the variance of actual bond prices. “rel RMSE”is the ratio of root mean squared error of all (cross
section and over time) pricing errors to the sample average of all actual bond prices. “rel RMSE”
is in percentages.

Q1 Median Q3 Mean

αi -0.001 -0.000 0.000 -0.001

βi -0.699 -0.371 -0.201 -0.538

σi 0.126 0.227 0.297 0.232

αPi 0.033 0.076 0.177 0.161

βPi 8.231 13.842 23.022 18.926

c4 -0.002 -0.000 0.001 -0.009

c5 -0.531 -0.107 0.048 0.146

cin2 0.011 0.014 0.020 0.019

cin3 -0.048 0.107 0.744 0.492

cun2 0.016 0.025 0.041 0.034

cun3 0.290 1.029 2.750 1.673

δin 0.000 0.000 0.067 0.142

δun 0.413 0.581 0.671 0.526

η 0.444 0.501 0.551 0.504

VR(all) 0.957 0.981 0.990 0.970

VR(in) 0.947 0.964 0.981 0.961

VR(un) 0.946 0.985 0.996 0.917

rel RMSE(all) % 0.478 0.610 0.777 0.660

rel RMSE(in) % 0.496 0.617 0.785 0.652

rel RMSE(un) % 0.284 0.439 0.735 0.610
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Table 5: Summary of the average yield components of 61 issuers

This table summarizes the sample averages (from July 2007 to June 2008) of different yield com-
ponents of 61 issuers’insured and uninsured bonds. “Q1”(“Q3”) is the 25th (75th) percentile of
the sample. This yield decomposition is done by applying each issuer’s calibrated municipal bond
pricing model to a hypothetical bond, which has a semi-annual coupon rate of 5.25% and a maturity
of 4.2 years. For the insured bond, we consider the default component, liquidity component, and
default+insurance component (both FSA and MBIA). For the uninsured bond, we consider the
default component and liquidity component. All numbers in the table are in percentages.

Groups
Insured Uninsured

Def Liq Def+Ins
(FSA)

Def+Ins
(MBIA)

Def Liq

All
(61 issuers)

Q1 0.373 1.141 0.036 0.071 0.194 0.958

Median 0.653 1.392 0.057 0.143 0.329 1.240

Q3 1.141 1.608 0.104 0.260 0.527 1.578

Mean 0.778 1.375 0.071 0.172 0.413 1.289

States
(17 issuers)

Q1 0.320 1.162 0.027 0.042 0.096 0.997

Median 0.572 1.253 0.052 0.140 0.314 1.532

Q3 0.848 1.538 0.082 0.205 0.550 1.747

Mean 0.606 1.342 0.056 0.134 0.341 1.459

Cities
(17 issuers)

Q1 0.539 0.988 0.044 0.086 0.337 0.769

Median 0.858 1.299 0.079 0.193 0.452 1.123

Q3 1.339 1.484 0.127 0.309 0.626 1.202

Mean 0.965 1.255 0.088 0.210 0.560 1.003

Sch. Dist.
(17 issuers)

Q1 0.345 1.064 0.027 0.085 0.173 0.998

Median 0.553 1.530 0.046 0.123 0.321 1.420

Q3 1.205 1.680 0.121 0.323 0.474 1.557

Mean 0.813 1.485 0.077 0.195 0.419 1.344
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Table 6: Correlation among the liquidity factor, the monoline default intensities, and the is-
suer default intensities

This table summarizes the correlations among the first order differences of l, λ
′

m, and hi. The 1st and 2nd

PCs are the first and second principal components of the four λ
′

m’s.

1st PC 2nd PC Ambac FGIC FSA MBIA lt

hi,t

Q1 -0.098 -0.008 -0.044 -0.096 -0.082 -0.033 -0.059

Median -0.024 0.052 0.013 -0.033 -0.004 0.028 0.010

Q3 0.049 0.126 0.083 0.030 0.071 0.115 0.069

Mean -0.021 0.038 0.009 -0.027 -0.003 0.029 0.006

Stdev 0.106 0.118 0.133 0.102 0.124 0.122 0.118

lt 0.167 -0.170 -0.100 0.181 -0.045 0.026 N.A.

Figure 1: Monoline CDS premiums

This figure shows the dynamics of five-year CDS premiums of the four monolines, Ambac, FGIC,
FSA, and MBIA, from July 2007 to June 2008.
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Figure 2: Relation between bond yield and bond age

This figure plots the average bond yield against bond age separately for short-term bonds (maturity shorter

than 5 years), long-term bonds (maturity longer than 5 years), and all bonds.
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Figure 3: Liquidity spreads and the aggregate liquidity factor

This figure presents the dynamics of the short-term liquidity spread, long-term liquidity spread, and filtered

liquidity factor lt from July 2007 to June 2008.
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Figure 4: Monoline CDS pricing performance

This figure compares the model CDS premiums and the actual CDS premiums for the four monolines.

(a) Ambac

Jul07 Sep07 Nov07 Dec07 Feb08 Apr08 May08

P
e
rc

e
n
t

0

5

10

15

20

25
Actual 3yr premiums

Actual 10yr premiums

Model 3yr premiums

Model 10yr premiums

(b) FGIC
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(c) FSA
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(d) MBIA
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Figure 5: Yield decomposition of insured and uninsured bonds

This figure plots the median yield components across the 61 issuers from July 2007 to June 2008. This yield decomposition is done by applying each

issuer’s individual calibrated municipal bond pricing model to a hypothetical bond, which has a semi-annual coupon rate of 5.25% and a maturity of

4.2 years. For the insured bond, we consider the liquidity component and default+insurance component (both FSA and MBIA). For the uninsured

bond, we consider the liquidity component and default component.

(a) Yield components of MBIA-insured and uninsured bonds
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(b) Yield components of FSA-insured and uninsured bonds
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(c) Yield comparison (MBIA-insured vs uninsured)
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(d) Yield comparison (FSA-insured vs uninsured)
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(e) Yield difference (uninsured minus MBIA-insured)
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Figure 6: Municipal bond-implied default intensity vs. CDS-implied default intensity

This figure compares the dynamics of the municipal bond-implied default intensity and the CDS-implied

default intensity for three issuers, the State of California, the City of New York, and the State of Illinois,

from July 2007 to June 2008.
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