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Asset Pricing When Trading is Entertainment

We analyze a model where agents derive direct utility from the act of trading. The result-

ing equilibrium shows that trading for entertainment creates an excessive tendency to buy

low and sell high, and causes attenuation of covariance risk pricing and return volatility.

The model also implies a negative relation between volume and future returns, consis-

tent with the empirical evidence. Further, if agents derive greater utility from trading

more volatile stocks, our model is consistent with the “volatility anomaly” wherein more

volatile stocks earn lower average returns in the cross-section, although the risk premium

on the market portfolio is positive. Agents who derive greater utility from trading trade

more aggressively on private information and raise the informational efficiency of prices.

If agents’ utility from trading increases when they make positive profits in earlier rounds,

this leads to “bubbles,” i.e., disproportionate jumps in asset returns as a function of past

prices.



1 Introduction

“The game of investing is intolerably boring and over-exacting to any one

who is entirely exempt from the gambling instinct; whilst he who has it must

pay to this propensity the appropriate toll.”

–Keynes (1936)

Why do agents trade? In the neoclassical paradigm, trade occurs to rebalance portfolios

according to the risk-return tradeoff, either upon the change of market values of securities,

or due to a change in preferences, or due to the receipt of new information.1 However,

volume in financial markets appears to be too large to be explained by such considerations

alone. Milgrom and Stokey (1982) imply that there should be no trade among investors

with only speculative motives for trading. Barber and Odean (2000), however, report

extremely high levels of trading; specifically, they document an average annual turnover

of 75% by customers with accounts at a large discount brokerage firm. According to

the NYSE website,2 annual turnover on the NYSE has ranged between 60% and 100%

of shares outstanding over the past ten years. De Bondt and Thaler (1995) (p. 392)

note that “the high trading volume observed in financial markets is perhaps the single

most embarrassing fact to the standard finance paradigm.” Indeed, Tkac (1999) shows

that real-world volume exceeds that indicated by rational portfolio-rebalancing for a vast

majority of traded stocks. Motivated by the generally high levels of volume in financial

markets, Black (1986) (p. 531) mentions the need to “introduce direct utility of trading”

to explain volume.

1See Grossman and Stiglitz (1980), Kyle (1985) Grundy and McNichols (1989), Foster and
Viswanathan (1993), and Wang (1994). Trading is induced by differences of opinion in Harrison and
Kreps (1978), Varian (1985), Harris and Raviv (1993), and Kandel and Pearson (1995).

2See the NYSE fact Books at http://www.nyxdata.com/nysedata/asp/factbook/main.asp.
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The goal of our paper is to consider a financial market equilibrium where agents derive

utility from the act of trading. In much of our work, information is symmetric and there

are multiple assets, each traded by agents who possess the standard exponential-normal

utility function over wealth but some of whom get additional utility from trading. We

do not model the origins of this utility; it could possibly emanate from the thrill of

seeing position values fluctuate. The notion that agents may gamble for pleasure is well-

established in literature (see, for example, Coventry and Brown (1993) or Kuley and

Jacobs (1988)), and Markiewicz and Weber (2013) show that gambling tendencies also

create excessive stock trading. Motivated by these observations, we simply consider the

nature of equilibrium in financial markets when trading is a consumption good.3 To attain

tractability, we assume that the direct utility is convex (quadratic) in the amount of the

traded asset.

We find that when agents derive utility from trading, they have an excessive tendency

to “buy low and sell high.” The intuition is that the normal levels of trade to capture risk

premia are magnified owing to the additional utility derived from trading. Interestingly,

such agents result in lower asset volatility. This is because they act as de facto liquidity

providers in equilibrium.4 We also find that beta pricing is obscured when agents derive

direct utility from trading. Specifically, expected returns are linear in beta, but the

coefficient on beta attenuates as the direct utility from trading increases. This result

accords with the notion that it is generally hard to find evidence of covariance risk pricing

in equity markets (see, for example, Fama and French (1992) and Haugen and Baker

(1996)). The intuition in our setting is that the compensation for risk demanded in

3An issue is whether the mass of traders who trade for entertainment is sufficiently large to affect
prices. While this is an empirical questions, Barber, Odean, and Zhu (2009) show that retail traders,
(who are more likely to trade for enjoyment than professionals) do have an impact on financial market
prices.

4Barrot, Kaniel, and Sraer (2016) and Kaniel, Saar, and Titman (2008) demonstrate that individual
investors do act as liquidity providers in financial markets.
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equilibrium declines as the direct utility from trading rises.

It is reasonable to suppose that agents may derive greater utility from some stocks

relative to others. The two main characteristics proposed by Kumar (2009) for stocks

that are attractive to individual investors are high (positive) skewness, and high volatil-

ity. Since our model has normally distributed payoffs it unfortunately cannot speak to

skewness preference. We instead consider the assumption that agents obtain more utility

from stocks with more volatile payoffs. We find evidence that under reasonable condi-

tions, such stocks get “overvalued” and earn negative future returns on a risk-adjusted

basis. Since high payoff volatility, under reasonable conditions, also corresponds to high

idiosyncratic volatility (as we show), our analysis is consistent with the empirical result of

Ang, Hodrick, Xing, and Zhang (2006) that idiosyncratic volatility negatively forecasts

asset returns.

An interesting set of stylized facts in finance is that while volatility is negatively priced

in the cross-section, on aggregate, the risk premium on equities is positive (Haugen and

Baker (2010), Mehra and Prescott (1985)). We show that our analysis accords with

the “low volatility” anomaly wherein low risk stocks earn higher average returns than

high risk stocks (as shown empirically in Baker and Haugen (2012)). At the same time,

however, the market portfolio commands a positive risk premium because our agents are

risk averse. Thus, our analysis is simultaneously consistent with positive risk pricing in

the aggregate, but negative pricing of volatility in the cross-section.

When agents derive direct utility from trading, they create additional volume, which

accords with levels of volume greater than normally expected levels from neoclassical

models (Tkac (1999)).5 Further, when trading volume is high in a stock, it is associated

5In a complementary and important view Odean (1998) and Statman, Thorley, and Vorkink (2006)
consider the notion that overconfidence creates excessive trading volume. A distinguishing feature of our
setting and that of these papers is that overconfidence increases price volatility whereas in our setting
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with agents desiring greater utility from trading that stock. However, stocks from which

agents derive greater utility from trading also tend to become more overpriced. Thus,

our model is consistent with the negative cross-sectional relation between volume and

returns documented in Datar, Naik, and Radcliffe (1998) or Brennan, Chordia, and

Subrahmanyam (1998).

In an extension of our basic setting, we consider how price informativeness is affected

by traders who derive direct utility from trading. We find that such traders, when they

can acquire private information, trade more aggressively on their information when their

direct utility from trading is high, thus raising pricing efficiency in equilibrium.

Previous literature argues that the pleasure from gambling rises when the outcome of

a previous gamble is positive (e.g., Coventry and Constable (1999); Thaler and Johnson

(1990)). Accordingly, we extend our model to a dynamic setting where agents derive more

utility from trading if previous rounds of trade have been profitable. We find that the

impact of a modestly positive piece of news can be greatly magnified. Specifically, as the

news crosses a threshold, it causes a discontinuous jump in the mass of agents who trade

for entertainment purposes, which results, in turn, in a greatly enhanced response of asset

prices to the news. This suggests that relatively modest favorable price moves can create

“bubbles” in asset prices, wherein later price moves represent substantial overreactions

to the initial price move, followed by subsequent corrections. Thus, in our setting, it is

the “emotional excitement” caused by the initial price move which results in the bubble

in asset prices, which accords with the experimental observation that excitement fuels

bubbles (Andrade, Odean, and Lin (2015)).

Our analysis suggests untested implications. Specifically, we argue that stocks that are

heavily traded and held by retail investors (who are more likely to trade for entertainment)

agents who derive utility from trading act as de facto market makers and thus reduce volatility.
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should exhibit greater trading volume and lower volatility, and less evidence of covariance

risk pricing. These stocks should also exhibit nonlinear responses to positive news. Our

analysis also suggests that covariance risk pricing should be less visible in countries or

economies where retail investors form a bigger fraction of the trading population.

The idea that agents may trade for purposes of deriving enjoyment from trading is not

new; but explicit theoretical modeling of this notion does not yet appear in the literature.

For example, Dorn and Sengmueller (2009) argue that stock market trading provides

direct utility to agents in the form of entertainment. Specifically, they show that agents

who state that they derive “enjoyment” from trading turn over their portfolios to a greater

degree than other investors. In a survey of retail investors, Dhar and Goetzmann (2006)

state that more than 25% of investors view stock market investing as a hobby. Grinblatt

and Keloharju (2009) argue that sensation seeking personalities may obtain a thrill from

the act of trading but again, do not explicitly model such investors. Gao and Lin (2015)

show that equity trading volume in Taiwan decreases as the total jackpot of a major

statewide lottery increases, indicating that stock trading acts as an alternative outlet

for gambling beyond lotteries. Barberis and Xiong (2012) model the important insight

that realizing gains conveys pleasure to agents, but they do not consider a setting where

agents derive utility from trading.6 Our paper fills this void in the literature by explicitly

considering agents for whom trading is a consumption good.

This paper is organized as follows. Section 2 presents the model. Section 4 examines

6Our paper is complementary to Friedman and Heinle (2016) and Luo and Subrahmanyam (2016),
which consider a setting where agents derive direct utility or disutility from owning certain types of stocks.
The utility there emanates from the signed position; for example, an environmentally conscious agent
derives disutility from owning stocks (and utility from shorting stocks) in firms that heavily use coal.
In contrast, direct utility in our model emanates from the unsigned quantity of trade. Further, Doran,
Jiang, and Peterson (2012), Shefrin and Statman (2000), and Brunnermeier, Gollier, and Parker (2007)
consider the notion that agents may express an affinity towards gambling by preferring high skewness
assets. We instead consider a complementary setting where agents have standard risk averse preferences
but derive additional utility from the act of trading an asset (which is normally distributed).
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how agents who derive direct utility from trading affect price informativeness. Section 5

presents a dynamic extension, and Section 6 concludes. All proofs of propositions and

corollaries, unless otherwise stated, appear in Appendix A, while Appendix B presents

some ancillary derivations.

2 The Model

There are two dates, 0 and 1, and K + N risky securities. At date 1, these securities

pay liquidating dividends of V = (V1, ..., VK+N)′, which follows a multivariate normal

distribution. At date 0, investors trade these securities. The per capita supplies of these

securities also follow a multivariate normal distribution. The prices of these securities

are indicated by P = (P1, ..., PK+N)′ and are determined in equilibrium. There is also a

riskless asset, the price and return of which are normalized to unity.

There are two types of agents. First, there is a mass ρ of regular utility-maximizing

agents. Second, there is a mass 1−ρ of agents we call “G traders;” these achieve direct util-

ity from trading risky securities. One can view the former class of agents as sophisticated

investors (possibly institutions), and at least part of the latter class as unsophisticated

(e.g, individual) investors.

The i’th trader is endowed with X̄i = (X̄i1, ..., X̄i,K+N)′ units of risky securities and

M̄i units of risk free asset. His wealth levels at t dates 0 and 1 are given by

Wi0 = M̄i + X̄ ′

iP,

Wi1 = Wi0 +X ′

i(V − P ),

where Xi = (Xi1, ..., Xi,K+N)′ is the quantity of risky securities he holds after the trading

is complete.
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The utility function of the i’th regular (non-G) trader is the standard exponential one:

U(Wi1) = −exp(−γWi1),

with γ > 0. Based on the normality assumption of our model, he chooses Xi to maximize

E
[

U(Wi1)
]

= −exp
[

− γWi0 − γ
[

X ′

iE(V − P ) − 0.5γX ′

iVar(V )Xi

]

]

.

The first order condition (f.o.c.) with respect to (w.r.t.) Xi implies that his demand can

be expressed as:

XNG(P ) =
1

γ
Var(V )−1(E(V ) − P ).

However, the i’th G trader has the utility function:

UG(Wi1, Xi) = −exp(−γWi1)exp(−0.5X ′

iGXi),

where G is a diagonal, positive definite matrix. The above utility function captures the

notion that the bigger the quantity of trade (in absolute terms), the bigger is the utility

derived from trading. It may be argued that increasing the scale of the transaction

increases the “thrill” derived from this larger scale of “gambling” in financial markets

(Dorn and Sengmueller (2009)). The G trader chooses Xi to maximize

E
[

UG(Wi1, Xi)
]

= −exp
[

− γWi0 − γ
[

X ′

iE(V − P ) − 0.5γX ′

iVar(V )Xi + 0.5X ′

iGXi/γ
]

]

.

The f.o.c. w.r.t. Xi implies that his demand can be expressed as:

XG(P ) =
1

γ
(Var(V ) −G/γ2)−1(E(V ) − P ).

The s.o.c. holds under the assumption that Var(V ) −G/γ2 is a positive definite matrix.

As can be seen, the “numerator” in the above demand is the same as for non-G traders.

However the position is larger per unit gain relative to non-G traders, i.e., the G traders
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take more aggressive positions relative to traditional utility maximizers. As the utility of

trading increases, the position vector explodes, and beyond a certain level of G, there is

no interior optimum. The scale of the position taken per unit expected price appreciation

increases in G, which governs how much additional utility is derived from trading.

2.1 Risky Security Payoffs–The Factor Structure

We now explicitly model security payoffs as a factor structure to analyze how volume,

volatility, and the pricing of covariance risk are affected by the presence of G traders. In

what follows, unless otherwise specified, a generic random variable, η̃, follows a normal

distribution with mean zero and variance νη.

The payoff of the j’th risky security takes a factor expression:

Vj = V̄j +
K

∑

k=1

(βjkf̃k) + ε̃j (1)

All f̃ ’s and ε̃’s follow independent normal distributions.

2.2 An Equivalent Maximization Problem

As in Daniel, Hirshleifer, and Subrahmanyam (2001), we use the risky securities to

construct portfolios mimicking the K factors and N residuals. We refer to these portfolios

as the basic securities. Use θ̃j, j = 1, ..., K+N , to denote the payoffs of the basic securities.

Specifically, the first K θ̃’s indicate the payoffs of the K factors, that is, θ̃j = f̃j for

j = 1, ..., K. The next N θ̃’s indicate the payoffs of the N residuals, that is, θ̃K+j = ε̃j

for j = 1, ..., N .

The per capita supply of the j’th basic security is indicated by ξ̄j + z̃j, where ξ̄j is a

constant. Henceforth, we will assume that the mean supply of securities is positive (i.e.

ξ̄j > 0 ∀j). The supply noise is not necessary for most of our main results (except those on
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price volatility). To simplify our analysis, we assume that the variance νzj
is sufficiently

small. Specifically, we assume that

νzj
<

1

γ2νθj

min(1/4, ρ/2). (2)

This condition facilitates the derivation of the results because it ensures that theG traders’

penchant for aggressively “buying low and selling high,” which drives many of our results,

is not too adversely affected by excessive supply noise. The assumption is reasonable

because we would not expect uncertainty in stock issuance and buyback activity to be

unduly large in general.

We denote the utility from trading the j’th basic security as Gj. This implies that the

G traders’ utility from trading is not identical across stocks, which captures the notion

that there are many stock-specific properties that may appeal to a G trader; for example,

brand appeal, volatility, industry sector, and so on. Rather than model these attributes,

we simply let the direct utility from trading vary in the cross-section. We do, however,

consider a scenario in Section 2.6 where Gj depends positively on the volatility of the

stock.

Note that θ̃j ∼ N(0, νθj
). Each non-G and G trader’s demands for the j’th basic

security are given by

XNG,j(Pj) =
E(θ̃j) − Pj

γVar(θ̃j)
=

−Pj

γνθj

, (3)

XG,j(Pj) =
E(θ̃j) − Pj

γ(Var(θ̃j) −Gj/γ2)
=

−Pj

γ(νθj
−Gj/γ

2)
. (4)

The denominator in Eq. (4) needs to be positive for the second-order condition of the G

traders to be satisfied. The intuition is that the effect of Gj alone is to induce G-traders

to want to trade infinite quantities. This tendency, however, is tempered by risk aversion

and the volatility of the asset’s final payoff. Henceforth, we will assume that the condition

for an interior optimum is indeed satisfied, i.e., that Gj < γ2νθj
.
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The market clearing condition requires

ξ̄j + z̃j = ρXNG,j(Pj) + (1 − ρ)XG,j (Pj),

from which we derive the prices and returns (i.e., price changes) as presented in the

following proposition.

Proposition 1 The price and the return of the j’th basic security are given by

Pj = −γaj(Gj)(ξ̄j + z̃j),

R̃j = θ̃j − Pj = θ̃j + γaj(Gj)(ξ̄j + z̃j),

where aj(Gj) =
1

ρ

νθj

+
1 − ρ

νθj
−Gj/γ2

.

The term aj(Gj) represents the effect of G traders on the price and required return. By

being willing to trade more stock for a given market price, the G traders assist the non-G

traders in absorbing the supply of the risky asset.

From the above proposition, we can derive the corollary below:

Corollary 1 (i) aj(Gj) decreases in Gj , with aj(0) = νθj
.

(ii) aj(Gj) increases in ρ.

Thus, the price of the j’th basic security is a risk premium, and this premium decreases in

Gj , the direct utility of trading the j’th basic security. As the utility from trading grows

without bound, the risk premium on the security decreases. Hence, agents who derive

greater utility from trading reduce risk premia and required returns on the security.

It is instructive to calculate the expected profits of the G traders. From Eqs. (3) and

(4) and Proposition 1, the expected profit earned by a non-G or G trader from the j’th
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basic security is given by

EΠNG,j = E
[

XNG,j(Pj)R̃j

]

= E

[

γaj(Gj)(ξ̄j + z̃j)

γνθj

(θ̃j + γaj(Gj)(ξ̄j + z̃j))

]

=
γaj(Gj)

2

νθj

(ξ̄2

j + νzj
),

EΠG,j = E
[

XG,j(Pj)R̃j

]

= E

[

γaj(Gj)(ξ̄j + z̃j)

γ(νθj
−Gj/γ2)

(θ̃j + γaj(Gj)(ξ̄j + z̃j))

]

=
γaj(Gj)

2

νθj
−Gj/γ2

(ξ̄2

j + νzj
). (5)

Note that EΠG,j > EΠNG,j. Thus, G traders earn a greater expected profit from trading

the basic security than do non-G traders. This simply emanates from the notion that, in

effect, they trade more aggressively to capture the risk premium.

Of course, it follows that G traders bear more risk than non-G traders; that is, it is

easy to show that the total volatility of the positions taken byG traders is higher than that

of non-G traders. Our result is similar to that of Kyle and Wang (1997) who show that

overconfidence acts as a commitment to trade aggressively in a strategic environment and

thus results in greater expected profit for overconfident agents relative to that for rational

agents. In our setting, agents who obtain direct utility from trading obtain a greater

expected profit than neoclassical agents because the increased position size of the former

class of agents increases their average gain, relative to that for the latter class. Like

De Long, Shleifer, Summers, and Waldmann (1991), who obtain a similar result on the

expected profits of overconfident vs. rational traders, our result also challenges the notion

that G traders would not exist because they would persistently lose money in financial

markets.
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2.3 Volatility

It follows from Proposition 1 that the price and return volatilities of the j’th basic security

are

Var(Pj) = (γaj(Gj))
2νzj

,

Var(R̃j) = νθj
+ (γaj(Gj))

2νzj
.

Express the return of the market portfolio as R̃M =
K+N
∑

j=1

(ξ̄j + z̃j)R̃j. We can compute

the return volatility of the market portfolio. (The computation of this variance, which is

tedious, is provided in Appendix B.)

Var(R̃M ) =
K+N
∑

j=1

[

(νθj
+ 4γ2aj(Gj)

2νzj
)ξ̄2

j + νθj
νzj

+ 2γ2aj(Gj)
2ν2

zj

]

. (6)

Corollary 1 then implies the following results on the volatilities.

Corollary 2 (i) The individual security’s volatilities, Var(Pj) or Var(R̃j), decrease in

Gj and increase in ρ.

(ii) The aggregate volatility of the market portfolio, Var(R̃M), decreases in Gj ∀j and

increases in ρ.

These volatilities decrease in 1−ρ, the mass of G traders (and, of course, decrease in Gj).

This is because G traders behave like de facto liquidity providers.7 When prices increase

(drop), they sell (buy) more relative to the non-G traders.

An empirical proxy of ρ is the percentage holdings of institutional investors. The time

trend in past decades is that institutional holdings have increased (e.g., Chordia, Roll,

and Subrahmanyam (2011)). At the same time, there is evidence that firms’ individual

7Kaniel, Saar, and Titman (2008) provide evidence that individual investors provide liquidity to
institutions.
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volatilities have increased (Campbell, Lettau, Malkiel, and Xu (2001)). Our evidence

accords with these stylized facts.

Note that the results in Corollary 2 hold only ifGj > 0. If ∀j Gj = 0, then aj(Gj) = νθj

(see Corollary 1). The volatilities become Var(Pj) = (γνθj
)2νzj

, Var(R̃j) = νθj
+(γνθj

)2νzj
,

and

Var(R̃M ) =
K+N
∑

j=1

[

(νθj
+ 4γ2ν2

θj
νzj

)ξ̄2

j + νθj
νzj

+ 2γ2ν2

θj
ν2

zj

]

,

where the last equality follows from Eq. (6). These volatilities are independent of ρ.

2.4 The Pricing of Covariance Risk

We now turn to how the G traders affect beta pricing. For this purpose, we fix ρ > 0 and

vary Gj . We can compute the covariance between the returns of the j’th basic security

and the market portfolio (the computation, which is tedious, is provided in Appendix B).

Cov(R̃j, R̃M ) = Cov(R̃j ,
K+N
∑

j=1

(ξ̄j + z̃j)R̃j)

= Cov(R̃j , (ξ̄j + z̃j)R̃j) = νθj
ξ̄j + 2γ2aj(Gj)

2νzj
ξ̄j. (7)

Proposition 1 and Eq. (7) indicate that the expected return of the basic security can

be expressed as:

E(R̃j) = γaj(Gj)ξ̄j =
γaj(Gj)Var(R̃M )

νθj
+ 2γ2aj(Gj)2νzj

βjM .

where βjM =
Cov(R̃j , R̃M)

Var(R̃M)
.

Let λj ≡
γaj(Gj)Var(R̃M )

νθj
+ 2γ2aj(Gj)2νzj

denote the slope of the relation between E(R̃j) and βjM .

The following proposition describes the comparative static of λj with respect to Gj .
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Proposition 2 (i) Consider two basic securities, j and j′, with νθj
= νθj′

, νzj
= νzj′

,

but Gj > Gj′ . Then, λj < λj′ .

(ii) The basic security with very large Gj (i.e., Gj/γ
2 ↗ νθj

) has λj ↘ 0.

This proposition suggests that high Gj can lead to low λj and, therefore, attenuate the

predictive power of β’s. Particularly, λj ↘ 0 for stocks with very large Gj (i.e., Gj/γ
2 ↗

νθj
). In this extreme case, β’s lose power in explaining stock return completely. The

basic intuition is that G-traders, via their tendency to “buy low and sell high” attenuate

the pricing of risk (they reduce the equilibrium risk premium demanded by the non-G

traders).

We now use Proposition 1 and Eq. (7) to express the j’th basic security’s expected

return as

E(R̃j) = γaj(Gj)ξ̄j = γCov(R̃j , R̃M) − γ
[

νθj
+ 2γ2aj(Gj)

2νzj
− aj(Gj)

]

ξ̄j

= γVar(R̃M)βjM − γ
[

νθj
+ 2γ2aj(Gj)

2νzj
− aj(Gj)

]

ξ̄j , (8)

where the last item, −γ
[

νθj
+ 2γ2aj(Gj)

2νzj
− aj(Gj)

]

ξ̄j , is referred to as the β-adjusted

expected return.

Proposition 3 (i) The β-adjusted expected return of the j’th basic security, −γ
[

νθj
+

2γ2aj(Gj)
2νzj

− aj(Gj)
]

ξ̄j , is negative.

(ii) Consider two basic securities, j and j′, with νθj
= νθ′

j
, νzj

= νz′
j
, ξ̄j = ξ̄j′ , but

Gj > Gj′ . Then, the β-adjusted expected return of the j’th basic security is lower

than that of the j′’th basic security.

The above proposition indicates that G-traders cause securities to on average be “over-

priced” on a risk-adjusted basis. To see the intuition, first note that with positive average
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net supply, a high average price denotes a high risk premium on average, and prices on

average decrease as they converge to fundamental values. Thus “overpricing” is a natural

feature of markets with positive net supply even without G-traders. However, since G

traders get direct utility from trading, when they absorb risky supplies, they are willing

on average to pay more than rational investors for absorbing a given amount of supply,

leading to greater “overpricing” than that naturally induced by risk premia.

2.5 Trading Volume

We now examine trading volume within our model. We aim to ascertain how trading

volume is influenced by the presence of agents who derive direct utility from trading, and

to investigate how volume might be associated with required returns on risky assets.

Let us assume that the initial endowment of the j’th basic security possessed by each

agent equals the per capita mean supply ξ̄j + z̃j. It follows from Eq. (3) and Proposition 1

that the i’th non-G trader’s trade equals

XNG,j(Pj) − (ξ̄j + z̃j) ∼ N

[

(
aj(Gj)

νθj

− 1)ξ̄j , (
aj(Gj)

νθj

− 1)2νzj

]

. (9)

From Corollary 1,

[

aj(Gj)

νθj

− 1

]

ξ̄j < 0. Therefore, non-G traders on average take a short

position in the j’th basic security.

It follows from Eq. (4) and Proposition 1 that the i’th G trader’s trade equals

XG,j(Pj) − (ξ̄j + z̃j) ∼ N((
aj(Gj)

νθj
−Gj/γ2

− 1)ξ̄j , (
aj(Gj)

νθj
−Gj/γ2

− 1)2νzj
). (10)

It is straightforward to show that

[

aj(Gj)

νθj
−Gj/γ2

− 1

]

ξ̄j > 0. Therefore, G traders on

average take a long position in the j’th security.

The expected trading volume is given by half the sums of the expected absolute changes

in each type of agent’s position via trading in the market for the j’th basic security. Using
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Eqs. (9) and (10), we can express the total expected trading volume in the basic security

as

Tj ≡ 0.5ρE
[

|XNG,j(Pj) − (ξ̄j + z̃j)|
]

+ 0.5(1 − ρ)E
[

|XG,j(Pj) − (ξ̄j + z̃j)|
]

. (11)

We then have the following result.

Corollary 3 The expected trading volume, Tj, increases in Gj .

Corollary 3 indicates that stocks in which agents have a greater level of utility from

trading exhibit greater trading volume, which is an intuitive result. Since the β-adjusted

expected return is more negative, the greater is Gj (Proposition 3), our analysis indicates

that, ceteris paribus, stocks with high volume (i.e., high Gj stocks) will earn low average

returns on a risk-adjusted basis. This is consistent with the negative relation between

trading volume and required returns documented, for example, in Datar, Naik, and Rad-

cliffe (1998) and Brennan, Chordia, and Subrahmanyam (1998).8 Based on Merton

(1987) who argues that some (possibly, retail) investors might invest only in the most

visible stocks, visibility (as measured by analyst following and brand visibility) might be

a reasonable proxy for Gj. Our analysis suggests that such proxies will be associated with

high volume and low average returns. In the next subsection, we consider another proxy

for Gj, the volatility of the underlying asset’s cash flows.

2.6 Idiosyncratic Volatility and Expected Returns

We now consider a situation where the utility from trading an asset depends on its volatil-

ity. This assumption is motivated from Kumar (2009), who shows that retail investors are

8In a complementary explanation, Baker and Stein (2004) argue that high volume implies high
sentiment, and, under short-selling constraints, extreme optimism, that is reversed out the following
month. In contrast, our rationale for the link between expected returns and volume does not rely on
short-selling constraints.
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more attracted to volatile companies.9 We thus assume that Gj = µνθj
where µ < γ2 (the

assumption on µ is needed to obtain an interior optimum). We show below that under

reasonable conditions, our analysis accords with Ang, Hodrick, Xing, and Zhang (2006),

who demonstrate a negative cross-sectional relation between idiosyncratic volatility and

average returns.

Now, for the j’th basic security, if one runs a time series regression of R̃j against R̃M ,

then the variance of the residual, which we refer to as the square idiosyncratic volatility

(or simply IVOL), equals

IVOLj = Var(R̃j) −
Cov(R̃j, R̃M )2

Var(R̃M )
. (12)

We let νθj
vary while holding other exogenous parameters constant. Intuitively, the return

IVOL should be positively related with the cash flow volatility measured by νθj
. It

turns out in our model that this is true of “typical securities,” i.e., those with small

Var(R̃j)/Var(R̃M ). This implies that their value variation is relatively low compared to

the value variation of the market portfolio (in a sense formalized in Appendix A). The

following lemma formalizes this observation:

Lemma 1 Consider two typical basic securities, j and j′, with νzj
= νzj′

, ξ̄j = ξ̄j′ , but

νθj
> νθj′

. Then, the idiosyncratic volatility IVOLj > IVOLj′.

We then have the following proposition:

Proposition 4 If Gj = µνθj
where µ < γ2 is a positive constant, then the β-adjusted

expected return, −γ
[

νθj
+ 2γ2aj(Gj)

2νzj
− aj(Gj)

]

ξ̄j, decreases in νθj
.

9The analysis of Kumar (2009), in turn, is derived from the notion that unsophisticated agents
are more attracted to lotteries (Rubenstein, Scafidi, and Rubinstein (2002)), and lotteries demonstrate
extremely high variance and high skewness. As our model assumes normal distributions, it cannot speak
to skewness, of course, and considers volatility instead.

17



Lemma 1 and Proposition 4 imply that for typical basic securities, there is a negative

relation (induced by νθj
) between IVOL and the β-adjusted expected return. This is

broadly consistent with Ang, Hodrick, Xing, and Zhang (2006), where stocks with high

idiosyncratic volatility earn lower average returns. Proxying for total volatility by νθj
,

our analysis also accords with Baker and Haugen (2012) who show that low risk stocks

outperform high risk stocks in the vast majority of international equity markets.

The above analysis indicates that total volatility is negatively priced in the cross-

section. However, in aggregate, risk is positively priced. To see this, note from Propo-

sition 1 that the return of the market portfolio (over the risk free interest rate which is

normalized to be zero) is given by

R̃M =
K+N
∑

j=1

(ξ̄j + z̃j)R̃j =
K+N
∑

j=1

[

(ξ̄j + z̃j)(θ̃j + γaj(Gj)(ξ̄j + z̃j))
]

. (13)

The following proposition can readily be derived.

Proposition 5 The market risk premium, E(R̃M ), is positive.

Thus, our model is consistent with the negative pricing of volatility in the cross-section,

but a positive pricing of risk in the aggregate (Haugen and Baker (2010), Ang, Hodrick,

Xing, and Zhang (2006), and Mehra and Prescott (1985)).

2.7 Back to the Original Securities

The previous analysis focused on the basic securities for tractability. We now show that

our main results carry over to the original securities. We can use Eq. (1) to reconstruct

the original risky assets using the basic securities. Specifically, consider the j’th original

risky asset as a portfolio of V̄j units of the risk free asset, βjk (k = 1, ..., K) units of the

k’th basic security, and one unit of the j’th basic security. Note from Proposition 1 that
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the return of the original risky asset can be expressed as:

R̃j =
K

∑

k=1

βjk

[

θ̃k + γak(Gk)(ξ̄k + z̃k)
]

+
[

θ̃j + γaj(Gj)(ξ̄j + z̃j)
]

. (14)

The expected return of the j’th original risky asset is given by

E(R̃j) =
K

∑

k=1

βjk

[

γak(Gk)ξ̄k
]

+
[

γaj(Gj)ξ̄j
]

. (15)

The expected return in our model takes a similar form as multi-factor models such as

ICAPM (Merton (1973)) and APT (Ross (1976)). It follows from Corollary 1 that this

expected return decreases in Gk ∀k = 1, ..., K and Gj , and increases in ρ (so long as

βjk > 0 ∀k = 1, ..., K).

The volatility of the j’th original risky asset is given by

Var(R̃j) =
K
∑

k=1

β2

jk

[

νθk
+ (γak(Gk))2νzk

]

+
[

νθj
+ (γaj(Gj))

2νzj

]

.

It follows from Corollary 2 that this volatility decreases in Gk ∀k = 1, ..., K and Gj, and

increases in ρ.

Factor loadings can predict expected returns because the factor premium, γak(Gk)ξ̄k,

is identical across all assets. Can βjM (i.e., the beta with respect to the market return)

also predict returns? One can estimate βjM by regressing R̃j against the returns on factor

mimicking portfolio and the market portfolio. From Eq. (15), it also follows that after

adjusting for factor returns, the j’th original risky asset’s return is identical to the j’th

basic security’s return. Thus, the market beta of a j’th original security is identical to

that of the j’th basic security given in Eq. (7):

βjM =
νθj
ξ̄j + 2γ2aj(Gj)

2νzj
ξ̄j

Var(R̃M)
. (16)

Plugging into Eq. (15) yields

E(R̃j) =
K

∑

k=1

βjk

[

γak(Gk)ξ̄k
]

+
γaj(Gj)Var(R̃M )

νθj
+ 2γ2aj(Gj)2νzj

βjM .
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Proposition 2 indicates that λj =
γaj(Gj)Var(R̃M )

νθj
+ 2γ2aj(Gj)2νzj

, the slope of the relation between

E(R̃j) and βjM , decreases in Gj and can be as low as zero.

One can estimate IVOLj by regressing R̃j on factor mimicking portfolios’ and the

market portfolio’s returns. From Eq. (14) we see that after adjustment for the factor

returns, this IVOLj is identical to the IVOL of the j’th basic security given in Eq. (12),

which as argued in Lemma 1, increases in νθj
. Use Eqs. (15) and (16) to write

E(R̃j) =
K

∑

k=1

βjk

[

γak(Gk)ξ̄k
]

+ γVar(R̃M )βjM − γ
[

νθj
+ 2γ2aj(Gj)

2νzj
− aj(Gj)

]

ξ̄j,

where the last term, −γ
[

νθj
+2γ2aj(Gj)

2νzj
−aj(Gj)

]

ξ̄j , represents the β-adjusted expected

return. It follows from Proposition 4 that if Gj = µνθj
where µ < γ2 is a positive constant,

then the β-adjusted expected return, −γ
[

νθj
+2γ2aj(Gj)

2νzj
−aj(Gj)

]

ξ̄j , decreases in νθj
.

Thus, there is a negative relation (induced by νθj
) between IVOL and the β-adjusted

expected return. Note that our result in Proposition 5 on the market risk premium

being positive continues to hold for the original securities. The reason is that the market

portfolio of the original securities is just a reshuffle of the basic securities, and is therefore

identical to the market portfolio of the basic securities.

All of the preceding analysis indicates that results for the mimicking portfolios carry

over to the original securities. Our work suggests the following untested empirical impli-

cations, which rely on the premise that stocks with more retail traders are likely to also

have more G traders. We predict that ceteris paribus, stocks with proportionally more

retail traders are less volatile and more actively traded. The cross-sectional (negative)

relation between volatility and future returns is also likely to be more evident in stocks

actively traded and held by retail investors.
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3 Comparing to the Economy With No or Partial

Presence of G Traders

We now compare the equilibria with (i) complete absence of the G traders and (ii) presence

of the G traders in some, but not all, securities. For simplicity, the analysis in this section

is focused on the basic securities.

3.1 Comparing to the Economy With No G Traders

Consider two economies. In the first economy, all agents are non-G traders, while in the

second, all are G traders. For a variable η in the basic economy, we use ηA,G and ηA,NG

to indicate its counterpart in the all-G and all-non-G economies.

The first economy, the all-non-G economy, is equivalent to the basic economy with

ρ = 1 and aj(Gj) = νθj
. Using a similar derivation as that for Proposition 1, we can show

that the price and return of the j’th basic security are given by

PA,NG
j = −γνθj

(ξ̄j + z̃j),

R̃A,NG
j = θ̃j + γνθj

(ξ̄j + z̃j). (17)

The return of the market portfolio is R̃A,NG
M =

K+N
∑

j=1

(ξ̄j + z̃j)R̃
A,NG
j .

Similar to Eq. (7), the covariance between the returns of the basic security and the

market portfolio is given by

Cov(R̃A,NG
j , R̃A,NG

M ) = Cov(R̃A,NG
j , (ξ̄j + z̃j)R̃

A,NG
j ) = νθj

ξ̄j + 2γ2ν2

θj
νzj
ξ̄j .

Then, the expected return of the basic security can be expressed as:

E(R̃A,NG
j ) = γνθj

ξ̄j =
γνθj

Var(R̃A,NG
M )

νθj
+ 2γ2ν2

θj
νzj

βA,NG
jM ,
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where βA,NG
jM =

Cov(R̃A,NG
j , R̃A,NG

M )

Var(R̃A,NG
M )

.

Let λA,NG
j ≡ γνθj

Var(R̃A,NG
M )

νθj
+ 2γ2ν2

θj
νzj

denote the slope of the relation between E(R̃A,NG
j ) and

βA,NG
jM . An obvious observation is that λA,NG

j > 0. Therefore, β’s still have power to

predict stock returns. If νzj
= 0, then λA,NG

j = γVar(R̃A,NG
M ) is identical across all assets.

In this case, β’s are the only predictive variable for expected returns.

The second economy, the all-G economy, is equivalent to the basic economy with ρ = 0

and aj(Gj) = νθj
− Gj/γ

2. Using a similar derivation as that for Proposition 1, we can

show that the price and return of the j’th basic security is given by

PA,G
j = −γ(νθj

−Gj/γ
2)(ξ̄j + z̃j),

R̃A,G
j = θ̃j + γ(νθj

−Gj/γ
2)(ξ̄j + z̃j). (18)

The return of the market portfolio is R̃A,G
M =

K+N
∑

j=1

(ξ̄j + z̃j)R̃
A,G
j .

Similar to Eq. (7), the covariance between the returns of the basic security and the

market portfolio is given by

Cov(R̃A,G
j , R̃A,G

M ) = Cov(R̃A,G
j , (ξ̄j + z̃j)R̃

A,G
j ) = νθj

ξ̄j + 2γ2(νθj
−Gj/γ

2)2νzj
ξ̄j.

Then, the expected return of the basic security can be expressed as:

E(R̃A,G
j ) = γ(νθj

−Gj/γ
2)ξ̄j =

γ(νθj
−Gj/γ

2)Var(R̃A,G
M )

νθj
+ 2γ2(νθj

−Gj/γ2)2νzj

βA,G
jM ,

where βA,G
jM =

Cov(R̃A,G
j , R̃A,G

M )

Var(R̃A,G
M )

.

We compare the two economies in the following proposition.

Proposition 6 (i) E(R̃A,NG
j ) > E(R̃A,G

j ) and Var(R̃A,NG
j ) > Var(R̃A,G

j ). Thus, the

j’th basic security has higher expected return and volatility in the all-non-G economy

than in the all-G economy.
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(ii) E(R̃A,NG
M ) > E(R̃A,G

M ) and Var(R̃A,NG
M ) > Var(R̃A,G

M ). Thus, the market portfolio

has higher expected return and volatility in the all-non-G economy than in the all-G

economy.

(iii) λA,NG
j > λA,G

j . Thus, β’s have more predictive power in the all-non-G economy than

in the all-G economy.

In general, within the all-G economy, risk premiums (and volatilities) are attenuated

because of the G-traders’ penchant to buy low and sell high, which, in turn, attenuates the

pricing of risk. This suggests the testable implication that economies which are dominated

by retail investors should exhibit lower volatility and less evidence of covariance risk

pricing. Indeed, under the assumption that retail investors are more likely to participate

during periods of positive sentiment (Grinblatt and Keloharju (2001) and Lamont and

Thaler (2003)), and less likely to participate during periods of negative sentiment, our

analysis accords with Antoniou, Doukas, and Subrahmanyam (2016) who show that

covariance risk pricing is more prevalent during periods of low sentiment and vice versa.

3.2 Comparing to the Economy With Partial Presence of G

Traders

Consider a hybrid case in which G traders are present in the trading of the basic securities

mimicking the K factors and the first N1 residuals. They are not present in the remaining

N −N1 basic securities. Like the basic economy, there are a mass ρ of non-G traders and

a mass 1 − ρ of G traders.

We continue to write the return of the j’th basic security as R̃j = θ̃j − Pj. (For

convenience, we use the same notation for prices in all securities, i.e., Pj for the j’th

security, even though prices of securities without G traders can take a different form from
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that in Subsection 2.4.) The market portfolio has a return R̃M =
K+N
∑

j=1

(ξ̄j + z̃j)R̃j.

For the first K+N1 basic securities, i.e., ∀j ≤ K+N1, our analysis in the subsection 2.4

still holds. Particularly, the expected return of the j’th basic security takes the form

E(R̃j) = λjβjM .

where λj =
γaj(Gj)Var(R̃M )

νθj
+ 2γ2aj(Gj)2νzj

denote the slope of the relation between E(R̃j) and βjM .

For the remaining N − N1 basic securities, i.e., ∀j > K +N1, there is only a mass ρ

of non-G traders to clear the market. Using a similar analysis as in Subsection 2.4, we

can show that for these securities,

P o
j = −(γ/ρ)νθj

(ξ̄j + z̃j),

R̃o
j = θ̃j + (γ/ρ)νθj

(ξ̄j + z̃j).

[Here, we use the superscript-o to indicate these securities.] Similar to Eq. (7), the covari-

ance between the returns of the basic security and the market portfolio is given by

Cov(R̃o
j , R̃M) = νθj

ξ̄j + 2(γ/ρ)2ν2

θj
νzj
ξ̄j.

Then, the expected return of the basic security can be expressed as:

E(R̃o
j ) = (γ/ρ)νθj

ξ̄j =
(γ/ρ)νθj

Var(R̃M )

νθj
+ 2(γ/ρ)2ν2

θj
νzj

βo
jM = λo

jβ
o
jM ,

where βo
jM =

Cov(R̃o
j , R̃M )

Var(R̃M )
, and λo

j =
(γ/ρ)νθj

Var(R̃M )

νθj
+ 2(γ/ρ)2ν2

θj
νzj

denotes the slope of the relation

between E(R̃o
j ) and βo

jM . We then have the following proposition.

Proposition 7 Consider two basic securities, j and j′, with νθj
= νθj′

, νzj
= νzj′

, ξ̄j = ξ̄j′ ,

but the j’th (j′’th) security is (is not) traded by G traders. Then, λj < λo
j′ . Thus, the

presence of G traders reduces the predictive power of β’s.
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The above proposition implies that beta pricing will be less evident in securities that

are traded relatively more by G traders. Again, the notion is simply that G traders, via

their more aggressive trading in securities where they are present, attenuate the pricing of

risk. The above proposition indicates cross-sectional variation in risk pricing according to

whether G traders are more or less likely to be present. Thus, if retail investors are more

likely to be present in visible, brand name stocks (Frieder and Subrahmanyam (2005)),

then covariance risk pricing will be less evident in these stocks.

4 G Traders and the Informational Efficiency of Stock

Prices

We now consider a model with information asymmetry which allows us to examine how G

traders affect the extent to which prices reveal information. Thus, consider a Grossman

and Stiglitz (1980)-type modification of our model in which, for simplicity, a single stock

is traded at Date 0.10 At Date 1, it pays off a liquidation dividend

V = V̄ + θ̃ + ε̃.

V̄ is a positive constant, and θ̃ and ε̃ are zero mean, and are mutually independent and

normally distributed. The additional term ε is added to create additional risk which

bounds the position of informed agents. The per capita supply of the stock is indicated

by ξ̄ + z̃, where ξ̄ is a constant. The stock price is indicated by P and is determined in

equilibrium. There is also a riskless asset, the price and return of which are normalized

to unity. Again, a generic random variable, η̃, follows a normal distribution with mean

zero and variance νη.

As before, there are masses ρ and 1 − ρ of non-G and G traders, respectively. The

10An extension to multiple stocks is possible, but notationally complex, and does not yield substantive
intuition beyond that presented in earlier sections.
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endowments of riskfree assets and preferences are unchanged relative to the basic model

and the direct utility parameter is denoted by G (without the subscript to denote the

single asset). We modify the basic model by postulating that each G trader can observe

θ̃ by spending a positive and constant cost c. In equilibrium, a mass (1−ρ)τ of G traders

choose to become informed by paying the cost c; a mass (1−ρ)(1−τ ) of G traders choose

to remain uninformed. τ ∈ [0, 1] is determined in equilibrium. The following proposition

describes the pricing function in this setting:

Proposition 8 In equilibrium, the price function takes a linear form

P = V̄ − a + bω(θ̃, z̃), (19)

where ω(θ̃, z̃) = θ̃ − fz̃ (or simply ω) has a variance νω = νθ + f2νz. The parameters, a,

b, and f , are given by

a =
ξ̄

N1 +N2 +N3

,

b =
N1 +N2 +N3

νθ

νω

N1 +N2 +N3

,

f =
1

N1 +N2

,

where

N1 ≡ ρ

γνε

,

N2 ≡ (1 − ρ)τ

γ(νε −G/γ2)
,

N3 ≡ (1 − ρ)(1 − τ )

γ(νθ(1 − νθ

νω

) + νε −G/γ2)
.

Using standard Grossman and Stiglitz (1980)-type arguments, we can derive the following

lemma:
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Lemma 2 If ψ(τ ) ≡ exp(2γc) · Var(V |θ̃) −G/γ2

Var(V |ω) −G/γ2
− 1 is negative (positive), then the G

trader prefers to become informed by spending c (remain uninformed). If ψ(τ ) = 0, then

he is indifferent between becoming informed and remaining uninformed.

In the above lemma, ψ(τ ) is a function of τ because according to Proposition 8, f and

therefore Var(V |ω) are functions of τ .

Proposition 9 τ ∈ [0, 1] is uniquely determined by the function ψ(τ ) as follows:

• If ψ(0) ≥ 0, then τ = 0.

• If ψ(0) < 0 and ψ(1) > 0, then an interior τ ∈ (0, 1) is given by ψ(τ ) = 0.

• If ψ(1) ≤ 0, then τ = 1.

Consider an interior τ ∈ (0, 1), which according to Lemma 2 and Proposition 9, is given

by

ψ(τ ) ≡ exp(2γc) · Var(V |θ̃) −G/γ2

Var(V |ω) −G/γ2
− 1 = 0. (20)

We then have the following corollary.

Corollary 4 If τ is interior (with an equilibrium specified by Eq. 20), then

(i) Var(V |ω) decreases in G;

(ii) Var(V |ω) does not depend on ρ.

In fact, Part (i) of the corollary above holds even for corner solutions where τ = {0, 1},

as given in Proposition 9. The intuition for this part is as follows. G has two effects on

Var(V |ω). First, given τ , G decreases f =
1

ρ

γνε

+
(1 − ρ)τ

γ(νε −G2/γ)

(this expression of f is
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obtained from Proposition 8) and therefore the informativeness of ω = θ̃− fz̃, Var(V |ω).

Second, G may increase or decrease τ , the mass of G traders who choose to become

informed, and therefore increase or decrease the informativeness of ω = θ̃− fz̃, Var(V |ω).

The appendix shows that the first effect dominates. Therefore, taken together, Var(V |ω)

decreases in G.

Part (ii) states that Var(V |ω) does not depend on ρ. The reason for this is that

as Eq. (20) indicates, an increase in ρ, the mass of informed non-G traders, reduces

(1 − ρ)τ , the mass of informed G traders. Thus, f =
1

ρ

γνε

+
(1 − ρ)τ

γ(νε −G2/γ)

and therefore

the informativeness of ω = θ̃ − fz̃, Var(V |ω), remain unchanged.

Overall, we find an increase in utility derived from trading leads to increased price

informativeness in equilibrium but the mass of G traders does not affect this informative-

ness.

5 A Dynamic Extension: Equilibrium Where Trad-

ing Value Depends on Past Market Outcomes

We now consider a dynamic extension of our setting where the utility from trading depends

on past profits. Specifically, we model the notion that if an agent earns positive profits,

he may derive greater utility from gambling in the stock market (see, for example, Thaler

and Johnson (1990) or Coventry and Constable (1999)). We show that the “excitement”

created by positive profits can lead to an overreaction to mildly positive information and

thus cause a “bubble” in stock prices. Our rationale for this bubble is consistent with

experimental arguments that emotional excitement can cause bubbles (Bellotti, Taffler,

and Tian (2010) and Andrade, Odean, and Lin (2015)); in our model, the pathway is

that positive profits increase the “excitement” or utility from additional trading and thus
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cause an overreaction to mildly positive information.

We assume that a single risky security is traded at Dates t = 0, 1, 2, and 3 and revert

to the case of symmetric information.11 For convenience, as in the previous section, we

suppress j subscripts. At Date 3, the security pays off a liquidation dividend

V = V̄ + θ̃1 + θ̃2 + θ̃3.

V̄ is a positive constant, which represents the expected dividend. The variables θ̃t, t = 1,

2, and 3, represent exogenous cash flow shocks, which are mutually independent and

multivariate normally distributed with mean zero. θ̃t’s are public signals released at

Dates t = 1, 2. The supply of the risky security is a positive constant, ξ̄.12 Its prices are

Pt at Dates t = 0, 1, and 2.

There is a mass unity of identical agents who trade the risky security. At Date 0,

they all hold an identical long position, in aggregate ξ̄, to clear the market. At Date 1, if

P1 > P0, they make money at Date 1; otherwise, they do not. If P1 > P0, so that they

make money at Date 1, then after Date 1 and before Date 2, with probability ρ, an agent

becomes a non-G trader; with probability 1 − ρ, he becomes a G trader. If P1 ≤ P0 and

the agents do not make money at date 1, then all agents remain non-G traders with a

probability of unity.

The i’th non-G trader’s utility function is the standard exponential:

U(Wi3) = −exp(−γWi3),

where Wi3 is his final wealth, and γ is a positive constant representing the absolute risk

aversion coefficient. The i’th G trader’s utility function takes the form

UG(Wi3, Xi2) = −exp(−γWi3)exp(−0.5GX2

i2),

11An extension to multiple assets and asymmetric information does not convey any additional intuition.
12Assuming random supply will complicate the analysis but convey no additional intuition.
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where Xi2 is the quantity of risky security he has bought at date 2 and continues to hold

until the end of the game, and G is a positive constant.

The i’th trader is endowed with X̄i0 units of risky securities. For convenience, we let

θ̃t’s, t = 1, 2, and 3, have the same variance νθ. Let the price and return of the risk free

asset be 1. We then have the following result:

Proposition 10 There is an equilibrium characterized by the following prices:

• P0 is given by

P0 = V̄ +Hθ − 2γνθ ξ̄,

where a(G) =
1

ρ

νθ

+
1 − ρ

νθ −G/γ2

. The variable Hθ is uniquely determined by

0 =
∫

∞

Hθ

θ̃1 −Hθ + γ(νθ − a(G))ξ̄

exp(γξ̄θ̃1)

·
[

ρexp(−0.5
(γa(G)ξ̄)2

νθ

) + (1 − ρ)exp(−0.5
(γa(G)ξ̄)2

νθ −G/γ2
)
]

dΦ(
θ̃1√
νθ

)

+
∫ Hθ

−∞

θ̃1 −Hθ

exp
[

γξ̄(θ̃1 − γ(νθ − a(G))ξ̄)
]exp(−0.5

(γνθξ̄)
2

νθ

)dΦ(
θ̃1√
νθ

).

and Φ(.) is the cumulative density function of standard normal distribution.

• If θ̃1 > Hθ, then

P1 = V̄ + θ̃1 − γνθ ξ̄ − γa(G)ξ̄,

P2 = V̄ + θ̃1 + θ̃2 − γa(G)ξ̄.

Because P1 > P0, a mass 1−ρ of traders convert to G traders immediately following

Date 1.
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• If θ̃1 ≤ Hθ, then

P1 = V̄ + θ̃1 − 2γνθ ξ̄,

P2 = V̄ + θ̃1 + θ̃2 − γνθ ξ̄.

Because P1 ≤ P0, all traders remain non-G traders throughout the timeline.

Here is a sketch of the proof of this proposition (the formal proof is in the Appendix). We

use backward induction. There are three steps. In the first step, we study the equilibrium

demands and prices at Dates 1 and 2 conditional on the event that at Date 1, traders

make money because θ̃1 > Hθ so P1 > P0 (call this Regime 1). Note that in this regime,

at Date 2, there is a mass ρ (1 − ρ) of non-G traders (G traders). At Date 1, an agent

knows that he will be a non-G trader (G trader) with probability ρ (1− ρ). In the second

step, we study the equilibrium demands and prices at dates 1 and 2 conditional on the

event that at Date 1, traders do not make money because θ̃1 ≤ Hθ so P1 ≤ P0 (call this

Regime 2). This step is simpler than the first step because all traders are non-G traders.

In the third step, we focus on Date 0, and derive the expressions for P0 and the threshold

Hθ.

There are two interesting results. The first relates to the price reaction for θ̃1 around

the threshold Hθ:

P1(θ̃1 ↘ Hθ) = V̄ + θ̃1 − γνθ ξ̄ − γa(G)ξ̄,

P1(θ̃1 ↗ Hθ) = V̄ + θ̃1 − 2γνθ ξ̄.

It is easy to show that

P1(θ̃1 ↘ Hθ) − P1(θ̃1 ↗ Hθ) = γνθ ξ̄ − γa(G)ξ̄ > 0,

because a(G) < a(0) = νθ. This suggests a small θ̃1 (e.g., earnings) can induce a significant

price movement. Another interpretation of this observation is that a relatively minor piece

of news can cause substantial moves in prices.
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The second result relates to long-run performance. If θ̃1 > Hθ, then the subsequent

returns are

P2 − P1 = θ̃2 + γνθξ̄, and V − P2 = θ̃3 + γa(G)ξ̄.

If θ̃1 ≤ Hθ, then the subsequent returns are

P2 − P1 = θ̃2 + γνθξ̄, and V − P2 = θ̃3 + γνθξ̄.

A comparison between these two cases suggests that if θ̃1 > Hθ, then there is a long-run

underperformance because a(G) < a(0) = νθ. Thus, a minor piece of good news can cause

securities to become dramatically overpriced and thus exhibit subpar returns in the long

run.

Figure 1 plots the price paths conditional on the public announcement θ̃1. We assume

the parameter values V̄ = 5, νθ = 1, ξ̄ = 1, γ = 0.5, ρ = 0.5, and G = 0.2. The

realizations of θ̃2 and θ̃3 are assumed to be zero, i.e., their mean. This implies that the

threshold Hθ = −0.388. Moving from the bottom to the top, each path in the figure

represents a realization of θ̃1 from −1 to 0 (step size=0.025). θ̃1 ≤ Hθ for the paths

indicated by 4’s. θ̃1 > Hθ for the paths indicated by *’s. We see that if θ̃1 is below the

threshold Hθ = −0.388, the price reaction to θ̃1 is non-positive. Once θ̃1 has surpassed

the threshold Hθ = −0.388, the price reaction becomes positive.

Particularly, look at the two paths bordering the hollow area. The south path is for

θ̃ = −0.4. The north path is for θ = −0.375. Although θ̃1 differs by only 0.025 across

the two path groups, the price reactions are very different. On both paths, P0 = 3.612.

However, on the south path, P1 = 3.6 so P1−P0 = −0.012; on the north path, P1 = 3.9583

so P1 − P0 = 0.3463. The difference in the price reaction, P1 − P0, equals 0.3583, which

is more than fourteen times the difference in θ̃1 (0.025).

The immediate return subsequent to the release of θ̃1, P2 − P1 = 0.5, is identical
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across all θ̃1 paths. But the long-run performance for the paths with θ̃1 > Hθ indicated

by *’s, V − P2 = 0.1667, is lower than that for the paths with θ̃1 ≤ Hθ indicated by

4’s, V − P2 = 0.5. This indicates long-run underperformance following a good public

announcement. The underperformance is characteristic of bubble-like episodes in the

stock market (such as the technology bubble of the 1990s, viz. Brunnermeier and Nagel

(2004)), whereas the positive event (that creates the bubble) could be something as simple

as good initial sales or earnings figures for the relevant sector.

More generally, the preceding analysis suggests a testable implication. Specifically,

for stocks that are popular amongst retail investors, we predict a nonlinear response to

positive news, that is a small reaction to modest news announcement, but a dispropor-

tionately larger reaction to major (positive) announcements. Following the large positive

announcements, these stocks should exhibit long-run reversals (conditional on the news).

6 Conclusion

In this paper, we present a model where agents derive direct utility from trading. We

show that the presence of such agents causes assets to be overpriced, attenuates beta

pricing and volatility, and raises trading volume in financial markets. Assets with high

trading volume earn lower expected returns. Assuming that agents derive greater utility

from trading more volatile stocks, our model accords with a set of intriguing empirical

findings: Volatility is priced negatively in the cross-section, but positively in the aggregate

(viz. Haugen and Baker (2010)). Agents with greater utility from trading exploit private

information more aggressively, thus raising pricing efficiency. Further, the presence of

agents who receive direct utility from trading causes “bubbles,” i.e., overreactions in

asset prices if agents’ utility from trading depends on past profit outcomes in financial

markets.
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Untested implications of our analysis are that stocks that are popular amongst retail

investors should exhibit weaker evidence of covariance risk pricing and lower volatility,

with greater trading activity. These stocks should also exhibit disproportionate price

reactions to moderately positive news announcements. The analysis, under reasonable

additional assumptions, also accords with a variety of documented stylized facts: the

negative relation between average returns and volume as well as idiosyncratic (or total)

volatility (Datar, Naik, and Radcliffe (1998), Ang, Hodrick, Xing, and Zhang (2006),

Baker and Haugen (2012)), the lack of evidence consistent with covariance risk pricing

(Fama and French (1992)), the pricing of covariance risk conditional on sentiment (Anto-

niou, Doukas, and Subrahmanyam (2016)), and the rise of volatility in conjunction with

the rise in institutional holdings (Campbell, Lettau, Malkiel, and Xu (2001) and Malkiel

and Xu (1999)).

Our work raises many issues. First, it would be interesting to examine a fully dy-

namic model with exits and entry by such agents. Second, it may be interesting to

combine trading for entertainment and other investor biases, such as representativeness

and overconfidence, and to examine the market equilibrium that results. Finally, the

specific factors that influence how much utility is derived per unit trade (such as age,

personality attributes) need to be considered in more depth within a theoretical setting).

These and other issues are left for future research.
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Appendix A

Proof of Corollary 1: From Proposition 1, aj(Gj) =
1

ρ

νθj

+
1 − ρ

νθj
−Gj/γ2

. It is easy to

show after taking derivatives that aj(Gj) decreases in Gj , and increases in ρ. Finally,

aj(0) =
1

ρ

νθj

+
1 − ρ

νθj

= νθj
.

Q.E.D.

Proof of Proposition 2: (i) From Corollary 1, aj(Gj) < aj(Gj′) because Gj > Gj′.

Note that λj =
γaj(Gj)Var(R̃M)

νθj
+ 2γ2aj(Gj)2νzj

. For λj < λj′ , it suffices that

aj(Gj)

νθj
+ 2γ2aj(Gj)2νzj

− aj(Gj′)

νθj
+ 2γ2aj(Gj′)2νzj

∝ aj(Gj)
[

νθj
+ 2γ2aj(Gj′)

2νzj

]

− aj(Gj′)
[

νθj
+ 2γ2aj(Gj)

2νzj

]

=
[

aj(Gj) − aj(Gj′)
][

νθj
− 2γ2aj(Gj′)aj(Gj)νzj

]

∝ 2γ2aj(Gj′)aj(Gj)νzj
− νθj

< 2γ2ν2

θj
νzj

− νθj

< 0,

where the second “∝” follows from aj(Gj) < aj(Gj′), the first inequality follows from

aj(Gj), aj(Gj′) < νθj
(see Corollary 1), and the last inequality obtains under the assump-

tion νzj
<

1

γ2νθj

min(1/4, ρ/2) (see Condition (2)).

(ii) If Gj/γ
2 ↗ νθj

, then aj(Gj) =
1

ρ

νθj

+
1 − ρ

νθj
−Gj/γ2

↘ 0 so that λj ↘ 0.

Q.E.D.

Proof of Proposition 3: (i) From Corollary 1, aj(Gj) < νθj
. Therefore, the β-adjusted

expected return of the j’th basic security −γ
[

νθj
+ 2γ2aj(Gj)

2νzj
− aj(Gj)

]

ξ̄j < 0.
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(ii) From Corollary 1, aj(Gj) < aj(Gj′) because Gj > Gj′ . The difference between the

β-adjusted expected returns of the j’th and j′’th basic securities is

−γ
[

νθj
+ 2γ2aj(Gj)

2νzj
− aj(Gj)

]

ξ̄j + γ
[

νθj
+ 2γ2aj(Gj′)

2νzj
− aj(Gj′)

]

ξ̄j

= γ
[

aj(Gj) − aj(Gj′) − 2γ2(aj(Gj)
2 − aj(Gj′)

2)νzj

]

ξ̄j

∝ 2γ2(aj(Gj) + aj(Gj′))νzj
− 1

< 4γ2νθj
νzj

− 1

< 0,

where the “∝” follows from aj(Gj) < aj(Gj′), the first inequality follows from aj(Gj), aj(Gj′) <

νθj
(see Corollary 1), and the last inequality obtains under the assumption νzj

<
1

γ2νθj

min(1/4, ρ/2)

(see Condition (2)).

Q.E.D

Proof of Corollary 3: Write Eqs. (9) and (10) as

XNG,j(Pj) − (ξ̄j + z̃j) ∼ N(ANGξ̄j , A
2

NGνzj
),

XG,j(Pj) − (ξ̄j + z̃j) ∼ N(AGξ̄j, A
2

Gνzj
),

where

ANG ≡ aj(Gj)

νθj

− 1, and AG ≡ aj(Gj)

νθj
−Gj/γ2

− 1.

Here are some intermediate results we will use in the proof of this corollary. First,

ANG < 0 and decreases in Gj from Corollary 1. Second, AG =
aj(Gj)

νθj
−Gj/γ2

− 1 =

1
ρ

νθj

(νθj
−Gj/γ

2) + 1 − ρ
− 1 > 0, and increases in Gj .

Using the fact listed in Footnote 13 and the above new expressions for the distributions
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of XNG,j(Pj)−(ξ̄j +z̃j) and XG,j(Pj)−(ξ̄j +z̃j),
13 we can express the total expected trading

volume in the j’th basic security (Eq. (11)) as

Tj = 0.5ρE
[

|XNG,j(Pj) − (ξ̄j + z̃j)|
]

+ 0.5(1 − ρ)E
[

|XG,j(Pj) − (ξ̄j + z̃j)|
]

= 0.5ρ(−ANG
√
νzj

)
[

2φ(− ξ̄j√
νzj

) − ξ̄j√
νzj

(1 − 2Φ(
ξ̄j√
νzj

))
]

+0.5(1 − ρ)AG
√
νzj

[

2φ(
ξ̄j√
νzj

) +
ξ̄j√
νzj

(1 − 2Φ(− ξ̄j√
νzj

))
]

.

Footnote 13 indicates that the values in the brackets are positive. From the above analysis,

ANG decreases in Gj, and AG increases in Gj . Therefore, Tj increases in Gj .

Q.E.D.

Proof of Lemma 1: From Proposition 1,
Var(R̃j)

Var(R̃M )
=

νθj
+ γ2aj(Gj)

2νzj

Var(R̃M )
. This im-

plies that typical basic securities with small
Var(R̃j)

Var(R̃M )
also have small

νθj

Var(R̃M )
and

γ2aj(Gj)
2νzj

Var(R̃M )
. We will use this property in the proof of this Lemma.

From Eq. (12), Proposition 1, and our computation of Cov(R̃j , R̃M) in Appendix B,

IVOLj = Var(R̃j) −
Cov(R̃j , R̃M)2

Var(R̃M )

= νθj
+ γ2aj(Gj)

2νzj
− (νθj

+ 2γ2aj(Gj)
2νzj

)2ξ̄2
j

Var(R̃M )
.

Denote G(νθj
) = µνθj

. It follows that for the j’th and j′’th typical basic securities,

IVOLj − IVOLj′ =
[

νθj
+ γ2aj(G(νθj

))2νzj

]

−
[

νθj′
+ γ2aj(G(νθj′

))2νzj

]

−
νθj

+ 2γ2aj(G(νθj
))2νzj

+ νθj′
+ 2γ2aj(G(νθ′

j
))2νzj

Var(R̃M )
ξ̄2
j

[

[

νθj
+ 2γ2aj(G(νθj

))2νzj

]

−
[

νθj′
+ 2γ2aj(G(νθj′

))2νzj

]

]

13 If y ∼ N(ȳ, ν), then E[|y|] =
√

ν
[

2φ(
ȳ√
ν

)+
ȳ√
ν

(1−2Φ(
−ȳ√

ν
))

]

, where φ(.) and Φ(.) denote the prob-

ability density function (p.d.f.) and cumulative density function (c.d.f.) of standard normal distribution.
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=
[

νθj
+ γ2aj(G(νθj

))2νzj

]

−
[

νθj′
+ γ2aj(G(νθj′

))2νzj

]

−δ
[

[

νθj
+ 2γ2aj(G(νθj

))2νzj

]

−
[

νθj′
+ 2γ2aj(G(νθj′

))2νzj

]

]

= (1 − δ)(νθj
− νθj′

) + (1 − 2δ)γ2νzj

[

aj(G(νθj
))2 − aj(G(νθj′

))2
]

,

where δ =
νθj

+ 2γ2aj(G(νθj
))2νzj

+ νθj′
+ 2γ2aj(G(νθ′j

))2νzj

Var(R̃M)
ξ̄2

j . It follows from the above

derived property that for the j’th and j′’th typical basic securities, δ must be small.

Thus, 1 − δ, 1 − 2δ > 0. Note that νθj
> νθj′

. For IVOLj > IVOLj′, it suffices that

aj(G(νθj
)) > aj(G(νθj′

)), which holds because

daj(G(νθj
))

dνθj

= aj(G(νθj
))2

[ ρ

ν2
θj

+
1 − ρ

(νθj
− µνθj

/γ2)2
(1 − µ/γ2)

]

> 0.

Q.E.D.

Proof of Proposition 4: Given Gj = µνθj
where µ < γ2, and taking derivatives of the

β-adjusted expected return, −γ(νθj
+ 2γ2aj(Gj)

2νzj
− aj(Gj))ξ̄j , w.r.t. νθj

yields

d
[

−γ(νθj
+ 2γ2aj(Gj)

2νzj
− aj(Gj))ξ̄j

]

dνθj

∝ −1 +
[

1 − 4γ2aj(Gj)νzj

]

aj(Gj)
2
[ ρ

ν2
θj

+
1 − ρ

(νθj
−Gj/γ2)2

(1 − µ/γ2)
]

< −1 + aj(Gj)
2
[ ρ

ν2
θj

+
1 − ρ

(νθj
−Gj/γ2)2

(1 − µ/γ2)
]

∝ −(
ρ

νθj

+
1 − ρ

νθj
− µνθj

/γ2
)2 +

ρ

ν2
θj

+
1 − ρ

(νθj
− µνθj

/γ2)2
(1 − µ/γ2)

∝ −(ρ+
1 − ρ

1 − µ/γ2
)2 + ρ+

1 − ρ

1 − µ/γ2

∝ −(ρ+
1 − ρ

1 − µ/γ2
) + 1

< 0.

Q.E.D.
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Proof of Proposition 5: It follows from Eq. (13) that

E(R̃M) =
K+N
∑

j=1

E
[

ξ̄j θ̃j + z̃j θ̃j + γaj(Gj)(ξ̄
2

j + 2ξ̄j z̃j + z̃2

j )
]

=
K+N
∑

j=1

[

γaj(Gj)(ξ̄
2

j + νzj
)
]

> 0.

Q.E.D.

Proof of Proposition 6: (i) From Eqs. (17) and (18),

E(R̃A,NG
j ) = γνθj

ξ̄j > E(R̃A,G
j ) = γ(νθj

−Gj/γ
2)ξ̄j ,

Var(R̃A,NG
j ) = νθj

+ γ2ν2

θj
νzj

> Var(R̃A,G
j ) = νθj

+ γ2(νθj
−Gj/γ

2)2νzj
.

(ii) From Eq. (17), it follows that the return of the market portfolio in the all-non-G

economy is given by

R̃A,NG
M =

K+N
∑

j=1

(ξ̄j + z̃j)R̃
A,NG
j =

K+N
∑

j=1

[

(ξ̄j + z̃j)(θ̃j + γνθj
(ξ̄j + z̃j))

]

.

It follows immediately that

E(R̃A,NG
M ) =

K+N
∑

j=1

E
[

(ξ̄j + z̃j)(θ̃j + γνθj
(ξ̄j + z̃j))

]

=
K+N
∑

j=1

[

γνθj
(ξ̄2

j + νzj
)
]

,

Var(R̃A,NG
M ) =

K+N
∑

j=1

[

(νθj
+ 4γ2ν2

θj
νzj

)ξ̄2

j + νθj
νzj

+ 2γ2ν2

θj
ν2

zj

]

,

where the last equality follows from Eq. (6) because the all-non-G economy can be viewed

as the case in which a(Gj) = νθj
.

From Eq. (18), it follows that the return of the market portfolio in the all-G economy

is given by

R̃A,G
M =

K+N
∑

j=1

(ξ̄j + z̃j)R̃
A,G
j =

K+N
∑

j=1

[

(ξ̄j + z̃j)(θ̃j + γ(νθj
−Gj/γ

2)(ξ̄j + z̃j))
]

.
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It follows immediately that

E(R̃A,G
M ) =

K+N
∑

j=1

E
[

(ξ̄j + z̃j)(θ̃j + γ(νθj
−Gj/γ

2)(ξ̄j + z̃j))
]

=
K+N
∑

j=1

[

γ(νθj
−Gj/γ

2)(ξ̄2

j + νzj
)
]

,

Var(R̃A,G
M ) =

K+N
∑

j=1

[

(νθj
+ 4γ2(νθj

−Gj/γ
2)2νzj

)ξ̄2

j + νθj
νzj

+ 2γ2(νθj
−Gj/γ

2)2ν2

zj

]

,

where the last equality follows from Eq. (6) because the all-G economy is the case in

which a(Gj) = νθj
−Gj/γ

2.

A direct comparison indicates that E(R̃A,NG
M ) > E(R̃A,G

M ) and Var(R̃A,NG
M ) > Var(R̃A,G

M ).

(iii) Note that λA,NG
j =

γνθj
Var(R̃A,NG

M )

νθj
+ 2γ2ν2

θj
νzj

and λA,G
j =

γ(νθj
−Gj/γ

2)Var(R̃A,G
M )

νθj
+ 2γ2(νθj

−Gj/γ2)2νzj

. From

part (ii), Var(R̃A,NG
M ) > Var(R̃A,G

M ). Thus, for λA,NG
j > λA,G

j , it suffices that

νθj

νθj
+ 2γ2ν2

θj
νzj

− νθj
−Gj/γ

2

νθj
+ 2γ2(νθj

−Gj/γ2)2νzj

∝ νθj

[

νθj
+ 2γ2(νθj

−Gj/γ
2)2νzj

]

− (νθj
−Gj/γ

2)(νθj
+ 2γ2ν2

θj
νzj

)

∝ νθj
− 2γ2(νθj

−Gj/γ
2)νθj

νzj

> νθj
− 2γ2ν2

θj
νzj

> 0,

where the last inequality obtains under the assumption νzj
<

1

γ2νθj

min(1/4, ρ/2) (see

Condition (2)).

Q.E.D.

Proof of Proposition 7: Note that λj =
γaj(Gj)Var(R̃M )

νθj
+ 2γ2aj(Gj)2νzj

and λo
j′ =

(γ/ρ)νθj
Var(R̃M )

νθj
+ 2(γ/ρ)2ν2

θj
νzj

.

For λj < λo
j′ , it suffices to show that

γaj(Gj)

νθj
+ 2γ2aj(Gj)2νzj

− (γ/ρ)νθj

νθj
+ 2(γ/ρ)2ν2

θj
νzj

∝ γaj(Gj)
[

νθj
+ 2(γ/ρ)2ν2

θj
νzj

]

− (γ/ρ)νθj

[

νθj
+ 2γ2aj(Gj)

2νzj

]

=
[

γaj(Gj) − (γ/ρ)νθj

][

νθj
− 2γaj(Gj)(γ/ρ)νθj

νzj

]
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∝ 2γ2aj(Gj)νzj
− ρ

< 2γ2νθj
νzj

− ρ

< 0,

where the second “∝” and the first inequality follow from aj(Gj) < νθj
(see Corollary 1),

and the last inequality obtains under the assumption νzj
<

1

γ2νθj

min(1/4, ρ/2) (see Con-

dition (2)).

Q.E.D.

Proof of Proposition 8: Note that

V |θ̃ ∼ N(V̄ + θ̃, νε).

An i’th non-G trader, who observes θ̃, has the following expected utility conditional on θ̃:

E
[

U(Wi1)|θ̃
]

= −exp
[

−γ
[

Wi0 +Xi(E(V |θ̃) − P ) − 0.5γX2

i Var(V |θ̃)
]

]

.

The f.o.c. w.r.t. Xi implies that his demand can be expressed as:

XNG(P, θ̃) =
E(V |θ̃) − P

γVar(V |θ̃)
=
V̄ + θ̃ − P

γνε

. (21)

An i’th G trader, who chooses to spend c to observe θ̃, has the following expected utility

conditional on θ̃:

E
[

UG,I(Wi1)|θ̃
]

= −exp
[

−γ
[

(Wi0 − c)

+Xi(E(V |θ̃) − P ) − 0.5γX2

i (Var(V |θ̃) −G/γ2)
]

]

. (22)

The f.o.c. w.r.t. Xi implies that his demand can be expressed as:

XG,I(P, θ̃) =
E(V |θ̃) − P

γ(Var(V |θ̃) −G/γ2)
=

V̄ + θ̃ − P

γ(νε −G/γ2)
. (23)
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Conjecture that the stock price takes the linear form given in Eq. (19). An i’th G

trader, who chooses to remain uninformed, can infer ω from the stock price. Note that

V |ω ∼ N(V̄ +
νθ

νω

ω, νθ(1 − νθ

νω

) + νε).

The uninformed trader has the following expected utility conditional on ω:

E
[

UG,U (Wi1)|ω
]

= −exp
[

−γ
[

Wi0

+Xi(E(V |ω) − P ) − 0.5γX2

i (Var(V |ω) −G/γ2)
]

]

. (24)

The f.o.c. w.r.t. Xi implies that his demand can be expressed as:

XG,U (P, ω) =
E(V |ω) − P

γ(Var(V |ω) −G/γ2)
=

V̄ +
νθ

νω

ω − P

γ(νθ(1 − νθ

νω

) + νε −G/γ2)
. (25)

The market clearing condition requires that

ξ̄ + z̃ = ρ ·XNG(P, θ̃) + (1 − ρ)τ ·XG,I(P, θ̃) + (1 − ρ)(1 − τ ) ·XG,U (P, ω).

Plugging in the expressions for XNG(P, θ̃), XG,I(P, θ̃) and XG,U (P, ω) into Eqs. (21), (23),

and (25), and using the conjectured expression of P in Eq. (19) yields

ξ̄ + z̃ = N1 · (V̄ + θ̃ − P ) +N2 · (V̄ + θ̃ − P ) +N3 · (V̄ +
νθ

νω

ω − P )

= (N1 +N2) · θ̃ +N3 ·
νθ

νω

ω − (N1 +N2 +N3) · bω

+(N1 +N2 +N3) · a,

where N1, N2, and N3 are defined in Proposition 8. It is straightforward to verify that

this market clearing requirement is ensured by the parameters, a, b, and f , given in

Proposition 8.

Q.E.D.
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Proof of Lemma 2: Consider an informed G trader’s expected utility, given by Eq. (22).

Plugging in the optimal demand for the stock in Eq. (23) yields

E
[

UG,I(Wi1)|θ̃
]

= −exp
[

−γ(Wi0 − c)
]

exp
[

−0.5

[

E(V |θ̃) − P
]2

Var(V |θ̃) −G/γ2

]

= −exp
[

−γ(Wi0 − c)
]

exp
[

−0.5
(V̄ + θ̃ − P )2

νε −G/γ2

]

= −exp
[

−γ(Wi0 − c)
]

exp
[

−0.5
Var(θ̃|ω)

νε −G/γ2
Y 2

]

,

where Y ≡ V̄ + θ̃ − P
√

Var(θ̃|ω)
and Y |ω ∼ N(

V̄ + E(θ̃|ω) − P
√

Var(θ̃|ω)
, 1). Thus,

E
[

UG,I(Wi1)|ω
]

= E
[

E
[

UG,I(Wi1)|θ̃
]

|ω
]

= −exp
[

−γ(Wi0 − c)
]

E
[

exp
[

−0.5
Var(θ̃|ω)

νε −G/γ2
Y 2

]

|ω
]

= −
exp

[

−γ(Wi0 − c)
]

√

√

√

√1 +
Var(θ̃|ω)

νε −G/γ2

exp
[

−0.5

Var(θ̃|ω)

νε −G/γ2

[ V̄ + E(θ̃|ω) − P
√

Var(θ̃|ω)

]2

1 +
Var(θ̃|ω)

νε −G/γ2

]

= −exp
[

−γ(Wi0 − c)
]

√

√

√

√

Var(V |θ̃) −G/γ2

Var(V |ω) −G/γ2
exp

[

−0.5

[

E(V |ω) − P
]2

Var(V |ω) −G/γ2

]

.

Here, we use the fact in Footnote 14 and the facts Var(V |θ̃) = νε and Var(V |ω) =

νε + Var(θ̃|ω).14

Now consider an uninformed trader’s expected utility, given by Eq. (24). Plugging in

the optimal demand for the stock from Eq. (25) yields

E
[

UG,U (Wi1)|ω
]

= −exp(−γWi0)exp
[

−0.5

[

E(V |ω) − P
]2

Var(V |ω) −G/γ2

]

.

14If y ∼ N(ȳ, 1), then E(exp(−ty2)) =
1√

1 + 2t
exp(− tȳ2

1 + 2t
).
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It follows immediately that

E
[

UG,I(Wi1)|ω
]

− E
[

UG,U (Wi1)|ω
]

=
[

exp(γc)

√

√

√

√

Var(V |θ̃) −G/γ2

Var(V |ω) −G/γ2
− 1

]

E
[

UG,U (Wi1)|ω
]

.

Taking the ex ante expectation yields

E
[

UG,I(Wi1)
]

− E
[

UG,U (Wi1)
]

=
[

exp(γc)

√

√

√

√

Var(V |θ̃) −G/γ2

Var(V |ω) −G/γ2
− 1

]

E
[

UG,U (Wi1)
]

.

Denote ψ(τ ) ≡ exp(2γc)
Var(V |θ̃) −G/γ2

Var(V |ω) −G/γ2
− 1. ψ(τ ) is a function of τ because accord-

ing to Proposition 8, f and therefore Var(V |ω) are functions of τ . If ψ(τ ) is negative

(positive), then the above difference in the ex ante utility is positive (negative) because

E
[

UG,U (Wi1)
]

is negative, and the G trader prefers to become informed by spending c

(remain uninformed). If ψ(τ ) = 0, then he is indifferent between becoming informed and

remaining uninformed.

Q.E.D.

Proof of Proposition 9: Lemma 2 uses the function ψ(τ ) to describe the G traders’

decision to become informed (by spending c) and remain uninformed. It follows that to

prove this proposition, it suffices to show that ψ(τ ) increases in τ ∈ [0, 1]. We show this

monotonic property in what follows.

Proposition 8 implies that f and, therefore, νω = νθ + f2νz decrease in τ . It follows

that Var(V |ω) = νθ(1 − νθ

νω

) + νε decreases in τ . Note that ψ(τ ) (from its expression in

Lemma 2) decreases in Var(V |ω). It follows immediately that ψ(τ ) increases in τ .

Q.E.D.

Proof of Corollary 4: (i) Consider Eq. (20), which specifies the interior equilibrium for

τ . It is straightforward to show that ψ(τ ) decreases in both Var(V |ω) and G. Therefore,
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Var(V |ω) decreases in G.

(ii) Consider Eq. (20) again. It is obvious that Var(V |ω) depends on variables such as

c, γ, G, and Var(V |θ̃), which do not involve ρ.

Q.E.D.

Proof of Proposition 10: We solve for the equilibrium and prove the proposition using

backward induction, in three steps.

Step 1: In this step, suppose θ̃1 > Hθ and therefore P1 > P0 (which we will show

below). An agent remains a non-G trader (becomes a G trader) with probability ρ (1−ρ).

Thus, there is a mass ρ of non-G traders and a mass 1 − ρ of G traders at Date 2.

Focus on Date 2 for the moment. Write an i’th non-G trader’s wealth at Date 3 as

Wi3 = Wi2 +Xi2(V − P2). His expected utility at Date 2 can be expressed as:

E
[

UNG(Wi3)|θ̃1, θ̃2

]

= −exp
[

−γWi2

−γ
[

Xi2(E(V |θ̃1, θ̃2) − P2) − 0.5γX2

i2Var(V |θ̃1, θ̃2)
]

]

. (26)

He needs to choose Xi2 to maximize this expected utility. The f.o.c. implies that his

demand can be expressed as:

XNG,2(θ̃1, θ̃2, P2) =
E(V |θ̃1, θ̃2) − P2

γVar(V |θ̃1, θ̃2)
=
V̄ + θ̃1 + θ̃2 − P2

γνθ

. (27)

An i’th G trader’s expected utility at Date 2 can be expressed as:

E
[

UG(Wi3, Xi2))|θ̃1, θ̃2

]

= −exp
[

−γWi2

−γ
[

Xi2(E(V |θ̃1, θ̃2) − P2) − 0.5γX2

i2Var(V |θ̃1, θ̃2) + 0.5GX2

i2/γ
]

]

. (28)

He needs to choose Xi2 to maximize this expected utility. The f.o.c. implies that his

demand can be expressed as:

XG2(θ̃1, θ̃2, P2) =
E(V |θ̃1, θ̃2) − P2

γVar(V |θ̃1, θ̃2) −G/γ
=
V̄ + θ̃1 + θ̃2 − P2

γ(νθ −G/γ2)
. (29)
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It follows from Eqs. (27) and (29) that the market clearing condition requires

ξ̄ = ρ ·XNG,2(θ̃1, θ̃2, P2) + (1 − ρ) ·XG2(θ̃1, θ̃2, P2)

=
ρ

γνθ

(V̄ + θ̃1 + θ̃2 − P2) +
1 − ρ

γ(νθ −G/γ2)
(V̄ + θ̃1 + θ̃2 − P2).

Therefore,

P2 = V̄ + θ̃1 + θ̃2 − γa(G)ξ̄,

where a(G) =
1

ρ

νθ

+
1 − ρ

νθ −G/γ2

.

Consider a non-G trader’s expected utility at Date 2 in Eq. (26). Plugging in the

optimal demand for the risky security from Eq. (27) yields

E
[

UNG(Wi3)|θ̃1, θ̃2

]

= −exp
[

− γWi2 − 0.5
(V̄ + θ̃1 + θ̃2 − P2)2

νθ

]

= −exp
[

−γWi2 − 0.5
(γa(G)ξ̄)2

νθ

]

. (30)

Consider a G trader’s expected utility at Date 2 in Eq. (28). Plugging in the optimal

demand for the risky security from Eq. (29) yields

E
[

UG(Wi3, Xi2)|θ̃1, θ̃2

]

= −exp
[

− γWi2 − 0.5
(V̄ + θ̃1 + θ̃2 − P2)2

νθ −G/γ2

]

= −exp
[

−γWi2 − 0.5
(γa(G)ξ̄)2

νθ −G/γ2

]

. (31)

Now focus on Date 1. As argued above, an agent knows that he may or may not become

a G trader. Write an i’th trader’s wealth at Date 2 as Wi2 = Wi1 + Xi1(P2 − P1). It

follows from Eqs. (30) and (31) that his expected utility at Date 1 can be expressed as:

E
[

U(Wi3)|θ̃1

]

= ρE
[

UNG(Wi3)|θ̃1

]

+ (1 − ρ)E
[

UG(Wi3, Xi2)|θ̃1

]

= −exp
[

−γWi1 − γ
[

Xi1(E(P2|θ̃1) − P1) − 0.5γX2

i1Var(P2|θ̃1)
]

]

·
[

ρ exp(−0.5
(γa(G)ξ̄)2

νθ

) + (1 − ρ)exp(−0.5
(γa(G)ξ̄)2

νθ −G/γ2
)
]

. (32)
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He needs to choose Xi1 to maximize this expected utility. The f.o.c. implies that his

demand can be expressed as:

X1(θ̃1, P1) =
E(P2|θ̃1) − P1

γVar(P2|θ̃1)
=
V̄ + θ̃1 − γa(G)ξ̄ − P1

γνθ

.

The market clearing condition, X1(θ̃1, P1) = ξ̄, implies

P1 = V̄ + θ̃1 − γνθ ξ̄ − γa(G)ξ̄. (33)

Plugging the derived X1(P1, θ̃1) and P1 back into his expected utility at Date 1 using

Eq. (32) yields

E
[

U(Wi3)|θ̃1

]

= −exp
[

−γWi1 − 0.5
(γνθ ξ̄)

2

νθ

]

·
[

ρ exp(−0.5
(γa(G)ξ̄)2

νθ

) + (1 − ρ)exp(−0.5
(γa(G)ξ̄)2

νθ −G/γ2
)
]

. (34)

Step 2: In this step, suppose θ̃1 ≤ Hθ and therefore P1 ≤ P0 (which we will show). An

agent remains a non-G trader. We can use a similar derivation as in Step 1, except that

we impose G = 0 (note a(0) = νθ), to show

P2 = V̄ + θ̃1 + θ̃2 − γνθ ξ̄,

P1 = V̄ + θ̃1 − 2γνθ ξ̄. (35)

Moreover, the agent’s expected utility at date 1 is given by

EU(Wi3|θ̃1) = −exp
[

−γWi1 −
(γνθ ξ̄)

2

νθ

]

. (36)

Step 3: We now focus on date 0. Since it is before θ̃1 is released and P1 is formed, all

agents have identical preferences and beliefs and hold the same long position of the risky

asset to clear the market.

Write an i’th trader’s wealth at date 1 as Wi1 = Wi0 + Xi0(P1 − P0). If θ̃1 > Hθ

so P1 > P0 and he makes money, he may become a G trader. He will be in the regime
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characterized by Eqs. (33) and (34). If θ̃1 ≤ Hθ so P1 ≤ P0 and he does not make money,

he will remain a non-G trader for sure. He will be in the regime characterized by Eqs. (35),

and (36). Accounting for both cases, we can write his expected utility at date 0 as

E
[

U(Wi3)
]

= −
∫

∞

Hθ

exp
[

−γWi0 − γXi0(V̄ + θ̃1 − γνθ ξ̄ − γa(G)ξ̄ − P0) − 0.5
(γνθ ξ̄)

2

νθ

]

·
[

ρexp(−0.5
(γa(G)ξ̄)2

νθ

) + (1 − ρ)exp(−0.5
(γa(G)ξ̄)2

νθ −G/γ2
)
]

dΦ(
θ̃1√
νθ

)

−
∫ Hθ

−∞

exp
[

−γWi0 − γXi0(V̄ + θ̃1 − 2γνθ ξ̄ − P0) − (γνθ ξ̄)
2

νθ

]

dΦ(
θ̃1√
νθ

),

where Φ(.) is the cumulative density function of standard normal distribution. The agent

needs to choose Xi0 to maximize this expected utility. Taking the f.o.c. w.r.t. Xi0,

imposing the market clearing condition Xi0 = ξ̄, and simplifying items yields

0 =
∫

∞

Hθ

V̄ + θ̃1 − γνθ ξ̄ − γa(G)ξ̄ − P0

exp(γξ̄θ̃1)

·
[

ρexp(−0.5
(γa(G)ξ̄)2

νθ

) + (1 − ρ)exp(−0.5
(γa(G)ξ̄)2

νθ −G/γ2
)
]

dΦ(
θ̃1√
νθ

)

+
∫ Hθ

−∞

V̄ + θ̃1 − 2γνθ ξ̄ − P0

exp
[

γξ̄(θ̃1 − γ(νθ − a(G))ξ̄)
]exp(−0.5

(γνθξ̄)
2

νθ

)dΦ(
θ̃1√
νθ

). (37)

If θ̃1 = Hθ, then P1 = P0 where P1 is given by Eq. (35). This implies

P0 = V̄ + Hθ − 2γνθ ξ̄.

Plugging this expression for P0 back into Eq. (37) yields

0 =
∫

∞

Hθ

θ̃1 −Hθ + γ(νθ − a(G))ξ̄

exp(γξ̄θ̃1)

·
[

ρexp(−0.5
(γa(G)ξ̄)2

νθ

) + (1 − ρ)exp(−0.5
(γa(G)ξ̄)2

νθ −G/γ2
)
]

dΦ(
θ̃1√
νθ

)

+
∫ Hθ

−∞

θ̃1 −Hθ

exp
[

γξ̄(θ̃1 − γ(νθ − a(G))ξ̄)
]exp(−0.5

(γνθξ̄)
2

νθ

)dΦ(
θ̃1√
νθ

).
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It is straightforward to show that the right hand side of this equation decreases in Hθ,

and is positive (negative) if Hθ ↘ −∞ (Hθ ↗ ∞). Therefore, Hθ is uniquely determined

by this equation.

Q.E.D.
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Appendix B

[Computation of Market Portfolio’s Return Volatility From the Definition in

Section 2.3)]

From Proposition 1, the returns of the j’th basic security and the market portfolio are

given by

R̃j = θ̃j − Pj = θ̃j + γaj(Gj)(ξ̄j + z̃j),

R̃M =
K+N
∑

j=1

(ξ̄j + z̃j)R̃j =
K+N
∑

j=1

[

(ξ̄j + z̃j)(θ̃j + γaj(Gj)(ξ̄j + z̃j))
]

.

It follows that

Var(R̃M) =
K+N
∑

j=1

Var
[

(ξ̄j + z̃j)(θ̃j + γaj(Gj)(ξ̄j + z̃j))
]

=
K+N
∑

j=1

Var
[

ξ̄j θ̃j + 2ξ̄jγaj(Gj)z̃j + z̃j θ̃j + γaj(Gj)z̃
2

j

]

=
K+N
∑

j=1

[

E
[

(ξ̄j θ̃j + 2ξ̄jγaj(Gj)z̃j + z̃j θ̃j + γaj(Gj)z̃
2

j )2
]

−
[

E(ξ̄j θ̃j + 2ξ̄jγaj(Gj)z̃j + z̃j θ̃j + γaj(Gj)z̃
2

j )
]2

]

=
K+N
∑

j=1

[

(νθj
+ 4γ2aj(Gj)

2νzj
)ξ̄2

j + νθj
νzj

+ 3γ2aj(Gj)
2ν2

zj
− γ2aj(Gj)

2ν2
zj

]

=
K+N
∑

j=1

[

(νθj
+ 4γ2aj(Gj)

2νzj
)ξ̄2

j + νθj
νzj

+ 2γ2aj(Gj)
2ν2

zj

]

.

Note that in the third equality, all cross-products of items in the first bracket have mean

zero. In the fourth equality, E(z̃4
j ) = 3ν2

zj
.

Q.E.D.
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[Computation of the Covariance between the j’th Basic Security’s and Market

Portfolio’s Returns From the Definition in Section 2.4)]

From the expressions of R̃j and R̃M ,

Cov(R̃j, R̃M ) = Cov(R̃j ,
K+N
∑

j=1

(ξ̄j + z̃j)R̃j)

= Cov(R̃j , (ξ̄j + z̃j)R̃j) = Cov(R̃j, ξ̄jR̃j) + Cov(R̃j, z̃jR̃j),

where the second equality obtains because basic securities have independent random sup-

plies and payoffs.

Cov(R̃j , ξ̄jR̃j) = ξ̄jVar(R̃j) = νθj
ξ̄j + γ2aj(Gj)

2νzj
ξ̄j ,

Cov(R̃j, z̃jR̃j) = E(z̃jR̃
2

j ) −E(R̃j)E(z̃jR̃j)

= E
[

z̃j(θ̃j + γaj(Gj)(ξ̄j + z̃j))
2
]

−E
[

θ̃j + γaj(Gj)(ξ̄j + z̃j)
]

E
[

z̃j(θ̃j + γaj(Gj)(ξ̄j + z̃j))
]

= 2γ2aj(Gj)
2νzj

ξ̄j − γ2aj(Gj)
2νzj

ξ̄j

= γ2aj(Gj)
2νzj

ξ̄j .

Therefore, Cov(R̃j, R̃M ) = νθj
ξ̄j + 2γ2aj(Gj)

2νzj
ξ̄j .

Q.E.D.
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Figure 1: Price Reaction and Long-Run Performance
This graph plots the price paths conditional on the public announcement θ̃1. We assume the

parameter values V̄ = 5, νθ = 1, ξ̄ = 1, γ = 0.5, ρ = 0.5, and G = 0.2. This implies that
the threshold for the probabilistic conversion to a G trader is Hθ = −0.388. The realizations

of θ̃2 and θ̃3 are assumed to be zero, i.e., their mean. From the bottom to the top, each path
represents a realization of θ̃1 from -1 to 0 (step size=0.025). θ̃1 ≤ Hθ for the paths indicated by
4’s. θ̃1 > Hθ for the paths indicated by *’s.
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