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Abstract 

In this paper we investigate the relationship between a common measure of total factor 
productivity (TFP) and the concept of disembodied, factor-augmenting technological change. 
We propose a convenient way to compute the factor-augmenting rates of technological 
change from the estimates of an ordinary aggregate Translog production function. Using U.S. 
data as an illustration, we find that TFP is overwhelmingly explained by labor. Furthermore, 
technological change is anti-labor biased, in the sense that it tends to decrease the income 
share of labor. This is due to the relatively large Hicksian elasticity of complementarity 
between capital and labor. Nonetheless, technological change has a positive effect on the 
return of both capital and labor, although the impact on labor is less than what TFP or 
average labor productivity would suggest. 
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Explaining Total Factor Productivity 

 

“Needed: A Theory of Total Factor Productivity” 

Edward C. Prescott (1998) 

1. Introduction 
 
Total Factor Productivity (TFP) has become the choice measure of productivity. TFP is often 
referred to as the Solow residual, and it is just that, namely a residual. Of course, TFP need 
not be derived from a Cobb-Douglas production function as it was in Solow's original work. 
There are today many more sophisticated indices available, such as the Fisher and Törnqvist 
superlative measures that are exact for flexible functional forms of the production function. 
Nonetheless, as suggested by the above quote, the fact remains that TFP is rather opaque as 
to the nature of the phenomena that it pertains to measure. TFP captures the effects of 
changes in technology, institutions, and other productivity shocks, but it gives little insights 
as to what takes place inside the black box of technology. In particular, it is difficult to 
reconcile TFP with various models of factor augmenting technological change. Is 
technological change neutral or is it biased? If it is neutral, is it neutral in the sense of Hicks, 
Harrod, or Solow? It is often assumed that increases in productivity, as captured by TFP, 
allow for increases in real wages, but must this really be the case? What about the real return 
on capital and the real rate of interest? Must they necessarily increase with productivity? The 
purpose of this paper is to sort out some of these questions.  
 
As an illustration, we will report estimates of an aggregate Translog production function for 
the United States, allowing for factor augmenting disembodied technological change. We 
will then derive an index of TFP that is exact for this production function, and show how it 
can be decomposed into two components, one showing the contribution of labor and the 
other the contribution of capital. The impact of technological change on factor income shares 
and factor rental prices can be clearly established. 
 
 
2. Total factor productivity: Index number approach 
 
Total factor productivity can be defined as the part of output growth that cannot be explained 
by input growth. Assume that the technology counts one output and two inputs, capital and 
labor. We denote the quantity of output by ty , and the quantities of capital and labor services 
by tKx ,  and tLx , , respectively, all three quantities being measured at time t. The 
corresponding prices are given by tp , tKw , , and tLw , . A state-of-the-art measure of TFP is 
given by the following index: 
 

(1) Tt,t−1 ≡
Yt,t−1
Xt,t−1

 

 
where 
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1, −ttY  is the output quantity relative, and 1, −ttX  is a Törnqvist index of input quantities. 1, −ttT  

as given by (1) can thus be described as an implicit Törnqvist index of TFP. 
 
Using the data of Kohli (2010) for the United States, 1970-2001, one finds that TFP has 
averaged about 1.09% per year. While this is useful information, it tells us nothing about the 
nature of technological change, and whether it benefitted capital or labor, or both. 
 
 
3. The production function approach: Four views of total factor productivity 
 
Assume that the aggregate technology can be represented by the following two-input, one-
output production function: 
 
(5) ),,( ,, txxfy tLtKt =  
 
Note that the production function itself is allowed to shift over time to account for 
technological change. We assume that the production function is linearly homogeneous, 
increasing, and concave with respect to the two input quantities. Assuming that firms are 
optimizing and that factors are mobile between firms, the usual first-order conditions hold: 
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Differentiation with respect to time furthermore yields: 
 

(8) ∂ f (⋅)
∂t

= µt yt  

 
where tµ  is the instantaneous rate of technological change. Note that Euler's Theorem 
together with (6) – (7) implies: 
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(9) tLtLtKtKtt xwxwyp ,,,, +=  
 
Following Diewert and Morrison (1986), we define the following index of TFP: 
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So defined, TFP indicates the change in output that is made possible by the passage of time 
from t to t-1, holding inputs quantities constant. Since input quantities could equally well be 
held be held constant at their t-1 values or at their t values, Diewert and Morrison 
recommended taking the geometric mean of the two corresponding indices, which gives the 
index a Fisher form, so to say. 
 
To make (10) operational, one must specify a particular functional form for the production 
function. Assume that it has the following Translog form: 
 

(11) 
ln yt =α0 +βK ln xK ,t + (1−βK )ln xL,t +

1
2
φKK (ln xK ,t − ln xL,t )

2 +

βTt +φKT (ln xK ,t − ln xL,t ) t +
1
2
φTTt

2
 

 
It can be seen that this function is not just flexible with respect to the quantities of capital and 
labor, but also with respect to time: it is thus TP flexible to use the terminology of Diewert 
and Wales (1992). The inverse input demand functions can then be derived in share form 
through logarithmic differentiation: 
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Differentiation with respect to time yields the instantaneous rate of technological change: 
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Introducing (11) into (10) yields the following measure of TFP: 
 

(15) )12(
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1)ln(ln

2
1)ln(ln

2
1ln 1,1,,,1, −+−+−+= −−− txxxxT TTtLtKKTtLtKKTTtt φφφβ  

 
A second interpretation of TFP, in view of (14), is that (the logarithm of) 1, −ttT  is equal to the 
average of the instantaneous rates of technological change of time t-1 and time t: 
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(16) )(
2
1ln 11, −− += ttttT µµ  

 
Let 1, −ttµ  be average rate of technological change between times t-1 and t. By Diewert's 
(1976) quadratic approximation lemma 2/)( 11, tttt µµµ += −− , so this yields a third 
interpretation of TFP: 
 
(17) 1,1,ln −− = ttttT µ  
 
Finally, there is a fourth way of interpreting TFP, based on the approach of Section 2, namely 
as mentioned in Section 2, that TFP is the output growth that cannot be explained by input 
growth. Indeed, introducing (11) into (2), we get: 
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Next, making use of (12) – (13) in (3), we find: 
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so that we find again: 
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That is, (1) is actually exact for the Translog functional form. 
 
To sum up our results this far, we find that TFP can be interpreted in four different ways: (1) 
it is the change in output made possible by the passage of time, holding input quantities 
constant; (2) it is the average of the instantaneous rates of technological change of times t-1 
and t; (3) it is the average rate of technological change between times t-1 and t; (4) it is the 
part of output growth that cannot be explained by input growth. We have shown that in the 
Translog case, all four interpretations are perfectly equivalent. This would obviously also be 
true for the Cobb-Douglas functional form since it is a special case of the Translog. 
 
Estimates of the Translog production function for the United States, 1970-2001, are reported 
in Table 1, column 1.1 The value of the logarithm of the likelihood function (LL), together 
with estimates of the 2001 instantaneous rate of technological change, of the 2001 capital 
share, and of the 2001 Hicksian elasticity of complementarity are also reported.2 These can 
be used to compute TFP according to (15) – or equivalently (16), (17), or (20). We get an 
average yearly estimate of 1.02%, which is little different from the one obtained on the basis 
of the index number approach. Over the entire sample period, the compounded effect of TFP 
reaches about 37.1% of real output. 
 
 
4. Impact of technological change on factor rental prices 
 
An obvious advantage of the index number approach is that one does not need econometric 
estimates of the parameters of the production function to obtain an estimate of TFP: 1, −ttT  can 
be calculated on the basis of the data alone with the help of (1) – (4). On the other hand, as 
already pointed out in Section 2, this approach tells us nothing about the nature of 
technological change, or about its impact on income shares or on the two factor rental prices. 
The econometric approach is more revealing in this respect. Thus, looking at (12) – (13), it is 
clear that the sign KTφ  is essential in determining the impact of the passage of time on factor 
                                                
1 The estimates are drawn from Kohli (2010), and they were obtained by jointly estimating (11) and (13); for 
further details see Kohli (2010). 
2 See Section 7 below for a discussion of the role of the Hicksian elasticity of complementarity. 
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shares. Thus, if 0>KTφ , one can say that technological is pro-capital and anti-labor biased, 
in the sense that it increases the share of capital over time and reduces the share of labor. 
Capital is thus favored at the expense of labor. Looking at the estimate of KTφ  reported in 
Table 2, this indeed turns to be the case for the United States. What about factor rental prices, 
though? 
 
Clearly, if technological change leads to an increase in output, for given factor endowments, 
and to an increase in the share of capital, it must increase the real return to capital. But what 
about labor? 
 
From (7) we can write the rental price of labor as follows: 
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Differentiating with respect to time and making use of (13), we get: 
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Or, after having divided through by wL,t : 
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where the hat (^) indicates a relative change. As long as the technology is progressing, the 
first term on the right hand side will be positive. The second term is an indicator of the bias 
of technological change.3 As seen above, if KTφ  is positive, technological change is anti-labor 
biased. It might even be that ttLKT s µφ >, , in which case technological change would be 
ultra anti-labor biased:4 technological change would lead to an actual fall in the observed 
wage rate. As it turns out, ttLKT s µφ << ,0  in the case of the United States, so that 
technological change is anti-labor biased, but not ultra anti-labor biased. Nonetheless, the 
rate of increase of real wages is less than the rate of TFP. Over the entire sample period, real 
wages increased by about 46%, with about 27% explained by technological change, the rest 
being explained by capital deepening.5 We thus can conclude that technological change 
accounted for nearly two thirds of real wage increases.6 
 
Although the econometric approach yields much richer results than the index number 
approach of Section 2, the fact remains that neither approach teaches us much about the 

                                                
3 See Kohli (1991, 1994). 
4 See Kohli (2010). 
5 See Kohli (2010), Table 3. 
6  If CAB = , with 0>A  and 0>B , and with )ln(Aa = , )ln(Bb =  and )ln(Cc =  so that 

cba =+ , then caCA =  and cbCB = . We thus can take ca  and cb  as being the relative 
contributions of A  and B  to C . 
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nature of the process of technological change. In particular, it is not immediately obvious 
why technological change is anti-labor biased. 
 
 
5. Disembodied, factor augmenting technological change 
 
A more transparent approach, often used in the literature, is to assume that technological 
change is disembodied and factor augmenting.7 Assume that technological progress leads to 
increases in the technical efficiency of existing capital and labor over time. Let tK ,γ  and tL,γ  
denote the capital and labor efficiency factors, respectively, and let tKx ,

~  and tLx ,
~  be the 

endowments of capital and labor measured in efficiency units. We then have: 
 
(24) tKtKtKKtK xtxxx ,,,, ),(~~ γ==  
 
(25) tLtLtLLtL xtxxx ,,,, ),(~~ γ==  
 
Assume, for instance, that technological change increases the efficiency of capital and labor 
at constant rates, Kµ  and Lµ . In that case: 
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Let the production function again be Translog and expressed in terms of the efficiency units 
of capital and labor: 
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Making use of (28) and (29), we get: 
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The capital and labor shares are again obtained by logarithmic differentiation: 
                                                
7 See Kohli (1975, 1981, 1991), for instance. 
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The impact of the passage of time on the shares of capital and labor now depends on the 
relative size of Kµ  and Lµ , and on the sign of KKφ . As for the rate of technological change 
( ty ∂∂≡ lnµ ), we get: 
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In view of (32) – (33), this can also be expressed as: 
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Thus, the aggregate rate of technological change is a weighted mean of the rates of increase 
of efficiency of capital and labor. 
 
Introducing (31) into (10), we get an expression for TFP: 
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Taking account of (34), we again may write: 
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Moreover, in view of (35), we get yet another interpretation of TFP – a fifth one –, namely 
that it is a moving geometric mean of the rates of factor augmentation: 
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Furthermore, if the true production function is given by (31), then (1) is again valid. Indeed, 
introducing (31) into (2) we get: 
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As for the Törnqvist input quantity index, making use of (32) – (33) in (3), we get: 
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We thus find, as expected: 
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Estimates of (31) are shown in Table 1, column 2. These are also drawn from Kohli (2010). 
One finds that %2.0=Kµ , whereas %3.1=Lµ . Technological change in the United States 
thus comes close to being Harrod neutral.8 TFP, computed on the basis of (36) – or 
equivalently (37), (38), or (41) – yields an average yearly rate of 1.02%, which is the same as 
the value reported in Section 3. 
 
 
6. The decomposition of TFP between capital and labor 
 
We now turn to the contributions of capital and labor to TFP. For this purpose, we can define 
the following indices that indicate the output effects of efficiency changes in either capital or 
labor, in a way similar to (10) above: 
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Making use of (26) – (27) and (30) in (42) – (43), we find: 
                                                
8 This confirms the findings of Kohli (1981, 1991). 
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so that, in view of (38): 
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ttT 1, −  and L

ttT 1, −  thus give a complete decomposition of TFP in the Translog case. As shown by 

Figure 1, the compounding of K
ttT 1, −  and L

ttT 1, −  over the entire sample period indicates that the 
contribution of capital added up to just 1.6%, whereas the contribution of labor reached 
34.9%. This reflects the finding that technological change is mostly labor augmenting in the 
case of the United States. 
 
 
7. Factor augmenting technological change and TP flexibility 
 
It is apparent that production function (31) contains one less parameter than (11). It is 
therefore not TP flexible. Indeed, the logarithm of the likelihood function is somewhat less 
than for the model of Section 3. 
 
To generalize the model, let us assume now that the capital and labor efficiency factors are 
quadratic functions of time. We thus replace (26) and (27) by the following: 
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Note that the instantaneous rates of factor augmentation (τ K ,t  and τ L,t ) are now functions of 
time: 
 

(51) t
t

txx
KK

tKtK
tK λµτ +=

∂

∂
≡

),(~ln ,,
,  

(52) t
t

txx
LL

tLtL
tL λµτ +=

∂

∂
≡

),(~ln ,,
,  

 
Introducing (49) and (50) into (30), we get: 
 

(53) 

42

322

2
,,,,

2
,,

22

,,0

)(
8
1

))((
2
1)(

2
1

))(ln(ln
2
1))(ln(ln

)ln(ln
2
1)1(

2
1

2
1

)1(ln)1(lnln

t

tt

txxtxx

xxtt

ttxxy

LKKK

LKLKKKLKKK

LKtLtKKKLKtLtKKK

tLtKKKLKKK

LKKKtLKtKKt

λλφ

λλµµφµµφ

λλφµµφ

φλβλβ

µβµβββα

−+

−−+−+

−−+−−+

−+−++

−++−++=

 

 
The inverse demand functions are now as follows: 
 

(54) 2
,,, )(

2
1)()ln(ln ttxxs LKKKLKKKtLtKKKKtK λλφµµφφβ −+−+−+=  

(55) 2
,,, )(

2
1)()ln(ln)1( ttxxs LKKKLKKKtLtKKKKtL λλφµµφφβ −−−−−−−=  

 
As for the instantaneous rate of technological change, we get: 
 

(56) 

32

22
,,

,,

)(
2
1

)()(
2
3)())(ln(ln

))(ln(ln)1()1(

t

tttxx

xxtt

LKKK

LKLKKKLKKKLKtLtKKK

LKtLtKKKLKKKLKKKt

λλφ

λλµµφµµφλλφ

µµφλβλβµβµβµ

−+

−−+−+−−+

−−+−++−+=

 

 
In view of (51) – (52) and (54) – (55), this can be expressed as: 
 
(57) tLtLtKtKt ss ,,,, ττµ +=  
 
Thus, the aggregate instantaneous rate of technological change is again found to be a 
weighted mean of the instantaneous rates of factor augmentation. 
 
Introducing (53) into (10), we find: 
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(58) 

)1464()(
8
1

)133)()((
2
1)12()(

2
1

)12)()(ln(ln
4
1

))(ln(ln
2
1

)12)()(ln(ln
4
1))(ln(ln

2
1

)12()1(
2
1)12(

2
1)1(ln

232

22

1,1,

1,1,

,,,,

1,

−+−−+

+−−−+−−+

−−−+

−−+

−−−+−−+

−−+−+−+=

−−

−−

−

ttt

ttt

txx

xx

txxxx

ttT

LKKK

LKLKKKLKKK

LKtLtKKK

LKtLtKKK

LKtLtKKKLKtLtKKK

LKKKLKKKtt

λλφ

λλµµφµµφ

λλφ

µµφ

λλφµµφ

λβλβµβµβ

 

 
whereas in lieu of (44) and (45) we get: 
 

(59) 

)1464()(
8
1

)122()(
4
1)144()(

4
1

)12()(
2
1

)12()lnlnln(ln
4
1

)lnlnln(ln
2
1)12(

2
1ln

23

22

1,,1,,

1,,1,,1,

−+−−+

+−−++−−+

−−+

−−−++

−−++−+=

−−

−−−

ttt

tttt

t

txxxx

xxxxtT

KLKKK

KLKKKKLKKK

KLKKK

KtLtLtKtKKK

KtLtLtKtKKKKKKK
K
tt

λλλφ

µλλφλµµφ

µµµφ

λφ

µφλβµβ

 

 

(60) 

)1464()(
8
1

)122()(
4
1)144()(

4
1

)12()(
2
1

)12()lnlnln(ln
4
1

)lnlnln(ln
2
1

)12()1(
2
1)1(ln

23

22

1,,1,,

1,,1,,

1,

−+−−−

+−−−+−−−

−−−

−−−+−

−−+−

−−+−=

−−

−−

−

ttt

tttt

t

txxxx

xxxx

tT

LLKKK

LLKKKLLKKK

LLKKK

LtLtLtKtKKK

LtLtLtKtKKK

LKLK
L
tt

λλλφ

µλλφλµµφ

µµµφ

λφ

µφ

λβµβ

 

 
We again find that: 
 
(61) L

tt
K
tttt TTT 1,1,1, −−− =  

 
Estimation of (53) – jointly with (55) – yields the parameter estimates reported in column 3 
of Table 1. We find that, although the estimates of Kµ  and Lµ  are little different from the 
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ones reported in column 2, the estimates of Kλ  and Lλ  suggest that the rate of capital 
augmentation might be falling over time, whereas the rate of labor augmentation is 
increasing. We also find that the estimate of the Hicksian elasticity of complementarity is 
somewhat larger than what the other models suggested. We report in Figure 2 the cumulated 
values of K

ttT 1, −  and L
ttT 1, −  based on (59) and (60): they are little different from those depicted 

in Figure 1, and they show once again the overwhelming role of labor in explaining TFP. 
 
 
8. A parsimonious and yet fully flexible model 
 
We may note that (53) contains one more parameter than (11), i.e. one more parameter than 
needed for it to be TP flexible. A more parsimonious model is obtained by imposing the 
constraint )( λλλ == LK . In that case, (53) – (56) and (58) – (60) simplify considerably. The 
production function, in particular, can now be written as: 
 

(62) 

222

,,

2
,,,,0

2
1)(

2
1

))(ln(ln)1(

)ln(ln
2
1ln)1(lnln

tt

txxtt

xxxxy

LKKK

LKtLtKKKLKKK

tLtKKKtLKtKKt

λµµφ

µµφµβµβ

φββα

+−+

−−+−++

−+−++=

 

 
whereas (54) and (55) become identical to (32) and (33), and the instantaneous rate of 
technological change becomes: 
 
(63) txx LKKKLKtLtKKKLKKKt ])([))(ln(ln)1( 2

,, λµµφµµφµβµβµ +−+−−+−+=  
 
It turns out that the model of equation (62) is equivalent to (11), since there is a one to one 
correspondence between the two formulations, with: 
 
(64) LKKKT µβµββ )1( −+=  
 
(65) )( LKKKKT µµφφ −=  
 
(66) λµµφφ +−= 2)( LKKKTT  
 
or, expressing the parameters of (62) in terms of those of (11): 
 

(67) 
KK

KT
KTK φ
φ

ββµ )1( −+=  

 

(68) 
KK

KT
KTL φ
φ

ββµ −=  

 

(69) 
KK

KT
TT φ

φ
φλ

2

−=  
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Relationships (67) – (69) provide a convenient guide to find out about the nature of 
technological change if one estimates (11), rather than (62).9  
 
Estimation of (62) – jointly with (33) – yields the results reported in Table 1, column 4. It can 
be verified, in view of (67) – (69), that the estimates are identical to the ones contained in 
column 1. A maximum likelihood ratio test confirms that λ  is statistically significantly 
different from zero (the test statistic is 5.22 for a critical χ2 value of 3.85 for one degree of 
freedom at the 95% confidence level), but the estimates of Kµ  and Lµ  are little different 
from the ones reported for the non-TP flexible functional form (see the estimates in column 
2). A maximum likelihood ratio test shows that the restriction LK λλ =  cannot be rejected 
(the test statistic is 2.38 for a critical χ2 value of once again 3.85). This indicates that the TP 
flexible Translog functional form – or alternatively formulation (62) – cannot be rejected in 
favor of the more general model given by (53). 
 
For TFP we now get: 
 

(70) 
)12(])([

2
1)ln(ln)(

2
1

)ln(ln)(
2
1)1(ln

2
1.,1,

,,1,

−+−+−−

+−−+−+=

−−

−

txx

xxT

LKKKtLtKLKKK

tLtKLKKKLKKKtt

λµµφµµφ

µµφµβµβ
 

 
This estimate of TFP is numerically identical to (15). The contributions of capital and labor 
can be obtained by setting )( λλλ == LK  in (59) and (60): 
 

(71) 
)133()(

4
1)12()(

2
1

)12()lnlnln(ln
4
1

)lnlnln(ln
2
1)12(

2
1ln

2

1,,1,,

1,,1,,1,

+−−+−−+

−−−++

−−++−+=

−−

−−−

ttt

txxxx

xxxxtT

LKKKKLKKK

tLtLtKtKKK

KtLtLtKtKKKKKK
K
tt

λµµφµµµφ

λφ

µφλβµβ

 

 

(72) 

lnTt,t−1
L = (1−βK )µL +

1
2
(1−βK )λ(2t −1)

+
1
2
φKK (ln xK ,t + ln xK ,t−1 − ln xL,t − ln xL,t−1)µL

+
1
4
φKK (ln xK ,t + ln xK ,t−1 − ln xL,t − ln xL,t−1)λ(2t −1)

+
1
2
φKK (µK −µL )µL (2t −1)+

1
4
φKK (µK −µL )λ(3t

2 −3t +1)

 

 

                                                
9 This assumes that 0≠KKφ . In the Cobb-Douglas case, when 0=KKφ , Kµ  and Lµ  cannot be identified 
separately, and it is not possible to distinguish between Harrod-neutral, Solow-neutral or Hicks-neutral 
technological change. 
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The decomposition of TFP between the contributions of capital and labor is shown in 
cumulated form in Figure 3. The overwhelming contribution of labor is clearly visible. Over 
the 1970-2001 sample period, the compounded contribution of labor reaches 34.7%, whereas 
the contribuition of capital only reaches 1.9%. One can thus conclude that about 94.6% of 
TFP in the United States is explained by labor. Note that, in view of the equivalence of (11) 
and (62), this conclusion is also valid for the TP-flexible Translog production function. 
 
 
 
9. The impact of technological change on factor rental prices reexamined 
 
We return to the question of the impact of technological change on factor rental prices. Now 
that we have estimates of µK , Lµ  and λ we can gain some additional insights, and we bring 
forward the important role of Hicksian elasticity of complementarity between capital and 
labor in explaining why technological change is anti-labor biased in the case of the United 
States. As suggested by (22), technological progress must increase the real return of at least 
one factor, but not necessarily of both. Take the extreme case of Harrod-neutral technological 
progress, which is a reasonable approximation for the United States. In that case, 
technological progress leads to an increase in the endowment of labor measured in efficiency 
units. Output necessarily increases. The return to capital must increase as well since in the 
two-input case, the two inputs are necessarily Hicksian complements for each other. The 
return to labor per efficiency unit must necessarily decrease because of diminishing marginal 
returns. By how much depends on the size of the elasticity of complementarity. If capital and 
labor are strong Hicksian complements, the return to labor per efficiency unit will fall by a 
large amount, so that the return to labor per observed unit will decline, even though each unit 
of labor has become more efficient! 
 
To investigate this more formerly, we begin by defining jiε  as the inverse price elasticity of 
factor demand (the time subscript is omitted for clarity): 
 

(73) 
j

LKi
ji x

pxxw
~ln

),~,~(~ln
∂

∂
≡ε ,   },{, LKji ∈  

 
Linear homogeneity of the production function implies: 
 
(74) 0=+ LiKi εε  ,   },{ LKi∈  
 
It is well known that:10 
 
(75) LKLLK sψε =  
 
(76) KKLKL sψε =  
 
where KLψ  is the Hicksian elasticity of complementarity between capital and labor: 
 

                                                
10 See Kohli (1991), for instance. 
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(77) 

LK

LK
KL

x
f

x
f

xx
ff

∂

⋅∂

∂

⋅∂
∂∂

⋅∂
⋅

≡
)()(

)()(
2

ψ  

 
In the Translog case, it can be computed as:11 
 

(78) 
)1(

)1(

KK

KKKK
KL ss

ss
−

−+−
=

φ
ψ  

 
We thus get for the total change in the rental price of an efficiency unit of capital: 
 
(79) )()(~̂~̂~̂

KLLLKKLLKLLKKKKK sxxw µµψµµεεε −=−=+=  
 
where the hats (^) again indicate relative changes. In terms of observed factor prices: 
 
(80) ŵK = !̂wK +µK +λ =ψKLsL (µL −µK )+µK +λ  
 
and similarly for labor: 
 
(81) )()(~̂~̂~̂

LKKLKLKKLKKLLLLL sxxw µµψµµεεε −=−=+=  
 
(82) ŵL = !̂wL +µL +λ =ψKLsK (µK −µL )+µL +λ =ψKLsKµK +λ + (1−ψKLsK )µL  
 
Looking at the results for the United States, it is clear that technological progress leads to an 
increase in the return to capital since all three right-hand-side terms in (80) are positive. For 
labor, looking at (82), the first two terms are positive, although they are close to zero given 
that technological change turns out to be almost Harrod-neutral and that λ is numerically 
small. The third term is positive as long as KKL s1<ψ , which indeed turns out to be the 
case.12 So we can conclude that technological progress also increases the return to labor in 
the U.S. case. Note, however, that because the share of labor declines, the increase in real 
wages is less that the increase in the average productivity of labor, or of TFP for that matter. 
 
Technological change in the United States is anti-labor biased because it is mostly labor 
augmenting, and because the Hicksian elasticity of complementarity between capital and 
labor is greater than one.13 These two findings together explain why technological change has 
a negative impact on the share of labor.14 This could not have been inferred from the mere 
finding that KTφ  is positive: technological change would also be anti-labor biased if it were 
Solow neutral and if the elasticity of complementarity were less than one. 

                                                
11 See Kohli (1991). 
12 See the estimates reported in Table 1, at the bottom of column 2. 
13 See Kohli (2010). Note that in the two-input case, the Hicksian elasticity of complementarity is the inverse of 
the Allen-Uzawa elasticity of substitution ; Kohli (1991). Thus, a Hicksian elasticity of complementarity greater 
than one implies an Allen-Hicks elasticity of substitution less than one. 
14 This is actually offset by the increase in capital intensity over time, which has the opposite effect in view of 
the relatively large elasticity of complementarity 
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10. Generalization to an arbitrary number of inputs 
 
Assume now that there are J inputs. Taking the linear homogeneity restrictions into account, 
the TP-flexible Translog production function can be written as follows: 
 

 (83) 

ln yt =α0 + ln xJ ,t + β j
j=1

J−1

∑ (ln x j,t − ln xJ ,t )+βTt

+
1
2

φ jk
k=1

J−1

∑
j=1

J−1

∑ (ln x j,t − ln xJ ,t )(ln xk,t − ln xJ ,t )

+ φ jT
j=1

J−1

∑ (ln x j,t − ln xJ ,t )t +
1
2
φTTt

2

 

 
The same function expressed in terms of disembodied factor augmenting technological 
change becomes: 
 

(84) 

ln yt =α0 + ln xJ ,t +µJt +
1
2
λt2 + β j

j=1

J−1

∑ (ln x j,t − ln xJ ,t )+ β j
j=1

J−1

∑ (µ j −µJ )t

+
1
2

φ jk
k=1

J−1

∑
j=1

J−1

∑ (ln x j,t − ln xJ ,t )(ln xk,t − ln xJ ,t )

+ φ jk
k=1

J−1

∑
j=1

J−1

∑ (ln x j,t − ln xJ ,t )(µk −µJ )t

+
1
2

φ jk
k=1

J−1

∑
j=1

J−1

∑ (µ j −µJ )(µk −µJ )t
2

 

 
This implies the following corresponding relationships between the parameters of the two 
functions: 
 

(85) µJ + β j
j=1

J−1

∑ (µ j −µJ ) = βT  

 

(86) 1
2

φ jk
k=1

J−1

∑ (µk −µJ ) = φ jT ,   j =1,..., J −1  

 

(87) λ + φ jk
k=1

J−1

∑
j=1

J−1

∑ (µ j −µJ )(µk −µJ ) = φTT
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As long as the (J −1)× (J −1)  matrix of the φ jk ’s is not singular,15 (86) can be solved for the 
J −1  factor augmenting differentials µ j −µJ ; µJ , and thus all the µ j ’s, can then be obtained 
from (85), and λ  by (87). 
	  
	  
11. Conclusions 
 
In this paper we investigated the relationship between a common measure of TFP and the 
concept of disembodied, factor augmenting technological change. This led us to come up 
with five different interpretations of TFP: (1) it is the part of output growth that cannot be 
explained by input growth; (2) it is the change in output made possible by the passage of 
time, holding input quantities constant; (3) it is the average of the instantaneous rates of 
technological change of times t-1 and t; (4) it is the average rate of technological change 
between times t-1 and t; (5) it is a moving geometric mean of the rates of factor 
augmentation. In the Translog case, all five interpretations are equivalent. 
 
We have shown that in the case of a TP-flexible Translog production function TFP can 
always be interpreted as the outcome of disembodied, factor augmenting technological 
change. Indeed, we have proposed a convenient way to derive the factor-augmenting rates of 
technological change from the estimates of such a Translog production function. 
 
Based on our data sample, we have found that technological change is almost Harrod-neutral 
in the case of the United States, so that TFP is overwhelmingly explained by labor. 
Furthermore, technological change is anti-labor biased, in the sense that it tends to decrease 
the income share of labor. This is due to the relatively large Hicksian elasticity of 
complementarity between capital and labor. Nonetheless, technological change has a positive 
effect on the return of both capital and labor, although the benefit to labor is less than what 
TFP or average labor productivity would suggest. 
 

                                                
15 This will normally be the case, unless flexibility has been intentionally restricted; see Diewert and Wales 
(1988). 
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Table 1 

Parameter estimates 
 

 (11) (31) (53) (62) 
     
α0 8.38851 

(3522.9) 
8.39259 
(4874.6) 

8.38944 
(3417.6) 

8.38851 
(3522.9) 

βK 0.27365 
(189.6) 

0.27405 
(188.6) 

0.27464 
(181.0) 

0.27365 
(189.6) 

φKK -0.15322 
(-3.75) 

-0.13598 
(-3.31) 

-0.20418 
(-4.16) 

-0.15322 
(-3.75) 

φKT 0.00171 
(5.19) 

   

βT 0.01026 
(24.25) 

   

φTT 0.00008 
(1.93) 

   

µK  
 

0.00182 
(1.75) 

0.00291 
(4.93) 

0.00217 
(2.57) 

µL  0.01337 
(27.75) 

0.01302 
(39.59) 

0.01331 
 (31.96) 

λ    0.00010 
 (2.38) 

λK  
 

 
 

-0.00011 
(-0.95) 

 
 

λL  
 

 
 

0.00015 
(3.23) 

 
 

     
LL 226.70 224.09 227.89 226.70 
     
µ2001 0.01158 0.01008 0.01116 0.01158 
sK,2001 0.28452 0.28454 0.28007 0.28452 
ψKL,2001 1.75267 1.66797 2.01263 1.75267 
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Figure 1 

Decomposition of TFP
(factor augmenting technological change)
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Figure 2 

Decomposition of TFP
(factor augmenting technological change, unrestricted model)
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Figure 3 

Decomposition of TFP
(TP flexible production function)
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