The Value of Urban Land: Tax Revenue and Beyond

Alicia N. Rambaldi¹

The University of Queensland

¹Results shown are from joint work with:

Ryan R. J. McAllister and Cameron S. Fletcher (CSIRO) with funding from the Australian Research Council (DP120102124), Department of Climate Change and Energy Efficiency, and CSIRO Climate Adaptation Flagship.

Madeleine Tan. Victoria Treasury.

Outline

Introduction and Background Land Values - Valuer General

The Valuer's Model

Simple Behavioural Model Econometric Model

Price Indices

Decompositions - Empirical Estimates

Model Estimates and Comparison to Valuer's Estimates Bay Area - Monthly Data Brisbane Suburb - Annual Data

Price Indices - Empirical Evidence

Town of A Data (Comparison with Other Methods) Victoria LGA

ション ふゆ く 山 マ チャット しょうくしゃ

Taxation and Beyond

Further Issues

Introduction

- A property is a bundled good composed of an appreciating asset, land, and a depreciating asset, structure.
- The importance of this distinction is increasingly recognised in the real estate literature (see Bostic et al. (2009), Malpezzi et al. (1987)) as well as in the price index construction literature (see European Comission et al. (2013), Chapter 13, Diewert et al. (2011), Diewert et al. (2015), Diewert and Shimizu (2013) and Färe et al. (2015)).

ション ふゆ く 山 マ チャット しょうくしゃ

Introduction (cont.)

- Due to the mobility of materials and labor, construction costs are generally uniform within a housing market
- Asymmetric appreciation across properties within a market arise from asymmetric exposure to common shocks to land values.
- At any point in time the value of the structure is its replacement cost less any accumulated depreciation.
- Sufficiently large depreciation can result in the structure declining in value over time
 - Malpezzi et al. (1987), Knight and Sirmans (1996), Bostic et al. (2009), Diewert et al. (2011, 2015)

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Outline

Introduction and Background Land Values - Valuer General

The Valuer's Model

Simple Behavioural Model Econometric Model

Price Indices

Decompositions - Empirical Estimates

Model Estimates and Comparison to Valuer's Estimates Bay Area - Monthly Data Brisbane Suburb - Annual Data

Price Indices - Empirical Evidence

Town of A Data (Comparison with Other Methods) Victoria LGA

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Taxation and Beyond

Further Issues

Land Values and Taxation

- Valuer General
 - The Valuer General is an independent statutory officer.
 - The role of the Valuer General's office is to provide land values and property advice to government.
 - State Administered System
- Rates are based on VG's land valuations
 - http://www.valuergeneral.nsw.gov.au/council_rates
 - http://www.revenue.act.gov.au/duties-and-taxes/rates/ rates-land-valuations
 - https://www0.landgate.wa.gov.au/property-reports/land-values/ rating-and-taxing
 - http://www.sro.tas.gov.au/landtax/rates
 - http://www.dtpli.vic.gov.au/property-and-land-titles/ valuation/council-valuations
 - https://www.brisbane.qld.gov.au/about-council/ council-information-rates/rates-payments/ how-rates-are-calculated

Valuer General

- The state of QLD Valuer's Statement "When determining statutory land values, our valuers:
 - research the property market
 - examine trends and sales information for each land use category (e.g. residential, commercial, industrial and rural)
 - inspect vacant or lightly improved properties that have recently been sold interview vendors and purchasers of property,
 - where appropriate consider the land's present use and zoning under the relevant planning scheme take into account physical attributes and constraints on use of the land." (http:

//www.qld.gov.au/environment/land/title/valuation/).

└─ The Valuer's Model └─ Simple Behavioural Model

Outline

ntroduction and Background Land Values - Valuer General

The Valuer's Model

Simple Behavioural Model

Econometric Model

Price Indices

Decompositions - Empirical Estimates

Model Estimates and Comparison to Valuer's Estimates Bay Area - Monthly Data Brisbane Suburb - Annual Data

Price Indices - Empirical Evidence

Town of A Data (Comparison with Other Methods) Victoria LGA

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Taxation and Beyond

Further Issues

Model

The valuer's task is to provide the tax authorities and the rate payers with a valuation of their property or land. We write a simple model for the expected value of the property,

$$E_t(V_t) = E_t[(L_t + S_t)| \sum_{j=0}^{\tau} w_{t-j} [\text{market sales: } Property, Land]_{t-j}] \quad (1)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

where,

 V_t is the value of the property

 L_t is the land component of the value

 S_t is the structure component of the property value

 w_t is a weight such that $w_{t-1} > w_{t-2} > w_{t-3} > \dots$

Econometric Model

Outline

ntroduction and Background Land Values - Valuer General

The Valuer's Model

Simple Behavioural Model Econometric Model

Price Indices

Decompositions - Empirical Estimates

Model Estimates and Comparison to Valuer's Estimates Bay Area - Monthly Data Brisbane Suburb - Annual Data

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Price Indices - Empirical Evidence

Town of A Data (Comparison with Other Methods) Victoria LGA

Taxation and Beyond

Further Issues

Econometric Model

This follows previous studies (Bostic et al. (2009) and Diewert et al. (2011, 2015) where three orthogonal components are defined, land (L), structure (S) and noise.

$$PropPrice_{it} = L_{it} + S_{it} + \epsilon_{it}$$
(2)

ション ふゆ く 山 マ チャット しょうくしゃ

where,

PropPrice_{it} sale price of property (or vacant land) *i* sold in period *t*. L_{it} value of the land component for the *i*th property sold in period *t* S_{it} value of the structure component for the *i*th property sold in period *t*, and

 $S_{it} = 0$ if the sale is for vacant land $\epsilon_t \sim N(0, \sigma_{\epsilon}^2 I)$

Previous Econometric Approaches

- Let X^L hedonic characteristics intrinsic to the land component, e.g. size of the lot, location
- ► Let X^S hedonic characteristics intrinsic to the structure component, e.g. age, size of the structure
- Price Index for New Construction, Depreciation rate to account for age
 - Used to subtract value of structure and isolate land value (Diewert et al. (2015))
 - Used as an instrument to isolate value of land (Färe et al. (2015))

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Our Econometric Approach

- Let X_t^L be an $N_t \times k_l$ matrix of hedonic characteristics intrinsic to the land component, e.g. size of the lot, location
- ▶ Let X^S_t be an N_t × k_s matrix of hedonic characteristics intrinsic to the structure component, e.g. age, size of the structure
- Then we define,

$$L_{it} = f(X_{it}^L | X_{it}^S, \alpha_t^L)$$
(3)

$$S_{it} = g(X_{it}^{S}|X_{it}^{L}, \alpha_{t}^{S})$$
(4)

ション ふゆ く 山 マ チャット しょうくしゃ

where,

 α_t^c are vectors of shadow prices capturing the trends, c = L, S

Econometric Method

• Let $\hat{\alpha}_{t|t}$ denote the estimate of α_t . At time t given all past information up to and including the current period,

$$\hat{\alpha}_{t|t} = \hat{\alpha}_{t|t-1} + K_t \nu_t \tag{5}$$

- $Var(a_{t|t}) = P_{t|t}$ is the mean squared error variance
- K_t is an adjustment factor (known as Kalman gain) function of the X_t data, P_{t-1|t-1} and F_t⁻¹
- $v_t = y_t \hat{y}_{t|t-1}$ is prediction error with variance-covariance F_t

Modified Filter (Kalman Gain Term)

- Dynamic discounting literature (see Harrison (1965),West and Harrison (1999)) uses smoothing constants to separate time series components. We adapt this idea, leading to a modified Kalman Gain term.
- ▶ The two components (land, structure) are assumed:
 - Land component bearing adjustments due to supply and demand pressures
 - Structure component value evolve due to construction costs (wages, CPI) and depreciate with Age.
- These two components are treated asymmetrically
 - Shocks to prices have an asymmetric effect with land bearing the largest proportion.
- See Rambaldi et al. (2015) for details

Indices - Land component

The Fisher index is defined as:

$$F_{(t-s),t} = \sqrt{\sum_{h=1}^{N_{(t-s)}} w_{(t-s)}^{h} \left(\frac{\hat{L}_{t}^{h}(x_{(t-s)}^{L})}{\hat{L}_{(t-s)}^{h}(x_{(t-s)}^{L})}\right)} \times \left[\sum_{h=1}^{N_{t}} w_{t}^{h} \left(\frac{\hat{L}_{(t-s)}^{h}(x_{t}^{L})}{\hat{L}_{t}^{h}(x_{t}^{L})}\right)\right]^{-1}$$
(6)

where,

 $\hat{L}_{(t-s)}^{h}(x_{t}^{L})$ for $s \geq 0$ is an *imputation* of the land component of property h, sold at time t with characteristics x_{t}^{L} , using a vector of shadow prices for time period t - s

- ► If w_t^h are value shares: $w_t^h = \frac{PropPrice_t^h}{\sum\limits_{n=1}^{N_t} PropPrice_t^n}$. The index is "Plutocratic"
- If $w_t^h = 1/N_t$ the index is "Democratic"
- Similarly an index can be computed for the Structure Component

Outline

troduction and Background Land Values - Valuer General

The Valuer's Model

Simple Behavioural Model Econometric Model

Price Indices

Decompositions - Empirical Estimates

Model Estimates and Comparison to Valuer's Estimates

Bay Area - Monthly Data Brisbane Suburb - Annual Data

Price Indices - Empirical Evidence

Town of A Data (Comparison with Other Methods) Victoria LGA

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Taxation and Beyond

Further Issues

Empirical Evidence

- 1. Moreton Bay Area Monthly Data, 1991-2010 (urban expansion)
 - Homogeneous urban area north of Brisbane, pprox 40 KM from CBD
 - Large proportion of commuters to Brisbane
 - Close to ocean and other waterways
- 2. Brisbane Suburb Annual Data, 1970 2010
 - \approx 5 KM from CBD
 - Old, well established suburb
 - No close to the river to have "views"
 - Parts are close to waterways that lead to storm surge flooding

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Outline

troduction and Background Land Values - Valuer General

The Valuer's Model

Simple Behavioural Model Econometric Model

Price Indices

Decompositions - Empirical Estimates

Model Estimates and Comparison to Valuer's Estimates

Bay Area - Monthly Data

Brisbane Suburb - Annual Data

Price Indices - Empirical Evidence

Town of A Data (Comparison with Other Methods) Victoria LGA

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Taxation and Beyond

Further Issues

Urban Land

└─ Decompositions - Empirical Estimates └─ Bay Area - Monthly Data

Data

	Min	Max	Mean	Median	St.Dev
Sale Price (in 1000)	15.5	1250	191.77	161.50	129.44
Total number of Sales	13088				
Number of Months	233				
Number of Vacant Sales	3303				
Sample period	1991:5	2010:9			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

└─ Decompositions - Empirical Estimates └─ Bay Area - Monthly Data

Land Component Characteristics

 $L_t = f(Land, Land^2, distances)$

	Min	Max	Mean	Median	St.Dev
Land area (hectarea)	0.03	1.06	0.10	0.06	0.11
dist_coast (Km)	0.02	5.78	1.39	1.38	0.93
dist_waterway (Km)	0.01	0.86	0.27	0.25	0.16
dist_OffenIndus (Km)	0.18	8.38	2.87	2.27	1.83
dist_parks (Km)	0.01	0.98	0.13	0.11	0.11
dist_busStop (Km)	0.02	4.35	0.47	0.22	0.80
dist_Schools (Km)	0.01	6.55	0.65	0.32	1.09
dist_Shops (Km)	0.01	4.80	0.53	0.40	0.49
_dist_BoatRamp (Km)	0.06	6.29	1.97	1.60	1.46

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Decompositions - Empirical Estimates Bay Area - Monthly Data

Structure Component Characteristics

 $S_t = f(Age, Age^2, Footprint, Footprint^2, Bath, Beds, Cars, Structure)$

	Min	Max	Mean	Median	St.Dev
Structure=1	0.00	1.00	0.75	1.00	0.43
Age (years)	0.00	86.00	11.94	10.00	11.44
Structure Footprint (hectarea)	0.00	0.09	0.02	0.02	0.01
Number of Bathrooms	0.00	4.00	1.06	1.00	0.78
Number of Bedrooms	0.00	8.00	2.52	3.00	1.58
Number of Parking Spaces	0.00	5.00	1.39	1.00	1.12

Urban Land

Decompositions - Empirical Estimates

Bay Area - Monthly Data

Decompositions - Empirical Estimates
Bay Area - Monthly Data

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Outline

ntroduction and Background Land Values - Valuer Genera

The Valuer's Model

Simple Behavioural Model Econometric Model

Price Indices

Decompositions - Empirical Estimates

Model Estimates and Comparison to Valuer's Estimates Bay Area - Monthly Data

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Brisbane Suburb - Annual Data

Price Indices - Empirical Evidence

Town of A Data (Comparison with Other Methods) Victoria LGA

Taxation and Beyond

Further Issues

Urban Land

└─ Decompositions - Empirical Estimates └─ Brisbane Suburb - Annual Data

Data

	Min	Max	Mean	Median	St.Dev
Sale Price (in 1000)	2.60	4710.00	305.22	215.00	269.48
Total number of Sales	3944				
Number of Years	41				
Sample Period	1970	2010			

(ロ)、(型)、(E)、(E)、 E) のQで

Land Component Characteristics

	Min	Max	Mean	Median	St.Dev
Land area (hectareas)	0.02	0.22	0.06	0.06	0.02
dist_waterway (Km)	0.01	1.62	0.57	0.53	0.38
dist_river (Km)	0.95	4.77	2.97	3.04	0.87
dist_industry (Km)	0.00	2.62	1.00	0.91	0.66
dist_park (Km)	0.01	0.56	0.18	0.16	0.12
dist_bikeway (Km)	0.01	1.51	0.57	0.56	0.35
dist_busstop (Km)	0.01	0.50	0.20	0.18	0.11
dist_TrainStn (Km)	0.01	3.17	1.38	1.40	0.82
dist_school (Km)	0.04	1.23	0.47	0.45	0.24
dist_shops (Km)	0.00	1.09	0.36	0.33	0.19
dist_CBD (Km)	2.46	5.77	3.97	3.97	0.82

Urban Land

└─ Decompositions - Empirical Estimates └─ Brisbane Suburb - Annual Data

Structure Component Characteristics

	Min	Max	Mean	Median	St.Dev
Pre-War	0.00	1.00	0.49	0.00	0.50
War/Post War	0.00	1.00	0.37	0.00	0.48
Late 20th C	0.00	1.00	0.07	0.00	0.26
Contemporaneous	0.00	1.00	0.04	0.00	0.20
Structure=1	0.00	1.00	0.98	1.00	0.15
Structure footprint	0.00	0.10	0.02	0.02	0.01
Number of Levels	0.00	4.00	1.10	1.00	0.36
Number of Bathrooms	0.00	6.00	1.37	1.00	0.67
Number of Bedrooms	0.00	8.00	3.04	3.00	0.91
Number of Parking Spaces	0.00	8.00	1.66	2.00	0.78

Urban Land

Decompositions - Empirical Estimates

Brisbane Suburb - Annual Data

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ Q @

Model vs Valuer - Properties sold in 2009

 \blacktriangleright VE_i = valuer's land valuation_i/property sale price_i

Month Sold	Median VE	# Properties
Jan-09	0.721	13
Feb-09	0.704	11
Mar-09	0.762	16
Apr-09	0.741	17
May-09	0.746	16
Jun-09	0.675	9
Jul-09	0.738	11
Aug-09	0.673	13
Sep-09	0.734	14
Oct-09	0.617	19
Nov-09	0.683	12
Dec-09	0.716	15
Median 2009	0.716	166

► Model Median for the 166 properties sold in 2009 = 0.669

Urban Land

└─Price Indices - Empirical Evidence └─Town of A Data (Comparison with Other Methods)

Outline

troduction and Background Land Values - Valuer General

The Valuer's Model

Simple Behavioural Model Econometric Model

Price Indices

Decompositions - Empirical Estimates

Model Estimates and Comparison to Valuer's Estimates Bay Area - Monthly Data Brisbane Suburb - Annual Data

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Price Indices - Empirical Evidence

Town of A Data (Comparison with Other Methods)

Victoria LGA

Taxation and Beyond

Further Issues

Price Indices - Empirical Evidence

└─ Town of A Data (Comparison with Other Methods)

Town of A (Netherlands)

 Used in Diewert et al. (2015). A shorter and earlier version was used by Färe et al. (2015).

	min	max	mean	median	stdev
Price (000	70	550	182.260	160	71.316
Euros)					
		Land Charac	teristics		
Land (sq mts)	70	1344	258.060	217	152.310
		Structure Char	acteristics		
House (sq mts)	65	352	126.560	120	29.841
Age (years)	0	4	1.895	2	1.231
floors	1	6	2.878	3	0.478
rooms	2	10	4.730	5	0.874
Number of	3487				
Transactions					
Number of	66	(2003:1	2008:6)		
months					

The data were cleaned following Diewert et al (2015). See footnotes 11,12,13. 《 다 > 《 (귀 > 《 (귀 > 《 (금 > 《 (금 >) ④) ④) ④] ④

Price Indices Compared

	Model	Estimation	Label	Symbol
Diewert et al.	Model3: land,	2003:Q1 -	DdH PL3	-·- Ж -·
(2015)	house,age	2008:Q2 quarter-	_ (DdH_PS3)	
Builder's Model		by-quarter		
with linear	Model4: Model 3	2003:Q1 -	DdH PL4	
splines (New	+ other hedonic	2008:Q2 quarter-	 (DdH_PS4)	
Construction	characteristics	by-quarter	_	
Index)				
Färe et al (for	Model 4	2005:Q1 -	FGCS_DS2_L	
structure uses		2008:Q2 quarter-	(FGCS_DS2_S)	
SFA_L as		by-quarter		
exogenous	Model 4	2005:Q1 -	FGCS SFA L	
index)		2008:Q2 Distance	(FGCS_SFA_S)	
		Function Approach -		
		whole sample		

└─ Price Indices - Empirical Evidence └─ Town of A Data (Comparison with Other Methods)

Price Indices Compared (cont)

- Our Model Price = f(land, house, age, rooms, rooms², floors, floors²)
- Monthly 2003:1-2008:6. Estimation for time τ uses $t = 1, \ldots, \tau 1, \tau$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Indices labels
 - 1. FP_L (FD_L) 2. FP_S (FD_S)

Urban Land

Price Indices - Empirical Evidence

Town of A Data (Comparison with Other Methods)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Urban Land

Price Indices - Empirical Evidence

-Town of A Data (Comparison with Other Methods)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

Outline

troduction and Background Land Values - Valuer General

The Valuer's Model

Simple Behavioural Model Econometric Model

Price Indices

Decompositions - Empirical Estimates

Model Estimates and Comparison to Valuer's Estimates Bay Area - Monthly Data Brisbane Suburb - Annual Data

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Price Indices - Empirical Evidence

Town of A Data (Comparison with Other Methods) Victoria LGA

Taxation and Beyond

Further Issues

Urban Land Price Indices - Empirical Evidence Victoria LGA

Victoria Data (Outskirts of Melbourne)

∃ <\>\\ \\ \\ \\ \\ \\

└─ Taxation and Beyond └─ Further Issues

Outline

troduction and Background Land Values - Valuer General

The Valuer's Model

Simple Behavioural Model Econometric Model

Price Indices

Decompositions - Empirical Estimates

Model Estimates and Comparison to Valuer's Estimates Bay Area - Monthly Data Brisbane Suburb - Annual Data

Price Indices - Empirical Evidence

Town of A Data (Comparison with Other Methods) Victoria LGA

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Taxation and Beyond Further Issues

Measuring GDP and Urban Planning

 New standard on the System of National Accounts -EuroStat-OECD (2015) "Compilation Guide On Land Estimation"

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- Urban Planning and Zoning
 - Land component proportion
 - Single structure no longer viable
 - Model \Rightarrow counterfactuals

- Bostic, R., Longhofer, S. D., and Redfearn, C. L. (2009). Land leverage: Decomposing home price dynamics. *Real Estate Economics*, 35(2):183—208.
- Diewert, W., de Haan, J., and Hendriks, R. (2011). The decomposition of a house price index into land and structures components: A hedonic regression approach. *The Valuation Journal*, 6:58–106.
- Diewert, W. E., de Haan, J., and Hendriks, R. (2015). Hedonic regressions and the decomposition of a house price index into land and structures components. *Econometric Reviews*, 34(1–2):106–126.
- Diewert, W. E. and Shimizu, C. (2013). Residential property price indexes for tokyo. In *Real Estate Markets, Financial Crisis, and Economic Growth : An Integrated Economic Approach. Working Paper No 3.* Institute of Economic Research, Hitotsubashi University.
- European Comission, Eurostat, OECD, and World Bank (2013). *Handbook on Residential Property Price indices (RPPIs).* EUROSTAT. Bert Balk project coordinator, 2013 edition.
- EuroStat-OECD (2015). *Eurostat-OECD compilation guide on land estimation*. European Union / OECD, Luxemburg.
- Färe, R., Grosskopf, S., Shang, C., and Sickles, R. (2015). Pricing characteristics: An application of shephard's dual lemma. manuscript.
- Harrison, P. J. (1965). Short-term sales forecasting. Journal of the Royal Statistical Society. Series C (Applied Statistics), 14(2/3):102–139.

Urban Land References

- Knight, J. and Sirmans, C. (1996). Depreciation, maintenance, and housing prices. Journal of Housing Economics, 5:369—389.
- Malpezzi, S., Ozanne, L., and Thibodeau, T. (1987). Microeconomic estimates of housing depreciation. *Land Economics*, 6:372–385.
- Rambaldi, A. N., McAllister, R. R. J., and Fletcher, C. S. (2015). Decoupling land values in residential property prices: smoothing methods for hedonic imputed price indices. Technical report, Discussion Papers Series 549, School of Economics, The University of Queensland, Australia.
- West, M. and Harrison, J. (1999). *Bayesian Forecasting and Dynamic Models*. Springer Berlin / Heidelberg.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ