Static Hedging of Non-Exchange Traded Options in South Africa

Alexis Levendis

University of Pretoria

26 July 2023

Alexis Levendis (University of Pretoria)

- The risk-neutral measure is often neglected in favour of the real-world measure due to the pricing of contingent claims.
- The real-world measure is extremely useful in risk management applications.
- We consider a static hedging experiment for vanilla European and European spread call options in a South African context.
- The experiment links the risk-neutral and real-world probability measures, which can help inform trading decisions.

Stochastic volatility double jump (SVJJ) model

$$dS(t) = (\mu - \lambda \mu_J)S(t)dt + \sqrt{v(t)}S(t)dW_x(t) + JS(t)dN(t)$$
$$dv(t) = (\alpha - \beta v(t)) + \sigma_v \sqrt{v(t)}dW_v(t) + ZdN(t)$$
$$dW_x(t)dW_v(t) = \rho_{x,v}dt,$$

where

$$\mu_J = \frac{\exp\left\{\mu_S + \frac{\sigma_S^2}{2}\right\}}{1 - \rho_J \mu_V} - 1,$$

and

 $Z \sim Exponential(\mu_V)$,

 $1 + J \mid Z \sim lognormal(\mu_S + \rho_J Z, \sigma_S^2),$

Image: A matrix and a matrix

$$\phi_{SVJJ}(u) = \phi_H(u)\phi_J(u),$$

where

$$\phi_{H}(u) = e^{iu(x(0)+rT)+C(u,T)\frac{\alpha}{\beta}+D(u,T)v(0)},$$

and

$$C(u, T) = \beta \left[\left(\frac{Q - D_1}{2R} \right) T - \frac{2}{\sigma_v^2} \log \left(\frac{1 - Ge^{-D_1 T}}{1 - G} \right) \right],$$
$$D(u, T) = \frac{Q - D_1}{2R} \left[\frac{1 - e^{-D_1 T}}{1 - Ge^{-D_1 T}} \right],$$

with

$$egin{aligned} D_1 &= \sqrt{Q^2 - 4PR}, \ G &= rac{Q - D_1}{Q + D_1}, \end{aligned}$$

< ∃→

SVJJ characteristic function (continued)

$$P = \frac{-u^2 - iu}{2},$$

$$Q = \beta - \rho_{x,v}\sigma_v iu,$$

$$R = \frac{1}{2}\sigma_v^2.$$

Furthermore,

$$\phi_{J}(u) = e^{-\lambda T(1+iu\mu_{J})+\lambda \exp\left\{iu\mu_{S}+\frac{\sigma_{S}^{2}(iu)^{2}}{2}\right\}\nu},$$

where

$$\begin{split} \nu &= \frac{Q+D_1}{(Q+D_1)c-2\mu_V P} + \frac{4\mu_V P}{(D_1c)^2 - (2\mu_V P - Qc)^2} \\ &\times \log\left[1 - \frac{(D_1-Q)c+2\mu_V P}{2D_1c} \left(1 - e^{-D_1T}\right)\right], \\ c &= 1 - iu\rho_J \mu_V. \end{split}$$

Static hedging approach #1

$$\min_{\boldsymbol{B}}\sum_{i=1}^{n}C(i)B(i),$$

subject to

$$\sum_{i=1}^{n} F(ij)B(i) \ge Y(j), \ j = 1, 2, ..., m,$$

where

i = 1, 2, ..., n := the number of instruments in the replicating portfolio; j = 1, 2, ..., m := the price of the underlying asset at some future time; C(i) := the current price of the i^{th} instrument; B(i) := the number of units of the i^{th} instrument; F(ij) := the future price of the i^{th} instrument in state j; and Y(j) := the future price of the target option in state j.

Static hedging approach #2

$$\min_{\boldsymbol{B}} \sum_{j=1}^{m} \left(Y(j) - \sum_{i=1}^{n} F(ij)B(i) \right)^{2},$$

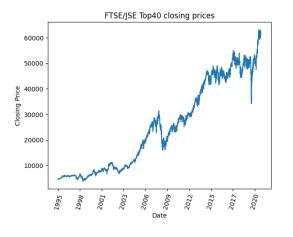
subject to

$$\sum_{i=1}^n C(i)B(i) \le w,$$

where

i = 1, 2, ..., n := the number of instruments in the replicating portfolio; j = 1, 2, ..., m := the price of the underlying asset at some future time; C(i) := the current price of the i^{th} instrument; B(i) := the number of units of the i^{th} instrument; F(ij) := the future price of the i^{th} instrument in state j; Y(j) := the future price of the target option in state j;

FTSE/JSE Top40 index



SVJJ calibration to FTSE/JSE Top40 (\mathbb{P} -measure)

Parameter	Estimate	
μ	0.1180	
α	0.2888	
β	6.0176	
σ_{v}	0.4543	
$\rho_{\mathbf{X},\mathbf{V}}$	-0.9374	
λ	4.7284	
σ_{S}	0.0137	
μ_V	μ_V 0.0077	
ρj	-0.3052	
$T\hat{ heta}$	5.1022	
$\chi^{2}_{0.05}$	5.9915	

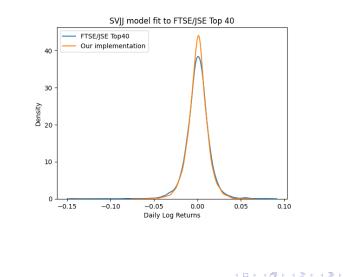
Table: SVJJ P-parameters for FTSE/JSE Top40

SVJJ daily statistics versus FTSE/JSE Top40

Statistic	FTSE/JSE Top40 index	SVJJ model
Mean	0.0385%	0.0406%
Std dev	1.3290%	1.1410%
Skewness	-0.4369	-0.2418
Kurtosis	9.4344	5.0463
Minimum	-0.1429	-0.0695
Maximum	0.0845	0.0592

Table: SVJJ model daily statistics for the FTSE/JSE Top40

SVJJ fit to FTSE/JSE Top40

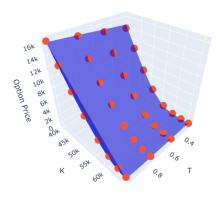


Alexis Levendis (University of Pretoria)

26 July 2023

SVJJ calibration to Top40 option price surface

SVJJ model fit to implied volatility surface on 16 November 2020



Alexis Levendis (University of Pretoria)

Parameter	Estimate
r	0.0700
$ ilde{lpha}$	0.0333
\tilde{eta}	0.9995
$\tilde{\sigma_v}$	0.3827
$ \begin{array}{c} \rho_{\mathbf{v}} \\ \rho_{\mathbf{x},\mathbf{v}} \\ \tilde{\lambda} \end{array} $	-0.9205
$ ilde{\lambda}$	0.0583
$\tilde{\sigma_S}$	0.0058
μ_V	0.0058
ρĩ	0.0097

Table: SVJJ \mathbb{Q} -parameters for FTSE/JSE Top40

Alexis Levendis (University of Pretoria)

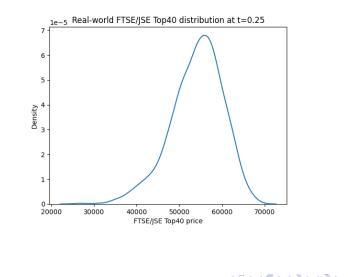
(三)

FFT implementation test

Table: MC and FFT European call option prices under SVJJ model with S(0) = 100, r = 0.1, v(0) = 0.04, $\beta = 1$, $\alpha = 0.04$, $\sigma_v = 0.05$, $\rho_{x,v} = -0.5$, $\lambda = 5$, $\mu_S = 0$, $\sigma_S = 0.01$, $\rho_J = -0.3$, $\mu_V = 0.02$, N = 256, $\bar{u} = 40$, $\epsilon_1 = -3$, $\epsilon_2 = 1$, T = 1.

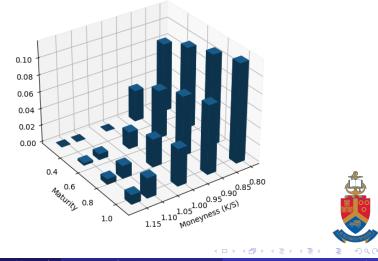
K	MC Price	FFT Price	Absolute
			Difference
20	81.906164	81.903234	0.002930
30	72.872779	72.855205	0.017574
40	63.773907	63.811614	0.037707
50	54.788865	54.795772	0.006907
60	45.908156	45.885217	0.022939
70	37.259369	37.253208	0.006161
80	29.160481	29.176272	0.015791
90	21.995527	21.975674	0.019853

Real-world FTSE/JSE Top40 distribution at t = 0.25

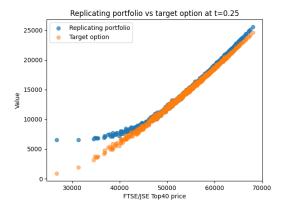


Option quantities based on static hedge #1

Optimised option quantities at t=0

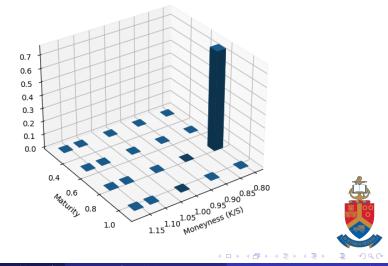


Static hedge #1 performance for European call option

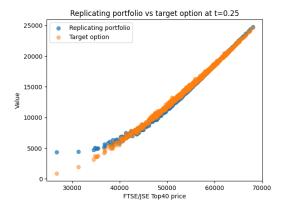


Option quantities based on static hedge #2

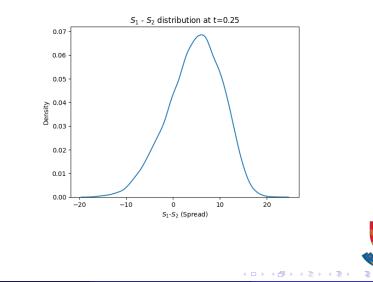
Optimised option quantities at t=0



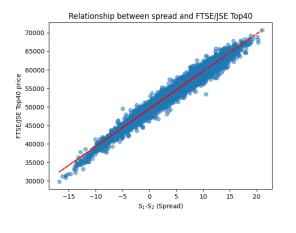
Static hedge #2 performance for European call option



Real-world spread distribution at t = 0.25



Relationship between spread and FTSE/JSE Top40 price



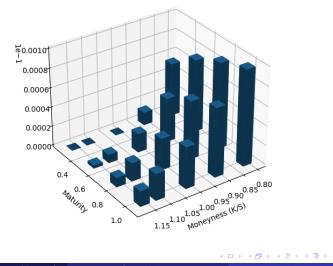
21 / 27

Alexis Levendis (University of Pretoria)

26 July 2023

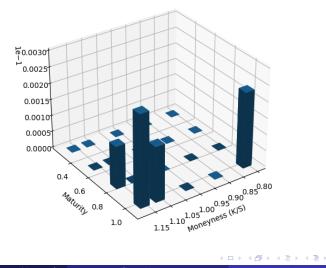
Option quantities based on static hedge #1

Optimised option quantities at t=0

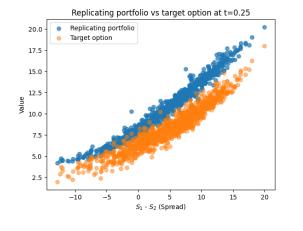


Option quantities based on static hedge #2

Optimised option quantities at t=0



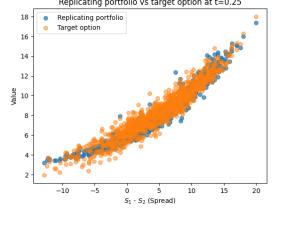
Static hedge #1 performance for European spread call option



Alexis Levendis (University of Pretoria)

26 July 2023

Static hedge #2 performance for European spread call option



Replicating portfolio vs target option at t=0.25

- The hypothesis that the observed data are observed from the SVJJ model is not rejected at a 5% level of significance.
- For a vanilla European call option, static hedging gives a simple and effective way to replicate the written option.
- For European spread call options, static hedging is only useful if the there is a linear relationship between the spread and price of the underlying hedging instrument.

Thank you

Alexis Levendis (University of Pretoria)

Static Hedging

26 July 2023

< □ > < □ > < □ > < □ > < □ >

27 | 27