Exploring the Impact of Quality of Care in a Multi-State Long Term Care Model

Colin M. Ramsay¹ and Victor I. Oguledo²,

¹University of Nebraska-Lincoln, USA ²Florida A&M University, USA

Presentation to AFRIC 2023 Wednesday, July 26, 2023 Victoria Falls, ZIMBABWE

- When you cannot perform activities (ADLs) on your own
 - LTC needed to meet your health/personal care needs
 - O LTC needed to help you live independently and safely
- Icong term care is NOT medical care
- ITC can be at home or in a facility such as a nursing home
- **O** LTC most often provided at home by unpaid family and friends

- 4 目 ト - 4 日 ト

- Walking: getting around the home or outside
- Peeding: being able to feed oneself
- Oressing and grooming: choosing your own clothes, putting them on, and grooming yourself
- Toileting: moving to and from the toilet, using the toilet, and cleaning yourself
- Sathing: washing your face and body in a bath or shower
- Transferring: being able to move from a bed to a chair, or into a wheelchair

- Managing finances: e.g., paying bills and managing financial assets
- Managing transportation: e.g., driving yourself or organizing other means of transport
- Shopping and meal preparation
- House cleaning and home maintenance: cleaning up after eating, home reasonably clean and tidy, and keeping up with home maintenance
- Managing communication: e.g., telephone, mail, email, social media
- Managing medications: e.g., getting medications and taking them as directed

- Age: LTC risk tends to increase with age
- Gender: Women are at higher risk than men because they tend to outlive their partners
- Marital status: Single people are more likely than married people to need PAID care
- **O** Lifestyle. Poor diet and poor exercise habits can increase LTC risk
- S Health and family history also affect LTC risk

- **0** 70% of seniors may need LTC in their lifetime
- ② 35% of seniors may enter a nursing home at least once in their lifetime
- O A senior couple's lifetime LTC costs from US\$265,000 to US\$575,000
- 2021 median US nursing home costs US\$94,900 (semi-private room) and US\$108,405 (private room)

- **1** LTC providers offer services of differing quality
- 2 Quality is captured by a publicly known parameter lpha
- **③** Higher values of α denote better "quality" of service
- **④** A 5-star rating system (like hotels) exists, i.e., $1 \le \alpha \le 5$
- Average quality is $\bar{\alpha} = 3$
- **(**) Retirees stick with a type- α LTC care provider in all states
- Higher quality \Leftrightarrow higher costs
- 8 No moral hazard issues

- Retirees range from very healthy to very sick
- 2 Each retiree has a hidden health parameter, $\theta > 0$
- **③** High risk retirees have low values of θ and are in good health
- **(9)** Low risk retirees have high values of θ and are in poor health
- S Retirees experience random health shocks
- **1** Retirees morbidity and mortality follow multi-state Markov process

- State 1: retiree is well;
- State 2: retiree performs all ADLs but NOT all IADLs;
- State 3: retiree not cognitively impaired & cannot perform 1 ADL
- State 4: retiree not cognitively impaired & cannot perform 2 ADLs
- State 5: retiree not cognitively impaired & cannot perform 3+ ADLs
- **③** State 6: retiree is cognitively impaired & cannot perform \leq 1 ADLs
- **③** State 7: retiree is cognitively impaired & cannot perform 2+ ADLs
- State 8: retiree is dead

Multi-State Markov Model Details

- **()** Assume retiree type and quality of care affect transition intensities.
- **2** $\bar{\mu}_{[x]+t}^{ij}$ = standard force of transition from state *i* to state *j*
- Suppose we are given a fixed quality of care α in LTC market, then retirees with higher levels of θ (i.e., less healthy individuals):
 - More likely to transition a higher level of care (to get sicker); and
 - ② Less likely to transition a lower level of care (i.e., to get better)

than retirees with lower levels of θ (i.e., healthier individuals), i.e.,

$$\frac{\partial}{\partial \theta} \bar{\mu}_{[x]+t}^{ij}(\theta, \alpha) \begin{cases} \geq 0 & \text{for } i = 1, 2, \dots, 7 \text{ and } j \geq i+1 \\ \leq 0 & \text{for } i = 2, \dots, 7 \text{ and } j \leq i-1 \\ \text{undefined} & \text{for } i = j, i = 1, 2, \dots, 7 \end{cases}$$

(日) (四) (日) (日)

A Key Innovation: Quality of Care

• Given a retiree type θ

⁽²⁾ Clients of LTC providers with higher levels of α (i.e., better quality):

- Are less likely to transition a higher level of care (to get sicker); and
- Ø More likely to transition a lower level of care (i.e., to get better)

than clients of LTC providers with lower levels of α (i.e., lower quality)

$$\frac{\partial}{\partial \alpha} \bar{\mu}^{ij}_{[x]+t}(\theta, \alpha) \quad \begin{cases} \leq 0 & \text{for } i = 1, 2, \dots, 7 \text{ and } j \geq i+1 \\ \geq 0 & \text{for } i = 2, \dots, 7 \text{ and } j \leq i-1 \\ \text{undefined} & \text{for } i = j, i = 1, 2, \dots, 7 \end{cases}$$
(2)

くロト く伺 ト くきト くきト

Model Details: The "Quasi-Frailty" Model

Define
$$\theta^{\max}(\alpha) = g^{(0)} + g^{(1)}(\alpha - \bar{\alpha})$$
 for possible rehabilitation
Our model is: $\mu^{ij}_{[x]+t}(\theta, \alpha) = \varphi_{ij}(\theta, \alpha)\bar{\mu}^{ij}_{[x]+t}$ where

$$\varphi_{ij}(\theta, \alpha) = \begin{cases} \theta^{g^{(4)}} & i = 1; j = i + 1, \dots, 8\\ \theta e^{-g^{(2)}(\alpha - \bar{\alpha})} & i = 2, \dots, 7; j = i + 1, \dots, 8\\ h(\theta, \alpha) \exp\left(g^{(3)}(\alpha - \bar{\alpha})\right) & i = 2, \dots, 7; j = 1, \dots, i - 1\\ -\mu_{[x]+t}^{i\bullet}(\theta, \alpha)/\bar{\mu}_{[x]+t}^{i\bullet} & i = j; j = 1, 2, \dots, 7\\ 0 & \text{otherwise} \end{cases}$$

$$h(\theta, \alpha) = \left(\max\left\{ 0, \frac{\theta^{\max}(\alpha) - \theta}{(\theta^{\max}(\alpha) - 1)\theta} \right\} \right)^{g^{(4)}}$$
(4)

③ We assume $g^{(0)} = 7$, $g^{(1)} = 2$, $g^{(2)} = 0.3$, $g^{(3)} = 0.1$, and $g^{(4)} = 1$

・ロト ・四ト ・ヨト ・ヨト

(3)

Nebraska

Model Details: Transition Probabilities

• Chapman-Kolmogorov differential equations are rewritten as:

$$\frac{\mathrm{d}}{\mathrm{d}t}{}_{t}\mathbf{p}_{[x]}(\theta,\alpha) = \mathbf{B}(t,\theta,\alpha){}_{t}\mathbf{p}_{[x]}(\theta,\alpha)$$
(5)

2 If we assume constant intensities, i.e., $\mu_{[x]+t}^{ij}(\theta, \alpha) = \mu^{ij}(\theta, \alpha)$

$${}_{t}\mathbf{p}_{[x]}(\theta,\alpha) = e^{t\mathbf{B}(\theta,\alpha)}{}_{0}\mathbf{p}_{[x]}(\theta,\alpha)$$
(6)

where ${}_{0}\mathbf{p}_{[x]}(\theta, \alpha)$ denotes initial conditions. For square matrix **B**,

$$e^{t\mathbf{B}} = I + t\mathbf{B} + \frac{t^2\mathbf{B}^2}{2!} + \frac{t^3\mathbf{B}^3}{3!} + \dots + \frac{t^k\mathbf{B}^k}{k!} + \dots$$
 (7)

Sort Calculating a matrix exponential see Moler, C. and C. Van Loan. 2003. Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later. SIAM Review 45, 1: 3–49.

ヘロト 不得 トイヨト イヨト 二日

Model Details: More Transition Probabilities

• Occupancy probabilities ${}_{t}p_{[x]+s}^{\overline{\mu}}(\theta,\alpha)$ are given by:

$${}_{t}p_{[x]+s}^{\overline{i}i}(\theta,\alpha) = \exp\left(-\int_{0}^{t}\mu_{[x]+s+r}^{i\cdot}(\theta,\alpha)\mathrm{d}r\right)$$
(8)

$$\frac{\mathrm{d}}{\mathrm{d}t}{}_{t}\boldsymbol{\rho}_{[x]+s}^{ij}(\theta,\alpha) = \sum_{\substack{k=1\\k\neq j}}^{8}{}_{t}\boldsymbol{\rho}_{[x]+s}^{ij}(\theta,\alpha)\boldsymbol{\mu}_{[x]+t+s}^{ij}(\theta,\alpha) - {}_{t}\boldsymbol{\rho}_{[x]+s}^{ij}(\theta,\alpha)\boldsymbol{\mu}_{[x]+t+s}^{j}(\theta,\alpha)$$
(9)

for $i, j \in \{1, 2, 3, 4, 5, 6, 7, 8\}$.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Key Equations for Health and Longevity

$$\psi_{[x]}^{ikj}(s,t,\theta,\alpha) = {}_{t-s} p_{[x]}^{ik}(\theta,\alpha) \mu_{[x]+t-s}^{kj}(\theta,\alpha) {}_{s} p_{[x]+t-s}^{\overline{jj}}(\theta,\alpha)$$
(10)

$$\mathring{e}_{i}^{(j)}(x,\theta,\alpha) = \int_{0}^{\infty} {}_{t} p_{[x]}^{ij}(\theta,\alpha) \mathrm{d}t$$
(11)

$$\dot{e}_{i}^{(j8)}(x,\theta,\alpha) = \int_{0}^{\infty} \int_{0}^{\infty} \sum_{\substack{k=1\\k\neq j}}^{7} s \,\psi_{[x]}^{ikj}(s,t,\theta,\alpha) \mu_{[x]+t}^{j8}(\theta,\alpha) \mathrm{d}s \,\mathrm{d}t \qquad (12)$$

$$p_{[x]}^{ij8}(\theta,\alpha) = \int_0^{t} p_{[x]}^{ij}(\theta,\alpha) \mu_{[x]+t}^{j8}(\theta,\alpha) \mathrm{d}t.$$
(13)

e^(j)_i = Expected time spent in state j, e^(j8) = Expected time spent in state j just before death, and p^{ij8}_[x] = Probability of dying in state j.

· □ ▶ < □ ▶ < □ ▶ < □ ▶</p>

Transition Intensities (Rates) Used

Solution (1996, Table 3) rates are for females age 75-85.

② Robinson's rates used to define $\bar{\mu}^{ij}_{[65]+t}$ in Table 1 below:

(1)											
		State j									
i	1	2	3	4	5	6	7	8			
1		0.075	0.004	0.000	0.005	0.011	0.000	0.021			
2	0.050		0.146	0.023	0.007	0.063	0.018	0.082			
3	0.021	0.665		0.116	0.140	0.114	0.000	0.142			
4	0.000	0.038	0.364		0.314	0.031	0.134	0.098			
5	0.000	0.006	0.014	0.091		0.000	0.140	0.228			
6	0.046	0.106	0.142	0.044	0.030		0.250	0.046			
7	0.010	0.000	0.009	0.000	0.328	0.049		0.249			

Table 1: Constant Transition Intensities (Rates) $\bar{\mu}_{1651+t}^{ij}$ for $t \ge 0$

Solution State State

Table 2. Complete Expectation of Life Starting in State 1,												
$\mathring{e}_1(65,lpha, heta)$ for Different Values of $ heta$ and $lpha$												
α	heta=1	$\theta = 2$	$\theta = 3$	$\theta = 4$	$\theta = 5$	$\theta = 6$						
1.0	18.806	8.554	5.630	4.222	3.378	2.815						
2.0	21.239	9.336	6.100	4.548	3.630	3.025						
3.0	24.804	10.394	6.724	4.996	3.981	3.311						
4.0	29.841	11.880	7.580	5.605	4.456	3.702						
5.0	36.443	13.994	8.767	6.439	5.103	4.233						
Δ Quality	17.637	5.440	3.137	2.217	1.725	1.418						
% Change	0.938	0.636	0.557	0.525	0.511	0.504						
Notes: ΔO uplity - $\mathring{a}(65, 5, \theta) = \mathring{a}(65, 1, \theta)$												

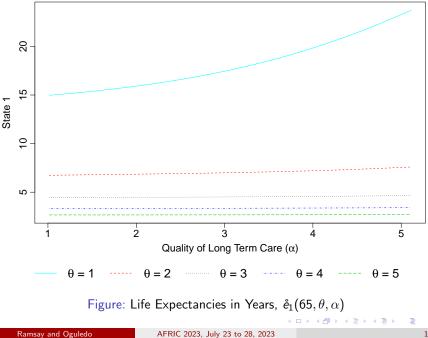
Table 2: Complete Expectation of Life Starting in State 1.

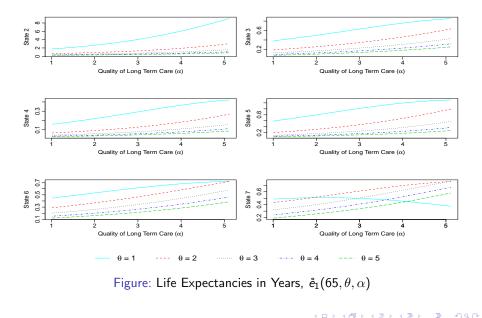
Notes: $\Delta \text{Quality} = \mathring{e}_1(65, 5, \theta) - \check{e}_1(65, 1, \theta)$

Notes: $\[\& \Delta Quality = \Delta Quality / \mathring{e}_1(65, 1, \theta) \]$

э

イロト 不得 トイヨト イヨト





AFRIC 2023, July 23 to 28, 2023

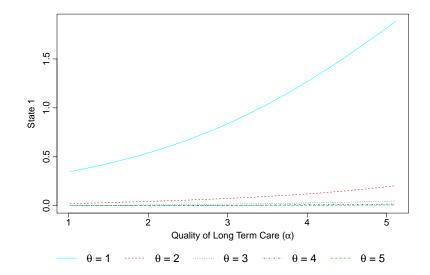


Figure: Expected Number of Years Spent Continuously in State 1 Immediately before Death

AFRIC 2023, July 23 to 28, 2023

э

< □ > < □ > < □ > < □ > < □ > < □ >

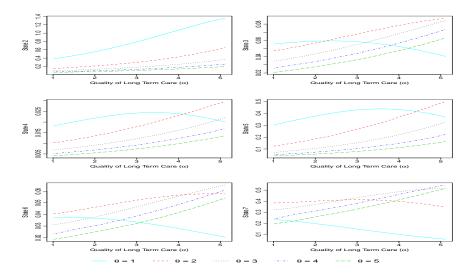
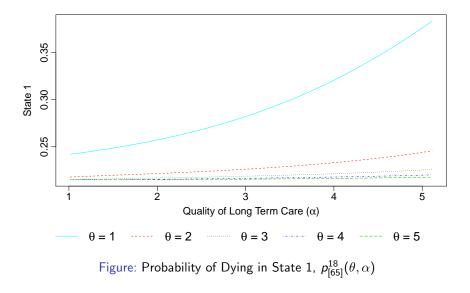


Figure: Expected Number of Years Spent Continuously in State *j* immediately before death, $\hat{\epsilon}_1^{(j8)}(65, \theta, \alpha)$

< □ > < 同 > < 回 > < 回 > < 回 >



э

イロト イヨト イヨト

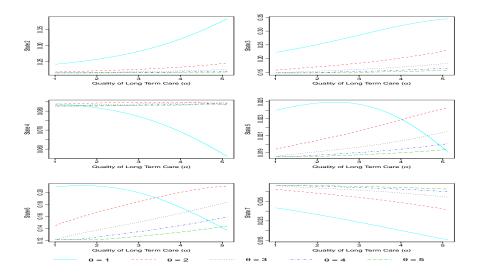


Figure: Probability of Dying in State j, $p_{[65]}^{j8}(\theta, \alpha)$

Ramsay and Oguledo

AFRIC 2023, July 23 to 28, 2023

23 / 26

э

A D N A B N A B N A B N

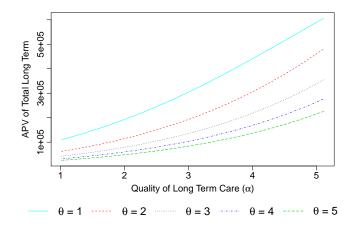


Figure: APV of Lifetime Long Term Care Costs (1e+05 = \$100,000) under the Multi-State Model

AFRIC 2023, July 23 to 28, 2023

< □ > < □ > < □ > < □ > < □ > < □ >

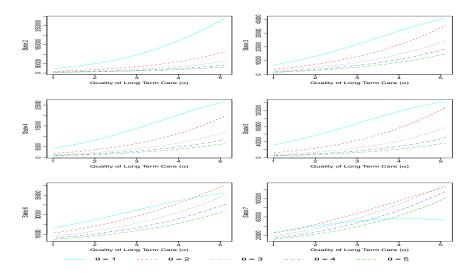


Figure: APV of Lifetime Long Term Care Costs (in \$s) in State j

Ramsay and Oguledo

AFRIC 2023, July 23 to 28, 2023

A D N A B N A B N A B N

Closing Comments

Increasing quality of care does the following:

- Increases total lifetime LTC costs
- Increases quality of life;
- Increases life expectancy in all health states;
- Observation Decreases time spent in sicker states; and
- Observation Decreases probability of dying in sicker states.
- We know of no actuarial model that uses quality of LTC.

Thank You! Any Questions?