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Model uncertainty and applications in insurance design

1. Motivation and Background

Insurance 101

Insurance is an effective risk management tool used to protect against

contingent losses of market participants.

X

I(X)︸︷︷︸
Reimbursement

I(X)− π(I(X))︸ ︷︷ ︸
premium︸ ︷︷ ︸

Insurer’s loss or benefit

X − I(X)︸ ︷︷ ︸
Insured’s retained loss

X − I(X) + π(I(X))︸ ︷︷ ︸
premium︸ ︷︷ ︸

Insured’s total loss

where I ∈ I is an admissible indemnity function, and π is a premium

principle.
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Model uncertainty and applications in insurance design

1. Motivation and Background

Classical optimization problems in insurance

Popular optimal (re-)insurance design problems:

1. Maximize expected utility:

max
I∈I
E [v(w −X + I(X)− π(I(X)))] .

◦ Arrow (1963): optimality of a stop-loss contract.

◦ Gerber(1979), Young (1999), Kaluszka (2001,2005), etc.

2. Minimize risk measure:

min
I∈I

ρ (X − I(X) + π(I(X))) .

◦ Cai et al. (2008), Kaluszka and Okolewki (2008), Bernard and Tian

(2009), Cheung (2010), etc.

All problems are considered under the assumption that the distribution

of X is known. Can we take this assumption for granted?
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Model uncertainty and applications in insurance design

1. Motivation and Background

Uncertainty

From data to models

• Parameter uncertainty

Estimation error, simulation error, etc

• Model uncertainty

Choice of models, complexity of models, etc.

Distributional uncertainty

• Only partial information about the true distribution are observed

from the historical data.

• Changes of the underlying risks

• In a conservative decision, the worst-case distribution is important
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Model uncertainty and applications in insurance design

1. Motivation and Background

Worst-case scenario

• Suppose an agent faces an underlying risk X

◦ ` is the loss function/strategy the agent adopts.

◦ ρ is the risk measure used to quantify the agent’s risk exposure

◦ S is the uncertainty set includes all distributions of alternative risks

considered

• From the perspective of risk management, the worst-case scenario

in which the agent has the largest risk exposure is of special

interests.

• The agent’s optimization problem with model uncertainty can be
formulated as

min
`

sup
F∈S

ρ(`(XF ))︸ ︷︷ ︸
worst-case scenario

, XF ∼ F.
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Model uncertainty and applications in insurance design

1. Motivation and Background

Literature

In a financial market, under the mean-variance constraints

• Theorem 1 in El Ghaoui et al. (2003) solves the worst-case VaR

where VaRu(XF ) = F−1(u)

• Theorem 2.9 in Chen et al. (2011) solves the worst-case ES

where ESα(X) = 1
1−α

∫ 1

α VaRu(X)du

• Li (2018) determines the closed-from solutions for worst-case law

invariant coherent risk measures

Under both the mean-variance and Wasserstein distance constraints

• Bernard et al. (2020b) Consider both the worst-case and the
best-case scenarios:

sup
F∈S

ρ(XF ), and inf
F∈S

ρ(XF )

for a distortion risk measure ρ.
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Model uncertainty and applications in insurance design

1. Motivation and Background

Literature
In the literature of insurance

• Asimit et al. (2017): for ρ = VaR,ES, min
(I,P )∈I×R

max
k∈M
{ρPk (X − I(X) + P )},

s.t. ω0 + (1 + θ)HPk (I(X)) ≤ P ≤ P̄ ,∀k ∈M.

where Pk , k ∈M includes finite many probability measures.

• Birghila and Pflug (2019)

min
I∈I

max
F∈C
{ρ(XF − I(XF ) + π(I(XF ))}, s.t. π(I(XF )) ≤ B

where C is the convex cone of n reference distributions.

• Liu and Mao (2021): for ρ = VaR,ES,

min
d≥0

sup
F∈S(µ,σ)

ρ(XF ∧ d + (1 + θ)EF [(XF − d)+]).

where S(µ, σ) gives first & second moments constraints.
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Model uncertainty and applications in insurance design

1. Motivation and Background

In this talk, we focus on the worst-case scenario for an agent

sup
F∈S

ρh(`(XF )), XF ∼ F

where

• ρh is a distortion risk measure (e.g. Dhaene et al. (2012)):

ρh(XF ) = −
∫ 0

−∞
h(F (x))dx +

∫ ∞
0

1− h(F (x))dx =

∫ 1

0

γ(u)F−1(u)du,

where h : [0, 1] 7→ [0, 1] is non-decreasing (convex) with h(0) = 0

and h(1) = 1, and γ(u) = h′(u), 0 < u < 1

• S is the uncertainty set defined by Wasserstein distance

constraints

• ` is the loss function/strategy the agent adopts.
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Model uncertainty and applications in insurance design

2. Worst-case scenario without transform

Uncertainty set with Wasserstein distance constraint

• For X ∼ F and Y ∼ G, for k ≥ 1, the Wasserstein distance is

Wk(X, Y ) = Wk(F,G) =

(∫ 1

0

∣∣F−1(x)− G−1(x)
∣∣k)1/k

.

• The uncertainty set with Wasserstein distance constraint

S = {r. v. Y : Wk(Y,X) ≤ ε} = {distribution G : Wk(G, F ) ≤ ε}
where

• X ∼ F is the reference distribution

• ε is the tolerant bound for the Wasserstein distance

• Consider worst-case scenario

sup
G∈S

ρh(XG) = sup
{
ρh(XG) : Wk(G, F ) ≤ ε

}
= sup

{∫ 1

0

γ(u)G−1(u)du : Wk(G, F ) ≤ ε
}
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Model uncertainty and applications in insurance design

2. Worst-case scenario without transform

Uncertainty set with Wasserstein distance constraint

Theorem (Proposition 4 in Liu et al. (2022))

For a continuous and convex distortion function h,

sup
{
ρh(XG) : Wk(G, F ) ≤ ε

}
= ρh(XF ) + ε‖γ‖q,

where q = (1− 1/k)−1 with the convention 0−1 =∞, and || · ||q is the

Lq-norm.

For k > 1, the above maximum value is attained by the worst-case

distribution

G−1(t) = F−1(t) + ε
(γ(t))q−1

‖γ‖q/kq

, 0 < t < 1.
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Model uncertainty and applications in insurance design

2. Worst-case scenario without transform

Example – Expected shortfall (ES)
Take ρ = ESα for α ∈ (0, 1), then ρ(X) =

∫ 1

0 VaRt(X)dh(t), where

h(t) =
1

1− α (t − α)+ and γ(t) =
1

1− α1[α,1].

The worst-case value is

sup
{

ESα(XG) : Wk(G, F ) ≤ ε
}

= ESα(XF ) + ε · (1− α)−1/k .

6

-
10

F−1(t)
G−1(t)

α
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Model uncertainty and applications in insurance design

3. Worst-case scenario with transform

Wasserstein distance constraint

Uncertainty set with Wasserstein distance constraint

• Uncertainty set is
S = {G : Wk(G, F ) ≤ ε}

where XF ∼ F is considered as a reference distribution, and ε is

the tolerant bound for the Wasserstein distance.

• Consider the worst-case scenario:

sup
G∈S

ρh(`(XG)) = sup
{
ρh(`(XG)),Wk(G, F ) ≤ ε

}
,

with two types of loss functions:

• Stop-loss function: (optimal to the utility maximization)

`(x) = (x − d)+

• Limited-loss function: (optimal to the VaR minimization)

`(x) = min{x,M}
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Model uncertainty and applications in insurance design

3. Worst-case scenario with transform

Wasserstein distance constraint

Stop-loss function

• Take `1(x) = (x − d)+ for d > ess-inf(X)

• Worst-case risk measure

sup
{
ρh((XG − d)+) : Wk(G, F ) ≤ ε

}
• For β ∈ [0, 1], define γ1,β := γ · I[β,1] which is again a non-negative

and increasing function.

sup
G∈S

ρh

(
(XG − d)+

)
= sup

G∈S

∫ 1

G(0)

γ(u)
(
G−1(u)− d

)
du

= sup
G∈S

max
β∈[0,1]

∫ 1

β

γ(u)
(
G−1(u)− d

)
du

= sup
β∈[0,1]

sup
G∈S

∫ 1

0

γ1,β(u)
(
G−1(u)− d

)
du︸ ︷︷ ︸

worst-case without transform

,
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Model uncertainty and applications in insurance design

3. Worst-case scenario with transform

Wasserstein distance constraint

Wasserstein distance constraint and stop-loss transform

Theorem (Cai et al. (2022b))

Take k ≥ 1 and q = (1− 1/k)−1.

(i) The worst-case risk measures value is

sup
{
ρh((XG − d)+) : Wk(G, F ) ≤ ε

}
= max

β∈[0,1]

{∫ 1

0

γ1,β(u)F−1(u)du + ε‖γ1,β‖q − d‖γ1,β‖1

}
.

(ii) The worst-case distribution is given by

G−1(t) = F−1(t) + ε · (γ1,β∗(t))q−1

‖γ1,β∗‖q/kq

, 0 < t < 1.

where β∗ is the maximizer in (i).
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Model uncertainty and applications in insurance design

3. Worst-case scenario with transform

Wasserstein distance constraint

Example - Expected shortfall

Take ρ = ESα for some α ∈ (0, 1).

(i) The worst-case value is

sup
{

ESα((XG − d)+) : Wk(G, F ) ≤ ε
}

=
1

1− α max
β∈[α,1]

{
(1− β)

(
ESβ(X F̂ )− d

)
+ ε(1− β)1/k̄

}
.

(ii) The worst-case distribution is

G−1(t) = F−1(t) + ε ·
(γ1,β∗(t))q−1

‖γ1,β∗‖q/kq

where γ1,β∗ = 1
1−α I[α∨β∗,1] and β∗ is the solution to the

maximization problem in (i).

19 / 37



Model uncertainty and applications in insurance design

3. Worst-case scenario with transform

Wasserstein distance constraint

Example - Wang’s premium

• Wang’s premium:

ρh(X) =

∫ ∞
0

(1− h(F (x))) du

where

h(u) = 1−Φ(Φ−1(1− u) + 0.5), 0 ≤ u ≤ 1

• Take Pareto loss distribution: (heavy tail, non-negative, etc)

F (x) = 1−
(

12

x + 12

)4

, x ≥ 0

• ε = 2 and k = 2, i.e., sup
{
ρh(`(XG)),W2(G, F ) ≤ 2

}
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Model uncertainty and applications in insurance design

3. Worst-case scenario with transform

Wasserstein distance constraint

Example - Wang’s premium

Figure: Worst-case distributions with stop-loss function.
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Model uncertainty and applications in insurance design

3. Worst-case scenario with transform

Wasserstein distance constraint

Limited-loss function

• Take `2(x) = max{x,M} = x ∧M for M < ess-sup(X)

• Worst-case risk measure

sup
{
ρh(XG ∧M) : Wk(G, F ) ≤ ε

}
• Define γ2,β = γ · I[0,β] which is not an increasing function

sup
G∈S

ρh(XG ∧M) = M + sup
G∈S

∫ G(d)

0

γ(u)
(
G−1(u)−M

)
du

= M + sup
G∈S

min
β∈[0,1]

∫ 1

0

γ2,β(u)
(
G−1(u)−M

)
du

= M + min
β∈[0,1]

sup
G∈S

∫ 1

0

γ2,β(u)
(
G−1(u)−M

)
du,

by the Min-Max theorem (e.g., Sion et al. (1958))
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Model uncertainty and applications in insurance design

3. Worst-case scenario with transform

Wasserstein distance constraint

Wasserstein distance constraint and limited-loss

transform

Theorem (Cai et al. (2022b))

Let k = 2. The worst-case distribution is given by

(F ∗)−1(u) =


F−1(u) + λ∗γ(u), for 0 < u ≤ θ∗,
M, for θ∗ < u ≤ F (M),

F−1(u), for F (M) < u < 1

where λ∗ > 0 and θ∗ ∈ (0, F (M)) satisfies W2(F ∗, F ) = ε.
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3. Worst-case scenario with transform

Wasserstein distance constraint

Example - Wang’s premium (cont’)

Figure: Worst-case distributions with limited loss function.
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Model uncertainty and applications in insurance design

3. Worst-case scenario with transform

Wasserstein distance constraint

Wasserstein distance constraint and limited stop-loss

transform

• Wang’s premium ρh with h(u) = 1−Φ(Φ−1(1− u) + 0.5).

• Exponential reference F1(x) = 1− e−x/4, x ≥ 0

• Pareto reference F2(x) = 1−
(

12
x+12

)4

• Limited stop-loss function

`(x) = max
{

(x − d)+,M
}

• Wang’s premium in the worst-case:

sup
{
ρh
(

max
{

(XG − d)+,M
})
,W2(G, Fi) ≤ ε

}
, i = 1, 2.
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3. Worst-case scenario with transform

Wasserstein distance constraint

Example - Worst-case Wang’s premium VS ε

• Fix d = 5 and M = 5
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Model uncertainty and applications in insurance design

3. Worst-case scenario with transform

Wasserstein distance constraint

Example - Worst-case Wang’s premium VS deductible

and limit

• Fix ε = 2
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Model uncertainty and applications in insurance design

3. Worst-case scenario with transform

Wasserstein distance plus moments constraints

Uncertainty set with Wasserstein distance and moments

constraints

• Take 2nd-order Wasserstein distance. Let X ∼ F with E[X] = µF
and var(X) = σ2

F . The uncertainty set is

S =
{
G : W2(F,G) ≤ ε, E[Y G ] = µ, var(Y G) = σ2

}
,

• It is not necessary to assume µF = µ and σ2
F = σ2. Note

ε2 ≥ (µ− µF )2 + (σ − σF )2 ⇒ S 6= ∅.
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Model uncertainty and applications in insurance design

3. Worst-case scenario with transform

Wasserstein distance plus moments constraints

Isotonic Projection: For h ∈ L2(0, 1), let

h↑ = arg min
k∈K

||h − k ||2,

where K =

{
k : (0, 1) 7→ R

∣∣∣∣∫ 1

0

k(u)2du <∞, k non-decreasing

}
.

Notation

• Denote γ1,β(u) := γ(u)1[β,1](u), for u ∈ [0, 1], and the isotonic

Projection for γ1,β + λF−1 for some λ ≥ 0 as

h↑1,β,λ = arg min
h∈K

||h − γ1,β − λF−1||2.

• Denote γ2,β(u) := γ(u)1[0,β](u), for u ∈ [0, 1], and the isotonic

Projection for γ2,β + λF−1 for some λ ≥ 0 as

h↑2,β,λ = arg min
h∈K

||h − γ2,β − λF−1||2.
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3. Worst-case scenario with transform

Wasserstein distance plus moments constraints

Wasserstein distance plus moments constraints and

stop-loss transform

Theorem (Cai et al. (2022a))

Consider the worst-case problem supG∈S ρh
(

(Y G − d)+

)
.

The quantile function of the worst-case distribution is

G−1
β∗ (u) = µ+ σ

(
h↑1,β∗,λ(u)− aβ∗,λ

bβ∗,λ

)
, 0 < u < 1,

where aβ∗,λ = E[h↑1,β∗,λ(U)], bβ∗,λ =
√

var(h↑1,β∗,λ(U)), λ > 0 is

determined uniquely by the distance constraint W2(F,Gβ∗) = ε, and

β∗ = arg max
β∈[0,1]

∫ 1

0

γ1,β(u)
(
G−1
β (u)− d

)
du.
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3. Worst-case scenario with transform

Wasserstein distance plus moments constraints

Example – Expected shortfall

Assume the reference distribution is F (x) = 1− e−x/5, µ = σ = 5,

ε = 1, and ρh = ES0.9.
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3. Worst-case scenario with transform

Wasserstein distance plus moments constraints

Wasserstein distance plus moments constraints and

limited-loss transform

Theorem (Cai et al. (2022a))

Consider the worst-case problem supG∈S ρh
(
Y G ∧M

)
.

The quantile function of the worst-case distribution is

F−1
β∗ (u) = µ+ σ

(
h↑2,β∗,λ(u)− aβ∗,λ

bβ∗,λ

)
, 0 < u < 1,

where aβ∗,λ = E[h↑2,β∗,λ(U)], bβ∗,λ =
√

var(h↑2,β∗,λ(U)), λ > 0 is

determined uniquely by the distance constraint W2(F, Fβ∗) = ε, and

β∗ = arg min
β∈[0,1]

∫ β

0

γ2,β(u)
(
F−1
β (u)− d

)
du.
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3. Worst-case scenario with transform

Wasserstein distance plus moments constraints

Example – Expected shortfall

Assume the reference distribution is F (x) = 1− e−x/5, µ = σ = 5,

ε = 1, and ρh = ES0.9.
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Conclusion and Reference

Summary

In this talk we discuss multiple model uncertainty models

• Distortion risk measure

• With or without transform

◦ Stop-loss, limited-loss

• Wasserstein distance, moments contraints

Future works

• Other risk measures

• General transformation

• Various uncertainty sets: likelihood ratio, KL-divergent, etc.

• Novel techniques to characterize worst-case distribution and

worst-case risk measure value
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