Gaussian Process-Based Mortality Monitoring using Multivariate Cumulative Sum Procedures

Karim Barigou

Stéphane Loisel Yahia Salhi

AFRIC 2023

karim.barigou@act.ulaval.ca

www.karimbarigou.com

July 25, 2023

Faculté des sciences et de génie École d'actuariat

Outline

- 1 Introduction
- 2 GP-based mortality forecasting
- 3 Online monitoring via the MCUSUM algorithm
 - Change of level detection
 - Change of trend detection
- 4 Monitoring longevity and mortality risks: Applications to real mortality data
- 5 Simulation study: Comparison MCUSUM and CUSUM charts
- 6 Conclusion

Monitoring insurance processes

Monitoring mortality rates is crucial for the risk management of life insurance.

Challenges:

- Quickest detection: In a rapidly changing environment, actuarial assumptions should be monitored quickly and efficiently.
 - → Real-time sequential detection
- Correlation: Mortality data often exhibit interdependencies between different age groups or cohorts.
 - → Gaussian Process (GP) regression
- Multivariate detection: Univariate detection methods ignore the complex dependence structure, limiting their effectiveness.
 - ightarrow MCUSUM algorithm

Monitoring mortality rates is crucial for the risk management of life insurance.

Challenges:

- Quickest detection: In a rapidly changing environment, actuarial assumptions should be monitored quickly and efficiently.
 - \rightarrow Real-time sequential detection
- **Correlation:** Mortality data often exhibit interdependencies between different age groups or cohorts.
 - → Gaussian Process (GP) regression
- Multivariate detection: Univariate detection methods ignore the complex dependence structure, limiting their effectiveness.
 - \rightarrow MCUSUM algorithm

-Introduction

Proposed approach:

- ▶ Forecasting: Mortality forecasting based on GP regression.
- MCUSUM monitoring: Tracks differences between predicted and observed mortality rates, enabling real-time change detection.
- Which change?
 - Change of level by tracking mortality rates.
 - ▶ Change of trend by tracking mortality improvements.
- Empirical analysis for France, Japan, Canada, and the USA.
- The MCUSUM shows quicker detection to univariate alternatives that ignore dependence.

Gaussian process for mortality forecasting

- Training set: (\boldsymbol{x}^i, y^i) (i = 1, ..., n).
 - ▶ In our case: $x^i = (x_{\text{age}}^i, x_{\text{vear}}^i)$ and $y^i = \log(D^i/E^i)$.
 - ▶ Age: M age-groups, e.g. $z_1 = [50; 55); z_2 = [55; 60); ...; z_M = [85; 90).$
 - ► *T* years: [1980,2020].
- Gaussian process:

$$f(\mathbf{x}) \sim \mathcal{N}\left(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x})\right),$$

where $k(\boldsymbol{x}, \boldsymbol{x})$ is the covariance matrix.

- Completely characterized by mean function m(x) and covariance/kernel function k(x, x').
- Key reference: Ludkovski et al. (2018).

Gaussian process for mortality forecasting

- GP posterior distribution is multivariate normal.
- Therefore, predicted log death rates are multivariate normal, i.e.

$$egin{aligned} oldsymbol{y^t} &:= \log \left(oldsymbol{\mu_t}
ight) \ &\sim \mathcal{N}(oldsymbol{m_t}, oldsymbol{\Sigma_t}) \end{aligned}$$

for any prediction year $t = T + 1, \dots, T + N$.

■ Monitoring central log death rates → Monitoring the mean of a multivariate normal process.

Gaussian process for mortality forecasting

- GP posterior distribution is multivariate normal.
- Therefore, predicted log death rates are multivariate normal, i.e.

$$egin{aligned} oldsymbol{y^t} &:= \log \left(oldsymbol{\mu_t}
ight) \ &\sim \mathcal{N}(oldsymbol{m_t}, oldsymbol{\Sigma_t}) \end{aligned}$$

for any prediction year $t = T + 1, \dots, T + N$.

■ Monitoring central log death rates → Monitoring the mean of a multivariate normal process.

The MCUSUM for multivariate normal

- Sequential procedure for detecting a change in a process based on likelihood ratios.
- Observing a sequence $y = (y^t)_{t \ge 1}$ with unknown change point τ :

$$\mathbf{y}^t \sim F_1, \quad 1 \le t \le \tau,$$

 $\sim F_2, \quad \tau + 1 \le t.$

CUSUM algorithm signals change when:

$$S_{t} = \max \left(S_{t-1} + \log \frac{f_{2}\left(\boldsymbol{y^{t}}\right)}{f_{1}\left(\boldsymbol{y^{t}}\right)}, 0 \right) > L,$$

where f_1 and f_2 are the density functions, and L is a fixed threshold.

The MCUSUM for multivariate normal (continued)

- For mortality monitoring, log death rates follow
 - ▶ In-control process: $\mathcal{N}(\mu_1, \Sigma)$.
 - Out-of-control process: $\mathcal{N}(\mu_2, \Sigma)$.
- The MCUSUM is

$$S_t = \max \left(S_{t-1} + (\boldsymbol{\mu_2} - \boldsymbol{\mu_1})' \boldsymbol{\Sigma}^{-1} \left(\boldsymbol{y^t} - \boldsymbol{\mu_1} \right) - \frac{1}{2} (\boldsymbol{\mu_2} - \boldsymbol{\mu_1})' \boldsymbol{\Sigma}^{-1} \left(\boldsymbol{\mu_2} - \boldsymbol{\mu_1} \right), 0 \right).$$

What type of change?

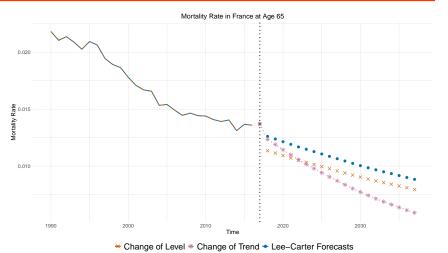


Figure: Mortality rate at age 65 in France with Lee-Carter forecasts, change of level and change of trend with a change point in 2017.

Change of level Detection

 The change-point model for level change detection can be expressed as

$$\mathbb{E}\left[\log(oldsymbol{\mu_t})
ight] \sim egin{dcases} oldsymbol{m_t} & ext{for } i=1,\ldots, au \ \overline{oldsymbol{m_t}} & ext{for } i= au+1,\ldots \end{cases}$$

where e.g. $\overline{m_t} = m_t + \log(\alpha) \mathbf{1}$ with $\alpha = 0.9$ (longevity risk).

The generalized MCUSUM is defined by:

$$S_{t} = \max \left(S_{t-1} + (\overline{m_{t}} - m_{t})' \Sigma_{t}^{-1} (y^{t} - m_{t}) - \frac{1}{2} (\overline{m_{t}} - m_{t})' \Sigma_{t}^{-1} (\overline{m_{t}} - m_{t}), 0\right),$$

where

- 1 y^t is the vector of observed log death rates
- $oxed{2}$ m_t and Σ_t are the mean and covariance from GP-based for

Change of level Detection

 The change-point model for level change detection can be expressed as

$$\mathbb{E}\left[\log(oldsymbol{\mu_t})
ight] \sim egin{dcases} oldsymbol{m_t} & ext{for } i=1,\ldots, au \ \overline{oldsymbol{m_t}} & ext{for } i= au+1,\ldots \end{cases}$$

where e.g. $\overline{m_t} = m_t + \log(\alpha) \mathbf{1}$ with $\alpha = 0.9$ (longevity risk).

■ The generalized MCUSUM is defined by:

$$S_{t} = \max \left(S_{t-1} + (\overline{m_{t}} - m_{t})' \Sigma_{t}^{-1} (y^{t} - m_{t}) - \frac{1}{2} (\overline{m_{t}} - m_{t})' \Sigma_{t}^{-1} (\overline{m}_{t} - m_{t}), 0\right),$$

where

- 1 y^t is the vector of observed log death rates.
- $m{2}$ m_t and Σ_t are the mean and covariance from GP-based forecasts,

Change of trend detection

 The change-point model for trend change detection can then be expressed as

$$\mathbb{E}\left[\Delta\log(oldsymbol{\mu_t})
ight] \sim \left\{egin{array}{ll} oldsymbol{m_t^I} & ext{for } i=1,\ldots, au \ oldsymbol{m_t^I} & ext{for } i= au+1,\ldots \end{array}
ight.$$

where

- **1** Mortality improvements: $\Delta \log(\mu_t) = \log(\mu_t) \log(\mu_{t-1})$
- **2** Trend change: $\overline{\boldsymbol{m}}_t^I = \log(\exp(\boldsymbol{m}_t^I) \alpha)$
- \blacksquare How to fix the threshold L?

$$\mathbb{P}\left[\max_{1\leq i\leq T} S_i \geq L \mid \text{no change}\right] = \alpha,$$

determined by simulations

Change of trend detection

 The change-point model for trend change detection can then be expressed as

$$\mathbb{E}\left[\Delta\log(oldsymbol{\mu_t})
ight] \sim \left\{egin{array}{ll} oldsymbol{m_t^I} & ext{for } i=1,\ldots, au \ oldsymbol{m_t^I} & ext{for } i= au+1,\ldots \end{array}
ight.$$

where

- **1** Mortality improvements: $\Delta \log(\mu_t) = \log(\mu_t) \log(\mu_{t-1})$
- **2** Trend change: $\overline{\boldsymbol{m}}_t^I = \log(\exp(\boldsymbol{m}_t^I) \alpha)$
- How to fix the threshold *L*?

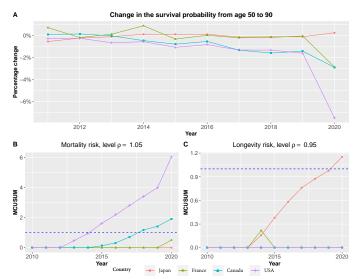
$$\mathbb{P}\left[\max_{1\leq i\leq T} S_i \geq L \mid \text{no change}\right] = \alpha,$$

determined by simulations.

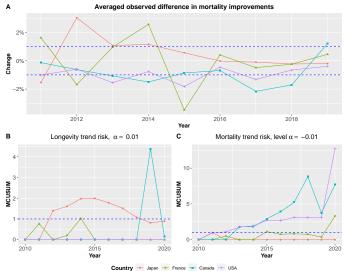
Empirical analysis

- Countries: France, Canada, USA and Japan.
- Ages: 50-89 by 5-year age tranches.
- Years:
 - Estimation: 1991-2010.
 - 2 Detection: 2011-2020.
- Detection types:
 - 1 + /- 5% in the level change.
 - 2 + /- 1% in the trend change.
- False alarm probability: 1%.

Empirical analysis: change of level



Empirical analysis: change of trend



What is the added value of the MCUSUM?

Standard age-period-cohort models assume perfect correlation, e.g. for the Lee-Carter model:

$$\log(\mu_{x,t}) = \alpha_x + \beta_x \kappa_t,$$

- \Rightarrow The sum of log death rates across age is a comonotonic sum driven by κ_t .
- What is the **loss in detection performance** assuming comonotonicity between age classes?
 - ⇒ **Detection performance:** Average Run Length (ARL) for a given false alarm probability.

What is the added value of the MCUSUM?

Standard age-period-cohort models assume perfect correlation, e.g. for the Lee-Carter model:

$$\log(\mu_{x,t}) = \alpha_x + \beta_x \kappa_t,$$

- \Rightarrow The sum of log death rates across age is a comonotonic sum driven by $\kappa_t.$
- What is the loss in detection performance assuming comonotonicity between age classes?
 - ⇒ **Detection performance:** Average Run Length (ARL) for a given false alarm probability.

What is the added value of the MCUSUM?

Standard age-period-cohort models assume perfect correlation, e.g. for the Lee-Carter model:

$$\log(\mu_{x,t}) = \alpha_x + \beta_x \kappa_t,$$

- \Rightarrow The sum of log death rates across age is a comonotonic sum driven by κ_t .
- What is the loss in detection performance assuming comonotonicity between age classes?
 - ⇒ **Detection performance:** Average Run Length (ARL) for a given false alarm probability.

The comonomotonic CUSUM is defined as

$$S_t^c = \max \left(S_{t-1}^c + (\overline{\mu}_t - \mu_t) \frac{(s_t - \mu_t)}{\sigma_t} - \frac{1}{2} \frac{(\overline{\mu}_t - \mu_t)^2}{\sigma_t}, 0 \right),$$

with

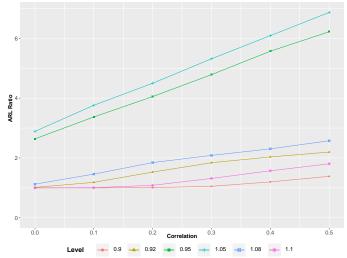
$$\mu_t = \sum_{x=1}^{M} m_{i,t} \qquad \sigma_t = \sum_{x=1}^{M} \sigma_{i,t}$$

$$\overline{\mu}_t = \mu_t + M \log(\alpha) \quad s_t = \sum_{x=1}^{M} y_{i,t}$$

with $m_{i,t}$ and $\sigma_{i,t}$, the mean and standard deviations of the *i*-th component of the log death rates vector $\mathbf{y_t} = (y_{1,t}, \dots, y_{M,t})$.

Comparison of the MCUSUM and C-CUSUM charts

The ARL comparison of MCUSUM and C-CUSUM methods when correlations are present



- GP-based mortality forecasts combined with the MCUSUM detection rule provide several benefits:
 - Capture the dependence between age classes.
 - **2** Efficient real-time multivariate monitoring for e.g.
 - ★ Change of level.
 - Change of trend.
 - Detection of longevity risk in Japan and mortality risk in USA and Canada over the 10-year period 2011-2020.
 - 4 Outperformance compared to univariate control charts that ignore the dependence structure.

Thank you for your attention! Any questions?

Conclusion

- GP-based mortality forecasts combined with the MCUSUM detection rule provide several benefits:
 - 1 Capture the dependence between age classes.
 - **2** Efficient real-time multivariate monitoring for e.g.
 - ★ Change of level.
 - * Change of trend.
 - Detection of longevity risk in Japan and mortality risk in USA and Canada over the 10-year period 2011-2020.
 - 4 Outperformance compared to univariate control charts that ignore the dependence structure.

Thank you for your attention! Any questions?

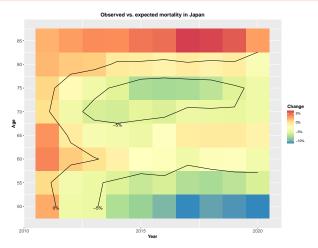


Figure: Percentage change between observed and GP-predicted death rates by age tranches for Japanese males.

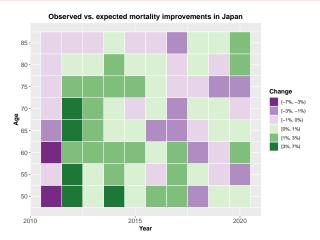


Figure: Difference between observed and GP-predicted mortality improvement rates by age tranches for Japanese Males.

	[50,55)	[55,60)	[60,65)	[65,70)		[85,90)
[50; 55)	1	ρ	$\rho/2$	0	0	0
[55; 60)	ho	1	ho	ho/2	0	0
[60,65)	ho/2	ho	1	ho	$\rho/2$	0
[65,70)	0	ho/2	ho	1	ho	ho/2
	0	0	ho/2	ho	1	ho
[85; 90).	0	0	0	ho/2	ρ	1

Table: Correlation matrix between age tranches used for the simulation study.

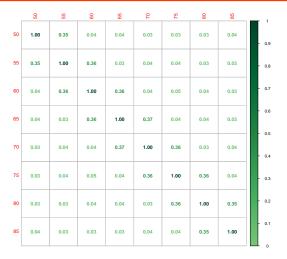


Figure: Estimated correlation matrix for Japanese male death rates in 2011.

-Appendix

Ludkovski, M., Risk, J. & Zail, H. (2018), 'Gaussian process models for mortality rates and improvement factors', ASTIN Bulletin: The Journal of the IAA 48(3), 1307–1347.

