$\mathrm{UiO}:$ Department of Mathematics University of Oslo

Change of measure in a Heston-Hawkes stochastic volatility model

Actuarial, Finance, Risk and Insurance Congress Victoria Falls, Zimbabwe

N:ELS HENRIK ABEL

Oriol Zamora Font

Joint work with David R. Baños and Salvador Ortiz-Latorre
SCROLLER project

Table of contents

(1) Stochastic volatility model
(2) Change of measure
(3) Conclusions

Stochastic volatility model

- $T>0$ fixed time horizon.

Stochastic volatility model

- $T>0$ fixed time horizon.
- $(\Omega, \mathcal{A}, \mathbb{P})$ complete probability space.

Stochastic volatility model

- $T>0$ fixed time horizon.
- $(\Omega, \mathcal{A}, \mathbb{P})$ complete probability space.
- (B, W) two-dimensional standard Brownian motion.

Stochastic volatility model

- $T>0$ fixed time horizon.
- $(\Omega, \mathcal{A}, \mathbb{P})$ complete probability space.
- (B, W) two-dimensional standard Brownian motion.
- $N=\left\{N_{t}, t \in[0, T]\right\}$ Hawkes process: self-exciting counting process with stochastic intensity and exponential kernel given by

$$
\lambda_{t}=\lambda_{0}+\alpha \int_{0}^{t} e^{-\beta(t-s)} d N_{s}, \quad \text { equivalently, } \quad d \lambda_{t}=-\beta\left(\lambda_{t}-\lambda_{0}\right) d t+\alpha d N_{t}
$$

where $\lambda_{0}, \alpha, \beta>0$ and the stability condition is satisfied

$$
\alpha \int_{0}^{\infty} e^{-\beta s} d s=\frac{\alpha}{\beta}<1 .
$$

Intensity of a Hawkes process

Hawkes process

Stochastic volatility model

- $\left\{J_{i}\right\}_{i \geq 1}$ sequence of i.i.d, strictly positive and integrable random variables.

Stochastic volatility model

- $\left\{J_{i}\right\}_{i \geq 1}$ sequence of i.i.d, strictly positive and integrable random variables.
- $L=\left\{L_{t}, t \in[0, T]\right\}$ compound Hawkes process given by

$$
L_{t}=\sum_{i=1}^{N_{t}} J_{i}
$$

Stochastic volatility model

- $\left\{J_{i}\right\}_{i \geq 1}$ sequence of i.i.d, strictly positive and integrable random variables.
- $L=\left\{L_{t}, t \in[0, T]\right\}$ compound Hawkes process given by

$$
L_{t}=\sum_{i=1}^{N_{t}} J_{i}
$$

- $(B, W), N$ and $\left\{J_{i}\right\}_{i \geq 1}$ are independent.

Stochastic volatility model

- $\left\{J_{i}\right\}_{i \geq 1}$ sequence of i.i.d, strictly positive and integrable random variables.
- $L=\left\{L_{t}, t \in[0, T]\right\}$ compound Hawkes process given by

$$
L_{t}=\sum_{i=1}^{N_{t}} J_{i}
$$

- $(B, W), N$ and $\left\{J_{i}\right\}_{i \geq 1}$ are independent.
- (N, λ) is a Markov process.

Stochastic volatility model

- $\left\{J_{i}\right\}_{i \geq 1}$ sequence of i.i.d, strictly positive and integrable random variables.
- $L=\left\{L_{t}, t \in[0, T]\right\}$ compound Hawkes process given by

$$
L_{t}=\sum_{i=1}^{N_{t}} J_{i}
$$

- $(B, W), N$ and $\left\{J_{i}\right\}_{i \geq 1}$ are independent.
- (N, λ) is a Markov process.
- N is not a Lévy process.

Stochastic volatility model

- $\left\{J_{i}\right\}_{i \geq 1}$ sequence of i.i.d, strictly positive and integrable random variables.
- $L=\left\{L_{t}, t \in[0, T]\right\}$ compound Hawkes process given by

$$
L_{t}=\sum_{i=1}^{N_{t}} J_{i}
$$

- $(B, W), N$ and $\left\{J_{i}\right\}_{i \geq 1}$ are independent.
- (N, λ) is a Markov process.
- N is not a Lévy process.
- We consider the joint and minimally augmented filtration

$$
\mathcal{F}=\left\{\mathcal{F}_{t}=\mathcal{F}_{t}^{(B, W)} \vee \mathcal{F}_{t}^{L}, t \in[0, T]\right\} .
$$

Stochastic volatility model

- Interest rate is assumed to be constant (can be taken time dependent and stochastic).

Stochastic volatility model

- Interest rate is assumed to be constant (can be taken time dependent and stochastic).
- Our model is given by

$$
\begin{aligned}
\frac{d S_{t}}{S_{t}} & =\mu_{t} d t+\sqrt{v_{t}}\left(\sqrt{1-\rho^{2}} d B_{t}+\rho d W_{t}\right) \\
d v_{t} & =-\kappa\left(v_{t}-\bar{v}\right) d t+\sigma \sqrt{v_{t}} d W_{t}+\eta d L_{t},
\end{aligned}
$$

where $S_{0}, v_{0}, \kappa, \bar{\nu}, \sigma, \eta>0, \rho \in(-1,1)$ and $\mu:[0, T] \rightarrow \mathbb{R}$ measurable and bounded.

- $L=\left\{L_{t}, t \in[0, T]\right\}$ is the compound Hakwes process.

Objective

- Prove that the stochastic volatility model is arbitrage-free and incomplete: existence of a family of risk neutral probability measures.

Objective

- Prove that the stochastic volatility model is arbitrage-free and incomplete: existence of a family of risk neutral probability measures.
- There are models where a risk neutral probability measure exists only up to an explosion time. See ${ }^{1}$ and ${ }^{2}$.

[^0]
Objective

- Prove that the stochastic volatility model is arbitrage-free and incomplete: existence of a family of risk neutral probability measures.
- There are models where a risk neutral probability measure exists only up to an explosion time. See ${ }^{1}$ and ${ }^{2}$.
- Risk exposures computed under \mathbb{Q} are basically arbitrary. See ${ }^{3}$.

[^1]
Objective

- Prove that the stochastic volatility model is arbitrage-free and incomplete: existence of a family of risk neutral probability measures.
- There are models where a risk neutral probability measure exists only up to an explosion time. See ${ }^{1}$ and ${ }^{2}$.
- Risk exposures computed under \mathbb{Q} are basically arbitrary. See ${ }^{3}$.
- The passage from \mathbb{P} to \mathbb{Q} and vice versa is necessary and not negligible.

[^2]
Heston model

- Our model is given by

$$
\begin{aligned}
\frac{d S_{t}}{S_{t}} & =\mu_{t} d t+\sqrt{v_{t}}\left(\sqrt{1-\rho^{2}} d B_{t}+\rho d W_{t}\right) \\
d v_{t} & =-k\left(v_{t}-\bar{v}\right) d t+\sigma \sqrt{v_{t}} d W_{t}+\eta d L_{t}
\end{aligned}
$$

Heston model

- Our model is given by

$$
\begin{aligned}
\frac{d S_{t}}{S_{t}} & =\mu_{t} d t+\sqrt{v_{t}}\left(\sqrt{1-\rho^{2}} d B_{t}+\rho d W_{t}\right) \\
d v_{t} & =-k\left(v_{t}-\bar{v}\right) d t+\sigma \sqrt{v_{t}} d W_{t}+\eta d L_{t}
\end{aligned}
$$

- Let $\widetilde{v}=\left\{\widetilde{v}_{t}, t \in[0, T]\right\}$ be the standard Heston variance, that is,

$$
d \widetilde{v}_{t}=-\kappa\left(\widetilde{v}_{t}-\bar{v}\right) d t+\sigma \sqrt{\widetilde{v}_{t}} d W_{t}
$$

Heston model

- Our model is given by

$$
\begin{aligned}
\frac{d S_{t}}{S_{t}} & =\mu_{t} d t+\sqrt{v_{t}}\left(\sqrt{1-\rho^{2}} d B_{t}+\rho d W_{t}\right) \\
d v_{t} & =-\kappa\left(v_{t}-\bar{v}\right) d t+\sigma \sqrt{v_{t}} d W_{t}+\eta d L_{t}
\end{aligned}
$$

- Let $\widetilde{v}=\left\{\widetilde{v}_{t}, t \in[0, T]\right\}$ be the standard Heston variance, that is,

$$
d \widetilde{v}_{t}=-k\left(\widetilde{v}_{t}-\bar{v}\right) d t+\sigma \sqrt{\widetilde{v}_{t}} d W_{t}
$$

- We assume the Feller condition $2 \kappa \bar{v} \geq \sigma^{2} \Longrightarrow \widetilde{v}$ is a strictly positive process.

Heston model

- Our model is given by

$$
\begin{aligned}
\frac{d S_{t}}{S_{t}} & =\mu_{t} d t+\sqrt{v_{t}}\left(\sqrt{1-\rho^{2}} d B_{t}+\rho d W_{t}\right) \\
d v_{t} & =-\kappa\left(v_{t}-\bar{v}\right) d t+\sigma \sqrt{v_{t}} d W_{t}+\eta d L_{t}
\end{aligned}
$$

- Let $\widetilde{v}=\left\{\widetilde{v}_{t}, t \in[0, T]\right\}$ be the standard Heston variance, that is,

$$
d \widetilde{v}_{t}=-\kappa\left(\widetilde{v}_{t}-\bar{v}\right) d t+\sigma \sqrt{\widetilde{v}_{t}} d W_{t}
$$

- We assume the Feller condition $2 \kappa \bar{v} \geq \sigma^{2} \Longrightarrow \widetilde{v}$ is a strictly positive process.
- By a slight variation of the comparison theorem,

$$
\mathbb{P}\left(\widetilde{v}_{t} \leq v_{t} \forall t \in[0, T]\right)=1 \Longrightarrow v \text { is a strictly positive process. }
$$

Change of measure

- Let $a \in \mathbb{R}$ and define the process $\left(B^{\mathbb{Q}(a)}, W^{\mathbb{Q}(a)}\right)=\left\{\left(B_{t}^{\mathbb{Q}(a)}, W_{t}^{\mathbb{Q}(a)}\right), t \in[0, T]\right\}$ by

$$
d B_{t}^{\mathbb{Q}(a)}=d B_{t}+\theta_{t}^{(a)} d t \quad \text { and } \quad d W_{t}^{\mathbb{Q}(a)}=d W_{t}+a \sqrt{v_{t}} d t .
$$

where

$$
\theta_{t}^{(a)}:=\frac{1}{\sqrt{1-\rho^{2}}}\left(\frac{\mu_{t}-r}{\sqrt{v_{t}}}-a \rho \sqrt{v_{t}}\right)
$$

and $a \sqrt{v_{t}}$ are the market price of risk processes.

Change of measure

- Let $a \in \mathbb{R}$ and define the process $\left(B^{\mathbb{Q}(a)}, W^{\mathbb{Q}(a)}\right)=\left\{\left(B_{t}^{\mathbb{Q}(a)}, W_{t}^{\mathbb{Q}(a)}\right), t \in[0, T]\right\}$ by

$$
d B_{t}^{\mathbb{Q}(a)}=d B_{t}+\theta_{t}^{(a)} d t \quad \text { and } \quad d W_{t}^{\mathbb{Q}(a)}=d W_{t}+a \sqrt{v_{t}} d t .
$$

where

$$
\theta_{t}^{(a)}:=\frac{1}{\sqrt{1-\rho^{2}}}\left(\frac{\mu_{t}-r}{\sqrt{v_{t}}}-a \rho \sqrt{v_{t}}\right)
$$

and $a \sqrt{v_{t}}$ are the market price of risk processes.

- The dynamics of the stock is given by

$$
\frac{d S_{t}}{S_{t}}=r d t+\sqrt{v_{t}}\left(\sqrt{1-\rho^{2}} d B_{t}^{\mathbb{Q}(a)}+\rho d W_{t}^{\mathbb{Q}(a)}\right)
$$

Change of measure

- To apply Girsanov's theorem we check that the process $X^{(a)}=\left\{X_{t}^{(a)}, t \in[0, T]\right\}$ defined by $X_{t}^{(a)}:=Y_{t}^{(a)} Z_{t}^{(a)}$ is a $(\mathcal{F}, \mathbb{P})$-martingale where

$$
Y_{t}^{(a)}:=\mathcal{E}_{t}\left\{-\int_{0} \theta_{s}^{(a)} d B_{s}\right\} \quad \text { and } \quad Z_{t}^{(a)}:=\mathcal{E}_{t}\left\{-a \int_{0} \sqrt{v_{s}} d W_{s}\right\} .
$$

Change of measure

- To apply Girsanov's theorem we check that the process $X^{(a)}=\left\{X_{t}^{(a)}, t \in[0, T]\right\}$ defined by $X_{t}^{(a)}:=Y_{t}^{(a)} Z_{t}^{(a)}$ is a $(\mathcal{F}, \mathbb{P})$-martingale where

$$
Y_{t}^{(a)}:=\mathcal{E}_{t}\left\{-\int_{0} \theta_{s}^{(a)} d B_{s}\right\} \quad \text { and } \quad Z_{t}^{(a)}:=\mathcal{E}_{t}\left\{-a \int_{0} \sqrt{v_{s}} d W_{s}\right\}
$$

- Since $X^{(a)}$ is a positive $(\mathcal{F}, \mathbb{P})$-local martingale with $X_{0}^{(a)}=1$, it is a $(\mathcal{F}, \mathbb{P})$-supermartingale and it is a $(\mathcal{F}, \mathbb{P})$-martingale if and only if

$$
\mathbb{E}\left[X_{T}^{(a)}\right]=1
$$

Change of measure

- To apply Girsanov's theorem we check that the process $X^{(a)}=\left\{X_{t}^{(a)}, t \in[0, T]\right\}$ defined by $X_{t}^{(a)}:=Y_{t}^{(a)} Z_{t}^{(a)}$ is a ($\left.\mathcal{F}, \mathbb{P}\right)$-martingale where

$$
Y_{t}^{(a)}:=\mathcal{E}_{t}\left\{-\int_{0} \theta_{s}^{(a)} d B_{s}\right\} \quad \text { and } \quad Z_{t}^{(a)}:=\mathcal{E}_{t}\left\{-a \int_{0} \sqrt{v_{s}} d W_{s}\right\}
$$

- Since $X^{(a)}$ is a positive $(\mathcal{F}, \mathbb{P})$-local martingale with $X_{0}^{(a)}=1$, it is a $(\mathcal{F}, \mathbb{P})$-supermartingale and it is a $(\mathcal{F}, \mathbb{P})$-martingale if and only if

$$
\mathbb{E}\left[X_{T}^{(a)}\right]=1
$$

- Since $Z_{T}^{(a)}$ is $\mathcal{F}_{T}^{W} \vee \mathcal{F}_{T}^{L}$-measurable

$$
\mathbb{E}\left[X_{T}^{(a)}\right]=\mathbb{E}\left[Y_{T}^{(a)} Z_{T}^{(a)}\right]=\mathbb{E}\left[\mathbb{E}\left[Y_{T}^{(a)} Z_{T}^{(a)} \mid \mathcal{F}_{T}^{W} \vee \mathcal{F}_{T}^{L}\right]\right]=\mathbb{E}\left[Z_{T}^{(a)} \mathbb{E}\left[Y_{T}^{(a)} \mid \mathcal{F}_{T}^{W} \vee \mathcal{F}_{T}^{L}\right]\right] .
$$

Change of measure

- Recall that

$$
\theta_{t}^{(a)}=\frac{1}{\sqrt{1-\rho^{2}}}\left(\frac{\mu_{t}-r}{\sqrt{v_{t}}}-a \rho \sqrt{v_{t}}\right) \quad \text { and } \quad Y_{t}^{(a)}=\mathcal{E}_{t}\left\{-\int_{0}^{\left.\theta_{s}^{(a)} d B_{s}\right\} ~ . ~}\right.
$$

Change of measure

- Recall that

$$
\theta_{t}^{(a)}=\frac{1}{\sqrt{1-\rho^{2}}}\left(\frac{\mu_{t}-r}{\sqrt{v_{t}}}-a \rho \sqrt{v_{t}}\right) \quad \text { and } \quad Y_{t}^{(a)}=\mathcal{E}_{t}\left\{-\int_{0}^{\left.\theta_{s}^{(a)} d B_{s}\right\} . . ~ . ~}\right.
$$

- Define $I^{(a)}=\int_{0}^{T}\left(\theta_{s}^{(a)}\right)^{2} d s$.

Change of measure

- Recall that

$$
\theta_{t}^{(a)}=\frac{1}{\sqrt{1-\rho^{2}}}\left(\frac{\mu_{t}-r}{\sqrt{v_{t}}}-a \rho \sqrt{v_{t}}\right) \quad \text { and } \quad Y_{t}^{(a)}=\mathcal{E}_{t}\left\{-\int_{0} \theta_{s}^{(a)} d B_{s}\right\}
$$

- Define $I^{(a)}=\int_{0}^{T}\left(\theta_{s}^{(a)}\right)^{2} d s$.

$$
\left.\begin{array}{l}
\theta^{(a)} \text { is }\left\{\mathcal{F}_{t}^{W} \vee \mathcal{F}_{t}^{L}\right\}_{t \in[0, T]} \text {-adapted } \\
\mathbb{P}\left[I^{(a)}<\infty\right]=1
\end{array}\right\} \Longrightarrow Y_{T}^{(a)} \left\lvert\, \mathcal{F}_{T}^{W} \vee \mathcal{F}_{T}^{L} \sim \operatorname{Lognormal}\left(-\frac{1}{2} I^{(a)}, I^{(a)}\right) .\right.
$$

Change of measure

- Recall that

$$
\theta_{t}^{(a)}=\frac{1}{\sqrt{1-\rho^{2}}}\left(\frac{\mu_{t}-r}{\sqrt{v_{t}}}-a \rho \sqrt{v_{t}}\right) \quad \text { and } \quad Y_{t}^{(a)}=\mathcal{E}_{t}\left\{-\int_{0}^{\left.\theta_{s}^{(a)} d B_{s}\right\} ~ . ~}\right.
$$

- Define $I^{(a)}=\int_{0}^{T}\left(\theta_{s}^{(a)}\right)^{2} d s$.
$\left.\begin{array}{l}\theta^{(a)} \text { is }\left\{\mathcal{F}_{t}^{W} \vee \mathcal{F}_{t}^{L}\right\}_{t \in[0, T]} \text {-adapted } \\ \mathbb{P}\left[I^{(a)}<\infty\right]=1\end{array}\right\} \Longrightarrow Y_{T}^{(a)} \left\lvert\, \mathcal{F}_{T}^{W} \vee \mathcal{F}_{T}^{L} \sim \operatorname{Lognormal}\left(-\frac{1}{2} I^{(a)}, I^{(a)}\right)\right.$.
- We obtain that

$$
\mathbb{E}\left[Y_{T}^{(a)} \mid \mathcal{F}_{T}^{W} \vee \mathcal{F}_{T}^{L}\right]=1 \Longrightarrow \mathbb{E}\left[X_{T}^{(a)}\right]=\mathbb{E}\left[Z_{T}^{(a)} \mathbb{E}\left[Y_{T}^{(a)} \mid \mathcal{F}_{T}^{W} \vee \mathcal{F}_{T}^{L}\right]\right]=\mathbb{E}\left[Z_{T}^{(a)}\right]
$$

Change of measure

- We need to check that $\mathbb{E}\left[Z_{T}^{(a)}\right]=1$.

Change of measure

- We need to check that $\mathbb{E}\left[Z_{T}^{(a)}\right]=1$.
- Recall that $Z_{t}^{(a)}=\mathcal{E}_{t}\left\{-a \int_{0} \sqrt{v_{s}} d W_{s}\right\}$.

Change of measure

- We need to check that $\mathbb{E}\left[Z_{T}^{(a)}\right]=1$.
- Recall that $Z_{t}^{(a)}=\mathcal{E}_{t}\left\{-a \int_{0} \sqrt{V_{s}} d W_{s}\right\}$.
- We want to use Novikov's condition

$$
\mathbb{E}\left[\exp \left(\frac{1}{2} a^{2} \int_{0}^{T} v_{u} d u\right)\right]<\infty ?
$$

Change of measure

- We need to check that $\mathbb{E}\left[Z_{T}^{(a)}\right]=1$.
- Recall that $Z_{t}^{(a)}=\mathcal{E}_{t}\left\{-a \int_{0} \sqrt{v_{s}} d W_{s}\right\}$.
- We want to use Novikov's condition

$$
\mathbb{E}\left[\exp \left(\frac{1}{2} a^{2} \int_{0}^{T} v_{u} d u\right)\right]<\infty ?
$$

- Objective: What values, if any, $c>0$ satisfy

$$
\mathbb{E}\left[\exp \left(c \int_{0}^{T} v_{u} d u\right)\right]<\infty ?
$$

Change of measure

- In ${ }^{4}$ it is proved that the variance of the standard Heston model satisfies for $c \leq \frac{\kappa^{2}}{2 \sigma^{2}}$

$$
\mathbb{E}\left[\exp \left(c \int_{0}^{T} \widetilde{v}_{u} d u\right)\right] \leq \exp \left(-(\kappa \bar{v}) \Phi(0)-v_{0} \psi(0)\right)<\infty
$$

where Φ and ψ satisfy the following Riccati ODEs

$$
\begin{aligned}
\psi^{\prime}(t) & =\frac{\sigma^{2}}{2} \psi^{2}(t)+k \psi(t)+c \\
-\Phi^{\prime}(t) & =\psi(t) \\
\psi(T) & =\Phi(T)=0
\end{aligned}
$$

[^3] Stoch. Anal. (2006), Art. ID 18130, 13.

Change of measure

- Objective: What values, if any, $c>0$ satisfy

$$
\mathbb{E}\left[\exp \left(c \int_{0}^{T} v_{u} d u\right)\right]<\infty ?
$$

Change of measure

- Objective: What values, if any, c>0 satisfy

$$
\mathbb{E}\left[\exp \left(c \int_{0}^{T} v_{u} d u\right)\right]<\infty ?
$$

- We define the process $M=\{M(t), t \in[0, T]\}$ by

$$
M(t)=\exp \left(F(t)+G(t) v_{t}+H(t) \lambda_{t}+c \int_{0}^{t} v_{u} d u\right)
$$

for $F, G, H:[0, T] \rightarrow \mathbb{R}$ functions satisfying $F(T)=G(T)=H(T)=0$.

Change of measure

- Objective: What values, if any, c>0 satisfy

$$
\mathbb{E}\left[\exp \left(c \int_{0}^{T} v_{u} d u\right)\right]<\infty ?
$$

- We define the process $M=\{M(t), t \in[0, T]\}$ by

$$
M(t)=\exp \left(F(t)+G(t) v_{t}+H(t) \lambda_{t}+c \int_{0}^{t} v_{u} d u\right)
$$

for $F, G, H:[0, T] \rightarrow \mathbb{R}$ functions satisfying $F(T)=G(T)=H(T)=0$.

- Note that

$$
M(T)=\exp \left(c \int_{0}^{T} v_{u} d u\right)
$$

Change of measure

- Objective: What values, if any, c>0 satisfy

$$
\mathbb{E}\left[\exp \left(c \int_{0}^{T} v_{u} d u\right)\right]<\infty ?
$$

- We define the process $M=\{M(t), t \in[0, T]\}$ by

$$
M(t)=\exp \left(F(t)+G(t) v_{t}+H(t) \lambda_{t}+c \int_{0}^{t} v_{u} d u\right)
$$

for $F, G, H:[0, T] \rightarrow \mathbb{R}$ functions satisfying $F(T)=G(T)=H(T)=0$.

- Note that

$$
M(T)=\exp \left(c \int_{0}^{T} v_{u} d u\right)
$$

- $\mathbb{E}[M(T)]$ is exactly the expectation that we want to study.

Change of measure

- If there exist functions F, G and H such that M is a $(\mathcal{F}, \mathbb{P})$-local martingale, since it is non-negative, it will be a $(\mathcal{F}, \mathbb{P})$-supermartingale and then

$$
\mathbb{E}\left[\exp \left(c \int_{0}^{T} v_{u} d u\right)\right]=\mathbb{E}[M(T)] \leq M(0)=\exp \left(F(0)+G(0) v_{0}+H(0) \lambda_{0}\right)
$$

Change of measure

- If there exist functions F, G and H such that M is a $(\mathcal{F}, \mathbb{P})$-local martingale, since it is non-negative, it will be a $(\mathcal{F}, \mathbb{P})$-supermartingale and then

$$
\mathbb{E}\left[\exp \left(c \int_{0}^{T} v_{u} d u\right)\right]=\mathbb{E}[M(T)] \leq M(0)=\exp \left(F(0)+G(0) v_{0}+H(0) \lambda_{0}\right)
$$

- Applying Itô formula and equating all the drift terms to 0 we get that F, G and H must solve the following ODEs:

$$
\begin{aligned}
G^{\prime}(t) & =-\frac{1}{2} \sigma^{2} G^{2}(t)+\kappa G(t)-c \\
H^{\prime}(t) & =\beta H(t)-M_{J}(\eta G(t)) \exp (\alpha H(t))+1 \\
F^{\prime}(t) & =-\kappa \bar{v} G(t)-\beta \lambda_{0} H(t) \\
G(T) & =H(T)=F(T)=0
\end{aligned}
$$

where M_{J} is the m.g.f of J_{1}.

Change of measure

- Assumption: There exists $\epsilon_{J}>0$ such that M_{J} is well defined in $\left(-\infty, \epsilon_{J}\right)$ and it is the maximal domain in the sense that

$$
\lim _{t \rightarrow \epsilon_{j}^{-}} M_{J}(t)=\infty .
$$

Change of measure

- Assumption: There exists $\epsilon_{J}>0$ such that M_{J} is well defined in $\left(-\infty, \epsilon_{J}\right)$ and it is the maximal domain in the sense that

$$
\lim _{t \rightarrow \epsilon_{j}^{-}} M_{J}(t)=\infty .
$$

- If $J_{1} \sim \operatorname{Exponential}(\mu)$, then $\epsilon_{J}=\mu$.

Change of measure

- Assumption: There exists $\epsilon_{J}>0$ such that M_{J} is well defined in $\left(-\infty, \epsilon_{J}\right)$ and it is the maximal domain in the sense that

$$
\lim _{t \rightarrow \epsilon_{J}^{-}} M_{J}(t)=\infty
$$

- If $J_{1} \sim \operatorname{Exponential}(\mu)$, then $\epsilon_{J}=\mu$.
- Idea: Require that $M_{J}(\eta G(t))$ is well-defined for all $t \in[0, T]$ and bound the ODE of H from above and below by autonomous ODEs and impose that

$$
\sup _{t \in[0, T]} M_{J}(\eta G(t)) \leq \frac{\beta}{\alpha} \exp \left(\frac{\alpha}{\beta}-1\right) .
$$

to ensure existence of the solution on the interval $[0, T]$.

Change of measure

Theorem

For $c \leq \frac{\kappa^{2}}{2 \sigma^{2}}$, define $D(c):=\sqrt{\kappa^{2}-2 \sigma^{2} c}, \Lambda(c):=\frac{2 \eta c\left(e^{D(c) T}-1\right)}{D(c)-\kappa+(D(c)+\kappa) e^{D(c) T}}$ and

$$
c_{l}:=\sup \left\{c \leq \frac{\kappa^{2}}{2 \sigma^{2}}: \Lambda(c)<\epsilon_{J} \text { and } M_{J}(\Lambda(c)) \leq \frac{\beta}{\alpha} \exp \left(\frac{\alpha}{\beta}-1\right)\right\} .
$$

Then, $0<c_{l} \leq \frac{\kappa^{2}}{2 \sigma^{2}}$ and for $c<c_{l}$ the system of ODEs has a solution in $[0, T]$ and

$$
\mathbb{E}\left[\exp \left(c \int_{0}^{T} v_{u} d u\right)\right] \leq \exp \left(F(0)+G(0) v_{0}+H(0) \lambda_{0}\right)<\infty .
$$

Change of measure

Proposition

Define c_{s} by

$$
c_{s}=\min \left\{\frac{k \epsilon_{J}}{2 \eta}, \frac{\kappa}{2 \eta} M_{J}^{-1}\left(\frac{\beta}{\alpha} \exp \left(\frac{\alpha}{\beta}-1\right)\right), \frac{\kappa^{2}}{2 \sigma^{2}}\right\} .
$$

Then, $0<c_{s}<c_{l}$.

Change of measure

Proposition

Define c_{s} by

$$
c_{s}=\min \left\{\frac{\kappa \epsilon_{J}}{2 \eta}, \frac{\kappa}{2 \eta} M_{J}^{-1}\left(\frac{\beta}{\alpha} \exp \left(\frac{\alpha}{\beta}-1\right)\right), \frac{\kappa^{2}}{2 \sigma^{2}}\right\} .
$$

Then, $0<c_{s}<c_{l}$.

Example

If $J_{1} \sim \operatorname{Exponential}(\mu)$, then

$$
c_{s}=\min \left\{\frac{\kappa \mu}{2 \eta}\left(1-\frac{\alpha}{\beta} \exp \left(1-\frac{\alpha}{\beta}\right)\right), \frac{k^{2}}{2 \sigma^{2}}\right\} .
$$

Change of measure

- Recall that

$$
d B_{t}^{\mathbb{Q}(a)}=d B_{t}+\theta_{t}^{(a)} d t \quad \text { and } \quad d W_{t}^{\mathbb{Q}(a)}=d W_{t}+a \sqrt{v_{t}} d t .
$$

and we needed to check that

$$
\mathbb{E}\left[\exp \left(\frac{1}{2} a^{2} \int_{0}^{T} v_{u} d u\right)\right]<\infty
$$

Change of measure

- Recall that

$$
d B_{t}^{\mathbb{Q}(a)}=d B_{t}+\theta_{t}^{(a)} d t \quad \text { and } \quad d W_{t}^{\mathbb{Q}(a)}=d W_{t}+a \sqrt{v_{t}} d t
$$

and we needed to check that

$$
\mathbb{E}\left[\exp \left(\frac{1}{2} a^{2} \int_{0}^{T} v_{u} d u\right)\right]<\infty
$$

Theorem

The set

$$
\mathcal{E}:=\left\{\mathbb{Q}(a) \text { given by } \frac{d \mathbb{Q}(a)}{d \mathbb{P}}=X_{T}^{(a)} \text { with }|a|<\sqrt{2 c_{l}}\right\}
$$

is a set of equivalent local martingale measures.

Change of measure

- Let $\mathbb{Q}(a) \in \mathcal{E}$, the dynamics of S and v are given by

$$
\begin{aligned}
& \frac{d S_{t}}{S_{t}}=r d t+\sqrt{v_{t}}\left(\sqrt{1-\rho^{2}} d B_{t}^{\mathbb{Q}(a)}+\rho d W_{t}^{\mathbb{Q}(a)}\right), \\
& d v_{t}=-\kappa^{(a)}\left(v_{t}-\bar{v}^{(a)}\right) d t+\sigma \sqrt{v_{t}} d W_{t}^{\mathbb{Q}(a)}+\eta d L_{t},
\end{aligned}
$$

where $\kappa^{(a)}=\kappa+a \sigma$ and $\bar{v}^{(a)}=\frac{k \bar{v}}{k+a \sigma}$.

Change of measure

- Objective: Find a subset $\mathcal{E}_{m} \subset \mathcal{E}$ of equivalent martingale measures.

Change of measure

- Objective: Find a subset $\mathcal{E}_{m} \subset \mathcal{E}$ of equivalent martingale measures.
- After some computations, it boils down to check the following expectation

$$
\mathbb{E}^{\mathbb{Q}(a)}\left[\exp \left(\frac{\rho^{2}}{2} \int_{0}^{T} v_{u} d u\right)\right]<\infty
$$

Change of measure

- Objective: Find a subset $\mathcal{E}_{m} \subset \mathcal{E}$ of equivalent martingale measures.
- After some computations, it boils down to check the following expectation

$$
\mathbb{E}^{\mathbb{Q}(a)}\left[\exp \left(\frac{\rho^{2}}{2} \int_{0}^{T} v_{u} d u\right)\right]<\infty
$$

Theorem
If $\rho^{2}<c_{\text {l }}$, the set

$$
\mathcal{E}_{m}:=\left\{\mathbb{Q}(a) \in \mathcal{E}:|a|<\min \left\{\frac{\sqrt{2 c_{l}}}{2}, \sqrt{c_{l}-\rho^{2}}\right\}\right\}
$$

is a set of equivalent martingale measures.
The market is arbitrage-free and incomplete.

Conclusions

- We propose an extension of the well-known Heston model that incorporates the volatility clustering feature by adding a compound Hawkes process to the volatility.

Conclusions

- We propose an extension of the well-known Heston model that incorporates the volatility clustering feature by adding a compound Hawkes process to the volatility.
- We have proved that the model is arbitrage-free and incomplete by finding a family of risk neutral probability measures using the tractability of the exponential Hawkes.

Thank you for your attention!

Baños, D., Ortiz-Latorre, S. and Zamora, O. Change of measure in a Heston-Hawkes stochastic volatility model. 2022. arXiv: 2210.15343

UiO 8 Department of Mathematics
 University of Oslo

Oriol Zamora Font
Joint work with David R. Baños and Salvador Ortiz-Latorre
SCROLLER project
Change of measure in a Heston-Hawkes stochastic volatility model
Actuarial, Finance, Risk and Insurance Congress
Victoria Falls, Zimbabwe

[^0]: ${ }^{1}$ Bibby, B. and Sørensen, M. 'A hyperbolic diffusion model for stock prices'. In: Finance Stoch. 1 (1996), pp. 25-41.
 ${ }^{2}$ Rydberg, T. H. 'Generalized hyperbolic diffusion processes with applications in finance'. In: Math. Finance 9.2 (1999), pp. 183-201.

[^1]: ${ }^{1}$ Bibby, B. and Sørensen, M. 'A hyperbolic diffusion model for stock prices'. In: Finance Stoch. 1 (1996), pp. 25-41.
 ${ }^{2}$ Rydberg, T. H. 'Generalized hyperbolic diffusion processes with applications in finance'. In: Math. Finance 9.2 (1999), pp. 183-201.
 ${ }^{3}$ Stein, H. J. 'Fixing risk neutral risk measures'. In: Int. J. Theor. Appl. Finance 19.3 (2016), pp. 1650021, 28.

[^2]: ${ }^{1}$ Bibby, B. and Sørensen, M. 'A hyperbolic diffusion model for stock prices'. In: Finance Stoch. 1 (1996), pp. 25-41.
 ${ }^{2}$ Rydberg, T. H. ‘Generalized hyperbolic diffusion processes with applications in finance’. In: Math. Finance 9.2 (1999), pp. 183-201.
 ${ }^{3}$ Stein, H. J. 'Fixing risk neutral risk measures'. In: Int. J. Theor. Appl. Finance 19.3 (2016), pp. 1650021, 28.

[^3]: ${ }^{4}$ Wong, B. and Heyde, C. C. 'On changes of measure in stochastic volatility models'. In: J. Appl. Math.

