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Stochastic volatility model
• T > 0 fixed time horizon.

• (Ω,A,P) complete probability space.
• (B,W ) two-dimensional standard Brownian motion.
• N = {Nt , t ∈ [0,T ]} Hawkes process: self-exciting counting process with stochastic

intensity and exponential kernel given by

λt = λ0 + α
∫ t

0
e−β(t−s)dNs, equivalently, dλt = −β(λt − λ0)dt + αdNt ,

where λ0,α,β > 0 and the stability condition is satisfied

α
∫ ∞

0
e−βsds =

α
β < 1.
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Intensity of a Hawkes process

July 26th, 2023 3 / 23



Hawkes process
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Stochastic volatility model
• {Ji}i≥1 sequence of i.i.d, strictly positive and integrable random variables.

• L = {Lt , t ∈ [0,T ]} compound Hawkes process given by

Lt =

Nt∑
i=1

Ji .

• (B,W ),N and {Ji}i≥1 are independent.
• (N, λ) is a Markov process.
• N is not a Lévy process.
• We consider the joint and minimally augmented filtration

F = {Ft = F (B,W )
t ∨ FL

t , t ∈ [0,T ]}.
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Stochastic volatility model
• Interest rate is assumed to be constant (can be taken time dependent and

stochastic).

• Our model is given by

dSt

St
= μtdt +

√
vt

(√
1 − ρ2dBt + ρdWt

)
dvt = −κ (vt − v̄)dt + σ√vtdWt + ηdLt ,

where S0, v0, κ, v̄ ,σ, η > 0, ρ ∈ (−1, 1) and μ : [0,T ] → R measurable and bounded.
• L = {Lt , t ∈ [0,T ]} is the compound Hakwes process.
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Objective
• Prove that the stochastic volatility model is arbitrage-free and incomplete:

existence of a family of risk neutral probability measures.

• There are models where a risk neutral probability measure exists only up to an
explosion time. See 1 and 2.

• Risk exposures computed under Q are basically arbitrary. See 3.
• The passage from P to Q and vice versa is necessary and not negligible.

1Bibby, B. and Sørensen, M. ‘A hyperbolic diffusion model for stock prices’. In: Finance Stoch. 1 (1996),
pp. 25–41.

2Rydberg, T. H. ‘Generalized hyperbolic diffusion processes with applications in finance’. In: Math.
Finance 9.2 (1999), pp. 183–201.

3Stein, H. J. ‘Fixing risk neutral risk measures’. In: Int. J. Theor. Appl. Finance 19.3 (2016), pp. 1650021,
28.
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Heston model
• Our model is given by

dSt

St
= μtdt +

√
vt

(√
1 − ρ2dBt + ρdWt

)
dvt = −κ (vt − v̄)dt + σ√vtdWt + ηdLt .

• Let ṽ = {ṽt , t ∈ [0,T ]} be the standard Heston variance, that is,

dṽt = −κ
(
ṽt − v̄

)
dt + σ

√
ṽtdWt .

• We assume the Feller condition 2κv̄ ≥ σ2 =⇒ ṽ is a strictly positive process.
• By a slight variation of the comparison theorem,

P
(
ṽt ≤ vt ∀t ∈ [0,T ]

)
= 1 =⇒ v is a strictly positive process.
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Change of measure
• Let a ∈ R and define the process (BQ(a),WQ(a)) = {(BQ(a)

t ,WQ(a)
t ), t ∈ [0,T ]} by

dBQ(a)
t = dBt + θ(a)t dt and dWQ(a)

t = dWt + a
√

vtdt .

where

θ(a)t :=
1√

1 − ρ2

(μt − r√
vt

− aρ√vt

)
,

and a
√

vt are the market price of risk processes.

• The dynamics of the stock is given by

dSt

St
= rdt +

√
vt

(√
1 − ρ2dBQ(a)

t + ρdWQ(a)
t

)
.

July 26th, 2023 9 / 23



Change of measure
• Let a ∈ R and define the process (BQ(a),WQ(a)) = {(BQ(a)

t ,WQ(a)
t ), t ∈ [0,T ]} by

dBQ(a)
t = dBt + θ(a)t dt and dWQ(a)

t = dWt + a
√

vtdt .

where

θ(a)t :=
1√

1 − ρ2

(μt − r√
vt

− aρ√vt

)
,

and a
√

vt are the market price of risk processes.
• The dynamics of the stock is given by

dSt

St
= rdt +

√
vt

(√
1 − ρ2dBQ(a)

t + ρdWQ(a)
t

)
.

July 26th, 2023 9 / 23



Change of measure
• To apply Girsanov’s theorem we check that the process X (a) = {X (a)

t , t ∈ [0,T ]}
defined by X (a)

t := Y (a)
t Z (a)

t is a (F ,P)-martingale where

Y (a)
t := Et

{
−
∫ ·

0
θ(a)s dBs

}
and Z (a)

t := Et

{
−a
∫ ·

0

√
vsdWs

}
.

• Since X (a) is a positive (F ,P)-local martingale with X (a)
0 = 1, it is a

(F ,P)-supermartingale and it is a (F ,P)-martingale if and only if

E
[
X (a)

T

]
= 1.

• Since Z (a)
T is FW

T ∨ FL
T -measurable

E
[
X (a)

T

]
= E

[
Y (a)

T Z (a)
T

]
= E

[
E
[
Y (a)

T Z (a)
T |FW

T ∨ FL
T

]]
= E

[
Z (a)

T E
[
Y (a)

T |FW
T ∨ FL

T

]]
.
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Change of measure
• Recall that

θ(a)t =
1√

1 − ρ2

(μt − r√
vt

− aρ√vt

)
and Y (a)

t = Et

{
−
∫ ·

0
θ(a)s dBs

}
.

• Define I(a) =
∫ T

0 (θ(a)s )2ds.

θ(a) is {FW
t ∨ FL

t }t∈[0,T ]-adapted

P
[
I(a) < ∞

]
= 1

}
=⇒ Y (a)

T |FW
T ∨ FL

T ∼ Lognormal
(
−1

2
I(a), I(a)

)
.

• We obtain that

E
[
Y (a)

T |FW
T ∨ FL

T

]
= 1 =⇒ E

[
X (a)

T

]
= E

[
Z (a)

T E
[
Y (a)

T |FW
T ∨ FL

T

]]
= E

[
Z (a)

T

]
.
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Change of measure
• We need to check that E

[
Z (a)

T

]
= 1.

• Recall that Z (a)
t = Et

{
−a
∫ ·

0
√

vsdWs
}

.

• We want to use Novikov’s condition

E

[
exp

(
1
2

a2
∫ T

0
vudu

)]
< ∞?

• Objective: What values, if any, c > 0 satisfy

E

[
exp

(
c
∫ T

0
vudu

)]
< ∞?
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Change of measure
• In 4 it is proved that the variance of the standard Heston model satisfies for c ≤ κ2

2σ2

E

[
exp

(
c
∫ T

0
ṽudu

)]
≤ exp (−(κv̄)Φ(0)− v0ψ(0)) < ∞,

where Φ and ψ satisfy the following Riccati ODEs

ψ′(t) =
σ2

2
ψ2(t) + κψ(t) + c

−Φ′(t) = ψ(t)
ψ(T ) = Φ(T ) = 0.

4Wong, B. and Heyde, C. C. ‘On changes of measure in stochastic volatility models’. In: J. Appl. Math.
Stoch. Anal. (2006), Art. ID 18130, 13.
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Change of measure
• Objective: What values, if any, c > 0 satisfy

E

[
exp

(
c
∫ T

0
vudu

)]
< ∞?

• We define the process M = {M(t), t ∈ [0,T ]} by

M(t) = exp
(

F (t) + G(t)vt + H(t)λt + c
∫ t

0
vudu

)
,

for F ,G,H : [0,T ] → R functions satisfying F (T ) = G(T ) = H(T ) = 0.
• Note that

M(T ) = exp

(
c
∫ T

0
vudu

)
.

• E[M(T )] is exactly the expectation that we want to study.
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Change of measure
• If there exist functions F ,G and H such that M is a (F ,P)-local martingale, since it is

non-negative, it will be a (F ,P)-supermartingale and then

E

[
exp

(
c
∫ T

0
vudu

)]
= E[M(T )] ≤ M(0) = exp (F (0) + G(0)v0 + H(0)λ0) .

• Applying Itô formula and equating all the drift terms to 0 we get that F ,G and H must
solve the following ODEs:

G′(t) = −1
2
σ2G2(t) + κG(t)− c

H ′(t) = βH(t)− MJ (ηG(t))exp (αH(t)) + 1
F ′(t) = −κv̄G(t)− βλ0H(t)
G(T ) = H(T ) = F (T ) = 0.

where MJ is the m.g.f of J1.
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Change of measure
• Assumption: There exists ϵJ > 0 such that MJ is well defined in (−∞, ϵJ) and it is

the maximal domain in the sense that

lim
t→ϵ−J

MJ(t) = ∞.

• If J1 ∼ Exponential(μ), then ϵJ = μ.
• Idea: Require that MJ(ηG(t)) is well-defined for all t ∈ [0,T ] and bound the ODE of

H from above and below by autonomous ODEs and impose that

sup
t∈[0,T ]

MJ(ηG(t)) ≤ β
α exp

(α
β − 1

)
.

to ensure existence of the solution on the interval [0,T ].
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Change of measure

Theorem

For c ≤ κ2

2σ2 , define D(c) :=
√
κ2 − 2σ2c, Λ(c) :=

2ηc(eD(c)T−1)
D(c)−κ+(D(c)+κ)eD(c)T and

cl := sup
{

c ≤ κ2

2σ2 : Λ(c) < ϵJ and MJ (Λ(c)) ≤
β
α exp

(α
β − 1

)}
.

Then, 0 < cl ≤ κ2

2σ2 and for c < cl the system of ODEs has a solution in [0,T ] and

E

[
exp

(
c
∫ T

0
vudu

)]
≤ exp (F (0) + G(0)v0 + H(0)λ0) < ∞.
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Change of measure

Proposition

Define cs by

cs = min
{κϵJ

2η ,
κ

2ηM−1
J

(β
α exp

(α
β − 1

))
,
κ2

2σ2

}
.

Then, 0 < cs < cl .

Example

If J1 ∼ Exponential(μ), then

cs = min
{κμ

2η

(
1 − α

β exp
(

1 − α
β

))
,
κ2

2σ2

}
.
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Change of measure
• Recall that

dBQ(a)
t = dBt + θ(a)t dt and dWQ(a)

t = dWt + a
√

vtdt .

and we needed to check that

E

[
exp

(
1
2

a2
∫ T

0
vudu

)]
< ∞.

Theorem

The set

E :=

{
Q(a) given by

dQ(a)
dP

= X (a)
T with |a| <

√
2cl

}
is a set of equivalent local martingale measures.
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Change of measure
• Let Q(a) ∈ E , the dynamics of S and v are given by

dSt

St
= rdt +

√
vt

(√
1 − ρ2dBQ(a)

t + ρdWQ(a)
t

)
,

dvt = −κ(a)
(

vt − v̄ (a)
)

dt + σ√vtdWQ(a)
t + ηdLt ,

where κ(a) = κ+ aσ and v̄ (a) = kv̄
k+aσ .
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Change of measure
• Objective: Find a subset Em ⊂ E of equivalent martingale measures.

• After some computations, it boils down to check the following expectation

EQ(a)

[
exp

(
ρ2

2

∫ T

0
vudu

)]
< ∞.

Theorem

If ρ2 < cl , the set

Em :=

{
Q(a) ∈ E : |a| < min

{√
2cl

2
,
√

cl − ρ2
}}

is a set of equivalent martingale measures.
The market is arbitrage-free and incomplete.
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Conclusions
• We propose an extension of the well-known Heston model that incorporates the

volatility clustering feature by adding a compound Hawkes process to the volatility.

• We have proved that the model is arbitrage-free and incomplete by finding a
family of risk neutral probability measures using the tractability of the exponential
Hawkes.
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Thank you for your attention!

Baños, D., Ortiz-Latorre, S. and Zamora, O. Change of measure in a Heston-Hawkes
stochastic volatility model. 2022. arXiv: 2210.15343
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