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A look into model uncertainty
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A look into model uncertainty
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Already dealt with in Bernard, Kazzi, and Vanduffel [2023a], and
Bernard, Kazzi, and Vanduffel [2023b].



A look into model uncertainty for risks
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— We need to incorporate information on some robust quantities
to assess model uncertainty in heavy-tailed distributions



1. Problem formulation
2. A taste of the solution

3. Application to SAS OpRisk dataset
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Measures of interest
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Problem formulation

Basic Problem
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for some measure p : F — R and set V where

V = {F: Fis consistent with some assumptions}

Measures of interest

For some («; 8) € (0,1) X (a, 1), (X1,%2) € R X (Xq, +00),
- VaRo(F) = F(a) © RVaRa5(F) = 515 [ F'(p)dp
: TVOR(X(F) . F(Xg)*F(X})
* VaRg(F) — VaRa(F) - E[g(F)] for some g(.)



Information that can be incorporated

- Unimodality - Non-negativity / Support
- Symmetry - Moments on the original distribution
- T-unimodality - Moments on the transformed distribution

- T-symmetry - Robust and quantile-based measures



Information that can be incorporated

- Unimodality - Non-negativity / Support
- Symmetry - Moments on the original distribution
- T-unimodality - Moments on the transformed distribution

- T-symmetry - Robust and quantile-based measures



Examples of robust and quantile-based measures

ForO<an<ap <1,

- A specific quantile, e.g, F'(0.75)
- Interpercentile range: F~'(a;) — F~ ()

+ Truncated/trimmed moments: —— [ h (F~'(p)) dp for some
function h

Eg. oo [ F'(p)dp and L [* (F'(p))" dp

) — o o) — o

- Moor's kurtosis: Fq(7/8)_5:3(5/8)#4(3/8)44(1/8)

(6/8)—F1(2/8)



General approach

Mathematical challenge: The optimization is non-parametric

Solution: Reduce it to a parametric optimization via stochastic
ordering

V : non-parametric set

V' . parametric set



A taste of the solution




Arbitrary element F of V
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Construction of G;




Pa @ D

Sy 67 (p)dp = [ F'(p)dp
and F~" up-crosses G; ' exactly once on [p1, ps]
p2

p2
— h (Gy'(p)) dp < / h (F~'(p)) dp for any convex h
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Similarly for G, vs G;
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For every F € V, there exists G, such that

\ - G, is parametric on [ps, ps]
Gy (p1) = F(p)

- VaR,(G;) = VaR,(F)

. RVaR(, pz(Gz) = RVaRa pa(F)

- 276y (p)dp = [ F(p)dp

(6 z( )) dp < [£*h (F~'(p)) dp
for any convex h

Pa a D



Application to SAS OpRisk dataset




SAS OpRisk Global dataset

- The dataset contains 39,359 operational losses exceeding
$0.1 million, recorded from March 1971 to April 2023 worldwide.

- The losses are adjusted for inflation and expressed in millions
of USD.

- Mean = 107, std.dev. = 1,022, and 75" percentile ~ 30.

- Truncated moments between 75™" and 99.9t" percentiles:
mean = 313 and std.dev. ~ 798.



upper bound: unimodal + lower quantile + truncated mean

For 0.5 < B¥22 < o < p; < 1and gy, pic € RT, we have that

p2 + p1 — 2a p2 — P1
sup VaRo(F) = 1——F—— + t1t=————
F unimodal (F)=a 2(p2 — @) "2(p; — a)
F~'(p1)=ar
I F(p)dp< e
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The main takeaway

Assessing model uncertainty in heavy-tailed distributions is possible.



THANK YOU!
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