Incorporating Information on Robust Quantities into Model Uncertainty Assessment

Carole Bernard, **Rodrigue Kazzi**, and Steven Vanduffel July 26, 2023

Actuarial, Finance, Risk and Insurance Congress (AFRIC), Victoria Falls


```
F is LogNormal(\mu, \sigma)

\rho \downarrow

\rho(F)

for some measure \rho: F \to \mathbb{R}
```


A look into model uncertainty

Already dealt with in Bernard, Kazzi, and Vanduffel [2023a], and Bernard, Kazzi, and Vanduffel [2023b].

A look into model uncertainty for heavy-tailed risks

 \implies We need to incorporate information on some robust quantities to assess model uncertainty in heavy-tailed distributions

- 1. Problem formulation
- 2. A taste of the solution
- 3. Application to SAS OpRisk dataset

Problem formulation

Basic Problem $\sup_{F \in \mathcal{V}} \rho(F) \quad and \quad \inf_{F \in \mathcal{V}} \rho(F)$ for some measure $\rho: F \to \mathbb{R}$ and set \mathcal{V} where

 $\mathcal{V} = \{F : F \text{ is consistent with some assumptions}\}$

Basic Problem

$$\sup_{F \in \mathcal{V}} \rho(F) \quad and \quad \inf_{F \in \mathcal{V}} \rho(F)$$
for some measure $\rho : F \to \mathbb{R}$ and set \mathcal{V} where

 $\mathcal{V} = \{F : F \text{ is consistent with some assumptions}\}$

Measures of interest

For some $(\alpha; \beta) \in (0, 1) \times (\alpha, 1)$, $(x_1, x_2) \in \mathbb{R} \times (x_1, +\infty)$,

- $VaR_{\alpha}(F) = F^{-1}(\alpha)$
- $TVaR_{\alpha}(F)$
- $VaR_{\beta}(F) VaR_{\alpha}(F)$

•
$$RVaR_{\alpha,\beta}(F) = \frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} F^{-1}(p) dp$$

•
$$F(x_2) - F(x_1)$$

• *E* [*g*(*F*)] for some *g*(.)

Basic Problem

$$\sup_{F \in \mathcal{V}} \rho(F) \quad and \quad \inf_{F \in \mathcal{V}} \rho(F)$$
for some measure $\rho: F \to \mathbb{R}$ and set \mathcal{V} where

 $\mathcal{V} = \{F : F \text{ is consistent with some assumptions}\}$

Measures of interest

For some $(\alpha; \beta) \in (0, 1) \times (\alpha, 1)$, $(X_1, X_2) \in \mathbb{R} \times (X_1, +\infty)$,

- $\operatorname{VaR}_{\alpha}(F) = F^{-1}(\alpha)$
- TVaR $_{\alpha}(F)$
- $VaR_{\beta}(F) VaR_{\alpha}(F)$

- $RVaR_{\alpha,\beta}(F) = \frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} F^{-1}(p)dp$
- $F(x_2) F(x_1)$
- *E* [*g*(*F*)] for some *g*(.)

- Unimodality
- Symmetry
- T-unimodality
- T-symmetry

- Non-negativity / Support
- \cdot Moments on the original distribution
- \cdot Moments on the transformed distribution
- Robust and quantile-based measures

- Unimodality
- Symmetry
- T-unimodality
- T-symmetry

- Non-negativity / Support
- \cdot Moments on the original distribution
- \cdot Moments on the transformed distribution
- Robust and quantile-based measures

For $0 < \alpha_1 < \alpha_2 < 1$,

• ...

- A specific quantile, e.g., $F^{-1}(0.75)$
- Interpercentile range: $F^{-1}(\alpha_2) F^{-1}(\alpha_1)$
- Truncated/trimmed moments: $\frac{1}{\alpha_2 \alpha_1} \int_{\alpha_1}^{\alpha_2} h(F^{-1}(p)) dp$ for some function h

E.g., $\frac{1}{\alpha_2 - \alpha_1} \int_{\alpha_1}^{\alpha_2} F^{-1}(p) dp$ and $\frac{1}{\alpha_2 - \alpha_1} \int_{\alpha_1}^{\alpha_2} (F^{-1}(p))^2 dp$

• Moor's kurtosis: $\frac{F^{-1}(7/8) - F^{-1}(5/8) + F^{-1}(3/8) - F^{-1}(1/8)}{F^{-1}(6/8) - F^{-1}(2/8)}$

General approach

Mathematical challenge: The optimization is non-parametric Solution: Reduce it to a parametric optimization via stochastic ordering

A taste of the solution

Arbitrary element ${\it F}$ of ${\cal V}$

Construction of G_1^{-1}

G₁ **vs** *F*

 $\int_{p_1}^{p_2} G_1^{-1}(p) dp = \int_{p_1}^{p_2} F^{-1}(p) dp$ and F^{-1} up-crosses G_1^{-1} exactly once on $[p_1, p_2]$

$$\implies \int_{p_1}^{p_2} h\left(G_1^{-1}(p)\right) dp \leq \int_{p_1}^{p_2} h\left(F^{-1}(p)\right) dp \text{ for any convex } h$$

Similarly for G₂ vs G₁

For every $F \in \mathcal{V}$, there exists G_2 such that

- G_2 is parametric on $[p_1, p_2]$
- $G_2^{-1}(p_1) = F^{-1}(p_1)$
- $\operatorname{VaR}_{\alpha}(G_2) = \operatorname{VaR}_{\alpha}(F)$
- $\cdot \operatorname{RVaR}_{\alpha,p_2}(G_2) = \operatorname{RVaR}_{\alpha,p_2}(F)$
- $\int_{p_1}^{p_2} G_2^{-1}(p) dp = \int_{p_1}^{p_2} F^{-1}(p) dp$
- · $\int_{p_1}^{p_2} h(G_2^{-1}(p)) dp \le \int_{p_1}^{p_2} h(F^{-1}(p)) dp$ for any convex *h*

Application to SAS OpRisk dataset

- The dataset contains 39,359 operational losses exceeding \$0.1 million, recorded from March 1971 to April 2023 worldwide.
- The losses are adjusted for inflation and expressed in millions of USD.
- Mean \approx 107, std.dev. \approx 1,022, and 75th percentile \approx 30.
- Truncated moments between 75th and 99.9th percentiles: mean \approx 313 and std.dev. \approx 798.

For $0.5 \leq \frac{p_1+p_2}{2} < \alpha < p_2 < 1$ and $q_1, \mu_{1,t} \in \mathbb{R}^+$, we have that

$$\sup_{\substack{F \text{ unimodal} \\ F^{-1}(p_1)=q_1 \\ \int_{p_1}^{p_2} F^{-1}(p) dp \le \mu_{1,t}}} \operatorname{VaR}_{\alpha}(F) = q_1 \frac{p_2 + p_1 - 2\alpha}{2(p_2 - \alpha)} + \mu_{1,t} \frac{p_2 - p_1}{2(p_2 - \alpha)}$$

Comparision of VaR upper bounds - 1

Comparision of VaR upper bounds - 2

Comparision of **RVaR** upper bounds

Assessing model uncertainty in heavy-tailed distributions is possible.

THANK YOU!

References

Carole Bernard, Rodrigue Kazzi, and Steven Vanduffel. Impact of model misspecification on the Value-at-Risk of unimodal T-symmetric distributions. *Working Paper*, 2023a.

Carole Bernard, Rodrigue Kazzi, and Steven Vanduffel. Model uncertainty assessment for symmetric and right-skewed distributions. *Available at SSRN 4468467*, 2023b.