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A look into model uncertainty

F is LogNormal(µ, σ)

ρ(F)
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V

ρ

supF∈V ρ(F) < +∞

infF∈V ρ(F)

.

.

.

Already dealt with in Bernard, Kazzi, and Vanduffel [2023a], and
Bernard, Kazzi, and Vanduffel [2023b].
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A look into model uncertainty for heavy-tailed risks
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=⇒ We need to incorporate information on some robust quantities
to assess model uncertainty in heavy-tailed distributions
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Outline
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Problem formulation

Basic Problem

sup
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ρ(F) and inf
F∈V

ρ(F)

for some measure ρ : F→ R and set V where

V = {F : F is consistent with some assumptions}
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for some measure ρ : F→ R and set V where

V = {F : F is consistent with some assumptions}

Measures of interest

For some (α;β) ∈ (0, 1)× (α, 1), (x1, x2) ∈ R× (x1,+∞),

• VaRα(F) = F−1(α)
• TVaRα(F)
• VaRβ(F)− VaRα(F)

• RVaRα,β(F) = 1
β−α

∫ β

α
F−1(p)dp

• F(x2)− F(x1)
• E [g(F)] for some g(.)
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Information that can be incorporated

• Unimodality
• Symmetry
• T-unimodality
• T-symmetry

• Non-negativity / Support
• Moments on the original distribution
• Moments on the transformed distribution
• Robust and quantile-based measures
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Examples of robust and quantile-based measures

For 0 < α1 < α2 < 1,

• A specific quantile, e.g., F−1(0.75)

• Interpercentile range: F−1(α2)− F−1(α1)

• Truncated/trimmed moments: 1
α2−α1

∫ α2
α1
h
(
F−1(p)

)
dp for some

function h

E.g., 1
α2−α1

∫ α2
α1
F−1(p)dp and 1

α2−α1

∫ α2
α1

(
F−1(p)

)2 dp
• Moor’s kurtosis: F

−1(7/8)−F−1(5/8)+F−1(3/8)−F−1(1/8)
F−1(6/8)−F−1(2/8)

• ...
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General approach

Mathematical challenge: The optimization is non-parametric

Solution: Reduce it to a parametric optimization via stochastic
ordering

X1
X2

X′1
X′2

V : non-parametric set

ρ(X1) ≤ ρ(X′1)
ρ(X2) ≤ ρ(X′2)

V ′ : parametric set
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A taste of the solution



Arbitrary element F of V

F−1(α)

α

F−1(p1)

p1 p2
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Construction of G−1
1

F−1(α)

α

F−1(p1)

p1 p2

G−1
1

F−1
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G1 vs F

F−1(α)

α

F−1(p1)

p1 p2

G−1
1

F−1

∫ p2
p1 G

−1
1 (p)dp =

∫ p2
p1 F

−1(p)dp
and F−1 up-crosses G−1

1 exactly once on [p1,p2]

=⇒
∫ p2

p1
h
(
G−1
1 (p)

)
dp ≤

∫ p2

p1
h
(
F−1(p)

)
dp for any convex h
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Similarly for G2 vs G1

F−1(α)

α

F−1(p1)

p1 p2

G−1
1

G−1
2
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For every F ∈ V , there exists G2 such that

αp1 p2

G−1
2

F−1
• G2 is parametric on [p1,p2]
• G−1

2 (p1) = F−1(p1)
• VaRα(G2) = VaRα(F)
• RVaRα,p2(G2) = RVaRα,p2(F)
•
∫ p2
p1 G

−1
2 (p)dp =

∫ p2
p1 F

−1(p)dp

•
∫ p2
p1 h

(
G−1
2 (p)

)
dp ≤

∫ p2
p1 h

(
F−1(p)

)
dp

for any convex h
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Application to SAS OpRisk dataset



SAS OpRisk Global dataset

• The dataset contains 39,359 operational losses exceeding
$0.1 million, recorded from March 1971 to April 2023 worldwide.

• The losses are adjusted for inflation and expressed in millions
of USD.

• Mean ≈ 107, std.dev. ≈ 1,022, and 75th percentile ≈ 30.

• Truncated moments between 75th and 99.9th percentiles:
mean ≈ 313 and std.dev. ≈ 798.
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VaR upper bound: unimodal + lower quantile + truncated mean

For 0.5 ≤ p1+p2
2 < α < p2 < 1 and q1, µ1,t ∈ R+, we have that

sup
F unimodal
F−1(p1)=q1∫ p2

p1
F−1(p)dp≤µ1,t

VaRα(F) = q1
p2 + p1 − 2α
2(p2 − α)

+ µ1,t
p2 − p1
2(p2 − α)
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Comparision of VaR upper bounds - 1
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Comparision of VaR upper bounds - 2
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Comparision of RVaR upper bounds
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The main takeaway

Assessing model uncertainty in heavy-tailed distributions is possible.
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THANK YOU!
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