Optimal reinsurance with model uncertainty

Tolulope Fadina

Department of Mathematics, University of Essex joint work with Junlei Hu, Peng Liu, Yi Xia

Actuarial, Finance, Risk and Insurance Congress, Victoria Falls

July, 2023

Optimal reinsurance with multiple risks and dependence uncertainty

- Reinsurance is an insurance that insurance company purchases to reduce its risk exposure.
- We study VaR and Range-Value-at-Risk (RVaR) optimal reinsurance problem for worst-case scenario under dependence uncertainty,
 - that is, we consider dependence structure that gives rise to the largest level of risk for any reinsurance contracts.
- Due to the limited analysis of robust risk aggregation for VaR and RVaR in some cases, we impose some constraints on the ceded loss functions.

Reinsurance

	Primary insurance	Reinsurance
Life and health	2500	65
Non-life	2000	170

Table: Global premium volume 2015 (in US\$ billions).

Data from Swiss Re.

For reinsured risk,

- small volume
- complicated to handle

Benefits;

- reduce the risk exposure
- stabilize the profit over a period
- underwrite more insurance contracts

Reinsurance - Single risk

An insurance company faces a risk X over a period. Reinsurance:

- $f(X) \rightarrow \text{reinsurer}$
- $R_f(X) = X f(X) \rightarrow \text{insurer}$
- The insurer pays premium $\pi(f(X))$ to the reinsurer
- Total risk exposure $S^f(X) = X f(X) + \pi(f(X))$

To minimize

$$\rho(S^f(X))$$

Three factors

- ho the optimization objective on $S^f(X)$
- \blacksquare π is a the premium principle
- f is the ceded loss function

Risk measures

- Value-at-Risk: $VaR_{\alpha}(X) = (F_X)_L^{-1}(\alpha)$ (Solvency II);
- **E**xpected Shortfall (ES): (Swiss Solvency Test) For $\alpha \in [0,1)$,

$$\mathrm{ES}_{\alpha}(X) = \frac{1}{1-\alpha} \int_{\alpha}^{1} \mathrm{VaR}_{t}(X) dt;$$

■ Range-Value-at-Risk (RVaR) (Cont-Deguest-Scandolo'10 QF): For $0 \le \beta < \beta + \alpha \le 1$,

$$R_{\beta,\alpha}(X) = \frac{1}{\alpha} \int_{\beta}^{\beta+\alpha} \mathrm{VaR}_{1-t}(X) dt,$$

Clearly, $R_{0,\alpha}(X) = \mathrm{ES}_{\alpha}(X)$ and $\lim_{\alpha \to 0} R_{\beta,\alpha}(X) = \mathrm{VaR}_{1-\beta}(X)$.

Example of premium principles

Expectation principle:

$$\pi(X) = (1+\theta)\mathbb{E}(X)$$

for $X \in \mathcal{X}$ with $\theta > 0$;

Standard deviation principle:

$$\pi(X) = \mathbb{E}(X) + \lambda \sqrt{Var(X)}$$

for $X \in \mathcal{X}$ with $\lambda > 0$;

Wang's principle:

$$\pi_g(X) = \int_0^\infty g(\mathbb{P}(X > x)) dx$$

for $X \in \mathcal{X}_g$, where $g : [0,1] \to [0,1]$ with g(0) = 0 and g(1) = 1, and g is increasing.

Book: Young' 04, eleven widely used premium principles.

Loss function

Both f and R_f are non-negative and increasing on $[0,\infty) \Longrightarrow$ Lipschitz-continuous, i.e.,

$$0 \le f(y) - f(x) \le y - x, \ 0 \le x \le y, \ 0 \le f(x) \le x, \ x \ge 0.$$

Examples:

- Quota-share: f(x) = ax with $0 \le a \le 1$;
- Stop-loss: $f(x) = (x c)_+$ with c > 0;
- Limited stop-loss:

$$f(x) = (x - a)_{+} - (x - b)_{+} = \min((x - a)_{+}, b - a) \text{ with } 0 \le a \le b.$$

(Cai-Chi'20 STRF: review)

Multiple risks

An insurance company usually has many lines of business and each line generates a risk X_i .

Life insurance and non-life insurance.

- Reinsurance for each business: $X_i f_i(X_i) + \pi_i(f_i(X_i))$
- The total risk: $S^{\mathbf{f}} = \sum_{i=1}^{n} X_i f_i(X_i) + \pi_i(f_i(X_i))$, where $\mathbf{f} = (f_1, \dots, f_n)$
- The task is to minimize $\rho(S^f)$.
 - In many cases, individual risks are not completely independent, as they tend to be driven by common events, such as natural catastrophes, financial crises, man-made disasters and longevity risk.
 - Such events may create different levels of dependence among individual losses.

Literature

- Cai-Wei'12 IME: $\rho(X) = \mathbb{E}(u(X))$, $\pi_i(X) = (1 + \theta_i)\mathbb{E}(X)$, and (X_1, \dots, X_n) are positive dependence through stochastic ordering
- Cheung-Sung-Yam'14 JRI: ρ : convex risk measure, $\pi_i(X) = (1 + \theta_i)\mathbb{E}(X)$, (X_1, \dots, X_n) are comonotonic (the worst case scenario)
- Bernard-Liu-Vanduffel'20 JEBO: $\rho(X) = \mathbb{E}(u(X))$, general premium principle, and some specific dependence structure, $f_i(x) = a_i x$ Quota-Share policy

Dependence uncertainty

In practice, it is difficult to know the dependence structure.

$$\mathcal{E}_n(\mathbf{F}) = \{(X_1, \dots, X_n) : X_i \sim F_i, i = 1, \dots, n\}.$$

We consider the worst-case scenario:

$$\sup_{(X_1,\ldots,X_n)\in\mathcal{E}_n(\mathbf{F})}\rho(S_n^{\mathbf{f}}(X_1,\ldots,X_n)).$$

The objective is to find

$$\arg\inf_{\mathbf{f}\in\mathcal{D}^n}\sup_{(X_1,\ldots,X_n)\in\mathcal{E}_n(\mathbf{F})}\rho(S_n^{\mathbf{f}}(X_1,\ldots,X_n)),$$

where $\mathbf{f} = (f_1, \dots, f_n)$ and

 $\mathcal{D}^n = \{\mathbf{f}: f_i \text{ and } R_{f_i} \text{ are non-negative and increasing on } [0, \infty) \}.$

$$\mathcal{D}^n(P) = \left\{ \mathbf{f} \in \mathcal{D}^n : \sum_{i=1}^n \pi_i(f_i(X_i)) \leq P \right\}.$$

Conditions on premium principle

We impose the following conditions on π_i :

- (i) Distribution invariance: For $Y, Z \in \mathcal{X}$, $\pi_i(Y) = \pi_i(Z)$ if $F_Y = F_Z$;
- (ii) Risk loading: $\pi_i(Y) \geq \mathbb{E}(Y)$ for $Y \in \mathcal{X}$;
- (iii) Reserving the stop-loss order: For $Y, Z \in \mathcal{X}$, $\pi_i(Y) \leq \pi_i(Z)$ if $\mathbb{E}[(Y u)_+] \leq \mathbb{E}[(Z u)_+]$ for all $u \in \mathbb{R}$.
- (iv) Continuity: For $Y_n, Y \in \mathcal{X}, n \geq 1$, $\lim_{n \to \infty} \pi_i(Y_n) = \pi_i(Y)$ provided that $\lim_{n \to \infty} \operatorname{ess\,sup} |Y_n Y| = 0$. Moreover, $\lim_{n \to \infty} \pi_i(Y \wedge d) = \pi_i(Y)$.

Throughout the talk, we assume that π_i satisfies (i) - (iii).

limited stop-loss

Limited stop loss policy: $l_{a,b}(x) := \min((x-a)_+, b-a)$ where $0 \le a \le b \le \infty$.

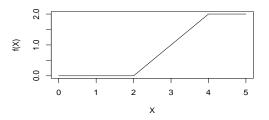


Figure: $f(x) = (x-2)_+ - (x-4)_+$.

 $\mathbf{I_{a,b}} = (\mathit{I_{a_1,b_1}}, \ldots, \mathit{I_{a_n,b_n}})$ with the domain of the parameters

$$\mathcal{A}(P) = \{(\mathbf{a}, \mathbf{b}) : \mathbf{l}_{\mathbf{a}, \mathbf{b}} \in \mathcal{D}^n(P), 0 \le a_i \le b_i \le \infty, \ i = 1, \dots, n\}.$$

Theorem

For n = 2, suppose that F_1^{-1} and F_2^{-1} are continuous over (0,1), then

$$\begin{split} &\inf_{(f_1,f_2)\in\mathcal{D}^2}\sup_{(X_1,X_2)\in\mathcal{E}_2(\mathbf{F})}\mathrm{VaR}_{\alpha}\big(S_2^{\mathbf{f}}(X_1,X_2)\big)\\ &=\inf_{(a_1,a_2,b_1,b_2)\in\mathcal{A}(P)}\inf_{t\in[0,1-\alpha]}L_1\big(a_1,a_2,b_1,b_2,t\big), \end{split}$$

where

$$L_1(a_1, a_2, b_1, b_2, t) = \operatorname{VaR}_{\alpha+t}(X_1 - I_{a_1, b_1}(X_1)) + \operatorname{VaR}_{1-t}(X_2 - I_{a_2, b_2}(X_2)) + \pi_1(I_{a_1, b_1}(X_1)) + \pi_2(I_{a_2, b_2}(X_2)).$$

Moreover, supposing π_1 and π_2 are continuous, $(l_{a_1,b_1}, l_{a_2,b_2})$ is the optimal ceded loss function for the worst case scenario provided

$$(a_1,a_2,b_1,b_2) \in \arg\inf_{(a_1,a_2,b_1,b_2) \in \mathcal{A}(P)} \left\{ \inf_{t \in [0,1-\alpha]} L_1(a_1,a_2,b_1,b_2,t) \right\}.$$

Theorem 2 (i) of Blanchet-Lam-Liu-Wang 20'

We extend the result of Blanchet-Lam-Liu-Wang 20' as below. Let $\Delta_n = \{(\gamma_0, \gamma_1, \dots, \gamma_n) \in (0, 1) \times [0, 1)^n : \sum_{i=0}^n \gamma_i = 1\}$.

Proposition

For $\alpha \in (0,1)$,

$$\sup_{(X_1,...,X_n)\in\mathcal{E}_n(\mathbf{F})} \operatorname{VaR}_{\alpha}^+ \left(\sum_{i=1}^n X_i\right) = \inf_{\boldsymbol{\gamma}\in(1-\alpha)\Delta_n} \sum_{i=1}^n R_{\gamma_i,\gamma_0}(X_i)$$

holds if one of the following statements is true:

- (i) each of F_1, \ldots, F_n is convex beyond its α -quantile;
- (ii) each of F_1, \ldots, F_n is concave beyond its α -quantile.
 - If X has decreasing density, min(X, a) may not have decreasing density.
 - Dependence structure: combination of mutually exclusive and joint mixability. (negative dependence)
 - Exponential, Pareto, Gamma.

Convex distributions on tail part

To guarantee that X - f(X) has a convex distribution on its tail part,

$$\mathcal{D}_1^n = \{\mathbf{f} = (f_1, \dots, f_n) : \mathbf{f} \in \mathcal{D}, \ f_i \text{ is convex for } i = 1, \dots, n\}.$$

$$h_{a,b,c,d}(x) := c(x-a)_+ + d(x-b)_+,$$

where $0 \le a \le b \le \infty$ $0 \le c, d \le c + d \le 1$.

$$\mathcal{A}_1 = \{(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) : \mathbf{h}_{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}} \in \mathcal{D}_1^n(P)\}.$$

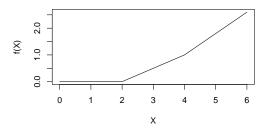


Figure:
$$f(x) = 0.5(x-2)_{+} + 0.3(x-4)_{+}$$
.

Convex tail distributions

Theorem

Suppose $F_1^{-1}(\cdot), \ldots, F_n^{-1}(\cdot)$ are all continuous over (0,1) and $\alpha \in (0,1)$. If each of F_1, \ldots, F_n is convex beyond its α -quantile, then

$$\begin{split} &\inf_{\mathbf{f}\in\mathcal{D}_{\mathbf{1}}^{n}}\sup_{(X_{1},...,X_{n})\in\mathcal{E}_{n}(\mathbf{F})}\mathrm{VaR}_{\alpha}\big(S_{n}^{\mathbf{f}}(X_{1},\ldots,X_{n})\big)\\ &=\inf_{(\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d})\in\mathcal{A}_{1}}\inf_{\boldsymbol{\gamma}\in(1-\alpha)\Delta_{n}}H(\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d},\boldsymbol{\gamma}), \end{split}$$

where

$$H(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \gamma) = \sum_{i=1}^{n} \{ R_{\gamma_i, \gamma_0}(X_i) - R_{\gamma_i, \gamma_0}(h_{a_i, b_i, c_i, d_i}(X_i)) + \pi_i(h_{a_i, b_i, c_i, d_i}(X_i)) \}.$$

Additionally, if π_i are continuous, $(h_{a_1,b_1,c_1,d_1},\ldots,h_{a_n,b_n,c_n,d_n})$ is the optimal ceded loss functions for the worst case scenario provided

$$(\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}) = \arg\inf_{(\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d})\in\mathcal{A}_1} \left\{ \inf_{oldsymbol{\gamma}\in(1-lpha)\Delta_n} H(\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d},oldsymbol{\gamma})
ight\}$$

Concave distributions on tail part

To guarantee that X - f(X) has a concave distribution on its tail part,

$$\mathcal{D}_2^n = \{ \mathbf{f} = (f_1, \dots, f_n) : \mathbf{f} \in \mathcal{D}, \ f_i \text{ is concave for } i = 1, \dots, n \}$$
$$g_{a,b}(x) := a \min(x, b),$$

where $0 \le a \le 1$ and $b \ge 0$ and

$$\mathcal{A}_2 = \{(\textbf{a},\textbf{b}): \textbf{g}_{\textbf{a},\textbf{b}} \in \mathcal{D}_2^n(P)\}.$$

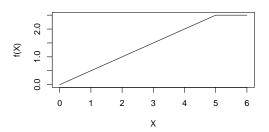


Figure:
$$f(x) = 0.5 \min(x, 5)$$
.

Concave tail distributions

Theorem

Suppose $F_1^{-1}(\cdot), \ldots, F_n^{-1}(\cdot)$ are all continuous over (0,1) and $\alpha \in (0,1)$. If each of F_1, \ldots, F_n is concave beyond its α -quantile, then

$$\begin{split} &\inf_{\mathbf{f}\in\mathcal{D}_{\mathbf{2}}^{n}}\sup_{(X_{1},\ldots,X_{n})\in\mathcal{E}_{n}(\mathbf{F})}\mathrm{VaR}_{\alpha}(S_{n}^{\mathbf{f}}(X_{1},\ldots,X_{n}))\\ &=\inf_{(\mathbf{a},\mathbf{b})\in\mathcal{A}_{2}}\inf_{\boldsymbol{\gamma}\in(1-\alpha)\Delta_{n}}G(\mathbf{a},\mathbf{b},\boldsymbol{\gamma}), \end{split}$$

where
$$G(\mathbf{a}, \mathbf{b}, \gamma) = \sum_{i=1}^{n} \{ R_{\gamma_i, \gamma_0}(X_i) - R_{\gamma_i, \gamma_0}(g_{a_i, b_i}(X_i)) + \pi_i(g_{a_i, b_i}(X_i)) \}.$$

Additionally, if π_i are continuous, $(g_{a_1,b_1},\ldots,g_{a_n,b_n})$ is the optimal ceded loss functions for the worst case scenario provided

$$(\mathbf{a}, \mathbf{b}) = \arg\inf_{(\mathbf{a}, \mathbf{b}) \in \mathcal{A}_2} \left\{ \inf_{\gamma \in (1-\alpha)\Delta_n} G(\mathbf{a}, \mathbf{b}, \gamma) \right\}$$

RVaR

- We extend the result (Theorem 1) of Blanchet-Lam-Liu-Wang 20' on convolution bounds on RVaR aggregation from marginal with decreasing densities in the tail part to those with concave distribution in the tail part.
- We obtain similar results on the optimal reinsurance problems.

Numerical study: n = 2

We solve

$$\min_{\mathbf{f} \in \mathcal{D}^2} \max_{(X_1, X_2) \in \mathcal{E}_2} \operatorname{VaR}_{\alpha} \left(S_2^{\mathbf{f}}(X_1, X_2) \right), \tag{1}$$

The optimisation problem in (1) can be written as

$$\min_{(a_1, a_2, b_1, b_2) \in \mathcal{A}(P)} \min_{t \in [0, 1 - \alpha]} L_1(a_1, a_2, b_1, b_2, t) \tag{2}$$

where

$$\begin{array}{lcl} L_1(a_1,a_2,b_1,b_2,t) & = & \mathrm{VaR}_{\alpha+t}(X_1-I_{a_1,b_1}(X_1)) + \mathrm{VaR}_{1-t}(X_2-I_{a_2,b_2}(X_2)) \\ & & + \pi_1(I_{a_1,b_1}(X_1)) + \pi_2(I_{a_2,b_2}(X_2)) \end{array}$$

and $\pi_i(X_i) = (1 + \theta_i)\mathbb{E}(X_i)$ where $\theta_i > 0$ represents the risk-loading factor for i = 1, 2.

Grid search

Problem (2) is non-convex and we use grid search.

- Discretise X_i into $\mathbf{x}_i := (x_{i1}, x_{i2}, \dots, x_{in})^T$, for i = 1, 2
- lacksquare $I_{a_i,b_i}(X_i)$ is represented by $oldsymbol{y}_i:=(y_{i1},y_{i2},\ldots,y_{in})^T$
- Suppose x_{ij} is collected in an ascending order for i = 1, 2, i.e. $x_{i1} < x_{i2} < \cdots < x_{in}$
- $y_{i1} \leq y_{i2} \leq \cdots \leq y_{in}$

Optimization

For any given value of $t \in [0, 1-\alpha]$, t^* , the local optimum of the optimisation problem (2) can be found by solving the following linear minimisation problem:

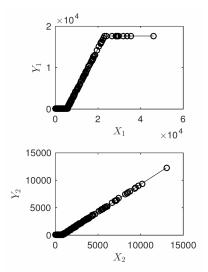
$$\min_{\substack{(\mathbf{y}_{1}, \mathbf{y}_{2}) \in \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{n} \\ \text{s.t. } \mathbf{0} \leq \mathbf{A} \mathbf{y}_{i} \leq \mathbf{A} \mathbf{x}_{i}, \quad \forall i = 1, 2 } } \mathbf{1}^{T} \mathbf{y}_{1} + \frac{(1 + \theta_{2})}{n} \mathbf{1}^{T} \mathbf{y}_{2} \quad (3)$$

where $q_1 = \lceil n(\alpha + t^*) \rceil$, $q_2 = \lceil n(1 - t^*) \rceil$ and **A** is an *n*-by-*n* matrix.

The global optimum of the optimisation problem (2) can be found by using Global Search over the value of $t \in [0, 1-\alpha]$.

Example: Exponential marginals

- $X_i \sim Exp(\lambda_i)$ with $E(X_i) = \lambda_i > 0$
- lacksquare $\lambda_1 = 8000$, $\lambda_2 = 3000$, $\theta_1 = 0.8$, $\theta_2 = 0.3$, $\alpha = 0.95$ and n = 200



Summary

 Our main results show that finding the optimal ceded loss functions for the worst case reinsurance models with dependence uncertainty boils down to finding the minimiser of a deterministic function.

References

- Blanchet, J., Lam, H., Liu, Y. and Wang, R. (2020). Convolution bounds on quantile aggregation. arXiv: 2007.09320.
- Bernard, C., Liu, F., and Vanduffel, S.. (2020). Optimal insurance in the presence of multiple policyholders. *Journal of Economic Behavior & Organization*, **18**, 638–656.
- Cai, J., and Wei,W. (2012). Optimal reinsurance with positively dependent risks. *Insurance: Mathematics and Economics*, **50**(1), 57–63.
- Cheung, K. C., Sung, K. C. J., and Yam, S. C. P. (2014). Risk-minimizing reinsurance protection for multivariate risks. *Journal of Risk and Insurance*, **81**(1), 219–236.

Thank You!