

Causality-preservation capabilities in data replication methods: an overview

Yves-Cédric Bauwelinckx with J. Dhaene, T. Verdonck & M. van den Heuvel KU Leuven

0 Outline

- 1 Synthetic data
- **2** Causality
- **3** Experiment setup
- 4 Results
- **5** Conclusion

1 Outline

1 Synthetic data

- 2 Causality
- **3** Experiment setup
- 4 Results
- **6** Conclusion

1 Synthetic data

What?

Fake, generated data made to resemble the original, real data

1 Synthetic data

What?

Fake, generated data made to resemble the original, real data

Why?

- Rise in data driven methods for modeling
- But: limited data available due to privacy and ethics concerns
- \blacktriangleright No private information in synthetic data \Rightarrow data can be shared

1 Synthetic data

What?

Fake, generated data made to resemble the original, real data

Why?

- Rise in data driven methods for modeling
- But: limited data available due to privacy and ethics concerns

 \blacktriangleright No private information in synthetic data \Rightarrow data can be shared How?

- Machine learning: generative models
- Generative model learns underlying distribution from real data
- Sample from learned distribution to create synthetic data
- State-of-the-art methodology: GAN (Goodfellow, 2014)

- Generative Adversarial Network
- Gained popularity by generating realistic pictures

- Generative Adversarial Network
- Gained popularity by generating realistic pictures

- Generative Adversarial Network
- Gained popularity by generating realistic pictures

Can also be used for tabular data (eg. insurance, finance)

- G(enerator) en D(iscriminator) \Rightarrow 2 neural networks
- Generator and Discriminator compete against each other (adversarial)
- Goal: generator maps random noise to real data distribution

- Generator generates a random sample to "fool" Discriminator
- Discriminator tries to distinguish real from generated samples
- Discriminator gives feedback to Generator
- ► Generator performs better ⇒ Discriminator performs better ⇒ Generator performs better, etc.

- Understanding underlying distribution
- Generalizes concepts \Rightarrow not copies from original dataset

Example for pictures of handwritten digits:

ataset 4 0 0 8 3 6 3 1 6 4 6 8 6 7 8 1

- Understanding underlying distribution
- ► Generalizes concepts ⇒ not copies from original dataset

Example for pictures of handwritten digits:

DCGAN training process 0 epochs

- Understanding underlying distribution
- ► Generalizes concepts ⇒ not copies from original dataset

Example for pictures of handwritten digits:

DCGAN training process 5 over 500 epochs

- Understanding underlying distribution
- ► Generalizes concepts ⇒ not copies from original dataset

Example for pictures of handwritten digits:

DCGAN training process 10 over 500 epochs

- Understanding underlying distribution
- ► Generalizes concepts ⇒ not copies from original dataset

Example for pictures of handwritten digits:

DCGAN training process 100 over 500 epochs

- Understanding underlying distribution
- ► Generalizes concepts ⇒ not copies from original dataset

Example for pictures of handwritten digits:

DCGAN training process 500 over 500 epochs

2 Outline

Synthetic data

2 Causality

- **3** Experiment setup
- 4 Results
- **6** Conclusion

2 Causality

- Questions in business decisions: often causal
 - Observational: If I observe X, what will Y be?
 - Causal: If I do X, how will the outcome Y change?
- Rising interest for causality in insurance (eg. fairness, explainability)
 - Discrimination-free pricing (Lindholm et al., 2021; Araiza et al., 2022)
- GANs are good at replicating complex distributions
- Able to find correlations between variables
- ▶ But: Correlation ≠ Causation

High correlation between ice cream sales and shark attacks

Causal model allows to answer causal questions

• How do we lessen the amount of shark attacks?

Causal model allows to answer causal questions

- How do we lessen the amount of shark attacks?
- Causal: Lower temperature

Causal model allows to answer causal questions

- How do we lessen the amount of shark attacks?
- Causal: Lower temperature
- Statistical: stop selling ice cream?

2 Causality

GANs are capable of copying distributions, including correlations

But: Correlation \neq Causation

2 Causality

GANs are capable of copying distributions, including correlations

 $\begin{array}{l} \text{But:} \\ \text{Correlation} \neq \text{Causation} \end{array}$

Question:

How well are causal relations preserved in the synthetic data?

3 Outline

- Synthetic data
- 2 Causality
- **3** Experiment setup
- 4 Results
- **6** Conclusion

- Create a dataset with known causal effects
- Train GAN with this dataset
- Sample synthetic data from GAN
- Perform analysis on both original and synthetic dataset
- Compare causal effects found from analysis
- Expectation:
 - Causal effects in original dataset pprox original causal effects
 - Causal effects in synthetic dataset?
 - Difference between the two is due to GAN

We create data with 3 different assumptions:

Ordinary Least Squares

• eg.
$$y = \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

Time Series (autoregressive)

• eg.
$$y_t = \alpha y_{t-1} + \beta_1 x_{t,1} + \beta_2 x_{t,2} + \epsilon_t$$

Full causal model

• eg.
$$y = \beta_1 x_1 + \beta_2 x_2 + \epsilon_1$$

•
$$x_1 = \beta_3 z_1 + \beta_4 z_2 + \epsilon_2$$

•
$$x_2 = \beta_5 z_2 + \epsilon_3$$

Data is made with certain α 's and β 's Try to **recover them in the synthetic data**

The dataset is made according to the following causal graph:

$$y_t = \alpha y_{t-1} + \beta_1 x_{t,1} + \beta_2 x_{t,2} + \epsilon_{1,t}$$

$$x_{1,t} = \beta_3 z_{1,t} + \beta_4 z_{2,t} + \epsilon_{2,t}$$

$$x_{2,t} = \beta_5 z_{2,t} + \epsilon_{3,t}$$

3 variations of GAN:

GAN

- Train data: Table with data points
- TimeGAN
 - State-of-the-art GAN for time series
 - Train data: Table with data points in sequence
- CausalGAN
 - Causal graph is used for generator construction
 - Data generation follows causal graph ordering
 - Train data: Table with data points + causal graph

4 Outline

- Synthetic data
- 2 Causality
- **3** Experiment setup
- 4 Results
- **6** Conclusion

4 Results - Cross-sectional

	GAN	TimeGAN	CausalGAN
Ordinary Least Squares	Good	Good	Good
Time Series	-	-	-
Causal structure	-	-	-

- All GAN methods perform well at a cross-sectional level (OLS)
- Predictor variables are the causes
- ► Assumptions of OLS imply a single causal structure (predictor variables ⇒ response variable)

4 Results - Time Series

	GAN	TimeGAN	CausalGAN
Ordinary Least Squares	Good	Good	Good
Time Series	/	Shortcut	/
	· ·		

- GAN and CausalGAN are not able to produce time series
- TimeGAN fails at finding autocorrelation
- ▶ Real causal effects: $y_t = 0.5y_{t-1} + x_{1,t} + x_{2,t}$
- Found causal effects: $y_t = 2x_{1,t} + 2x_{2,t}$
- Found equation is approximation of original equation
- TimeGAN found a shortcut and did not keep causal relation

4 Results - Causal structure

	GAN	TimeGAN	CausalGAN
Ordinary Least Squares	Good	Good	Good
Time Series	/	Shortcut	/
Causal structure	Bad	/	OK

- Attempt to reconstruct the original causal graph from data
 ⇒ causal discovery
- Causal structure is lost in synthetic data from GAN
- Causal structure is mostly preserved by CausalGAN

4 Causal graph - original data

4 Causal graph - CausalGAN data

4 Causal graph - GAN data

5 Outline

- Synthetic data
- 2 Causality
- **3** Experiment setup
- 4 Results
- **5** Conclusion

5 Conclusion

- Need for data for more models, but privacy concerns
- Synthetic data as a solution
- Only when assumptions are met that correlation does imply causation, causation is kept
- Generative models might simplify causal structures (shortcut)
- You should be careful about the capabilities of synthetic data asking causal questions

Thank you for your attention

5 Results - Cross-sectional

Model	Par.	Real	GAN	TimeGAN	CausalGAN
OLS	β_3	1.00 ± 0.005	1.02 ± 0.071	0.37 ± 0.432	0.98 ± 0.108
	β_4	1.00 ± 0.005	1.07 ± 0.127	1.22 ± 0.336	0.96 ± 0.102
	β_5	1.00 ± 0.005	1.01 ± 0.126	1.10 ± 0.017	1.00 ± 0.162

Model	Par.	Real	GAN	TimeGAN	CausalGAN
TS	α	0.50 ± 0.001	0.01 ± 0.002	0.02 ± 0.133	0.01 ± 0.006
	β_1	1.00 ± 0.004	1.00 ± 0.177	1.05 ± 1.523	0.96 ± 0.189
	β_2	1.00 ± 0.004	1.14 ± 0.168	0.87 ± 2.043	0.99 ± 0.203

5 Results - Time Series

New experiment: variables are time series (have autocorr.)

Model	Parameter	Real	TimeGAN
OLS	β_3	1.00 ± 0.001	0.99 ± 0.024
	β_4	1.00 ± 0.001	1.00 ± 0.022
	β_5	1.00 ± 0.001	1.00 ± 0.002
TS	α	0.50 ± 0.001	-0.01 ± 0.021
	β_1	1.00 ± 0.002	2.07 ± 0.068
	β_2	1.00 ± 0.002	2.00 ± 0.155

5 Results - Causal structure

5 Results - Causal structure

Causal effect	Real	CausalGAN	GAN
$z_1 \rightarrow x_1$	1.00	0.93	1.03
$z_2 \to x_1$	1.01	0.80	1.07
$z_2 \to x_2$	0.99	0.83	0.16
$x_1 \to y$	1.02	1.04	0.14
$x_2 \to y$	1.01	1.00	0.39
$z_1 \rightarrow z_2$	0	0	-1.11
$z_1 \to x_2$	0	0	-0.47
$z_1 \rightarrow y$	0	0	0.86
$z_2 \rightarrow y$	0	0.14	-0.10
$x_2 \to x_1$	0	0.14	0.65