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Why LGC and HMMs?

LGC
Linear to non-linear ρ
interpretation

Comprehensible
visualizations
Entire dependence
structure by set of
pairwise correlations
Guassian densities
approximated locally using
a bivariate correlation
function

HMMs

Capture complex temporal
dependencies
Handling Varying Patterns
and Regimes.
Assumes that
data-generating process
corresponds to a
time-dependent mixture
of conditional distributions
driven by Hidden states
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LGC basic notation

Define

Let X = (X1,X2) 2D RV with density f (x) = f (x1, x2)
and ψ be a Guassian bivariate

µ(x) = (µ1(x), µ2(x)) is the local mean vector
Σ(x) = σij(x) is the local covariance matrix.
ρ(x) is the correlation coefficient in ψ
Approximate f locally at each point x by ψx(ν)
ν = (ν1, ν2)T is the running variable
The local population parameters λ(x) = (µ(x),Σ(x)) can
be defined by minimizing a penalty function q measuring
the difference between f and ψ
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HMMs basic notation

Ct : t = 1, . . . ,T hidden states,

Rt : t = 1, . . . ,T observed variables
Γ = γij TPM and δ stationary distribution
R (t) the “history” of the observed process
θ vector of model parameters
Express L(θ) likelihood of observations
Compute L(θ) using forward (or Backward) algorithm
Used TMB
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The Data

Two data sets from Kenya and Norway, monthly and then
weekly

7 lines of business considered(Personal Accident, Fire
industrial, Motor private, motor comprehensive, Workers
compensation,liability, Engineering)
LGC and HMM Illustrated using Motor LoBs and
Homeowners Insurance LoBs
For motor-15 years from July 2007 to Dec 2021 giving
756 weekly records.
For homeowners-7 years from October 2012 to November
2018 giving 314 weekly records

Zabibu Afazali(Makerere University, Uganda) Dependence modeling in General Insurance using LGC and HMMs



The Data

Two data sets from Kenya and Norway, monthly and then
weekly
7 lines of business considered(Personal Accident, Fire
industrial, Motor private, motor comprehensive, Workers
compensation,liability, Engineering)

LGC and HMM Illustrated using Motor LoBs and
Homeowners Insurance LoBs
For motor-15 years from July 2007 to Dec 2021 giving
756 weekly records.
For homeowners-7 years from October 2012 to November
2018 giving 314 weekly records

Zabibu Afazali(Makerere University, Uganda) Dependence modeling in General Insurance using LGC and HMMs



The Data

Two data sets from Kenya and Norway, monthly and then
weekly
7 lines of business considered(Personal Accident, Fire
industrial, Motor private, motor comprehensive, Workers
compensation,liability, Engineering)
LGC and HMM Illustrated using Motor LoBs and
Homeowners Insurance LoBs

For motor-15 years from July 2007 to Dec 2021 giving
756 weekly records.
For homeowners-7 years from October 2012 to November
2018 giving 314 weekly records

Zabibu Afazali(Makerere University, Uganda) Dependence modeling in General Insurance using LGC and HMMs



The Data

Two data sets from Kenya and Norway, monthly and then
weekly
7 lines of business considered(Personal Accident, Fire
industrial, Motor private, motor comprehensive, Workers
compensation,liability, Engineering)
LGC and HMM Illustrated using Motor LoBs and
Homeowners Insurance LoBs
For motor-15 years from July 2007 to Dec 2021 giving
756 weekly records.

For homeowners-7 years from October 2012 to November
2018 giving 314 weekly records

Zabibu Afazali(Makerere University, Uganda) Dependence modeling in General Insurance using LGC and HMMs



The Data

Two data sets from Kenya and Norway, monthly and then
weekly
7 lines of business considered(Personal Accident, Fire
industrial, Motor private, motor comprehensive, Workers
compensation,liability, Engineering)
LGC and HMM Illustrated using Motor LoBs and
Homeowners Insurance LoBs
For motor-15 years from July 2007 to Dec 2021 giving
756 weekly records.
For homeowners-7 years from October 2012 to November
2018 giving 314 weekly records

Zabibu Afazali(Makerere University, Uganda) Dependence modeling in General Insurance using LGC and HMMs



Table: Pair-wise correlation with p-values of ordinary correlation
test and LGC test for independence

Variables Pairs Pearson’s ρ
on original
scale

Pearson’s
ρ on Log
scale

p-value
Pearson’s
ρ test on
original
scale

p-value
Pearson’s ρ
test on log
scale

p-value
LGC’test

engineering vs fire-industrial 0.15 0.32 0.05* 0.00*** 0.00***
engineering vs liabilities -0.03 0.015 0.69 0.84 0.23
engineering vs motor-commercial 0.08 0.26 0.32 0.00*** 0.00***
engineering vs motor-private 0.17 0.36 0.03* 0.00*** 0.00***
engineering vs workers-compensation 0.01 0,20 0.92 0.01** 0.00***
engineering vs personal accident -0.02 0.18 0.83 0.017* 0.00***
fire-industrial vs liabilities 0.02 0.12 0.75 0.11 0.00***
fire-industrial vs motor-commercial 0.15 0.44 0.05* 0.00*** 0.00***
fire-industrial vs motor-private 0.24 0.51 0.00*** 0.00*** 0.00***
fire-industrial vs workers-compensation 0.07 0.37 0.37 0.00*** 0.00***
fire-industrial vs personal-accidents -0.02 0.21 0.74 0.01** 0.00***
liabilities vs motor-commercial 0.01 0.09 0.85 0.246 0.00***
liabilities vs motor-private 0.04 0.14 0.57 0.07* 0.00***
liabilities vs worker-compensation 0.05 0.09 0.65 0.25 0.00***
liabilities vs personal-accidents -0.01 0.05 0.88 0.5114 0.01**
motor-commercial vs motor-private 0.75 0.85 0.00*** 0.00*** 0.00***
motor-commercial vs workers-compensation 0.32 0.65 0.00*** 0.00*** 0.00***
motor-commercial vs personal-accidents 0.10 0.42 0.17 0.00*** 0.00***
motor-private vs workers-compensation 0.32 0.67 0.00*** 0.00*** 0.00***
motor-private vs personal-accidents 0.21 0.51 0.00*** 0.00*** 0.00***
workers-compensation vs personal-accidents 0.01 0.29 0.87 0.00*** 0.00***
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Table: Table central measures

Descriptive measures
LoB States n mean sd median min max Skew Kurtosis se
Motor-
commercial

state 1 615 4.41 3.53 3.74 -1.23 15.789 0.69 -0.33 0.14

state 2 141 11.65 9.14 10.53 -12.59 77.03 2.62 16.79 0.77
All states 756 5.76 5.79 4.44 -12.59 77.03 3.42 30.96 0.21

Motor-
private

state 1 615 9.09 5.94 8.94 -1.74 27.33 0.3 -0.69 0.24

state 2 141 15.34 7.11 15.29 -1.04 36.52 0.54 0.27 0.6
All states 756 10.25 6.64 9.99 -1.74 36.52 0.52 0.2 0.24

Workers-
Compen

state 1 615 1.30 1.00 1.05 -1.04 4.62 0.82 0.07 0.04

state 2 141 5.91 11.93 4.92 -0.83 139.48 9.98 108.55 1.00
All states 756 2.16 5.5.2 1.3 -1.04 139.48 20.66 506.02 0.2

Table: HMM parameter Estimates

Estimated parameters
Parameter Estimate Std.Error Parameter Estimate Std.Error Parameter Estimate Std.Error
µ1,1 1.1713 0.127 σ1,21 1.2101 0.2852 γ11 0.9099 0.0229
µ1,2 2.7979 0.2097 σ1,22 5.36397 0.7005 γ12 0.0902 0.0229
µ2,1 7.4306 0.2599 σ2,11 34.7537 2.100 γ21 0.0350 0.0087
µ2,2 12.9586 0.2624 σ2,12 8.2245 1.4764 γ22 0.9650 0.0087
σ1,11 1.3655 0,2657 σ2,21 8.2245 1.4764 δ1 0.2797 0.0641
σ1,12 1.2101 0.2852 σ2,22 30.5270 1.9031 δ2 0.7203 0.0641
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Test of asymmetric dependence between states

Hypothesis:

H0 : ρ1(xi , yj) = ρ2(xi , yj) for i , j = 1, · · · , n
H1 : ρ1(xi , yj) ̸= ρ2(xi , yj) for i , j = 1, · · · , n

- 1000 bootstrap replicates carried out
- p-value =0.000
- Statistically significant differences between the dependence
structures of the two states
- Comparing with historical events in Kenya, it appears that the
HMM can identify crisis periods
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Conclusion

Complex dependency structures can be modeled using a
mix of LGC and HMMs

Model found time carrying dependency-financial crisis
Dependency structure differs
This analysis enables insurers to better assess and
manage their overall risk exposure across different lines of
business especially during economic,political crisis periods
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Further work

Try t-distribution instead of normal for the HMMs

consider the other data set (content + house insurance
from Norway) + publicly available data
Compare with other dependency modeling techniques like
Bernstein copulas, Vine Copulas?
Include covariates? claim reporting delays, settlement
delays,
Apply to Reserving, pricing,reinsurance arrangements?
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