Dependence modeling in General Insurance using LGC and HMMs

Zabibu Afazali (Makerere University, Uganda)

July 26, 2023

PhD Forum Presentation

Actuarial, Finance, Risk, and Insurance Congress(AFRIC)

Dependence modeling-Motivation

• Diversification, reserving, pricing, reinsurance

Dependence modeling-Motivation

- Diversification, reserving, pricing, reinsurance
- Non-linear and tail dependence- an issue?

- Diversification, reserving, pricing, reinsurance
- Non-linear and tail dependence- an issue?
- Actuarial audience is non-technical

- Diversification, reserving, pricing, reinsurance
- Non-linear and tail dependence- an issue?
- Actuarial audience is non-technical
- LGC and HMMs presented as alternative approach

LGC

• Linear to non-linear ρ interpretation

LGC

- Linear to non-linear ρ interpretation
- Comprehensible visualizations

LGC

- Linear to non-linear ρ interpretation
- Comprehensible visualizations
- Entire dependence structure by set of pairwise correlations

LGC

- Linear to non-linear ρ interpretation
- Comprehensible visualizations
- Entire dependence structure by set of pairwise correlations
- Guassian densities approximated locally using a bivariate correlation function

LGC

- Linear to non-linear ρ interpretation
- Comprehensible visualizations
- Entire dependence structure by set of pairwise correlations
- Guassian densities approximated locally using a bivariate correlation function

HMMs

• Capture complex temporal dependencies

LGC

- Linear to non-linear ρ interpretation
- Comprehensible visualizations
- Entire dependence structure by set of pairwise correlations
- Guassian densities approximated locally using a bivariate correlation function

- Capture complex temporal dependencies
- Handling Varying Patterns and Regimes.

LGC

- Linear to non-linear ρ interpretation
- Comprehensible visualizations
- Entire dependence structure by set of pairwise correlations
- Guassian densities approximated locally using a bivariate correlation function

- Capture complex temporal dependencies
- Handling Varying Patterns and Regimes.
- Assumes that data-generating process corresponds to a time-dependent mixture of conditional distributions driven by Hidden states

Define

 Let X = (X₁, X₂) 2D RV with density f(x) = f(x₁, x₂) and ψ be a Guassian bivariate

- Let X = (X₁, X₂) 2D RV with density f(x) = f(x₁, x₂) and ψ be a Guassian bivariate
- $\mu(x) = (\mu_1(x), \mu_2(x))$ is the local mean vector

- Let X = (X₁, X₂) 2D RV with density f(x) = f(x₁, x₂) and ψ be a Guassian bivariate
- $\mu(x) = (\mu_1(x), \mu_2(x))$ is the local mean vector
- $\Sigma(x) = \sigma_{ij}(x)$ is the local covariance matrix.

- Let X = (X₁, X₂) 2D RV with density f(x) = f(x₁, x₂) and ψ be a Guassian bivariate
- $\mu(x) = (\mu_1(x), \mu_2(x))$ is the local mean vector
- $\Sigma(x) = \sigma_{ij}(x)$ is the local covariance matrix.
- $\rho(x)$ is the correlation coefficient in ψ

- Let X = (X₁, X₂) 2D RV with density f(x) = f(x₁, x₂) and ψ be a Guassian bivariate
- $\mu(x) = (\mu_1(x), \mu_2(x))$ is the local mean vector
- $\Sigma(x) = \sigma_{ij}(x)$ is the local covariance matrix.
- $\rho(x)$ is the correlation coefficient in ψ
- Approximate f locally at each point x by $\psi_x(\nu)$

- Let X = (X₁, X₂) 2D RV with density f(x) = f(x₁, x₂) and ψ be a Guassian bivariate
- $\mu(x) = (\mu_1(x), \mu_2(x))$ is the local mean vector
- $\Sigma(x) = \sigma_{ij}(x)$ is the local covariance matrix.
- $\rho(x)$ is the correlation coefficient in ψ
- Approximate f locally at each point x by $\psi_x(\nu)$
- $\nu = (\nu_1, \nu_2)^T$ is the running variable

- Let X = (X₁, X₂) 2D RV with density f(x) = f(x₁, x₂) and ψ be a Guassian bivariate
- $\mu(x) = (\mu_1(x), \mu_2(x))$ is the local mean vector
- $\Sigma(x) = \sigma_{ij}(x)$ is the local covariance matrix.
- $\rho(x)$ is the correlation coefficient in ψ
- Approximate f locally at each point x by $\psi_x(
 u)$
- $\nu = (\nu_1, \nu_2)^T$ is the running variable
- The local population parameters λ(x) = (μ(x), Σ(x)) can be defined by minimizing a penalty function q measuring the difference between f and ψ

•
$$C_t$$
: $t = 1, \ldots, T$ hidden states,

- $C_t: t = 1, \ldots, T$ hidden states,
- R_t : t = 1, ..., T observed variables

- $C_t: t = 1, \ldots, T$ hidden states,
- R_t : $t = 1, \ldots, T$ observed variables
- $\Gamma = \gamma_{ij}$ TPM and δ stationary distribution

- C_t : $t = 1, \ldots, T$ hidden states,
- R_t : $t = 1, \ldots, T$ observed variables
- $\Gamma = \gamma_{ij}$ TPM and δ stationary distribution
- $R^{(t)}$ the "history" of the observed process

- C_t : $t = 1, \ldots, T$ hidden states,
- R_t : t = 1, ..., T observed variables
- $\Gamma = \gamma_{ij}$ TPM and δ stationary distribution
- $R^{(t)}$ the "history" of the observed process
- θ vector of model parameters

- C_t : $t = 1, \ldots, T$ hidden states,
- R_t : $t = 1, \ldots, T$ observed variables
- $\Gamma = \gamma_{ij}$ TPM and δ stationary distribution
- $R^{(t)}$ the "history" of the observed process
- θ vector of model parameters
- Express $L(\theta)$ likelihood of observations

- C_t : $t = 1, \ldots, T$ hidden states,
- R_t : t = 1, ..., T observed variables
- $\Gamma = \gamma_{ij}$ TPM and δ stationary distribution
- $R^{(t)}$ the "history" of the observed process
- θ vector of model parameters
- Express $L(\theta)$ likelihood of observations
- Compute $L(\theta)$ using forward (or Backward) algorithm

- $C_t: t = 1, \ldots, T$ hidden states,
- R_t : t = 1, ..., T observed variables
- $\Gamma = \gamma_{ij}$ TPM and δ stationary distribution
- $R^{(t)}$ the "history" of the observed process
- θ vector of model parameters
- Express $L(\theta)$ likelihood of observations
- Compute $L(\theta)$ using forward (or Backward) algorithm
- Used TMB

QUESTION?

What is the probability of an observed claim sequence given the parameters of the HMM? i.e. Transition Probability Matrix, Emission Probability Matrix and the stationary Distribution

The Data

• Two data sets from Kenya and Norway, monthly and then weekly

- Two data sets from Kenya and Norway, monthly and then weekly
- 7 lines of business considered(Personal Accident, Fire industrial, Motor private, motor comprehensive, Workers compensation, liability, Engineering)

- Two data sets from Kenya and Norway, monthly and then weekly
- 7 lines of business considered(Personal Accident, Fire industrial, Motor private, motor comprehensive, Workers compensation, liability, Engineering)
- LGC and HMM Illustrated using Motor LoBs and Homeowners Insurance LoBs

- Two data sets from Kenya and Norway, monthly and then weekly
- 7 lines of business considered(Personal Accident, Fire industrial, Motor private, motor comprehensive, Workers compensation, liability, Engineering)
- LGC and HMM Illustrated using Motor LoBs and Homeowners Insurance LoBs
- For motor-15 years from July 2007 to Dec 2021 giving 756 weekly records.

- Two data sets from Kenya and Norway, monthly and then weekly
- 7 lines of business considered(Personal Accident, Fire industrial, Motor private, motor comprehensive, Workers compensation, liability, Engineering)
- LGC and HMM Illustrated using Motor LoBs and Homeowners Insurance LoBs
- For motor-15 years from July 2007 to Dec 2021 giving 756 weekly records.
- For homeowners-7 years from October 2012 to November 2018 giving 314 weekly records

Table: Pair-wise correlation with p-values of ordinary correlation test and LGC test for independence

Variables Pairs	Pearson's ρ	Pearson's	p-value	p-value	p-value
	on original	ρ on Log	Pearson's	Pearson's ρ	LGC'test
	scale	scale	ρ test on	test on log	
			original	scale	
			scale		
engineering vs fire-industrial	0.15	0.32	0.05*	0.00***	0.00***
engineering vs liabilities	-0.03	0.015	0.69	0.84	0.23
engineering vs motor-commercial	0.08	0.26	0.32	0.00***	0.00***
engineering vs motor-private	0.17	0.36	0.03*	0.00***	0.00***
engineering vs workers-compensation	0.01	0,20	0.92	0.01**	0.00***
engineering vs personal accident	-0.02	0.18	0.83	0.017*	0.00***
fire-industrial vs liabilities	0.02	0.12	0.75	0.11	0.00***
fire-industrial vs motor-commercial	0.15	0.44	0.05*	0.00***	0.00***
fire-industrial vs motor-private	0.24	0.51	0.00***	0.00***	0.00***
fire-industrial vs workers-compensation	0.07	0.37	0.37	0.00***	0.00***
fire-industrial vs personal-accidents	-0.02	0.21	0.74	0.01**	0.00***
liabilities vs motor-commercial	0.01	0.09	0.85	0.246	0.00***
liabilities vs motor-private	0.04	0.14	0.57	0.07*	0.00***
liabilities vs worker-compensation	0.05	0.09	0.65	0.25	0.00***
liabilities vs personal-accidents	-0.01	0.05	0.88	0.5114	0.01**
motor-commercial vs motor-private	0.75	0.85	0.00***	0.00***	0.00***
motor-commercial vs workers-compensation	0.32	0.65	0.00***	0.00***	0.00***
motor-commercial vs personal-accidents	0.10	0.42	0.17	0.00***	0.00***
motor-private vs workers-compensation	0.32	0.67	0.00***	0.00***	0.00***
motor-private vs personal-accidents	0.21	0.51	0.00***	0.00***	0.00***
workers-compensation vs personal-accidents	0.01	0.29	0.87	0.00***	0.00***

Zabibu Afazali(Makerere University, Uganda)

Dependence modeling in General Insurance using LGC and HMM

1.0 0.8

0.6

0.2

0.0

-0.4

-0.6

-1.0

motor_commercial vs motor_private ,rho = 0.85

Zabibu Afazali(Makerere University, Uganda) Dependence modeling in General Insurance using LGC and HMM

Table: Table central measures

Descriptive measures										
LoB	States	n	mean	sd	median	min	max	Skew	Kurtosis	se
Motor-	state 1	615	4.41	3.53	3.74	-1.23	15.789	0.69	-0.33	0.14
commercial										
	state 2	141	11.65	9.14	10.53	-12.59	77.03	2.62	16.79	0.77
	All states	756	5.76	5.79	4.44	-12.59	77.03	3.42	30.96	0.21
Motor-	state 1	615	9.09	5.94	8.94	-1.74	27.33	0.3	-0.69	0.24
private										
	state 2	141	15.34	7.11	15.29	-1.04	36.52	0.54	0.27	0.6
	All states	756	10.25	6.64	9.99	-1.74	36.52	0.52	0.2	0.24
Workers-	state 1	615	1.30	1.00	1.05	-1.04	4.62	0.82	0.07	0.04
Compen										
	state 2	141	5.91	11.93	4.92	-0.83	139.48	9.98	108.55	1.00
	All states	756	2.16	5.5.2	1.3	-1.04	139.48	20.66	506.02	0.2

Table: HMM parameter Estimates

Estimated parameters									
Parameter	Estimate	Std.Error	Parameter	Estimate	Std.Error	Parameter	Estimate	Std.Error	
μ _{1,1}	1.1713	0.127	$\sigma_{1,21}$	1.2101	0.2852	γ_{11}	0.9099	0.0229	
μ _{1,2}	2.7979	0.2097	$\sigma_{1,22}$	5.36397	0.7005	γ_{12}	0.0902	0.0229	
$\mu_{2,1}$	7.4306	0.2599	$\sigma_{2,11}$	34.7537	2.100	γ_{21}	0.0350	0.0087	
μ _{2,2}	12.9586	0.2624	$\sigma_{2,12}$	8.2245	1.4764	γ_{22}	0.9650	0.0087	
$\sigma_{1,11}$	1.3655	0,2657	$\sigma_{2,21}$	8.2245	1.4764	δ_1	0.2797	0.0641	
$\sigma_{1,12}$	1.2101	0.2852	$\sigma_{2,22}$	30.5270	1.9031	δ_2	0.7203	0.0641	

Rho -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

LGC map - State 2

+0.97

+0.57

+1.00

+1.00

80

LGC map - State 1

Zabibu Afazali(Makerere University, Uganda) Dependence modeling in General Insurance using LGC and HMM

Densities, Scatter plot and correlation of true states

Test of asymmetric dependence between states

Hypothesis:

$$\begin{array}{ll} H_0: & \rho_1(x_i, y_j) = \rho_2(x_i, y_j) & \text{for} & i, j = 1, \cdots, n \\ H_1: & \rho_1(x_i, y_j) \neq \rho_2(x_i, y_j) & \text{for} & i, j = 1, \cdots, n \end{array}$$

- 1000 bootstrap replicates carried out
- p-value =0.000
- Statistically significant differences between the dependence structures of the two states
- Comparing with historical events in Kenya, it appears that the HMM can identify crisis periods

• Complex dependency structures can be modeled using a mix of LGC and HMMs

- Complex dependency structures can be modeled using a mix of LGC and HMMs
- Model found time carrying dependency-financial crisis

- Complex dependency structures can be modeled using a mix of LGC and HMMs
- Model found time carrying dependency-financial crisis
- Dependency structure differs

- Complex dependency structures can be modeled using a mix of LGC and HMMs
- Model found time carrying dependency-financial crisis
- Dependency structure differs
- This analysis enables insurers to better assess and manage their overall risk exposure across different lines of business especially during economic, political crisis periods

• Try t-distribution instead of normal for the HMMs

- Try t-distribution instead of normal for the HMMs
- consider the other data set (content + house insurance from Norway) + publicly available data

- Try t-distribution instead of normal for the HMMs
- consider the other data set (content + house insurance from Norway) + publicly available data
- Compare with other dependency modeling techniques like Bernstein copulas, Vine Copulas?

- Try t-distribution instead of normal for the HMMs
- consider the other data set (content + house insurance from Norway) + publicly available data
- Compare with other dependency modeling techniques like Bernstein copulas, Vine Copulas?
- Include covariates? claim reporting delays, settlement delays,

- Try t-distribution instead of normal for the HMMs
- consider the other data set (content + house insurance from Norway) + publicly available data
- Compare with other dependency modeling techniques like Bernstein copulas, Vine Copulas?
- Include covariates? claim reporting delays, settlement delays,
- Apply to Reserving, pricing, reinsurance arrangements?

