

School of Civil and Environmental Engineering Term 1, 2020 CVEN9421 TRANSPORT LOGISTICS ENGINEERING

| COURSE DETAILS     |                          |                   |                                     |  |  |  |
|--------------------|--------------------------|-------------------|-------------------------------------|--|--|--|
| Units of Credit    | 6                        |                   |                                     |  |  |  |
| Contact hours      | 4 hours per week         |                   |                                     |  |  |  |
| Class              | Wed,                     | 15:00 – 17:00     | Civil Engineering G1 (K-H20-G1)     |  |  |  |
|                    | Thu,                     | 13:00 – 15:00     | Central Lecture Block 5 (K-E19-G06) |  |  |  |
|                    |                          |                   |                                     |  |  |  |
| Course Coordinator | David Rey                |                   |                                     |  |  |  |
| and Lecturer       | email: d.rey@unsw.edu.au |                   |                                     |  |  |  |
|                    | office: Room 105, H20    |                   |                                     |  |  |  |
|                    | phone:                   | (+61 2) 9385 5056 |                                     |  |  |  |
|                    |                          |                   |                                     |  |  |  |

### INFORMATION ABOUT THE COURSE

This course is targeted to students in the Faculty of Engineering desiring a deeper understanding of transport logistics engineering. This course will provide an introduction to the mathematical optimization concepts and approaches used in solving large-scale logistical problems encountered in transportation, such as shortest path, network flow and vehicle routing. The expected outcomes of this course are reinforced capability mathematical modelling and in linear and discrete optimization theory as well as the ability implement efficient solution algorithms to solve large-scale transport logistics problems.

# HANDBOOK DESCRIPTION

This postgraduate course covers engineering methods applied to transport logistical systems. In this course, the material provided will cover the basics of graph theory, algorithmic complexity and mathematical programming, which are critical tools to solve complex decision-making problems arising in the field of transportation. These advanced methods will be then used to create engineering solutions to manage existing logistical systems as well as answer questions on transport infrastructure needs. Throughout the course, these techniques will be illustrated on challenging transport and logistics problems such as network flows, facility location, vehicle routing, transit systems as well as rail and air logistics. After completing this course, students will have been exposed to efficient methods and their application to solve transport and logistics decision-making problems. The course will use real data for a course project as well as invite leading practitioners to present their expertise on selected topics.

See link to virtual handbook: https://www.handbook.unsw.edu.au/postgraduate/courses/2020/cven9421/

#### OBJECTIVES

Learning objectives of the course are:

- To reinforce a student's capability in modelling and apply the concepts learned to the analysis of transport logistics problems.
- To introduce students to fundamental linear and discrete optimization theory and its application to large-scale problems.
- To study and implement efficient and versatile optimization algorithms frequently used by engineers to solve logistical problems.
- Provide a solid foundation in mathematical modelling and advanced optimization approaches needed for their studies in the field of Engineering.
- A respect for ethical practice and social responsibility Skills for effective communication

#### **TEACHING STRATEGIES**

| Private Study                                                                                               | <ul> <li>Review lecture material and textbook</li> <li>Do set problems and assignments</li> <li>Reflect on problems and assignments</li> </ul> |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Lectures                                                                                                    | <ul> <li>Find out what you must learn</li> <li>See methods that are not in the textbook</li> <li>Follow worked examples</li> </ul>             |
| Workshops                                                                                                   | <ul> <li>Be guided by Demonstrators</li> <li>Practice solving set problems</li> <li>Ask questions</li> </ul>                                   |
| Assessments (multiple choice questions, quizzes, tests, examinations, assignments, hand-in tutorials, etc.) | <ul> <li>Demonstrate your knowledge and skills</li> <li>Demonstrate higher understanding and problem solving</li> </ul>                        |

#### EXPECTED LEARNING OUTCOMES

| Lea | rning Outcome                                                                                                         | EA Stage 1 Competencies              |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|
| 1.  | Develop an integrative holistic approach to problem solving through systems modelling.                                | PE1.1, PE1.2, PE1.6                  |  |  |  |
| 2.  | Ability to select optimal designs from a set of alternatives as a fundamental of engineering problem solving.         | PE1.1, PE1.2, PE1.6                  |  |  |  |
| 3.  | Abstract a complex technical system into quantitative models and/or qualitative frameworks that represent that system | PE1.2, PE1.2, PE2.1, PE2.2,<br>PE2.3 |  |  |  |
| 4.  | Use abstracted models and frameworks to evaluate and compare effective design decisions                               | PE1.2, PE1.2, PE2.1, PE2.2,<br>PE2.3 |  |  |  |
| 5.  | Implement optimization methods to improve the performance of various infrastructure systems                           | PE1.2, PE1.2, PE2.1, PE2.2,<br>PE2.3 |  |  |  |
| 6.  | Create a strategy for implementing design decisions.                                                                  | PE1.6, PE2.3                         |  |  |  |
| 7.  | Understand the fundamental concepts and principles applied by engineers in advanced systems modelling.                | PE1.1, PE1.2, PE1.6                  |  |  |  |
| 8   | Explore the interdisciplinary nature of integrated real world systems                                                 | PE1.1, PE1.2, PE1.6                  |  |  |  |
| 9   | Apply methods learned to emerging real world engineering problems.                                                    | PE2.1, PE2.2, PE2.3                  |  |  |  |
| 10  | Apply learned skills to their studies.                                                                                | PE2.1, PE2.2, PE2.3                  |  |  |  |

For each hour of contact it is expected that you will put in at least 1.5 hours of private study.

| COURSE PROGRAM |                                 |                                 |                      |  |  |
|----------------|---------------------------------|---------------------------------|----------------------|--|--|
| Date           | Lecture 1 Content               | Lecture 2 Content               | Major Assessments    |  |  |
| 17/02/2020     | Introduction to Transport       | Introduction to Linear and      |                      |  |  |
| (Week 1)       | Logistics Engineering           | Integer Programming             |                      |  |  |
| 24/02/2020     | Network Optimisation Part 1:    | Network Optimisation Part 2:    |                      |  |  |
| (Week 2)       | Routing and Flows               | Mathematical Programming        |                      |  |  |
| 02/03/2020     | Linear Programming Part 1:      | Linear Programming Part 2:      |                      |  |  |
| (Week 3)       | Theory                          | Simplex Algorithm               |                      |  |  |
| 09/03/2020     | The Transportation Broblem      |                                 | In class Quiz (1h)   |  |  |
| (Week 4)       |                                 |                                 | 111-01855 QUIZ (111) |  |  |
| 16/03/2020     | Integer Programming Part 1:     | Integer Programming Part 2:     | In-class Quiz Review |  |  |
| (Week 5)       | Theory                          | Branch and Bound Algorithm      | Assignment Release   |  |  |
| 23/03/2020     | No losturo this wook            |                                 | <u> </u>             |  |  |
| (Week 6)       |                                 |                                 |                      |  |  |
| 30/03/2020     | Traffic Signal Modelling and    | The Knansack Problem            |                      |  |  |
| (Week 7)       | Control                         | тне кнарзаск і торіент          |                      |  |  |
| 06/04/2020     | Vehicle Routing Problem Part 1: | Vehicle Routing Problem Part 2: |                      |  |  |
| (Week 8)       | Modelling                       | Subtour Generation Algorithm    |                      |  |  |
| 13/04/2020     | Guest Lecture                   | Practice Problems (online)      | Assignment Due       |  |  |
| (Week 9)       | Guesi Leciule                   |                                 | Assignment Due       |  |  |
| 20/04/2020     | Assignment Review               | Course Review and O&A           | Assignment Review    |  |  |
| (Week 10)      |                                 |                                 |                      |  |  |

# ASSESSMENT

Assessment is based on weekly Moodle quizzes an in-class quiz, an assignment and a final written examination:

- Moodle quizzes are worth 10% of the course mark (10 quizzes, worth 1% each)
- The in-class quiz is worth 20% of the course mark,
- The assignment is worth 20% of the course mark,
- The final written examination is worth 50% of the course mark.

The in-class quiz and the assignment are assessed on the technical merit and consistency of the methodology followed. Attention to the detail and demonstrated initiative in experimentation with concepts learned will be rewarded. Late assignment submissions will not be accepted.

The final written examination will be in the conventional closed book format covering all topic areas. The formal exam scripts will not be returned. The lecturer reserves the right to adjust the final scores.

The pass mark in this course is 50% overall, however, students must score at least 40% in the final examination in order to qualify for a Pass in this course.

Supplementary Examinations for Term 1 2020 will be held on Monday 25th May – Friday 29th May (inclusive) should you be required to sit one. You are required to be available during these dates. Please do not to make any personal or travel arrangements during this period.

# PENALTIES

Late submissions will be penalised at the rate of 10% per day after the due time and date have expired.

# ASSESSMENT OVERVIEW

| Item              | Length  | Weighting | Learning<br>outcomes<br>assessed | Release Date                    | Due date                        | Deadline for absolute fail      | Marks returned                  |
|-------------------|---------|-----------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Moodle Quizzes    |         |           |                                  |                                 |                                 |                                 |                                 |
| Quiz 1 (week 1)   | 24h     | 1%        | 1,2,3                            | Thu, 20 <sup>th</sup> Feb 16:00 | Fri, 21 <sup>st</sup> Feb 16:00 | Fri, 21 <sup>st</sup> Feb 16:00 | Fri, 21 <sup>st</sup> Feb 16:00 |
| Quiz 2 (week 2)   | 24h     | 1%        | 1,2,3                            | Thu, 27 <sup>th</sup> Feb 16:00 | Fri, 28 <sup>th</sup> Feb 16:00 | Fri, 28 <sup>th</sup> Feb 16:00 | Fri, 28 <sup>th</sup> Feb 16:00 |
| Quiz 3 (week 3)   | 24h     | 1%        | 1,2,3                            | Thu, 5 <sup>th</sup> Mar 16:00  | Fri, 6 <sup>th</sup> Mar 16:00  | Fri, 6 <sup>th</sup> Mar 16:00  | Fri, 6 <sup>th</sup> Mar 16:00  |
| Quiz 4 (week 4)   | 24h     | 1%        | 1,2,3,4                          | Thu, 12 <sup>th</sup> Mar 16:00 | Fri, 11 <sup>th</sup> Mar 16:00 | Fri, 11 <sup>th</sup> Mar 16:00 | Fri, 11 <sup>th</sup> Mar 16:00 |
| Quiz 5 (week 5)   | 24h     | 1%        | 1,2,3,4                          | Thu, 19 <sup>th</sup> Mar 16:00 | Fri, 20th Mar 16:00             | Fri, 20 <sup>th</sup> Mar 16:00 | Fri, 20 <sup>th</sup> Mar 16:00 |
| Quiz 6 (week 6)   | 24h     | 1%        | 2,3,4,5                          | Thu, 26 <sup>th</sup> Mar 16:00 | Fri, 27 <sup>th</sup> Mar 16:00 | Fri, 27 <sup>th</sup> Mar 16:00 | Fri, 27 <sup>th</sup> Mar 16:00 |
| Quiz 7 (week 7)   | 24h     | 1%        | 2,3,4,5                          | Thu, 2 <sup>nd</sup> Apr 16:00  | Fri, 3 <sup>rd</sup> Apr 16:00  | Fri, 3 <sup>rd</sup> Apr 16:00  | Fri, 3 <sup>rd</sup> Apr 16:00  |
| Quiz 8 (week 8)   | 24h     | 1%        | 3,4,5,6,7                        | Thu, 9 <sup>th</sup> Apr 16:00  | Fri, 10 <sup>th</sup> Apr 16:00 | Fri, 10 <sup>th</sup> Apr 16:00 | Fri, 10 <sup>th</sup> Apr 16:00 |
| Quiz 9 (week 9)   | 24h     | 1%        | 3,4,5,6,7                        | Thu, 16 <sup>th</sup> Apr 16:00 | Fri, 17 <sup>th</sup> Apr 16:00 | Fri, 17 <sup>th</sup> Apr 16:00 | Fri, 17 <sup>th</sup> Apr 16:00 |
| Quiz 10 (week 10) | 24h     | 1%        | 3,4,5,6,7                        | Thu, 23 <sup>rd</sup> Apr 16:00 | Fri, 24 <sup>th</sup> Apr 16:00 | Fri, 24 <sup>th</sup> Apr 16:00 | Fri, 24 <sup>th</sup> Apr 16:00 |
| Major Assessments |         |           |                                  |                                 |                                 |                                 |                                 |
| In-class Quiz     | 1 hour  | 20%       | 1,2,3,4,5,6,7,<br>8              | Thu, 12 <sup>th</sup> Mar 13:30 | Thu, 12 <sup>th</sup> Mar 14:30 | N/A                             | Wed, 18 <sup>th</sup> Mar 15:00 |
| Assignment        | 3 weeks | 20%       | 3,4,5,6,7,8,9,<br>10             | Wed, 18 <sup>th</sup> Mar 17:00 | Wed, 15 <sup>th</sup> Apr 15:00 | Wed, 22 <sup>nd</sup> Apr 15:00 | Wed, 22 <sup>nd</sup> Apr 15:00 |
| Final Exam        | 2 hours | 50%       | 1,2,3,4,5,6,7,<br>8,9,10         |                                 | TBD (Refer to myUNSW)           | N/A                             | N/A                             |

All assessments besides the final exam must be submitted on Moodle in PDF format.

# **RELEVANT RESOURCES**

#### Textbooks (recommended as reference)

- Bertsimas, Dimitris, and John N. Tsitsiklis. *Introduction to linear optimization*. Vol. 6. Belmont, MA: Athena Scientific, 1997.
- Schrijver, Alexander. Theory of linear and integer programming. John Wiley & Sons, 1998.
- Fourer, Robert, Gay, David M. and Brian W. Kernighan. *AMPL: A Modeling Language for Mathematical Programming,* Second edition, ISBN 0-534-38809-4.
- AMPL Book Resources (Chapters and examples files): https://ampl.com/resources/the-ampl-book/
- Larson, Richard C., and Amedeo R. Odoni. *Urban Operations Research*. Prentice Hall, 1981. Available at: <u>http://web.mit.edu/urban\_or\_book/www/book/</u>

### DATES TO NOTE

Refer to MyUNSW for Important Dates available at:

https://student.unsw.edu.au/dates

#### PLAGIARISM

Beware! An assignment that includes plagiarised material will receive a 0% Fail, and students who plagiarise may fail the course. Students who plagiarise are also liable to disciplinary action, including exclusion from enrolment.

Plagiarism is the use of another person's work or ideas as if they were your own. When it is necessary or desirable to use other people's material you should adequately acknowledge whose words or ideas they are and where you found them (giving the complete reference details, including page number(s)). The Learning Centre provides further information on what constitutes Plagiarism at:

https://student.unsw.edu.au/plagiarism

#### ACADEMIC ADVICE

(Formerly known as Common School Information)

For information about:

- Notes on assessments and plagiarism,
- School policy on Supplementary exams,
- Special Considerations: student.unsw.edu.au/special-consideration
- Solutions to Problems,
- Year Managers and Grievance Officer of Teaching and Learning Committee, and
- CEVSOC.

Refer to Academic Advice on the School website available at:

https://www.engineering.unsw.edu.au/civil-engineering/student-resources/policies-procedures-andforms/academic-advice

# Appendix A: Engineers Australia (EA) Competencies

Stage 1 Competencies for Professional Engineers

**Program Intended Learning Outcomes** PE1.1 Comprehensive, theory-based understanding of underpinning fundamentals PE1.2 Conceptual understanding of underpinning maths, analysis, statistics, computing PE1: Knowledge and Skill Base PE1.3 In-depth understanding of specialist bodies of knowledge PE1.4 Discernment of knowledge development and research directions PE1.5 Knowledge of engineering design practice PE1.6 Understanding of scope, principles, norms, accountabilities of sustainable engineering practice PE2.1 Application of established engineering methods to complex problem solving PE2: Engineering **Application Ability** PE2.2 Fluent application of engineering techniques, tools and resources PE2.3 Application of systematic engineering synthesis and design processes PE2.4 Application of systematic approaches to the conduct and management of engineering projects PE3.1 Ethical conduct and professional accountability and Personal Attributes PE3.2 Effective oral and written communication (professional and lay domains) PE3: Professional PE3.3 Creative, innovative and pro-active demeanour PE3.4 Professional use and management of information PE3.5 Orderly management of self, and professional conduct PE3.6 Effective team membership and team leadership