

School of Civil and Environmental Engineering Term 2, 2020

CVEN9521 SLOPE STABILITY AND STABILISATION

COURSE DETAILS			
Units of Credit	6		
Contact hours	6 hours per week for four weeks and 3 hours per week for five weeks		
Classes and	Monday, 11:00–14:00 (wks 1, 3-5) online		
workshops	Wednesday, 18:00–21:00 (wks 1- online 5, 7-10)		
	No teaching week 6 or Monday week 2.		
Course Coordinator	Professor Adrian Russell		
and Lecturer	email: a.russell@unsw.edu.au		
	office: CE504		

INFORMATION ABOUT THE COURSE

Students enrolling in this course are assumed to have knowledge of soil mechanics to Bachelor of Civil Engineering standard. Students without a civil engineering degree (or equivalent) should have completed (or be currently enrolled in) CVEN9525 Fundamentals of Geomechanics.

HANDBOOK DESCRIPTION

Landslide classification and recognition; relation to topography and geology. Site investigations for landslides – the specific issues. Analysis of stability; selection of shear strengths, shear strength of fissured clays; review of limit equilibrium analysis, back-analysis; slope stabilisation, pre-failure deformations of soil slopes. Slope stabilisation techniques including geometry change, control of piezometric pressures, anchoring, retaining walls, reinforced soil. Pre- and post-failure deformations of excavated rock slopes. Stability analysis involving unsaturated soils. Quantitative Risk Analysis, including assessment of the probability of failure, travel distance, risk estimation and risk acceptance criteria.

OBJECTIVES

To introduce students to the state of the art of assessment and design of the stability of soil slopes and the Quantitative Risk Assessment of slopes. To have students understand and be able to apply the techniques of assessment, design and QRA.

The course is specialised and designed for those who will work in Geotechnical Engineering, Engineering Geology and Civil Engineering.

TEACHING STRATEGIES

The teaching strategies that will be used and their rationale. Give some suggested approaches to learning in

the course.

(An example of the approaches to learning are)

Private Study	Review lecture material				
	Do set problems and assignments				
	Reflect on class problems and assignments				
	Download materials from Moodle				
	Keep up with notices and find out marks via Moodle				
Lectures	Find out what you must learn				
	Follow worked examples				
	Hear announcements on course changes				
Assessments	Demonstrate your knowledge and skills				
	Demonstrate higher understanding and problem solving				
Computer	Hands-on work, to set studies in context				
Laboratory Work					

EXPECTED LEARNING OUTCOMES

Student-centred and self-directed learning skills to apply an advanced understanding of soil mechanics to solve fundamental problems and practical problems involving real data.

After successfully completing this course, you should be able to:

Lea	arning Outcome	EA Stage 1 Competencies		
1.	Understand and be able to apply the techniques of assessment	1.1, 1.3, 2.1. 2.2. 2.3. 3.2. 3.4		
2.	Understand and be able to apply the techniques of design	1.1, 1.3, 1.4, 2.1, 2.2, 3.2, 3.3, 3.4		
3.	Understand and be able to apply the techniques of QRA	1.2, 2.1, 2.2, 2.3, 3.1, 3.2, 3.4		

For each hour of contact it is expected that you will put in at least 1.5 hours of private study.

COURSE PROGRAM

Date	Торіс	Lecture Content		
01/06/2020 and 03/06/2020 (Week 1)	Classification, geology, hydrogeology, topography	Lecture and slide show		
	Site investigations, mapping, pitting, drilling, instrumentation, model development, the observational method	Lecture and workshop		
10/06/2020	Limit equilibrium methods of stability analyses	Lecture and workshop		
(Week 2)				
15/06/2020 and	Limit equilibrium methods of stability analyses	Lecture and workshop		
17/06/2020				
(Week 3)				

22/06/2020 and	Limit equilibrium methods of stability analyses	Lecture and workshop and SlopeW
24/06/2020		software demonstration
(Week 4)	Introduction to unsaturated soil mechanics	
29/06/2020 and	Analysis of slopes involving unsaturated soils	Lecture and workshop
01/07/2020		
(Week 5)	Laboratory testing, selection of parameters	
06/07/2020	No teaching	Flexibility week for all courses
(Week 6)		(non-teaching)
15/07/2020	Stabilisation techniques	Lecture and workshop
(Week 7)		
22/07/2020	Mechanics of rapid failure and estimation of	Lecture and workshop
(Week 8)	travel distance	
29/07/2020	Quantitative Risk Assessment (QRA), principles	Lecture and demonstrations
(Week 9)	and system framework	
03/08/2020	Revision, case studies and example problems	Workshop and demonstrations
(Week 10)		

ASSESSMENT

- Assignment 1, due beginning of Week 4 (9am 22nd June)
- Assignment 2, due beginning of Week 7 (9am 13th July) val
- Assignment 3, due in Week 10 (5pm 5th August)

 Two hour open-book take-home final exam, held in the formal exam period (commencing 14th August) value: 40%

Details of each assessment component, the marks assigned to it, the criteria by which marks will be assigned, and the dates of submission are set out below.

Supplementary Examinations for Term 2 2020 will be held on Monday 7th September – Friday 11th September (inclusive) should you be required to sit one. You are required to be available during these dates. Please do not to make any personal or travel arrangements during this period.

PENALTIES

Late work will be penalised at the rate of 10% per day after the due time and date have expired.

value: 10%

value: 10% value: 40%

ASSESSMENT OVERVIEW

Item	Length	Weighting	Learning outcomes assessed	Assessment Criteria	Due date	Deadline for absolute fail	Marks returned
1. Assignment 1	~2 days	10%	1.1, 1.5, 2.1. 2.2. 2.3. 2.4. 3.1 3.2, 3.4, 3.5	Detailed on assignment question, located on Moodle	9am 22nd June	none	26th June
2. Assignment 2	~2 days	10%	1.1, 1.3, 1.4, 2.1. 2.2. 2.3. 3.2, 3.3, 3.4	Detailed on assignment question, located on Moodle	9am 13th July	2 weeks after due date unless an extension is granted	~2 weeks after submission
3. Assignment 3	~4 weeks	40%	1.1, 1.3, 1.4, 2.1. 2.2. 2.3. 3.2, 3.3, 3.4	Detailed on assignment question, located on Moodle	5pm 5th August	2 weeks after due date unless an extension is granted	~3 weeks after submission
4. Exam		40%					

RELEVANT RESOURCES

It is not necessary to buy a text book as the notes provided are extensive and sufficient. These will include references to several books and numerous articles in the technical literature. Completion of the assignments may require students to refer to these works.

DATES TO NOTE

Refer to MyUNSW for Important Dates available at:

https://student.unsw.edu.au/dates

PLAGIARISM

Beware! An assignment that includes plagiarised material will receive a 0% Fail, and students who plagiarise may fail the course. Students who plagiarise are also liable to disciplinary action, including exclusion from enrolment.

Plagiarism is the use of another person's work or ideas as if they were your own. When it is necessary or desirable to use other people's material you should adequately acknowledge whose words or ideas they are and where you found them (giving the complete reference details, including page number(s)). The Learning Centre provides further information on what constitutes Plagiarism at:

https://student.unsw.edu.au/plagiarism

ACADEMIC ADVICE

For information about:

- Notes on assessments and plagiarism;
- Special Considerations: student.unsw.edu.au/special-consideration;
- General and Program-specific questions: The Nucleus: Student Hub
- Year Managers and Grievance Officer of Teaching and Learning Committee, and
- CEVSOC/SURVSOC/CEPCA

Refer to Academic Advice on the School website available at:

https://www.engineering.unsw.edu.au/civil-engineering/student-resources/policies-procedures-and-forms/academic-advice

Appendix A: Engineers Australia (EA) Competencies

Stage 1 Competencies for Professional Engineers

Program Intended Learning Outcomes PE1.1 Comprehensive, theory-based understanding of underpinning fundamentals PE1.2 Conceptual understanding of underpinning maths, analysis, statistics, computing PE1: Knowledge and Skill Base PE1.3 In-depth understanding of specialist bodies of knowledge PE1.4 Discernment of knowledge development and research directions PE1.5 Knowledge of engineering design practice PE1.6 Understanding of scope, principles, norms, accountabilities of sustainable engineering practice PE2.1 Application of established engineering methods to complex problem solving PE2: Engineering **Application Ability** PE2.2 Fluent application of engineering techniques, tools and resources PE2.3 Application of systematic engineering synthesis and design processes PE2.4 Application of systematic approaches to the conduct and management of engineering projects PE3.1 Ethical conduct and professional accountability and Personal Attributes PE3.2 Effective oral and written communication (professional and lay domains) PE3: Professional PE3.3 Creative, innovative and pro-active demeanour PE3.4 Professional use and management of information PE3.5 Orderly management of self, and professional conduct PE3.6 Effective team membership and team leadership