

School of Civil and Environmental Engineering Term 3, 2020

CVEN9513 ADVANCED FOUNDATION ENGINEERING

COURSE DETAILS					
Units of Credit	6				
Contact hours	One 4-hour session per week for eight weeks plus two 2-hour sessions across the term				
Class	Monday: 17:00-21:00 Online				
	(Wks 1-3, 5, 7-10)				
	Tuesday: 13:00-15:00				
	(Wks 4 and 7)				
Course Coordinator	Professor Adrian Russell				
and Lecturer	email: a.russell@unsw.edu.au				
	office: CE504				
Lecturer	Dr Babak Shahbodagh				
	email: b.shahbodagh@unsw.edu.au				
	office: CE507				

INFORMATION ABOUT THE COURSE

Students enrolling in this course are assumed to have knowledge of soil mechanics and foundation engineering to Bachelor of Civil Engineering standard. Students without a civil engineering degree (or equivalent) should have completed (or be currently enrolled in) CVEN9525 Fundamentals of Geomechanics.

Students wishing to refresh their knowledge may consider reading Chapters 5,6,7,8,9,11 from 'Craig's Soil Mechanics, Eighth Edition'. An electronic copy of that book is accessible through UNSW's library.

HANDBOOK DESCRIPTION

The course covers analysis and design of shallow foundations and limitations of methods, advanced analysis methods of single piles and pile groups, analysis and construction methods of sheet pile walls, anchored and strutted walls, cast in-situ piles, diaphragm walls, soil anchors and nails. It will also cover the design of machinery foundations. Also, issues relevant to the design of shallow foundations and retaining walls when interacting with unsaturated soils will be addressed. The course will also require students to carry out analysis and design through project-based learning.

OBJECTIVES

To introduce students to the state of the art of analysis and design in foundation engineering. By the end of the course successful students will be able to apply theoretical, empirical, analytical and design techniques to foundation engineering problems.

TEACHING STRATEGIES

Suggested approaches to learning in the course are tabulated below.

Private Study	vate Study • Review lecture material						
	Do set problems and assignments						
	Join Moodle discussions of problems						
	Reflect on class problems and assignments						
	Download materials from Moodle						
	 Keep up with notices and find out marks via Moodle 						
Lectures	Find out what you must learn						
	Follow worked examples						
	Hear announcements on course changes						
Workshops	Be guided by the lecturers						
	Practice solving set problems						
	Ask questions						
Assessments	Demonstrate your knowledge and skills						
	Demonstrate higher understanding and problem solving						

EXPECTED LEARNING OUTCOMES

This course is designed to address the learning outcomes below and the corresponding Engineers Australia Stage 1 Competency Standards for Professional Engineers as shown. The full list of Stage 1 Competency Standards may be found in Appendix A.

After successfully completing this course, you should be able to:

Lea	arning Outcome	EA Stage 1 Competencies
1.	Understand and be able to apply the techniques of analysis.	PE1.1-1.4, PE2.1-2.2,
2.	Understand and be able to apply the techniques of design.	<i>PE1.1-1.5, PE2.1-2.5, PE3.2-</i> <i>3.5</i>

For each hour of contact it is expected that you will put in at least 1.5 hours of private study.

COURSE PROGRAM

A table of lectures and workshops or practical class topics for each week, indicating the name of lecturer involved (where multiple lecturers teaching in course), online activities, such as discussion forums, and relevant readings from textbook and other reference material identified for the course.

Term 3 2020

Day	Торіс
Week 1	Bearing capacity of shallow foundations: conventional approaches,
Monday 1700-2100	methods of analyses.
	Problems in bearing capacity of shallow foundations: strength &
	stiffness, irregular shapes, N_{γ} , N_{c} , layered soils, settlements &
	consolidations.

Week 2 Problems in bearing capacity of shallow foundations: con	ntinued.
Monday 1700-2100 Shallow foundations in unsaturated soils: Soil suction and	d its
incorporation in to the effective stress and soil strength. Exter	nsion of
bearing capacity theory. Knowledge gaps.	
Assignment 1 Introduction and Software Analysis: Incorp	orating
suction into a bearing capacity problem using Sigma/W.	
Week 3 Sheet pile walls: construction, cantilever walls designed by U	UK method,
Monday 1700-2100 USA method, and King (1995) and Day (1999) method; anch	ored walls.
Case study – Cutter soil mix (CSM) walls in sand: fundam	iental
Analysis and innovations through the reinforcement.	
Anchored and strutted walls, diaphragm walls, soil ancho	ors and
and soil anchors.	y 515 UI Wall5
Week 4 No class – NSW public holiday	
Monday 1700-2100	
Week 4	ore and
Tuesday 1300 1500 nails: continued.	
Case study – Nicoll Highway collapse	
Retaining walls in unsaturated soils: Extension of earth pr	essure
theory. Knowledge gaps.	
Assignment 2 Introduction.	
Week 5 Advanced analysis of single pile: load-settlement analysis	of single
Monday 1700-2100 pile by load transfer method, analytical method of Randolph a	and Wroth,
elastic method. Introduction to numerical discretization of load	d transfer
method. Influence factor method for pile group.	
Week 6 No class – non-teaching week	
Monday 1700-2100	
Week 7 Cast in-situ piles: construction, ultimate bearing capacity and	
bearing concepts to be a second on telerable actilement of bared and	id allowable
Monday 1700-2100 bearing capacity based on tolerable settlement of bored cast	id allowable in-situ
Monday 1700-2100 bearing capacity based on tolerable settlement of bored cast piles.	id allowable in-situ
Monday 1700-2100 Dealing capacity based on tolerable settlement of bored cast piles. Week 7 Design, analysis and installation of footings for offshore suction caissons and design issues, pay curves and simplified	nd allowable in-situ structures :
Monday 1700-2100 Dealing capacity based on tolerable settlement of bored cast piles. Week 7 Design, analysis and installation of footings for offshore suction caissons and design issues, p-y curves and simplified analysis methods for monopiles, representation of ground being based on tolerable settlement of bored cast piles.	id allowable in-situ structures : d elastic haviour for
Monday 1700-2100 Desing capacity based on tolerable settlement of bored cast piles. Week 7 Design, analysis and installation of footings for offshore suction caissons and design issues, p-y curves and simplified analysis methods for monopiles, representation of ground be cyclic loading conditions.	id allowable in-situ structures : d elastic haviour for
Monday 1700-2100Dealing capacity based on tolerable settlement of bored cast piles.Week 7Design, analysis and installation of footings for offshore suction caissons and design issues, p-y curves and simplified analysis methods for monopiles, representation of ground be cyclic loading conditions.Week 8Time to work on tutorial questions and assignment question	id allowable in-situ structures: d elastic haviour for tions and
Monday 1700-2100Dealing capacity based on tolerable settlement of bored cast piles.Week 7Design, analysis and installation of footings for offshore suction caissons and design issues, p-y curves and simplified analysis methods for monopiles, representation of ground be cyclic loading conditions.Week 8Time to work on tutorial questions and assignment quest interact with the lecturer	id allowable in-situ structures: d elastic haviour for tions and
Monday 1700-2100Design, analysis and installation of footings for offshore suction caissons and design issues, p-y curves and simplified analysis methods for monopiles, representation of ground be cyclic loading conditions.Week 8 Monday 1700-2100Time to work on tutorial questions and assignment quest interact with the lecturerWeek 9Analysis and design of machinery foundations	nd allowable in-situ structures: d elastic haviour for tions and
Monday 1700-2100Dealing capacity based on tolerable settlement of bored cast piles.Week 7Design, analysis and installation of footings for offshore suction caissons and design issues, p-y curves and simplified analysis methods for monopiles, representation of ground be cyclic loading conditions.Week 8Time to work on tutorial questions and assignment quest interact with the lecturerWeek 9Analysis and design of machinery foundationsMonday 1700-2100Assignment 3 introduction: foundation design for a vibration	nd allowable in-situ structures: d elastic haviour for tions and
Monday 1700-2100Dealing capacity based on tolerable settlement of bored cast piles.Week 7 Tuesday 1300-1500Design, analysis and installation of footings for offshore suction caissons and design issues, p-y curves and simplified analysis methods for monopiles, representation of ground be cyclic loading conditions.Week 8 Monday 1700-2100Time to work on tutorial questions and assignment quest interact with the lecturerWeek 9 Monday 1700-2100Analysis and design of machinery foundations Assignment 3 introduction: foundation design for a vibratin Week 10	ad allowable in-situ structures: d elastic haviour for tions and

ASSESSMENT

• Assignment 1 is due in week 3 (5pm, Friday 2nd October)

• Assignment 2 is due in week 7 (5pm, Friday 30th October)

value 10% value 30%

- Assignment 3 is due at 5pm, Wednesday 25th November
- Two-hour final 'take home' open book exam, held in the exam period (which commences on 27th November) value 40%

The Assignments and Exam are to be submitted electronically though Moodle.

Term 3, 2020 Examination Period: 27 November – 10 December 2020

Provisional Exams Timetable released on myUNSW on: 28 October 2020

Final Exams Timetable released on myUNSW on: 2 November 2020

PENALTIES

Late work will be penalised at the rate of 10% per day after the due time and date have expired.

value 20%

ASSESSMENT OVERVIEW

Item	Length	Weighting	Learning outcomes assessed	Assessment Criteria (this needs to explicitly describe what students are expected to demonstrate in the task)	Due date and submission requirements	Deadline for absolute fail	Marks returned
1. Assignment 1	~2 days	10%	PE1.1-1.5, PE2.1-2.5, PE3.2-3.5	See assignment question uploaded on Moodle	2 October	9 October	11 October
2. Assignment 2	~3 weeks	30%	PE1.1-1.5, PE2.1-2.5, PE3.2-3.5	See assignment question uploaded on Moodle	30 October	6 November	13 November
3. Assignment 3	~2 weeks	20%	PE1.1-1.5, PE2.1-2.5, PE3.2-3.5	See assignment question uploaded on Moodle	25 November	2 December	9 December
4. Exam	2 hours	40%	PE1.1-1.5, PE2.1-2.5, PE3.2-3.5		Final exam period		Official release of results

RELEVANT RESOURCES

It is not necessary to buy a text book as the notes provided are extensive and sufficient. These will include references to several books and numerous articles in the technical literature. Completion of the assignments may require students to refer to these works.

If you do want to buy a book then a few copies of the following are in the bookshop. Das Braja M, Principles of Foundation Engineering 8e SI, Cengage Learning.

DATES TO NOTE

Refer to MyUNSW for Important Dates available at:

https://student.unsw.edu.au/dates

PLAGIARISM

Beware! An assignment that includes plagiarised material will receive a 0% Fail, and students who plagiarise may fail the course. Students who plagiarise are also liable to disciplinary action, including exclusion from enrolment.

Plagiarism is the use of another person's work or ideas as if they were your own. When it is necessary or desirable to use other people's material you should adequately acknowledge whose words or ideas they are and where you found them (giving the complete reference details, including page number(s)). The Learning Centre provides further information on what constitutes Plagiarism at:

https://student.unsw.edu.au/plagiarism

ACADEMIC ADVICE

(Formerly known as Common School Information)

For information about:

- Notes on assessments and plagiarism,
- School policy on Supplementary exams,
- Special Considerations: student.unsw.edu.au/special-consideration
- Solutions to Problems,
- Year Managers and Grievance Officer of Teaching and Learning Committee, and
- CEVSOC.

Refer to Academic Advice on the School website available at:

https://www.engineering.unsw.edu.au/civil-engineering/student-resources/policies-procedures-and-forms/academic-advice

Appendix A: Engineers Australia (EA) Competencies

Stage 1 Competencies for Professional Engineers

Program Intended Learning Outcomes PE1.1 Comprehensive, theory-based understanding of underpinning fundamentals PE1.2 Conceptual understanding of underpinning maths, analysis, statistics, computing PE1: Knowledge and Skill Base PE1.3 In-depth understanding of specialist bodies of knowledge PE1.4 Discernment of knowledge development and research directions PE1.5 Knowledge of engineering design practice PE1.6 Understanding of scope, principles, norms, accountabilities of sustainable engineering practice PE2.1 Application of established engineering methods to complex problem solving PE2: Engineering Application Ability PE2.2 Fluent application of engineering techniques, tools and resources PE2.3 Application of systematic engineering synthesis and design processes PE2.4 Application of systematic approaches to the conduct and management of engineering projects PE3.1 Ethical conduct and professional accountability and Personal Attributes PE3.2 Effective oral and written communication (professional and lay domains) PE3: Professional PE3.3 Creative, innovative and pro-active demeanour PE3.4 Professional use and management of information PE3.5 Orderly management of self, and professional conduct PE3.6 Effective team membership and team leadership