

School of Civil and Environmental Engineering Term 2, 2021 CVEN3402: Transport Engineering and Environmental Sustainability

COURSE DETAILS				
Units of Credit	6			
Contact hours	6 hours per week			
Class	Tuesday, 14:00 – 16:00	Weeks 1 - 5 & 7 – 10:		
	Wednesday 11.00 – 13.00	Online through Blackboard Collaborate Ultra		
Workshop	Friday, 10:00 – 12:00	Weeks 1 – 5		
	or 12:00 – 14:00	Online through Blackboard Collaborate Ultra		
	or 14:00 – 16:00	or face-to-face http://classutil.unsw.edu.au/CVEN_T2.html		
	Wednesday, 14:00 – 16:00	Weeks 7 – 10		
		Online through Blackboard Collaborate Ultra		
Course Coordinator	Divya Jayakumar Nair			
and Lecturer	email: <u>divya.nair@unsw.edu.au</u>			
	office: CE103, H20			
Lecturer	Shantanu Chakraborty			
	email: <u>shantanu.chakraborty@unsw.edu.au</u>			
	office: CE111, H20			

INFORMATION ABOUT THE COURSE

This is the first introductory course into the discipline of transport engineering as part of the broad field of civil and environmental engineering. An outline of the field of transport engineering and its relationships with other engineering and non-engineering disciplines is provided within the course. The basic concepts and terminology of the discipline is introduced. The course comprises of two strands.

The first strand of the course covers the first 5 weeks of the session. This section of the course is concerned with the analysis, design and evaluation of traffic and network systems, including basics of traffic flow theory and the steps of the regional transport planning process. The lectures and workshops will provide an opportunity to learn engineering properties of traffic streams along with relevant measurement and network analysis techniques.

The second strand of the course will be run from week 7 to week 10 and cover analysis methods required for sustainable transport engineering. This includes technical skills required for evaluation and management of environmental impacts from transport projects, including estimation of vehicle emissions, energy consumption, and travel demand management. The course covers the application of planning concepts in the development of economically sustainable transport systems including life-cycle and cost-benefit analyses. Additionally, estimation of noise levels and engineering solutions to control noise are covered in the context of transport noise generators such as road traffic.

HANDBOOK DESCRIPTION

See link to virtual handbook:

https://www.handbook.unsw.edu.au/undergraduate/courses/2021/CVEN3402

OBJECTIVES

The first strand is expected to develop skills related to the analysis of traffic and transport systems. Topics include: overview of the transport task, trends in motorization, sustainable transport, motorized and non-motorized transport, traffic flow fundamentals, definitions and concepts related to land use and transport systems; prediction methods of future transport demand; modelling and evaluation of transport systems; transport operations and traffic management.

- Understand components of the field of transport engineering.
- Learn the basic terminology of transport and traffic engineering practice.
- Learn urban transport planning concepts adopted by planning agencies and Roads and Traffic Authorities.
- Learn management methods related to road network systems.

The second strand is expected to develop skills related to quantifying sustainability with regard to transport systems. During the course we will:

- Recognise the importance of transport within the framework of Ecologically Sustainable Development.
- Explain the nature of transport and traffic noise.
- Describe the sources and impacts of transport emissions.
- Assess the sustainability of the transport system from a broad multi-criteria perspective

TEACHING STRATEGIES

The following teaching strategies will be used in the course:

Private Study	Review lecture material and textbooks				
	Do set problems and assignments				
	Use Moodle for discussions				
	Download class notes from Moodle if not collected during classes				
	Reflect on class problems and assignments				
Lectures	Find out what you must learn				
	See methods that are not in the textbook				
	Follow worked examples				
	Hear announcements on course changes				
Workshops	Be guided by demonstrators				
	Practice solving set problems				
	Ask questions				
Assessments	Demonstrate your knowledge and skills				
	Demonstrate higher understanding and problem solving				

EXPECTED LEARNING OUTCOMES

This course is designed to address the learning outcomes below and the corresponding Engineers Australia Stage 1 Competency Standards for Professional Engineers as shown. The full list of Stage 1 Competency Standards may be found in Appendix A.

A successful study of the first strand will enable students to:

Lear	ning Outcome	EA Stage 1 Competencies*				
Strand 1						
1.	Explain relationships between fundamental traffic flow parameters;	PE1.1, PE1.2, PE1.3, PE1.4				
2.	Explain basics of transport modelling concepts	PE1.1, PE1.3, PE2.2				
3.	Demonstrate calculation methods related to each step of the four step planning process	PE1.1, PE1.2, PE1.3, PE2.1				
4.	Perform computational evaluations of network traffic management methods	PE1.1, PE1.2, PE1.5, PE2.1, PE2.2				
Strai	Strand 2					
5.	Describe the relationships between land use, transport and the environment.	PE 1.1PE 1.2 PE 1.6				
6.	Predict traffic noise levels from traffic and environmental parameters.	PE 1.2 PE 2.1				
7.	Estimate emissions and energy consumption under different planning scenarios.	PE 1.2 PE1.3 PE 1.6 PE 2.2				
8.	Apply the generalized cost framework to optimise transport strategies.	PE1.2 PE 2.2 PE 2.3				
9.	Demonstrate life-cycle based computational evaluations of projects and policies.	PE 1.2 PE 2.4 PE 3.3 PE 3.4				

For each hour of contact it is expected that you will put in at least 1.5 hours of private study.

COURSE PROGRAM

Term 2 2021

Date	Lecture 1	Lecture 2	Demonstration Content	
01/06/2021 &	Outline of the course;	Introduction to the 4-Step	Practice Problems: Transport	
02/06/2021	Introduction to Transport	Urban Transport Planning	Planning (04/06/2021)	
(Week 1)	Systems and Planning	Model		
08/06/2021 &	Introduction to Traffic Flow	Fundamental Relationship	Practice Problems: Estimation of	
09/06/2021	Theory	Between Traffic Flow	speed flow characteristics	
(Week 2)		Elements	(11/06/2021)	
15/06/2021 &	Trip Generation Models	Trip Distribution Models	Practice Problems: Trip	
16/06/2021			Generation and Distribution	
(Week 3)			(18/06/2021)	
22/06/2021 &	Mode Choice Models	Traffic Assignment Models	Practice Problems: Mode Choice	
23/06/2021			and Traffic Assignment	
(Week 4)			(25/06/2021)	
29/07/2021 &	The 4-step Urban Transport	Mid-Term Exam	Practice Problems: Review of	
30/06/2021	Planning Model Review		Strand 1 (02/07/2021)	
(Week 5)				
05/07/2021		Non-teaching week for all		
(Week 6)		courses		

13/07/2021 &	The Sustainability Framework I	The Sustainability Framework	Quantifying sustainability
14/07/2021		П	(14/07/2021)
(Week 7)			
20/07/2021 &	Air, Water and Noise	Climate Change Mitigation	Calculating noise impact
21/07/2021		and Adaptation	(21/07/2021)
(Week 8)			
27/07/2021 &	Traditional and Alternative	Public Transit	Fuel economy calculations
28/07/2021	Vehicles		(28/07/2021)
(Week 9)			
03/08/2021 &	Travel Demand Management I	Travel Demand Management	Calculating the carbon footprint
04/08/2021		Ш	(04/08/2021)
(Week 10)			

ASSESSMENT

The final grade for this course will be based on the sum of the scores from the assignments and the final examination. For the values of the single components see the table below:

Strand	Assessment	Weighting	Assessment Criteria		
1	Moodle Quiz (Weeks 3)	5%	An online quiz will be administered via Moodle during Week 3, 18 th of June 2021, Friday, between 4PM and 6PM. The Moodle quiz will be based on the material covered in Week 1 to Week 3 lectures and workshops. It will be an open book assessment and are intended to help prepare the students for the mid-session quiz and final exam. The assessment also provides a means for continuous assessment and feedback for students throughout the course. The questions will be marked based on technical accuracy.		
1	Mid-Term Exam	25%	A mid-session exam will be administered on 30 th of June 2021, Wednesday, between 11AM and 1PM (Week 5- Lecture2). The exam will cover Strand 1 material (Week 1 to Week 5 Lectures/Workshops) and is intended to assess student's knowledge of the expected learning outcomes, prepare students for the final exam, and discourage last minute cramming. The quiz will be assessed on technical accuracy.		
2	Weekly Moodle Quizzes (Weeks 7- 10)	20%	Strand 2 assessments will be made available as Moodle quizzes each week in Weeks 7-10. The questions will be posted on Thursdays and solutions must be submitted by 11:59 PM the Sunday. Each assessment will contribute 5% of the final grade. Any late submission will be considered as a fail and no scores will be given to the student. The questions will be based on the material covered in lectures and are designed to build on the skills developed in workshop. Each week, the students will use the assessments to revise the lecture material, identify confusions and solidify the relevant methodologies. Some problem sets will build on material covered in previous weeks. The students may discuss the problem set questions in general terms and benefit from the insights of their peers, however each student must present their own solution. While serving as continuous assessment, the problem sets are also intended to help prepare the students for the final exam. The questions will be marked based on technical accuracy with consideration given to the clarity of presentation.		
1&2	Final Exam	50%	A 2-hour open-book final exam will be administered at the end of the semester. The exam will be cumulative (covering both Strand 1 and Strand 2 material) and intended to assess the student's knowledge of the material covered throughout the entire course. The exam questions (and weighting) will be evenly split between the two strands of the courses. The exam will be assessed on technical accuracy.		

Failure to attend the quizzes/mid-term exam/final exam will result in a mark of zero. A late penalty of 10% per day will apply for failure to submit the design assignment by the stated due date. Any assignment submitted 5 or more days after the deadline will receive a mark of zero.

Students who miss the assessment as a result of illness or unforeseen circumstances must apply for special considerations through <u>https://student.unsw.edu.au/special-consideration</u> and contact the course-coordinator.

Students who perform poorly in the assignment and workshops are recommended to discuss progress with the lecturer during the term. The lecturer reserves the right to adjust the final scores by scaling if agreed to by the Head of School.

The pass mark in this course is 50% overall, however, students must score at least 40% in the final examination in order to qualify for a Pass in this course. If below a 40% is scored on the Final Exam, the final exam mark will replace your course mark.

Supplementary Examinations for Term 2 2021 will be held on Monday 6th September – Friday 10th September 2021 (inclusive) should you be required to sit one. You are required to be available during these dates. Please do not to make any personal or travel arrangements during this period.

ASSESSMENT OVERVIEW

Assessment	Length	Weighting	Learning outcomes assessed	Due date and submission requirements	Deadline for absolute fail	Marks returned
Quiz	1 hour	5%	1,2,3	18 th June 2021, Friday at 18:00 on Moodle	18 th June 2021, Friday at 18:00	21 st June 2021, Monday
Mid-Term Exam	2 hours	25%	1, 2, 3, 4	30 th June 2021, Wednesday at 13:00 on Moodle	30 th June 2021, Wednesday at 13:00	16 th July 2021, Friday
Moodle Quiz 1	3 days	5%	5, 8, 9	18 th July 2021, Sunday at 11:59 on Moodle	18 th July 2021, Sunday at 11:59	22 nd July 2021, Thursday
Moodle Quiz 2	3 days	5%	5, 6	25 th July 2021, Sunday at 11:59 on Moodle	25 th July 2021, Sunday at 11:59	29 th August 2021, Thursday
Moodle Quiz 3	3 days	5%	5,7	1 st August 2021, Sunday at 11:59 on Moodle	1 st August 2021, Sunday at 11:59	5 th August 2021, Thursday
Moodle Quiz 4	3 days	5%	7, 8, 9	8 th August 2021, Sunday at 11:59 on Moodle	8 th August 2021, Sunday at 11:59	12 th August 2021, Thursday
Final Exam	2 hours	50%	1,2,3,4,5,6, 7,8	TBD (Refer to myUNSW)	N/A	N/A

RELEVANT RESOURCES

All required reading will be provided in the form of lecture notes. Recommended reading (available in the library):

- Copies of class notes are available at the Moodle site for this course: <u>http://teaching.unsw.edu.au/elearning</u>
- Moving People: Sustainable Transportation Development/Peter Cox
- Planning Sustainable Transport/Barry Hutton
- Sustainable Transportation Planning: Tools for Creating Vibrant, Healthy, and Resilient Communities/ Jeffrey Tumlin
- Sustainable Transportation: Problems and Solutions/ William R. Black
- An Introduction to Sustainable Transportation: Policy, Planning and Implementation/Preston L. Schiller, Eric Bruun, Jeffrey R. Kenworthy
- Modelling Transport, Fourth Edition/Juan de Dios Ortúzar, Luis G. Willumsen
 - Comments: Modelling Transport, Fourth Edition is Published Online: http://onlinelibrary.wiley.com/book/10.1002/9781119993308

DATES TO NOTE

Refer to MyUNSW for Important Dates available at:

https://student.unsw.edu.au/dates

PLAGIARISM

Beware! An assignment that includes plagiarised material will receive a 0% Fail, and students who plagiarise may fail the course. Students who plagiarise are also liable to disciplinary action, including exclusion from enrolment.

Plagiarism is the use of another person's work or ideas as if they were your own. When it is necessary or desirable to use other people's material you should adequately acknowledge whose words or ideas they are and where you found them (giving the complete reference details, including page number(s)). The Learning Centre provides further information on what constitutes Plagiarism at:

https://student.unsw.edu.au/plagiarism

ACADEMIC ADVICE

For information about:

- Notes on assessments and plagiarism;
- Special Considerations: student.unsw.edu.au/special-consideration;
- General and Program-specific questions: <u>The Nucleus: Student Hub</u>
- Year Managers and Grievance Officer of Teaching and Learning Committee, and
- CEVSOC/SURVSOC/CEPCA

Refer to Key Contacts on the Faculty website available at:

https://www.unsw.edu.au/engineering/student-life/student-resources/key-contacts

Appendix A: Engineers Australia (EA) Competencies

Stage 1 Competencies for Professional Engineers

Program Intended Learning Outcomes PE1.1 Comprehensive, theory-based understanding of underpinning fundamentals PE1.2 Conceptual understanding of underpinning maths, analysis, statistics, computing PE1: Knowledge and Skill Base PE1.3 In-depth understanding of specialist bodies of knowledge PE1.4 Discernment of knowledge development and research directions PE1.5 Knowledge of engineering design practice PE1.6 Understanding of scope, principles, norms, accountabilities of sustainable engineering practice PE2.1 Application of established engineering methods to complex problem solving PE2: Engineering **Application Ability** PE2.2 Fluent application of engineering techniques, tools and resources PE2.3 Application of systematic engineering synthesis and design processes PE2.4 Application of systematic approaches to the conduct and management of engineering projects PE3.1 Ethical conduct and professional accountability PE3.2 Effective oral and written communication (professional and lay domains) and Personal Attributes PE3: Professional PE3.3 Creative, innovative and pro-active demeanour PE3.4 Professional use and management of information PE3.5 Orderly management of self, and professional conduct PE3.6 Effective team membership and team leadership