UNIVERSITY OF DEU SOUTH UMLES ## SCHOOL OF SURVEYING V FIELD EXERCISE: Measurement of Directions and Zenith Distances #### 1. AIM The plane bearing from T.S.1 (Geodetic Pillar on CE Bldg) to T.S. 103 (Applied Science) [or another trig station specified by the supervisor] is to be determined by measurement of arcs of directions. Data supplied are the co-ordinates of T.S. 1 and a number of other trig stations as well as approximate co-ordinates of T.S. 103 (see Appendix). #### 2. EQUIPMENT #### Per Group: - 1 One Second theodolite KERN DKM 2A Wild T2E or ZEISS (Oberkochen) Th 2. - 1 KERN Centring Plate (in case of KERN theodolite) - 1 Umbrella (tiltable) - 1 20m/30m steel tape - 1 knife and 10 m of string - 1 Clip Board #### 3. EXERCISE Groups of 2 students are formed for this exercise. 3.1 Each student is to observe 3 arcs of directions to 4 distant targets one of which is T.S 103 (or another T.S specified by the supervisors), the other three being stations of known co-ordinates which are to be used for orientation. The instruments being set up eccentric to T.S 1 on the other pillars, T.S 1 is to be included in at least 2 arcs (as last direction in the arc, measure to both sides of the tube). The distance between T.S 1 and eccentric pillar is to be measured at least 3 times to mm. The six different zeros are to be chosen as to divide the main circle and the micrometer interval into equal parts, for example: $0^{\circ}00'50"$ 30[°]09'10" 60[°]07'30" 90[°]02'30" 120[°]04'10" 150°05'10" (for 10' micrometer) <u>Definition</u>: One arc of directions consists of a face left pointing to each target in turn, proceeding clockwise, reversing on the last target, and a face right pointing on each station in turn proceeding anticlockwise. First order observing routine should be used as specified in briefing. Use umbrella in sunny or rainy conditions!! - 3.2 Each student is to observe 4 arcs of zenith distances to T.S 103 or another well defined targ.specified by the supervisor. Each arc is to consist in pointing in F.L. and F.R. Measuring sequence: FL FR FR-FL The first 2 arcs of zenith distances are to be measured before the first arc of directions, the second 2 arcs before the 3rd arc. of direction with each student. - 3.3 Book directions and zenith distances on different forms. Book time of every arc. #### 4. PEPORT Group reports (groups of 2 students) are required. Submission two weeks after field session, together with field books and forms. - 4.1 Reduce directions and zenith distances as observed on eccentric station. - 4.2 From results of 4.1, compute the precision of a single direction (in 2 faces) and a single zenith distance (in 2 faces) and the precisions of their respective means. - 4.3 Compare the observed precisions as calculated in 4.2 with the established value for the instrument using the Fisher-Test (F-Test). Assume $\sigma_{S,o} = \pm 1.5^{\circ}$ - 4.4 Reduce observed directions to T.S 1 (Centre). - 4.5 Orientate directions and list "measured" plane bearing to T.S 103. Use co-ordinates listed in appendix (NSW Integrated Survey Grid, Zone 56/I). - 4.6 Determine the precision of an orientated direction (as per 4.5). - 4.7 Plot measured zenith distances and index errors of vertical circle against time. Comment on the result. J.M. RUEGER FEBRUARY, 1980 #### HORIZONTAL DIRECTION MEASUREMENT Date: 24/3/1946 Weather: O'cast No wind Station: Declination Instrument: Wild T2 S/N Observer: I. Newton Booker: J. Kepler | Arc | Station | Face Left | Diff | Face Right | Mean | Red.Mean | q | v | vv | |-----|-------------------------------------|---|---------------------------------|---|---|---|---|--|---------------------------------------| | Ī | Omega
T.4
Astro
Wild
RA | 0 00 06
21 46 29
63 17 21
100 24 01
142 10 53 | + 3
+ 4
+ 5
+ 4
- 5 | 180 00 09
201 46 33
243 17 26
280 24 05
322 10 48 | 0 00 08
21 46 31
63 17 24
100 24 03
322 10 50 | 0 00 00
21 46 33
63 17 16
100 23 55
142 10 42 | 0
-1.3
-1.8
-2.8
-2.0
-7.9 | +1.6
+0.3
-0.2
-1.2
-0.4
+0.1 | 2.56
0.09
0.04
1.44
0.16 | | II | Omega
T.4
Astro
Wild
RA | 45 02 08
66 48 26
108 19 17
145 26 00
187 12 55 | + 5
+ 9
+ 6
0
- 9 | 225 02 13
246 48 35
288 19 23
325 26 00
7 12 46 | 45 02 10
66 48 30
108 19 20
145 26 00
187 12 50 | 0 00 00
21 46 20
63 17 10
100 23 50
142 10 40 | 0
+1.7
+4.2
+2.2
0 | -1.6
+0.1
+2.6
+0.6
-1.6 | 2.56
0.01
6.76
0.36
2.56 | | | Astro
Wild | 40 05 07
111 51 33
153 22 24
190 28 55
232 15 48 | + 3
- 2
- 2
+ 4
+ 2 | 270 05 10
291 51 31
333 22 22
10 28 59
52 15 50 | 90 05 08
111 51 32
153 22 23
190 28 57
232 15 49 | 0 00 00
21 46 24
63 17 15
100 23 49
142 10 41 | +8.1
0
-2.3
-0.8
+3.2
-1.0
-0.9 | +0.1
+0.2
-2.1
-0.6
+3.4
-0.8
+0.1 | 0.04
4.41
0.36
11.56
0.64 | | IV | T.4
Astro
Wild | 135 07 10
156 53 38
198 24 29
235 31 11
277 17 51 | +12
- 4
+ 7
0
+ 4 | 315 07 32
336 53 34
18 24 36
55 31 11
97 17 55 | 135 07 16
156 53 36
198 24 32
235 31 11
277 17 53 | 0 00 00
21 46 20
63 17 16
100 23 55
142 10 37 | 0
+1.7
-1.8
-2.8
+3.0
+0.1 | 0
+1.7
-1.8
-2.8
+3.0
+0.1 | 0
2.89
3.24
7.84
9.00 | | Station | Final Means | | | | |---------|-------------|--|--|--| | Omega | 0 00 00.0 | | | | | T.4 | 21 46 21.7 | | | | | Astro | 63 17 14.2 | | | | | Wild | 100 23 52.2 | | | | | RA | 142 10 40.0 | | | | #### CALCULATION OF PRECISION Σv^2 = 56.52 No. of Arcs n = 4;No. of rays/arc r Variance of single direction (Mean of F.L. & F.R.) $$S_x^2 = \sum v^2/(n-1)(r-1) = 4.71$$ Variance of Mean Direction $$S_{\mathbf{X}}^{2} = S_{\mathbf{X}}^{2}/n = 1.18$$ Corresponding Standard Deviations $$S_{x} = \sqrt{S_{x}^{2}} = \pm 2.17$$ " $S_{\overline{x}} = \sqrt{S_{\overline{x}}^{2}} = \pm 1.09$ " VARIANCE TEST $\sigma_{x}^{2} = 3.1$ (established value for T 2) $$\frac{S^{2}}{\sigma_{\mathbf{x}}^{2}} = 1.52$$ Hence $$\frac{S^{2}}{\sigma_{\mathbf{x}}^{2}} < F_{\alpha, (n-1), (r-1), \infty}$$ $F_{\alpha,(n-1)(r-1),\infty} = F_{.05,12,\infty} = 1.75$ at 5% level of significance i.e. Accept $$\sigma_{\mathbf{x}}^2 = 3.1$$ #### ORIENTATION At Stn: 'Declination' | Station | Known Dirn. | Obs Dirn. | Orientation | Orientated Dirn. | Residual
v | | |---------|-------------|-------------|-----------------|------------------|-----------------|--| | | (1) | (2) | (3) = (1) - (2) | (4) = (2) + (0) | (5) = (1) - (4) | | | Omega | 82 36 21.4 | 0 00 00.1 | 82 36 21.4 | 82 36 21.5 | -0.1" | | | т.4 | | 21 46 21.7 | | 104 22 43.2 | | | | Astro | | 63 17 14.2 | | 145 53 35.7 | | | | Wild | 183 00 14.8 | 100 23 52.2 | 82 36 22.6 | 183 00 13.7 | +1.1" | | | RA | 224 47 00.5 | 142 10 40.0 | 82 36 20.5 | 224 47 01.5 | -1.0" | | | | | | | | Σ = 0 | | - (0) = Mean Orientation = $82^{\circ}36'21.5"$ - (1) Calculated from coordinates of known stations. - (5) If the known coordinates are the result of an adjustment of observations of a higher order, the residuals could be used to obtain an independent estimate of the standard deviation of a mean direction (although there will usually be only a small number of such residuals). $$S_{m} = \sqrt{\frac{\sum v^{2}}{k-1}}$$ where k is number of known directions. #### CONFIDENCE INTERVALS OF MEAN DIRECTIONS $$C.I = \overline{x} \pm z_{\alpha/2} \quad \sigma x / \overline{n}$$ eg. Direction to T4. : 95% C.I. $$\bar{x} = 104^{\circ}22'43.2''$$ $n = 4$ $\sigma = \pm 1.76$ " for Wild T 2 (established value) $$z_{\alpha/2} = z_{.025} = 1.96$$ 95% C.I. = $$104^{\circ}22'43.2'' \pm 1.7''$$ ***** (II) ø Unknown C.I. = $$\bar{x}$$ $\pm t_{\alpha/2,R} s_x / \bar{n}$ Direction to T4: 95% C.I. $$\bar{x} = 104^{\circ}22'43.2''$$ $n = 4$ $S_{\nu} = \pm 2.17$ " from Observations P.1. $$R = (n-1)(r-1) = 12$$ $$t_{\alpha/2}$$, R = $t_{.025,12}$ = 2.18 95% C.I. = $$104^{\circ}22'43.2" \pm 2.4"$$ K.I. Groenhout January 1980 # University of New South Wales School of Surveying 29.005 Surveying V 1979 ### Appendix to Field Work DIRECTION MEASUREMENTS The coordinates given below refer to the N.S.W. Integrated Survey Grid (I.S.G.), Zone 56/1 and are based on computations executed in July 1976. These coordinates are provisional only. CAMPUS OUTER NETWORK 1976 A.F.H.WERNER | tion out and its contract that the constitution is a second and out only only one and seathers are produced. | | | | | | | |--|-------------|-------------|-------------|--|--|--| | STATION | NUMBER | NORTHING | EASTING | | | | | UNSW FILLAR | 1. | 1245423,525 | 321406,396 | | | | | MEDICINE | 1.2 | 1245593.967 | 321707.302 | | | | | APPLIED SCIENCE | 103 | 1245540.718 | 321029,472 | | | | | SCIENCE BUILDING | 121 | 1245482.041 | 321559.398 | | | | | HOWARD RESERVOIR | 122 | 1245012.345 | 322638.642 | | | | | ST. SPIRITION | 123 | 1244642.227 | 320651.837 | | | | | COOGEE BEACH | 124 | 1245273.240 | 323973.599 | | | | | CORNEKAKES | 125 | 1242227+693 | 319294.879 | | | | | CENTENTAL PARK | 123 | 1248128.074 | 321559.733 | | | | | P.O.W.HOSPITAL | 127 | 1245460.663 | 322019.443 | | | | | ST.JUDES | 128 | 1246124.498 | 322327,548 | | | | | SOUTH RANDWICK | 129 | 1239047,015 | 322096.732 | | | | | HARBOUR BRIDGE | 130 | 1252746.294 | 319388.491 | | | | | SHOWSROUND | 131 | 1248305.308 | 320853.424 | | | | | CHARING CROSS | 132 | 1247366.995 | 323463,580 | | | | | MONASTERY | 133 | 1245890.194 | 320268, 765 | | | | | BELLEVUE HILL | 134 | 1249274.364 | 323450.253 | | | | | GREEN SPIRE | 135 | 1245641,481 | 322232,674 | | | | | PADDINGTON | 136 | 1249097.240 | 320796,596 | | | | | U.11 | 137 | 1245823,939 | 320312.970 | | | | | LIBRARY | 138 | 1245506.964 | 321460.804 | | | | | MAROUBRA | 139 | 1242652.971 | 322904.065 | | | | | P.M.28626 | 5 76 | 1244336+093 | 323650.585 | | | |