UNIVERSITY OF DEU SOUTH UMLES

SCHOOL OF SURVEYING V

FIELD EXERCISE: Measurement of Directions and Zenith Distances

1. AIM

The plane bearing from T.S.1 (Geodetic Pillar on CE Bldg) to T.S. 103 (Applied Science) [or another trig station specified by the supervisor] is to be determined by measurement of arcs of directions. Data supplied are the co-ordinates of T.S. 1 and a number of other trig stations as well as approximate co-ordinates of T.S. 103 (see Appendix).

2. EQUIPMENT

Per Group:

- 1 One Second theodolite KERN DKM 2A Wild T2E or ZEISS (Oberkochen) Th 2.
- 1 KERN Centring Plate (in case of KERN theodolite)
- 1 Umbrella (tiltable)
- 1 20m/30m steel tape
- 1 knife and 10 m of string
- 1 Clip Board

3. EXERCISE

Groups of 2 students are formed for this exercise.

3.1 Each student is to observe 3 arcs of directions to 4 distant targets one of which is T.S 103 (or another T.S specified by the supervisors), the other three being stations of known co-ordinates which are to be used for orientation. The instruments being set up eccentric to T.S 1 on the other pillars, T.S 1 is to be included in at least 2 arcs (as last direction in the arc, measure to both sides of the tube). The distance between T.S 1 and eccentric pillar is to be measured at least 3 times to mm.

The six different zeros are to be chosen as to divide the main circle and the micrometer interval into equal parts, for example: $0^{\circ}00'50"$

30[°]09'10" 60[°]07'30" 90[°]02'30" 120[°]04'10"

150°05'10" (for 10' micrometer)

<u>Definition</u>: One arc of directions consists of a face left pointing to each target in turn, proceeding clockwise, reversing on the last target, and a face right pointing on each station in turn proceeding anticlockwise.

First order observing routine should be used as specified in briefing. Use umbrella in sunny or rainy conditions!!

- 3.2 Each student is to observe 4 arcs of zenith distances to T.S 103 or another well defined targ.specified by the supervisor. Each arc is to consist in pointing in F.L. and F.R. Measuring sequence: FL FR FR-FL The first 2 arcs of zenith distances are to be measured before the first arc of directions, the second 2 arcs before the 3rd arc. of direction with each student.
- 3.3 Book directions and zenith distances on different forms. Book time of every arc.

4. PEPORT

Group reports (groups of 2 students) are required. Submission two weeks after field session, together with field books and forms.

- 4.1 Reduce directions and zenith distances as observed on eccentric station.
- 4.2 From results of 4.1, compute the precision of a single direction (in 2 faces) and a single zenith distance (in 2 faces) and the precisions of their respective means.
- 4.3 Compare the observed precisions as calculated in 4.2 with the established value for the instrument using the Fisher-Test (F-Test). Assume $\sigma_{S,o} = \pm 1.5^{\circ}$
- 4.4 Reduce observed directions to T.S 1 (Centre).
- 4.5 Orientate directions and list "measured" plane bearing to T.S 103.

 Use co-ordinates listed in appendix (NSW Integrated Survey Grid,

 Zone 56/I).
- 4.6 Determine the precision of an orientated direction (as per 4.5).
- 4.7 Plot measured zenith distances and index errors of vertical circle against time. Comment on the result.

J.M. RUEGER FEBRUARY, 1980

HORIZONTAL DIRECTION MEASUREMENT

Date: 24/3/1946 Weather: O'cast No wind Station: Declination

Instrument: Wild T2 S/N Observer: I. Newton Booker: J. Kepler

Arc	Station	Face Left	Diff	Face Right	Mean	Red.Mean	q	v	vv
Ī	Omega T.4 Astro Wild RA	0 00 06 21 46 29 63 17 21 100 24 01 142 10 53	+ 3 + 4 + 5 + 4 - 5	180 00 09 201 46 33 243 17 26 280 24 05 322 10 48	0 00 08 21 46 31 63 17 24 100 24 03 322 10 50	0 00 00 21 46 33 63 17 16 100 23 55 142 10 42	0 -1.3 -1.8 -2.8 -2.0 -7.9	+1.6 +0.3 -0.2 -1.2 -0.4 +0.1	2.56 0.09 0.04 1.44 0.16
II	Omega T.4 Astro Wild RA	45 02 08 66 48 26 108 19 17 145 26 00 187 12 55	+ 5 + 9 + 6 0 - 9	225 02 13 246 48 35 288 19 23 325 26 00 7 12 46	45 02 10 66 48 30 108 19 20 145 26 00 187 12 50	0 00 00 21 46 20 63 17 10 100 23 50 142 10 40	0 +1.7 +4.2 +2.2 0	-1.6 +0.1 +2.6 +0.6 -1.6	2.56 0.01 6.76 0.36 2.56
	Astro Wild	40 05 07 111 51 33 153 22 24 190 28 55 232 15 48	+ 3 - 2 - 2 + 4 + 2	270 05 10 291 51 31 333 22 22 10 28 59 52 15 50	90 05 08 111 51 32 153 22 23 190 28 57 232 15 49	0 00 00 21 46 24 63 17 15 100 23 49 142 10 41	+8.1 0 -2.3 -0.8 +3.2 -1.0 -0.9	+0.1 +0.2 -2.1 -0.6 +3.4 -0.8 +0.1	0.04 4.41 0.36 11.56 0.64
IV	T.4 Astro Wild	135 07 10 156 53 38 198 24 29 235 31 11 277 17 51	+12 - 4 + 7 0 + 4	315 07 32 336 53 34 18 24 36 55 31 11 97 17 55	135 07 16 156 53 36 198 24 32 235 31 11 277 17 53	0 00 00 21 46 20 63 17 16 100 23 55 142 10 37	0 +1.7 -1.8 -2.8 +3.0 +0.1	0 +1.7 -1.8 -2.8 +3.0 +0.1	0 2.89 3.24 7.84 9.00

Station	Final Means			
Omega	0 00 00.0			
T.4	21 46 21.7			
Astro	63 17 14.2			
Wild	100 23 52.2			
RA	142 10 40.0			

CALCULATION OF PRECISION

 Σv^2 = 56.52 No. of Arcs n = 4;No. of rays/arc r Variance of single direction (Mean of F.L. & F.R.)

$$S_x^2 = \sum v^2/(n-1)(r-1) = 4.71$$

Variance of Mean Direction

$$S_{\mathbf{X}}^{2} = S_{\mathbf{X}}^{2}/n = 1.18$$
Corresponding Standard Deviations

$$S_{x} = \sqrt{S_{x}^{2}} = \pm 2.17$$
" $S_{\overline{x}} = \sqrt{S_{\overline{x}}^{2}} = \pm 1.09$ "

VARIANCE TEST $\sigma_{x}^{2} = 3.1$ (established value for T 2)

$$\frac{S^{2}}{\sigma_{\mathbf{x}}^{2}} = 1.52$$
Hence
$$\frac{S^{2}}{\sigma_{\mathbf{x}}^{2}} < F_{\alpha, (n-1), (r-1), \infty}$$

 $F_{\alpha,(n-1)(r-1),\infty} = F_{.05,12,\infty} = 1.75$ at 5% level of significance

i.e. Accept
$$\sigma_{\mathbf{x}}^2 = 3.1$$

ORIENTATION

At Stn: 'Declination'

Station	Known Dirn.	Obs Dirn.	Orientation	Orientated Dirn.	Residual v	
	(1)	(2)	(3) = (1) - (2)	(4) = (2) + (0)	(5) = (1) - (4)	
Omega	82 36 21.4	0 00 00.1	82 36 21.4	82 36 21.5	-0.1"	
т.4		21 46 21.7		104 22 43.2		
Astro		63 17 14.2		145 53 35.7		
Wild	183 00 14.8	100 23 52.2	82 36 22.6	183 00 13.7	+1.1"	
RA	224 47 00.5	142 10 40.0	82 36 20.5	224 47 01.5	-1.0"	
					Σ = 0	

- (0) = Mean Orientation = $82^{\circ}36'21.5"$
- (1) Calculated from coordinates of known stations.
- (5) If the known coordinates are the result of an adjustment of observations of a higher order, the residuals could be used to obtain an independent estimate of the standard deviation of a mean direction (although there will usually be only a small number of such residuals).

$$S_{m} = \sqrt{\frac{\sum v^{2}}{k-1}}$$
 where k is number of known directions.

CONFIDENCE INTERVALS OF MEAN DIRECTIONS

$$C.I = \overline{x} \pm z_{\alpha/2} \quad \sigma x / \overline{n}$$

eg. Direction to T4. : 95% C.I.

$$\bar{x} = 104^{\circ}22'43.2''$$
 $n = 4$

 $\sigma = \pm 1.76$ " for Wild T 2 (established value)

$$z_{\alpha/2} = z_{.025} = 1.96$$

95% C.I. =
$$104^{\circ}22'43.2'' \pm 1.7''$$

(II) ø Unknown

C.I. =
$$\bar{x}$$
 $\pm t_{\alpha/2,R} s_x / \bar{n}$

Direction to T4: 95% C.I.

$$\bar{x} = 104^{\circ}22'43.2''$$
 $n = 4$

 $S_{\nu} = \pm 2.17$ " from Observations P.1.

$$R = (n-1)(r-1) = 12$$

$$t_{\alpha/2}$$
, R = $t_{.025,12}$ = 2.18

95% C.I. =
$$104^{\circ}22'43.2" \pm 2.4"$$

K.I. Groenhout
January 1980

University of New South Wales School of Surveying 29.005 Surveying V 1979

Appendix to Field Work DIRECTION MEASUREMENTS

The coordinates given below refer to the N.S.W. Integrated Survey Grid (I.S.G.), Zone 56/1 and are based on computations executed in July 1976. These coordinates are provisional only.

CAMPUS OUTER NETWORK 1976 A.F.H.WERNER

tion out and its contract that the constitution is a second and out only only one and seathers are produced.						
STATION	NUMBER	NORTHING	EASTING			
UNSW FILLAR	1.	1245423,525	321406,396			
MEDICINE	1.2	1245593.967	321707.302			
APPLIED SCIENCE	103	1245540.718	321029,472			
SCIENCE BUILDING	121	1245482.041	321559.398			
HOWARD RESERVOIR	122	1245012.345	322638.642			
ST. SPIRITION	123	1244642.227	320651.837			
COOGEE BEACH	124	1245273.240	323973.599			
CORNEKAKES	125	1242227+693	319294.879			
CENTENTAL PARK	123	1248128.074	321559.733			
P.O.W.HOSPITAL	127	1245460.663	322019.443			
ST.JUDES	128	1246124.498	322327,548			
SOUTH RANDWICK	129	1239047,015	322096.732			
HARBOUR BRIDGE	130	1252746.294	319388.491			
SHOWSROUND	131	1248305.308	320853.424			
CHARING CROSS	132	1247366.995	323463,580			
MONASTERY	133	1245890.194	320268, 765			
BELLEVUE HILL	134	1249274.364	323450.253			
GREEN SPIRE	135	1245641,481	322232,674			
PADDINGTON	136	1249097.240	320796,596			
U.11	137	1245823,939	320312.970			
LIBRARY	138	1245506.964	321460.804			
MAROUBRA	139	1242652.971	322904.065			
P.M.28626	5 76	1244336+093	323650.585			