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Summary :-

A uniform geodetic gravity network has been compiled from all
gravity data available over the state of South Australia. Mean free
air anomalies for 1/2° x 1/2°, 1% x 1° and 2° x 2° squares are
computed in all regions where gravity data is available. The
sample is analyséd for the mean free air anomaly which best
represents each area. The errors of representation computed are
in general agreement with Hirvonen's values. The extension of
this field to unsurveyed areas is attempted using a least squares

fit of a two-dimensional trigonometrical series, which is periodic

in character. The accuracy of the values so obtained is studied.
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Introduction

Gravity surveys have been in progress in South Australia for over
20 years (Thyer, 1963). The overall control has been provided by the
Authority of the Commonwealth of Australia, the Bureau of Mineral
Resources, Geology and Geophysics (B.M.R.) (Dooley et al, 1961:
Dooley, 1965). Subsidiary gravity surveys have been carried out by
the South Australian Department of Mines, and by various petroleum
exploration companies. These surveys, some of which are quite
extensive, are often based on arbitrary datums for both height and
gravity and considerable time was spent unifying the surveys onto
the national datum (Mather, 1966 b). This national datum, established
by the Isogal Regional Gravity Survey, was based on the value of

979,979.0 mgal at the National Gravity Base Station at Melbourne.

All available gravity readings in the region bounded by the parallels
2628 and 40° S and the meridians 128° E and 142° E were considered
in compiling the sample. The area is reasonably flat with a mean
elevation of 120 meters, the maximum and minimum 1° x 1° square
mean elevations being 565 meters and - 275 meters respectively.

(The regions beyond the continental shelf area were not considered).
The Western half of the state is part of the pre-Cambrian granitic
shield, extending further westward and is semi-desert in character.
The rock formations are essentially sedimentary, being generally

cainozoic with some proterozoic formations in the hilly regions.

The Sample

The representation of the mean anomaly of a square by the mean
value of all the observed gravity readings has generally been consider-
ed to be unacceptable (e.g. Jeffreys, 1941) as any tendency for the
sample to be unevenly distributed in a square could lead to misconcept-

ions as regards the accuracy of the mean anomaly obtained. A more



representative sample is obtained by subdividing each square into
equi-areal sections, representing the gravity field in each section by
a single anomaly and computing the areal mean from these repre-
sentative anomalies. In the present analysis, the basic square unit
considered was the 1/2O X 1/2O square. 0. 1° % 0. 1O squares were
chosen as the basic sub-divisional unit within the 1/20 X 1/2o square
as these would be less than 3 times the basic spacing of gravity
stations for normal computations of deflections of the vertical (Rice,

1952, 289); (Mather, 1966a, 10).

In computing the geoid - spheroid spearation using Stdkes'integral
and the deflections (& & r\’ ) of the vertical using the Vening
Meinesz formulae, not only is it necessary to compute the 1/2o X
1/2O square mean anomalies, but it is equally important to assess
the accuracy of the quantity computed. This is dependant on the
sample variance ( 62 ), the sample size (n) and the distribution of
readings over the square. As a result, only about 10 per cent of the
available gravity data could be included in the sample. In addition,
limited geodetic gravity surveys were also carried out using the
South Australian Institute of Technology's Worden Geodesist gravi-
meter (Mather, 1966 b). The elevations established on this survey
by barometric means had a standard error of the order of ts metres
and the resulting error in the 1/2° x 1/2° mean free air anomaly
would be ! 0.2 mgal if there were no sources of systematic error

in the final heights.

In this manner, readings were chosen to represent the corners
o o . . .
of 0.1  x 0.1 squares. When readings did not quite fall on square
corners, representation was adopted instead of interpolation

(Moritz, 1966, 167). Approximately 4000 stations were incorporated
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in the analysis, the majority being concentrated along the northern
and eastern borders of the state (see fig. 2). The area is essentially
a region of negative free air anomalies (see fig. 3), the field being

extremely variable in the north - west. (see fig. 4)

Correlation of Mean Free Air Anomalies and Mean Square Elevations

The regional free air anomaly can be represented (Uotila, 1960)

over limited extents, by the expression

hg, © C+0.1118n ... (1)

where h = elevation of gravity station in meters
A g = free air anomaly in mgal

C

a constant over the region.

This expression implies that the Bouguer anomalies are more
regional than positional in character. While this expression cannot
represent limited extents with any degree of accuracy, the evaluation
of a constant for larger areas is of relevance in establishing values

for regional mean free air anomalies to be used in low order harmonic

analysis of gravity material.

Longitude (degrees E)

128 132 136 142
26
L -64 -49 -14
a D (415) (262) (58)
t e 30
i g -26 -21 -19
t r (86) (39) (175)
u e 34
d e 22 2
e s (-70) (9)
S 38

TABLE 1,

Evaluation of C in mgal. Mean elevations (in parentheses) in meters.




A least squares analysis of the data in 9 sub-divisional areas, using

1°% %O means gave values for C as shown in Table 1. The regional
character of C is emphasised when these values are compared with the
overall mean value of -20 mgal. over the entire area, corresponding

to a regional mean elevation of 130 meters.

This relation was not used to evaluate square means as the variation
of gravity with height over any limited area in the sample considered
was found, in most cases, to be small, compared to the variations
with position, independent of height, as represented by Bouguer

anomalies.

The Spread of a Sample

The criterion already defined for the spread of a sample is the

"Error of Representation" (ES) (Hirvonen, 1956), given by
2

t n
2 -
im? -z oz (B -a . e (2)
s i=1 j=1
n
where

A g0 = mean anomaly for a square

A g = observed anomaly
n = no. of stations in a square
t = no. of squares considered

As n £ 25 for %0 X %O squares, the denominator used for
calculations was (n - 1) instead of n (Spiegel, 1961, 70). The analysis
of a high proportion of the South Australian sample shows good
agreement with Hirvonen's values except, possibly, in the case of
10 1

5 X 30 square means. This is due to the highly variable field in the

North West corner of the state where the free air anomalies approach
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-100 mgal and the standard deviation of free air anomalies in a single

+ o
square could be as large as - 80 mgal for a %O X £ square.

The ES values in Table 2 represent values obtained from the analysis
of free air anomalies, and, in view of the nature of the topography,
would apply, with relatively small variations, to both Bouguer and
Isostatic anomalies. Thus, while the variation of gravity is similar
to that of the European gravity field over large extents (Hirvonen, 1956),

it can be slightly greater over limited ones.

The extension of the gravity field to unsurveyed areas

The extension of gravity fields from limited gravity data to obtain a
continuous field has already been investigated by Jeffreys (1941),
Kaula (1959), Uotila (1962) and Moritz (1966). The methods of
extension used are fully described by the first two investigétors and
the last. Jeffreys had much less data available to him than Kaula and
sets out his method of computation exhaustively. He worked on a 10°
square unit, assuming one value to represent each square and allowing
for height correlation. A series of observation equations were then
fitted for each parallel and harmonic coefficients were evaluated to the
4th order. Kaula, on the other hand, used Markov theory to interpolate
1° square means from available values. 10° square means were then
evaluated using autocorrelation analysis. Thereafter, a set of low
order harmonics (to the 8th degree) was fitted by the simple orthogonal
method using fully normalised coefficients (Kaula, 1959, 89). Uotila

used harmonic analysis by least squares.

The application of spherical harmonics is obviously unsuited for
field extension over limited extents and Moritz has used covariance
analysis for this purpose. However, both Markovian predictions and
covariance analysis, when used under economically feasible conditions,
tend to give overly smoothened fields (Kaula, 1965, 4) and such field
extensions, under adverse conditions, give results which are hardly

better than direct representation.
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In the analysis of the South Australian sample, the field extension
was performed in two distinct stages using a two-dimensional
trigonometrical series. The first stage was the extension of the
gravity anomaly field in a limited u° x u° area in which each single
anomaly value representsa vO x v° square. (The total number of
readings possible in the area (N) is given by N = u2/v2). The anomalies
used should only have variations dependent on position. Thus Bouguer
anomalies were used. If free air anomalies are used, a three-dimensional

series should be used with the height variable introduced into the series.

. o o
The second stage was the extension of w X W square means Over

a large area to unsurveyed squares.

In the analysis, it was sought to evaluate the coefficients Ai’ i=1nmn
of a series of the form %_1 Aifi(¢ , A ) which could be used to predict

anomalies using the relation

n
E{Ag4>,k)} = I, Af(P,2) ... (3)

where E{ Ag(d, X )} is the predicted gravity anomaly at the point
whose latitude is ¢ and longitude A

The Ai(i=1, n) are determined by setting up observation equations

and minimising the sum of the squares of the weighted residuals

m 2 m n 2
= w,r, = Z w.{&g.- > Af (® ., A .)] = minimum ....(4)
=1 43 j=1 I i1

where Wj(j=1, m) are the weight coefficients, which, in the first case,

would be equal to unity.

The required set of equations for sclution are

m n
= { - AL A] £ LN )=0,k=1,n.....(5
jﬂWJA% = 11(¢j ) Q¢J ) n (5)
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These equations, in matrix notation, will be of the form

F.A = G i (6)
where
” N
N (A f
1 f12 f13 ....... fln A1 A g
A Ag
F = A= 2 G = 2
f S f
ml m2 "m3 mn .
L , Al bg
~ -~ rg
and

The matrix of residuals (R) is given by
R = FA-G i i e (7)

For a least squares solution

%R WR = minimum = i i it e (8)

r ~
WHO O O........ O
W - O W, O O........ O
O O W330 ........ O

O O O........ Wmm

~ /

Substituting for R from (7) in (8), after expansion and differentiation
partially with reference to A, (8) reduces to

FT WFA - FT WG = O e hereresseoans (9)



the solution of which is

A= (FT WF)"1 Fr WG e (10).

. . . .0 o
The extension of gravity fields in 2~ x 2 areas

The choice of a suitable trigonometrical series hardly depends on
the available computer storage but, paradoxically, on the available
gravity field. The field extensions obtained from limited amounts of
data using functions with a high degree of resolution are generally
unreliable. The computations in the case of the South Australian data
were carried out on a C.D.C. 3200 computer and from the point of view
of convenience in handling data, u was chosen as equal to two degrees.
v, as explained earlier was chosen to be 0.1°. A number of series were

experimented with and a general series which gave adequate results was

a 2a
E{A gl¢, 2 )} = i}::o Ai cos{ﬂ (P -9, )ﬂ +i:(2a+1) Ai sin['r((¢-¢o)(i-aa

3a

+ = A, cos{‘l’f (N ->\°)(i-2aa
i=(2a+1) *
4a

p oz A s|T v -R3a) ...
i=(3a+l)

where ¢ o’ >\0 are the co-ordinates of the SW corner of the 20 X 20
area, and ¢ ,A are the geographical co-ordinates of the 0.1o X 0.10

square corner which is represented by the gravity anomaly Ag(¢ , N ).

Repeated application to varying sets of data showed that the minimum

conditions for a non-trivial solution are -
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(i) at least 5 readings should be available

- - 10 10
in every constituent 3 x 5 square.

(ii) at least 1 reading should be available
in every row and column of the

20 x 20 array.

While lesser data have provided seemingly acceptable solutions,
the results are subject to fortuitous circumstances. Thus 80 well
distributed observations can give estimates of the balance 320 values,

i.e., alto 5 extension.

The value of a in equation (11) governs the degree of resolution of
the function and while the maximum value is controlled by the available
storage,. the actual value used would be influenced by the amount of
gravity data available. In a pilot investigation, it was found that decreasing
the ratio a : u/v below %, while requiring much more computer time,
did not materially improve the accuracy of extensions. Reasonably
adequate representation was obtained by setting a : u/v = 1/3 in the case
of well surveyed fields. In regions with inadequate data, better results
were obtained by reducing a in equation (11) in the range of values
74 a £ O progressively as m in equation (5)‘ reduces through the range

80 € m< 1, the extreme case being one of direct representation.

These conclusions were used to predict values of gravity anomalies
to represent unsurveyed areas, using Bouguer anomalies. The Bouguer
anomaly sc predicted was then corrected for the height term (Heiskanen
and Vening Meinesz, 1958, 153) using the estimated elevation of the 0.1°
square corner. An attempt was made to check the accuracy of field
extension by studying comparisons between predicted values in areas
satisfying conditions (i) and (ii) for non-trivial solutions, with gravity

data which was available subsequent to the computations. 154 comparisons
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were made in 6 different 2O X 20 areas and the differences (Predicted -
Observed) were found to be normally distributed with a standard

deviation of ! 7.2 mgal,

In fitting the two-dimensional series defined in equation (11) to a
field with a variable number (n) of gravity stations in it, the error of

prediction (ep), given by

e, = Bf Aglex - Agle,r) (12)

was found to increase with n for a fixed value of a. Table 3 sets out
values of M{ epg for a = 7, where M{ epg is the mean error of

prediction.

Thus, if the available computer storage limits the maximum possible
value of a, it is necessary to ''normalise' predicted values prior to use,
due to the magnitude of prediction errors in well represented fields.

This can be effected either manually using a graphical extension
technique or by the use of Markov theory (Bartlett, 1960, 24 et seq),
as the accuracy of the predicted value obtained is dependent not only on
the error of prediction ep at adjacent stations buf also on the average

gravity anomaly gradient (G), where

IG, - —da—A—g— ................ (13)

where dAg is the change in gravity anomaly over a distance dl.
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19 ¥ 1% gquares 2° x 2° squares
Sample size M{ ep} Sample size M{ep}
(n) (mgal) (n) (mgal)
04n<s T4.4 04n £ 20 T1.8
541410 T¢.0 2041 £ 50 T2.3
10 Zn< 15 6.4 504 n €100 T a7
15< n< 20 T7.3 1004 n £ 200 6.7
204 n< 25 6.5 200£ 14300 Is.3
30040 £ 400 Is.3
Total sample ! 6.5 Total sample I 8.3

TABLE 3

Classification of Errors of Prediction.

Following a procedure similar to that adopted by Kaula (1959, 9)
let the couplet c:y be given by

. P (A
E{ep} = = i .. (15)
i 1
i Py (&41)



-13-

where lez (A 1) is the probability of the couplet Cin occurring a distance
A1l away from couplet C.or ; and suppression of an index denotes

summation with respect to that index. The mean value of l G | was

8.9 mgal /50 km, with maximum, modal and minimum values of 48

6 and 0 respectively.

The mean comparison error (ec) , M gec} , given by

n
was : 3.2 mgal for the 154 comparisons.

TField extensions under the above conditions can be expected to have
an estimated error of ! 3 mgal, which is of an accuracy comparable
with representation of a single tenth degree square by a single reading
(Hirvonen, 1956, 2). Relaxation of criteria at (i) to 3 stations within
each of the constituent %O X —;:O squares and maintaining those at (ii)
gave estimated comparison errors of ! 8 mgal, which, on normalisation

reduced to ! 6 mgal.

If these minimum conditions are not satisfied, the error of field
extension becomes much larger and, unless a in equation (11) is reduced
proportionately, the functional representation becomes erratic. This,
in effect, reduces the resolution of the trigonometrical series,” which,
in the limit, becomes a case of direct representation.

0

. . P o .0 o
The extension of the field to £~ x 2 square means over a 14 x 14 area

A field extension, similar to the above, can be performed from the

°x %o square means obtained from the gravity data available to

1

2
- 10 lo - - .

evaluate estimates of the 3 x 3 means of areas in which no readings

occur. The field extensions are made from data not of equal weight (w) as
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(i) the number (n) of readings used to

evaluate the mean

(i) the standard deviation ( ¢ ) of each sample

- vary from square to square.

While n is dependent on the available gravity field, ¢ is a function of
the variability of the latter, which is not dependent on topography alone.

The weight coefficient

w = f(n,llcrz)

In the evaluation of f( n, 1/¢ 2), it should be borne in mind that the
final weight coefficient must reflect the distribution of the sample within
the area represented (i.e., a high sample density in a restricted area
may give a value for ¢ which is not a true representation of the
variability of the gravity field within the square considered). Further,

the expression should reduce to

w = 1/Ez e, (17)
whenn=1and o =0

and

W—> >

g
where N is the maximum number of readings possible, as n-> N.

In general, the weight coefficient should be inversely proportional
to the variance of the sample mean. However, in squares where the
sample covers only a small fraction of the total area, the use of ¢ 2/n
tends to over-estimate the weight coefficient. An expression for the
latter, which satisfies not only the limiting conditions, but also the

general requirements is



n (N-n)‘2 ez -1
= _——7_2— RN
W =—7— 1+ T (19)
as
2
11 2 N-n 2
- —— o +[N- 1] S} e PR (20)

The individual weight coefficients for each —%O X %O square were

incorporated in Equation (5), which was expressed in the form set out

in Equation (I1) prior to solution. In this manner the field was extended

to the unsurveyed areas.

The use of the weight coefficients in the analysis of a given field
with considerable local variation was found to give rise to a smoothened
field, when compared with a similar extension, but with the weight
coefficients set at unity for all values. The values of E{A gl , A )}
so obtained in the weighted solution were normalised as explained ©
earlier , using Equations (12) to (15) and the final extended value

accepted was

Ag(é,n) = EfAg(d,x) -Efe(d, M)} ........ c...(2)

The assumption that the Bouguer anomalies used in the extension

were free from height correlation is justifiable as the maximum mean

.];o
2

x %o square elevation in the region considered was 803 meters.

The extended free air anomaly means were then obtained by
allowing for the mean Bouguer reduction, using the mean square
elevation, These extended values were used to supplement the observed

values in compiling Figure (3).
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The accuracy of the field extension

The accuracy of the field extension can be checked in one of two
ways. Firstly, the extended values can be compared with actual values.
An alternative method would be the comparison of the extended values
as obtained from field extensions carried out by more than a single

acceptable method.

Let the predictions be required in certain positions of a m x n array
of Ag where certain values of A g are available. Three distinct cases of

prediction of the anomaly Ag(i,u) are possible

(i) Interpolation:-

In this case, the readingsA g(h,u), A g(j,u), A g(i,t) and
A g(i,v) are available; h<€ i< j, t< u<v,

(ii) Interpolation/extrapolation:-

The circumstance in which only one of h, j, t, v is zero, on
adopting the convention that A g(0,u) = A g(i, 0) = no reading
available.

(iii) Extrapolation:-

At least one each of (h,j) and (t,v) is zero.

A preliminary study showed that the reliability of the predictions
were strongly affected by the variability of the gravity field and all
predictions were normalised in terms of the average gravity gradient

in the area using the relation

n{c} = £ g} M {c} e e (22)

where NI C¥
E $c}
E{G}
M {c}

the normalised prediction

the predicted value

the predicted gravity anomaly gradient

the mean gravity anomaly gradient.
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The normalised predictions so obtained were classified according

to
(a) the minimum interval (Ii) (j - h) or (v - t), as the case may be

for interpolations and interpolation/extrapolations.

(b) the minimum interval (I_) |i - hior j)l or Iu - v(or t)}

E
in the case of extrapolation.

In all, four methods of prediction were used:-

(a graphical

trigonometrical series with weighting

)
(b) Markov theory
(c)

)

(d trigonometrical series without weighting.

If the standard deviations of the comparisons between method (c)

and the others were o, (i=1, 3), the reliability limits were set to the
i

values of Ii accepted on the basis that

(E)

(0 =0 ) .75 K.M{ G} ereeeaen . (23)

i=1,3 (if i > 3, then i=l)

where K is a comparison factor.

For interpolations, in cases where Ii £ 6, good agreement was

obtained between the o for each of the different methods of extension.
i
For Ii > 6, however, the comparison between the values for . was
i
erratic (K was generally greater than 0.2).

In case (ii), no comparison of o, T, could be considered
i i+l
acceptable unless the comparison factor was increased to K = 0.4,
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In case (iii) too, the value 0.4 was adopted for K.

The results in Table 4 summarise the accuracy of comparisons in

one instance, after discarding those whose Ii values are large enough to

make the resulting extensions unreliable, by the standards defined in

expression (23), with K = 0.4.

Standard deviations of discrepancies in
field extension (- mgal)
(Numbers_in brackets represent sample size)
Ii(E) 1 2 3 4 5 6
Interpolation 2 (15) 5 (22) 5 (22) 5 (45) 5 (61)16 (71)
Interpolation/
Extrapolation 6 (2) 5(7) 11 (20) | 18 (37) | 10 (41) |9 (44)
Extrapolation 10 (29) 12 (46) 14 (56) | 15 (61) JJ 15 (63)] ===
TABLE 4
. . . . 10 _ 10
Field Extension discrepancies for 3 x 35
square means;Case (i) / Case (iii)

While the samples are too small for definite conclusions to be
drawn, it would appear that, as a general rule, the weighting of
extensions according to
Interpolations: Interpolations /[ Extrapolations: Extrapolations

=l2‘: -721'——21— = 1:0.25:0.11

1 2 3

is indicated.
The factors to be considered in estimating the error of the

predicted value are
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(a) the nature of the extension, i.e., interpolation, interpolation/

extrapolation or extrapolation,
(b) the interval from the most reliable value,

(c) the accuracy of this value.

If the error of representation of the nearest basic square mean is

e and the estimated error in the extension is e , the estimated
ref ext

error of prediction (E§ ep} ) is given by

2 2 2
[E{ep}] = eof + € oxct Gt eee e naeeas ...(24)

The value for e, is obtained from Equation (20)

ef

Conclusion

The extension of gravity fields using mathematical functions,
unless carried out under carefully controlled conditions, could produce
results of questionable accuracy. The use of the two dimensional
trigonometrical series described in Equation (11) is quite satisfactory
for limited extents, provided that the degree of resolution of the
function is adequately reduced when a paucity of data occurs. In the
case where field extension is effected using area means which could
be of differing reliability, the extension should be performed after
adequate weighting. The accuracy of the values so predicted is
dependent on whether the extension performed was an interpolation,
interpolation/extrapolation or an extrapolation. Field extensions over
intervals more than 6 positions from the nearest available value (i.e., L W> 6)

1, 5

were found to be unreliable. For Ii Eé 6, the ratios of the accuracies of

interpolation: interpolation/extrapolation: extrapolation=1:2:3 ,
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Within this range, the error of the predicted value would not be
materially larger than the error of representation of the nearest value

used in the extension.
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