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SUMMARY : The direction of the meridian as derived from a number

of successive observations of the '"turning points" of a pendulous
gyroscope has been investigated by many writers. A rigorous

solution of this problem has been proposed by Professor G.B. Lauf

in 1963. However, it is of practical advantage to consider
alternative approximate solutions. In particular the approach

of Professor Max Schuler has been popular over many years, undoubtedly
due to the simplicity of applying his formulae. Writers such as

F. Kohlrausch, Professor G.B. Lauf and Dr. T.L. Thomas have

contributed much to the understanding of this latter problem.

The purpose of this report is to analyse and evaluate
aspects of a lightly damped simple harmonic motion in relation to
the gyro-theodolite. The linear damping case has been treated in
some detail and a new approach has been made to the interpretation
of the Schuler and related Means. This latter investigation has
revealed that a simple combination of the Schuler Means will give a
least squares solution of the direction of the line of mean oscillation.

Examples and tables to assist in numerical reduction are given.
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THE LEAST SQUARES ADJUSTMENT OF GYRO-THEODOLITE OBSERVATIONS.

THE LINEAR DAMPED MODEL.

Lauf (1963) has shown that the precession angle about the
meridian of a pendulous gyroscope is of the form

6 = Be-o‘t

cos (Bt + ) (1)
in which, according to Williams and Belling (1967)
B is the half-amplitude of the oscillation at some initial
instant,
e 1is the base of natural logarithms, and
oo and B are constants for a given instrument for a
particular latitude when the angular momentum of the
gyro-rotor 1s constant,
Yy 1s an arbitary phase-angle
It has also been shown by Lauf (1967) that a good approximation to the
precession angle at the 'turning point" is when (8t + y) = 0, w, 2n, 3w, etc.
For convenience we may change the form of equation (1) to
6 = -Be 2% T cos 2mr
where 1 represents the fractional period elapsed.
"Turning points'" will occur when 1 =0, %, 1 ... etc. For the gyro-

theodolite the damping is usually slight and the exponential term may be

expanded retaining only linear damping terms giving

8 = -B (1 - 20'T) cos 27T
. . i . .
Now at the '"turning points'", 1 = 5 where 1 =1, 2, ... n, corresponding
to the number of the ''turning point". Therefore

6, = B( - ia’) (-1t}




The measurements of ei are made on a circle whose orientation with
respect to the meridian is unknown and defined by 60. If these measure-
ments are defined as Y5 and their corresponding corrections by 4 then

the previous equation takes the form

. i-g

. = B - ! -1 - y.

v, (1 -0 (D7 e -y, (2)
or, in extenso

v = B- a'B+ 6 -

1 (0] yl
v = -B+ 20'B+808_ -y

2 Y 2
v = B-3'B+8 -y

3 o 3
v = -B+4a'B+0_ -y

N o [

etc.
Which are the required correction equations.

With regard to the following adjustment procedure, the under-
lying assumptions are that the observations are stochastically independent
and are made with equal precision. It will be noted that no hypothesis is
made concerning the normality of the distribution, merely that a variance
exists for this distribution. The least squares method seeks to satisfy
the relationship (vv) = minimum, and requires no assumption regarding the
distribution other than the existence of a variance. For elaboration of
this point see Sunter (1966).

The correction equations in their present form are not suitable
for a direct solution because they are not linear. Lauf (1967) has used
the familiar technique of introducing approximate values of the unknown

parameters o and B and then expanding the non-linear term by Taylor's




series to solwve this problem.
unknown parameters is to substitute in th
set of parameters such that the equations

these new values.

If we put a =4'B, b = 80 + B, and ¢ =
of correction equations becomes
1+ (-1)i! 1+
v, = i(-1)"a + - b+
i 2
i o=
n
or, in extenso
v = -a + b -y
1
v = 2a +c -y
2
v = =3a + b -y
3
v = lka +c -
N y
etc.

Our main interest will lie with the origi

be given by

and o'

The geametrical interpretation of the adj
The mathematical model is in fact a pair
inclination to the line of mean oscillati

observations.

An alternative method of separating the

e correction equations a new

become linear in respect of

0 - B, then the general form
ol
i
-1
; ) } ¢ -y (3)
1, 2, covenn. n
z 3

nal parameters, which will

2a,
b -

or o'

0 o

c

ustment is shown in Fig. 1.
of straight lines, at the same

on, passing through the
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Forming normal equations* we obtain

a b

n

n . .
) i yoint (DY
- 2

c Absolute
—_ Term
e i i a i
Y)oient @1y -) QD y; =0
i=1 2 i=1
n L)
0 -3 (-1 7Yy .0
i=3 2 1
n - n .
y +(-D ) ) (1Dt <o
i=1 2 i=1 |7 2 1

It has been found to be convenient in the following reduction process to treat

two types of observation, one containing an even number and the other an

odd number of observations.

The normal equations for n even are

a b c Absolute T
n n o
n(n+1) (2n+1) —g? n v .00 ¢ . EE .
6 - a 4(n+2) LYy .th Y3 = )
l:l 1= 1
n (5)
n 0
—j 0 - S“‘yl = U
i=1
n
n E
7 RS = 0
i=1
and for n odd are
a b c Absolute Term
2
n n
0
n(n+1) (2n+1) -[ n+l ] n?-1 Z i Oyi - z iy = 0
6 2 4 i=1 i=1
n (6)
n+1 0
2 0 - Ly =0
i=1
n
n-1 E _
- LYy =0
i=1

7

* For symmetrical matrices

the lower triangular portion has been omitted.




6.
where the superscript 0 and E denotes odd and even values only are to be

taken, respectively.

From the practical viewpoint one will seldom be concerned with

n > 8 and therefore equations (5) and (6) have been solved for n = 3, 4 ..

..... 8. The results of these solutions are given in Table 1. The values
b + ¢ b - ¢

of 5 and > have also been found, because these represent the

principal unknowns 60 and B. The values of 60 for n = 4 and 8 agree

precisely with those obtained by Lauf (1967) who has been concerned mainly
with those values of n which are a multiple of 4.

Two important relationships can be derived immediately from
the sets of normal equations (5) and (6). The sum of the second and third

normal equations of (5) is

n n
N T -
2a+ZbeSc = Loy0 - vh
5 3 7 T i1 Yy i=1 i
therefore
n
b+ c i N a
= 0 = = ) y. - = 7
2 o n ~ Yq 2 (7)

Also, from the set of normal equations (6}, if we divide the second normal

equation by n + 1 and the third normal equation by n - 1 and add, we obtain

L T E
- o - m-1 § e men §F (8)
n*- 1 i=1 =1 1)

o
+
(@]
—

39
(o]

which may be evaluated very simply by taking the mean of the odd numbered
observations, the mean of the even numbered observations and then taking
a grand mean.

It is worthwhile comparing the results of these derivations with




S p—

those obtained by Williams and Belling (1967). These authors state -

"It must be recognised nevertheless that unless a better criterion can

be found, [vv]* is as acceptable as any. Therefore, any simple

reduction procedure which agrees very closely with the least squares
result is as acceptable as this latter, and is indeed preferable to it

if it offers a more general solution."  They derive the following
formulae on a basis of "symmetry" and '"the principle of least displacement

of random lines ..... r-

for n even

@
e}
i
ST
TRy
«
’_l
1
=
I'S'-—‘
N
<
i
(3
N
|
<
i
1
+
e
=

n n
_ 1 0 1 E
9o - n+l .2 Yy * n-1 .z Iy
i=1 i=1
The agreement between these formulae and (7) and (8) is only partial. For
n odd the agreement is exact but for n even %-is approximated by
1 . . . . .
—_— -— - + .
T (n=2) (y1 yz yn_l yn) It is a fact that this approximation is

reasonable because from the geometrical interpretation of the least squares
solution it can be seen that %— can be derived relatively efficiently from

the end observations only. These authors further state regarding their

formulae that "The advantage of their application over the use of more

complicated formulae derived via Gaussian theory is based on their simplicity

of form and the consequent fact that 60 can be rapidly obtained under field

conditions." In fact, however, there is only a marginal difference in

*  This should probably be "[vv] is a minimum."




complexity between the rigorous least squares solution and that offered
by these authors. The least squares solution is to be preferred. It
will be shown further that an even simpler form of rigorous reduction is

avallable from consideration of the Schuler means.

Besides the solution of the estimates of the adjusted parameters,
the calculation of their variances and co-variances is necessary in order to
estimate the performance of both the mathematical model and the observations.
A useful summary of the least squares adjustment techniques, using matrix
algebra, has been prepared by Allman (1967) and has been used extensively

in the following derivations.

The matrix of the weight coefficients of the adjusted parameters
is given by the inverse matrix of the normal equations after removal of

the absolute terms.

For n even the inverse matrix is

12 6 -6
n(n?-4) (n%-L) n{n-2)
5n°-8 -3
n{n?-4) n-2)
Sn+2
n(n-2)




retaining the same order of parameters as in the normal equations,

and for n odd

12 6 -6
n(n?-1) n{n-1) n(n-1)
5n2+hn+3 -3(n+l)
n(n?-1) n(n-1)
on+3
n(n-1)
If the estimate of the variance of the adjusted observations is §; = [;%]

where r is the number of redundancies, then the estimates of the

variance of the adjusted parameters a, b and c¢ is given by the

following -
a2 - 22
Sa B %a Sy
a2 _ a2
Sb - be Sy
a2 — a2
Sc - Qcc Sy

As stated before, our interest lies with the original parameters

) b+e b-c

—— and a' =

a
B
Applying the general law c¢f propagation of variances to these relationships

we have




P .1 Y oan

SGO L (be T et % J Sy

a2 1 22

°g T (be * 20 * A, } Sy
a2 - b 2 2 a2
St T (boo)t ((b-c) Quate’ (@20, +6  J-2alb-c)(Q-q_ ) | S

After substitution of the appropriate values from the inverse matrices we

have for n even

2. ol g2

o n(n?-4) J

%E - in2+6n-1 Y

n{n?-4) J
82, = —L ( 1+ %{; (5n+k) (n+1)-a'(n+1) | &2
@ n(n?-4)p? y

If n 1is not large as is the case in practice then this last expression

may be approximated by

]
w>

n
sé,

and for n odd

0 n?-1 y
2 ~n
SE = hn +6n+3 Sg
n(n?-1) J

52 = e ( 1+ g—»(hn2+6n+3)-oc'(n+l) §?
)B2 2 y

n(n?-1 1
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which again may be approximated by

a 12

If the origin of the T axis is moved to the centre of the observations
as Lauf (1967) has done for his derivation, then a comparison is possible

for the even values of n, thus if we substitute

b = b' + (E%L) a
and
c = ¢' - (§i£) a
2

in equations (5) and (6) we get

for n even

a b' c' Absolute Term
n(n?-1) -n? n T .00 T EE _
12 i ) Loty - 1iy = 0
i=1 i=1

n a 0 —Ii = 0
L 2 5y Vi

1.._

n

E

-r_l_ 0 _11 ‘-z yi - 0
n 2 i=1




1e.

and for n odd

a o' c' Absolute Term
n(n?-1) n+l) 2 (n2-1) % .00 T EE
i) ’( 2 ] n Ity - ) iy = 0
i=1 i=1
n
(n+l) T 0
0 2 0 RS = 0 (10)
i=1
(n-1) T E _
0 0 2 - Loy = 0
i=1
+
The solutions of these equations for "a'" and EEE- will remain unchanged
from those given for the solutions of equations (5) and (6). However,

simpler expressions can be obtained for the "middle amplitude'", B' where

If we subtract the third from the second equation in (9) we obtain

for n even

n n
b'-c' 1 ¢ 0 E
1 = e = = -
B > n LYy .E Iy (11)
i=1 i=1
Also, if we do likewise in (10) we obtain
for n odd
n n
bl-c' 1 0 B
BR' = ____.2C = (n_l)i y. - (n+1) Z V. (12)
2 . 1 . 1
n--1 i=1 i=1

which may be evaluated very simply by taking half the difference between

the means of the odd and even numbered observations




The inverse matrices of (9) and (10) are

for n even

and for n

L

12
n(n2-k4)

=6
n(n?-4)
n{n?-4)
odd

12

n(n2-1)

The estimate of the

unchanged.

B' and o

we obtain
a2
SB'

and

6 -6
n?-4 n(n-2)
2n?-3n-8 3
n(n2-L4) n{n-2)
-3 2n-1
n?-h n(n-2)
6 -6
n(n-1) n(n-1)
2 0
n+l
5
0 1

variance of the adjusted parameter

13.

80 will remain

Applying the general law of propagation of variances to

where
' 1 2
B o= 2 gc and a" = o :,
1 22
E'{Qb'b'—Qb'c'-Qc'b'+Qc‘c' Sy
4 (b'-c')?q__+a®( - ~Q 4,19
(b'ec') as prpt e Ryt Rerer)

a2

+a(br=c')(Q, 1 ¥Q 1 =0y =) Sy

ac c ' a




1k,

After substitution of the appropriate values from the inverse matrices

we have \
for n even
2
A -1 ~
8 = = 52
o n(n2-4) Y
A2 _ 1 22
SB' n Sy
R 12 OL"2 oV R
Sé" = ——==_ |1+ 22— (n%-h) - 2= (n+1) g2
n{n?-4)B"? 12 2 J
which again may be approximated by
. (13)
A 12
2, = 22 g
n(n2-4)8" y
and for n odd
2 o= 4w
o nz—l J
L2 n N2
S = S
B n-1 Y
2
A~ o2 1" n
Sén = ..____]_‘g____ l+9°___£___ _ 9 (n+l) 82
n(n?-1)B'? 12 2 y
which again may be approximated by
~ 12 A
S;n = 82
n(n%-1)B'2 J

The values for n even, agree precisely with those obtained by Lauf (1967)
after taking into account the difference in notagtion.

n_n

With the exception of a formula for the calculation of "a’,
simple general expressions for a least squares solution have been derived

for any value of n, odd or even. Returning to eguations (5) and
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(6) or (9) and (10) we can eliminate the unknowns b and ¢ or b!'

and ¢ and obtain

for n even

n n n n
12 EE 00 n 0 n+2) E
> 2 Livi = 1 iyyry Dy - (”5_ L vy
n{n%-b) {i=1 i=1 i=1 i=1
and for n odd (14)
n n n n
12 E E .00 (n+1) 0 E)
a = E ly. - z Ly, + = 2 y - Z v J
2 1 1 1 . 1
n(n®-1) {i=1 i=, i=1 i=;
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PROPERTIES OF THE SCHULER AND RELATED MEANS.

For the turning or reversal point method with a pendulous
gyroscope, it has been customary and convenient to derive the mean
direction of the meridian from an approximate relationship given by

Professor Max Schuler, namely,

vy +2y +y vy +2y +y Yy _¥2y +y
g - 2.3 g - 2 3 "y g - 3 4 "5
1 L i 2 L i 3 4 U
yn_2+2yn_1+yn
........... . S =
n-2 n
and
S +38 +3 + ce et S
g = 1 2 3 n-2

The numerical calculation is simple and in the field the value
of § can be obtained almost immediately after the completion of the
observations. Convenience is not the only characteristic possessed by s
which has led to its almost universal adoption but that the difference
between S and the least squares estimate is seldom significantly big.
Disadvantages of the technique are that :-

(a) It may not be known if the difference between the least
squares estimate and S is significant.

() Because the original observations are combined, a poor
observation or mistake may be hidden in the Schuler Means,

thus biasing s.

(c) A variance estimate based on the individual Schuler Means
is invalid if these are treated as independent quantities.

See Lauf (1967) for Schuler's original derivation.
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(a) Neither the errors of the original observations nor the
remaining parameters and their variance estimates are disclosed.
The Schuler Mean is a special case of a series of Means which
can be formed from the original observations. The necessary and sufficient
nunber of observations required will be three, producing a minimum of two
types of Mean in the series. For each additional observation a further
Mean in the series may be found. Only the first three types of Mean will
be considered here, which will be designated the First Mean, the Schuler
Mean and the Thomas Mean. The third Mean has been named after Dr. T.L.
Thomas who suggested its use and that of higher order Means in 1965. He
named them the 3 point mean (Schuler Mean), L point mean, 5 point mean etc.
The First Mean or 2 point mean was not considered. The process is

summarised as follows:-

Observations First Mean Schuler Mean Thomas Mean
v st s? S
yl
Y.y
gl = 21 "2
1 2
st+s! vy 42y 4y
v g2 - -1 2 -1 2 '3
2 2 N
y +y 82452 y +3y +3y +y
gl = —2 -3 g3= 1 2 - 1 "2 3 4
2 2 1 2 8
sleg! y +2y +y
g2 - 23 . 2 3 - n
7 Y.y 2 . " SZ+452  y +3y +3y +y
gl =234 3.2 3 _ 72 3 y " s
8 2 sleg? y +2y +y 2 2 8
v g2 = 3 4% _ '3 4 5
* Y +y 3 2 K
gl 5 4 5
§ 2
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The coefficients of the original observations in each Mean may be
obtained from the Binomial expansion (a+b)" and the denominator is the
sum of these coefficients, according to Thomas (1965). Alternatively
these values may be obtained more readily from the Pascal triangle, see

. . n-1
Table 2. The dencminator is 2 .
It is instructive to examine the mathematical reasoning behind this

process of taking means. Equation (2) is an approximation of the rigorous

expression

which in extenso gives :-

- B(l-g + L g2 1 L
y, = B(1-a + 1% " Sigd I e R )+ eo-v

J-2 . 1 . 2. 1 ) 3 1 . L
yj—l = B(-1) 1—((]—1)0{,4'5! ((J-—l)oc] -3 ((J—l)q +—E! ((J—l)oa +eo_vj_1
v, o= B(—l)j—l{ 1-jo + %y (30) - %; (jo)? + %1 S R +0 v,
1
J 121 3 IE
Vi = B(-1) (l—(j+l)a+ > {(J+l)a J~ 3 ((J+l)d }+ T ((J+l)a J + %—Vj+1
Yipy = B(-1)9*1 |1-(j+2)a+ 3 ((J+2)d}2—'%!((3+2)a] + %W[A(J+2)QJ” -V,

» > >

* For convenience o instead of o' has been used in the following analysis




- n-1 < 2 _ 1 34 L yH \
Yy, = B{-1) l-no + 5 {(na)® - 30 (na)? + L 657 ) I s
J
n 2 3 J =z 3
Taking means of consecutive equations gives :-
First Means.
: 3
. -2 . !
gt = Yim2Viey | B(-1) g (24-3)a’ —[ (j—l)a—(3—9)3]%—‘—
-2 e 21 :
Y v, +v
+ ~1) (s [ 6 -2 -1
((;J ) <Jz>Ih, AR E
V. .ty J-1 . 2 3
S 5 S - 1 G ) (25-1)a o 4
5 = = - ed- 3_(s_7y3 9 i 5[ O
v, +v,
..... +6 - 21
o] 2
Y.vy d Ay Va2 3
1o 23 g+ B(-1) (25+1)a . , 4
5y = ~at “‘QT}‘ - kk3+1)3—33 R KIS R L




20,

Schuler Means

St - J=1 . 3 4
2 - Zd=p dmi_ B(=1) T | o 6(j-1)a’ 2 o) at
81,7 e = S ot e e (egtakal) B
v +2v, +v,
+e — i_z 43:1 ;J
o n
) Sl_ +Sl B(_l),j 2 6 Cy‘3 5 au
Sj—1_ > = I o - 31 + (123%+2) TT e
v +2v _+v,
+e - -1 ;1+1
o)
Sl+Sl j+1 3 4
2 _ 3 "3*1 _ B(-1) 2 6(j+1)a he2 . ol
% 2 B L o TR +(125%4205+10) 7+ .l
V.42V, 4V
+6 - N qt1 g+
o L
Thomas Means.
Szf2+83_1 5(-1)9 , o ) vif2+3v _ 3V,
SJ_2= > = 8 -0 +12(23-1) T +Go- 5
5?2 4g? i+ 4 v, +3v.+3v,,  +v
3 _ d=1 3 _ B(-1) 3 . o R S A A LS U A2
S B 5 a’+12(23+1) 77 ... | *8 5

Mr. M, Maughan of the Department of Surveying, University of New

South Wales has shown that the series expressions in each Mean may be
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written concisely as follows :-

, . ’l o )
First Means B(-1) 717 _%S
\
A S
Schuler Means B(-1)1"le 61 1 ;
-0y 3

Thomas Means B(-1)

It is apparent from the series expansions that the process of taking
successive means eliminates terms containing powers of o i.e. for the
First Means terms containing ao are removed, for the Schuler Means
terms containing o are removed, for the Thomas Means terms containing

2

o are removed etc. Thus if we consider that a sufficient approximation

to the mathematical model 1is
V. = B(-1)'"l+ 6 - v,
i o) i
then we consider that o = 0 and the First Means will contain only 90
and combinations of the residuals V. For the Schuler Means the model is

y. = B(-1)"7! (1-ia) + 6 - v, etc.

Thus if we accept the average (or some other combination) of the First
Means or the average of the Schuler Means etc. as an estimate of SO then

it is presumed that the quantities

s i ( _ -QL
B(_l)l 1. od l-e
2
or 2
iy -ai 1-e'“]
B(-1) "1 e — ete.
J




22.

are not numerically significant. This is demonstrated graphically in
Fig. 2 for the First and Schuler Means.

An alternative explanation of this process i1g that if the First Mean
is considered sufficient, then damping is ignored and the envelope of the
turning points is ccmposed of two parallel straight lines, for the Schuler
Mean equally inclined straight lines, for the Thomas Mean quadratic curves
and so on. Each of which, in their particular case are considered to be
a sufficient approximation to an exponential envelope.

Whichever Mean is considered appropriate to the observations, there
remains a serious objection to the second stage of taking an average.
Taking the average is sound if we are considering original independent
observations but not if the guantities to be adjusted are functions of these
observations. Although the average in this case is inadmissable for a
lesast squares adjustment, we may still use the derived quantities in an
adjustment process provided that the mathematical correlation is taken into
account.

Let the parametric equations under consideration be of the form

6 - S = %
o] 1 1
0 - S = v
o} 2 2
S - 3 = v
@] 3 3
5 - S = vV
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where for the First Mean m = n-1
Schuler Mean m = n~2
Thomas Mean m = n-3 ete.

or in matrix notation

A B -
o

€3]
[
<3

where A 1is a unit column vector of dimension m,

vector of the individual Means

V is the column vector of the corrections

and 60 is 1 x 1 matrix

S

is the column

2k,
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The coefficients in the weight coefficient matrix of the individual

Means may be found by applying the general law of propagation of variances to

. y ty
S]_ = P
+
gl - yz ya
2 2
y3+y
S; = 5 4 etc. for the First Mean,
and obtaining
= x + L
8g1 > Sy 5 gy
1 1 2
g = l‘% + ;‘8
st T 2 2
2 y2 ya
= L + L 2 ete
gsl 2 gy 2 uy .
3 3 4
and
1 , L .1
gslsl L gy ¥y N gy y > Eyy
11 171 2" 2
= L - L etce
gslsl L gy ¥y N gyy
1 2 2" 2
assuming that each observation is independent and of equal variance. Thus
the required weight matrix is
1 i ]
G = 3 2 1
1 2 1
1 2 1
1 2 1
1 2
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Applying the same technique to the Schuler and Thomas Means gives

¢% = %g‘ 6 4 1

Yy 6 4 1

1 4 6 L o
1 & €6 &
1 L6

n J
and for G?
2 [0 15 6 1
15 20 15 6 1
6 15 20 15 6 1
1 6 15 20 15 6 1

1 6 15 20 15 6 1

1 6 15 20 15 6 1
i1 6 15 20 15 6 1
1 6 15 20 15 6

1 6 15 20 15

1 6 15 20 j respectively.
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The coefficients of these matrices may be conveniently obtained from the

Pascal Triangle. The single normal equation is

ATe™ 1y 6 + Ate s = 0

and its solution

—( T —l T —l

0 = G"lA) ATG s

o
This last equation is of little practical value unless general
expressions can be found for the coefficients of the individual Means
for any number of observations. An attempt was made to solve this
problem by inverting the G matrices by pivotal condensation and
bordering methods. This proved to be uneconomical by hand for the
Schuler and Thomas Means when the number of observations was large.
The writer is grateful for thevassistance of Mr. M. Maughan who
modified an existing IBM 360 structural engineering computer programme
for matrix inversion to suit the requirements of these matrices. The

inverse matrices for n up to 8 are shown in Table 4. From the

computer output general expressions have been derived using the technique

of divided differences.
Pirst Mean.

n even

|ro

[e] n 1 3 5 7

or




n odd
B
o
or
6
o
Schuler
n even
6
o)
or
$,
e}
n 2d4
0
o

[(n—Q)(n—l) Sj
+2(n-U4) (n-5) si
+3(n-6)(n-9) Si

+h(n—8)(n—l3)Si

+
w
[n

I
\
~—
n

N
1

+
=
~~
=]

1
-3
g

W
N
|

- (n-2)(n-7) s
2

2(n—h)(n—ll)8i
3(n-6)<n—15)sz

h(n-8)(n—l9)82

i(n-21i) ((n-hi+3)s§i_1 -(n-hi-3)s§l J

(n-3) 8?2
2

2(n-5) g2
[N

3(n-7, 82
6

4(n-9) s?
8

e

28.

------
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‘r
Ll» 2 /Z(H—a) N e 2 (3 2
0 = () (n-l)s1 + igl (n-2i-1) (-1szi+\1+1)séi+l
Thomas Mean
even
6 = 8 (n-2)(n-1) 8% - 2(n-2)(n-k) g3
© n(n?-4) ! 2
+2(n-4) (2n-7) Sz - 6{n-k)(n-6) Sz
+3(n—6)(3n—17)82 - 12(n-6)(n-8) s:
+h(n—8)(hn—31)8i - 20(n-8)(n—lO)S:
or
8 1/2(1'1‘1;)
o = (n-2)(n-1)8% + 7§ Pi(i+l)(n—2i)(n—2i—2)8§.
0 2 1 . 1
n(n —h) i=1
+(i+1)(n-2i-2) ﬂi+1)n-2iz-hi-1] sji+1 } }
n odd
6 = 8 (n-3)(n%2-3n+2) 83 - 2(n-3)(n2-9n+1k4) s?3
© (n?-1)(n%-9) ! 2
+2(n-5)(2n?-20n+42) Sz - 6(n—5)(n2—15n+h6)8i
+3(n-7)(3n2-u9n+170)s: - 12(n-7)(n2-21n+9h)s:
+h(n-9)(hn2-90n+u3u)s: - 20(n—9)(n2—27n+158)S:

+5(n-11)(5n2-143n+882)s? - 3o(n-11)(n2-33n+238)sj0
9
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or

6 = ———— ) |i(n-2i-1) |in?-(3i-2)(2i+1)n+2(2i-1)(212-1) | 83,
° (n%1)(n%-9) i=: 2i-1

~i(i41) (n-2i-1) |n?-3(2i+1)n+2(Li2+ki-1) s:i

To facilitate numerical calculation the values of the coefficients
up to n =8 are given in Table 3.

The estimate of the variance of the adjusted parameter GO is given b~

&2 - g vieTly
6 6 6 T
o) 0o o
) T -1 -1 . . A
whire Qg = (A°G ~ A) ™, which is tabulated below, and r is ©-he
o o
number of redundancies.
% g
0 0
n odd n even
First Mean e 1
n?-1 n
2
Schuler Mean S n -l
n?-1 n(n?-k)
2 2
Thomas Mean —EQLJQ— n-l
(n2-1)(n%-9) n(n?-k)

The process cutlined does not overcome all the disadvantages of taking
the average of the derived Means,as stated before, but it does remove the

principal objection in that it gives the least squaresestimate of 60. The
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method of obtaining this value is extremely simple and is preferred to any
previous method. It may be noted that for an even number of observations,
the solutions by the Schuler and Thomas Mean ére identical and for an odd
number of observations the First and Schuler Mean are identical. A
suggested technique of calculation which combines the characteristics o~

the Linear Damped Model and the Schuler Mean has been used in the two

numerical examples.
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NUMERICAL CALCULATIONS.

The two most important requirements for practical calculations are
that

(1) Mistakes may be readily detected at the time of observation.

If any extra observations are then required they may be done
with the minimum of inconvenience.

(2) Calculation methods should be compatible with the expected

precision of the determination.

For both of these requirements, consideration must also be given
to the conditions under which these calculations are performed. In
the field, quick and simple methods are preferred and in most cases
approximate methods will suffice. However in the office the second
requirement above 1is of paramount importance. Furthermore the choice
of method may be governed by the calculation aids. For the high speed
digital computer it is immaterial which of the variety of rigorous
expressions for the required unknowns is used. However, for a desk
machine those expressions which offer speed and simplicity are preferred.

Suggested procedures are as follows:-

(a) Field Calculation.

(1) Calculate Schuler Means progressively as the observations
are being made and plot the turning points and Schuler
Means at a suitable scale on graph paper. This is a
recommended procedure by the Wild Instrument Company in
their handbook for the GAKI and is called the "oscillation

graph."
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Calculate 60 either approximately from the mean of the
Schuler Means or rigorously from the weighted mean of *“he
Schuler Means.
Mistakes or large errors in the original observaticns may
be concealed by this process of taking Schuler Means and
may not be readily discernible in the oscillation graph.
As stated before, the geometrical interpretation of the
least squares adjustment is a pair of straight lines at
the same inclination to the line of mean oscillation passing
through the observations. As the position of the line of
mean oscillation is known, it is a simple matter to transfe
either the left or the right observations over this line
and then construct a line of best fit through all of these
points. This transfer may be done either by (i) folding
the graph paper along the line of mean oscillation or
(ii) subtracting either the left or right observations
from 260 and replotting.
Draw a line of best fit through these points. The
deviations from this line will give a good estimate of the
errors of the original observations. Instead of estimating
the line of best fit by eye, a procedure proposed by
Eddington given by Jeffreys (1948) is eminently suitable.
Rainsford (1957) describes the method as follows:-

"Divide the data into 3 equal groups : the line Joining

the mean positions of the first and last groups gives
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the slope of the line, which is then fixed in position by
naking 1t pasc through the mean position of all
observations. No% only is this solution very -imyple
but, provided that the observations are uniformly spaced,
its efficiency is of the order of 8/9 of that of a

rigorous least squares solution."

Office Calculation.

(1) Calculate 60 from the weighted mean of the Schuler Means.

(2) Calculate, for n even, from equation (7)

, 0
& = 2(3-.2 Iy T 60)
i=p
and from equation (11)
n n
1 0 B
" = . _ ]
BT = H(E 1 E vy )
i=1 i=1

For n odd, after re-arranging equation (1k4)

a = y-v)-=(y -y _ )+—==(y-y ...
n(nz—l) 2 1 1 2 2 n-1 2 3 “n-o
L(n+1)
2 1
..... . Ceeieneaeaa(=1) (y%(n_l) Y (n+s)
and from equation (12)
n n
0 E
1 .z I3 .z Iy
B' = = |i=x,; - i=1
L(n+1) 5(n-1)

(3) Calculate the variances according to equations (13)




Example

A, n even.

Observations
Left
358° 24' 18"
(358 2L Ls)* 1°
358 25 12 (1
(358 25 2W) 1
358 25 36 (1
(358 25 5L 1
358 26 12 (1
1
9 359° 59' 1275

359° 59' 12V5

4(358° 20') + 21' 18"

> %-(u(359° 501) + 320 12"

A

_18"

Right

33" 36"

33

32

32

32

32

31

15)

S.M. SM - SM
359°59" v
105 -2"0
13.5 +1.0

9.0 -3.5
12.0 -0.5
18.0 +5.5
12.0 -0.5
12.5 Yy =0

7{-2.0 - 0.5) = (1.0 + 5.5) + L4(-3.5 - 0.5)

20

20

359° 59' 10V5

T y® = L(1° 30') + 10" 5L

- 359° 59' 10U5

35.

The figures in brackets are the intermediate steps in the
calculation of the Schuler Means.




( 4(358° 207) + 21' 18" - 4(1° 30') - 10' 5k"|

1

' - =
B 8
B’ = 358° 26' 18"

" _ a _ -18 _ -
o] X = 5620 3.20 x 10
B! + GO = 358° 25' 285
-B' + eo = 1° 32' 5275

_ T
- ' - L
v1 B' + 8 y1+ 5 @
- _mt _ 2
v2 B' + 6 'Yz 5 a
3
v = B'+0 - + =
3 Ty 2®
1
= ~R? — — —
Vu B' + @ yk > @

3

358° 25
-358 2l
-1

' 28vs
18.0
03.0

52.
36.
k5.0

O\

28.
12.
- 27.0

O\

v - 10.5

1 32
-1 32

52.
5k

+ 9.

O oW

36.




9204
LN

1
B' + 60 -V, -5a = 358° 25' 28"s

’ _358 25 36.0
+ 9.0
v + 1.5
S5
-B' +6 -y + 3. = 1 32 52
o [ 2 - '5
-1 32 L2.0o
- 27.0
v - 16.5
6
B' +0 —y—ia = 358 25 28
o 7 2 > -5
-358 26 12.0
+ 45,0
v + 1.5
7
B+ 8 -y+Lag = 1 32 52
o g 2 - 240
-1 31 L2.o
-1 03.0
v + 7.5
8
Check Iv® = B = ¢
v: = 558.00
258 _
5 = 111.6
21
%0 . §%§- = 14,65
1 8 A
g -5—2— = 13.95
1 . 528 = 8.8272 x 10 8
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3

15

11

525
36

11

SUMMARY .
n = 8, r = 5 § = + 10"6
Y
6, =  359°59' 10'5 8, = t 3.8
o
B' = 3580 26' 18" éB' = t 3.7
" _3 A —
o = 3.20 x 10 Sa” = * 0.30 x 10
Zraphical Solution.
See previous calculation for Schuler Means and 60
Observations
Transferred Graphical
Left Right Left Values
(280 - Left) (see plot)
358°24'18" 1°3L4r03" 1°933'52"
1°33'36" 1 33 35
358 25 12 1 33 09 1 33 18
1 32 5& 1 3301
358 25 36 1 32 45 1 32 kb
1 32 k42 1 32 27
358 26 12 1l 32 09 1 32 10
1 31 42 1l 31 53
280 = 359° 58' 21"
Mean of the right and transferred left observations 1° 32
Mean of the first three observations 1 33
Mean of the last three observations 1 32
[e] ] n - [e] ] 1"
Slope a = 1° 33' 36 1 32 11 = 17" per half period.

>




LEFT 358 RIGHT fo

—

24' 25" 26" , 3 33

359°5¢

o

o
$

)
&

© Original observations

® Schuler means

+ Transferred observations
| @ Mean oi right and }tra‘nsferredlleﬂ observ?tions

QSCILLATION GRAPH




Example B, n odd

Observations
i SM SM-Si
Left Right 3590571 v
1° 11' 18"
358° Luy' uo" (1 11 o06) 5470 - 7"8
(358 45 09) 1 10 54 61.5 - 0.3
358 L5 36 (1 10 36) 66.0 + L4,2
(358 L5 51) 1 10 18 6h.5 + 2.7
358 L6 06 (1 10 00) 63.0 + 1.2
1 09 L2
M 61.8 Y =0
eo = 3590 5&! Ol‘.‘8 + 3(_708 + 102) - 2("(6).3 + 2.7) + )4 X )4'.2
eo = 359° 58' 01"8 - 13 = 359° 58' 00"5
E 1" 0 [e] 1 "
Yy = 3(358° LL') + L' 2k Yyl = L(1° 09') + 6' 12
, 1| 4(1° 09') + 6' 12" 3(358° Lk') + L' o ]
B = - - ;
2 L 3
)
B! = £(1° 10" 33" - 358° b5' 28") = 1° 12' 35
¥ " [e] (] 11
Note 0_ = 358° h5' 28 N 359° 581 00"'5
a =25 (3x1' 36" + 2 x 1" 24" + 36")
a = 17V57
" _ & _ 17.57 = -3
o = = L3555 L.ok x 10
B! + e . 10 loy 33"
(]
-B' + eo= 358° L' 28"




B' +08_ +3a-y = 1° 10" 33"
1 -1 11 18
+ 52.71

v o+ T.71

-B' + eo -2a -y = 358 45 28

35.1k

v + 10.86

+

B! BO + a-y = 1 10 33

+ 17.57

v - 8,00

1 + — — =
B 46 ~a-y 1 10 33

-B' + GO + 2a - Y = 3:8 L4 28

+ 35.1h

v - 2.86

BY

+

 -3a-y = 1 10 33
7 -1 09 k2
- 52.72

voo- 1.72
7

Check Iv = v = 0]

Iv?

i
n
-3
o
o
\O




G2 = =70.89 - :
SyV = I = 67.72
52 - 32 - T 270.89
B eo =8 N
g2 - 1 270.89 -
o 28(14352.5) 2 L
SUMMARY .
= , = )-l» Ié =
n T r , v
_ o ' 1" A _
60 = 359° 58' 00V5 seo =
B' = 1° 12' 32"5 CH.
" — -3 A -
o = 4.0k x 10 S =

Graphical Solution.

See previous calculations for Schuler Means and
Observations
Transferred
Left Right Left
(260 - Left)
1° 11' 18"
358° Lh' Lo" 1° 11' 19"
1 10 54
358 45 36 1 10 25
1 10 18
358 L6 06 1 09 55
1 0¢ Lo

zeo = 359° 56" Q1"

0.1277 x 10~

1+

1+

I+

I+

Graphical

Values

(See plot)
1° 11 27"

e

gl2

301

3'1

0.36 x 10~

11
10
10
1o
09
09

09
51
33
15
o7
39

6

3

ho.

b

+ 9




Mean of the right and transferred left observations 1° 10' 33"
Mean of the first two observations 1 11 18
Mean of the last two observations 1 09 L8
10 v RY - 10 MGt Ry ,
Slope a = = 11 18 - g! b8 = 18" per half period.
LEFT 358° RIGHT 1°
i Y] .
44 45’ 46 10’ 11 12
359° 68’
&) ® +
Vi »Y
W
o] (<]
1@ /\,
o} B
© Original observations /
® Schuler means
+ Transferred observations
B Mean ofI right and tr;cnsferred l?ft observct{ons

OSCILLATION GRAPH
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CONCLUSION.

Lauf (1967) has summarised the methods used by other writers in t' e
solution of this problem and it is of interest to re-examine these in
the light of this investigation. Kohlrausch (1955) advocates the use
of an odd number of turning points and then combines the mean of the
readings on one side with the mean of the readings on the other side to
obtain a final mean. This approach is quite sound theoretically for a
lightly damped oscillation as has been shown and it is hard to understand
why Schuler (1932) criticises Kohlrausch. Schuler is also critical of
Basch and Wilski (1917). This method is based on finding a line of best
fit to observations on each side and then to combine them to give a final
value. This technique is basically sound if we are considering the linear
damped case. However, an extra condition must be added to the adjustment
because the slope of the damping envelope must be the same on either side
of the line of mean oscillation. The approach of Thomas (165, 1967) is
of interest because it attempts to take into accountra heavier damping,
which seldom prevails with gyro—theodolite.observations. The Schuler
and Thomas Means are generally quite sufficient for this work and there
is no necessity to continue taking higher order Means.

Consideration must be given to the question of the number of
observations required for the determination. If the internal precision
of the observations is compatible with the external precision then the
number of observations required will depend upon the accuracy required for
the determination which can be estimated a priori from variance estimates
based on past experience. From the calculation and adjustment standpoint

it is immaterial whether we observe an odd or an even number although with
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an even number of observations the weightes Schuler Mean will give the
lesst squares solution for quadrztic damping.

In conclusion it can be stated that the derivations co:tained in this
report are of a general nature and do not presume a limit or set values
fo? the number of observations. A combination of the characteristics of
each method gives a simple solution for numerical problems which is in
sympathy with the observations. By application of the general law of
propagation of variances it has been shown that we can still take advantage
of simple relationships which are similar to those which have been proposed
by Schuler whilst retaining the benefit of rigowr in the least squares

adjustment.




TABLE 1. SOLUTIONS OF NORMAL EQUATIONS FOR LINEAR DiAMPING.
a b
V¥, Y, Y, Y, Y, Yy, vV, Y, ¥, v, ¥ ¥, ¥,
1 1
) (1 -1 ) 5( 3 -1
1 1
n (1 -1 -1 1 ) > (2 -1 1
1 1
G (2 -1 1 -2 ) 5b(28 -9 10 9 -8 )
1 1
g (1 -1 -1 1 ) 2h(17 -9 8 -1 9 )
_x (3 -2 1 -1 2 =3 ) 1—(19 -8 11 3 8 -5 )
28 28
= (3 -3 1 -1-1 1 -3 3) (11 =6 7 =2 3 2 -1 &)
Lo 20
_ btc
¢ o 2
yl y2 y3 yl& yS yG y? y& yl y2 y3 yk yS [} y7 8
(-1 1 1 ) % (1 2 1 )
1 ] ' \
T (-3 5 3 -1 ) g (1 3 3 1 J
1 1
5 (-3 1 3 ) ié( 2 3 2 3 2 )
1 (-3 5 2 3 -1 ) 1—( 5 11 8 8 11 5
6 L8 «
5% (-9 13 -3 7 3 1 9 ) =( 3 3 4 3 L 3 )
1 1
5 (=3 5 -1 3 1 1 3 -1) 50( 13 9 11 11 9 13 T)




TABLE 1. (Contd.)

oY, Y, ¥, v, v, Yoy,

3 £( 5 -2 -3 )
1

b sC 717 -1 -3 3 )

5 —1-( L6 -33 10 3 =26 )
60

6 =+ (29 —29 8 -8 -13 13 )
48

1 .
T 128 (93 =76 L5 -28 -3 20 -51 )
8 %— ( 37 -37 19 -19 1 -1 =17 17)
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For n < 8.

3=
, G

2=1

1_1
g!™", ¢

INVERSE MATRICES

TABLE L,

-3 2 -1
6 -4 2
-4 6 -3
2 -3 L

4
-3
2
-1

A F\O O C N
' [ B |
MO O\ QO
1 [ |
SO N0 M
[ | i
N O O\NO T A
[ | I
O N
1

L
-3
2
-1

jb—

- \OQ 0 O A\
1 1 — )
1
MY QAN O N
[ —~ —
| [
0 U\O J OO A
1 —~ |
1 1
NO NN OO M
~ = A i
1 l
O A OO0 T
[ 1*J* 1 1




TABLE 4. (Contd.)
., 16
n=3 C
_ 16

45

-20

n=28

-1
2
G
16
n=»4 = 3
10 [_2
-60 45  -20
114 -96
-96 114 =60
45 60
16
kg -70
(28 -70  1ks
70 -160
-56 134
35 =86
~1h 5

L5

50

70
-160
220
-200
134
-56

n=5
16 [
/L

L.
-56 35
13k -86
-200 134
220 =160
-160 1ks
70 =70

16

45 -60
-60 120
54 -120

15 -36

-1k
35

-56
70

-7
L9

-k
-4

S5k
-120
156
-120
Sk

51.

2
-4
L
-36 15
84 -36
-120 5k
120 -60
-60 45
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ABLE 4. (Contd.)

G
n=14 g% n=>5 %% y -3 n==6 i%% 25 =30 15
-3 Y -30 52 =30
15 -30 25
64 6L i )
n = ) 10 =15 12 -5 n =8 168 kg -8k g8k -56 21
-15 30 =27 12 -84 184 -204 1kl -56
12 =27 30 -15 84 -204 264 204 84
-5 12 =15 10 56  1khk -204 184 -84
21 -56 8h -84 k9
L
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