ot L5 . or % R (4 Ed 3 v = T T

T N o T R : § I T i —
s

ot

£

&

.//m r/. -.‘...\\.w‘ﬁ—w QN( t..?w !v\.w\stﬂ.-

e
o

E
Th OF *§§Z§NTROL

f.. AUSTRALIA ®

Y TH

ERSITYLIOF NEW SOUTH WALES

|
£

CA
ATE BYSTEMS

s 5 pary

S0

i"
THE

S, HA

s
tr

0
oo

GEOCEN

i

el

\l- !y.ilﬂi

N 2= - -~ J¥ AL punaisy vy um
;I/}\ =g 2y o & Sadaf IEE ]
SARE SPEe oy ; A\u

NISURV REPORT NoO. ¥4,

ETWQRK

%
| 2

o ' 5 o

4

ALY wretil degery ; I oo TR T Tl W e e, i
- wit [ wowpT GES9E sonpr 69668 | Mf ..... il oy, =
Z £ o 3 ,.ﬁ.ufﬂu,\-.u A
) to¥ £ o e e e Togr,
 — v ol T .
surepd sxmsud mo) o

i 118205, B
A S e e S o
L& SR N oA wrodayy e, A wl &
.W.. il .__....w._,,.,h.ﬁw...w\\\w?iia . o L g q\%ﬁ, aﬁ“.f; Qe B g .....: e AUWIIACL Jo LFpTo L] Wy .«
o e et B i LU et FRY7IE S SIN -
v Mw,ﬁ T e Y F o pout? ¥ . SHWIVM HLIOS MUN 3
: 5 L E 2y wa %
A e 2 (I Mﬂ.q.- ! T\ o W e - JM
teune jg SEINT g.«\\&-ﬁ.&ﬂm 3

K2 for
NETT MUN ¥




Reference to Districts.

A Northern Boundaries
B Liberty Plains

C Banks Town

D Parramatta

EEEE Ground reserved
for Govt. purposes

Concord
Petersham
Bulanaming
Sydney
Hunters Hills
Eastern Farms
Field of Mars
Ponds
Toongabbey
Prospect

Richmond Hill
Green Hills
Phillip
Nelson
Castle Hill
W Evan

<C=-wnappO9UgZTrR—"Ta"m

The cover map is a reproduction in part of a map noted as follows:

London: Published by John Booth, Duke Street, Portland Place, July 20th, 1810

Reproduced here by courtesy of The Mitchell Library, Sydney




UNISURV REPORT NO. 14

VERIFICATION OF GEOIDAL SOLUTIONS BY THE
ADJUSTMENT OF CONTROL NETWORKS USING

GEOCENTRIC CARTESIAN COORDINATE SYSTEMS

R,.S.Mather

Received 14th February 1969

Tﬁe Department of Surveying,

The University of New South Wales,
P.O.Box 1,

Kensington, N.S.W. 2033,

Australia,




SUMMARY

The simultaneous adjustment of a horizontal control
network, together with astronomical observations and the
geoid spheroid separation vector, using a geocentric car-
tesian system as a reference frame is investigated and
formulae are derived for the complete definition of the
solution. The precision required for each of the quan-
tities involved in the adjustment is assessed and a relation
established between parameters obtained in the adjustment
and systematic errors in the geoidal solution. A method
is outlined for the study of these position dependent
errors in the geoidal solution in which the distant zones
are represented by the gravity anomaly values established
by a combined solution using satellite data and surface

gravimetry.




VERIFICATION OF GEOIDAL SOLUTIONS BY THE ADJUSTMENT OF
CONTROL NETWORKS USING GEOCENTRIC CARTESIAN COORDINATE

SYSTEMS

by

R, S. Mather

1. INTRODUCTION

The definition of geodetic position using a
system of geocentric cartesian coordinates has been
dealt with by many geodesists. The use of such a
system to afford a reference frame appears to have no
obvious advantages over the conventional system in
non-polar regions, It has, in fact, the decided disad-
vantage of requiring a knowledge of the values of the
orthometric elevation (h) and the geoid spheroid sepa-
ration (N) at every control station for the‘complete
definition of position. The relationships between
observed quantities and such a cartesian reference
frame have also been studied and the possible use of
such a system for the adjustment of large scale networks

outlined (e.g., Dufour, 1968).




2

In Australia the current geodetic datum is afforded
by Refefence Ellipsoid 1967 (I.A.G. Resolutions, 1967, 367) and
called the Australian National Spheroid. It is oriented by
adopting zero geoid spheroid separation and the mean value
of the deflections of the vertical for the continentél area
from the astrogeodetic data available in 1963 for the
Johnston Origin (Bomford, 1967, 56-58). Geodetic position
is conventionally determined by relating observed quantities
to an arbitrarily oriented spheroidal reference frame, the
adjustment, in this context, being carried out in two di-
mensions only. The quantities involved in the adjustments
are angular and linear measurements together with astro-
nomical observations. The adjusted geodetic positions so
obtained can be used to determine astrogeodetic deflections
of the vertical at those stations where the necessary astro-
nomical observations have been made (e.g., Bomford, 1962,89).
The analysis of 600 such astrogeodetic stations on the
Australian Geodetic Datum by Fischer and Slutsky (1967)
produced a solution for the geoid spheroid separation on
this datum which has an unknown arbitrary orientation in
earth space.

A preliminary determination of the free air geoid
for Australia has been completed using a compilation of

local gravity data and a composite solution for the distant
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regions from a combination of satelliﬁe data and terrestrial
gravimetry (Mather, 1969). This provides an estimate of the
geoid spheroid separation which, unlike the astrogeodetic
solution described above, is completely independent of any
control network measurements. It has generally been held
that the accuracy of gravimetric solutions is questionable
but the results of the analysis of satellite orbits have,
on combination with terrestrial gravity data provided im-
proved solutions for both the terrestrial gravity field
and consequently the geoid spheroid separation.

The comparison of this solution with the Fischer
Slutsky determination was effected after the latter had been
corrected by least squares fitting for arbitrary orientation
at the origin. If N and Nf are the values of the geoid
spheroid separation for the corrected aétrogeodetic and
gravimetric solutions respectively, the standard deviation
of 557 comparisons (N—Nf) over an area of approximately
six million square kilometres, after the exclusion of 20%
of the comparisons with comparatively large and explicable
discrepancies, was * 3 metres. The comparison error was
not randomly distributed but varied systematically with
position (ibid, fig (12) ). It was also noticed that the
comparison errors had smaller standard deviations if the

area of the region considered was reduced. The magnitude




Corrected Astrogeodetic
Area minus Free Air Geoid M{N—Nf}
Region km2x106 Mean* Std. Dev, |No, of com-
' (metres) parisons
1| Australia 7.6 -1.9#5,2 701
Australia*
2| E of 120°E 6.1 -~2,1%3.0 667
S of ~15°N
3| victoria 0.2 -0.5%2.0 29
4 | New South Wales 0.8 -2.0%2.5 68
5 | Northern Terr. 1.3 +0.3%1.6 99
S of -15°N
TABLE (1)

COMPARISON OF THE CORRECTED FISCHER SLUTSKY ASTROGEODETIC
SOLUTION WITH THE 1968 FREE AIR GEOID

Outer zone repregentation:- Rapp's set of 5°x §°
free air anomalies. Rows (3), (4) and (5) represent the

relevant portions of solution in row (1).

* FExcludes Officer Basin, South Austrdlia.
of the standard deviation is however largely dependent on
the completeness with which the local gravity field is
represented, as can be seen from a study of table (1).
In this table, M{ } refers to the mean value, N and N,
being defined earlier. One of the features of the inves-

tigation quoted was the consistency with which the wvalue of
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-2 metres (:0.2 metres) was obtained for the value of
M{N-Nf} in the case of continental solutions on fitting
the Fischer Slutsky data to the gravimetric determination
using the least squares condition, This implied that,
on the average the corrected astrogeodetic solution,
after adjustment, was two metres smaller than the gra-
vimetric one.

It should be noted that no indirect effect has been
considered for the free air geoid (Mather, 1968,equation
(51) ). Other possible sources for the existence of
comparison errors are

(a) errors in the outer zone representation obtained
by the combination of satellite data and limited samples
of surface gravimetry;

(b) errors in the field extensions for unsurveyed
areas of the intermediate gravity field used in computing
the free air geoid; and

(c) errors in the astrogeodetic solution used.

While the indirect effect can be computed, the
errors arising from source (c) can only be eliminated
by effecting comparisons at points on rigorously computed
astrogeodetic sections. Errors in (b) can be minimised
by restricting comparisons to those regions where inter-
mediate zone field extensions are either not necessary oOr

made from adequate surface gravimetry.
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It is therefore of interest to use some independent
method to assess the precision of the gravimetric so-
lution for the geoid under conditions free from the
influence of interpolation errors in the astrogeodetic
solution. Such a method is afforded by the combination
of geoidal solutions with horizontal surveys and ele-
vations in a composite adjustment using variations on a
geocentric cartesian reference frame. This paper out-
lines the formulae to be used in such an adjustment and
investigates the necessary precision required in the
measurement of each of the quantities involved in the
calculation, It also studies the nature of the error
in the gravimetric solution and means for estimating
the magnitude of the contributory effects.

The following system of symbols, subscripts and
numbering is adopted to provide a uniform system for the

following sections.

2 ,NOTATION

(i) Symbols
a = equatorial radius of meridian ellipse
e = eccentricity of meridian ellipse

(no subseript)
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total error containing both systematic and
accidental components (with subseript)

flattening of meridian ellipse
orthometric elevation

slope distance

systematic (or position dependent) error
accidental (normally distributed) error
geocentric cartesian coordinate

local laplacian trihedron coordinate
zenith angle

azimuth

mean value of X

geoid spheroid separation

mean radius of the earth

mean radius of curvature in the normal
section

observed horizontal angle
global mean value of normal gravity

component of deflection of the vertical in
the prime vertical, positive when outward
vertical is east of normal.

longitude, positive east

radius of curvature on spheroid in prime
vertical
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€ = meridian component of deflection of the ver-
tical, positive when outward vertical is
north of normal

p = radius of curvature in meridian ellipse
¢ = latitude, positive north

v = angular distance on a sphere

AX = change in X

(ii) Subseripts

= computed from provisional coordinates

c

£ = free air geoid

n = determined with reference to local vertical
(execluding use with R )

a = provisional value

The line PiPi+1 is defined by the length zi, the
azimuth Ai and the zenith angle z; from Pi to Pi+1‘

The point Pi is defined by its related parameters
xij(3=1,3), Ni’hi’ ¢i' Ai and vy

The position of Pi+l relative to P, is defined by
the local laplacian trihedron coordinates x%(j=1,3) at Pi‘

When the strict use of notation lengthens formulae
without any improvement in the clarity of expressions, as

in the case of specimen observation equations in section

(5), these are derived either for the line PiPi+l when
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i = 1 or with the subscripts omitted.

3. COMPUTATION OF PROVISIONAL GEOCENTRIC CARTESIAN

COORDINATES FROM OBSERVATIONS

The formulae derived in this section are those
required for the computation of provisional coordinates
from observed quantities which are all subject to obser-
vational error. These values will be used in the next sec-
tion to set up observation equations from which corrections
to the provisional coordinates can be deduced to obtain
estimates of the most probable values of these quantities.
All observed guantities can be related to a local car-
tesian system. One such system is the laplacian trihedron
which is an arbitrary but fixed system with its xi and
X! axes in the 1océl horizon, oriented east and north

2

respectively and the x! axis coincident with the local

3
spheroid normal (Dufour, 1968, 128). As the spheroid
normal and the horizon plane are defined by the geodetic
coordinates of the point, these need not be equivalent

to the astronomically determined guantities.

The computation of the provisional geocentric
cartesian coordinates for any system of n control points

Pi(i=l,n) will have to commence from one point Py whose




10
geodetic latitude and longitude are assumed to be known
and which, for simplicity, will be called the origin,
The computation procedure at the origin is slightly dif-
ferent from that at any other point only if its deflections
of the vertical and N are not known. This occurs only
in those instances where these quantities have not been
determined from gravimetry. The general cases can
therefore be subdivided into two categories depending on
whether the geoid spheroid separation vector has been

defined gravimetrically or not.

(i) For the origin and cases where the geoid

spheroid separation vector has been determined from

gravimetry,

Case (a) :- At the origin, where the ast-
ronomical values of the latitude (¢ml) and longitude (Aml)

are known together with the orthometric elevation (hl).
The provisional geocentric coordinates of p, are given

from figures 1(a) to l(c) by (Bomford, 1962, 186)

xll = [v1 + h1 + Nll cos ¢1 cos Al

X, [vl + hl + Nl] cos ¢l sin Al eensse(l),
_ 2 :
Xy3 = [vl(l - e”) + hl + Nll sin ¢l

where

¢l= ¢ml—£l e ®as®eosw (2)




i X3
N
P2
xl
X3
R %
900'(1)1
90°-¢2
X2
F
X4 Az Fp
FIG. 1(a)

Relation between the geocentric cartesian
system and laplacian trihedron.

F

FIG. 1(b) FIG. 1(c)
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A1=Aml"nl secC ¢1 -ou!o.}0.a0(3)0

All guantities in equations (1) to (3) are defined
in section (2). These formulae define the geocentric

cartesian coordinates at the origin.,

Case (b) :- At other points the computations
are performed in two stages,
Stage (1) :- The conversion of observations to

laplacian trihedron coordinates.

The provisional geocentric cartesian coordinates
of a point P2 are obtained from those of Pl and the fol-
lowing possible observed quantities,

(i) The length (&) either measured or implied from
horizontal observations as in the case of a triangulation
network., |

(ii) The zenith angle (z) either measured with
respect to the local vertical (z) or implied from elevation
measurement.

(iii) The azimuth (Am) with respect to the astro-
nomical meridian which is defined by the plane containing
the astronomical zenith and the celestial pole.

Let the angle between the local vertical and the
spheroid normal be t in the plane containing these two lines.

This angle can be resolved into meridian and prime vertical

components £ and n as defined in section (2), the xé axis
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in the local laplacian trihedron coinciding with the
spheroid normal. The non-coincidence of the vertical

and the x! axis has to be taken into account when relating

3
observed quantities to the laplacian trihedron whose
orientation is completely defined by the local geodetic
coordinates,

In fig (2) if z is the zenith angle with respect

to the xé axis, z is given by

z =z + £ cos A+ n sin A eeseos(4),

If z, is not an observed quantity but the differences
in the orthometric elevation (Ah) and/or the geoid spheroid

separation (AN) are known, it follows from fig (3) that

2 2 2
_ 2Rm[N2— N1+ hz— h1]+ (N2+ hz) - (Nl+hl) - zl
Cos Z2,=
1
h
2R 2 (l PR S ——-)
R
m m
_i£+ﬂ_ﬁ+[hl+h2+Nl+N2](Ah+AN)~! L
[) 2 1
1 1 2Ry 2R "1
h N -1
+ 2L
Rm Rm

where R is the value of the quantity defined

in section (2) for the line P As z can only be

6

1F2-

observed with a precision of 1 part in 10  under ideal

conditions, the above expression can be reduced to
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FIG. 3




15

Ah £ AN h.2

cos z; = — - 24—+ L1077y .......(5).
1 )
21 2Rm 21 2R

All qguantities in the above equation are defined
in terms of the last two lines of section (2).
The observed astronomical meridian differs from
the plane xéxé for two reasons.
(i) The effect of the non-coincidence of the as-
tronomical and geodetic zeniths which is expressed ma-

thematically by the Laplace equation

A, = A - A

1l ml nl

-Al] sin ¢l ..Oo.oo.'(G)'
where the subscript m‘refers to quantities deter-
mined astronomically. The combination of equations

(3) and (6) gives

A, =A, - n tan ¢, I 2 I
(ii) Non coincidence of the vertical and the xé
axis makes the transference of angles measured with
respect to the former, to the latter axis without dis-
tortion, conditional on the zenith angle being n/2. In
all other circumstances, as can be seen from figures

2(a) and 2(b), the measured horizontal circle reading

is too great by
[E sin A - n cos A] cot z .

T hus the final expression for geodetic azimuth
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(A), which is the angle between the xé axis and the pro-

jection of the line P,P, in the xix) plane is

Al = Aml - ny tan ¢1 - [£1sin Al - n,cos Al]cot zl..(8).

If, on the other hand, the azimuth of the line is
not observed astronomically but deduced from a reverse

bearing (Ar) and a measured angle a,
A = A+ [¢ sin A - n cos Ar]cot z, +a - [£ sinA

- n ¢cos AJCOt Z ..ee0eeee(9).

No complications arise in the interpretation of %
which, if computed from conventional triangulation, is
the geoidal distance, In such a case, equation (5) will
be used with both h; and Ah put equal to zero.

The laplacian trihedron coordinates of P2 are

given by

xi = 21 sin zy sin A1

xé = 2 sin z, cos Al ..............(10),
xé = zl cos zl
Conversely,
]
-1 X1
Al= tan (;{) ..ooo.oo.oooooioolo(ll)'
-1.X5 sec A X7 cosec A
l xl x'

3 3
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and

] > [} .
L = x1 cosec Al C0secC zl = x2 sec Al cosec zl

- 1
- x3 sec zl 00.0.000(13)0
Stage (2) :~ Conversion of laplacian trihedron

coordinates to differences in geocentric cartesian
coordinates.

Direct consideration of figures 1l(a) to 1l(c) shows
that the coordinates x% (j=1,3) defined in equation (10)
can be converted to differences in geocentric cartesian

coordinates ij (j=1,3) by the relation

AX = RX' 000.00.0-1(14)'
where
Axl ) xi
AX = sz : X' = xé
]
Ax3 x3
and
- sin Al - sin ¢lcos Al cos ¢lcos Al
R = cos Al - sin ¢lsin Al cos ¢lsin Al
0 cos ¢l sin ¢1

.-a..-...o.o(lS)o

Thus in the case of a network where gravimetrically
determined values of the geoid spheroid separation vector
and orthometric elevations are available at every point,

equations (1) to (3) define the evaluation of the
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geocentric cartesian coordinates of the origin P, at

which astronomically determined ¢m' A and Am are available.

m

The provisional geocentric coordinates of all other points

Pi (i=2,n) are obtained from the observed quantities,

using equations (4) to (15), by conversion in the first

instance to local laplacian trihedron coordinates and

then to differences in geocentric cartesian coofdinates.
The values of geodetic coordinates for use in

equation (15) at all points other than the origin can be

computed from equation (1) by the following set of formulae

which can be iterated if necessary.

-1.%i2
Ai= tan (r B EEEEEEE (16)0
il
] !"
Ab ¥ —L cos A, ’
P
J
a e2
Av = a~——§77— sin 2¢., A¢
2[1 - ezsin2¢j] J
and e2
. = v. + 2.sin 2¢. cos A, + 0{2 - 3 met.}
ST FY S h ¢4 cos Ay €
...oo.t.!..(l?)'
where
j=1i-1, If Ni is not available from
gravimetry,
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where Em and n, are the mean values of the deflections
of the vertical at the two terminals,being taken equal

to Ei-l' Nj.p in the first iteration, Then

hi + Ni
X, (1 + ————
-1 i3 vy
¢; = tan SR, F N,
X, ,Cosec Ai(l - e + ———;I——)
X,
= tan~%{ 13 £(¢,h,M))

X.,CO AL
i2 sec i

X,

= tan-l(————-ﬁ-—_ f(¢'h,N)) oooooooo-o(lg),
xilsec Ai
where
2 hi+ Ni hi+ Ni 2
f(¢,h,N) =1+ e“[1 - > +( v ) 1
i i
h.+ N.
vefin -2 1y 4 ef 4 0r107r. 200,
i

(ii) Cases where N,& and n are not available from

gravimetry,

In such instances the origin at Pl will once
again be completely defined as in (i), case (a). The
following procedure will apply at subsequent points.

The geocentric cartesian coordinates of Py based on

values of the geoid spheroid separation vector at P,

can be computed by means of equations (3) to (15). The
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problem in the general case can therefore be stated as
follows, Given the geocentric cartesian coordinates
xij (j=1,3) of the point Pi whose astronomically deter-
mined geographical coordinates are ¢mi and Ami' the
latter can be converted to pseudo geocentric cartesian

coordinates X (i=1,3) by the relations

mij
xmil = [vmi + hi] cosé mi COs Ami
Xii2 = [vmi + hi] cos ¢ sin Ami esees (21),
Xni3 = i (1 - ) +h.] sin ¢ .

where Vi is the value of v corresponding to the
latitude L The relation between these pseudo coor-
dinates and the true geocentric cartesians (xij’ j=1,3)
of Pi can be conceptually expressed in one of two ways.

(a) The above coordinates refer to two points Pi
and P' on the same geocentric cartesian reference system

such that P' whose coordinates are (¢m A h 0)

i’ "mi’ i’

has, for all practical purposes, the following displace-

ments from Pi(¢i, Ai' hi’ Ni) in the local laplacian

trihedron at Pi'

xi = [pi + hl + Ni] (¢m1 - ¢l) = [pl + h]_ + Nllgl

¥
N -
]

[vi+ hi+ Ni](kmi- Ai)cos ¢i = [vi+ hi+ Ni]ni..(22)

x! = = N.
i
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(b) If the true coordinates of Pi' referred to
an origin whose coordinates are (0, 0, 0) and the pseudo
coordinates represent the same point in space, the use of
the latter system infers that its origin has coordinates

(AX. .

g’ j=1,3) on the former system, given by

X,, = L= X,
& ij xmlj xlj'

As equations (22) and (23) define the same set of

j=1'3 .l...'...(23).

changes and the relationship between the gquantities is

shown in figures 1(a) to 1l(c),

1
E. = [- AX,; ,COS AiSln ¢i- AX; ,8in A151n ¢i
pi+ hi+ Ni

+ AX, jC0s ¢i] cesescceas (24),
1

n, = T n (- 8x;9sin A, + Ax;,c0s ;] .....(25)
i i i

-N, = Axilcos Aicos ¢i+ Axi251n Aicos ¢i+ Axi351n ¢i..(26)

Only four significant figure accuracy is sought
from equations (24) to (26) and hence no problem arises
in evaluating o5 and Aje Further computations are
effected using equations (4) to (15). The values of ¢
and A for use in equation (l5) are obtained from equations

(2) and (3).
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4, THE ADJUSTMENT OF OBSERVATIONS

The procedures set out in section (3) enable
provisional values of the geocentric cartesian coordinates
to be computed for all points in the control network.
This reference frame is an arbitrary one in that its
centre, in practice, cannot be expected to coincide
with the earth's centre of mass (geocentre). It
should be noted that the adjustment of a world wide
network of points could be used to obtain an estimate
of the position of the geocentre. Ideally, if the
earth's gravity field were completely defined, the
combination of gravimetrically determined values of
the geoid spheroid separation vector with astronomical
observations over any reasonable extent of the earth's
surface should provide a good estimate of the location
of the geocentre, The orientation of the reference
frame is further discussed in section (6).

The resulting quantities defined are the provi-
sional coordinates xuij(j=l,3) for the n points P,
(i=1l,n) in the scheme, along with the associated
provisional latitudes (¢ui) and longitudes (Aui).

These provisional values can be used to linearise the
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system by using the conventional technique (e.g., Schmid
& Schmid, 1965, 27 et seq.). Two groups of quantities
comprise the systems:-

(a) the observed qguantities Oi(i=l,m), e.g.,
measured lengths, N values, observed directions, etc. ;
and (b) the parameters Pi(i=l,p), e.g., station
coordinates, systematic errors in station orientation,

N values, etc, .
These two sets of quantities are related by some

mathematical model of the type
F(O’P) =0 ® ® 9 o0 0¥ o8 g0, (27)0

This equation is linearised by introducing
approximate values (Pu) where necessary for the parameters

P when

oF oF =
mvo+.5_P.SP+F(O'Pu)—O .oooo'olo'o(28)l

where VO is the matrix of the residuals of the obser-
vations and

SP = P - Pu .

If W, is the matrix of weight coefficients
of the residuals Yo and as the quantities in the matrix
S, are not normally distributed, the least squares condi-

P
tion to be satisfied is

1 VT « o
i Vg Wo Vg = minimum erecseass (29).




24
In addition there is the possibility that certain
condition equations have also to be simultaneously
satisfied, For example, over a closed loop,
 n

? AX, . = ? AX., = } X,

= 0 ,
i=1 1 4o 12 4y 13

Let this set of q conditions be represented by
G(P) =0 o.-.ooo.o...a.o..-..'(30).
The introduction of provisional values for the para-

meters gives
G(P,) + ( ) Sp = .
The least squares condition becomes

9G

¢ = avo W, V. - LT [cp) +(55

o Vo =p) Spl = minimum ....(31),
where L is the matrix of lagrangian multipliers.
Equations (28) and (31) are combined by the substitution

for Vo in the latter equation when

= T =
= & (A SP + K) wO (A sP + K) - L (AC P + KC) =
minimum,
where
( =) F(O,P )
a - (fr- P K=o et Ac = (gp)i Ko =GRy
Ly ( 55)

.....l........(32).

Ssuch a condition is satisfied by assigning values

for the corrections S; to the provisional parameters
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according to

ad
=0
35, 3
ioeol
T T S
A WOASP+AWOK-ACL-O ceseesee (33)'

whence substitution for S? from equation (33) in equation

(30) gives
_ (2T -1,T . _ T
and
L= a, A% w, &7t Al a, @ wy a7 AT Wk
"'KC) -ooou0(35)-

The values of the corrections to the assumed
parameters (SP) are obtained from the values of L by the

use of equation (34).

5. THE OBSERVATION EQUATIONS

The changes Axij (j=1,3) in the geocentric cartesian
cooxrdinates over the line PiPi+1 are equivalent to
changes x% (j=1,3) in the local laplacian trihedron coor-
dinates at Pi' given from a study of figures 1l(a) to

1(c) by the following equations.
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x
-
i

- AinSln Ai + Axizcos Ai
| I ] - i i N Py
x5 aX, 008 A ;sin ¢, AX,;,sin A ;sin ¢, + AX;3C08 ¢, (36)
' = » 3
x3 Axilccs Aicos ¢i + Axi251n Aicos ¢i + Axi351n ¢i
The subscripts used in the following sub-sections
are as set out in the last sentence of section (2).
(i) The length observation equation.

The length 2, is related to the geocentric
cartesian coordinates of the terminals Pl and P, by the
relation

2 2

3
1 = jzl[xzj - xlj] .

£

The change dzl in 2 produced by changes dx1j

and dx2j (j=1,3) in the coordinates of Pl and P2 is re-
lated to the latter by the relation
3 .
nldzl = jzl [xzj— xlj](dxzj- dxlj).
If Lo is the length of the line PP, as computed

from the provisional coordinates of Py and Poy 2 the

observed length of the line and v 1 the error in the

2
observed length,

£ - 2, + dg

Vil cl 1 1

3 xz.- Xl.

j=1
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All quantities requiring evaluation in
equation (37) are computed from the provisional coordinates,

Lo being computed with the same precision as the observed

quantity 2.

(ii) The azimuth observation equation,

The azimuth of a line can be computed by the use of
egquation (10), the relationship between the differences
in provisional geocentric coordinates and the local
laplacian trihedron coordinates being given by equation

(36) L]

Changes in A, produced by changes in the provi-
sional coordinates of the terminal points are related by

the following set of equations.

dx! x!
seczAl dAl = ——l - —i— 2 dxé .
X (xp)

Consideration of equation (36) gives

dxi = - dAxllsin Al + dAxlzcos Al

and

dxé - dAx1151n ¢1cos Al - dAx1251n ¢lsin xl+ dAxl3cos¢J

where

dAxlj = dx2j bl dx1j ’ j=1’3 ....0.0..-00(38)0
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The combination of the above equations and some

manipulation gives

sin Ay sin ¢;cos Ay
dA, = sin A,cos A, [- dax,,( -

1 1 1 11 \ .
p X
1 2

cos A sin ¢,sin A cos ¢

+ dax, .| L 1 l) - AAK, — 2] .. (39).
12 x} x3 13 x}

The observation equation for azimuth is

A, + 8

1 Al + v = A + dA, ,

Al cl 1

where Al is the observed azimuth of the line Plpz
deduced from the unadjustéd observations by the use of
either equation (8) and/or equation (9) and Sa1 is the
correction for unknown station orientation error. This
is further discussed in section (6). Va1 is the local
observational error which is part of a normally dis-

tributed population. Thus,

sin ¢lcos xl

vy, = [A = 2] - s, + sin Ajcos A, ldaxy, -
2
sin A cos A sin ¢.sin A
- -——-l) + dAxlz( LI 1 1
[ [} ]
X x] X5
cos ¢1
-dAx13 x' ] .00.0..000000.0.0.00(40)0

2

The value of Aclis computed to the same order of
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accuracy as A, from equations (36) and (10) using the
provisional coordinates. Other values can be computed
to a lower order of precision provided that the pro-

visional coordinates have been adequately established.
(iii) The zenith angle observation equation.
The zenith angle zq is given from equation (10) by
X} sec A, [(xi)fﬂ+ (Xé)zlk

tan Zl = = .
(] ]
%3 X3

Differentiation and rearrangement of terms gives

x) dx§ + x§ dx] dx
2 1 1 2 2 3
dz, = cos“z,( 5= tan z; - tan z;—=).

(x) %+ (1) x}

The changes in dx% (j=1,3) are converted into

changes in dxlj' dx2j in xlj' x2j {j=1,3) by the use of

equations (36) and (38) when

1
(x) %+ (x3)

dz, = cos z;sin z

1 5 [xi(— dAxllsin Al

+ dAxlzcos Al) + xé(— dAxllsin $,c0s 1y

- dAxlzsin ¢lsin Al + dAxl3cos ¢l)]

-1 [dax

?
X3

11cos ¢lcos Al + dAxlzcos ¢lsin Al

+ daxg,sin ¢;1) .

The observation equation for the zenith angle is
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zl + szl + vzl = Z + dz

cl 17
where z, is the observed value of the zenith angle
and S,1 is the position dependent error in z which is

discussed in section (6). Thus

Ccos ¢lCOS A

_ _ _ . _ 1
V,1 = Zg1~ 217 Syt sin zjcos zj [-dax -
3
xisin xl + xésin ¢lcos Al cos ¢lsin Al
+ — —3 )- dAxlz( '
(xl) + (xz) X3
xicos Al— xésin ¢lsin Al sin ¢1
- 3 ) - daxg(——
(xl) + (xz) X3

x)cos ¢
- 2 l ] .l.uc..ooooo.u...o'0(41)’

1y 2 1y 2
(%) 7+ (xz)

where xﬁ(j=l,3) are given by equation (36) and

dAxlj(j=1,3) by equation (38).

6. THE NATURE OF THE SOLUTION

The nature of the solution is best investigated
after estimates are made of the precision of the observed
qguantities, Observations are made at the origin for
¢ml' Aml' Aml' hml' El' "y and Nl‘ The estimates of
error in S and A for observations of geodetic precision

are well established as being in the range:0.3 to *0.5
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sec. If the geoid spheroid separation vector is de-
fined gravimetrically at the origin, the error estimates

eNl, egl and en; in Nl’ gl and n, are not, in the strictest

sense, independent of each other. e,. is given by the

Ny
equation

e f(li)) dS oo--oo-no-oo.o-o-(42)'
1 4wyRJI g

where eAg is the error in the gravity anomaly rep-
resenting the element of surface area dS at an angular

distance ¢y from the computation point. The other symbols
in this equation, which is Stokes' integral, are defined

in section (2) with the exception of f(y) which is Stokee' .
function (Heiskanen & Moritz, 1967, 94). Let the error

(ey.) in the value of N at any point P, be represented
i

by an equation of the form

eﬁi=eNl+sNi+vNi .‘...ooo..(43),

where VN, is a normally distributed quantity which
i

will arise from errors in sampling the near zone gravity

field and sNi is the position dependent (or systematic)

error given by

Sy = sN(¢,A).

The error sN_will give rise to position dependent
i

errors s, and S, in the deflections of the vertical
i i
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given by
_ 1 asN
Sg., T 7 =)
i R'3¢ " _
!000'000000000(44)l
.. 1 (3SN)
n; R cos ¢;9h '3

These equations will also apply at the origin.
Any reasonable two dimensional series will afford an

adequate mathematical representation of s In

N
Australia, the comparison of astrogeodetic deflections
of the vertical with gravimetric values dfter the former
have been corrected for the error in the orientation of
the Australian Geodetic Datum, will provide an estimate
of the coefficients of such a series.

Recent investigations indicate that neither egl
nor e“l' allowing for current uncertainties in the de-
finition of the global gravity field arelikely to exceed
0.5 sec if established in . such a manner (Mather, 1969, 29),
The effeqt of e€1 and enl on the errors e¢l and eAl in
¢l and A; can be conservatively estimated as being of the
order of *0.7 sec. If ehl is the error in the ortho-

metric elevation and e\,l that in Vi due to e the error

¢y’

is given b
®x11 % 9 o
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2 2
®,) 2 lep )7H (o)
e, = :xll[( + tan ¢,e, ) o+ >
11 vt hyt+ Ny 1 [vi+ hy+ Nyl
3
+(tan Alexl)Z] 00000000(45)0
Similar expressions hold for the errors exl' in
3
xlj(3=2‘3) and are based on the errors e¢l, elland

e being non-correlated, This is not strictly so but,

N
frim a statistical point of view, such an assumption
may be accepted as being valid for the present study.

The uncertainties in the values adopted
for 2 and Ay give rise to errors of 3-4 p.p.m. in each
of xlj(j=l,3). This figure would not be materially
affected by errors in h1 and Ny if these, on combination,
do not exceed 12 metres. The resulting uncertainty
of approximately 20-25 metres in the position of the
origin can be interpreted as being an error in the lo-
cation of the centre of the cartesian system in relation
to the true geocentre, If, on the other hand, an ideal
gravity field were available and the deflections of the
vertical at the origin were computed from an analysis
of cohparisons over a region, the uncertainty of location
of the origin can be reduced by a factor of ten, In

this context errors arising from coordinates adopted at

the origin will not be considered further in this study.
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The remaining considerations are those of point
to point computation with the coordinates of the origin
Pl(xlj' j=1,3) held fixed, Such computations require,
in addition to quantities determined either astronomically
and/or from surface gravity, the determination of A, 2z
and 2, Both A and % can be determined with a measuring
accuracy of 2-3 p.p.m. An equivalent accuracy in z
would require that e, not exceed 0,6 sec. This accuracy
cannot be obtained by the measurement of vertical angles
over geodetic distances. If z is deduced from equation

(5),

Ah + AN

€ahy2 1 2 e N.21% 4
)+ - ;;—)vzl + (—%— ] .. (46),
m

- sin z ez=t[( -

where e h and e are errors in Ah and AN, all

A AN

other quantities being defined in section (2). A
study of equation (46) for lines of length 50 km. shows
should be of the order of :15 cm

that both e and e

Ah AN
if the accuracy of the deduced value of z is on par with
those of A and 2. This can be achieved if the ortho-
metric elevation is established by conventional levelling
and AN is computed from astronomical observations

using equations (24) to (26). If N is computed gravi-

metrically, e, is a correlated quantity given by equation

N
(43) and the error in z due to the differential value
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of Sy has to be taken into account, Australian studies
(ibid, £fig(l2) ) indicate that over a normal geodetic
line in a region where the close gravity field is well
represented, the change in ey (deN) can be expected to
be of the order of 50 cm. If the resulting error s,
in z is separated when setting up the observation equation
as shown in equation (4l1l), the resulting contribution
to v, is normally distributed and of the same magﬁitude
as e, .

If A is computed from astronomical observations and
gravimetric deflections using equation (8), a study of
equation (40) shows that the term Sp will account for
the contribution of the position dependent term s, defined
in equation (44), as the errors in the deflections con-
tribute negligibly to s, through the term multiplied by
cot z. Thus, for the line PiPi

+1’ it can be seen from

equations (5), (8), (40), (41), (43) and (44) that

. N.
S = - 1+l 1 e s s 0 s 000000000 (47)
Z; L.
1
9s
SA = l ( N) tan ¢- ¢es 0000000 (48)0
i R cos ¢i 3x i 1

It should be noted that equation (47) assumes that

no significant systematic error exists in the orthometric
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elevations. This can however be assumed to be an
order smaller than that in N.

The values of s and s

analysed by a two dimensional series of the type

(i=1,n) can then be

a 2a
sy(¢:2) = ] C.coslx iae] + | C.sin[n(i-a) a¢]
i=0 i=a+l
3a 4a
+ ) C.cos[m(i-2a)axr] + C,sin[n(i-3a)ax
i=2a+1 i=3a+l
Q.......OOI.O."C(49)
and
oS 3a
(__g)(¢,x) = -} C,; (i-2a)n gin([n(i-2a)ar]
3A i=2a+l
4a
+ ) C. (i-3a)ncos([wv(i-3a)ax] ....(50),
i=3a+1 *

where Ci (i=0,4a) are the associated coefficients
and a will be limited by the storage available in the
computer being used., A¢ and AX in equations (49) and
(50) are the differences of geographical coordinates
with respect to the origin. The properties of this type
of series have been studied in (Mather, 1967, 132 et seq.).
If the coefficient C0 is set equal to zero it is assumed
that

M{sN} = 0

over the region,
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The trigonometrical functions with low values in
the term containing i (i.e., i, i-a, etc.) are similar
in nature to low order harmonics and represent changes
with longer period. The evaluation of the Ci's using
a least squares technique has been dealt with in the
reference quoted. It must be emphasised that this
method of analysis fails under conditions of extra-
polation and is most satisfactory when the values of
s_ and s

z A
distributed over the area being studied.

are evaluated at points which are evenly

7. CONCLUSIONS

A normal horizontal control network can be
used for the determination of position on a geocentric
cartesian system provided the geoid spheroid separation
vector and the orthometric elevation are known at every
point. Any positional error which occurs in the
definition of the coordinates of the origin which, at
present, is unlikely to exceed 20 metres, can be inter-
preted as an error in the location of the cartesian
system. Such a consideration obviously requires a
modified interpretation in the case of a world wide

adjustment.

The zenith angle as determined by trigonometrical

levelling is of inadequate precision to warrant inclusion
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in the adjustment. It can instead be computed from the
orthometric elevation and the geoid spheroid separation
using equation (5), An analysis of equation (46) shows
that the orthometric elevation of points in the scheme
has to be established to *15 cm if the computed zenith
angle is to have the same precision as the azimuth,
The geoid spheroid separation vector can be

evaluated either gravimetrically or by the combination
of astronomical observations and the results of horizontal
surveys using equations (24) to (26). In the latter
case it is preferable that the values of A,¢ and A de-
termined astronomically be established at every point
in the scheme, If this is not possible sections between
adjacent astronomical stations will have to be computed
by projecting the observed quantities onto the line
joining the terminals. Alternatively, a gravimetric
solution, if available, could be used to define the
geoid spheroid separation vector, Neither of these
methods can be considered satisfactory if the nature of
the propagation of error is to be studied.

If the values of N,f and n are determined gravi-
metrically under conditions where the inner zone gravity
field around every point in the scheme has been adequately

sampled, the solutions obtained can be used to study the
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nature of the position dependent (or systematic) errors
in N, Such errors can be due to one of the following
reasons.,

(i) Errors arising from the representation of
the gravity field of distant areas by the solutions
obtained by a combination of satellite data and gravi-
metry.

(ii) Errors due to the omission of the indirect
effect in cases where the gravimetric solution is
merely the free air geoid.

(iii) Errors in estimating values for unsampled
local fields,

The systematic error (sy) in N is defined by
equation (43) and the resulting error in the deflections
is given by equation (44). These quantities are re-
lated to the terms Sp and S, obtained as a by-product
of the adjustment of the network, through equations
(47) and (48). The analysis of these position dependent
quantities using a two dimensional trigonometrical series
will yield, through equations (49) and (50), estimates

of low and high order area harmonics in s the former

N'
representing variations which are more likely to be
due to cause (i) above while the latter will be more

dependent on cause (iii).
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The indirect effect, which is not expected to
have a variation in excess of 3 metres over Australia
can also be studied using this form of analysis on a
comparative basis. In such an investigation, solutions
in which the indirect effect has been computed should
have significantly smaller'sN values provided the indirect
effect is of magnitude comparable with those of other
sources of systematic error. This providés a means of
verifying the adequacy of the formulae used in computing
the indirect effect.

Thus the three dimensional adjustment of a
network of control points at which orthometric elevétions
and values of the geoid spheroid separation vector have |
been established, afford not only a means of verifying
expressions used to evaluate the indirect effect but also
a technique for assessing the adequacy with which distant
gravity fields are represented by combined solutions

from satellite data and surface gravimetry.

February 1969
Sydney

Australia
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