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SUMMARY

The Australian Geodetic Datum 1s defined, together
with a review of the relationship existina between a complete
gravimetric solution and the earth's geocentre. Working
formulae are derived for practical computation. It is shown
that only the Free Air Geoid need be considered to provide a
geocentric orientation of the Australian Geodetic Datum with
a precision equivalent to that of the data set currently
available. A consistent representation of the gravity anomaly
field is used in the computation of the 1970 Free Alr Geoid
for Australia and the geocentric orientation parameters,
obtained either by comparisons at the corners of a one degree
grid or by detailed investigations at thirty-eiqght well-spaced
astrogeodetic stations, are in substantial agreement. The
required parameters at the Johnston NDrigin of the Australian

Geodetic Datum are

Aﬁo = - 4.2 ¥ 0.2 sec
[no = - 4.5 % 0.2 sec
ANO = - 7.2 % 0.2 metres

The error estimate in the last parameter assumes
that no significant errors exist in zonal harmonics of degree n
and order one (n € 5) in the representation of the earth's
gravity field which cannot be detected over the 2% of the earth's
surface area included in the present study. The conseguent
error is unlikely to exceed * 3 metres on current estimates of

the accuracy of low degree harmonic coefficients.
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A GUIDE TO NOTATION

1. COMMONLY USED SYMBOLS

a Equatorial radius of reference spheroid.
A Azimuth.

Cnm Coefficient of surface harmonic series.
dsS Flement of surface area.

do Element of surface area on unit sphere.
dv Element of volume

di Compongnts of the separation vector.
E{x} Predicted value of X.

f Flattening of the meridian ellipse.

h Elevation.

ho Orthometric elevation.

hn Normal elevation.

k Gravitational constant.

Qi Direction cosines.

. Order of surface harmonic.

m amz/ye°

M{x} Mean value of X.

n Degree of a surface harmonic.

N ®@oid/Spheroid separation.

N Total number of gravity readings for the full representation

of an area{Section 3.3).




A GUIDE TO NOTATION (CTD)

: ' n+rn
— (2-8,.)(n-m) ] (1-u2)= d 2_1)n
Pog(u) = L —( wr-1)7) .
(2n+1) ~ n+m) !/ 27 1! du
r Distance of the general variable point{e.g., dS) from
the computation point{e.g., P).
R Radius of curvature in normal section of reference
Ay
spheroid; where relevant, the mean radius of the earth.
Snm Coefficient of surface harmonic series.
U Potential on the reference system.
v Potential.
W Potential of the existent earth (Geopotential).
Xi(i=l'3) A general rectangular Cartesian co-ordinate system in
earth space with a local origin.
Xi(i=l,3) As above, but with a geocentric origin.
a A parameter usually associated with azimuth.
B Ground slope.
Y Normal gravity; where relevant, the mean value of normal
gravity over the reference spheroid.
Ax A small change in X,
Ag Gravity anomaly, which, to the order of the flattening,
is the free air anomaly.
Aiio(i=l,3) Set of curvilinear geocentric orientation parameters at

the origin of geodetic datum for conversion to geocentric
location. Note that
glo 50 AEZO An AE AN

o} 30 o !




A GUIDE TO NOTATIoN (cTD) - 3

. XKronecker delta [ &§,, = ) .
1] +J 1 if i =3

n Component of the deflection of the vertical in the

prime vertical, positive if the outward vertical is

east of the normal; represented as § 5 in text.
A Longitude, positive east.
3 Component of deflection of the vertical in the meridian,

positive if outward vertical is north of spheroid normal;

represented as El in text.

Ei(i=l,3) Set of curvilinear parameters defining the separation
vector.

9] Density.

o Surface area on unit sphere.

¢ Latitude, positive north.

Y Angular distance on unit sphere, usually between the

variable point (e.g., dS) and the computation point

(e.g., P).

w Angular velocity of rotation of the earth.

2, SIGNIFICANCE OF SUBSCRIPTS

Subscripts which are not indices are introduced with
the intention of improving the comprehension of concepts by keeping
the number of variables down to a minimum and sim lifying the

written form of the equations.

Astronomically determined values ; Astro-geodetic values.

ac Astro-geodetic values transformed to an equivalent geocentric

datum.




A GUIDE TC nOTATION (cTp) - I

Disturbing value; the difference between equivalent values on

° the true and reference systems.

o Values at the variable element (e.g., dS).

£ Refers to the Free Air Geoid.

g Geocentric values; gravimetric values.

G Values on the geodetic datum; geodetic values.

i Corrections from Free Air Geoid to height anomaly hd'
P Evaluated at the fixed point P.

s Referred to the spheroid.

3, MISCELLANEQUS POINTS

A.G.D. Australian Geodetic Datum.
R.5.1967 Reference System 1967.
U.N.S.W. The gravity anomaly data set prepared from the gravity

holdings at the University of New South Wales for the

Australian region.
i Unit vector along the Xi axis.

i Unit normal vector.

O Geocentric orientation vector given by the equations
3 3
¢ = §J h, ag 1 = 3y h.oatg i,
L= o7 Pio e . 1774
i=] i=1

where hi {i=1,3) are the associated linearisation

parameters.




THE AUSTRALIAN GEODETIC DATUM IN EARTH SPACE

BY

R. S. MATHER

1. INTRODUCTION

1.1 THE AUSTRALIAN GEODETIC DATUM

The Australian Geodetic Datum (A.G.D.) has been
established by the Commonwealth of Australia's Division of
National Mapping with the prime purpose of providing a first
order geodetic framework for national topographic mapping programs.
It is defined by the following parameters :-—

(a) The Australian National Sphernid (A.N.S.)
whose equatorial radius a and flattening f are given by

a = 6,378,160 metres
£l = 208,25 e (1)
and
{b) The geodetic co-ordinates ’¢,O,XGO) and the

spheroidal elevation (hso) adopted at the Johnston Origin given
by (Lambert 1968,p.95)

doo -25% 56' 54.5515"
Moo © 133° 12' 30.0771" ... (2).
h = 571.2 metres

SO
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A review of the progressive stages in the definition
of this datum is available (Mather & Fryer 1970b), a study of which
shows that the geodetic co-ordinates at the origin are based on the
mean values of the deflections of the vertical at approximately
150 astro-geodetic stations available in 1963 and well spaced over

the six and one half million square kilometre continental area.

The adoption of the numerical mean value of the def-
lections of the vertical as a datum correction has the effect of
fitting the reference spheroid to the estimate of the mean geoid
slope as defined by the directions of the vertical at the astro-
geodetic stations included in the analysis. The matter is discussed
further in section 4.2. This procedure is a not uncommon geodetic
practice when working over limited areas as it has the considerable
advantage of enabling reductions of measurements to the geoid to be
considered appropriate for the purpose of computations on the
spheroid. This is called the development method (Molodenskii et
al.l1962,p.29) and ignores the consequences of the geoid separating

from the reference spheroid.

The condition of parallelism between geoid and reference
spheroid over limited regions ensures that non-coincidence between
the two surfaces produces negligible errors in geodetic co-ordinates.
The use of the development method in Australia instead of the ri-
gorous projection method (ibid,p.29) cannot be expected to produce
accumulations of error greater than 0.3 sec in geodetic co-ordinates
even at the peripheries, in the light of the results obtained from
the current geoid investigation and must therefore be considered to

have negligible magnitude.

A geodetic control network on the A.G.D. can therefore
be assumed to meet first order requirements as the system is con-
trolled by over 1000 Laplace stations which have a continent-wide

distribution. A preliminary astro-geodetic geoid was prepared
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by Fischer & Slutsky (1967) and based on 600 astro-geodetic stations,
the locations of which are shown in (Bomford 1967,p.56). The Fischer
& Slutsky solution, being based on a station density of approximately
1 station per 10,000 km2 understandably produces an over-smoothened
representation of geoidal undu’ations on the A.G.D. and is studied in
greater detail in section 4.3. It does, however, show the major
features of the geoid with considerable accuracy. This determination
is due to be replaced by a much improved solution which is being
prepared by the Division of National Mapping and should be available
in 1971. In the interim, the determination of Fischer & Slutsky
provides an extremely useful astro-geodetic solution for verifying
the accuracy of gravimetric solutions for the geoid. These com-
parisons, in turn, can be used for computing the corrections neces-

sary for determination of the geocentric location of the A.G.D.

1.2 THE 1968 GRAVIMETRIC SOLUTION FOR THE GEOID IN AUSTRALIA

A gravimetric solution for the geoid was initially
effected for South Australia in 1967 (Mather 1968a,p.337 et seq.).
The determination was extended in 1968 for the entire continent
(Mather 1969b,p.499 et seq.) and the resulting solution compared
with the astro-geodetic geoid of Fischer & Slutsky after the appro~-
priate geocentric orientation parameters were computed for the latter
solution which was based on the A.G.D. These gravimetric determi-
nations were composite solutions where the distant zones were repre-
sented by 5°% 5° free air anomaly means obtained by the combination
of surface gravimetry and the coefficients defining the surface
harmonic representation of the earth's gravity field obtained by the
spherical harmonic analysis of the orbital perturbations of near-
earth satellites (Kaula 1966b; Rapp 1968).

The validity of such solutions is examined in section
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3.3 and its effect on the geocentric orientation parameters is
assessed in sections 4.4 and 5.2. The inner zones of the gravity
field were represented by surface gravimetry, the details of the
representation being set out in the earlier study (Mather 1969b
p-501). The gravimetric geoid was represented in these studies
by the co-geoid obtained by the use of free air anomalies in the
Stokes and Vening Meinesz integrals and called the Free Air Geoid.
It can be shown (e.g., Mather 1968b) that such a solution is a good
approximation to the geoid with an indirect effect less than 2 - 3
metres for the Australian region, much of which is a zero order

effect and is currently under investigation.

The salient features of the previous study can be
summarised as follows, being based on the comparison of the free
alr geoid Nf with the determination of Fischer & Slutsky after

the translation o. co-ordinate systems (Nac).

(i) The comparisons AN, given by

AN = N - N

£ ac

had a root mean square value of *+ 5.3 metres over the entire continent

about a mean not significantly different from zero.

(ii) The values of AN were position dependent and
not randomly distributed.

(iii) If restricted regions where large gradients of AN
occurred and comprising about 20% of the region studies, were ex-
cluded, the AN values over the balance of the continental area had

a root mean square value of * 3 metres.

(iv) The magnitude of the geocentric orientation para-
meters required to make the gravimetric and astro-geodetic datums
coincident were only marginally dependent on whether the Kaula set

of five degree free air anomaly means or the Rapp set were used for
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the representation of the distant zones in the solution. This
was significant as the global comparison between the two sets had
a standard deviation of *12.5 mgal (Mather 1969b,table 3) with no
significant correlation.

The following conclusions were therfore drawn from
the results of this earlier investigation.

(a) The orientation of the datum was not critically
dependent on the nature of the 59% 5° anomaly set used for the repn-
resentation of the outer zone anomaly field provided the low degree
harmonics were reliably assessed. For a further discussion see
section 3.3.

(b) Significant inconsistencies existed in the
gravity anomaly field used to represent the near zones.

(c) It was therefore necessary to re-compute the
geoid for Australia after the re-definition of the gravity field
before any serious attempts could be made to specify the location

of the A.G.D. in relation to the earth's geocentre.

The significance of the geocentre is reviewed in
section 2.6 while the gravity anomaly field is re-defined in

accordance with the principles set out in section 3.2.

1.3 THE CURRENT PROBLEM

The purpose of this investigation is to provide the
best possible definition for the Australian Geodetic Datum in earth
space with reference to acceptable invariants specifying such a
space. The term earth space is used in this study to refer to the
three dimensional Euclidian space which is independent of both the
rotation and the galactic motion of the earth. The invariants in

earth smace to the order of accuracy souacht in the current -~tudv,
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are the physical surface of the earth, the earth's gravitational
field and its associated inertia tensors (e.g.,Hotine 1969,p.164
et seq.). The physical surface of the earth must, at present,
be considered as being incompletely defined though many relative
partial definitions of first order accuracy are available for

limited contirental areas.

Present day geodetic practice is to global geodesy as
detailed surveys are to a total integrated survey, a part in the
concept of "surveying from the whole to the part®. These local
geodetic surveys require a three dimensional fix with reference
to earth space invariants before they can be integrated into the
global geodetic context. The current aim of geodesy is the
mathematical definition of the entire physical surface of the earth

in earth space.

Two techniques are available for effecting this global
definition which invloves the establishment of a super-control
network spanning all local datums which provide the reference

framework for first order geodetic surveys.

The first is by the use of artificial earth satellites
as unoccupied stations in a global triangulation scheme (e.g.,
Mueller 1964,p.324 et seq). One or more stations in the local
geodetic net may be included in the world-wide framework. The
comparison of coordinates on the local datum with those obtained
from the global adjustment define the geocentric orientation para-
meters which have exactly the same significance as those formulated

in section 2.8.

Alternately, the same geocentric definition of the
local datum can be effected by the use of the earth's gravitational
field. The technique proposed in this study deals with the defi-
nition of a single datum with an accuracy in accord with that of

the determination of the parameters of a spheroid of best fit,
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provided the estimates of errors in the currentlv adcovted values

for the low degree harmonics of orders zero and one are represen-—
tative. The current investigation restricts itself to the complete
definit:»n of the A.C.D. which covers avprorimately 5% of the total
continental area of the earth. The final gu ntities solc~t are the

set of marameters for the definition of the datum in relation to the

gaocentre. The reqguired correction can ke unicuelv represented v
n vector. The numerical paraneters defining this vector obviously
cepend on the reference frame adopted. This unicue vector will bhe
called the geocentric orientation veetor , while the sect of nara-

meters at any point on the datum defining the vector in relation to
a rectanqular Cartesian co-ordinate svstem in the local Tanlacian
tri ~diren !{see Dufour 1968,p.127 for a definition) are termed the
geveentric orientation parameters (Aii, i=1,3) which are related to

the scalar magnitude (0) of © bv the relation

3
02 = 7 h? ag? A -5 2N
jo1 L ! ’

where hi(i=1,3) are the associated linearisaticn
parameters and the subscript o’ if added to equation 3, refersz to

values at the origin.

1.4 SCHEME FOR SOLUTION

The problem of geocentric orientation is cavmable of
a unique solution if the earth's gravitv field is comnletelv Jde-
fined over the entire global surface. This condition is orlv

partially satisfied if the determination is restricted o sarfacs

S
gravimetry. It th~refore hecomes necessarv to predict values to

represent the unsurvey 4 regions of the world, the major nroblem
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being that of the ocean regions comprising 70% of the surface area
and with a current gravity coverage which can only be described as
totally inadequate. Resort to prediction has the attendant conse-
quence of errors in all computed quantities from this source, which,
in the case of determination prior to about 1960, made any results

of academic interest only.

In theory, it is possible, as in the case of geometrical
satellite solutions on a global basis, to define the geocentric
orientation vector by considering observed quantities at just one
point on the datum being investigated. The solution in principle
is as follows. Let gi(i=l,3) be the set of parameters which can
be defined on both the local astro-geodetic datum (gai) and a ge -
centric one, afforded by the same mathematical reference surface,
but with its centre at the earth's centre of mass (geocentre),
when the parameters take valuesggi. The latter quantities can
be computed either by the use of the global gravity anomaly field
or by geometrical satellite geodesy from a world wide coverage.
The discrepancies (ggi- gai) can be used to define the geocentric
orientation vector 0, which can also be expressed by either the
vector equivalent of equation 3 or in terms of changes Aui(i=1,3)
in earth space co-ordinates. Aui is also the difference between
the co-ordinates u_; on the local datum and the geocentric value

u .. Thus,
gl

i=1,3 ....(4a),

where the quantities aij are the required rota-
tional parameters given by equations of the form

’ 33y 7 Ayylu au ,au 5hy),
referring to values at the origin of the locel Aatum. Fguation

the subscript

4a can either be solved for the evaluation of the difference
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(Egjo— gajo) or be used to compute the required changes in co-
ordinates at the n other control stations on the datum if this diffe-

rence is known, there beinc n equations of the form

= + 1 = . = PP, 4.b
ugik uaik Auik , i=1,3; k=1,n, ( ),
where
= u J= °
Aug A ik({Aujo,ujo,ujk},3 1,3)

The existence of an incompletely defined gravity field
rules out the direct solution of equation 4a as the result will be
seriously affected by systematic error. The problem is further com-
plicated by the fact that continental areas have well defined gravity
fields while ocean regions are inadequately surveyed for geodetic
purposes. In addition, local regions have larger effects on compu-
tations than more distant areas. Hence it is preferable to confine
investigations to continental extents which are not too close to un-

surveyed oceans.

The scheme finally adopted for the determination of
the geocentric orientation vector for the A.G.D. using gravity data

was influenced by the following conclusions :-

(i) Investigations should not be confined to a single

geodetic control station.

(ii) It is desirable to evaluate the parameters Agio
{i=1,3) defining the geocentric orientation vector through equation
3 and the difference on the right hand side of equation 4a, using
comparisons of the type giver in equation 4a, at as wide a coverage
of astro—-geodetic stations on the datum as possible, with the proviso

that the near zone gravity field was adequately defined.

The specifications for the digital representation of the
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gravity anomaly field are given in section 3.1.

The present investigation develops all formulae necessary
for defining the quantities Agio and the corrections Auik to the
general space co-ordinates A~t the k-th astro-geodetic station, as set
out in concept in equation 4b. The specifications for the digital
representation of the ir:»mpletely surveved gravity are next discussed

in section 3. The results obtained are finally analysed for

(a) the best values for Agio and hence AuiO at the
origin;

(b) estimates of the accuracy of the results so
obtained: and

(c) the precision of gravimetric determinations of
the geoid and surface deflections of the vertical for the
Australian region from the current definition of the gravity field.

2. THEORETICAL CONCEPTS

2,1 SOLUTION OF THE BOUNDARY VALUE PROBLEM FOR THE PHYSICAL
SURFACE OF THE EARTH

Numerous solutions, correct to the order of the flatte-
ning are available for this problem, one of which is the result of an
earlier investigation by the writer (Mather 1968b,p.526 et seq).

The formulae in this study are difficult to follow as they also inves-
tigate the vertical gradients of normal gravity {%%} for those regions
where the physical surface of the earth is below the reference surface

in relation to the outward normal. The adoption of the relation

- 2 X ,
55| = 2 % .o (5),
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‘where Y 1is normal gravity, ; 4 the modulus of the

vertical gradient of gravity on the reference system and P the mean

radius of the earth, instead of the general relation

'g%i=zg- - ankp v (6),

where @ is the equatorial radius of the reference
spheroid and p is the density of matter in which the vertical
gradient is evaluated (e.g.,Heiskanen & Moritz 1967,p.54), has
been shown to have a negligible effect on the height anomaly hd°
It is therefore possible to ignore the mass of the reference
system locate outside the physical surface of the earth and con-
sider equation 5 to apply at all points when defining the height
anomaly. In such a case, the linearised form of Green's third
identity as applied to the physical surface of the earth S can

be written as

. 1 ( 1 1 , ;
= = - = I - v.nu S ... )
Vap® 2 7] vdv,N F oo el v.¥ U}}ds (7),
where ¥ is the distance of the element of surface area
dS from the computation point P,dS being on the physical surface
of the earth, W, U being the geopotential and spheropotential
respectively, N the unit normal to the surface elementjds, Vd

the disturbing potential and

7 beiﬁg the unit vector along the rectangular Car-

tesian co-ordinate axis Xi(i=l,3)o
The disturbing potential Vdp at P, as shown in

figure 1 is given by the relation
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Surface
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~ Spheroid U= U

Fig. 1

“he telluroid in relation to the physical

surface
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v = (WO - Uo) +yhd + o{de} co..(10),

the subscript o referring to values at either the geoid or the

reference spheroid, and the vertical gradient(évd/ah) by

3V

8 s (g + ]g.m ) (11)
or

av v W o~

o= -(ag 2% 22 (12),

gp being the value of observed gravity at P and Yq the wvalue of
normal gravity at Q in figure 1. Also see (Mather 1968b,p.526).
If the general point P in figure 1 lies on the geop W = U
and has astronomically determined co-ordinates (¢a,Xa), where WP is

related to the potential Wo of the geoid by the equation

AW is related to the results of conventional levelling (dz) over a
section where the value of observed cgravity is a,by the relation

P
- AW = g dz.

The displacement hn = QQ, in figure ] is called the
normal height and can be accurately computed if AY is known, as it is

independent of any assumptions ahout the stratification of matter and
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can be considered a "free air" difference in potential. hn is

related to AW by the equation (e.g.,Heiskanen & Moritz 1967,p.171)
N . v ‘:’ )
h = - %ﬂ (1 - (1+f+m-2f sin2¢)%$ + o{fz}] ... (13),

where the parameters (a,f) define the reference spheroid and

m is given by

: ‘ 2 ’ .
m= an + o{f2} : v . (18),

e

W being the angular velocity of rotation of the earth and Ye

the value of equatorial gravity on the reference spheroid.

In theory it is therefore necessary to calculate normal
heights before the gravity anomaly can be defined.  For all prac-
tical purposes, however, the latter is replaced by the free air ano-
maly which is conventionally computed using orthometric elevations,
as the magnitude of the difference between the two types of ele-
vations is less than the errors in the measurement of most gravity
station heights, except those established at bench marks(e.g., see
ibid,p.329). |

The evaluation of equation 7 requires a knowledge of the
direction cosines of the unit normal vector ¥ which can be obtained
by a consideration of figure 2. Let O be the point (¢a,Ka,UO+AW)
on the reference system which represents the point P at the physical
surface of the earth, the locus of Q being called the telluroid.

The adoptidn of a local rectangulér three dimensional Cartesian
co-ordinate system (Xlx2x3)at Q, specifying the X5 axis coincident
with the normal to the spherop U = Uo+ AW will result in the

plane containing the x ‘axes being tangential to the spherop at

X
12 .
0. If As is the azimuth of the line of greatest slope of the

telluroid, which very closely follows the greatest slope B of the
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Fig. 2

Topographical gradients in the local
cartesian frame at telluroid.
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topography at P, the angle between the spherop normal and that to
the telluroid is, for all practical purposes, the angle B, being
the angle between the local vertical and the normal to the physical
surface of the earth. If the ground rises in the positive directions
of the X1 and X, axes, oriented north and east respectively, the
direction cosines of the telluroid normal are obtained from a

direct consideration of figure 2 as

{ sin B cos(n+AS), sin B sin(n+As), cos B}.

The ground slope can also be treated vectorially, when the

gradients along the X, and X, axes are related to that along the

line of greatest slope by the relation

tan?g = tanzs1 + tanzez.

It also follows tlrat

tan Bi
coSs Cti= m s 1i=1,2 N
where
- = - A
al As ; o, L oo 5
Thus f 5
N = cos B!l ) ~-tan B, T o+ 3| L. (15).
li=1

The distance r of the element dS from the computation point
P can also be related to the local rectangular Cartesian system at
the variable point Q by the relation
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Eguations 15 and 16 involve only slight approximations in
that the irregular physical surface of the earth S has been replaced
by the telluroid which is capable of mathematical definition. The
resulting differences can be considered to be of no significance for
the purpose of the present study. 2s the x3 axis coincides with
the local spherop normal, the use of equation 15 gives

9! oV

—9tan B, * =% ...17),

} 2
VW W -V.N U = V.N Vd = -iz 7%, h

1

where all relations apply to the telluroid. The deflections

of the vertical Ei are defined by the eguation (e.g.,Moritz 1963,p.15)

['Aat
1}
1
—
Q
jo}}
[

” , i=1,2 ce..(18),
i w=wp
where Eland £2 are components of the deflection of the
vertical in the meridian and prime vertical respectively. For
sign conventions and details of abbreviations used, see section 1
of the Guide to Notation . Equation 18 is valid as the deflections
are purely a function of the relation in srace between the geop
W = wp and its associated spherop U = UO + AY as defined in figures
1 and 2. Thus,

BVd dh BVd}

o T Y 5% = - yE + off 3% 0 ei=l2 e (19).
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The substitution of equations 16, 17 and 19 in equation 7 gives

-
1]

1 2 xi Xy
—_— -1t R -
dp 5 fjécos B[Vd(izl e an B, r3)

2
1 Vg
r (Yizlgita” Bi * 7h )J ds

R A
T2 s P(( oh a ,

2 X, 2
(Vg 2 —;tan B;- vy I Ejtan B )lcos B dS ..., (20).
i=l r i=

If the element of surface area dS on the telluroid is made
small enough to be considered as a plane in figure 3, it can be
assumed that cross-sections at right ancles to the line of greatest
slope will be parallel to equivalent lines on the associated spherop.

jence it follows that

dS cos B = dS',

where dS' is the projection of the element of telluroid

surface area on the associated spherop. Thus,

dS cos 8 = (R + hn)zdc ,

R being the mean radius of curvature of the equivalent
element of surface area on the reference spheroid, hn the normal
height of the associated spherop above the spheroid at QO and do

the spherical representation of dS on unit sphere.

It is necessary to note, when interpreting the surface

integral in equation 20, that r is a general distance in space
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between the element of surface area dS at Q and the computation
point P. The adoptidn of a spherical approximation for S' will
in no way detract from the significance of the expression derived

for the deviation of r from its equivalent lencth r, on the refe-

rence surface (sphere or spheroid). Let Po and Qo be the points
on the reference surface equivalenﬁ to P and O respectivelyv, which
are an angular distance‘w apart. Then:
= = i Ll ) : )
rs POQO 2R sin L% U e (22).

If h,hp are the normal heights at O and P respectively,

L

ro= PQ= ((Reh)2+ (Reh )2 2(Reh) (R+h )cosu)”
2

(R*+ zRin+h ) + h®+ h? - 2R°- 2R(h+h ) - 2nh + 4RZsin’ny +

O{ffq} )?

= (r2 + (h-h )27 + ofr £} PR (23).
Thus, L
v = r 4+ of fr}
N O (]
if '
] h-h_y2 h-h 5
?(*?~PI= o{f} or [ v P]: 8 x 1077,
- The direct consideration of figure 4 gives
R+h - (R+ h - - 2R sin?y -
) i3= ( p)coshxph (R+h) _hy h 2R sin?yy [1 ) %(h hp)z]
r . 2)3/2 p3 { r
P;[l + [ = pj ] o °©
(e}
1 h - h X h-h -5
= - ot E+ off =7} if Py 5x 107 ..., (24)
o ré r; L
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Telluroid

spherop U=Uo+ AW

Fig. 3

Projection of telluroid onto the associated spherop
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Reference Surface

Fig. 4

The topographical effect for a spherical
approximation of the earth




as the term ignored is h-h

v - -
X (R hp)STn 1

in A
(cos A_tan 8, + sin A_tan 8, ) x

where Ac is the azimuth of the computation point P from the
element of surface area dS at Q. The term involving the gradients

can be interpreted as follows:-

! dXl 2h dx
1 e = — —
cos Actan Bl + sin Actan i der.+ axzdr

(=%

h
r'?

[s%)

2
1

Q
o

where r' is the projection of r in the horizon plane at 0.

Thus
2 X. (P+h_)sin dr h-h 2 h-h 4
i - P dh ~ of,_ 3 P p
izl r3tan By 3 drodr‘(l 2( ro') +of( r )}] .(25),
(o]
where
dn _ 3
ar - izl tan 8, cos o, L (26),
OLl = AC Y 0(42 = !"w'fT - IAC
and
dro
ar' = 1 for all practical purposes.

Thus equation 20 can be visualised as departing from the

classical Stokesian problem in three ways:-

(i) The telluroid slopes with respect to the associated

spherop.
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(ii) The associated svherop is elevated above the
reference surface
(iii) The computation point is elevated above the reference
surface and the surrounding topography is possibly at a different

elevation.

The first deviation is expressed in the second term within
the second set of brackets in equation 20 while the second and third
are manifest in the departure of rﬁfrom r. The latter effect is
only of significance when r »- 00 , i.e., for near zones and can be
neglected in distant zone calculations as shown in equation 24.
Equation 20 can therefore be considered to consist of three contri-

butory integrals of the form

1 1 .
§—FJJS' Ii dS Py 1—1,3 ----- (27)5
where
Vv v
_ 1 a d
Il‘?o('ﬁ‘ﬁl """ (28)

is the classical Stokesian form, I? and I? being obtained from

equations 17, 18 and 19 as

REE
I, = ( -2V - — vy &.|tan B,
2 i=1 T3 d PO i i
le]
2 1]
= -_Z ( Vvt + - £ Vi vd] tan 8,
i=1 o o)
R sin v dh 1 2
Vy = ar - YZ g, tam B, L.l (29)
r ~ o i=1

and




]

oo, s (hg_h 2, _ 3R.siny dn ’hf —
s T i 4Ry r d N r Uy d
Y‘o (o] [e] r o] o)
h -h ho-h,
l/zro.Il( ro ) + 0{( ro )"

The ratio (hp-h)/r‘o equals unity onlv for very small values
of ro, being equal to a 45° ground slope. It therefore has a cumu-
lative effect primarily through the first term in the expression for

I3 and at stations situated on the edge of steep scarps with consider-

able longitudinal extent. Thus 13 has been adopted as being
hp- h
= Ly 2n
I, 3 Vg e (30)
r
(o]
for the Australian region. The spherical approximation of equation

27 when i = 1 will be shown to give Stokes' integral on development,
the relevant gravity anomaly being the free air anomaly for all
practical purposes. The terms constituting I  in equation 29 are
equivalent to the non-Stokesian terms in the eérlier solution

(Mather 1968b,p.528), allowing for the nature of ds'. The quantity
I, in equation 30 c@~~nt be of significance except for the near zones

3
when re is small. Vdp can then be defined by the equation

= 2
Vdp Vdfp + Vdip ...l (31),

where the Stokesian disturbing potential VY is given by

dfp

. .
Vdfp = 5 “fjs¥l as* - L. (32),

and the small correction Vdip to this value bheing given by




i S TETATEROAEA.

| v--?vi S (V ; ( Ly, v-ovyyw 1L )tanla +}—h-*‘3———h V.| ds!
. taip 7 my) o ! r a~ ‘a’t v ;
v S A o : o r
. o s . R o
1 1 P sin v dh . Mph
= §—~jj [ ~ (-y J g tan g )+ (=310 B 4N, Py ]ds' (33)
kil r Y‘3 dr ’Y.a
SI fo) . N O

”-212 THE SOLUTION FOR THE STOKESIAN COMPONENT OF THE DISTUPBINC
o POTENTIAL '

'~ Tor a spherical approximation of the earth,

2, :

. ds“;—-‘Rj
S where R is the mean radius of the earth and do the element
of surkace area on unlt sphere. . The combination of equations 12, 27

~and 28 olves

"“V' -‘é:—EE Jfl (Aq +.'-3-Xd-’~:2h ~ Y °) do v:'v;' ' S (34)
‘ | o ‘_:'.'Y‘o 3 _ZR R . y ..».....v.. 34 ).
The first two terms Within'the'innef bracket constitute the basic

components of the classical Stokesian problem, which specifies that
zero and fjirst degreé'harmonics do not exist in any expression for.
Vd-and hence Ag. This restrlctlon is not spec1F1ed 1n the genera-
lised equations for the boundary conditions set out in equations 10
to 12. The solution is based on th@ definitive 1ntecr 1 at 34 |

vhich is of the type -
o
dp S

which can be expressed as

s -

-5 |

o}

solid harmonic of the type (see Mather




1968b,p.516 for details)’

SR AT D pp— . T D & 1-3
Yt SR e

From a study of equatlons 33 and 34 it can be seen that

..equatlon 35 is valld only 1f all ‘quantities can he eypresspﬁ as

a surface harmonlc. " This can be proved w1thout too much. diffi-
culty. = The harmonics.(n=o;n=1)>are 1nadm1551ble in the classical
Stokesian problem. The current solution admits n = 0 but, as will.

become apparent, excludes n = 1, the manipulation bhecoming invalid

when n = 1 as can be seen from aquation 39. The sirnificaros nf the
non-existence of these harmonics is examined in sechion 2.7, T
use of equatior. 35 in equations 17 to 12 cives '
o oA VoL
pe o= Y (n-1) =2 v 2 S0 g S laey
. n;O . Rn+.~.‘ n o . o _

Defining the corrected gravity anomaly 4a by the relation

A - Moo

- - n - (o] (]
Ag_ = nZO G = Z (n-1) e = Aa - 2 ——E—— .. (37),

n#l. An is therefore related to Gn by the relation

A - Rn+2 Gn

-1 ’

]
=

Gn being the n-th degree surface harrmonic in the renrcaoon-
tation of the corrected gravity anomaly, which can he interpreted
as the gravity anomaly with a correction for the zero degree effart
of the potential at the geoid not being the same as that on the
surface of the reference spheroid. The substitution of eguations

35 and 37 in 34 gives




s AR

2 o
_ R 1 2n+1 n
Vaep = 77 !f r Zo 2 nrz 30 »on 7L
n= R
The use of equation 37 gives
y B R S 4%
Afp 2w J s neo 2(n-1) “n =~ >
2 2 o
_ R 1., R 1 2n+1
= 5 GOJJ ro(_lz)d(} + 5 JJ ro nzz m G.n do ..(38).

The first of the surface integrals is evaluated by putting

ro = 2R sin Ly and do = sin ¢ dy da ,

do being the azimuthal increment, when

R2 (M(2T 2 sin Ly cos Ly dy _ _
> GC] [ 2 s Lo 7 da = -R Go = - R M{Agc}
00
= - R M{Aag} + Z(Wo - Uo) ..... (39),

M{Ag} being the global mean of the gravity anomaly. The
second integral in equation 38 is Stokes' integral expressed in
surface harmonics of the gravity anomaly, which can be solved in

the standard manner (e.qg., Jeffreys 1962,p.142) to give

RZ ({1 T _2n+1 B
7w eronzz -1y fn 90 T T3 JJ Ag, flw) do

where
f(y) = cosec %y + 1 - 6 sin %y - 5 cos ¢ - 3 cosy log{sin Ly(l+

sin Ly) ....(80).
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The right hand side of the surface integral can be simplified
further by the use of equation 37 and the fact that (Lambert &
Darling 1936,p.117)

m
f f(u) sin ¢ dy = 0,

when

™

ZE—II rg f(y) do ZB—JJ Ag f(y) do - Eﬁ;g:_gg) fJ f(v) do

R
4-\‘” IJ A(] f(w) do e e, (41)'

Hence the combination of equations 32, 39 and 41 gives

R
= A = - \ ﬁl A, + - '.., R & s
Vagp™ 200 1) = Romtse) + 25 ([ a0 £(0) a0 (42)

where A9 is the gravity anomaly, which, for all practical
purnoses, is the free air anomaly, the total error involved in the
vertical co-ordinate estimation being about 2 metres in mountainous

country.

The free air geoid is defined by Nf which is the contri-

bution of the term.Vdfp to the height anomaly hd through equation

10 when
\ U
Y - ldfp_ "o Uo
fp Y Y
W~y "
o o M{Aa} R
= - R = s do ..., 4

- g Mtk L RS e £(0) 90 (23),

where the gravity anomaly can be expressed by a surface

harmonic series of the form

oo
Ag = z G , no#£ L, (44)
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equation 43 having been derived on the bhasis that no first degree
harmonic exists in the expansion for Ag. Conversely, the use
of Stokes' integral as set out in equation 43 for the determination
of the height anomaly requires that the gravity anomaly be defined
with respect to a reference system such that its magnitude has no
first degree harmonic on global analysis. This a perfectly valid
assumption, irrespective of the interpretation of the first degree
harmonic as gravity anomalies are not invariants in earth space.
To emphasise the point, observed gravity and geopotential are
invariants while the magnitude of the gravity anomaly is dependent
not only on the parameters of the reference spheroid hut also
on its location in earth space. The significance of assigning
the value zero for the coefficients of certain chosen harmonics

is discussed in section 2.6.

2.3 THE CORRECTION TO THE FREE AIR GEOID

The correction arisies solely as a consequence of the
existence of topography exterior to the geoid. The height ano-
maly hd is related to the free air geoid separation Nf by the relation
= ! +
hd hf Ni ......

From equations 10, 31 and 43,

The use of equation 33 gives




F————

. h - h 2
N, = —1,”( Reln g ah y p gy oYX § g tan g, |ds .(47),
ip 2wyl s o rd 4 Ty 421 1 *
(o] o}
where
dh 2 -
gn = z tan B.cos a, as defined
r . 1 1
i=1
previously in equation 26. The final expression for the height

anomaly is obtained by combining equations 43, 45 and 47 when

W - u

hdp = _2;_ °_ R MiAq} + 4§YJJ Ag f(y) do +

2 . h -h 2
?%VJ[ [(B_égﬂyggo + _5;—)vd- %O aZ1 £, tan Bigdo ...(48).
(o] (o]
he correctness of the derivation was checked with Moritz'
comprehensive classification of solutions of the Molodenskii.
problem (Moritz 1966,p.91-92) from whence it can be seen that the
solution given in equation 48 has the greatest similarity with

the "Arnold type" solution. Equality holds if

R 2 n2f( 1 2
- W Jf 2 E.*%an Blf(l,U) do = _Z—MWJI F Z - gi tan Bi do
i=1 o0i=]1

on allowing for the fact that Moritz has not considered zero degree
terms in his study. The expression on the left has been obtained
by the inclusion of the term

2
p = - iglsitan B,
along with the gravity anomaly as the modified anomaly Agmused

in obtaining Stokes' integral, i.e.,
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Ag = Ag + p (49),

loritz goes on to prove that the effect of doing this
has a negligible consequence on the final result. The solutions
discussed by him assume that the modified anomaly Aqmdefineé in
equation (49) has no zero or first degree terms on global surface
harmonic analysis. The existence of anv zero degree term in Aqm
poses no problem and can be taken into account hyv ecuation 48. The
effect of the neglect of the first degree terrm is discussed in

section 2.6.

2.4  SURFACE DEFLECTIONS OF THE VERTICAL

The basic principles are clearlv outlined in Feiskanen &
Moritz (1967,p.312) following Molodenskii. The deflections of the
vertical in the meridian (Sl) and prime vertical (52), positive if
the outward vertical is north or east of the normal, are the compo-
nents of the angle between the surface vertical, which is the normal
to the geop, and the normal to the associated spherop. These com-
ponents will be designated the subscript g when determined from gra-
vimetry as they are notdirectly equivalent to astro-geodetic def-
lections of the vertical, irrespective of considerations of the re-
ference spheroid, as the latter quantity, referred to by the subs-
cript a is the angle between the spheroid normal and the local

vertical at the earth's surface.

The difference between Eai and Eqi is a tunction of the
convergence of the equipotential surfaces of the gravitating spheroid
(i.e., spherops) towards the pole (e.g.,ibid,p.49). Consequentlyv
the point P_ on the reference spheroid in figure 5, whose normal

passes through the surface point P has a co-latitude which is oreater
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than that of the equivalent point P on the associated spherop.

The magnitude Cr of the difference in the meridian is cgiven by

1

Cgl - Eal - gig‘l '

CEl is the well known correction for the normal plumb line (e.qg.,
ibid,p.196), given for all practical purposes by 0.17 h(km)sin 2¢.
Thus

(sec) _ (sec) (km) _.
gal = ggl + 0,17 h sin 2¢

where h is the elevation of P in km and ¢ is its latitude.

As the spherops are a family of rotation spheroids, the eguivalent

term Cp, in the prime vertical is zero. Hence
= £ r
€ 592 ... (51).

The guantities €qi are therefore given by the following

equations from a consideration of figure 5.

- (ahd) . (52)
ggi ) 53(i U=U_+AW AT I
O
lring a function of the variation of the separation hd
between the geop ! = Hp and the associated spherop U = Uo + AU
the x,(i=1,2) axes having the same significance as in the discussion
preceding equation 15 in defining this variation with position, with
the provisc that P has the same definition as in egquation 48 and is
not the variable element dS as in equaticn 15. This problem could
be solved directly if the values of all the gravity anomalies on the
geon W =Hp were known, when the problem becomes Stokesian, provided
these anomalies do not have a first degree harmonic on global

analysis.
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Such a solution, derived from the !Molodenskii formulation,
is comprehensively dealt with by Moritz (1966,p.98). It can also he

obtained from rationalisation from equation 42 for the geop W = Y

b
when the corrected gravity anomaly Agmvis given by
) 2Ag i
Ag = Ag 5T (h hp) e (53),
where (3Ag/9h) is the vertical gradient of the gravity
anomaly. All topography dependent terms will have no effect, as

the surface being mapped is an equipotential and the use of equation
48, without consideration of zero order terms, which have no effect

on deflections of the vertical, gives

R
h = f[ Ag  f(y) do ... (54),
dW+WP 4y m

The non-regularised geoid would therefore be a particular
case of equation 54 when the concepts outlined in (Mather 1968b,
p:.522 et seq. ) will apply, with the proviso that ¢e now refers to

the potential of matter exterior to W = wp.

The vertical gradient of the gravity anomaly is a cquantity
capable of measurement in theory but is unlikely to be obtained as an
observation in the foreseeable future. RAlternately, the vertical
gradient of the gravity anomaly may be computed from the spherical
formula (Heiskanen & Moritz 1967,p.115)

Ag - Ag '
9Agy . R? - ’p 2
( ah)p 5 f[ e do - ¥ Aﬂp e... (55},

The surface integral in equation 55 need not be ev~luated
beyond an inner spherical cap with dimensions similar to the Havforad
zone O (e.g.,Heiskanen & Vening Meines  1°958,p.161 ). On the other

hand, it is critically dependent upon the accuracv with which the
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gravity anomaly field is known in the immediate vicinityv of the com-
putation point. This is further exacerbated hy the function l/ri
which takes extremely large values for small wvalues of roe This,
unfortunately, is a characteristic of all solutions which stem from
Green's third identity. The gradient solution is therefore not a

simple one from a practical point of view in that

(1) a knowledge of the gradients of qravity is required all

over the world:

and (ii) this, in turn, requires a knowledge of either the global
gravity anomaly field or the topography with & nrecision much greater

than that required in the computation of Stoles' integral.

The determination of deflections of the vertical from ecuations
of the form set out in in 48 is not desirable as near zone computations
which are differences of two large quantities may give rise to subs-
tantial errors even if small errors occur in any of the computed cuan-
tities. However, it was decided to investicate the resulting for-
mulae for reasons given in section 2.7 for use in the Pustralian
computation as only one station had an elevation in excess of 1 knm

in the entire scheme.

As hd is related to the gravity anomaly field in ecuation 48
through the telluroid, which departs from a spherop over the length

increment dxi in the horizon plane of the latter, Eqi can also bhe

expressed for computational purposes as

d d 3
S T et
gi i Tell ax3 dxi i=1,2,

where the second term takes into account the variations
£ hd with elevation as the telluroid refers to different spherons
with change of horizontal position, the topographical gradients being

given by
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Fig. 6

Spherical relations for computations

of deflections of the vertical




Tx = tan B ,i=1,2.

The first partial derivatives of the second term of the

earlier equation are obtained from equations 10 and 12 as

ahd 3y avd Vd o~
(- - pa— .._9__.___(_)_
3%, b oax.Ma T own bo -2 g+ 2 =5
3 3
Thus
T
EEQ T B A 3d+ 2L° ‘o
SX Y x_a 9 R R
3 3 A
=3 Z(v - 20 - U)) - Aq - proy pro” U )L | hg
Yy RV 4 o ) g R P Y
on using equation 5. Therefore,
dh
E . = - (g;ﬁ) - 4g tan B, , i=1,2 ... (56),
gt i Tell Y .

which is the standard solution of !Molodenskii(e.g.,Heiskanen &
Moritz 1967,p.313) as expected, expressions for the deflections of

the vertical being unaffected by zero degree consoderations.

Deflections of the vertical Eai comparable with astro-
geodetic deflections are obtained by the combination of equations

50 and 56 as

a A
3 = - (=) - 29 tan 8. + ¢ ,i=1,2 ... (57),
ai 9%, pe11 Y £
where
c = 0,17 h(km)sin 20 sec and c = 0
gl ° £2 ¥

From the conventional treatment of deflections of the ver-

tical (e.g.,ibid,p.112), the analytic expression for (Bhd/axi)Tell
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is given by
d 1 .
= (5—; ) = - _ﬁ Ay yi=1,2 ,
i Tell i 71

where ul and u, are a set of curvilinear surface parameters
(¢, 2) and hl' h2 are the a:sociated linearisation parameters give,

for a spherical approximation of the earth by

h = R : h2 = P cos ¢ ... (58).

An examination of equation 48 in the light of equation 26

and figure 6 shows that

hy = hy(d,1) = h (VA h)

when considering the differential changes in hd from surface integ-

rals. Hence,
3 \
- (_Eﬁ) =1 (ggd-gﬂ + Eidﬂﬁc - iﬁd fx3 , i=1,2 (59),
X rell hi U dui aAcdui 8x3 cxi

the last term being of equal magnitude but with opposité sign to
the second term in equation 57. This was noticed by Moritz and
attributed to an inadequacy of the planar approximation (Moritz
1968,p.23) when deriving the basic equation 27. The differential
relations between the two sets of surface parameters can he estab-
lished from a consideration of the spherical trigonometry of the

A NPQ in figure 6 (e.g.,Heiskanen & Moritz 1967,p.113)when

%% = - cos A : T - - cos ¢ sin A ... (60).

The application of sine formula to this triangle gives

. _ €0S ¢ sin AX
sin(2m - AC) = STn v s
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where

which, on differentiation gives

dAc sin ¢ sin AX

¢ _ cos ¢ sin AX
cos Ac do sin

sin2y

The use of the five part formula and equation 60 gives

+

cos ¥ 3

P

¢

Eﬁc - sin A ( sin ¢ sin ¢y - €co0S ¢ COS Y COS A)
d¢ cos Ac sin y sin
(L ) _ .
sin ax , SinCsm - ¢.) cos(2m - A ) _ sin A (61)
sin ¢ sin ¢ cos Ac sin ¥
Also,
dAc cos CcoS diy
CcoS Ac'd-x = FIT% (COS Al + 's—m—% sin AX —d—%)
The use of equation 60 and manipulation gives
Eﬁc _ cos ¢ [_ cos(2m - A ) cos A _ _ cos A cos ¢ (62)
dx sin ¢ cos Ac sin ¢ T ’
The use of equations 60 to 62 in equation 59 gives
dh oh oh sin o dh _dx
d) _ 1(( d) itla i a3,
- (= = =l (= cos a, + (-1)*(55°) ——t e =% 1,2
D pe1r RUAY 249y . P Ter1 SNV ax ydx;
where ...(63),
a, = A 5oy, = BT o- A.
As ro = 2R sin %+ of fro} ,
9 (l ] = - 1 cos Ly
oY Yo 4 sin?Ly
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e combination of equations 48, 57 and 63, bearing in mind
that zero degree terms do not contribute to deflections of the
- vertical, gives . ' '

L II Ag 3%{f(¢)} cos o, do ’ +

i
R > dh o - 3 cos Ly
fﬁ?lj[ ({R §1n P ar._ + hp h} 67 e in +

oy
oo
o~

: 2
R cos ¥ »%ﬂ )V Y €05 5 ¥ g tan B.|cosa, do +
8R3¥%sindLy o’ ¢ 4R sin?yy §=1 3 = :

iR [[_R.sin ¥ 3 (dh y, sin o, + L
(-1, 2wyjf 8§351n3zw aAc( ro)/ds1n 7 do + Cpyoi=li2 (64),.

where(e.g.,ibid,p.114),

1 2

o , L i g
5%{f(@)}= - % cos Ly caseczgw'- 6 qos Ly + 8 sin ¢ - ?1 51213 2w.f
- '3 sin p Toglsin %v(1 + sin %p)} . ... (65),

5= = Y :cos a_.tan B, . .. (66),
"o j=1 S SR
and )
2 (gﬂ ) =.'§ kﬂl)j.sina tan B o ... (67)
3A \dr b el j o Tt ’
c o ji=1 . )
the angles aj being given by
o = A fv : oL =4t - A L. (68),

and noting that the subscript,C refers to evaluation'oquﬁéntities at
the variable element of surface area do. The first row of equation
64 is the Vening Meinesz integral. The second and third rows are
topography dependent, being, with one exceptioh, zero for ocean areas.
A% all terms dependent on the topography are functions of 1/r2 ,
distant zones should have even smaller effects on the deflection of

the vertical than on hj values. . Hence expressions of the deflection
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of the veftngl in the form at 64 has the advantage that no com-
putatioﬁ of either a vertical gradient of gravity or a terrain
‘correction is necessary prior to the estimation of the topographical
effects, this factor being a decided advantage at the present time.
.Thus Eai_is given by the equation

E, = E_. + &  + ¢

ai fi - ci £i

»i=1,2. ' ... (89),

" where E (1 1, 2) are .the deflections of the vertical for the
free air geoid, qlven by .

_ ) ) - » .
Efi = Z;;-JJ Ag aw{f(w)} cos a, do sis=l,2 L. (70),
£ . being the topographical correction for surface deflec-

tions -of tﬁé vertical which need only be evaluatédoner a spherical

cap;with a limiting distance wo from the computation point. If

vo=3%, o 4
'  sin Yy =9 + o{10™%} :  cos Y =1+ off}

can be be expressed by the equation

2 h - h V
1 R dh a _
Eoi °© 2nyRJJ{ ($¥ Zlg]tan By -{2 ar_ + 3 _%E-_} ;; ) cos a, "+
: . ) '
(-1 52 ()4 sin ai} do ,i=1,2 ... (71).
C (o}

The final formulae considered are listed in section 2.7.

2.5 THE INNERMOST ZONE

A study of equation 48 together with equations 40 and 64
as well as 65 shows that the surface integrals for both hd and
iai are indeterminate at ¥ = 0. Further,
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The effect of the innermost zone is always of the form

Y, 27 » : .
I - KJ( lj £rah) q(a) v dr dn c (72),

wgerg g(A) is a set of trigonometrical functions of the
azimuth A, r being the distance between the element of surface area
r dr dA and the computation point. It is assumed that the bounding
radius ry of the inner zone, assumed circular, is small enough to
warrant the treatment of the variations in f(r,A) as linear over
the region. In such a case, ‘

2

flr,A) = £(0,0) +r ] cosa, oF
j=1 e

where Bf/axj is the rate of change of f(r,A) with distance,

(73),

the X4 axes having the same significance as in equation 52. The

substitution of equation 73 in 72 gives

| T2 1-n ry"m 2 5f _2-n
1 = K[f(0,0)I J g(A)r dr dA +J J' )  cos ajg(A)gy r dr dA

o 0 o o 371 2 (74)
The integral in equation 74 is soluble if

27 27
(1) (7" g(a) dn = j g(A) cos o, dA = 0
J
and/oxr 0 0
(i1} 1-n2 0;
: 27 . -
(ii1) { a(A) dA = 0 1 - n < 0.
J
0

In cases where these conditions are not satisfied, solutions

can be obtained by rationalisation. This occurs when
2-n<90; e.g., when’ n > 3.
The following assumptions are made in the case of all evaluations.
{a) Any gravity anomaly in this innermost region can be

represented in terms of the wvalue Agp at the computation point by an
equation of the type at 73..
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(b) The physical surface of the eartl is a plane over the inner
zone. -It would, in fact, suffice if the topographical variations

were symmetrical about the computation point if this condition

could not be met. Thus, tan Bj will be constant over the region.
(c) The height anomaly has linear variations over this innermost
zone. For all practical purposes, this is equivalent to the def-

lections of the ve tical being constant over the region as

d _ .
5 X = gj s3=1,2.

The assumption at (b) is probably the most questionable
unless r, is reduced to meet the requirement. The solutions for
the Stokes and Vening Meinesz integrals are well known (e.g.,Mather
1969b,p504), being given by '

r,

A
Netn = ;ﬂpri(l + Z;) .o (75)
and
- 3r
R ] i _
£ing T . ¥ i ( 3% ) (1 + ) ) »j=1,2 ... (76).

j
The effects of the innermost zone on Ni(Niin) are evaluated
after allowing for the fact that dh/dro and gfj as well as tan Bj

are constants, when

1 [(Fi{"T{,1 dh 1 F  dh
Nigw = g;;i l (( 2 a;o- ;2 kzl Ei; cos a, ]Vd -
g
- g tan B } r dr dA
rooi Tk K
2
= - ri(kzl e tan 8.) oo (77).

The expressions involved in the evaluation of £C, jappear to
in

be more complex. The process of evaluation is considerably simplified
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when it is remembered that zero order changes do not contribnte
to deflections of the vertical and it is possible to express Vd on
a revised datum as

/d 2 Bhd 2
7 =0 + by 3% C0s 0 = - v kzl £,COS @

k=1 k k

without affecting the contributions to the deflections (e.qg.,de
Graaff-Hunter 1950,p.4 ). The following simplifications are possible
over limited planar regions. i

A = T+ A Ry = r

Thus equations at 71 become

1 [ i 2m 1
L= = t B, cos o.r dr dA -
c ind T ) I r2 Zlg an kC j
(Taf" hp-h 59 (dh oy,
D { (Zdr - 35 ) cos o, (-1) EKC(EFO)S1n o, | x
0 o 2
rkx Ekcos o
[ - = 5 ] r dr dA, 4=1,2
r
As
dh . f cos @ tan B 0 (dhy . f (-1)%sin o, tan g
dr, Koy k §Kc Ir_ Ko k k
and
2
h -h = -r Z tan B _cos a_,
p k=1 K
€ =0 - rriIZW ! ( e tan B (2-2)0s o, +
¢ i7g = - 2—-‘,&' oy cos X an "k -J) "0S 3
C 0 2
) £,C0S o
(-1)7**sin o tan 8 sin o |X=L r dr dA, j=1,2
X k 5 r2 T | 1<y

which, in all instances integrates to zero, as it is composed of a
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series of integrals of the form

27 . s
£ tan Bk ( cos A sin”A dA

k J
Qhere r+s =3, 0<rc<3:

as a, = A e, = m - A
These integrals can be converted to the form

(2W

J 5(cos a, * cos o, cos 2A ) dA, k=1, 2
0

which always integrates between the limits to zero. Hence,
gcinj = O, J=l,2 s o o (75)
if the limiting radius ry is small enough to warrant the following

assumptions:-

(1) The topographical surface does not depart significantly

from a plane

(1i) The local geop is planar over the region.
&k is interesting to note a relationship given by Moritz

(1966,p.74- eq.220) which implies the above possibility.

2.6 A REVIEW OF THE CONDITIONS FOR GEOCENTRICITY

The formula for the height anomaly set out in equation 48
takes into consideration the possibility of the existence of zero
degree terms in the disturbing potential Vd which is defined as the
difference

v = Y - U
dp p p

at a point P on the physical surface of the earth, where Up is the
potential of the spherop and Hp that of the geop passing through P.
The rotational terms can be ignored if the definition is confined to

earth space, the geopotential in such a space being expressed by
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W, k”J dn ... (7€),

wnere r is the distance of the element of mass dm at Q in
figure 7 from P. If R is the distance of P(Xi,i=l,3) from the centre
of mass C of the earth, which is chosen as the origin of the Cartesian
co-ordinate system X .X_X,and if P is assumed to be external to the earth,

1273
the choice of axes bheing purely a matter of convenience,

X = R 2, ,1=1,3
and (77),
Xci = Rclci ,i=1,3
where Xci are the co-ordinates of the element of mass dm
(= o dV) at Q and Rc is the distance of Q from C. Ri with the appro-
priate subscripts, refer to the direction cosines of the lines concerned.

Wp can then be expressed without approximation as

k v ] ,
Woo= g ) T [JJ R p o cos ) dv ... (78),

n=0 C n
where r—l has been expressed by the standard zonal harmonic
expansion (e.g.,Jeffreys & Jeffreys 1962,p.634) and pis the density of
matter in the element of volume dV. The geopotential can also be

expressed by the spherical harmonic series

oo n

W= ] == ] p

p T Lomm L m(s1nd>)( C_,COs mA + S sin m ) (79).

n

If equations 79 and 80 are identical, the equation of the
contributions of harmonics of the same degree in the case of low degree

harmonics gives the following results.

When n =20,

COo = k(j[ o d¥ = kM,

/

where M is the zero order inertia tensor or mass of the earth.
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Fig. 7

The geocentre and associated coordinates
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When n =-1, R -
: . ' ; : .3 :

plO(cOS 1!)) = cos ¥ c 121 zlgcJ_ :
The aoproprlate term from equation 78 can be wrltten as .

- o A ”i", 3 (r I
k {JJR cos vop dV =k ] - z.[[[ X . o dv. .
Jdde gy M) e R

where X (1 1, 3) are the co- ordlnates ‘'of the centre of mass of
the ‘earth ‘which,. by definition, are zero, the second equalltv follewlnq
from the definition of the flrst order inertia tensor (e g., Hotine 1969,
p-156). " Hence the coeff1c1ents of all terms comprlslng the flrst degree’

harmonlc in equatlon 30 must be zero,, i.e., -

G0 7 Cllzz“sll ;*Of
When n =12,

o The kernel-of-the eecond-degree term in eqeationi78 is

Re p2o<C°S w?'f R (3 cos?y - 2)
= L R [ 31 L8 ) =1 =4 (33X X - 6§, .R ..(80),
c s=1 e T voi=l §=17- cie] t)oc
" where é'j is the Kronecker delta. The resultlng second
degree term from equatlon 78 can. be expressed as: '
5 k 3 zﬁzuff (31 % - 854”000 o= -3kT T e«

g > I T S

f(J(funR - X X )p dV k)] ZWQ,Jf[-é,,R o dv.

} ) 13 ¢ ciecj i=1 4=1 i3 ij c

The second 1ntegral on the rlght hand elde of the equalitv is

the scalar form of the second order lnortl“ tensor IS, qlven by (e.g.
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ibid,p.165) P | | |
= = L + ’ 3]

e I D2 e i, e I e,
where L, (1 '1,3) are the moments of 1nert1a of the earth about

the axes Xl' X2 and X respectively, given by

s =,[!I (Xi+1vf X2 ,)p dv, if subscript >3, - 3,

The following relation is obtained on equatlng second degree
terms between equations 78 and 79, on expre551ng the relatlon preceding f
equatlon 81 in matrix notation. ‘

Pom(sin 8)(C, cos mi + S sin m) - -3 KILTT L3+ k1 (82),

Il 1 0

where

=1 _ 2 2 _
[ = Jjj X X, o dV IJJ(RC XC2)p dv fff X pXgq P dV (83),
. 2 2
-J[J XC3Xcl o dV }-fff XC3XC2p dy I[J(Rc - Xc3)pdv
and _ 1 cos ¢ cos A
L = L, = cos ¢ sin X ... (84),
3 i sin ¢

the elements of | being the components of the unit vector in the direc-
tion CP. If the non-diagonal elements of the array | weregzero,

I =1,
as the elements Iii along the diagonal are related to the quantities
defined in equation 81 by the expression

I, = I, . i=1,3
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As the array | is symmetrical,

T _ 2 2 2, a2 s 2,
L'I L = T,cos®¢ cos®r + I,cos®¢ sin®h + I sin®¢
| 21,,c05%0 sin A cos A - 21 ,sin ¢ cos ¢ cos X -
2123sin ¢ cos ¢ sin A
Z | 3 . 1
) P, (sin ¢)(C, cos mA + S, sin mA) = - k(I,(5 cos?¢ cos?x - 5) +
m=0 _ 3 2 1 3 ., 1 .
Iz(f cos?¢ sin?x - f) + I3(§ sin?¢ - 7) - 31 ,cos%¢ sin A cos A -
31,,sin ¢ cos ¢ cos A - 3I,.sin ¢ cos ¢ sin A )
= - k(I ( g(i-sin2¢)(1+c052xj -1 | (i(l-sin2¢)(1—coszx) - l) +
I i S 2 24 2
I, p20(51n ) - 5 p22(s1n ) sin X - p21(s1n ¢)(113cos A+
123sin x)
R
= k| pyolsin o) (B(T + 1) - I )+ p, (sing)(I jcos X + I, sin 2} +
(sin ¢){ 1 I..sin 2x + l(I - I.)cos Zl)
Pao 2 ‘12 A\ 2 1 e
where (e.g.,Heiskanen & Moritz 1967,p.23),
pzl(sin ¢) = 3 cos ¢ sin ¢ p22(sin ¢) = 3 cos2¢
Thus, :
Chp = k{ %(1, + 1)) -1,)
Chp = Kk I - > S, = k Iy, (84)
Cop = k1, | - Syp = % K(I, - 1))
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From a study of equations 83 and 84, it can be seen that

Tr . . .
L' ] L can, in effect, be diagonalised if

(b :1/2'”'
or the direction CP coincides with the X3 axis. Such an axis is
callec a principle axis of inertia. It can be shown (e.g.,Hotine 1969,

p.166) that products of inertia using any pair of mutually perpendi-
cular axes which are also orthogonal to the X3 axis, is zero. Thus,
if the X3 axis is a principal axis of inertia,
s = Iy =0

This condition is satisfied in earth space if the
axis is the rotation axis. The departures of the existent earth
from perfect rigidity give rise to an Eulerian or free nutation. This
results in variations of the position of the instantaneous pole in
earth space which can be as large as 0.2 sec (e.g.,Jordan-Eggert 1962,
p-535j, Non-coincidence of the axis of rotation and the principle
axis of greatest moment of inertia will give rise to a wobble of the
instantaneous axis of rotation with respect to a geodetic reference
frame in earth space. The existence of any such effects which pro-
duce changes in latitude in excess of 0.5 sec have never been recorded.
Such limits are equivalent to the poles of the instantaneous axis of
rotation describing an elliptical path with a mean diameter of appro-
ximately 20 ft (Munk & MacDonald 1960,p.5) about the pole of geodetic

reference. Such magnitudes are disregarded in the present study.

It can therefore be concluded that, for all practical
purposes :-
(i) The centre of mass of the earth lies on the rotation

axis, which is a principle axis of inertia.

(ii)If the X4 axis is made coincident with this axis,

Coy = 5,1 - 0

{iii)Coincidence of the centre of mass and the origin of
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the rectangular Cartesian co-ordinate system imposes the condition

Cio °© €11 = S

The other dynamic conclusions which can be drawn from
equation 85 are not of direct geometrical significance to the current

problem

The reference system

The potential Up due to the reference system is a con-
sequence of adopting the oblate spheroid as the reference figure.
The gravitational field of such a spheroid at exterior points can be
expressed by a spherical harmonic series of the form (e.g.,Heiskanen
& Moritz 1967,p.73)

[0}

U =

o (sin ¢) C! - (86),

] —=—p
r2$+1 2s O 2s 0

s=0

which is independent of longitude dependent terms if the mass dis-
tribution of the spheroid is symmetrical. In addition, no odd degree
zonal harmonics are permissible as symmetry prevails about the equa-
torial plane. Such a series converges rapidly and an accuracy of

2 parts in 107 is achieved by considering only the first three terms

in equation 86.

The disturbing potential is obtained by embedding the
spheroid in earth space, with the centre of the spheroid at the centre

of mass of the earth and its minor axis coincident with the rotation

axis of the earth. Consequently r and ¢ have the same significance
in both equations 79 and 86. This results in the linearisation of
the geopotential into E?e distur?igg g?tential Vd by the equation
sin
Vg =M - U = %M - 30 + p20r3 k(%(11+:5)- %)- C.o +
1 : .. [
;§p22(51n ¢) k(%(lz- Il)COS 2x + %1 ,sin 2)) + nZ3 prevs)

1 o

p . (sin ¢)(Cnmcos m + S __sin my} - s aoPao(sin o) ..(87).

il ~103

n
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Note that the adoption of the equivalence for ¢ which is
implied in the formation of equation 87, merely establishes the con-
dition of equality of direction cosines for the rotation axis of the
earth and the minor axis of the oblate spheroid, the former being the
X3 axis and is the principle axis of greatest moment of inertia of
the existent earth. The absence of significant wobble implies that
the centre of mass of the earth lies on the rotation axis and,conse-
quently, coincidence between the minor axis of the oblate spheroid

and the rotation axis of the earth.

Te equivalence of r places the centre of the reference
spheroid at the centre of mass of the earth, called the geocentre
in this study. Such definition is, as implied earlier, subject to
the limitations imposed by any uncertainties introduced by the
Chandler wobble , which, however, is of the order of observational
accuracy attainable from astro-geodetic techniques and hence neg-

lected in the present study.

Under these conditions, Vd can be represented by a spherical

harmonic series of the form

kM % T = . — =
Vd = Coo+ r nZz(%y mzo pnm(51n ¢)(Cnmcos mx + Snms1n mx)+ o{fVé(SS),

the overbar referring to normalised harmonics and their

coefficients (see both the guide to notation and Heiskanen & Moritz

1967,p.31 for definition) , which, for degree greater than 4 will
be the same as those in eqguation 87. In addition,

C = 0

je] o]

if the parameters of the reference spheroid have been chosen to

match the zero order inertia tensor of the existent earth. Further,

Coy = Sy)1 7 0

The gravity anomaly at the earth's surface is obtained by
the use of equation 36, together with the series expression of the

disturbing potential given in equation 88 when r * a . Thus
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oo n _ )
Ag =y ) (n-1) 7} Enm(sin ¢)(fnmcos mi + S__sin mr) + 0{f Ag}
) ] (89),

wherey 1is the mean value of normal gravity. Thus, un-
ambiguous representation of height anomalies and deflections of the
vertical is dependent on the correct assessment of the dynamic imp-

lications of this section. The following conclusions can be drawn.

(1) The disturbing potential and the gravity anomaly
have no first degree harmonics on global analysis if the centre of the
reference spheroid is situated at the ge>centre. Feight anomalies
and deflections of the vertical computed from a gravity anomaly set
which has no first degree harmonic are referred to a spheroid which

has its centre at the geocentre.

(ii) The coefficients » S, of the global gravity ano-

21 21
maly data set are zero if the rotation axis of the spheroid coincides
with the principal axis of greatest moment of inertia of the earth,
which, for all practical purposes, is the mean rotation axis of the

earth.

Note that these conclusions are relevant for Vd and Ag
only but not for any other function. The imLosition of zero coef-
ficients for first degree terms in the expansion of any other quan-
tity on global analysis does not imply either of the conditions
stated above. In addition, Stokes' integral is valid only if no
first degree harmonic terms are present in the surface harmonic rep-
resentation of both the disturbing potential and the gravity anomaly.
Hence the use of any other anomaly, as pointed out by several writers
(e.g. ,Jeffreys 1953,p.333; Moritz 1966 ,p.107) must ensure that the
first degree harmonic of its global representation is zero as a pre-

condition for its use in Stokes' integral.

Any corrected anomaly for use in surface solutions
is is essentially the gravity anomaly corrected for a terrain correc-
tion (yoritz 1968) and hence the assumption of zero values for the
coefficients of first degree harmonic terms in the anomaly (Ag + G'),
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where G' is the terrain correction, should not upset conditions (i) &
(ii) by more than the order of f hd (i.e., 30 cm or less). The
Molodenskii-Moritz type equations have been avoided in the current
solution not as a result of possible difficulties in interpretation,
which are negligible, but for practical reasons set out in the next

section.

2./ THE EQUATIONS USED FOR PRACTICAL SOLUTION

The equations used in the current solution are based on
previous experience in determining the free air geoid for Australia
(Mather 1969b) and comparing the solution, after the introduction of
the geocentric orientation vector, with the astro-geodetic solution
of Fischer & Slutsky on the A.G.D. It was obvious that errors in
the representation of the earth's gravity field were large enough to
mask the correction terms for the free air geoid. This was further
confirmed on comparing deflections of the vertical obtained by rather

crude interpolation from gravimetry (Mather & Fryer 1970a,Table 2).

Hence it was decided to compute the free air geoid as the
first approximation to hd and ggi using equations 43 and 70, along
with equations 75 and 76 for the evaluation of the innermost zone,
assuming that no zero degree term existed in the solution. This was

equivalent to adopting the relation

W - U - PR M{aq}
(@]

(o]

0.

This subject is discussed further in section 5.2. The corrections

to the free air geoid were treated as expressed in equations 47 and 71
instead of the standard iterative approach of Molodenskii (Moritz 1966,
pp.90-92 & 98) as the effect of Nip and gci are essentially local

in character, the distant zones ha&ing negligible effects onEci , while
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Nip' though converging less rapidly, was a small quantity. Heiskanen
& Moritz (l967,p.329) quote Arnold's correction for Mount Blanc as

being -0.2 metres.

From a practical point of view, significant terrain cor-
rections occur in regions of rugged topography, not being a function
of h but of trn B . Consequently significant corrections are confined
to a few selec: regions of the world like the Himalavas, the Andes and
the Rocky Mountains. In Australia itself, only the Snowy Mountains in
the south east can give rise to any significant effect. Thus it was
decided to restrict computations of corrections to a region within 2°

of the computation point, if such corrections were warranted after the

study of results obtained by the use of the free air geoid. Such a
procedure would completely define Eci. The final formulae adopted
were
™ (27 Ag r.
- _R P i .
pr = Z?7£ { Ag (V) do + -~ ri(l + Zﬁ} ... (€0);
(o]
3r
T (2T 1 9Ag iy .
= 1 4 Ore s> (527) (1 + 557) ,3=1,2
Efpj 4ﬂYi £ An gm{ (p)lcos ade -2y i ij 1R
° (91);
w’Zﬂ h -h 2
- 1 _Lodh L oy R
Nip = 7 ni { [ : (dro+ e g kzl gfktangk]d0 )
(o]
(i )
r. £_ tan B (92)
i k=1 fk k
Y am 2 h -h
.1 1 dh
Seps = 3 m £ {JT_ kzlEfktan B, '[(zdr + 3—g—) cos o+
o]
- . (N - N, )
(-1)5g (%% )sin a.] £ ; £p } do,j=1,2 (93),
c o v




57

where
pe o= 2° s do = sin y dy dA = cos ¢ dé dA:
~ 0 3 - -
v = 0.01 ; r,o= RY ;
dh _ . .
EFo = CO0S Actan Bl + sin Actan 82 :
3 (dh y_ .
gﬁc(a; )= -sin A_tan B, + cos A_tan B, 3
ul=A 5 O(,2=I/QTT"A,

A being the azimuth of do from P and Ac the reverse azimuth.
The use of (Nf- pr) instead of Nf in equation 93 is equivalent to a
zero degree datum shiit which does not affect either the deflections

of the vertical or the validity of the integral.

The above set of formulae are practically feasible in that
all cdata necessary for computations are readily available. The use
of the Molodenskii type anomaly (Ag + G') in the Stokes and Vening
Meinesz integrals (Moritz 1968,p.l1l) requires, as a pre-requisite, the

computation of the terrain correction G', given by

2
2¢¢(h - h_)(Ag - Ag ) (h- h_)
' = 4RHIJ P B 4o = gkpﬁ{f —— P2 do ..(94)
3 3
rs re
on a world wide basis. The integral, being a function of r;3 , 1s

critically dependent on the accuracy with which near zone elevations
have been digitised for computations and therefore must be considered
impractical for world wide assessment at this stage, though local

computations are a distinct possibility.

The probable existence of a first degree harmonic in the
anomaly (Ag + G') can be interpreted as providing a solution with
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Stokes' integral where the centre of the spheroid and its associated
spherops, to which the values of hd and Sgi are referred, are no longer
situated at the geocentre. Any other expectation, in view of the
asymmetric distribution of the topography which has a significant first
degree harmonic on global analysis (Lee & Kaula 1967,p.754), and in the
absence of computational evidence to the contrary, must be considered
an unlikely possibility. In practical terms, as pointed out earlier,
the resulting effect is of no relevance as it would produce no signi-
ficant effect on the determination of the geocentric orientation vector
until a distinct improvement occurs in the representation available

for the gravity anomaly field.

Satisfactory solutions will therefore be obtained for the
parameters defining the separation vector either by the use of equations
90 to 93 or by the use of the expressions of Molodenskii and lMoritz,
adopting Moritz' interpretation of G', the anomaly (Ag + G') heinag used
in the Vening Meinesz integrals for the inner zones (y < 3%) only, the
rest of the global field being represented by the free air geoid. The
latter procedure is more tedious than the former, requiring an extra
stage in the computation, and has the same disadvantage in comvuting
deflections of the vertical of being highly unstable close to the com-
putation point. Thus, no solution for surface deflections of the
vertical can be wholly satisfactory until a combination of accurate
gravity surveys and heighting is available in the near vicinity of the

point being investigated.

The distant zone effects on h through the expression for

’
the correction Ni to Nf, do pose a problgm as the sclution does not con-
verge rapidly and the height data available for the distant regions

is inadequate. Any significant errors will be due to low degree har-
monics in Ni’ which, as argued by Jeffreys (1962,p.192), are due to the
departure of the earth from a sphere and cannot therefore contribute

in excess of f hdto the final value for h This, however, is the

5
order of accuracy attainable from the adoption of the Stokes and
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Vening Meinesz integrals.
The problem can therefore be summarised as follows :-

hd and Egi at the surface of the earth are influenced by two causes,

to the order of the flattening, these being

i) near zone effects over a region where
which have planar characteristics, with magnitudes dependent on the
departure of the earth's surface from a level plane and not on
elevation alone;

and (ii) outer zone effects, which to the order of the flat-
tening have spherical characteristics and are completely represented
by the Stokes and Vening Meinesz integrals.

®lutions which are practical possibilities at the present
time, correct to the order of the flattening , can be ohtained by
either
the use of equations 90 to 93
or
the following adaptation of the equations of
Molodenskii as modified by Moritz (1968,p.1)

R R 1‘Do 2m .

hy = Ty J[ Ay f(y) do + ZF?J J G' f(v) sin ¢ dyp dA ...(95),
0 0

1 5 voc2m ' )

Egi = Ty JIAg ga{f(w)}cos a,do + E%?J.Of G 3%{f(w)}cos a;sin v dy x
0 0
dA, i=1,2  ...... (96),
where
, (bgimlh - h )7
G' = % k p R [ f sin ¢ dy dA
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and wo < 3, its actual magnitude being defined from equation

23 as the minimum value of y at which

: (h-h)2 .
r, =Ry + oif ro} ; i.e., when L _ p| = f.
_ o /
Conclusions:-
(i) Correction terms for the free air geoid are of

significance only at those points where the near zone 'topography has'

elevations considerably different from that of the computation point.

(ii) There is no elevation dependence as such. Correc—
tions to the free air geoid are not significant in relatively high
plateaus of great extent. This is of significance in Australia where
considerable expanses of the continent have elevations in the vicinity

of 500 metres but are relatively flat (Mather 1968a, app.4).

(iii) Large corrections to the deflections as computed
for the free air geoid using the Vening Meinesz integrals, occur
only in regions where the surrounding topography is at a considera-
bly different elevation from that of the computation point and the
general topographical features are asymmetrically situated with res-

pect to it.

Thus it would appear that larger corrections could be
expected at those astro-geodetic stations situated on the peripheries
of mountain ranges than at those in the interior, though local effects
may mask the drawing of such simplistic conclusions. Also see the

comments in section 4.2.
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2.8 THE COMPARISON OF GRAVIMETRIC AND ASTRO-GFODETIC SOLUTIONS

Two problems arise in the comparison of astro-geodetic and

gravimetric determinations of the separation vector.

(a) The solutions may be referred to spheroids of

different dimensions.

{b) The centres of the spheroids used in the gravi-
metric and astro-geodetic sclutions may have different locations

in earth space.
(a) Change of spheroid

This is a classic geodetic problem of direct rele-
vance as all gravity anomalies are referred to the International
Gravity Formula (I.G.F.) which is based on a spheroid of flattening
of (297.0)-1 and a value of equatorial gravity (ye) egual to
978.0490 gal (e.g., Heiskanen & Moritz 1967,p.79 & 80). Gravi-
metric geodesists prefer to define the reference system in terms
of f and Yor but it is also possible to do so using the four
parameters (a,f) defining the reference svheroid, kM and w (e.q.,
Lambert 1961,pp.13-18), all of which are capable of numerical

estimation independent of normal gravity.

Reference system 1967 (R.S.1967) is defined in terms of the
following three parameters, the value of w being assumed to be a
known quantity (I.A.G.Resolutions 1967,p.307)

a £,3/8,160 metres
C,,= - 1082.7 x 107° ... (97),
and kM = 3.986 03 x 10°%cm3sec™?

]
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. the valﬁe of C20 being related to the value of the flatte-

ning through the equation (e.g., Heiskanen & Moritz 1967,p.78)

2 1 1 .2 2 ' :
= - £ + . 4= e i mF o ¥e]
C20 3 f g M 3 f AN Tt (fS)’
where m is given by equation 14. The value -1082.7 x

6 . .
10 1s equivalent to
N

298.25

The spheroid of reference so defined is called Reference

Ellipsoid 1967 and hence the datum provided by R.5.1967 is based
on a spheroid with the same dimensions as the Australian National
Spheroid, defined in equatio: 1. Hence hd and Eqi values com-

puted using R.S. 1967 require no correction for change in dimen-

sions of the reference spheroid.

The changes from the datum afforded by the I.C.F. to that

provided by R.$.1967 can be performed by one of two methods.

(i) Compute hd and Egi using anomalies referred to the

I.G.F. and applv a correction to the computed values using the

relations

_ ‘o : 3
» Agsl = - dfys1n_2¢ »+ of{f?}
M, o= 0T | ... (99),
bE_, = da + R(df sin®¢ + Af_tan ¢) + ofaf’}

where Aisi(i=l,3) are the changes to the curvilinear
parameters gi(i=1,3) defining'the components of the separation

vector d.
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Alternately,
(11} converi the free air anoralies from the I.G.F.
reference system to R.5.1967 and allow for the Potsdam datum

correction (Mather 1968c).

The second method has been adopted, even though more expen-
sive to compute, as it has the advantage of affording a check on

the correct usage of computer routines.

(b} The corrections for coincidence of spheroids used in the

gravimetric and astro-geodetic solutions.

The spheroid used in the gravimetric solutuon, ob-
tained from equations 90 to 93, satisfies the two conditions fol-
lowing equation 89 in section 2.6. Therefore che gravimetric
spheroid has its centre at the centre of mass of the earth and
its minor axis coincident with the earth's axis of rotation as
this is the principal axis of greatest moment of inertia. The

second condition holds o1 lv if

Chy = S, = O

in the surface harmonic representation of the disturbing potential

and hence, the gravity anomaly, as given in equation 89.

The spheroid used in the astro-geodetic @nlution has a lo-
cation in earth space defined by the geodetic co-ordinates adopted
at the origin. These values are assigned in practice frcm either
the astronomicel values at the origin or as a function of the mag-
nitudes of these guantities at points covering the region for which
the datum is being defined.

Astronomical co-ordinates (¢a,ka) are totally dependent on
the ear-h space location of the earth's rotation axis. The lon-

gitude (Aa) can be defined as the angle between two planes containing
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the rotation axis, one of which passes through a reference point
{e.g., the concept of Greenwich). The Latitude (¢a) is the com-
plement of the angle between the direction of the local zenith,
with direction cosines (Qi,i=1,3) and the rotation axis whose

direction cosines are 23i(i=1,3)when

3
Poas ay. = sin g .

If the rotation axis coincides with the X3 axis of a rect-
angular Cartesian system with the X1X2 plane coinciding with the
earth's equator, the X1 axis lying in the meridian of reference
for longitudes, as shown in figure 8, and if the direction cosines
of the Xi axis are Qi§j=l,3) while those of the projection of the

local vertical on the X1X2 plane are Qpﬁ(j=1'3)’ then

= cos A
a

[ T

L. .8
j=1 13 p3

The 15 direction cosines defining the five directions are

linked by basic equations of the form

3
\ 2 =

7 S
j=1

while those of the rectangular Cartesian axes are related by two

non-redundant equations of the type

iy Y. =0 0.

[ N Y]

.

Thus the adoption of the astronomical co-ordinates at the
origin affords a system of 9 equations with 15 unknowns and no
linear parameter to scale the system. The 6 parameters arbit-

rarily assigned can be considered to be
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{i) The direction cosines of the rotation axis, which
are made equal to those of the minor axis of the spheroid of
reference. This merely ensures that these two lines are parallel

in earth space.

(ii) The direction cosines of the vertical at the origin
of the geodetic datum as defined by the astronomical observations,
are made equal to those of the normal to the spheroid at the point
(¢a,xa). The centre of the reference spheroid, whose adoption
scales the system, can be expected to be located at some point C'
in earth space, which does not, in general, coincide with the

geocentre C as shown in figure 8.

The correction in earth space between the astro-geodetic
spheroid centred at C' and the gravimetric spheroid centred at
the geocentre C can be expressed by the geocentric orientation

vector (0) given by

iR 10 o]

3 3
0 =C'C = ] bAx, < = ] h,Ag. 4 ... (100),

where Axio (i=1,3) are the components of the geocentric
orientation vector on the local Laplacian trihedron co-ordinate
system (for definition see Dufour 1968,p.128), with unit vectors
io, at the origin of the datum. The second eguality in equation
100 holds through equation 3, where the geocentric orientation
parametersAEi and their associated linearisation parameters hi

at the geodetic origin are given by

Aglo = Ago ’ hl B "(po * hso)
ASZO = An : h2 = —(wo + hso) ‘e (101},
Ag30 = hdo ’ h3 =1
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¢ and V being the radii of curvature in the meridian and
prime vertical normal sections while hs is the spheroidal elevation

given by

h = h + h ...(102),

h being the normal height defined in equation 13. The
subscript ° refers to values at the origin. The astro-geodetic
deflections of the verticalﬁéi(i=l,2) are given by the standard
formulae {(e.9.,Bomford 1962,p.89)

£ = (¢_ - ¢.) s £, (A, - A,) cos ¢ ... {102).

The geocentric orientation vector 0 can also be represented

by components Axiwith respect to the local Laplacian trihedron co-

ordinate system at the general point P on the datum, the unit vectors

along whose axes are ¢ (i=1,3) when

0= 1 bxjoig= L Mxyggo= ] ohg AEy ...(103).
i=1 i=1 1=1

In equations 100 to 103, the X X, X, rectangula Cartesian co-

ordinate system defining the local Laplacian trihedron is such that

the X, axis is oriented north in the geodetic horizon, X, axis si-

1 2
milarly situated in the geodetic prime vertical and the X5 axis
along the local normal as shown in figures 8 and 9. The required

parameters Egi(i=l,3) defining the separation vectord on a geo-
centric spheroid are relsted to those on the astro-geodetic datumiag

Ae

by the relations
£E . = g .+ Agi , i=1,3 ... (108),

where 53 = hd'

The relation between the various components can be expressed
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in matrix form by the equation

DX = A DX, ...(105),

where the column matrices

Ax1 [ Axlo 3
DX = Ax, DX, = l AX,
!x A)(3 J A)(30 J

define the components of the geocentric orientation vector in the
Laplacian trihedron at the general point P and the origin O respec-

tively and the array A, given by

cos ¢Ocos o + sin ¢ sin AX sin ¢ cos ¢ -
sin ¢_siR ¢ cos AA cos ¢Osiﬁ b COS A
A = - sin ¢_sin AA cos AX 0
sin ¢ cosdb - - cos ¢ sin AA sin ¢ sin ¢ _+
. sin ¢_cos ¢ cOs AA cos ¢_cos ¢ coS AAj
' ...(106),
where AX = A A ...(107),

o]

is the matrix defining the earth space transformation between the
vector triads io and ©. The use of equation 104 gives the correc-
ted values of the appropriate parameters ggi(i=1,3)defining the
separation vector d as referred to the geocentric spheroid by the
equations

1

gi “ai h

Auu huA o ,‘7:, s o e Py
. i5 Mo EJO i=1,3 (108)

I 1

i3

vhere 53 = hd and &, (i=1,2) are the components of

the deflections of the vertical in the meridian and prime vertical
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respectively, Aij being the appropriate element in the array A.
Expanded versions of these equations are given in (Mather & Fryer
1970a, equations 8 to 1l1l).

The quantity £ can be directly compared with gravimetric
values obtained by thgiuse of equations 90 to 93, if the results of
as tro-geodetic levelling are assumed to be equal to differences in
the height anomaly, which isn't strictly so though considered valid
for the present study for reasons given in the paragraph following

equation 14, when

Egi Y Vgry = B, Y AEL tv ,i=1,3 ...(129),

gi géi ai ati

=]

where Egi now refer to gravimetric values, Ve, being the

2

corrections to be made to the observed values to obtain the true
magnitudes of Ei, the subscript a referring to astro-geodetic

values and g to gravimetric ones. 1If

= Vv -, =V

gEi ,i=1,3 ...(110),

Vgi ati

observation equations can be formed by comparing astro-geodetic

and gravimetric values of Ei using equation 109, which can be expressed

in matrix notation as

V = (X + K ... (111),

o

where, in the most general case, the element Cij in the
array ( is related to {Arﬁ}mof the y-ov fﬂn}m at the m—-th station
. X

by the relation

= jo
Cii TR T {A a}m ... (112),

where i = 2(m-1) + r ...(113)
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and the element ki in the array K is given by

k., ={¢__-¢& 1} , r=1,2 ;2 <3 oo (114,

% being the number of parameters Ei being compared. Thus,
if only hd values are compared, £ = 1; if both hd values and def-
lections are compared,{ = 3. The array Y is defined by the quan-
tities in equation 110, The solution of equation 111 using the

principle of least squares for the elements of the arrav X, given

by

T =
X - b841 A8 o2 803 J ,

is

X == T *tcTwk ... (115),

vhere W is the matrix of weight coefficients of the quan-
tities defined in equation 110. This equation supposes that no
systematic errors exist in any of either Eai or Egi. Such errors
should be allowed for, if necessary, when setting up equation 111.
For an example of the considerations involved see (Mather 1969a,
p.31 et seqg. ). The final quantities determined are the geocentric

orientation parameters

AElo = Ago ; Ag20 N Ano 3 Ag 30 hdo ?

which, as defined earlier, are the unknown elements in the com-
ponents of the geocentric orientation vector an the Laplacian
trihedron at the origin.
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3, DATA SETS

3,1 INTRODUCTION

The precision of any solution for the geoid is primarily
dependent on the adequacy of the representation adopted for the
earth's gravitational field. The final result sought is the
determination of the geocentric orientation parameters AEIO, AEQO
and Ahdoat the Johnston Origin of the Australian Geodetic Datum
through equation 115. The accuracy of such a solution is depen-
dent on the correctness of the magnitudes of the elements in the
array X and hence on the gravimetric and astro-geodetic values of
£,-&, and hd on their respective datums. The precision of the
*atter were beyond the control of the investigator, the astro-
gecdetic deflections of the vertical being established under the
control of the Division of National Mapping while the astro-geodetic
solution for the geoid currently available was deduced from the
deflections by Fischer and Slutsky (1967).

A study of the nature of Stokes' function f(¢)} and the
Vening Meinesz function 3{f(y)}/dvy (e.qg.,Heiskanen & Vening Meinesz
1258,p.81) as used in the gravimetric solution defined in eguations
9C to 93 indicate that 51 and 62 are critically dependent on the
accuracy with which the near zone gravity fields have been esta-
blished, while the determination of hd is less dependent on the
precision with which the field in these reagions have been defined.
It therefore becomes necessary to attempt the accurate represen-
tation of the near zone gravity field if all three types of obser-

vation equations comprising equation 111 are to he used.
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It should also be remembered that astro-geodetic determina-
tions of the geoid are deduced while the deflections of the verti-
cals are observed quantities, as the contributions of errors in the
geodetlic co-ordinates to those in Eai must be considered to be
negligible. Consequently it 1is undesirable to avoid observation
equations involving deflections of the vertical, which, in turn
calls for field surveys to be carried out in the proximity of any
station investigated. It would suffice, in theory, if the solu-
tion was effected from error-free observations at a single point
on the datum, preferably the origin itself. Previous expreience
in geoid solutions for the Australian region using gravity data
currently available indicated the existence of considerable syste-

matic error in the field representation adopted for unsurveyed
areas (Mather 1969b,p.513j.

he current study was therefore planned to include inves-
tigations at 38 astro-geodetic stations on the A.G.D. which were
evenly spaced over the total extent of the datum but avoiding
regions where the field representation was inadequate. For a
further discussion see section 4.3. The nature of the data sets
used in the present solution was essentially the same as those
used in the 1968 determin~tion (ibid,p.501). In addition to the
sets of 5°x 50, 1%x 19, %OX %Oifree air anomaly area means and
the set of readings representing the corners of a 0.1% 0.1°
grid covering the Australian region, inner zone fields were esta-
blished around the chosen astro-geodetic stations included in the
present study.

3.2 1HE U.N.S.W. DATA SET

o . ..
The sets of % x %O, 1%x 1° area means and the individual
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readings on a 0@1Ox 0.1° grid comprise the U.N.S.W. data set.
This representation of the gravity field in the Australian region
is based on the national Australian Isogal datum (Barlow 1967;
Mather 1969b,p.499), the values adopted for the control stations

being termea May 1965 Isogal values by the Commonwealth of Australia's

Bureau of Mineral Resources, Geology & Geophysics. The distri-~
bution of data used in this region is shown in figure 10, the resul-
ting area mean being given in figure 11. The representation was
more comprehensive that the 1968 data set (ibid,p.500), whose
variability can be seen from (ibid,p.503). Additional information
was included in the coverage of the following regions:-

(i) Gaps in the representation of the Northern Territory
which is now completely represented.

@i) Helicopter gravity surveys of portions of Western
Australia and northern New South Wales.

(iid) Gravity surveys carried out by the investigator in
the Snowy Mountains and Victoria.

(iv) Marine gravity surveys of the continental shelf
regions to the north and north-west of Australia.

(v) Gravity holdings of the Aeronautical Chart and
Information Center, St. Louils, Mo. for regions within 25 degrees

of the continental margins.

twi) Gravity holdings of the D.S.I.R., Wellington, N.Z.
for the New Zealand region.

(vii) Area means for the Indian Ocean produced by Le
Pichon and Talwani (1969).

(viii) Gravity surveys in the Coral Sea (Falvey & Talwani
1569) .

ix) Detailed gravity surveys around the selected astro-
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geodetic stations by the investigator (see acknowledgments).

The data sets used in the 1968 solution were independent
of one another. This did not constitute a problem in either fully
represented regions or in totally unsurveyed areas where all means
were compatible. In partially represented areas however, the
values adopted for the area means of larger blocks were based on
observed readings only. Consequently discrepancies existed bet-
ween representations of the same region by different data sets.

Tus, if n is the number of readings of the gravity anomaly
tgana if n < N, where N is the number of readings in a fully
represented square, the area mean Agm in the 1968 solution was
obtained by the eguation

1 =
hg, = = ¥ Ag, ... (116)

m i=1
and held invariant in the subsequent computations, irrespective
¢t the magnitude of n, In computations however, the 0.1%% 0.1°
representation of this region had n readings and (N- n) predicted
values E{Ag} which gave a representation equivalent to an area

mean E{Ag } given by

Ag. + ¥ E{Aag.}
it i=1 1

[ s ta]

E{ag_}= * (117)

© and 17x 1° adata sets based on equation 116

The use of %OX 5
in the 1968 solution gave rise to steep gradients in the comparisons
between the astro-geodetic geoid and the gravimetric solution
when passing across meridians defining the boundaries of those
larger units of area situated on the peripheries of the continent
where the partially represented areas are primarily concentrated.
The use of equation 116 when n » 0 gave values of Ag when the

"noise” could completely mask the "signal"” (see Moritz 1969,p.1
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for an explanation of terminology) which, in this case 1is the true

area mean M{Ag}.

This was clearly illustrated in a study of the comparisons
of local 50x Soarea means from gravimetrv with those obtained by
the combination of satellite data and surface gravimetry when area
means computed from smaller samples exhibited significantlyv laraer
deviations from the satellite means than those from more comprehen-
sive ones (Mather 1969b,p.509), A studv of the estimated value of
area means computed at various stages in the compilation of the
U.N.S.W. data set indicated that a 40% representation was the

minimum sample size (nmin) which would provide an acceptable area

mean. This is equivalent to adopting the relation
{ = 3 = !
M{Ag} Ag if n > nmin( 0.4 M),
In regions where n > n , the following technidque was

used to predict values to represent the gravity anomaly field with

a spacing of 0.1°. A prediction function of the form

Il 3 %

E{ag;} = Cj(f(¢,x)jan  i=1, (N-n)

1]

i=1

was adopted, where (f(¢,1)} is of the form used in an eariier
investigation (Mather 1967,p.133), Let the predicted values
E{Agi} of the gravity anomaly have an error of prediction
which, for the present is assumed to be normally distributed.
If this is not so, vy should be replaced by a normally distributed
component Vi and a systematic component Ves which becomes a parameter
in the subsequent solution. The true value of the gravity ano-
maly Agi is given by
k
Ag, = Elagyl + v, = ]

. ijf(¢,x)ﬂij + % , i=1,(N-n} .
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The coefficients Cj are determined by the least

analysis of the n observed gravity anomalies in the area (

1,n} when observations equations of the form

s

13
[

o, A,)Jj
g=1
obtained.
alue for the area mean while making these pr liictions.

the area mean should be retained

In

shere © > n_.
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defined in eguation 116. such a case,

values to

n
r.-.d
o,
Q
O
=
oy
H
o
6]
5
H
‘-f,
jwg
t
o
©
Q
)
n
[0}
i~
<
0
jof)

n n

fARe

Bor~y |
™
-y
=g

&

1 1=1

S -

Thus equation 119 can also be written as

Z’f\.g

composite block of equations can be by

[t Sy
PN

ST

was ﬂﬁoupn as 9 mqa] for an obzservad
o o}
0.1 O.l data.

ctions was bhased on

mere W

nalysis of x The wvalue assigned

ase of predi

=

w

the interval on the
m the nearest avallable gravity station and should a

on whether prediction was effected by inte

ent

More

a misture of both techniques.

ation or

functions were found to have nrarginal effects

T avolc urdue hiases,

. e .
+ 317 maal s B

In addition, it may be desirabls to preser

the predicted

only

vvvvvv

scuares

£ “, ’ 3=

A

(1

ve
For instance,
at 4G

< ,}m

values

satisfy the condition

minimy -

o0m V.L'” <

on




-P77-

OR, PR normal! plane of
paper

Fig. 9

Geocentric orientation parameters at origin and
the general point




78

was adopted, where £ is the interval from the nearest gravity station.
This probably overestimates the accuracy of predictions (e.g.,see
Rapp 1964,pp.85-88) especially when predictions are obtained by
extrapolation (Mather 1967,p.136). The lest squares condition for

one such area mean can be expressed in matrix notation as
® = VTWV - LT (AL - sg) = minimum (122),

where || is a single element in this case, being the Lagran-

gian multiplier of the signle condition equation expressed at 120.

In manv regions however, n is less than Min OF equal to zero. Let
the estimate of the area mean from available samples in such cases
be Ag'. Let v be the quantity given by
- - '
v, = Miagl Ag

In such a case, equation 120 can be written as

= i 1
Cy(F(00))4; |= b + vy - F

m m

Ag. ... (123).

1

i e~13

i=1

In addition, a second type cf condition equation has to be
satisfied where the regional mean over a yox yo block, obtained
from the area means defined in either equations 120 or 123 for a
smaller x°x x° block, must satisfyv an external constraint. The
regional mean can either be obtained from the combined solutions
of either Rapp or Xaula, described in section 3.3 or, in cases
where the number of readings in the region satisfy the required
condition, the value obtained from equation 116 can be used in

preference.

If




_79-

tot

g_

0oL by

| S

|
_

0=u []

or>u>0

W28)
Lo

E 02

o

suD3W 24Dnbs

viavaisav)

,¢<\1:l\‘
1% I
A

I

. b % L Buiiidwod u .,,u,i,,\,. .
- ipasn dwps O 2zIS| |}

a ! T - i VT
- | oolsusop D/ / S T

il

«BOL

LT -]

1]

b~35H

SO )




SINWIO 4 AJIADIS |DUOIID LIz LY |

¢ 082S z7t - {IDI2P JO4\-
A V)|
[SNYIN TYWCNY HIV 3344

Oe-i8e-

N ge ZREES
L 5-lie _mmwov cmm Rl
.LN. ) o +x 3
g- € |e-pi-pe 125" om. .
£ -2 e 66|86 |67 mm_m_. 1% m * )
i .
vt c-igi el s om,mm_ ._12 se

'Y S S SN it By v
e o m.:-pm..?q.mj_m sles m = e
_ se-|a et {97 pelsrerp ﬂ :

]
b
[se]
N

_80_

RS T C Tios s|s
(-lone-|ce- __.o* H e- -{ -6t e Lmle
szl g (-] 1 lsi-ls- p-{on 6101 o; o
m_m 6 f‘o_‘mtor ¥ Tm
v vl _ -

mm m.v iy w.
i6Reriae] g

,_mo___;mt -
Lo ___h,,w.m e 66!

B Ev D 9
o o;q ze Lg|82 .

E#‘Jw 12 82 Q\m_
: { )] 02
; 5l a O AV
-1 |ve

€E

IR
v,,m K

3

byevy | |2 9F

sv|sv iv|es om‘m
sv|ie
€l




21

the following condition equation must also be satisfied.

t s—-t
}ooo (gt + v ) + ] Ag - s ha =0 ... (124),

mr mr . mi
r=l 1=l

vhere Ag is the regional mean anomaly obtained either from
surface gravity in instances when the number of individual gravity

readings N exceeds n or, if such a condition cannot be satisfied,

min
from the combined solution from satellite data and surface gravi-

metry.

Te end product of any solution is the determination of the
coefficients Cj’ together with the quantities vmrwhich correct the
relatively weak estimates Agér of the area means of those smaller
squares where U@ number of readings is less than noin For
reasons of practical expediency four sets of C, values were used
to represent a region which was a 5%% 59 squaré in the current
solution. Thus each set of Cj values represented a 25%x 219
region. The number of coefficients used (k) was dependent on
the total number of observed readings available in a square as
described in the earlier study (ibid,p.133), being

41 < k <1 as n.. <n«<2a,
= lim = ==

where n is the minimum number of readings which enabled a

lim
full set of coefficients to be used. For a Z%OX 2%0 square,

The solution was effected as follows for the four sets of
Cj values and the t terms Vir in each 5°x s° square which was not
fully represented. Consequently, the same set of Cj values could
possibly occur in 25 equations of the type at either 123 or 120.
The resulting set of equations of the type at 123 are treated as ob-
servation equations which can be expressed in matrix form by the

relation
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AC+ K =V .. (125)

m

vhere the general element Ars in the array A is given by

N—nr
1
Ars - N uz (f(¢’x)}irs (126),
i=1
the equivalent element k_in K being
n n
1 r 1 F
kr = Ton ,z Agir * N uX Agir’ n. < Mmin .. (127),
r i=1 i=1
where, in general,
0 ifn = 0
n
1 Y
n qz Agir = Agmr ifn < hmin (128)’
ri=1
Ag ifn > n_,
my min
Vm is the array of the corrections Vor to Agér. In cases where ‘
n, > Nnin? Agmr was held fixed in the adjustment, the modified form of

equation 123 is treated as a condition equation, the resulting rela-

tions being expressed in matrix notation as

A. C + K, =0 .. (129),

C
the coefficients Acrs being similar in form to Ars given in equation

126 and the general element kcr is given by

, nh>n_, ... (130).

mx min

The general least squares condition can be expressed as

- LT(AC C + Kc )= minimum ... (131),

where |. is the column matrix of Lagrangian multipliers and
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W the matrix of weight coefficients. Equation 124 is introduced
into the solution as a condition equation which can be expressed in

matrix notation by the form

UTCA C +K") + K. = o o (132)

vhere !l is unit column matrix of order t and the general
ir? I ° .
element “, of the array K’ is given by

|
S A H

the (1,1) array K' being

K" = izl Ag . - s ha
Equation 132 can be added to the second group of terms pro-
ducting the transpose of the array of Lagrangian multipliers with-
out loss of generality. Equation 131 is the standard type of least
squares condition combining observation equations involving the para?
meters Cj which also have to satisfy certain condition equations.

The resulting solution (e.g.,Mather 1969a,p.25 ) is

C o= (AT WA (ATL - AT W 1) ... (133),
where

L=@cmTwmﬂAjﬂkawm*ATWK—k7<mm

e
he procedure adopted for the field extensions can there-

fore be summarised as follows.

P o} s s .
(i) Each & X SOblock was divided into four 24%°x 250
blocks, each ¢f which was analysed using separate two dimensional

trigonometrical series.

@ij All free air anomalies on a O.lodeqree grid
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were converted to regional Bouguer anomalies usinag tenth degree
square height means and these were used in setting up observation
equations for half degree squares usina either eguations of the

type at 123 or 120

0
(ii i) If the total number of readings in the general % X %

square {(Nn) exceeded a limiting rumber nmin(: 0.4 NY, where N is

the total number of readings possible in the half degree square

(N = 25 in this case), the area means obtained by the use of equation
116 was held fixed in the ensuing solution. Consecruently,vm in
equation 123 becomes zero and the resulting equation can be treated

as a condition equation.

(iv) If the number of gravitv readings available in a
5Ox Sosquare exceeded 1000 (i.e., 0.4 x 2500), the resulting area
mean from surface gravimetry was held fixed in the adjustment.
Else the value from the combined satellite and surface gravimetry
set was considered to be invariant in the adjustment. In either
case, a further condition equation related the field extension

o (o]
coefficients Cj to the 5 X 5 mean.

(v} The weight coefficients used were based on

equation 119 and tabhle 4 of an earlier study (Mather 1967,p.135-6).

The result of carrying out such an analysis was the establish-
ment of consistent sets of 0.1°x O.lo, %ox %o, 1°x 1° ana 5°x 5°
area means for the free air anomaly field in the Australian region,
removing one major source of error in the earlier solution for the
free air geoid, when each of the above data sets were independent

of the others.

An important corollary is that area means adopted in the
representation are not necessarily the numerical means of all the
available readings within the region, as they also include predicted
values when forming the mean in those areas where the number of gra-
vity readings available was less than the lower limit nin described
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in (iii) above. In this manner, the problem of "noise" which alnost
totally drowned out the "sicnal” in sparsely surveyved regions, was
minimised and the obvious defects in the gravitv field representation

used in the 1968 solution were largely rectified.

3.3 THE DATA SET USED TO REPRESENT THE OUTER ZONES

The 5%« 59 sets of free air anomalics used in the 1968 so-
lution were thos nroduced by Kaula (1966t and Rapp(1968). These
sets could not bhe used without some amendment if condition (iv) in
section 3.2 is to be satisfied for regions well represented by
surface gravity. Earlier comnutations indicated that the values
calculated for the geocentric orientation paranmeters were only mar-
ginally affected by the type of data set used to :1@nresent the outer
zone (Mather 1969b,p.513), It was therefore decided to represent
these regions with the Rapp set after appropriate amendment as des-

cribed at (iv) in section 3.2.

The adoption of revised values for the free air anomaly means
. 0 0 .
representing 5 X 5 squares affects the zero degree term in the sur-
face harmonic representation for Ag though not the implicit zero
S , . The Aif--
11’ 11’ C?.l 1 ) if
ferences in the zero degree terms bhetween the original and amended

magnitudes of the coefficients %0' C and S?

Rapp data sets are shown in table 2.

The combination of the U.N.S.W. data set and the amended Pabop
set based on both satellite data and surface gravimetrv affords a
means of solving the surface integrals of Stokes and Vening YMeinesz,
the latter set being one method for representing the effect of the
outer zones, a subject that has been of considerable interest to

geodesists in the recent past. This problem has been internreted
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n M MIA
Happ Year 'taa) NO = —waiwghmet)
Data Set (mgal) Y
Original 1968 + 0.5 - 3.2
Amended 1970 + 0.4 - 2.8
Table 1
Zero Degree Term in N
Reference System 1967 ; W0 = Uo
M{ } = Global mean value

as one of integration of an inner spherical cap at a limi-
ting angular distance V¥ from the computation point while the dis-
tant zone effects are represented by low degree spherical harmonic
analvsis (Cook 1950 ; Cook 1951 ). The contribution of the distant
zones are well known to have a significantly larger effect on the
separation Nf than on the deflections gfi’ the effect increasing as

P o decreases.

Three studies in particular warrant attention when conside-
ring the use of such composite solutions for the definition of the
separation vector. The first, in chronolocical order, is that of
Molodenskii, who estimates from the use of Zhongolovich's solution
for the geocid (Molodenskii et al. 1962,p.164) that the effect of
harmonics of degree greater than 2 in the representation of the
zones exterior to a cap with a limiting radius by = 23°

would give rise to errors not exceeding + 1.9 metres in ﬂf and
t 1.1 sec in £_..
fi

The second study is that of Cook who used Jeffreys' solution

for the geoid to represent the second and third degree harmonics
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and estimated the balance effects of the distant zones, after a
consideration of these harmonics for Wo = 20° at *+ 5.1 metres in
Nf (Cook 1951,p.136) and * 0.7 sec in Efi (Cook 1950,p.383). A
review of the earlier studies is given by de Witte (1967) who inves-
tigates the truncation effects to higher degree harmonic values

using lMolodenskii's formulae (Molodenskii et al. 19€7,p.147), given

by

Noue = 7 Z g 0 ... (134),

where

3 !
sin %V,

0 =-1 l p° (cos ¥) £(v) sin by <(sin %)

and Agnis the n-th degree surface harmonic in the representation
of the gravity anomaly, defined by

n
A = - k3 — bl K3
9_ mZO p . (sin o) ( 91 ,nCOS MA + G, sin mx),
to estimate the distant zone effect (Nout) on Nf. de Witte uses
Cook's expressions for the evaluation of the outer region effect on

£.;+ given by the equations (de Witte 1967,p.455)

out

. 15 -

3 = 5 b (n-1) Coqi 9, o+ i=1.2 ... (135),
n=0

where

- 1 .
Cnli' ZTﬁ:TTV jf Agn pnl(cos V) cos ai do ,i=1,2

o, having the same significance as in the note to equation 59.
Cook's truncation function qn(cOok 1950,p.377) is similar in struc-

ture to Molodenskii's and is given by

cos Y
qn - Il 053 {f(w)}pnl(cos W) d(COS W)e
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de Witte recommends spherical cap calculations t> wo = 39°
which approximates to a zero point of Stokes' function and at which
value the Molodenskii truncation functior Qq, excluding Qo, 0 and

1
Q2 have minimum values (de Witte 1967 ,pp.456-8). Such an extension

H

of the bounds of the U.N.S.W. data set was considered to be of no
great value in view of the lack of adequate representation of the
gravity field over the ocean areas to the south-east, south and

west of Australia.

he use of these truncation functions to represent the dis-
tant zone effects of the earth's gravitational field, together with
a spherical cap representation of the local region, is a technique
well worth detailed investigation as test calculations show that
computations of the separation vector using the truncation functions
for the representation of the distant zones up to degree 8 is
approximately 100 times faster on an electronic computer than using
the Stokes and Vening Meinesz formulae and the standard anomaly
representation.

The use of the functions defined in equations 134 and 135
does not necessarily mean that relative errors in a regional study
of the type undertaken will be as large as the figures given by
Molodenskil and Cook. This has been demonstrated analytically by
Cook {ibid,p.374) and also been confirmed by detailed computations
in the course of regional geodal studies in Australia (Mather s&
Fryer 1970a, table 2 ). The prime danger in using the results of
any low degree harmonic analysis of gravity data for the determi-
nation of what is, in effect, the mean slope of equipotential sur-
faces across a region whose area is approximately 40° x 30° {or
2% of the earth's surface), is the existence of errors in the mag-
nitude of the coefficients of t!ose harmonics which

either retain their magnitude over the region
or else have variations, the magnitvdes of

which cannot be detected over the region on the comparison of
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geoldal solutions. Zonal harmonics of degree n will have n zeros
between the poles, while tesseral harmonics of ord=+ m ~hange sign
M times over 180 degrees in longitude. The danger of undetected
systematic errors in a determination for Australia will therefore
arise primarily from harmonics of degree less than six and order

either zero or one.

A further possible complication is the fact that the magnitude
of higher degree harmonics have not been considered in the analysis.
Such a procedure may significantlv affect the values ohtained in
the solution (Cook 1965,p.18L et seq). The Rapp set of data is
prepared by the use of harmonics determined by satellite orbital
analysis for what 1is, in effect, the prediction of gravity ano-
malies in unsurveyed areas. The technigque adopted is described in
(Rapp 1968} and is a variation on a technique initially used by
Kaula (1966b p5310).

If the gravity anomaly is expressed by a set of surface har-
monics, given in equation 89, it can also be expressed by the

general surface harmonic series

B~ 8
Eeg 8
[S S Te]

Gn =
n=2 n=2 m=0

g = p {si a y q i il
b9 Pontsin ¢) (g, —cos mi + T, _sin ma
...(136),

where the coefficients fn ’ §nm in equation 89 are related

m
to those in equation 136 by the relation
! Cnm‘?fz 1 9inm ) ... (137}
T | y{n-1) vl j
* “nm’ 7 2nm

The coefficients glnﬁ”§2nm can be obtained by the standard
technique of multiplying each surface integral by the appropriate
Lerm _

. ¢ COS mX}
Pamtsin ¢)£ sin mk}

when
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(¢ _ £COS ml} . . .
J‘ Gn an(S1n $) do = 47 - C F(n-T) |-

J : by
S1n mA; nm g2nm‘

The use of the orthogonal property of spherical harmonics on

equation 136 gives

e cos mA o n
|| 8¢ p_ (sin ¢)( Jdﬁ = ! 1 p__(sin ¢)(g, cos mxr +
0 nm sin mA =2 m=0 ™ Inm
— - cos mh, g1nm 1 Cnm}
9, .Sin mA) P (sin ¢) do = 41 _ = fm(n-1) _
sin mkj g J
2nm nmn

Hence observation equations of the type

ok

€ + dC
f nm nm
Y(n—l)[ _ ]-
+ .dS

nm nmnm

sin mi
... (138)
can be set up and solved for both afhm, H§nm and VAg’ the integral

a

cosS mi
Ilﬁ fI(Ag + vAg)Enm(sin ¢)[ } do = 0

being replaced in digital evaluation by a series. This method was

initially used by Kaula when he adopted an equal area series of

300 nautical mile means (Kaula et al.1966,IID,pp.9 et sq). It

could be applied to 5°x 5%°means with appropriate p: ecautions.
Rpp's solution is obtained by setting up observation equa-

tions of the form

I ~133

Bg(¢,A) + vpg= Y Ez(n-l)

) P (5in 8)[(C__+ dC_)cos mr +

nm
m=0 !

(S + d@;m)sin mx ) ... (139)

nm

which can be solved in a similar manner (Rapp 1968,p.7).

The validity of such techniques of solution to provide the
parameters of the earth's gravitational fi2ld can be verified bv a
study of the cross—-covariances M{Ags Ag} between the area means as

determined from satellite data (Ags) and surface gravimetry (Ag)




91
P il = 3 1 -y -
{Raula 1966b,p.5308) -  The surface mean ,0 can he given by an ex

pression of the form

Ag = Ag + &g + v ... (140),

where Agsois the contribution to Ag by the numerical values
of the coefficients adopted for the representation of Ags by the use
of equation 89. &9 is the equivalent of near zone gravitational
effects and v is the error in A4q. Similarly,

Ags = Agso + VS Loo(1a),

where VS is the error in the value of Ad defined by the
adopted values of the coefficients for the surf§ce harmonic series.
The variability of the area means expressed by surface harmonic
series can be exp-essed as degree variances when it can easily
he shown, as a consequence of the orthogonality relationship which
exists between harmonics of different degrees that (e.g.,Heiskanen &

r

itz 1967,p.259) n

27 . ¥ - ~ i
M{Agn} mmio ( g]?:nm * génx } o (182),

where the n-th degree surface harmonic of the gravity anomaly
is given by equation 136. Equation 136 readily agives the auto-co-
variance of ﬁgso(Kaula 1966b,p.5309). While M{Ac?} can be expectad
to be larger than Vfﬂﬂzu} , the latter should have a magnitude
similar to the cross--ovariance M{Ag Agso} if no significant dis-
crepancy exists between satellite and surface representations, as
near zone effects should be randomly positive and negative, Mian-

being expected to be near zero.

These expectations are borne out by Kaula's tests given in
the reference quoted and hence it can be concluded that any unde-
sirable systematic error is unlikelvy to eoxist in low degree har-
monics ¢ orvders vero and one which cannot bhe detected by an
Auztralia-wide analysi: . This tentative conclusion is examined

£

further in section 4.4.
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3. THE INNER ZONE DATA SETS

The four innermost tenth degree squares comprise the inner
zone around each of the 38 astro-geodetic stations included in the
study, the locations of which are shown in figure 12. The points
can be seen to be evenly spaced over the continental area in accor-
dance with the criteria laid down in section 1.4. The gravity
anomaly field of this inner zone, while not contributing signifi-
cantly to the magnitude of Nf and hence hd’ nevertheless has a
critical effect on the computation of Efi as has been experienced
by many investigators (e.g,de Graaff Hunter 1935,p.422; Rice 1952;
Szabo 1962), A value of 4.32 km has been suggested by Rice for
the radius rs of the innermost zone, which is evaluated using
equations 75 and 76, in regions where normal horizontal gravity
gradients occur. Other comprehensive studies on the nature of
the inner zone field have been made by Cook (1950) and Shimbirev

in (Brovar et al. 1964,p.290).

h view of the limitations imposed by time and finance,
it was decided, for reasons given in section 1.4, to cover as
many stations as possible. This was in accordance with conclu-
sions drawn from previous studies that it was more important to
obtain a representative coverage of the entire datum than t- impose
rigid criteria for inner zone field representation, which neverthe-
less, had to be verified so that gross errors were avoided. The
technique adopted was as follows. An initial compilation was made
of all gravity readings in the region which was approximately
20 kmz, many of these being helicopter gravity stations. These
were supplemented by additional readings as planned by the inves-
tigator.
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The normal field program involved the establishment of the
gravity value at the astro-geodetic station itse.f t gether with
north-south and east-west gradients. The value of 940/ 3X was
accurately established in this ranner over the inner zone regions
which comprised the area within 3 km of the computation point and
all guantities required for the evaluatior of equations 75 and 76
were determined. These gravity stations were tied to the natio-
nal Isogal network by means of traverses between Isogal stations
which were assigned the relevant May 1965 Isogal values when

allowing for drift.

The elevations (h) of the gravity stations were obtained
on a differential basis with respect to that of the astro-geodetic
station (ho) which had previously been established by trigonometri-
cal levelling. The difference (h-HO) was not expected to ke in
excess of %30 cm if the distance of the gravity station from the
astro~geodetic control roint did not exceed 3 km. The errors in
the elerations of stations established over greater distances

by altimeter are not expected to exceed #2 metres.

The gravity anomaly gradient over the inner zone, <If linear,
was therefore not expected to cause any significant error in the
computation of %ini . Errors in Nfin were estimated as bheing
more significant as the elevations of +he astro-geodetic stations
could have recgional-type systematic effects as larae as + 10 metres
with consequent effects of the order of #3 mgal in Agf and hence
approximately *4 cm in Nf. In addition, a reagional warping
could occur in the deduced geoid whose magnitude could be as large
as * 60 cm if the systematic error in elevation retained a macni-
tude of $10 metres over a three degree area about the computation
point. The deflection of the vertical, being free from zero
degree considerations, is less significantly affected bv such

errors.
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The average gravity station distribution for a single astro-
geodetic station is given in table 2. Also given are Shimbirev's
estimates of a station distribution which restricts the interpo-
lation error in Ei for the inner regions to 0.15 sec (ibid,p.320 ).
In this connection, the interested reader is also referred to
(Molodenskii et al.l962,p.178).

Distance from No. of stations required
comput?ﬁggn point Shimbirev's Average no. of
' estimate stations wused

0 1 1

1.5 5 2

3.0 7 6

7.5 9 10

15 not available 18

Table 2

Number of gravity stations used in the definition of the inner

zone field

he criteria for the validity of the inner zone represen-—
tation always require re-interpretation at every station visited.
Most astro~-geodetic points included in the present study are
situated on isolated hilltops or rises on vast plains. Little
error is caused in such cases by totally ignoring the ~xistence
of the hill in calculating BAg/axi if the case can be consicdered
one where a conical hill is situated on an infinite plain. Nf
values however are affected as the free air anomaly is significantly

correlated with elevations, even in the case of these isolated
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hills. More complex topographical forms cause concern and the simple
5 station evaluation of the innermost zone has to be replaced by a
nine station grid from which the weighted mean of three gradients 1is

taken as representative of the inner zone (Rice 1952,p.290).

These ideal requirements were not always complied with due
to access difficulties and lack of time on field expeditions. The
inner zone gravity field was digitised in the form of a uniform
0.01°x 0.01° grid established by prediction from the available
gravity stations of the equivalent Bouguer anomalies using observa-
tions equations of the type at 118 and the technique set out in
{Mather 1967 ). In view of the fact that the observed gravity
anomalies did not always meet the criteria of 9 stations in the
inner zone, this region was represented by the 9 innermost 0.01°x 0.01°
square values, symmetrical with respect to the square containing
the astro-geodetic station. The effect of this region is evaluated
using equations 75 and 76. The contribution of the other 391 squares
comprising the rest of the zone were computed using equations 43 and
70. Consistency of the U.N.S.W. data set was maintained by re-
placing the 0.1%% 0.1° square values by the 100 relevant values on
the 0.01%x 0.01° grid within the area.

4, THE PESULTS

4,1 THE SOLUTION FROM COMPARISONS AT 38 ASTRO-GEODETIC STATIONS

The location of the 38 stations chosen to define the
Australian Geodetic Datum (A.G.D.) in the present study are shown
in figure 12. The astro-geodetic deflections of the vertical

are "true" values in that they are free from any effects except
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those arising from the relevant observations, while the current set
of astro-geodetic separation values (Na) are deduced from approxi-
mately 600 control stations over the six and one half square kilo-
metre area over which the A.G.D. extends (Fischer & Slutsky 1967).
The possibility of errors other than those due to observation may
therefore be involved in the assessment of their precision. The
principal contributor to the quantities required in the evaluation
of the gravimetric values for use in equations 105 to 115 is the
free air geoid defined in equations 43, 70,75 and 76 . This is
obtained by the use of the data sets described in sections 3.2 and
3.3 using the sub-divisions given in (Mather 1969b,p.5Cl}. The
four inner tenth degree squares were represented by the inner zone
data sets described in section 3.4, equations 75 and 76 applying

to the 9 innermost 0.01°x 0.01° squares.

The accuracy of the astro-geodetic deflections of the verti-
cal is almost totally dependent on that of the astronomically deter-
mined values of latitude and longitude. The root mean square
errors of the procedures adopted by the Division of National Mapping
has previously been estimated at *0.6 sec in £,1 and £1.0 sec in
€a2 (Mather & Fryer 1970a,section 4). From the discussion in
section 2.7, it can be seen that any non-Stokesian effects are es-
sentially local in character and the use of a maximum coverage of
the geodetic datum ensures that the exclusion of the topographical
terms can be treated as local errors which will not significantly
affect the geocentric orientation parameters. Furthei, the weak-
nesses in the elevation of the gravity stations make it a fruitless
task, at the present stage, to distinguish between normal and
orthometric elevations, as astro-geodetic levelling gives the true
spheroid elevation hsp according to the relation (Molodenskii et al.
1962,p.24)

P P 2
hsp = f dz - J izl £, cos a.de ..(143),

0 0
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where Ei, in this case, are the usual components of the angle
between the vertical and the spheroid normal, dz being the difference
in orthometric elevation over the distance d, taken over the route of
the levelling. Thus the second term is not strictly the height ano-
maly neither is it the geoid/spheroid separation. Arnold's calcu-
lations for Mt. Blanc quoted by Heiskanen & Moritz (1967,p.329)
estimate the difference between these two quantities as approximately
2 metres, a magnitude much larger than any likely result in Australia.
It can therefore be safely assumed that the results of astro-geodetic
levelling can be directly compared with gravimetric values as repre-
sented by the free air geoid Nf over 90% of the Australian region
without taking into account any discrepancies arising from differences
in definition. The resulting errors are unlikely to exceed 50 cm
and are most probably regional in character. Further the free air
geoid has been adopted as the gravimetric solution and is known to
be a good approximation to both the geoid/spheroid separation and the

height anomaly (Mather 1968b).

Consequently astro-geodetic deflections of the vertical (§ a1’
Eaz) and the results of astro-geodetic levelling (E = N ) as computed
by Fischer and Slutsky (1967) were compared with the deflectlons of

the vertical (& 1’€f2) and the separation (N = g ) of the free air
geoid using equation 105 to 115 at the 38 statlons mentioned above.

The resulting geocentric orientation parameters (AE = AE ;A£20=Ano;
AE = AN ) were used to compute the effect of the geocentrlc orien-
tatlon vector at the 38 stations using equations 106 to 109. The
residuals which resulted, as defined in equation 110, were computed

and the results are set out in tables 3 and 4. The astro-geodetic
deflections of the vertical were based on values available before 19268
Some of these stations have since been re-obhserved but the differences
were not significant enough to affect the orientation parameters. The

station residuals are shown for a typical solution in table 4.
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3 Description g g g3(met) gl(sec) €2(sec)

e e| s AE3° M{o£3} AElo M{Ogl} AEZO M{o€2}
l|lPlanar approximation [1|A]| 0.0}-0.5+3.9{-0.5}{-0.7+2.6|~-3.5] 0.0%2.7
2 do 2{a - - 0.5 0.0%#3.8| 0.0| 0.0%2.6
3 38 stations l|la]| 9.8| 0.0x2.,2|~4,0]| 0.3+1.0|-4.3| 0.4%1.8
4 do 1{B| 9.8|-0.0%2.3}-4.1| 0.2%1.0|-4.3]| 0.4+1.8
5 do 1fc(10.7] 0.8%2.2|-3.9| 0.4%1.0{-4.3]| 0.5+1.8
6 do 2{n - - -4,2] 0.0%t1.2|-4.5| 0.0+1.6
7 do 2| B - - -4.2| 0.0%£1.2{~-4.5| 0.0+1.6
8 do 2l c - - -3.7| 0.5%1.2{-4.4| 0.0%1.5
9 @ 3]af 9.8] 0.0+2.2}|-4.0| 0.3*1.0|~4.3] 0.4+1.8
10 do 3(B| 9.8| 0.0+2.3|-4.1| 0.2%#1.0{-4.3]| 0.4+1.8
11 do 3]C|10.7] 0.8%2.2|-3.9| 0.4+1.0{-4.3| 0.5+1.8
12|at 693 pts on 1%°gria [4|-{10.1| 0.0%2.5]|-4.2 -4.4
13| Code 12 at 38 stns 3] -f10.1} 0.5+2.3(-4.2| 0.2+1.0|-4.4]| 0.3+1.8
l4} Composite-codes 3 & 6|3|-| 9.8| 0.2+2.4|-4.2] 0.1+1.1]|-4.5 0.3+1.8
15 Composite 3 -] 9.8 0.422.6]-4.3| 0.0%+1.1|-4.7| 0.1+1.8
16| Code 9 on 1° grida 4] -1 9.8]|-0.422.7|-4.0 -4.3

17| Code 14 on 12 grid 4l -1 9.8}-0.3+2.5[-4.2 -4.5
18| Code 15 on 1 grid 4| -] 9.8|-0.2%2.7|-4.3 -4.6
191 Excl. inner cap ¥<1% [1]A[10.0| 0.0t1.6)-3.8] 0.4+3.3{-4.2] 0.242.5
20 do 2| A - - -4.2| 0.0+3.4|-4.2| 0.0%2.4
21} Excl.outer =zone t!)>20o 1]A] 1.3] 0.0+2.8{-3.31-0.4%1.5|-3.7]|-0.6+2.3
22 do 2{a - - -2.7| 0.0£1.3|-2.8] 0.0%1.7
Table 3

Solutions for the geocentric orientation parameters
Key to table 3

Solution types :-

1 = Comparison of €3(Nf) values only at 38 astro-geodetic stations.
2 = Comparison of El and 52 values only at 38 stations.
3 = Comparison of all three parameters - for 38 stations,
4 = comparison of E3va1ues only at 693 points on 1° continent wide grid.
Tlass of weight coefficient :-
A - {wl = 1.5 ; Yf =1.0; w,=3.0}
= {w, =(M{“§i}) , i=1,3}
c = {w, =(U ., - Mo })—2 , whereO,, =& .+ A - E |, +1=1,3(equation
ir Eir & Eir ai ri gi

144) .}
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The quantities Ggi in tables 3 and 4 are given by the rela-
tion
= + - { = an
Ggi ‘Sai Agl ggi »i=1,3 -'-(1~')s
where all quantities have the same significance as in equation
109, the free c2ir geoid value gfi representing the gravimetric so-
lution Eqi' M{ii} being mean values for the set.
Four different types of solutions are used to obtain the
estimates of the geocentric orientation parameters and called

types 1 to 4 in table 3.

In type 1 solutions, only 53 values (i.e., separation) were
used in setting up the observation equations at the 38 astro-

geodetic stations.

In solutions of type 2, only values of the deflections of the
vertical (El,EZ) were use”, again at 38 stations.

Type 3 solutions involve all three parameters (61,62,53)
defining the separation vector in the determination of the geo-

centric orientation vector.
Type 4 solutions are described in section 4.3.

Three classes of weight coefficients v for the observation
egquations in Ei(i=1,3) were used in the current solutions. The

first (elass A) is the uniform set

1.0 : W = 3.0 ... (145),

1.5 ; w 3

W

1 2

based on the conclusions drawn from a previous study(Mather &
Fryer 1970a,section 4). The second (c¢lass B in table 3) is the set

-1 u
W = M{Ggi} ,i=1,3 ...(148),

2 0 . .
where M{o i} is the mean square residual of the comparisons

g

between the gravimetric and astro-geodetic solutions on the common

geocentric datum. In the current investigation, values of class B
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weight coefficienfs were obféineé frqﬁ,the residuals after a so-
lution using class A solution but of the same type. For example,-
' the weight coefficients used in table,é, code 4, which is a type’
1 solution, comprise a class B set and.have numerical’values

Wy $0.75 5wy’ = 0.28 0 i W, = 0.20.
It is interesting to note that €3 was given twice the weight of £i‘
in- the type 1 solution using class A W. values but one-third
the weight when adopting class B coefficients. The resulting
change in the numerical values of the parameters defining the
geocentric orientation vector aré however, extremely small, as can

be seen by an examination of table 3, codes 3 & 4.

The third class (C) of weight coefficientsﬂwas based on the
relations '
. __l - . 2 -
W (0., - Mop 17, 1=1,3
the values of O¢s and M{0€i} being based on a previous solution
using class B weight coefficients, each observation equation having

" a different W, value.

Mt surprisingly, the results obtained from class C weight
coefficients do not givé the smallest residuals, as those points
at which comparatively large discrepancies occur have a tendency
to be weighted out of the solution. As these mainly occur on the
periphéries of the datum due to the weaknesses in the representa-—
tion adopted for the gravity field in these regions, the solution is
consequently biased towards comparisons at stations in the centre
of the continent. Such an orientation is not desirecble in view of
the existence of systematic errors in the gravity field represen-
tation as discussed in section 1.4 and in a previous study (ibid,
section 4). Thus solutions using class C weight coefficients,
while apparently desirable from a theoretical point of view, do
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. Position Nefloctions |- M
0 Name " . » UIMorth(sec) South(sgc).lgmet}_ N,
, “N °b | %1a |%1 %22 [Pe2 |F3a |%E:

1 [Quilberry . -26.66| 145.36f 2.2|-0.8f 1 2| 1.6 1.3| 1.3 18
2 |Bulloo NM/B/176 || -26.68|144.16| , 1.7|-0.5l-0.2 |l 1.5/ 0.0| 1.2 15
3 |purrie  T1/443 | -25.64|140.24) -4.0{-0.9| 1.4) 0.9-1.4| 0.6 18
4 |D'tina m1/482 || -26.57| 139.58)|. ~0.4| 0.0} 0.7/°0.7f-1.9] 0.9 14
5 |Gason T2/510 J| -27.36/ 138.70) ~1.2| 0.2(-0.94 0.1)-2.1] 0.8 21
6 |Mulka - T1/550 || -28.34]138.66) 2.2/-0.1f 0.3}f 0.9f-1.4] 1.1 24
‘|7 |Bransby. NM/B/ 27 || -28.18] 142.24] 5.1 0.9 ~o,5[ 1.04f 0.3 1.1 12
8 |Howitt NM/B/ 34| -26.54]142.38] 0.7|-0.4[-3.3}}~0.4-0.7] 1.6} 18
9 |Belalie NM/P/180 | -°~.A3] 143.18) 2.4| 0.1l 2.5 ».of-0.1| 1.8 18
Palp'ra NM/B/ 42| -24.96/ 141.57| -1.5| 0.3| o.&8|l 0.3{-0.9| 0.4} 16
Brds'vl  T1/441f| -25.55/ 139.41 -4.0|-0.4f 1.1 1.6]-0.8] 0.8 14
Bedourie T1/382 | -24.04}1°9.55]| -4.0{-0.2f|-1.1f 0.5 1.9)-0.3] 19
Low Cliff -29.01{ 135.04f -0.2] o.of-0.9} 0.1} 0.9 3.7{ 29
Attraction -29.59/138.05] 0.1] o.ofl-3.1f-1.0| 0.1| 1.2 24
Bishop Ck A 427 | -20.70/ 140.71| 2.5| 2.2| 2.6f-0.7| 4.4|{-0.7] 23
Mt.Isa A 419}l -=20.70{ 139.55] 0.4|~-1.5/-1.5) 1.8 4.4]|-2.0] 18
Soudan A 443 | -20.09| 136.84f] -1.2{-n.6} 0.6l 0.6 3.4(-0.21 17
Shamrock NM/G/ 2| -19.62 134.19 1.0| 1.3}] 0.3f-0.20 4.1| 0.0l 18
Daly Wrs NM/G/94 || -16.20| 133.42ff -3.1|-1.3}f o.7)-0.1] 5.0| 0.6l 17
Anzac -23.70/ 133.88(~15.7|-0.7|{-2.4}f-1.8|-0.2]| 2.6 20
O'Halloran -27.51 135.44) 4.7] 1.5} 1.7|| 2.1l 0.6| 4.6 24
RawlinsonNM/E/34 || -25.00| 128.31| -2.5{-2.7/|-2.6-3.7| 1.8| 2.1 14
Frankenia Rise -20.16[ 129.87) -1.5| 1.5} 1.6 0.3 s.0|-0.6{ 15
Campbell NM/G/48 || -21.79| 131.85) -9.1|-1.1f-2.3f-1.0| 1.5]/-0.3{ 22
Solitary =22.19) 133.65) -3.5/-0.3|-2.14 0.6 2.3|-0.1] 22
Johnston Origin | -25.95] 133.21§ 7.5| 0.4f-4.3) 0.6 0.0 5.7 31
Wambrook ~36.19 148.88) -2.8| 0.2} 6.2| 5.1l 5.6|-6.6] 20
Black Range -36.02f 146.96)f 1.5| 0.2 0.3 3.7l 6.2{-0.2 17
Yelta -34.13) 142.00f 2.5| 1.1{-1.4 0.4l 1.7|-0.9] 20
Sundown -31.90| 141.45] 1.1{-0.9ff 1.2 2.6 1.5(-1.5] o
Hilltop A 411 f -20.91| 143.38|] 0.5| 0.2}-2.3f-1.4 4.2 2.3 17
Windoo  NM/F/ 4 || -18.38[128.63} -0.3| 0.3l-1.2f-1.3l 5.2(-2.4a] 17

Go Go R 009 || -18.29{ 125.590 -1.4| o.8f|-4.20-2.2 1.3} 2.3 12
Rat Hill M 49| -22.45/120.34f -1.7|-1.9{-3.3}-3.3l 2.8]| o.5] =
Meekatharra MC15 || -26.37| 118.59) 0.6 2.4{|-3.50-4.7{ 7.6|-4.7§ 17
~“.Magnet MC 17 | -27.76{117.90} -0.6| 0.4l 5.7 1.7l 7.71-5.4 ] 16
Jaclean K 85| -29.78/117.70f o0.6{ 0.3}l 3.1 0.7}l 9.6|-3.1] 18
Bullabulling -31.00{120.84}) 3.0|-0.4) 3.8)-0.418.2]-0.5] o

Table 4

Residuals on the A.G.D. after application of orientation parameters

0 ={A£lo= -4.22 sec; Agzo= ~4.46 sec; AL, = 9.82 metres }

Ni = Number of stations available in innermost zone (¢<Oolo)
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not give the best solution for the geoc “ntric orientation parameters

and are shown for reference only

_ | It‘should'be emphasised that, under normal circumstances,
the use of class C weight coefficients should provide the best so-
lution- but the weakness of the gravity fleld on the eripheries of -the
contlnental reglon v1t1ates such a sylloqlsm. The typical distri-
bution of: E i and Gg are shown 1n figures 12 to']4.in'£he case
where the geocentrlc orlentatlon parameters are based on table 3, code
9.._ It can be seen that anv errors which are systematic over the -
entire reglon are obscured bv the "noise" generated due to errors in »
both the prediction of the local qravrty fleld and the astrononlcal R

observations. . Also see sectlon 4. 3

4,2 THE EFFECT OF THE INNER AND OUTER ZONES ON THE EVALUATION OF
GEOCENTRIC ORIENTATION PARAMETERS |

The stablllty of solutJons for the - qeocentrlc ornenta~

-tlon parameters deoend on two factors -

G} the lack of any systematic error in the representatron
of the distant zones as discussed in section 3.3 ; >and
' (11) the minimal. dependence of any soiutlon on the accu-

racy of local field determlnatlons

- The 9 solutlons dlscussed 1n sectlon 4. 1 1nvolv1rq all
three classes of welght coeff1c1ents and :solution types and glven ln"
table 3, codes 3 to 11, prov1ded verv similar solutions for AF
which are discussed further in section 4.4. Tests for the stablllty
of the solution were carried out by determlnlng the orlentatlon
paraneters by excludlng the inner zone contrlbutlons, the resultlnq
determlnatlon,belng listed in table 3, cedes 19 and 20, the former

being a type 1 and the latter a type 2 solution. . In this case, the
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gravimetric representation excluded the effects of all regions within

1.5 degrees of the computation point.

Two interesting observations were made from this solution.

a’ The orientation parameters obtained were only marginally
greater than those from a full solution (e.g., table 3, code 9). It
could therefore be concluded that computation of non-Stokesian terms
in the separation vector are not necessary for the determination
of geocentric orientation parameters as they can be treated as purely
iocal errors. Such a ccnclusion must however, be accepted with reser-
vation especially 1if there is a systematic variation in the nature

of the topography across the region being investigated.

(b} The root mean square residual of comparisons with the
astrogeodetic geolid was significantly smaller, while those of com-
parisons between deflections of the vertical increased in magnitude.
This indicates that the astro-geodetic geocid is more smoothered

than the total gravimetric solution.

A similar procedure was carried out with a gravimetric
solution restricted to a spherical cap of radius 20 degrees about
each computation point and the results are shown in table 3, codes
21 & 22. The exclusion of the outer zone is seen to give a poorer
fit in all of 51, Ez

at code 3 shows that the root mean sguare residual in 63 in-

and 53, a comparison with the determination

creases from 12,25 metres to *2.83 metres, the outer zone contri-
buting about *1.7 metres through the root mean square residual
to improving the match between the gravimetric and astro-geodetic’

solutions.

No definite conclusions can be drawn from the above tests
until some assessment is made of the current location of the A.G.D.
in earth space. This may be obtained by effecting the solution
defined by equations 105 to 115 with all gravimetric values held
constant at, for example, zero. The resulting solution, shown at
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table 3, codes 1 and 2, gives orientation parameters necessary to
correct the existing datum to the mean geoid slove arross it as
represented by the 38 stations included in the stud, . Table 3,
code 1 is a type 1 class A solution while code 2 is of type 2 class
A and hence independent of the astro~-geodetic geoid. Code 1 can
be interpreted as indicating that a correction of -3.45 metres to
the astro-geodetic geoid height at the Johnston origin (presently
assigned the value zero), together with corrections of 0.00 sec to
Elo and ~-0.50 sec to 620,

the mean geoid slope across the dztum. These figures are in close

would transform the A.G.D. to lie in

agreement with the estimate made by Fischer and Slutsky (1967,p.331).

The code 2 solution which is based only on the deflections
of the vertical however indicates that the corrections are 0.48 sec
for 510 and -0.01 sec for 520 if the astro-geodetic geoid is not
considered in the determination. These figures, which could have
been predicted from the mean residuals in the previous solution,
will not agree with Bomford's mean deflections of the vertical
{Bomford 1967,p.57-8) as the former are the means after allowing for
the translation of the local trihedrons to the Laplacian trihedron

at the origin while the latter are straight numerical means.
It can therefore be concluded that

(i} the adequate representation of the outer zone gravity
field is critical in the determination of the geocentric orientation
parameters; but

(1i) it would sivifice if only reasonable representation of
the inner zone gravity fields were available around selected stations
in obtaining geocentric orientation parameters with adeque te preci-~-

sion.

It was therefore decided that the use of the free air geoid
alone would provide the required parameters with a precision approa-

ching #0.2 sec, which cannot be exceeded in view of the limitations
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inherent in the representation of the gravity field currentlv
available. The non-Stokesiar efferts due to the topocoranhic
terms would be included in the residuals obtained by the use of

equation 144,

The study of such residuals could well hecome an intearal
vart of physical geodesy as they are a consequence of comparisons

betweer Lhe results obtained from twe completely independewnt maih

P

{

and, provided the astronomical observations are of adequate ore-
cision, afford models of little ambiguity for the studyv of a varictv
of problems. The principal difficulty at the present time is the

necessity for large scale prediction and the undoubhted existence

of correlation effects in predicted fields. The efficacy of com-
putation routines for the topography dependent terms can he pro-

perly assessed only if the residuals are not masked by errors
arising from these correlation effects in the field extensions.
This may be more closely analysed hy a procc dure sugcested in
(Mather 1969a).

},3 THE COMPARISON OF ASTRO-GEODETIC AND GRAVIMFTRIC AUANTITIES

2 study of table 3 shows that orientation parameters
obtained for {1 and 62, on comparing deflections only (tvoe 2
solutions) are slightlv different from *he results of types 1 and
3 in which the results of the astro-geodetic geoid are included,
The solution of Fischer and Slit:sky (1967) was hased on approximatelvy
600 stations, many of which were situated on two closely svaced

traverses which provided the framework for +he computation. The

s o

analysis at table 3, code 1 which Ze independent of the gravimetrirs
solution. indicates that the geoid in the vicinity of the Johnston

origin is depressed with respect to the rest of the datum if a mean
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fit is adopted over the 38 stations included in the study.

This figure is also borne out by solutions obtained by
the comparison of 63 7ralues only between the astro-geodetic geoid and
the free air geoid at the corners of a one degree grid at 693 points
covering the entire Australian mainland, on allowing for the free air
geoid elevation at the Johnston origin (row 26 in table 4). The
gravimetric determination used in this calculation and called the
1970 free air geoid for Australia is shown in figure 15 and the
resulting orientation parameters listed in table 3, code 12, the
technique being identified as solution type 4. The residuals in
€3 are shown in figure 16 which is equivalent to figure 10 in (Mather
1969b). A comparative assessment of these figures shows that the
major inconsistencies which existed between the astro-geodetic geoid
and the 1968 solution have been eliminated by the adoption of the
technique outlined in section 3 for effecting the necessary predic-
tions and used in the preparation of the 1970 free air geoid.
The root mean square residual {Ugg}from the 1970 solution is #2.5
metres over the entire continent (table 3, code 12), whereas it
was t 3.0 metres over only 80% of the continent in the 1268 solu-
tion and %5.3 over the entire region (ibid,p.513). It is also
apparent from figure 16 that systematic discrepancies still exist
between the two solutions, but over limited extents and, with one

exception, on the peripheries.

The exception is the geoidal low over the Officer Basin
in South Australia which shows up clearly on both the astro-geodetic
determination of Fischer and Slutsky as well as on the 1970 free
air geoid when the latter is converted to the A.G.D., as can be
seen from figure 17. However, the minimum as obtained from
gravimetry is about 7 metres in excess of that predicted from astro-
geodesy. Another point of interest is the markedly greater geoidal
high obtained in the Snowy Mountains area from the 1970 free air
geoid than from the solution of Fischer and Slutsky.
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It is apparent that the solution of Fischer and Slutsky
is of commendable accuracy when assessed in terms of the astro-
geodetic station density of one point per 10,000 km2 and the uneven
distribution. There is also little doubt that the accuracy of the
gravimetric determination is sufficiently adequate to make the drawing
of any conclusions regarding the source of the discrepancies pure
conjecture. This matter will be investigated further when the new
astro-geodetic solution for the geoid, based on approximately 1500
astro-~geodetic stations, is completed by the Division of National

¥Yapping in 1971.

Comparisons between deflections of the vertical at indi-
vidual stations on the A.G.D. is shown in table 4. The assessment
of the accuracy of gravimetric computations of deflections of the
vertical in circumstances where 1 ar:ially predicted fields are used,
is a complex task. Correlation of predicted values can never be
avoided, whatever statistical technique is used, the effect being
directly proportional to the area over which uninterrupted prediction
is performed. It therefore becomes mandatory to use analytical
techniques and adequately filtered data to correctly assess these
correlation terms. The results of individual comparisons in table 4
when viewed in this light, show that most residuals are of the order
of precision of the astronomical observations. For example, at the
Johnston origin, the astronomical latitude was based on circum-
meridian observations to 16 pairs of stars over two nights with a
standard deviation of #0.80 sec, while the longitude was determined
by 35° almucantar impersonal observations over two nights using
16 pairs with a stancard deviation of £1.16 sec, the instrument used
being a DKI1 3A theodolite.

Significant departures occur at some points in Western
?matralia which are surrounded by regions where significant field
extensions were necessary in representing the near zones and also

in the vicinity of the Snowy Mountains in the south east where the
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results appear to have been affected not only by the lower density
gravity field in a region of rugged topography (see figure 10) but
also by the extensive prediction necessary in the Tasman Sea.
Computation of the topographical effect on deflections of the vertical
through equation 71 were found to reach the magnitude of the estimated
error in the astronomic latitude and longitude at only one station,
viz., Wambrook {27 in table 4). The correction computed in this

case significantly reduced the residual in £ These terms were

92‘
not considered further in the present study as their effect on the

geocentric orientation parameters is negligible.

4.4 THE BEST SET OF GEOCENTRIC ORIENTATION PARAMETERS

A study of table 3 shows that, on exclusion of type 3
solutions which are disproportionately representative of those
stations with large residuals with significant effects on the de-
termination due to these points being peripheral to the region
covered by the datum, values can be assigned for the geocentric
orientation parameters with confidence so that they lie within a
range of 20 cm in 53(igem,N ) and 0.2 sec in Ei and 52. The
exact values to be adopted still require clarification. An
earlier study (Mather & Fryer 1970a,secticn 4 recommended that
the set

0 = { Aglo = =4.7 sec ;AEZO = -4.4 sec ; ﬁigO = 14.0 metres}
based on the 1968 free air geoid sclution for Australia (Mather 1969b).
The 1270 solution is based on a much improved data set as discussed
earlier, although the land areas of Australia are still not comp-
letely represented at the present time. In addition, the earlier
solution was seriously affected by systematic error due to lack

of compatibility between data sets. This defect has been remedied
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in the current solution and the residuals on comparison of the two

solutions are greatly reduced as discussed in the last section.

As the results obtained from table 3, code 19, indicated
that inner zone contributions had marginal effects on the orientation
parameters, it was decided to include the values determined from
comparisons between 53 values on a one degree grid, as shown at code
12, in the analysis, being listed as type 4 in table 3. It can bhe
seen that the values of Ailo and A€2O obtained from this solution
are not significantly different from those ohtained from the type 2
determination at code 6 in table 3. Due to the similarity in the
results obtained from solution types 1 and 3, it was decided that the
values deduced for the astro-geodetic geoid at the 38 selected stations
rere not representative of the datum as a whole and a number of
composite solutions were investigated with minimal concern for marginal

inereases in the root mean square residual in €3 at the 38 stations.

Two composite solutions were considered. The first was

defined by the orientation correction parameters

= = - 4,22 . L AE = - 4.54 sec :AE = 9,82 mety ;

0 { AElO 4.22 sec :A . 54 sec 7£3O 9.82 metres},
being a combination of codes 3 and 6 in table 3. The resulting root
mean square residuals at the 32 stations are shown in code 14, Thesze

results are only marginally different from those at code 13 where the
orientation varameters were adopted from code 12, which was based on
comparisons on the continent wide one degree grid. The for~ed mean

valurs of and © are a measure of the non~representative

0
£1 £2
nature of the residual~ in 63, there being larger increases in o.

3
than in either GEl anc 052' both of which, as expected. are almost
unchanged. The incorporation of these forced means into the
orientation parameters themselves results in comparisons given at
table 3, code 15, which, as envisaged, produces changes in the root

mean square residual in 53 but not in those of 51 and £2g
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‘ It can therefore be concluded that the following set of
‘geocentric orientation parameters hest fit the Australian Geodetic

Datum

= 10eOtO@2metres}

0 = {A51o= -4.2+0.2 sec : AgZO = -4,5+0.2 sec : Agso

The above set is significantly different from the one cbtained by
- the use of the 1968 free air geoid and quoted earlier. The latter

should be disregarded as based on an inferior data set.

The error estimates given for the above set of orientation
parameters are based on detectable errors and do not reflect the
magnitude of any systematic effects in those low degree harmonics
of the earth's gravitational field which have near planar variations
over the Australian region as discussed in section 3.3. Even degree
zonal harmonics, being determined from secular variations must be
considered the most reliable of the suspect harmonics. Accuracy
estimates between Rapp's solution for these coefficients from
gravity data alone and the Smithsonian Astrophysical Institutior
Standard Earth solution (Rapp 1969,p231) indicate that the maximum
values possible in the error estimates of A€3o as * 5 metres and
+ 0.4 sec in AElO and AEZO. These limiting values would he smaller
if the estimates of the errors in the coefficients were c.  oser to

values given by Cook for those in C and C40 (Cook 1965,p.181).

20
It is therefore a distinct possibility that AEBO may be

subject to changes of the order of 1 or 2 metres but it is unlikely

that Aglo and A€2o will change by more than the limits specified

in equation 148. The final set of geocentric orientation parameters

defining the geocentric orientation vector 0 at the Johnston origin

of the Australian Geodetic Datum, on including the zero degree term

of -2.8 metres from tabhle 1 are
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p—4 = . 1
{Aglo AE 4.2 + 0,2 sec
0 = |Ag, = bn_ = - 4.5 + 0,2 sec ..98(149)”
AE = AN = 7.2 + 0,2 metres

30 0

5. CONCLUSIONS

5.1 THE 1970 FREE AIR GEOID FOR AUSTRALIA

The geoid across Australia can be related to a geocentric
reference spheroid if it is computed by the use of a set of free air
gravity anomalies, which, to the order of the flattening, approxi-
mate to the gravity anomaly, provided the anomaly set, on global
analysis using a surface harmonic series, has no harmonics of first
degree and first order of second degree. The height anomaly, the
geoid/spheroid separation and the results of astro-geodetic levelling
can be assumed to be equal for the Australian region, provided
they are related to the same common datum, as the systematic errors
in the representation of the incompletely surveyed earth's gravity
fi. 1d at the present time provides sufficient "noise” to drown
out the "signal"” due to such indirect effects. The resulting free

alr geoid, called the 1970 free air geoid for Australia, is based

on a totally compatible composite data set where the gravity field
within 20 degrees of the Australian coastline has bheen defined
either by observations or predicﬁions in accordance with criteria
and procedures specified in sections 3.2 to 3.4. Such a solution
provides a good approximation to both the height anomaly and the

geoid/spheroid separation.
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Tests of the 1970 free air geoid with the astro-geodetic

solution of Fischer and Slutsky indicated that the former was a
marked improvement over the 1968 solution, the root mean square
residual for the Australian region reducing from +5.3 metres to

+ 2.5 metres. A more comprehensive analysis of this solution
will have to await the completion of the detailed astro-~geodetic
determination of the geoid being prepared by the Division of
National Mapping. The current indications are that its accuracy
is at least on par with an astro-geodetic solution prepared from

an average station spacing of 100 km.

5.2 THE SET OF GEOCENTRIC ORIENTATION PARAMETERS FOR THE
AUSTRALIAN GEODETIC DATUM

The composite data set described in sections 3.2 to 3.4
vas used in two ways to obtain the required orientation parameters,
In the first case, it was used to compare gravimetric values of
the deflections of the vertical El and 52 as well as the separation
53 at the corners of a one degree grid which covered the entire
datum and the results are set out in table 3 as the type 4 solution.
It was also used to compute these quantities at 38 astro-geodetic
stations evenly spaced over the datum and shown in figure 12.

The solution on the grid was compared with the Fischer and Slutsky
astro-geodetic geoid on the A.G.D. from which orientation parameters
were defined for transforming the earth space location of the
Australis National Spheroid, as specified by the geodetic co-or-
dinates adopte& at the Johnston origin, to a geocentric one.

The geocentric orientation parameters obtained by the first tech-

nique were in gocd agreement with a composite set estal "ighed
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by the second, this procedure being resorted to as the values of
the astro-geodetic geoid deduced at the 38 stations were not repre-.

sentative of the entire datum.

The following conclusions were drawn after testing

various possible sets of orientation parameters.

(i) The inner zone field has a marginal effect on
the determination of sets of geocentric orientation parameters

for a region the size of Australia.

(ii) The non-Stokesian topography dependent terms
have purely local effects to within the limits of precision sought

in this investigation and have not been considered.

(iii) The use of the free air geoid alone instead of
the height anomaly and surface deflections of the vertical which
comprise the complete gravimetric solution, should give orientation
parameters with errors less than *0.1 sec in each of Aglo andAEZO
and * 0,1 metres in A€3O, provided the gravity field is adequately
defined and no serious systematic effects exist due to errors in
the values adopted for the coefficients of low degree harmonics
of the earth's gravity field. The current data set does not

quite meet these requirements as can be seen from equation 149.

“iv) It is possible to estimate the precision of
deflections of the vertical obtained from gravimetry using the data
set currently available for the Australian region. The use of
free air anomalies in the Vening Meinesz integrals does not give
the total surface deflections of the vertical, but nevertheless
matches the astro-geodetic values with a root mean square residual
of 1.0 sec in the meridian component and * 1.8 sec in the prime
vertical component. These results should be interpreted in the
context of the accuracy of the astro-geodetic determinations

which are estimated as being *0.5 sec in 51 and * 1.0 sec in 52
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for determinations in the Australian network. These figures
quoted for the residuals are considerably improved if only those
stations where the inner zone gravity field within 3° of the com-
putation point has been adequately defined, are considered, when the
root mean square residual approaches that of th: estimated precision
of the astronomical values. These conditions are satisfied only
in western Queensland,the Northern Territory and adjacent areas.
The contributions of the topography dependent terms to the surface
deilections of the vertical are small, being of significant magnitude
only at station 27 in table 4, when computations using equation 71
significantly reduce the magnitude of the residual in 62.

(v) The root mean square residual of the comparisons
between the free air geoid and the astro~geodetic solution after
datum translation varies between #2.2 metres at the 38 stations
to *2.5 metres over the entire continental extent. The significance
of these figures must be evaluated in the light of the following
observations.

(a} The astro-geodetic geoid matches a gravimetric solu-
tion without inner zone effects with smaller residuals than a
complete solution, indicating that the former is over-smoothened,
which is not surprising in view of the fact that the station density
is one per 10,000 kmzo

{b) The residuals are position dependent, inferring the
existence of systematic error in both the astro-geodetic and
gravimetric solutions.

The errors in the for: er are essentially due to over-
smoothing , thus underestimating geoidal highs in mountainous
regions, as occurs in the Snowy Mountains region, and over-
estimating geocidal lows, an instance of which clearly occurs in
the Officer Basin region near the Johnston origin. The errors
in the gravimetric solution are due to correlated prediction errors

which continue to be of significance in determinations at certain
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regions on the continental margin.

(vi) The best set of geocentric orientation parameters

which can be deduced from the 1970 data set are given by

AEO = Aglo = =4,2 + 0.2 sec
0 = Ano = Ag2° = -4.5 + 0.2 sec ’
AN = AL = 7.2 £ 0.2 metres
: 30

which also includes the effect of the zero degree term, but assumes
that the potential of the geoid is equal to that of the spheroid,
as any other zero degree consideration can only be interpreted on

the basis of global analysis (e.g.,Mather 1968b,p.528).

5.3 CONCLUSION

The current investigation is of a preliminary nature
in that results were of prime importance and speed of execution
was the essence of the entire study. In many instances field
readings were made available to the investigator before final
plans had been issued. The bulk of the U.N.S.W. data set has
been primarily compiled from Bouguer anomaly maps and the free
air anomalies regenerated using the digital representation of
topographical maps available in 1964. The investigator felt
that such a procedure was warranted in view of the gaps in the
anomaly field and the precision attainable from astronomical
observations, and subsequently confirmed by the results of
this investigation.

The guality of the gravity data set available at present
makes it desirable that the entire U.N.S.W. data set be re-assembled
from individual gravity readings as it presently contains errors

due to both the interpolation of Bouguer anomaly maps as well as
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elevation errors consequent to the digitising of topographical
maps which have largely been superseded. The re—-assembly of
the data will take approximately 24 man-months, exclusive of

predictions.

This will be a pre-requisite to any investigations of
the topography dependent terms in the expressions for the surface
deflections of the vertical, which, in Australia, are capable of
serious investigation only in the Snowy Mountains region. The
establishment of the gravity field in the Tasman Sea to the

east of this area is also a pre-requisite to such a study.

In a more general context, the only restriction on
the gravimetric determination of the geocentric orientation
vector for a geodetic datum is the precision of the definition
of the gravity field and the extent to which prediction has to
be resorted to. Results can be seriously jeopardised by the
nature of the predictions performed as correlation errors signifi-
cantly affect results which are based on extensive predictions
of the near zone gravity field within 10 degrees of the compu-
tation point, the effect decreasing with increase of distance
between the predicted values and the computation point. The
chances of obtaining satsifactory predictions from purely local
statistical processes alone are limited. The cofbination of
statistical and analytical techniques is to be preferred, the
latter assessing the regional trends while the former estimates
the likely deviations of individual stations from these trends.
Marine gravity surveys for geodesy should concentrate on estab-
lishing "noise" free estimates of area means at discrete intervals
in order that analytical technigques could be successfully applied
during that interim period preceding the complete global represen-
tation of the earth's gravitational field.

In the short term, gravimetric determinations of the
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geocentric orientation vector will provide a valuable independent
check on any global satellite triangulation scheme. In addition,
it will afford a definition of local geodetic datums with respect
to fundamental invariants of earth space. The adoption of the
technique is styngly recommended in view of its long term geophy-

sical significance.

28th March 1970

The Department of Surveying,

The University of New South Wales,
Sydney,

Australia
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