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SUMMARY .

The relationship between the Australian Geodetic Datum and a
geocentred reference spheroid of dimensions equal to those implied
in Reference System 1967 is defined. The 1968 free air and the
Fischer/Slutsky astro-geodetic geoid solutions for Australia are
compared to produce a preliminary set of geocentric orientation
parameters for the Johnston Origin of the Australian Geodetic Datum.
Regions of low precision free air geoid values are delineated and,
when excluded from computations, the meshing of the abovementioned
geoid solutions reduces to * 3 metres over 80% of the Australian

continent.

Estimations of the indirect effect for the free air geoid are
obtained on global and continental bases. A study of this effect
in the Australian region with respect to the 1968 free air and
astro-geodetic geoid solutions is presented. The results indicate
that both the above solutions are too insensitive to detect any
improvements arising from the incorporation of the indirect effect.
The zero order terms relating to the complete definition of the
geoid are examined in view of the global estimates of the indirect
effect and the differential terrain correction. The adoption of
geocentric orientation parameters for the purpose of referring
control station co-ordinates to a geocentred reference spheroid is

recommended.



The scale errors which arise from the neglect of the geoid
spheroid separation vector in the reduction of measured distances
to assumed spheroid level are investigated. The effects of scale
errors on the misclosure of traverse loops and on baselines for
satellite tracking purposes are formulated. These formulae are

reviewed for a hypothetical case study on the Australian Geodetic

Datum.
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GUIDE TO NOTATION

COMMONLY USED SYMBOLS.

,dS

(i=1,3)

Equatorial radius of reference spheroid.

Instrumental error of electronic distance measuring device

(in cms).

Azimuth.

Representative of spherical harmonic coefficients.
Atmospheric uncertainty re electronic distance measuring
(in p.p.m.).

Elements of surface area.

Element of mass.

Element of surface area on a unit sphere.

Length increment.

Height increment.

Error estimate; where relevant, a standard deviation.
Flattening of the meridian ellipse.

Elevation.

Height anomaly.

Normal height.

Orthometric elevation.

Spheroidal elevation.

Unit vectors.

Direction cosines.

Gravitational constant.

Distance between adjacent control stations.



Guide to Notation (2)

(i=1,3)

Ys Yn

Ag

AEy,Ang, AN

Order of surface harmonic.

Misclosure vector.

Mean value of x.

Degree of surface harmonic.
Normal vector to a curve.
Geoid Spheroid separation.

Computation or fixed point.

Distance of a general variable point from the computation

point.
Radius of an inner zone around the computation point.

Radius of curvature in normal section of reference

spheroid; where relevant, the mean radius of the earth.
Distance.

Scale error.

Potential on the reference system.

Disturbing potential.

Potential of the existent earth.

A general rectangular cartesian co-ordinate system.
Rectangular two dimensional axes system,.

Variable height.

Azimuth.

Normal gravity; where relevant, the mean value of normal

gravity over the reference spheroid.
Gravity anomaly.

Geocentric orientation parameters at the origin of a

geodetic datum.



Guide to Notation (3)

n, (&2) Prime vertical component of the deflection of the vertical.
A Longitude, positive east.
£, (61) Meridian component of the deflection of the vertical.
0 3.1415926. ...
o Density.
o Radius of curvature on a spheroid in the meridian.
v Radius of curvature on a spheroid in the prime vertical.
¢ Latitude, positive north.
¢ Potential.
Y Angular distance on unit sphere.
v f%a
i=1 1

2. SUBSCRIPTS.

Astronomically determined values; astro-geodetic values.

a
. Refers to differential terrain correction (4g.).

d Disturbing value.

£ Refers to free air geoid, free air anomalies.

g Gravimetric values.

G Evaluation at geoid; referring to geodetic values.
i,in Evaluation of an inner zone.

o Referred to origin; evaluation outside inner zone.
p Evaluation at the fixed point P.

Evaluation at spheroid.



Guide to Notation (4)

3. GENERAL ABBREVIATIONS.

A.G.D. Australian Geodetic Datum.

A.N.S. Australian National Spheroid.

I.A.G. International Association of Geodesy.
p.p.m. Parts per million.

R.S. 1967 Reference System 1967.



CHAPTER 1.

INTRODUCTION AND DEFINITIONS.

1.1 Introduction.

The basic problem in physical geodesy is the relating of
a physical reality of unknown position to a reference system of
assumed. size, shape and location which unfortunately has no
physical reality, being only a mathematical device onto which
observations made on the existent earth are reduced. The most
suitable reference system is an oblate spheroid if the physical
reality to be mapped is the geoid. This has always been the problem
in '"classical geodesy'', but in recent years this fundamental problem
of physical geodesy may be solved by the adoption of the telluroid as
the reference system and the earth's surface as the physical reality
(Moritz, 1965).

This thesis deals specifically with the geoid-spheroid case,
although many of the methods employed and conclusions reached should
have analogous counterparts in the telluroid-earth's surface system
which for the sake of completeness has been defined in this Chapter.
For the geoid-spheroid system, the discrepancies of the real equi-
potential surface from the spheroidal model are the variations which
have to be mapped. These discrepancies are due to irregular variations
of the equipotential surfaces of the earth's gravitational field arising
from both local and regional mass anomalies. These undulations of the

geoid cannot be readily evaluated. Calculation of a first approximation,



the free air geoid, are given and then the latter half of this work
involves an estimation of the difference (so-called indirect effect)
between the free air geoid and geoid itself on a global scale. Since
all geodetic observations are made with respect to the local vertical
(direction of ''gravity' at that point), an obvious approach to the
mapping of these physically real surfaces is to relate their irregu-
larly changing verticals to the spheroidal normals of known direction
on the reference system. The relationships between the local
verticals and spheroidal normals are called the deflections of the
vertical. These deflections of the vertical can be manipulated to
produce geocentric orientation parameters for an arbitrarily oriented
triangulation spheroid so that its earth space location can be defined
with respect to the earth's centre of mass. The methods of obtaining
these geocentric orientation parameters and the resultant effects on
the geodetic control network are two areas of investigation that are

dealt with in following Chapters.
1.2 Definitions.

To facilitate an understanding of the following Chapters, the
definitions below are given. A consideration of figures (1.1), (1.2)

and (1.3) may be of assistance;

Geop.
A geop is an equipotential surface of the actual earth's gravi-
tational field. The curvature characteristics of a family of geops

will tend to be irregular due to variations in the earth's density
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distribution. The geoid is probably the most important member of the

family of geops.
Geoid.

The geoid can be readily defined over ocean areas as the free
surface of the ocean if the latter were free from tidal, wind and wave
motion effects. In fact it is this equipotential surface that is
referred to as mean sea level and is used as a datum for elevations,
although the '"elevations' derived from ordinary levelling are not the
required spheroidal heights hS but orthometric heights ho’
figure (1.3). Unfortunately the geoid does not have a physical counter-
part of the ocean over land areas and is in fact generally located
below the land surface. Since the geoid is an equipotential surface
it is quite susceptible to local and regional mass anomalies and thus
its shape is dependent on the stratification of matter within the

earth's crust.

Until recently, solutions for the geoid using Stokes' integral
equation (equation (1.1)) required the removal or transfer of the
topography exterior to the geoid so that the conditions of Stokes'
integral could be satisfied. Such solutions are called regularised
geoids, although in fact Stokes' integral only gives a solution for
a co-geoid and correction terms (indirect effect) must be added to

give the desired value of geoid spheroid separation N.

-

Recent advances in theory have enabled the solution for non-

regularised geoids where such mathematical manoeuvres are unnecessary.
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The most suitable gravity anomaly to be used in such solutions is the
free air anomaly, the resultant geoid being called the free air geoid.
Although the free air geoid is only a co-geoid, it is claimed to be
the best direct approximation to the geoid obtainable and the only

co-geoid of real geodetic importance (Mather, 1968b, p.47).

Free air anomalies are the differences between observed gravity
values, corrected for the elevation of the observation point, and the
expected value of gravity (normal gravity) at that point. Using free
air anomalies, the free air geoid spheroid separation value, Ng, is
given by

Ne¢ = Rp J C=4"’f(¢) Agg do L. (1.1)

dmyy 6=0

where Ry is the mean radius of the earth,
Ym is the global mean value of normal gravity,

Age is the free air anomaly representing the element of
surface area do on a unit sphere which is at an angular distance ¢
from the computation point,

f(y) is Stokes' function, conventionally represented as

follows,

f(y) = cosecky + 1 - 5¢cosy - 6sinky - 3cosy 1og(sin%w (1+sin%w))
ceeen(1.2)

The free air geoid described above assumes that no zero or first

order terms exist in the solution. The first assumption is equivalent



to adopting a zero value for the global mean of the free air anomalies
and the second implies the setting of the reference spheroid, on which
normal gravity was calculated, at the centre of mass of the earth.

If the former assumption is not satisfied, a more complete expression

for the free air geoid (ibid, p.25) is,

Nf¢ = Wo-Up - Ry M{Agf} + Ry J0=4ﬂf(w) Age do ..., (1.3)

Ym Ym 4TTYm =0

where W, is the potential of the geoid and U, that of the
reference spheroid. M{Agg} refers to the mean global free air
anomaly value. The assumption of a zero value for the first term in
equation (1.3) is equivalent to assigning the value of the potential

on the reference spheroid to the geoid.

As ¢ tends to zero, the surface integrals in the above equations
become indeterminate. However the contribution Ng; of the innermost
region (often called zone) can be evaluated by the expression (Mather,

1968a, p.264),

Ngi = 88f 1o (1 + 10) ceeen(1.4)
Y Ry

where r, is the radius of the inner zone assumed to be circular

and Agg is the local free air anomaly.

SEheroE.

A spherop is an equipotential surface of the earth's reference

system (i.e. oblate spheroid). The curvature of a family of spherops



is more regular than the corresponding curvature of a family of geops.
Spherops converge towards the poles such that the normals at the same
parallel of latitude on different spherops have different orientations
in space, giving rise to the so-called "curvature of the vertical"
(Bomford, 1962, p.410). This curvature is concave towards the axis

of rotation and is taken into consideration when comparing astro-

geodetic and gravimetric deflections of the vertical.

Reference Spheroids.

To define any reference spheroid in space, the definition of
seven parameters is involved. These parameters can be subdivided

into three groups, viz.,

(1) The size and shape of the spheroid, usually designated
by a and f, the semi-major axis length and the flattening
respectively;

(ii) The positioning of the origin of the reference system
requires four parameters; a three dimensional rectangular cartesian
system plus a fourth parameter to determine the direction of one of
the axes of this cartesian system in space;

(iii) The seventh parameter relates the rotation axis to one

of the reference system axes.

Ideally the reference axes system should be centred at the
earth's centre of mass but this is not always the case in practice,

as shall be seen later with the Australian Geodetic Datum. The other
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requisites above are satisfied by the adoption of the celestial pole
as being fixed in space. If the prolongation of the semi-minor axis
is made to pass through it, then astronomical determinations of
latitude at any point on the reference spheroid are given by the
complement of the intercept on the great circle arc between the pro-
longed local zenith and the celestial pole. These relationships are

displayed in figure (1.4).

Many different spheroids have been adopted throughout the world
as reference systems for geodetic control networks and, in general,
geodetic data obtained on these networks is not readily applicable
to other datums because of differences in size, shape and orientation.
An internationally respected system must be adopted so that large
volumes of gravity anomaly data, etc., are available for use by
geodesists and scientists everywhere without recourse to tedious
correction formulae. The International Spheroid system fulfills

this need and it has parameters,

6,378,388 (= semi-major axis).

a

f = 1/297.0 = 3.367 x 10-3 (= flattening) cenee.(1.5)

This spheroid was adopted by the International Association of
Geodesy in Madrid in 1924 and it forms the basis of the International
Gravity Formula. This international spheroid, by definition, possesses

the following qualities;

(1) Same mass as the existent earth,
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(ii) Common centre of mass with the existent earth,

(iii) The potential of its equipotential bounding surface is the
same as the potential of the geoid,

(iv) There are no masses exterior to this bounding surface,

(v) Same rotational characteristics (potential) as the existent

earth.

Complete lists of the numerical values of all quantities commonly
used by geodesists (e.g. bounding potential U,, equatorial gravity
Yes €tc.,) are readily obtainable (e.g. Heiskanen and Moritz, 1967,
p.79). These values and associated formulae have been used since
1930 but because the International Spheroid could no longer be con-
sidered the closest approximation of the earth by a spheroid, a

revision has taken place and the new (1967) values are,

a= 6,378,160 metres
f = 1/298.25
kM = 3.98603 x 1020 cm.sec™2 ... (1.6)

These values give rise to the 1967 International Gravity Formula
which will eventually replace the former one. It is interesting to
note that the values of a and f in equation (1.6) above are those
presently used for the Australian Geodetic Datum and are those adopted
by the International Astronomical Union at Hamburg in 1964 (Fricke
et al., 1965). A certain amount of conflict exists between the
interests of geodesists and astronomers regarding the size and shape

of the spheroid which best approximates the actual earth. The
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astronomer constantly wants the best-fitting spheroid possible whereas
the geodesist needs a permanent reference surface that is reasonably
close to the best-fitting figure so that his large amount of numerical
data does not have to continually undergo small corrective changes.
Pleas for such a permanent reference figure are to be found in several
references, notably (Heiskanen and Moritz, 1967, p.111) and (Mather,

1968c, p.348).

Telluroid.

Considering figure (1.1) let the spheroid have potential
U =U,; let the geoid have potential W = Wy; let the geop passing
through the point P on the physical surface have potential W = Wp,
then the spherop with potential U = Wp has the same potential on the

reference system as the geop through P has on the real system.

If a point Q on the reference system is defined such that

U =
¢Q = ¢ap
: No= dep e (1.7)

where the suffix a refers to astronomic values, then the point Q

is fixed without ambiguity if W, is known since,

and it may be assumed AW can be determined by levelling procedures.
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If Py is the point where the normal through P intersects the spherop
through Q, then the locus of the points P, is defined as the

telluroid, (Hirvonen, 1960, p.40). PP, 1is called the height anomaly = hy.

The above definition assumes, however, that Wy is known and is
equal to Uyp. Wp cannot be defined unless Wo is known. As this is
unknown, Uy cannot be assigned a value either. Thus a more practical
definition of the telluroid was suggested (Mather, 1968b, p.8), and it
is an adaptation of the 'mormal surface" (Moritz, 1965, p.12). This
new definition defines the points Py (figure (1.1)) as those on the
reference system having the same difference in potential with respect
to Uy (i.e. with respect to the spheroid) as the difference in geo-
potential (AW) between P and the geoid. Thus a telluroid of

complete definition would be the locus of the points Q defined by

¢Q = ¢ap
A = Aap
U - Uy = Wp - W, ceeen (1.9)

Relationships between Surfaces.

To completely define the relationship between equivalent points
on reference and irregular, physically real surfaces, the use of a
three dimensional vector d (= PQ in figures (1.1), (1.2)) is most
convenient. This vector is defined by three parameters; hy, the
separation between the surfaces, and £ and n, the deflections of

the vertical in the meridian and prime vertical directions
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respectively. From a consideration of figure (1.2), it can be seen

that the vector d can be represented by

d=R&1+Rn2+hy,3 ... (1.10)
= - it a2

where R 1s the mean radius of curvature of the spherop at Q
(for practical purposes, it is assumed to be equal to the mean radius
of the earth); 1, (1 = 1,3) are the direction cosines of a local
three dimensional rectangular cartesian system with the xz axis coin-
cident with the local spherop normal and the x; and x, axes in the

horizontal plane, being oriented north and east respectively.
If the telluroid is adopted as the reference surface, the three
parameters of the vector d are

(a) the height anomaly, hg,

(b) the angle ¢ between the surface vertical and the normal
to the associated spherop resolved into the meridian and

prime vertical directions (see figure (1.1)).
If the reference surface 1s the spheroid then the parameters
are

(a) the geoid spheroid separation N,
(b) the angle ¢y between the geoid and spheroid normals

resolved into the meridian and prime vertical directions.

Clearly, ¢, and ¢ are not equal, their difference varying

according to the topography, being larger in mountainous regions.
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The use of the free air geoid is believed to provide close approxi-
mations to both angles (Mather, 1968b, p.47). The results of
comparisons between gravimetric deflections of the free air geoid

for Australia and astro-geodetic deflections on the Australian
Geodetic Datum (corrected for curvature of the vertical) should there-

fore be of interest to persons studying either system of reference.
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CHAPTER 2.

DEFLECTIONS OF THE VERTICAL.

2.1 Astro-geodetic Deflections.

The astro-geodetic deflections of the vertical are the components
in the meridian and prime vertical directions of the angle between the
normal to the surface geop and the spheroidal normal. These astro-
geodetic deflections, when based on a geocentred reference spheroid,
vary by only a small amount from the gravimetric deflections of the

vertical mentioned last Chapter.

Let the point P in figures (1.3), (2.1) and (2.2) represent
a point on a geodetic control network which has geodetic co-ordinates
¢GsAg. Assuming astronomical observations have been performed at P,
giving astronomical co-ordinates ¢p,AA, @ consideration of the local
vertical zenith Zp, the spheroidal normal zenith Z; and the celestial

pole N gives the discrepancy £ 1in astronomical latitude as,
g = Nig - NZp
= Mz,
= 90 - oG - (90 - ¢,)
= épA -9 .. (2.1)
If the local outward vertical is north of the spheroidal normal

then £, known as the deflection of the vertical in the meridian

direction, is considered positive.
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The discrepancy n 1in the prime vertical direction, from a

consideration of figure (2.1) is given by,

n = Mig
= ZANZG cos¢
= (Ap - Ag) cosd ceaes(2.2)

If the local outward vertical is east of the spheroidal normal
then n, known as the deflection of the vertical in the prime vertical

direction, is considered positive.

The angle ZAPZG (z) may be referred to the deflections of the
vertical in the meridian and prime vertical directions by the follow-

ing relationship,
z =& cosA+nsinA ... (2.3)

where A is the azimuth (positive if clockwise from north) of

the plane ZgPZ, (see figure (2.2)).

It should be remembered that ¢G,AG are not absolute quantities
and depend upon both the dimensions and orientation of the reference
spheroid. This means that the astro-geodetic deflections of the
vertical are also entirely dependent on the reference spheroid model

and its orientation.

The presence of these deflections has virtually no effect on
methods of horizontal angle measurement and the resulting geodetic
control. Any point may be fixed uniquely in space using a three

dimensional reference system such as spheroidal co-ordinates.
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Latitude and longitude have been discussed briefly above and do not
pose any difficulties once the reference spheroid has been defined.
It is the third co-ordinate, elevation above the datum surface, that

must be considered in some detail.

The required elevation is the length of the spheroidal normal
(hg, figure (1.3)) between the spheroid and the point in question.
However, it is not possible to obtain this quantity directly in the
field, the values obtained by the usual levelling process represent-
ing differences in orthometric height (ho). From a consideration of
figure (1.3), it can be seen that the spheroidal elevation hy is

given by,

where N is the geoid spheroid separation. For the sake of
completeness it can be seen from figure (1.1) that in the case of the

telluroid system,
hd + hn = N + hy e (2.5)

where hy 1is the height anomaly and ~h, 1is termed the normal
height. hg 1is approximately equal to N, with any differences usually
being less than one or two metres and arising from density variations.
Thus to completely define a point on the earth's surface with respect
to a reference surface, astronomical latitude and longitude, ortho-
metric elevation, N, & and n need to be known. For the case of a
geocentred reference spheroid N, & and n can be evaluated from global

considerations of gravity anomalies. The establishment of comprehensive
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gravity surveys on a world-wide basis is essential if all control
datums are to become geocentred. Most land areas have some gravimetric
surveys which provide a coverage of anomaly values over continents, but
values for ocean areas, which constitute approximately 70% of the total
surface area, are practically non-existent. The only available data
over such areas is that afforded by satellite solutions which, while
being the best available, are only generalised solutions which cannot
detect the large positive and negative anomalies which occur in some
small areas. The result is a series of smoothened anomaly mean values.
The nature of these solutions is such that this cannot be avoided with
the result that some uncertainty will exist in any gravimetric solution

for N, & and n.

2.2 Astro-geodetic Levelling.

Astro-geodetic levelling is a means of mapping the geoid spheroid
separation along a chain of geodetic control stations where astro-
nomical determinations for latitude and longitude have been carried
out. The process consists of determining successive values of N by
utilising the astro-geodetic deflections of the vertical (&,1) at
each control station after an initial value of N has been adopted.
The spacing between the stations must be kept to a length such that
any variations from an assumed linear rate of change of the deflection
values will not be large enough to cause the values of N obtained to
be significantly different from the actual changes in the geoid

spheroid separation (Bomford, 1962, p.321).
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It is most unfortunate that in recent years many maps of geoidal
undulations have been produced which fail to have at any control station
(including the origin of the geodetic control network), a gravimet-
rically obtained geoid spheroid separation value. Instead, these maps
have only an assumed value of N as datum for the calculations involved
in their astro-geodetic geoid determination. The reference spheroids
of these geodetic control networks are not geocentred, with the result
that these geoid maps, while internally consistent, need to be corrected
for their incorrect orientation before they can be combined together
for the eventual production of a world-wide geoid map. Of course,
each of the reference spheroids for the geodetic control networks
must be of the same size and shape, although differences between them
will be small and correction formulae are simple (e.g. Mather, 1968a,

pp.285 et.seqg.).

Astro-geodetic geoidal variation maps possessing an arbitrary
value of N at the origin do serve one very useful purpose. They
allow the reduction of measured distances directly to the reference
spheroid by the combination of the orthometric height with the value of
astro-geodetically determined N in the reduction to spheroid level
correction. This enables internal scale errors on the local geodetic

network to be minimised (see Chapter 7).

The essentials of astro-geodetic levelling are displayed in
figure (2.3), where, on adopting the sign convention of the previous

Section for ¢, it can be seen that,
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dhy = -cde (2.6)

where dhy is the increment in surface separation over an increment

in length dX.
Incorporating equation (2.3),

dhy = -d? (& cosA+nsinA) ..., (2.7)
i,i+1

where A 1is the azimuth of the line from the station (i) with
a known surface separation hg. to the station (i+1) whose surface
1

separation hy, 1 will be,
1+

hy, =h, +dhg. .. 2.8
disr — di T Ty a1 (2.8)

In equation (2.7), the values of £ and n wused in practice will
be the average values of £ and n at stations (i), (i + 1). The
above formulae are only 'working" formulae, since in the strictest
sense the difference in separation should be the integral sum over
the line, viz.,

i+l
dhdi,i+1 = - J rde . (2.9)
i

If the stations (i), (i+1) are less than 50 km apart, it is
generally considered that the use of formula (2.7) is valid since
over such distances it is assumed that the rate of change of the
deflections of the vertical is linear and thus the geoid shape can
be faithfully reproduced. While this situation may be valid for flat

topography, it would be difficult to set any value for the maximum
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station spacing distance in mountainous regions as the deflections

of the vertical are believed to change rapidly in these areas.

2.3 Gravimetric Deflections of the Vertical.

Surface deflections of the vertical in gravimetry are defined
by the angle ZGPZA (figure (1.1)). This is the angle between the
local vertical and the normal to the associated spherop and can be
resolved into the meridian and prime vertical directions to give the
desired deflection of the vertical components. The deflections of
the vertical defined here are for the case of the telluroid-earth's
surface system; those for the geoid-spheroid system being the
components of the angle between the normal to the geoid and the
spheroidal normal resolved as previously (see figure (1.3) and

relevant discussion Section 1.2).

The gravimetric deflections of the vertical €is (i=1,2) may be

written as,

g = [flg ,i=1,2 L. (2.10)

Bx-}. ;
1 =
U UQ

where &1 is the deflection in the meridian; €, (=n) is the
deflection in the prime vertical; the X1, Xy axes are oriented north
and east respectively and hd refers to the height anomaly previously
discussed (Sections 1.2, 2.1 and 2.2). Equation (2.10) states that
the surface deflections of the vertical at any point are a function

of the rate of change of the separation between the geop and the
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associated spherop, and the differential is evaluated at the spherop

where the potential on the reference system equals UQ (=Wp) (figure
(1.1)).

The purpose of this thesis is not to continue to develop fully
the theory required to obtain an evaluation of ¢g;, (i=1,2) for the
cases of the earth's surface-telluroid and the geoid-spheroid systems.
If the reader is desirous of finding such theoretical developments
they are referred to (Mather, 1968b, pp.32 et.seq.) and (Mather,
1968a, pp.210 et.seqg.), respectively. Since extensive use is made
of gravimetric deflections of the vertical in later Chapters of this
thesis, the formula used for their calculation is included and it may

be expressed as follows,

o=4m
€§sec)= 206265[ A(£(¥)) cosaj Age do, i =1,2
4ﬂym 028 ..... (2.10a)
where &y =& ; & =n
ay = A oy = %_— A (2.10b)

and A 1is the azimuth from the computation point to the element
of surface area do whose mean free air anomaly’is Agg.  The above
equation becomes indeterminate at y = 0 and in a manner analogous to
equation (1.4) (the innermost zone contribution to Ng), the inner
zone contributions (&in;, i=1,2) to &; are given by Sollins' formula

(Sollins, 1947, p.282),

€£§?°)= 206265 r, P08 (143ry), i=1,2 .....(2.10¢)
1 2y, 3xi AR
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where the Xy and X, axes are oriented north and east respectively

and r, is the radius of the inner zone which is assumed to be circular.

A further discussion of the inner zone effect occurs in Chapter 4
where the results obtained from the use of the above formula for

calculations over the Australian continental extent are reviewed.

2.4 Comparison of Astro-geodetic and Gravimetric Deflections of the

Vertical.

Introduction.

In order to compare astro-geodetic and gravimetric deflections
of the vertical, corrections must be applied for differences between
the sizes, shapes and orientation conditions of the reference
spheroids on which the two sets of data have been obtained. A small
correction for curvature of the vertical must also be applied.
Corrections for differences in the orientation conditions of the two
reference spheroids will hereafter be referred to as geocentric
orientation parameters, i.e. parameters which when applied to the
origin of the geodetic control network will enable all co-ordinates
on that network to be referred to the geocentred reference spheroid

on which the gravimetric deflections of the vertical were calculated.

In the case of the Australian Geodetic Datum both the astro-
geodetic and the gravimetric values of N, £ and n have been
calculated on a spheroid which is that one presently adopted by the

I.A.G. as a basis for Reference System 1967. Thus only curvature of
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the vertical and geocentric orientation parameters have to be applied
in order to prepare the data for comparisons. The formulae relating
to change of spheroid size has been quoted in this Section for the

sake of completeness.

Curvature of the Vertical.

The curvature of a family of spherops and their resultant
convergence towards the pole gives rise to the phenomenon of curvature
of the spheroidal normal (usually referred to as curvature of the
vertical). This convergence towards the pole means that at the same
parallel of latitude on different spherops the normals have different
orientations in space. Since astro-geodetic deflections are related
to the normal at the spheroid and gravimetric deflections to the
normal of the associated spherop, the angular difference between
these two directions is the quantity that is termed the correction
of curvature of the vertical. To determine the size of this
correction consider figures (2.4) and (2.5) and let gravity at
X = vy; gravity at Y = y - dy; difference in latitude X - Y = d¢
and difference in potential between the reference spheroid and the

associated spherop = dU, then,

dU = - vy h ... at X normal
= - {y - dy) (h + dh) ... at Y normal
Thus vy h = y h - h dy + vy dh - 0{dh dy}

i.e. dh = hdy ceena(2.11)

Y
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where h 1is the length of the normal between the spheroid and
the associated spherop at X and (h + dh) the corresponding length
at Y. From the well referenced formula for gravity at any point on
the International Spheroid (the International Gravity Formula), a

simple differentiation with respect to latitude gives,
dy = Y; B sin2¢ d¢ + O{order f2}  ..... (2.12)
Substitute equation (2.11) into equation (2.12) and,
dh = hBsin2¢ d¢ ..., (2.13)
The correction angle (c) of figure (2.5) can be represented by,

cad) oy (2.14)
p do

where p 1is the radius of curvature in the meridian. It should
be noted that this correction only applies to the meridian direction
and has no component in the prime vertical. By combining equations
(2.13) and (2.14) and making the substitutions p = 6371.2 km (the
mean value of earth radius), B = 0.005288 and the conversion of ¢

from radians to seconds of arc, the correction is,
c(5¢¢) = 0.00017 h sinze ..., (2.15)

where h (metres) is the height of a geodetic control station
where a comparison is to be made of astro-geodetic and gravimetric
meridian deflections. The sign of this correction is such that it
must be subtracted from the astro-geodetic deflection £ to make
that deflection comparable with the gravimetric deflection of the

vertical in the meridian.
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Geocentric Orientation Parameters.

Suppose the difference in position between the centre of mass
of the earth (the centre of the spheroid upon which gravimetric
deflections are based) and the centre of the geodetic control spheroid
(basis for astro-geodetic deflections) can be represented by a vector
whose three linear components in the X; (i=1,3) axes are dx; (i=1,3).
The values of dx; can be expressed as changes AZ,An and AN to the
deflections of the vertical in the meridian and prime vertical
directions and to the value of the geoid spheroid separation,
respectively, at some convenient control station on the geodetic

network.

Assuming that the x; axes are orthogonal and the x5 axis 1is
oriented parallel to the rotational axis of the earth, let the x;
axis be oriented such that it intersects the meridian through
Po (9gs2,)s the origin of the geodetic control network, in the
equatorial plane. At any point P (6,2) (see figure (2.6)) in the
control network, the linear changes (dN,dE) in position in the north
and east directions respectively, due to the above changes in the
deflections of the vertical, cqnventionally signed as previously

(Section 2.1), are given by,

dN

- A (p + h) cee.(2.16)

dE

- An (v + h) ceees (2.17)

where o and v are the radii of curvature in the meridian and
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prime vertical directions respectively and h is the height of the

station P.

These changes are related to dx; (i=1,3) by the following equat-

ions (Vening meinesz, 1950, pp.33 et. seq.),

- AE (p + h) = dx3 cos¢ - dx; sing cos(k—ko) + dx, sin¢ sin(A-Ag)
..... (2.18)
- An (v +h) = - dxq sin(A-2g) - dx; cos(A-2g) ... (2.19)
AN =

dxz sin¢ + dxj cos¢ cos(A-Aj) - dx, cos¢ sin(A—AO)

Evaluating the above three equations at the origin of the geo-

detic control network and using the suffix . to indicate these terms,

o)

- AEO (po+ho) = dxz cos¢, - dxq sing, ...l (2.21)

- Ang (vo*thg) = -dx, ... (2.22)
ANy = dx3 sing, + dxq cosdg ... (2.23)

From these three equations, solutions for the dx; (i=1,3) can

be readily obtained as,

dx1 = Mgy (pg*thg) singgy + ANg coséy, ... (2.24)
dxy = Ang (vo*thg) e (2.25)
dxz = - Mgy (po+hy) cosgy + AN, sing, ..., (2.26)

Substitution of the above values of dxj (i=1,3) into equations

(2.18) to (2.20) gives,

v

- AE (p+h) = - A&y (po*thg) (cos¢g cos¢g + sing, sing COSAA)
+ Ang (vo+hO) sing sinAx

+ AN, (singg cos¢ - cos¢, sing cosAr)  ..... (2.27)
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v

- An (v+h) = - Agy (py+hg) sing, sinAi
- Ang (vothy) cosAa
- AN, cos¢, sinAr ... (2.28)
AN = ' AE, (po+h0) (-sind coso, + sin¢o cosd CcOSAA)
- An, (vo+ho) ;os¢ sinAA
+ ANy (sing sing, + cos¢, cos¢ cosAA) ..., (2.29)
where AX = A - XA,. These three equations give the changes in

the values of the deflections of the vertical and the value of N at
any point in a geodetic control network for specific values of A,
An, and AN, at the origin. In the following Chapters of this thesis,
this set of formulae is adapted for use as observation equations for
a least squares solution to determine the geocentric orientation
parameters (Af,,An, and AN,) for the Johnston Origin of the Australian
Geodetic Datum. The differences between astro-geodetic and free air
geoid gravimetric values of &, n and N over Australia are used as
the data source. Applying the observation equations to the values
available at 540 Laplace stations in Australia 1620 equations
possessing the three orientation unknowns are obtained. The time
factor in the manufacture of data and the period of computation is a
problem worthy of closer examination. Upon investigation, two facts
emerge;

(1) The astro-geodetic values of N have been computed from

the available astro-geodetic values of & and n using equation (2.7),

and (2) The gravimetric values of &, n and N are interrelated
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since in the calculation of N, Stokes' function f(¢) is used while

the calculation of £ and n involves the derivative of £(y).

From the above observations, it is logical to assume a definite
interconnection must exist between equations (2.27), (2.28) and (2.29).
If this interconnection does exist, then it may be unnecessary to
calculate geocentric orientation parameters using all three observation
equations. The relationship between the three equations is obtained

by utilising the definition of deflections given by equation (2.10),

£y = - [ahd i=1,2 . (2.10)

BXJ‘J U=UQ
Differentiation of equation (2.29) with respect to xy (north

direction) gives,

d(AN) = 3(AN) d¢ (2.30)
dx1 3¢ dxl
= 1 (Ago (p0+ho) (-cos¢ COSPy - sinc[>O sin¢g cosAl)
(p+h)
+ Ang (vo+hy) sing sinAa
+ ANy (sing, cos¢ - cos¢, sing cosAX))
= - Af (i.e. equation (2.27)y ..., (2.31)
Similarly,
d(AN) = 3(AN) d(A))
dx, 3 (AX) dx,

1

1 (-8, (pgthy) cos¢ singy sinax
(v+h) cosd¢ '

- Ang (vg+hy) cos¢ cosAi

- ANy cos¢ cosg, sinAk)

- An (i.e. equation(2.28) ..., (2.32)
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The relationship existing between equations (2.27), (2.28) and
(2.29) has therefore been defined. Note that the differentiation of
equation (2.29) provides a method for checking the derivation of all

three equations.

A choice is provided for the observation equations to be used in
a solution for geocentric orientation parameters. Either equations
(2.27) and (2.28) or equation (2.29) can be used and all results should
be identical. 1In practice, difficulties arise in the choice of method
of solution. While the astro-geodetic values of & and n are funda-
mental quantities in an astro-geodetic geoid solution, from the nature
of the gravimetric geoid determination, it seems preferable to use N
values for comparison purposes. The gravimetric values of & and n
are dependent, to the order of one to two seconds of arc, on the
inner zone calculation. In a geoid determination over a continental
extent like Australia it was not possible to sample sufficient inner
zone values of gravity to obtain an accuracy in the computed values

of & and n approaching that of their astro-geodetic counterparts.

Data was prepared for astro-geodetic values of N, & and n at
all the available (1968) Laplace stations on the Australian Geodetic
Datum. The gravimetric values of N, £ and n were computed on a one
degree grid basis across Australia. The techniques used for compari-
sons between grid based gravimetric values and Laplace station values

of N, £ and n are developed in later Chapters.
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As previously mentioned, the correction to be applied if the
deflections to be compared are from spheroids of different size and
shape will be quoted. A derivation of the formula, which once again
only applies to the meridian (no prime vertical effect), may be found
in (Mather, 1968a, pp.285-292). The correction Agp  which must be
added to the astro-geodetic deflection £ to make that deflection
comparable with the gravimetric deflection at the same point is,

sS4 )= _af sin2¢ - £ da sin2e + df h sin2¢ - £ df sin2¢ cos®s

a a el (2.33)
where da, df are changes in a (equatorial radius) and f (flat-
tening), the parameters of the reference spheroid. The terms neglected
from equation (2.33) will not amount to more than one-hundredth of a

second of arc.

2.5 Least Squares Solutions.

Later Chapters of this thesis deal with the results obtained from
least squares solutions utilising equations (2.27), (2.28) and (2.29)
as observation equations for the determination of AE,, An, and AN,
for the Johnston Origin of the Australian Geodetic Datum. To facili-
tate the understanding of later Chapters a short description of the

method of least squares solutions is included at this stage.

A least squares solution is, in general, preferable to other
forms of solution because it is a standard form of solution and any
particular conclusion may be readily reached (solution checked) by an

independent worker. The assumptions made in the solutions are not
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unreasonable and for the case where more observations equations are
available than unknowns (the case in this thesis), the condition
imposed is that the sum of the squares of the weighted residuals is

a minimum,

n
i.e. L W, ry = minimum ceeea (2.34)

where n 1is the number of observation equations; W, is the

weight assigned to each equation (proportional to where o 1is the

1
g2
standard deviation of the observation) and . is the residual in
the observation equation i after the solutions for the unknowns are
substituted back into the original equation. This condition implies
that the r; (i=1,n) are normally distributed and that the solutions
give the most probable values for the unknowns. Matrix notation is
the most suitable form to express these solutions and the following

is intended to represent a complete set of observations equations

expressed in this manner,
AX-L=R (2.35)

where, for the solutions in this thesis, A is the matrix of
coefficients and is of size (n,3); X is the vector of unknowns
(contains Af,, Ang and AN,) and is of size (3); L is the vector of
constants (= the data, astro-geodetic values of N, £ and n minus the
corresponding gravimetric ones) and is of size (n) and R 1is the
vector of residuals, size (n). If W, size (n,n) is the weight matrix

then equation (2.34) can be re-expressed as,
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R W R = minimum ceeea (2.36)

Substituting equation (2.35) into (2.36), differentiating and

solving gives,
X=@lwaytaTwe L. (2.37)

It is quite simple to prepare equation (2.37) for a computerised
solution, the only difficulty being the large size of the weight (W)
matrix. If no co-variance between observations is assumed, the weight
matrix becomes a simple diagonal matrix and arithmetic operations
concerning it may be performed in a computer program quite easily
(without worry of exceeding storage) by considering it as a vector,
viz., a (n,1) matrix. Since the weights are proportional to the
inverse of the variance of the observations, the matrix of constants
may contain data of different dimensions, e.g. angles and distances.
When dissimilar quantities are to be used in a composite solution,
the statistical laws of normal populations are only satisfied by this

system of weighting.
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CHAPTER 3.

AN ASTRO-GEODETIC ORIENTATION OF THE AUSTRALIAN GEODETIC DATUM.

3.1 Introduction.

The major geodetic control network that extends over the whole
of the Australian mainland and some adjacent islands has been computed
on a datum titled the Australian Geodetic Datum (A.G.D.) which was
formally defined in the Commonwealth Gazette (1966). Most computations
of a geodetic nature prior to 1963 were based on the Clarke 1858
reference figure which had the Sydney Observatory as its origin.
After investigations by the Division of National Mapping which involved
an examination of all available determinations of figures of the earth

since 1900, a spheroid of equatorial radius a and flattening f given
by,

a = 6,378,165 metres; f = 1/298.3

was adopted as a preliminary figure for the initial geodetic control

network adjustment (Lambert, 1962, p.184).

The Maurice trigonometrical station in South Australia was used
as a preliminary origin in order that a set of homogeneous geodetic
co-ordinates could be computed for all points on the network. The
reference spheroid was provided with a spatial orientation with respect
to the earth by comparing this set of initial co-ordinates with astro-
nomically determined values at 150 Laplace stations widely spaced over

the continent. The resulting mean values of the deflections of the
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vertical, after correction for isostasy, were -1.01 sec in the meridian
and -0.93 sec in the prime vertical. These were applied as corrections
to the geodetic co-ordinates at the Maurice origin with consequent
revision of values for the entire geodetic network. A "Central Origin"
was then defined in terms of the trigonometrical station Grundy in order
that the origin would occupy a central position with respect to the

continent (Bomford, 1964, pp.97 et.seq.).

The reference spheroid was changed after April, 1965 to the
International Astronomical Union spheroid whose parameters were

(Fricke et.al.,1965):
a = 6,378,160 metres; f = 1/298.25

and called the Australian National Spheroid (A.N.S.). This spheroid,
for all practical purposes, has the same dimensions as Reference
Ellipsoid 1967 which was adopted by the International Association of
Geodesy (I.A.G.) at the 1967 General Assembly at Lucerne (I.A.G.

Resolutions 1967, p.367).

The number of Laplace stations which had been observed on the
A.G.D. had increased to 533 by early 1966. The deflections of the
vertical at these points were re-examined in order to determine
whether any corrections were necessary to the values of the geodetic
co-ordinates at the origin (Bomford, 1967a, p.57). After a study of
the pattern of distribution of these deflections, it was decided not

to change the co-ordinate values of this central origin but rather
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to define it in terms of the Johnston Geodetic Station (Lambert, 1968,
p.93). This station, referred to hereafter as the Johnston Origin has
been assigned zero geoid spheroid separation because of lack of
information to the contrary (Bomford, 1967a, p.58). The geodetic
datum defined by the combination of the set of co-ordinates adopted
for the Johnston Origin and the Australian National Spheroid is called

the Australian Geodetic Datum.

The complete adjustment of the A.G.D. in 1966 gave co-ordinate
values to approximately 2500 control stations and it was expected
that the accuracy between adjacent stations would be of the order of
3 or 4 parts per million (ibid, p.69). Apart from some uncertainty
in the accuracies quoted arising from the use of orthometric instead
of spheroidal heights for the reduction to spheroid level of measured
distances, considerable doubt was placed on the relative accuracy
between adjacent stations in a paper presented to a Conference on
Electronic Distance Measurement in Sydney in November, 1968
(Bobroff, 1968). When MRA 4 tellurometers were used to re-measure
some major control routes, surveyors from the Division of National
Mapping found discrepancies which were occasionally as large as plus
or minus 15 parts per million between the distances measured with
these instruments and the distances as both originally measured and
as adjusted. In some sections not specifically shown in the paper,
the measurements gave comparison figures as high as 30 parts per

million (ibid, p.248).
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These discrepancies were obtained from the sections of loop
traverses that were farthest from the intersections with other loops.
The national adjustment was performed by obtaining bearings and
distances for 161 sections between loop intersection points and then
obtaining adjustments for each of these sections simultaneously
(Bomford, 1967a, p.62). The adjusted figures will tend to be stronger
near to the loop intersection stations since after the simultaneous
adjustment, the re-adjustment of each section will cause the stations
farthest from loop intersections to obtain the largest amounts of re-

adjustment.

Notwithstanding that such poor agreements could be related to
unknown quantities of the MRA 4 tellurometers used, serious doubt
must exist about using the present Australian Geodetic Datum for
purposes of setting out long baselines (of the order of 2000 km) for
satellite tracking purposes. The original intention of the geodetic
survey of Australia was to provide a control network for map making,
with scientific pursuits having a secondary role. The primary aim
has been admirably achieved in the present Australian Geodetic Datum,
but a geodetic datum which possibly contains large random and
systematic errors is of doubtful value for scientific endeavours.

A scheme for re-measuring sections where scientific interest centres
(e.g. between satellite tracking stations) to a high degree of
precision using MRA 4 tellurometers and laser geodimeters is presently

in operation.
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3.2 Methods of Spheroid Orientation.

There are three distinct methods for effecting the orientation
of the reference spheroid of a geodetic control network. These

methods can be summarised as,

(1) An absolute orientation is provided using both gravimetric
and astronomic observations. In this solution the deflections of the
vertical at the origin are determined gravimetrically and when used
in conjunction with the astronomic values of latitude and longitude,
geodetic co-ordinates for the origin are obtained. In practice, it
is more satisfactory to obtain the corrections to be applied to the
astronomic values at the origin from a least squares solution of
comparisons between astro-geodetic and gravimetric deflections of
the vertical at several control stations widely spaced around the
datum. This practical refinement has the effect of minimising errors
that may have occurred in the calculation of the values of the gravi-
metric deflections at the origin due to insufficient sampling of the

gravity field in the "inner zone' region.

(i1) An orientation is sometimes provided, where there is no
available gravimetric solution, by assuming that the deflections of
the vertical at the origin are zero. The astronomically determined
co-ordinates are directly adopted as the geodetic co-ordinates of the
origin.

(1ii) An orientation may be provided by adopting method (ii)

above as an intermediate solution. On the basis of the astronomic
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co-ordinates of the origin being placed equal to the geodetic values
there, the control stations are assigned geodetic co-ordinates.
Comparisons are then made between astronomic co-ordinates at selected
Laplace stations (distributed as widely and as evenly over the entire
network as possible) and their newly calculated geodetic co-ordinates.
Assuming that the correct values of the geodetic co-ordinates at the
origin will give rise to a normally distributed population of
differences between astronomic and geodetic co-ordinates, corrections
can be obtained for the present geodetic values at the origin to

ensure that this criterion is satisfied.

A procedure of the type described in method (iii) above was used
on the Australian Geodetic Datum at the Johnston Origin. This method
has been the most popular form of spheroid orientation in the past
due to the small amount of gravity data and the limited computation
facilities available. With solutions involving satellite pertur-
bations capable of providing good estimates of gravity anomalies over
ocean areas and Government authorities, such as the Australian Common-
wealth Bureau of Mineral Resources, Geology and Geophysics providing
detailed gravity data over land areas, method (i) above has become
a feasible proposition for a large survey organisation where high

speed computers are becoming commonplace items of capital equipment.
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3.3 An Astro-geodetic Orientation.

The spatial orientation of the Australian Geodetic Datum has
been derived from National Mapping Council Resolutions 287 and 293.
As it is fundamental to the investigation in this Chapter, Resolution

293 has been reproduced below,

Resolution 293: The Council recommends that the origin of the
National Geodetic Survey of Australia be determined from the mean
value of the available astronomic deflections. The Council will
later express this in terms of an adopted latitude and longitude value

for Johnston Station.

The imposition of the condition that the mean of the deflections
of the vertical over the datum should determine the values at the
origin, has aligned the A.G.D. approximately parallel to the mean
geoid slope across Australia. A spheroid of reference oriented in
relation to the local geoid in the Australian region does not coincide
with one whose centre is at the centre of mass of the existent earth.
This is due to the continent being situated on a uniformly sloping
section of the geoid rising to the well defined geoidal high situated
off New Guinea (e.g. Rapp, 1969, pp.58-61). Thus the A.G.D. will
possess an unknown spatial orientation with respect to an earth
centred reference spheroid until the relationship between the local

geoid and the latter has been established.

In an age of high speed computation facilities, the direct
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adoption of the mean value of the deflections of the vertical as the
basis of the reference spheroid orientation when a large set of data
was available appeared to be a crude expediency. A review of
publications showed that in 1962 (Lambert, 1962, Sec.2.12, p.179),
the Director of National Mapping had indicated that a least squares
calculation would be made "to give the most probable changes required
in the origin and the reference ellipsoid in order to give a best
fitting new ellipsoid'". Although no such least squares calculation
was ever published by the Division of National Mapping, a calculation
which "minimised the geoidal separations for an optimum fit across
the mainland, holding the zero separation at Johnston by definition,"
was performed in 1967 (Fischer and Slutsky, 1967, p.331). Only geoid
spheroid separations, derived from an astro-geodetic geoid solution
(ibid, p.328) were used in this calculation and so it became the
intention of the author to perform a series of orientation solutions
using not only the derived separation values, but also the original
deflections themselves. These solutions were intended to test the
validity of the National Mapping Council Resolution 293. The
deflections of the vertical were suitably weighted to take into
account the type of instrument and procedure used in their determin-

ation so that a composite solution was meaningful.

The explanation offered by the Division of National Mapping for
not performing a least squares solution was found in (Bomford, 1967a,

p.57-58). Briefly, the decision not to alter the 1966 geodetic values
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of the origin was made because using various combinations of astro-
geodetic stations around Australia, the mean values of the deflections
of the vertical were never larger than 0.2 sec in the meridian and

0.4 sec in the prime vertical. Although various combinations of astro-
geodetic stations were tried, the decision not to alter the values of
the origin was based mainly on the mean values obtained from 275 well
spaced stations, whose astronomic values had been determined in
accordance with the National Mapping requirements for precise astro-

nomic determinations (Bomford, 1965).

Astro-geodetic orientation solutions, as proposed by the author,
will align the reference spheroid parallel to the general direction
of the geoid in the area covered by the astro-geodetic stations
under consideration. These solutions will not, unless the geoid in
this region is coincident with a geocentred spheroid, give the local
spheroid an earth centred orientation. Hence such an orientation

solution appears to be of limited practical value by itself.

An astro-geodetic orientation solution does provide, however,
a means for a useful check on the two types of gravimetric orient-
ation solutions that it is possible to perform. An explanation of
the conditions which require these different types of solutions for
geocentric orientation parameters appears in Section 5.2 of Chapter 5.
The formulae used to perform the astro-geodetic orientation consisted
of equations (2.27), (2.28) and (2.29). The values of Af,An and AN

in these equations were represented by the available astro-geodetic
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deflections of the vertical and the Fischer/Slutsky solution values of
N respectively. This set of formulae represents a specific case of
the general formulae derived by Vening Meinesz (1950, pp.33-51),
relating to the corrections to be applied to latitude and longitude
when transferring co-ordinates between reference spheroids of
different shape, size and spatial orientation. The formulae as used
are equivalent to the Vening Meinesz formulae with the terms concern-

ing changes in equatorial radius and flattening held fixed at zero.

A check on the results obtained was provided by the use of the
formulae published by Vincenty (1965, pp.128-133). These formulae
provide solutions for dx; (i=1,3), the rectangular cartesian separation
distances between the centres of the reference spheroids (see figure
(2.6)). These formulae allowed an independent least squares mini-
misation to be made, the results of which were directly converted to
give the orientation parameters in terms of Af,, Ang and AN, after

the application of formulae such as that derived in Section 2.4.

Data for these calculations was provided by courtesy of
A.G. Bomford, Division of National Mapping, Canberra. For the
purpose of these calculations only weighting cards had to be produced
because the computer cards containing information about latitude,
longitude, the deflections of the vertical, the astro-geodetic value
of N, station height and name had already been prepared for use in
connection with the project involving a gravimetric orientation of

the A.G.D. at the Johnston Origin.
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3.4 Weighting Systems.

After studies which compared the astronomic determinations of
latitude and longitude made at Laplace stations by various instru-
ments with different observers at different times, discussions were
held with the abovementioned A.G. Bomford and G.G. Bennett, a
Senior Lecturer in Astronomy at the University of New South Wales.
The results of these investigations were the various standard
deviation estimates displayed in Table 3.1. The inverses of all
variances have been reduced by a factor of ten in this Table for

matters of computational convenience.

The accuracy of the Fischer/Slutsky astro-geodetic geoid
solution has been estimated at * 1 metre (Mather, 1969a, p.31)
and all astro-geodetic values of N were correspondingly given

a weight coefficient of 0.1.

Solutions were also obtained with all weight coefficients
equal to 1.0, so that the magnitude of the difference in results,
if any, could be examined in the light of the weight differences.
In fact, as Table 3.2 shows, the differences in solution are
numerically very small, due to the original values adopted at the
Johnston Origin being very close to those obtained from least
squares solutions. This makes an evaluation of the weighting
system difficult and one can only conclude that a system of weight
coefficients such as those in Table 3.1 should generally be employed

so that the conditions of least squares solutions are satisfied.



A SYSTEM FOR WEIGHTING ASTRONOMICAL OBSERVATIONS ON THE
AUSTRALIAN GEODETIC DATUM

INSTRUMENTS and LATITUDE LONGITUDE
METHODS USED Standard jCorresponding|Standard |Corresponding
Deviation Weight Deviation Weight
(H) (ll)
WiLp T4 ~ Lmpersomal o, 2.00 0.40 | 0.70
micrometer
KERN DKM3a "Persomalt , og 1.60 0.45 0.50
micrometer
KERN DKM3a Stopwatch 0.40 0.70 0.70 0.20
WILD T3 Stopwatch 0.60 0.30 1.00 0.10
GEODETIC ~ -topvatch
TAVISTOCK Chronograph 0.45 0.50 1.00 0.10
and tappet
WILD T3 Position Lines|
obs. in Australia 2.00 0.03 3.00 0.01
WILD T3 Position Lines
. . 1.20 0.07 1.50 0.04
obs. in New Guinea

TABLE 3.1
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RESULTS OF AN ASTRO-GEODETIC ORIENTATION OF
THE AUSTRALIAN GEODETIC DATUM

DATA{ WEIGHTING AVERAGE VALUES ORIENTATION PARAMETERS
SET SYSTEM OVER NETWORK

Table 5.1 N met. & sec. sec. ANg met.Agosec. ‘Anosec.
274 {Variable 4,34 0.14 .30 4,30 -0.04 0.28
274 Unity 4,34 0.14 .30 4.31 -0.11 0.30
541 {Variable 3.50 0.15 .57 3.42 ~-0.18 0.46
541 Unity 3.50 0.15 .57 3.44 -0.11 0.57

TABLE 3.2
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This is particularly important when the solution contains quantities
of different dimensions (e.g. metres and seconds) because unless the
weight coefficients are proportional to the inverse of the variances

of the observed quantities, the results obtained may be misleading.

3.5 Results and Conclusions.

During the preparation of data for the astro-geodetic
orientation solutions, it was found that only 274 and not 275
stations, as had been widely quoted in various publications, were
used for the determination of the mean value of the deflections of
the vertical. Thus one set of solutions used 274 stations and the
other consisted of all available data (541 stations). The results
from the 274 data set are preferable to those from the 541 set due
to the more uniform spacing arrangement of the 2?4 Laplace stations.
The 541 data set has some areas of very close station spacing which

is likely to place a systematic strain on the results.

The values in Table 3.2 illustrate that the orientation
parameters are quite small and are very close to the mean values.
Thus the National Mapping Council Resolution 293 was valid for the
case of the Johnston Origin. If the magnitude of the mean values of
the deflections of the vertical had been of the order of a few seconds
of arc, the adoption of the mean deflection values may not have been
a sufficiently accurate method of solution to the problem of providing

an orientation for the Australian Geodetic Datum.
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The difference between the results obtained from the use of the
Vening Meinesz and Vincenty formulae was less than 1% in every case.
Another check on the results was provided by holding the value of N
fixed at zero metres at the Johnston Origin and comparing the sub-
sequent results for Af, and An, with those obtained by Fischer and
Slutsky. As quoted in Section 5.3 they minimised the geoidal
separations which were calculated from (mainly) the 541 data set of
deflections. They could employ no weighting system and their
orientation parameters at the Johnston station only differ by 0.05
and 0.01 seconds in the meridian and prime vertical directions
respectively to those shown in Table 3.2. The accuracy of the
astro-geodetic orientation parameters in Table 3.2 can be estimated
to be within * 0.2 seconds when the volume of data used and the

reliability of the check calculations are considered.

This study has defined the position that the Australian Geodetic
Datum occupies in space with respect to the geoid. This location can
now be investigated with respect to a geocentred spheroid by using a
free air geoid solution. The least squares solution method has
several distinct advantages over the direct adoption of the mean.

The deflections of the vertical at different stations are given vary-
ing weights in the matrix of coefficients depending on their distance
from the origin. Each observation receives a weight coefficient
according to the type of instrument used and the method of astro-

nomical observation employed. The system of weight coefficients
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devised and displayed in Table 3.1 is considered to be sufficiently
representative of actual field observations that it could be used in

other contexts with a high degree of reliability.
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CHAPTER 4.

THE PRELIMINARY 1968 FREE AIR GEOID FOR AUSTRALIA.

4,1 Introduction.

A full definition of a free air geoid is provided in Section 1.2,
but basically it is the co-geoid which is obtained by using free air
anomalies in Stokes' integral (see equation (1.1)). It differs from
a complete geoid solution by an amount called the indirect effect,
which includes both global variations and a zero order term. An
estimation of the indirect effect for the free air geoid is presented

in Chapter 6.

In 1967 a free air geoid determination was produced for the
state of South Australia (Mather, 1968a, pp.323-327) using as gravity
data for regions farther than 200 from the computation point the
59 x 59 free air anomaly data set compiled by Kaula (1966). The
areas closer to the computation point used gravity anomalies based
on surface gravimetry only. Another set of 5° x 5° free air anomaly
means was produced by Rapp (1968) using a modified approach for
combining satellite and terrestrial gravity data. Both of these sets
of data were used in combination with surface data for the region of
Australia and New Guinea to produce preliminary solutions for the
free air geoid in Australia. These solutions are described in Section
4.3, where preliminary results of comparisons between the solutions
obtained and the astro-geodetic geoid determination for Australia

(Fischer and Slutsky, 1967) are presented.
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If a more detailed account of the free air geoid in Australia
(1968) is required, the reader is referred to (Mather, 1969). This
Chapter includes a condensation of those sections of that work which

are relevant to later Chapters of this thesis,

4.2 Gravity Data Used.

The introduction has outlined the sets of free air anomaly data
that were used to calculate Ng, the free air geoid spheroid
separation value. Section 1.2 defines the formulae used to perform
this calculation. The following technique was adopted for intro-
ducing free air anomaly values into the free air geoid equation and
are based on a study of the variation of f(y) with y. Table 4.1
sets out the type of gravity data used in the calculations, the

ranges of ¢ adopted being dependent on,

(a) the extent of gravity data available, noting that the
gravity field over large areas of Australia has been established
by helicopter traverses with a station spacing of approximately

one tenth of a degree;

(b) the accuracy with which a chosen anomaly can represent

an area of a particular size (e.g. Hirvonen, 1956, p.3);

and (c) the linearity of the function f£(y) over the region

represented by the area mean.

In regions where no gravity data was obtainable, the available

gravity field was extended using a two dimensional trigonometrical
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GRAVITY DATA USED IN CALCULATIONS

RANGE OF o SOURCE GRAVITY DATA USED
Y <0 1°  Surface Gravity Individual readings
0.1° < P < 1.5°  Surface Gravity 0.1° x 0.1° sq. values
1.5% < Y < 5° Surface Gravity 0.5° x 0.5° sq. means
59 < Y < 20° Surface Gravity 1° x 1° sq. means
20° < Y Combined Satellite data 5° x 5° sq. means

and Surface Gravity

TABLE 4.1

series after allowing for topographic variations (Mather, 1967,
pp.132-137). These extensions proved to be quite reliable when
obtained by interpolation but under conditions of extrapolation
into ocean areas, the accuracy of the extensions decreased rapidly

as the distance from the well defined land areas increased.

Tests of Gravity Data.

The two sets of 5° x 5° free air anomaly means due to Kaula
and Rapp which were used to represent the range vy > 200, were
tested against each other and found to be considerably different,
(Mather, 1969, pp.11-23). The sets showed no global correlation,
the standard deviation of the comparisons for each quarter of the

earth's surface area being of similar magnitude, ranging from
2
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1+

11.4 mgal to + 14.2 mgal. The global mean standard deviation of

1+

12.5 mgal is about half the magnitude of Hirvonen's estimate of the

error of representation of a 5% x 5° square by a single reading.

Comparisons of these combined data sets were also made with the
available 5° x 5° free air anomaly means for Australia and its
environs. As tenth degree squares were represented by a single
reading in the latter sample, the maximum number of readings possible
in a five degree square was 2500. No significant difference could be
found in the statistical parameters defining the comparisons in each
case considered. The standard deviation of the comparisons increased
from a minimum of * 5.2 mgal in the case where the terrestrial
samples were well represented to a maximum of * 10.2 mgal when the
latter included squares in which there were as few as 50 readings.
This is significant because it can be expected that comparisons with
poorly represented surface samples would have greater standard
deviations if the combined solutions were truly representative of the
earth's gravity field. Such assessments of the reliability of data
sets obtained from combined solutions are of great importance as this
technique affords the only means of providing an adequate represent-
ation of large sections of the global gravity field in the foresee-
able future.

Any gravity data which was referred to the International Gravity

Formula was converted to Gravity Formula 1967 using a set of correction

formulae (e.g. Mather, 1968c). A correction of - 14 mgal to the Potsdam
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datum gave the final free air anomalies to be used in the computations

(I.A.G. Resolutions 1967, p.383).

4.3 Calculation of the Free Air Geoid.

The free air geoid was calculated over the Australian mainland
region at the corners of a one degree (10) grid. The inner zone was
considered to be the four tenth degree squares comprising the area
immediately around the computation point. The values of Agf and
dAgg/9x; for use in equations (1.4) and (2.10c) were computed from
the four values of the free air anomaly representing these squares.
The inner zone contribution to Ny seldom exceeded 20 cm but the
values of Eini were quite often as large as 1 second. It can be
concluded that the magnitude of the deflections of the vertical can
be significantly affected by the approximate technique used for the

evaluation of the inner zones in this set of computations.

Due to the approximations introduced in evaluating the inner
zones in the current determination and the inherent variability of
deflections of the vertical over limited regions, it was decided
that maps of the deflections would provide a more representative
picture if the inner zone effects were omitted. Improved values of
the deflections of the vertical could be obtained by further sampling
the inner zone gravity field and combining the results with the

deflections calculated from the other zones.

The computer programs used were revised versions of those
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previously published in the report on the calculation of the South
Australian free air geoid (Mather, 1968a, p.232 et.seg.). The geoid
potential adopted for the calculations was 6,263,703 kgal metres, a
value which is equivalent to adopting the 1967 Gravity Formula for
the calculation of normal gravity and assuming that Wy is equal to
Uy. The zero order term for the free air geoid has not been included
because it is constant for all values of Ng and therefore similar
to a datum shift. The zero order term for the Kaula set is + 8.4
metres and for the Rapp set it is - 3.2 metres. As can be seen from
equation (1.3) this zero order term is merely dependent on the global

mean free air anomaly value.

Although there were variations in outer zone data sets, the
free air geoids calculated from them had basically the same trends.
Upon finding geocentric orientation parameters from either solutions
(seé Section 4.4), differences in the orientation parameters Mg,
and An, were never greater than 0.2 seconds while the AN, para-
meter from the Kaula solution was between 4.7 metres and 5.5 metres
larger than the corresponding Rapp AN, value. This AN, is akin

to a simple datum shift in a vertical sense.

4.4 Preliminary Comparisons between the 1968 Free Air and Astro-

Geodetic Geoid Solutions for Australia.

Comparisons between the 1968 free air and the Fischer/Slutsky

astro-geodetic geoid solutions for Australia can be performed if,
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(a) the reference spheroids used in both solutions are of the
same size and shape (i.e. geometrically identical),

and (b) both spheroids have coincident locations in space.

The requirements of (a) above are satisfied since the preliminary
free air geoid has been calculated using gravity anomalies relating to
the 1967 Gravity Formula which has as its basis Reference Ellipsoid
1967. This ellipsoid is the same shape and size as the Australian
National Spheroid which is the reference figure for the Australian
Geodetic Datum (A.G.D.). The spatial orientation of the A.G.D. has
been obtained by aligning the datum along an estimate of the mean

geoid slope across Australia (see Chapter 3).

The requirement (b) can be satisfied by applying three geo-
centric orientation parameters (Ag,, An, and ANy) to the co-ordinates
at the Johnston Origin of the A.G.D. so that co-ordinates on the
Australian National Spheroid can be related to equivalent locations
on an earth centred spheroid, i.e. the free air geoid reference
figure. The derivation of the formula used to obtain these origin
orientation parameters appears in Chapter 2. Equation (2.29) is used
in conjunction with a least squares minimisation procedure to find

preliminary values of ANg, AEy and Ang.

The Fischer/Slutsky astro-geodetic geoid was based on approxi-
mately 600 astro-geodetic stations around the A.G.D. with the assump-
tion that the geoid spheroid separation value at the Johnston Origin

was zero metres. The distribution pattern of these stations is
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illustrated in (Bomford, 1967a, fig.l). While the distribution
pattern is not one that is totally desirable, it was estimated that
the geoid undulations derived in the Fischer/Slutsky solution would,
in general, be accurate to * 1 metre at any point. This estimate

was derived after a consideration of the following information,

(1) an error of one second of arc in astronomical determinations
of position will give rise to an error of half a metre in the value of
N over a length of 100 km
and (1i) only 600 stations are used to cover an area of over six and
a half million square kilometres, i.e. each station per 12,000 sq. km
should be representative of the deflections of the vertical in that
area. Unfortunately the station spacing noted above is a very con-

servative estimate for the areas represented by some stations.

The data used in the solution for geocentric orientation
unknowns consists of the differences between the gravimetric and
the astro-geodetic values of N at corners of a one degree grid
over the Australian continent. This is not the best method of
obtaining orientation parameters since only N values are compared
at arbitrary points. A better method of solution (as performed in
Chapter 5), compares gravimetric and astro-geodetic values of N,
¢ and n at specific control stations situated over the continental
extent and uses various weighting techniques so that observations
performed with superior instruments are given greater importance in

the least squares solution. For the problem of determining if the
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preliminary 1968 free air geoid is reasonably representative of the
actual geoidal undulations across Australia, however, the former

method described above should be quite sufficient.

A free air geoid solution with good gravity data coverage for
the region within 20° of the computation point and acceptable satel-
lite data for outer zone areas should give free air geoid values of
N to approximately * 1 metre (the formula used is correct to = 30 cm).
For the majority of Australia these conditions did not exist. Most
computation points had good terrestrial gravity data for the 5 to 10
degrees immediately surrounding them but the remainder of their inter-
mediate zones consisted of interpolated and extrapolated values.

Some computation points did not have gravity observations in the
inner zones and these points relied heavily on interpolated values.
It was therefore expected that for some regions of Australia, the
free air geoid solution would have considerable unreliability. One
of the aims of the preliminary comparisons with the Fischer/Slutsky
solution was to detect regions of weakness so that before any future
free air geoid calculations took place, these areas could have their

gravity anomaly values suitably strengthened.

The method of determining areas of weakness in the free air
geoid was to obtain geocentric orientation parameters for the
Johnston Origin as outlined previously and then to calculate, using
equation (2.29), values of AN at each one degree corner over

Australia., These AN values were added to the Fischer/Slutsky
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astro-geodetic N wvalues to give an astro-geodetic geoid solution
that was on an earth centred reference figure. The differences
between the geocentred astro-geodetic and the free air geoid solutions
were calculated and the standard deviation of these differences
obtained. The difference in N values at each point was examined

and where this difference was two or more times greater than the
standard deviation, reasonable grounds for suspicion of the free

air geoid existed.

A standard deviation of * 5.2 metres was obtained when 701
comparison points (i.e. all available data) were used in the type
of solution discussed above. After an examination of the differences
between the geocentred astro-geodetic and the free air geoid values
of N, the following regions were delineated as regions of lower

precision,
(1) Regions west of meridian 120° East longitude,

(ii) Regions north of parallel 15° South latitude,
(iii) The Officer Basin area of north and west South Australia,

and (iv) All regions within 1° of the coastline.

After the regions detected above were eliminated the solution
for geocentric orientation parameters at the Johnston Origin was re-
computed using 566 comparison points. Again the Fischer/Slutsky
astro-geodetic values of N were given a geocentred orientation and
compared with the free air geoid solution. The resultant standard

deviation was * 3.0 metres.
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The geocentric orientation parameters did not change a great

deal in the re-calculation, and the values of,

Ag, = - 4.7 sec
Ang = - 4.5 sec
and ANg = 14.1 metres cevea (4.1)

seem to be good preliminary estimates of the orientation para-
meters to be applied to the Johnston Origin in order to relate the
A.G.D. to a geocentred location. The values in equation (4.1) are
those computed using the Rapp set of data for outer zones, the
Kaula outer zone data set giving similar (within * 0.2 sec) values
for AE, and Any and a ANg value 4.7 metres larger at 18.8 metres.
The comparison tests with terrestrial data over Australia did not
show either set of data to be superior, although the studies under-
taken by Rapp (1968, pp.2-5) conclude that the approach he uses to

combine terrestrial and satellite data is more exacting than Kaula's.

The regions listed above as those excluded from the second
solution were originally suspect because of their limited state of
gravity control. These regions had relied mostly upon interpolated
values with large distances between gravity control stations and,
in the case of the west coast region of Western Australia, extra-
polations into the large anomalous regions of the Timor Sea. Whilst
some terrestrial gravity data existed for the New Guinea regions
(St. John, 1967), the anomalies in this region were very large. More

detailed observations of gravity must take place before the free air
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geoid solution north of 15° South latitude will approach the precision
of the solution in the remainder of Australia. The Officer Basin area
of South Australia is a region of rapidly varying free air anomalies
and has a poor gravimetric coverage. The astro-geodetic geoid solution
will probably be of lower precision in this area also, as comparatively

few Laplace stations have been established there.

4.5 Conclusions.

From the studies undertaken with the preliminary 1968 free air
geoid in Australia, some conclusions were made, even though the nature
of the indirect effect was not known. Free air geoids computed for
the Australian region using sets of 5% x 5° free air anomaly means
obtained by the combination of satellite data and surface gravimetry
for the representation of distant zones, appeared to be satisfactory
estimates of the geoid itself, provided the intermediate and inner
zone gravity fields were adequately sampled. The method of sub-
division adopted for the gravimetric computations was suitable for

the Australian region (see Table 4.1).

The 1968 free air geoid meshed quite well with the Fischer/
Slutsky astro-geodetic solution (standard deviation % 3.0 metres)
when regions of poor gravity coverage were eliminated. The meshing
was expected to improve when the nature of the indirect effect was
determined. The results of Chapter 6 and the conclusions in Chapter 8

show that the Fischer/Slutsky astro-geodetic and the 1968 free air
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geoid solutions were not sufficiently precise, however, to detect
any slight improvements arising from the incorporation of the indirect
effect computation. The 1970 free air geoid (Mather, 1970a) and an
improved astro-geodetic solution are briefly discussed in these
Chapters and it is believed that these may be sensitive to the

indirect effect.

Preliminary estimates for geocentric orientation parameters

for the Johnston Origin of the A.G.D. were obtained in this Chapter
and although more exacting methods for obtaining these values are
presented in Chapter 5, the values presented in equation (4.1) appear
likely estimates of the parameters which can define the relationship
between the A.G.D. and a geocentred reference figure. The geocentric
orientation parameters derived by Mather (ibid) are within 0.5 seconds
for AE, and Ano. A zero order term has been included in the value

of AN, in the 1970 solution reducing it to + 7.2 metres.
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CHAPTER 5.

A GRAVIMETRIC ORIENTATION OF THE AUSTRALIAN GECODETIC DATUM.

5.1 Introduction.

The Australian Geodetic Datum is a geodetic control network com-
posed of triangulation, trilateration and tellurometer traverses.
The earth space orientation of the Australian National Spheroid is
approximately parallel to the mean position of the geoid across the
Australian continent. This spheroid orientation is based on the
1963 Division of National Mapping decision to adopt the mean values
of the deflections of the vertical over Australia as those for the
Johnston Origin. An examination of this decision has been undertaken
in Chapter 3 where it was shown that the decision to use mean values
has aligned the Australian National Spheroid to within 0.5 secs of

the mean geoid position across the continent.

For the purposes of establishing a global geodetic network, a
geocentred reference spheroid is desirable. The main objective of
the Australian Geodetic Datum was for topographic mapping, in which
case the spheroid orientation parallel to the mean geoid position
across the continent provided an effective means for limiting scale
errors in the geodetic control network. The Australian Geodetic
Datum was not originally intended for high order scientific research
work (e.g. satellite baselines and tracking station operations), but
the present situation is that sections of the Datum are being re-

measured with a view to such research. For the purposes of connections
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to other large geodetic datums, it is desirable that the relationship
between the local geodetic datum and an earth centred reference
figure be defined. The definition of the relationships existing
between geodetic datums is fundamental to the establishment of evi-
dence for large scale geophysical investigations into continental
drift theories, sea-floor spreading, etc. Datum inter-connections
can only be significant if all geodetic networks have a common earth
space orientation, or if the parameters defining the relationships
between these different systems and a common geocentric orientation
are known. The most suitable orientation in earth space that a
reference spheroid can have is an earth centred one. This Chapter
is devoted to obtaining geocentric orientation parameters (Af, in
the meridian, Ang in the prime vertical and AN, in the normal
direction) for the Johnston Origin of the Australian network so that
the relationship between the Australian Geodetic Datum and an earth

centred reference spheroid will be defined.

5.2 Types of Solutions for Geocentric Orientation Parameters.

Most of the larger geodetic datums in the world have several
control stations at which astronomic values for latitude and longi-
tude have been obtained. The general procedure in recent years has
been to give an arbitrary geoid spheroid separation value to one of
the major stations in the network and then to calculate the geoidal
undulations over the network using the available values of the

deflections of the vertical. For example, both the Johnston Origin
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for the Australian Geodetic Datum and Meades Ranch for the North
American Datum (Fischer, 1966, p.4905) have been arbitrarily assigned
a value of zero metres for the geoid spheroid separation. The vari-
ation of the geoid spheroid separation over the network will depend
on the nature of the spheroid orientation as well as on the distri-

bution pattern of the deflections of the vertical.

If the mean values of the deflections of the vertical over the
region have been adopted as those for the origin, then the spheroid
will be very close to the mean geoid position across the network.

The resulting geoid spheroid separations will be relatively small
(e.g. the Fischer/Slutsky astro-geodetic geoid determination for
Australia) and will oscillate about the geoid spheroid separation
value adopted for the origin. If this method of spheroid orientation
has not been used then the geoid spheroid separations may tend to

increase systematically.

Geodetic co-ordinates for control stations on most geodetic
networks are obtained by the use of orthometric heights for the
reduction of measured distances to spheroid level as spheroidal
heights are not available. Systematic errors are consequently intro-
duced into the values of the computed co-ordinates. These co-ordinates
can be reduced to spheroid level by using the astro-geodetic geoid
determination in conjunction with the orthometric heights. The type
of solution required is one which will define the geocentric orien-

tation vector in terms of the origin of the network so that the local
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spheroid can be located with respect to the earth's centre of mass.
The data to be compared in such an orientation calculation are the

astro-geodetic and gravimetric values of N, & and n (see figure 5.1).

If an astro-geodetic geoid determination has not been used to
reduce the control station co-ordinates to spheroid level, then the
type of solution required for the geocentric orientation parameters
would use only the gravimetric values of N, £ and n as data. This
solution would provide orientation parameters which would relate the
control station co-ordinates to equivalent positions on an earth

centred spheroid.

For the case of the Australian Geodetic Datum the choice of
solution requires further discussion. Although no corrections have
been made to control station co-ordinates using the astro-geodetic
geoid solution, any such corrections would be very small since the
average geoid spheroid separation is approximately 4 metres. As the
main purpose of the Australian Geodetic Datum was for topographic

mapping, such small corrections are not warranted.

The Division of National Mapping is presently strengthening
the astro-geodetic geoid solution by observing long chains of closely
spaced Laplace stations. From a strengthened astro-geodetic geoid
solution this authority could provide the corrections to spheroid
level necessary for the control lines of scientific interest (e.g.
satellite baselines or distances between tracking stations). Thus

the most suitable solution for geocentric orientation parameters for
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the Australian Geodetic Datum would contain comparisons of astro-

geodetic and gravimetric values of N, & and n.

If the geodetic co-ordinates of control stations on the
Australian network, derived by the use of orthometric heights for
the reduction of measured distances to spheroid level, are assumed
to refer to the Australian National Spheroid, the maximum error from
this source is approximately * 0.1 seconds of arc. This estimate
was determined by considering a line between the Johnston Origin and
a control station in the region near Perth, Western Australia, where
the astro-geodetic geoid solution reaches a maximum value of 18 metres.
The astro-geodetic values of the deflections of the vertical therefore

contain a maximum error of * 0.1 seconds from this source.

5.3 The Computations.

One method of calculating geocentric orientation parameters for
the Johnston Origin of the Australian Geodetic Datum was outlined
last Chapter (Section 4.4). Briefly, it consisted of comparing the
1968 free air geoid with the Fischer/Slutsky astro-geodetic geoid
values of N at each one degree corner over the Australian contin-
ental extent. A least squares solution gave the required geocentric
orientation parameters (Agg, An, and ANy) for the Johnston Origin.
The solution to find the most probable values of the geocentric
orientation parameters excluded those regions detected last Chapter
as being of low precision. The most probable geocentric orientation

parameters were calculated from comparisons at 566 grid corners and
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the values obtained were Af, = - 4.7 sec, A4ngy = - 4.5 sec and

ANy = 14.1 metres.

The method outlined above makes no allowance for a consideration
of the differences between the values of the gravimetric and astro-
geodetic deflections of the vertical. As the values of N from the
astro-geodetic solution are only derived quantities and have under-
gone various adjustments before their final presentation in map form
(Fischer and Slutsky, 1967, p.329), it was decided to investigate
other solutions for obtaining geocentric orientation parameters that
used composite sets of data consisting of the deflections of the
vertical and N values. The conditions of least squares solutions
can be maintained provided each observation equation is weighted
proportionally to the inverse of the variance of the particular
observation which is used as data in that equation (see Section 2.5
for the theory of least squares adjustments). The systems of weight
coefficients used are determined in Section 5.4 of this Chapter and
are of a similar nature to those'used in the calculations of Chapter

3.

In order to include the values of the deflections of the
vertical, solutions were performed in this Chapter with comparisons
of free air and astro-geodetic geoid values of N, § and n (in vary-
ing combinations), at specific Laplace stations throughout the
continent. The astro-geodetic values of £ and n were provided by

courtesy of the Division of National Mapping and the astro-geodetic
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N values were derived from the Fischer/Slutsky astro-geodetic geoid

solution.

As described last Chapter, the 1968 free air geoid values of
N, & and n were computed at the corners of a one degree grid over
the Australian continent. For the calculations in this Chapter, the
method of Besselian interpolation to the second order was used to
derive values of N, & and n at specific Laplace stations. This
meant a total of sixteen grid points were involved in the obtaining
of each interpolated value (Clark, 1964, Vol.2, p.32). The decision
to use Besselian second order interpolation was based on some prelim-
inary hand calculations which showed that errors of the order of # 1
metre in N and * 1 second in € and n could be made if only a

first order (planar) interpolation was used.

Formulae Used.

Following the approach to the calculations in Chapter 3, two
different sets of formulae were utilised so that all results obtained
were provided with a check computation from an independent least
squares minimisation. The formulae derived in Section 2.4 (viz.,
equations (2.27), (2.28) and (2.29)) were programmed on the Uni-
versity of New South Wales' I.B.M. 360/50 computer to provide results
for Ag,, Ang and ANg. These values were checked by a solution using
the Vincenty formulae (Vincenty, 1965, pp.128-133) which produced

results for dx; (i=1,3). The values of dxj were converted into values
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of Ag,, Ang and AN,, the geocentric orientation parameters for the

Johnston Origin of the Australian Geodetic Datum.

Features of these computer programs were that as well as a com-
posite solution using observation equations for N, £ and n, three
solutions using only the observation equations of each of N, £ and n
were performed. A solution using both £ and n observation equations
was also obtained, making a total of five separate solutions for the

geocentric orientation parameters each time the programs operated.

The orientation parameters were substituted back into the
original observation equations to obtain the vectors of residuals
for N, £ and n in order to establish which set of calculations
gave the most probable solution. The means and standard deviations
of these residuals were calculated and the assumption was made that
the most representative solution, viewed with respect to the regions
that were used for the data, would have the lowest standard deviations
for the residuals. Most attention was paid to the standard deviation
of the N residuals because it is with these values that one is
primarily concerned in attempting to correctly reduce observations
to spheroid level. A low standard deviation of a set of N residuals
should be accompanied by relatively low standard deviations of ¢
and n residuals. The relationship between N and £ and n has

already been illustrated in Section 2.4, equations (2.31) and (2.32).
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Weighting Systemé.

The probable errors in the Fischer/Slutsky astro-geodetic and
the 1968 free air geoid solutions were discussed in Section 4.4.
It appears that on the average, the Fischer/Slutsky solution could
have a standard deviation of * 1 metre at any point, with the
proviso that this is a rather conservative estimate in some areas

where the spacing of the Laplace stations is sparse.

The 1968 preliminary free air geoid values for N should also
possess variable standard deviations, depending on the density of
sampling of the gravity anomaly field in the near and inner zones.
Areas close to the coastline were immediately suspect due to the
extrapolation of gravity anomaly values from the land regions into
ocean areas. These extrapolations were especially suspect in the
northern areas of Australia due to the large anomalous regions of
the Timor Sea and New Guinea. The Officer Basin area of north and
west South Australia also had very few gravity readings and the
gravimetric values of N, & and n were expected to be of lower

precision in this region.

Areas of low precision free air geoid values were detected by
examining the size of the residuals upon back substitution of the
geocentric orientation parameters into the original observation
equations. Once these regions were delineated the gravimetric N

values were assumed to possess a standard deviation of * 1 metre.

The differences between free air geoid and astro-geodetic N values
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were accordingly assigned a standard deviation of * 1.4 metres.

For some of the calculations the differences between the gravi-
metric and astro-geodetic values of & and n were assigned a
standard deviation of * 1.4 seconds. This is not an unreasonable
estimate as the values of the astro-geodetic deflections of the
vertical, on the average, should have standard deviations of approxi-
mately * 0.6 seconds (see Table 3.1). The gravimetric deflections,
acknowledging their dependence on the inner zone contribution, were
thought to have standard deviations in the vicinity of # 1.5 seconds.
For some of the calculations, a convenient standard deviation of
+ 1.4 seconds was therefore assigned to the differences between the
astro-geodetic and free air geoid values of ¢ and n. This allowed
a weighting system of {1.0, 1.0 and 1.0} to be used for some calcu-
lations for the differences in values of N, £ and n respectively
as the data for N was in metres and for & and n in seconds of

arc.

A more refined set of weight coefficients was constructed after
studying the results of the calculations with the above weighting
set. The regions delineated as being of low precision were excluded
and, observing that the gravimetric N values were not exceedingly
dependent on the inner zone contribution, the standard deviation of

+ 1.4 metres was retained for N value comparisons.

The weight coefficients for & and n were thoroughly reviewed

and it seemed that the previous estimates were too conservative,
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especially for the n comparisons. The astro-geodetic values of

n definitely have larger standard deviations than the corresponding
values of &, presumably due to the precision required with timing
mechanisms for longitude observations. From the preliminary results
for the free air geoid, the same trend was detected with their
gravimetric counterparts. A possible explanation could be the weak-
nesses existing in the gravity fields to the east and west of
Australia. In the north-south direction, some values for New Guinea
and the Timor Sea were available to strengthen calculations for &.
The standard deviations of the n residuals were generally about
0.5 seconds larger than those for & when continent-wide solutions
for geocentric orientation parameters were undertaken. The inner
zone effect for gravimetric values of £ and n 1is quite considerable
(sometimes greater than one second) and on these premises, standard
deviations of * 2.0 and * 2.5 seconds for the differences between
gravimetric and astro-geodetic values of & and n respectively were

assigned.

The resulting weight coefficients, after multiplication of the
inverse of each variance by a factor of six for convenience, were
3.0, 1.5 and 1.0 for comparisons of N, & and n respectively.
After comparing the results of computations using these weight co-
efficients with those using the initial set of {1.0, 1.0 and 1.0},
it was decided that further refining of the weighting system would

be unnecessary. Differences in results arising from the two sets of



- 80 -

weight coefficients were of the order of 1% in Ag, and Ang and less

than 0.2% in AN,. For example, the results from calculations using

144 well spaced Laplace stations situated across Australia in regions
of good gravimetric coverage changed as below when firstly the {1.0,

1.0 and 1.0} set and then the {3.0, 1.5 and 1.0} set of weight co-

efficients were used,

AN, : from + 13.78 to + 13.76 metres

0
Ao ¢ from - 4.64 to - 4.68 seconds

Ang : from - 4.38 to - 4.41 seconds

Since similar results occurred every time the weighting system
was modified, it was concluded that any reasonable set of weight
coefficients of the style derived above would give acceptable results,
It is very advisable to study the weighting systems to be used quite
thoroughly before deciding on a particular set of weight coefficients,
especially when quantities of different dimensions are being used in a
composite solution. One must check that the units of the expected
standard deviations correspond with those of the data sets being used,
e.g. if a standard deviation of * 1 metre was expected for comparisons
of values of N and the observation equations weighted accordingly,
then the data set used must be in terms of metres. If the data set
inadvertently contained values of N in centimetres, then the weight
given to the values of N 1in this particular computation would be a
factor of 104 too large. Other data, e.g. comparisons of values of

¢ and n, would be completely overshadowed in such a solution. All
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computations in this thesis had data values of N 1in metres and

& and n in seconds of arc.

5.4 Results.

Several different solutions with varying amounts of data were
used to obtain the geocentric orientation parameters for the Johnston
Origin that will define the earth space location of the Australian
Geodetic Datum with respect to a geocentred spheroid. The largest
set of data used all the available astro-geodetic stations on the
Australian mainland that were covered by the 1968 free air geoid
solution (Solution Code 2, Table 5.1). There were 506 of these
stations and the values of Ag,, Ang and AN, from this calculation
as well as those obtained from the other calculations are given in
Table 5.1. The standard deviations of the residuals are also given
in this Table and it is in conjunction with these standard deviations
that the residuals were reviewed so that regions of poor meshing of

the astro-geodetic and gravimetric geoids could be delineated.

The 506 stations were not well spaced around the network, being
grouped together along the long chains of tellurometer traverses and
triangulation. Since these stations covered the entire mainland the
suspected regions of low precision free air geoid values detected
last Chapter (see Section 4.4) were included in the data. The standard

deviation of the N residuals of this solution was * 5.6 metres.

Another solution was performed using 252 stations (Solution Code 3)
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SUMMARY OF GEOCENTRIC ORIENTATION PARAMETERS

No. of | Solu- | Orientation Parameters |Standard Deviation of
compa- | tion Residuals
P BN Bg,  Bn, N 3 n
risons | Code {m) (sec) (sec) (m) (sec) (sec)
701 1 15.9 -4,61 -3,97 5.6 - -
506 2 14.8 -4.48 -3.95 +5.6 +3.0 3.7
252 3 16.1 -4.48 -3.81 6,1 +3.1 3.7
566 4 14.1 -4.,69 -4.46 +3.0 - -
144 5 13.8 -4.68 -4.41 2.7 2.7 3.1
42 6 10.6 -6.09 -4.91 2.0 3,2 +3.0
33 7 7.8 -4.74 -5.52 1.6 2.8 2.3
TABLE 5.1

Key to Solution Code

1 N values only at corners of one degree grid - Australia-wide

2 Irregularly spaced Laplace stations - Australia-wide

3  Evenly spaced Laplace stations - Australia-wide

4 N values only on one degree grid, excluding regions west of
meridian IZOOE, north of -15°N and the Officer Basin, S.Aust.

5 Well spaced Laplace stations - region as at 4

6 Laplace stations in the region bounded by meridians (1280E, 1440E)
and parallels (—ZOON, —26ON)

7  Laplace stations in N.S.W. and regions within one degree of

its borders
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which were selected on the bases of even spacing and the precision
of their astronomic observations. These Laplace stations were well
spaced over the entire continent and hence included the regions of
lower precision free air geoid determination. The geocentric
orientation parameters Af, and An, were very similar to those of
Solution Code 2 while the AN, parameter differed by 1.3 metres.
The standard deviation of the N residuals was slightly larger at

* 6.1 metres than that for the previously mentioned solution, but
this is understandable when the relative numbers of stations in the
regions of lower precision free air geoid values are considered. The
values of the geocentric orientation parameters obtained by Mather
(1969a, p.29), when only values of N at one degree corners were
used (Solution Code 1), were within 0.2 seconds for AE, and Ang and

1.1 metres for ANy for both sets of results described above.

A decision was made to isolate those regions where the residuals
of the observation equations upon back substitution of the orientation
parameters were more than twice as large as their standard deviations,
in order to see if these areas corresponded with those detected last
Chapter. In this Chapter comparisons of astro-geodetic and gravi-
metric values of N, £ and n have been made at specific Laplace
stations whereas previously, only values of N at each degree corner
were used. Even with these differences in approach, the same regions
as those detected last Chapter were found to have the largest residuals,

viz.,
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(i) Areas west of meridian 1200E,
(ii) Areas north of latitude 1508,
(iii) The Officer Basin of South Australia

and (iv) Areas within 1° of the coastline.

A further solution was performed at 144 well spaced Laplace
stations which excluded the regions delineated as being of lower
precision (Solution Code 5). The results of this solution are very
similar to those which were decided upon last Chapter as being the
most likely (see Solution Code 4). These two sets of results differ
by less than 0.05 seconds in A&, and Ang and by 0.2 metres in AN,.
The standard deviation of the N residuals was relatively low at
t 2.7 metres and illustrates the good meshing of the astro-geodetic

and free air geoid solutions over 80% of the Australian mainland area.

Two other solutions for geocentric orientation parameters were
performed using small numbers of control stations in relatively small
areas (Solution Codes 6 and 7). The first area used was rectangular
in shape and was enclosed by the meridians 128°E and 144°E and the
parallels 20°S and 26°S. This region across Northern Territory and
north-western Queensland contained 42 stations and gave results for
the orientation parameters which differed considerably from those
previously obtained. The second small area was composed of 25 well
spaced stations in New South Wales plus 8 stations within 1° of its
borderline. Again the results were quite different from those

previously obtained and the reason for these differences was that
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the geoidal characteristics in areas of limited extent were not
representative of the average geoidal characteristics across the
whole continent. However, in both cases of the smaller areas, the
geoid was quite uniform within the region considered (i.e. internally
consistent) as the standard deviations of the N residuals were only

* 2.0 metres and * 1.6 metres respectively.

Five least squares solutions were performed each time the
computer program operated and the combinations of observation equations
used have been described earlier (see Section 5.3). The two solutions
which used only observation equations in & or n were of little value,
with the results obtained for Af, and An, respectively being almost
equal to the mean of the data values used. The results for the other
orientation parameters were up to 20 seconds and 100 metres in error
due to the insensitiveness of these observation equations towards the

other parameters.

The solution which used only observation equations in N gave
results for all three geocentric orientation parameters that agreed
with the composite solution values to within 1%. This close compari-
son of results shows the reliability of both the calculations for
the free air geoid values of the deflections of the vertical and the

calculations involved in obtaining the astro-geodetic N values.

The solution which used the observation equations for both ¢
and n provided good estimates (within * 0.2 seconds) of the values

of Ag, and Ang. The value of AN, was not realistic as these
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observation equations are insensitive with respect to values of N.

The two sets of formulae employed provided results to well within
1% of each other when the same data was used. Since different observ-
ation equations were used in these programs, different matrices were
manipulated in the adjustment procedures, and this degree of compari-
son was satisfactory. The set of geocentric orientation parameters
derived from the geoid map of Lambeck (1968a) was not of any conse-
quence as a means of independently verifying the results as only
satellite data had been used for this geoid determination. The
results for orientation parameters differed by up to 2 seconds in
AEy and Ang and 15 metres in AN, from the figures in Table 5.1.
Solutions which use only satellite data cannot detect any local or
even small regional geoidal variations as their method of computation

precludes this possibility.

5.5 Conclusions.

From a study of the results in this Chapter, no significant
differences were obtained in the values computed for the geocentric
orientation parameters A, An, and AN, when data at either the
corners of a regular grid or at unevenly spaced Laplace stations was

used, provided the same regions were covered by both solutions.

Although it was expected that the indirect effect would be small,
either method of effecting comparisons was thought to be adequate for

the verification of the indirect effect formulae. The standard
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deviation of the residuals in N were expected to decrease when the
corrected free air geoid was compared with the astro-geodetic
solution. The results of Chapter 6 and the conclusions in Chapter 8
show that the Fischer/Slutsky astro-geodetic and the 1968 free air
geoids were not sufficiently precise to detect the small indirect
effect in Australia. The 1970 free air geoid (Mather, 1970a) has a
standard deviation of N residuals of only * 2.5 metres for Australia-
wide comparisons with the Fischer/Slutsky solution. A revised astro-
geodetic geoid solution should be available in 1971 and the indirect
effect derivation may be verified after comparisons between it and
the 1970 free air geoid. The 1968 free air geoid and the Fischer/
Slutsky solution meshed together with a standard deviation of * 3
metres over regions of adequate gravity coverage which included 80%

of the area examined.

Geocentric orientation parameters for the Australian Geodetic

Datum derived from the calculations in this Chapter are giveh by,

Ay = - 4.7 sec
Ang = - 4.4 sec
ANy = 14.0 metres ... (5.1)

The geocentric orientation parameters derived by Mather (ibid)
differ by 0.5 seconds for bEgs 0.1 seconds for Ang and 6.8 metres
for AN, (includes a zero order term). These parameters, when applied
to the Johnston Origin, can be used to relate station co-ordinate

values on the Australian Geodetic Datum to equivalent representations



- 88 -

on a geocentred spheroid with the dimensions of Reference Ellipsoid
1967. The best representation of the geoid at present would be one
using the astro-geodetic values of N added to the AN values
computed from equation (2.29) utilising the above geocentric orien-
tation parameters. Such a geoid, called a geocentred astro-geodetic

geoid, is shown in figure (5.2).

The following conclusions can be drawn from the previous Section
where the nature of the comparisons between the free air and astro-
geodetic geoids was discussed. The exact system of weight coefficients
used was of marginal significance when observation equations of the
three types set out in equations (2.27), (2.28) and (2.29) were solved
simultaneously, once a reasonable set of weight coefficients was
defined. Since solutions using comparisons of N values only gave
results within 1% of those obtained from solutions combining compari-
sons of values of N, £ and n, the problem of assigning weight co-

efficients could have been avoided.

It is not advisable to use only restricted areas for comparisons
of geoid solutions since the results obtained cannot be extrapolated
and considered to be representative of large continental areas unless
the intermediate zone gravity field is completely defined. Geoidal
characteristics are essentially of a regional nature. This was
illustrated where the standard deviation of the residuals was quite
small for determinations restricted to areas of the order of one million

square kilometres, but the geocentric orientation parameters computed
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differed significantly from those obtained after a continent-wide
solution. This illustrates the need for comparisons between astro-
geodetic and gravimetric values over as much of the datum as is
possible when computing geocentric orientation parameters for the

origin of a control network.

The close meshing of the free air and astro-geodetic geoids
indicated that the Vening Meinesz formulae for the computation of
gravimetric deflections of the vertical and the system of gravity
data input (see Table 4.1) were satisfactory. The standard deviations
of the residuals in § and n were expected to reduce if the inner
zone anomaly field was more completely represented as these regions
contributed in excess of 1 sec to the magnitude of the deflections

of the vertical.

The geocentric orientation parameters given by equation (5.1)
seem to be the most probable from the combination of the 1968 free
air and the Fischer/Slutsky astro-geodetic geoid solutions. These
geocentric orientation parameters are capable of several improve-
ments, e.g. the sampling of gravity values in the areas of weak
gravity anomaly fields and the calculation of the indirect effect.
The former of these has been incorporated into the 1970 free air
geoid 5olution.: with the result that the standard deviations of the
N residuals reduced to * 2.5 metres from a continent-wide solution
with the Fischer/Slutsky astro-geodetic geoid. The strengthening

of the astro-geodetic solution by the observation of a north-south
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chain of closely spaced Laplace stations will also help to provide
improved geocentric orientation parameters for the Johnston Origin
of the Australian Geodetic Datum. The strengthened astro-geodetic

geoid solution should be available in 1971.
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CHAPTER 6.

THE INDIRECT EFFECT FOR THE FREE AIR GEOID.

6.1 Introduction.

The complete definition of the geoid over a continental extent
requires solutions for a co-geoid and it's indirect effect. The
formulae and method of computation of the free air geoid have been
fully discussed in Chapters 1 and 4. This Chapter deals firstly
with the formulae for the indirect effect and then discusses the
results of its computation both globally and in Australia. The
magnitude of this effect depends solely on the topography exterior
to the geoid. Ocean areas do not contribute to the indirect effect

of the free air geoid in any way.

The derivation of the indirect effect for the free air geoid
developed in Section 6.2 stems directly from (Mather, 1968b, p.10
et.seq.) where the general form of a non-regularised geoid solution
is presented. The indirect effect possesses, in addition to a zero
order term, both a potential dependent term and one which is
Stokesian in character (ibid, p.32; see also Heiskanen and Moritz,
1967, p.145). The potential term is non-Stokesian in character.
The approach to the derivation of the indirect effect in this
Chapter is similar to the well-known terrain (or topographic)
correction approach (e.g. Molodenskii et.al, (1962), Moritz (1968a)

and Pellinen (1962)), with the following changes in emphasis,
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(a) a model representative of the earth's actual topography

was used where possible,

(b) the final formulae should be capable of a computerised

solution,

(c) with respect to (b} above, the derived formulae should be
compatible with the available data, viz., 0.1° x 0.1° mean heights
over Australia and 1° x 1° and 5° x 5° mean heights on a global

basis,

(d) only the corrections to the free air geoid values of N
were to be computed as the amount of data preparation necessary for
the near zones to provide corrections to free air geoid values of
the deflections of the vertical over a continental extent would have
been prohibitive and, in Australia, the results probably would have

been insignificant,

(e) where possible, the formulae were derived in 'closed form'
expressions, as preliminary calculations with series expansions
showed that in regions of high topography, some of the terms in h

I
were slowly convergent.

It was originally proposed to compute the indirect effect for
Australia on a grid with a 1° interval and to obtain a global esti-
mation on a 5° x 5° grid. The world-wide computation was necessary
so that the magnitude of the zero order term could be evaluated.

Unfortunately these small grid intervals were found to be practically
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unsuitable because of the computer time involved and were subsequently

modified to 5° x 5° and 15° x 15° grids respectively.

Two studies of the non-Stokesian and Stokesian terms were carried
out in mountainous regions using a relatively dense control of height
values (see Section 6.3). These calculations were performed along a
17° profile in the Himalayas and a 7° profile across the Snowy
Mountains in Australia. The experience gained in these calculations
was utilised to provide a basis for approximation in the solutions

of continental and global extents.

The non-Stokesian and Stokesian terms were both calculated in
two different ways. The former was calculated directly by numerical
integration and also by the use of a spherical harmonic analysis.
The numerical integration method was expected to provide a more
exacting solution as the near zone effects could be evaluated in a
more rigorous manner than was possible with a fairly low order har-
monic analysis. The spherical harmonic analysis does provide a
better indication of the zero order term however. A check on the
magnitude of the non-Stokesian term in the Himalayan region was
provided from a consideration of the Airy-Heiskanen theory of
isostasy (Heiskanen and Moritz, 1967, p.136). A topographic model
was constructed and investigated with formulae relating to the

potential of such a model (ibid, pp.127-130).

The Stokesian term was more difficult to calculate on a large

scale as the differential terrain correction (Ag.) was exceedingly
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dependent on the undulations of the topography in the vicinity of the
computation point. The values obtained for Ag. can only be regarded
as likely estimates and for the global and Australian solutions were
used in both the classical Stokesian formula and an equivalent
spherical harmonic analysis. The spherical harmonic solution was
expected to provide the most probable value of the zero order term
while the Stokesian formula solution was expected to provide more
detailed information regarding the variability of the effect. One
check on the Stokesian term results was afforded by comparing the
spherical harmonic analysis values for Ag. with those proposed by

Pellinen (1962, p.63).

6.2 Formulae for the Indirect Effect.

Introduction.

A derivation of the indirect effect for the free air geoid is
presented below. This derivation stems directly from (Mather, 1968b,
p.10 et.seq.), where the general form of a non-regularised geoid

solution, including the appropriate indirect effect, was formulated.

The non-regularised geoid solution is given by the expression,

Np = Wo-Up 4+ 2¢res - R M{Agoc} + 1 Jf £(v) Agoc ds .....(6.1)
Yn Ym Ym 4mypR

where W, is the potential of the geoid,
U, the potential of the reference spheroid,

R the mean radius of the earth,
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Yy the mean value of normal gravity,

f(y) is Stokes' function (equation (1.2)),

dS the element of surface area,

N_ the separation between the geoid and spheroid at P,

p
and M{ } refers to the global mean value.

The gravity anomaly Ag,. is given by,

oo mtne (0] (], B e e
0 R
S G

where Agg is the free air anomaly,
$o the potential due to matter exterior to the geoid, the
subscripts S and G referring to evaluation at the earth's surface
and the equivalent point on the geoid respectively,

and h is the elevation.

The quantity ¢,; is defined by the equation,

be = (fzdS+o.s . 6.3)
°p ” T ®p

where T is a set of surface harmonics and r is the distance of

dS from the point P, on the geoid, at which bes $ei are evaluated.

béres in equation (6.1) can be represented as,

bres = ¢e - _L ([ L (2 (2%i) + ?Ei) as L. (6.4)
4w T oh R

The indirect effect for the free air geoid is given by,

Ny, = Wo-Uo - R MiBgoet 4 20pes + 1 JJ £(y) Age dS
Ym Ym Ym 4mRyy ) ... (6.5)
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where Ag. = (3¢e] - (3¢e] + 2 [3¢eiJ +40ei L. (6.6)
S G

sh oh oh R

The term ¢q4

The terms bes bei and their derivatives require careful evaluat-
ion in order to formulate the indirect effect for the free air geoid.
To obtain a solution correct to the order of the flattening, the earth
can be treated as a sphere of radius R and terms of order %- or
less can be neglected.

Consider figure (6.1) and let P, be the computation point on
the geoid and P (elevation hp) be the equivalent point on the earth's
surface. Let dz be a height increment above an elevation z over a

surface area element dS at Q, where the elevation of the topography

at Q 1is h. $e 1s given by,
P

2
Jrage

where k is the universal gravitational attraction constant,

¢
°p

dm the element of mass whose volume is dS dz,
p the density of matter,
and 1, is given by,
r2 =R>+ (R+z)?2-2R (R+ z) cosy

4 R2 sinzw/z + 4R z sinzw/z + 22
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Thus to the order of the flattening,

rg =12+ 22 ..... (6.7)

For larger values of r,

2
2 _ .2 z
rg = 1" (1 + r—z)
2
and (2—2) < f when T > 150-200 km ..., (6.8)
T

Assuming 150 km as the limit for the necessity of inclusion of
z into formula for r , the evaluation of $oj can be performed in
three stages, where the innermost zone of radius r, is treated as a

(o]

cylinder (Mather,1968a,pp.107-109), viz.,

([l - (e )

r>150 ro<r<150
2 4
+ 2ﬂkphpro [1 = EE +ER - hp ] - e
2rq 6rg 40rg

where ¢. 1is the potential due to a surface layer of density

php over the area covered by the cylindrical assumption, i.e.,

be = 2mkph Ty

P

Upon integration with respect to z,

o [ [ g - 3

T 61 20\r Ty} 20\r,
..... (6.9)
A comparison of equations (6.3) and (6.9) gives,
bei = - ” kph3ds (1-_9(g 2) - mkehd (1-1fhp)+ 1(hp)3)..... (6.10)
61 200\ 31ro) 207,
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and 1 = keh eee. (6.11)

From a consideration of equations (6.11) and (6.3), it is possible
to define ¢,; as the difference between ¢4 and a surface layer
of density ph. From the above derivation it is clear that ¢g1 1S
dependent only on the near mass distribution and not on distant zones.
The magnitude of ¢¢; can be approximately evaluated by considering
all values of h equal to hp and using a series summation for the
terms (gﬂs in the range r, < r < 150 km where an inner cylinder
of radius r, 1is excluded. A convenient value for r, was 0.10,
as a height data set for Australia has been prepared on this basis.

An approximate calculation shows that the surface integral
term contributes only - 0.1 kgal metres to ¢,; in mountainous
regions (elevations up to 10 km). The cylindrical term is of order

- 6 x h2 X 10_2 kgal metres where h is in kilometres. This term

will also only be significant in elevated regions e.g. when h = 5 km,

¢ej 1s approximately - 1.5 kgal metres.
The attraction term 3%1 is of order 9 x 1073 x h? mgal where
h is in kilometres, and can be neglected in all regions. The term
4gei does approach 2 or 3 mgals in the highest regions of the

world, but other terms contribute so much more to A4g. (equation
(6.6)) that its inclusion in any solution at the present stage of
gravimetric coverage is unwarranted. The effect of this term over
a relatively low region like Australia is negligible, approaching

only 0.05 mgal in the Snowy Mountains region.
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The term a‘1’e
9h G

It has been shown (Mather, 1968a, pp.90-91) that the attractive
effects of regions further than 200 km are negligible in the evalu-
dde

ation of kﬁT4 . This term is the upward attraction at a point on
G

the geoid of the topography exterior to the geoid.
If figure (6.2) is considered, the following expression for

oh
3%e) fff k dm cosB,
oh jg ~ 12
o

It is wise to evaluate the integral in two stages,

3¢
G—E%G can be obtained,

Z
3 cosB
(aie] - 4” kpdA f _20 dz + inner cylinder effect
G o T (6.12)

The undulation of the near zone topography is the largest influ-
ence on the value of the differential terrain correction Ag.. In
fact regions further than 0.1° from the computation point generally
provide less than 10% of the value of Ag.. For this reason the inner
cylinder effect on Ag. will be calculated separately later in a
manner which allows for some topographical undulation within 0.1° of

the computation point.

3¢
If (——9} represents the effect outside 0.10, then,
Go

5h
3¢ h
(a_h‘q](;o =-k ” % Jo(rz - 2Rz) (% + 29324 L. (6.13)

where cosBy in equation (6.12) has been evaluated from a
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consideration of figure(6.1) and equation (6.7) as,

cosB, = R2 + rg - (R + 2)2
2R T,
_ 2
= r°“-2Rz e (6.14)
2 R T,

The right-hand side of equation (6.13) can be expressed as the
difference of two integrals which can be integrated in the manner

of (Lamb, p.175), viz.,

3¢ f 2 M h
e _ T 2,.2y-3/2 2..,2y-3/2
T = - kp f dA [ ——-( (r®+z°%) dz - J z (r+z<) dz
(8h ]Go ) 2R o .
f r? 1 2,205\, 2,25
= - kp .f dA [ | 22 z (re+z4) ‘)o + (2°+2°) ]O
f
= - ko f da [‘2‘}% (r2+h2) % i + (r2+h2)’1/2] ..... (6.15)
d9ei
The term (Bh ]
3 ddei
Unlike —92- the term _fSl_ constitutes a major part of both
5h )¢ 3h P

the non-Stokesian term ¢, (equation (6.4)) and the Stokesian term

Agy.- The inner zone effect of (giei] must be calculated at this
stage of the derivation so that it can be included in the formulation
of ¢peq. Later this inner zone effect will be revised for its incl-
usion into the derivation of Ag.. It will be seen later that it is

impractical to include a derivation based on undulating topography

within the inner zone in '"working" formulae for .
res

$oj Mmay be interpreted as the difference between two scalars,
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Surface film

FIG. 6.4
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bei =

be - $g

where ¢g 1is the potential due to a surface film of density ph.

Upon differentiation we obtain,

) - - ] e

_ kph _.
= [5ﬁ_}c + IJ — siny/2 dA ... (6.17)

T

The second term in equation (6.17) was obtained from a consid-
eration of the actual physical quantities involved. The problem
resolved itself into converting the potential of the surface film
over an area dA into an attractive force acting at a distance T
from the computation point (consider figures (6.3) and (6.4)).

9%e1i
Distant zones have a negligible effect on (§EEEJ , SO since

r will never be greater than 150 km, the following approximation

to the order of the flattening is permissible,

r

siny/2 = R

9%
Treating the inner zone effect of (5H§1G as a cylinder of

radius Ty (see Heiskanen and Moritz, 1967, p.128, equation (3.6)

for general formula for the attraction of a cylinder) and substitut-

ing equation (6.15) into (6.17),
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0das 1 .
G v [ [3- o) (1) [0

s 2tk (h+ 1y - (x2eh®E L, (6.19)

The second term in equation (6.19) can be readily evaluated as

below,
To 2T
kph a rdadr T
ff 2Ry 44 = ken [ J 2 7R
Ir<r, o O
. kehmr, (6.20)
R

Since this term (equation (6.20)), is always less than 1% of the
magnitude of the inner zone cylinder term, it will be neglected from
later evaluations. In fact it never exceeds 1 mgal even when the

height is extended to 10 km.

a.
The final form of {5§9£] becomes,
dbeil| _ 1 2 24 -k h
CER Y PRPRSTIE
1/)
samko (ho+ 1y - (x5 + 1) ... (6.21)

From a comparison of equations (6.15) and (6.21) and noting that

%R is of the order of the flattening, it can be concluded that,
ddei O ddei
(Bh J = [Bh ¢ + 0{f EE__} ..... (6.22)

P
The term _32
—————— }5%h S

This term represents the attraction effect of the topography
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exterior to the geoid at a point on the physical surface of the earth.

9
In a manner similar to the derivation for (3294 and consider-
G

ing figure (6.2),

d
(a;:;i}s = - {I k ;lm cosB i (6.23)

where to the order of the flattening, and for r less than

300 km,

2]
[}

2 (hp-z)2 Fxe L. (6.24)

2 2 2
R+h - (R+
T ; ( P)h~ (R+z)
R
T (R+ p)

and cosB

2 2 2 2
+ (h_- + 2R (h -z) + h -
’ ( P =) ( P =) P i

2r R (1+'p)
p R

2
+ 2 R (h_- + 2 h h -
T ( p z) o ( b z)
T R e
p

If the technique of subdividing the integration into two zones

based on an inner zone cylinder boundary of radius r, is employed,
o¢
then for the same reasons as with the derivation of Eﬁfq leaving
G

the inner zone evaluation until later, and using the subscript o

to refer to evaluation outside a radius ry, of the computation

point,
3 . hp2 4 2R (h-2) +2h_ (h-2)
f—f% - - f kodA f 2 PP .. (6.26)
o Jgo 2 (hp-z)2)3/2

2
h T
r 57 Y (hp-z)
- [, kodA f [__é 5377 92
(x™ + (hp-Z) )

o




- 107 -

h

. 3¢e 1‘2 d(-Z) (hp—Z) d(hp"Z)

L. {ah ]s ) f[ kpdA [ [ ) 7372 " T2 2 3/2}
0 o2 R (r™ + (hp-z) ) (x™ + (hp—z) )

The integration of equation (6.27) can be performed in the

manner of (Lamb, p.175), viz.,

3¢ 2 h_-h h
&ﬁfﬁ - JJ kpda {E% > F T T
So r° (r® + (h_.-h))* (r +hp)

Ne
| WL

o]

2
p

2 2,-
- (r (hp-h) )

N

1
)

s (r2en2) T L (6.28)

As the first half of the terms on the right-hand side of the
above equation are much smaller than those in the latter half,
equation (6.28) may be rewritten, without making any significant

errors as,

3%e

2,,2.-% 2
&ETJSO - ff kodA [(r L e (6.29)

The Non-Stokesian Term in the Indirect Effect.

This term is given by,

2 2 1 {1 9bei)  %ei

TY_m ¢res = Vm {d)e - -Zl-’l? ‘[(( oy (2 (—a—h—-] + T) ds| ... (6.30)

From the discussion immediately following equations (6.10) and

d) .

(6.11) it was decided that the inclusion of the term —%i
unwarranted at the present stage of world gravimetric coverage.
Incorporating equation (6.21) into equation (6.30),

2 _ 2 1 ds -1 2..2.-%

g o[ £ (it s

1
+ 21 (b + 1, - (xohD) D)



2

[¢e B JJ kphdS ([ kodS (2,02
%—— (r +h2)_%})

From equation (6.16),

kphdS
b1 = %e - f[ T

A more suitable form of the non-Stokesian term in the indirect

effect for the free air geoid is given by,

2 2 kpdS ¢, 2., 2.% 1 1
?m ¢res = Vm (q)ei + [[ _'r—" ((ro+h ) L. ro - ‘2—;[_' JJ dA ‘[‘;
i (r2+h2)_%})J ..... (6.31)

where ¢,; is defined by equation (6.10).

The Stokesian Term in the Indirect Effect.

The differential terrain correction Ag. was represented in
equation (6.6) aé,
0 d 3deq 4 ;
Ag - ¢e _ ¢e . 2 ¢el + ¢el
c oh S oh G oh R

However, from the discussion concerning the term Pei and from

equation (6.22), this may be rewritten as,

Ag. = [8¢e} + (8¢6]G ..... (6.32)

oh jg = \9n

without the introduction of significant error. The outer zone

contribution to Ag. has been derived in equations (6.15) and (6.29)

and neglecting the small order terms may be expressed as below,

HEelo @t (hp-h)z)‘

N

-1
Mgy = ” kpdA ((r2+h§) . %
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P(hp)

hp
r.dd
|
dz
T r |
z
B
//"— _J r,o - \\

T
o _
Earth
surface

Cylinder of
minimum height
hmin
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As mentioned earlier, the inner zone effect generally contributes
approximately 90% of the value of Ag.. The evaluation of the inner
zone of radius r, has therefore been performed in two stages. The
effect of a cylinder of height equal to the minimum h, . =~ in the
inner zone is calculated separately from the effect of the undulating

topography above that cylinder. Consider figure (6.5) and,

hypin .o .27 h
[3¢e] i J mlnf OJ kordadzdrcosB, . . [[ 0dA J dz cosBg
oh Gi o o (z2 + r2) h.. (22 + r2)
min
h . .re 27 h
_ min (=0 kprdadzdr z dz z
- 2 377 * k|| edA 2 372
o o ‘o (27 #T ) h, (@2 +r )
min
2 2 2.-%
= 27kp (hmin try - (hmln + T )2) + ko IJ hmin+r ) ¢
L
Sl e tHT L (6.38)
Also,
hpin To 27 h
9fe _ °f kordodzdr cosB K dA dz cosB
P 2 2 0 7]
si S R N (S R p (O -2)%+r?)
P min
. To 2T
_ Jhmln °(" kprdadzdr (hy-2)
) 2,223/

0 oo ((hp - z)

dz (hp—z)
o
((hp-z)2+r2)3/2

hmin
2 2% 2 L
= - 21k (hyin * ((hyhyg)® + 2g)7 - (hy + r2)?)
2.-% -4
+ kp f[ a (% + (hyhypi ) )77 - (x% + (h, m3H ™

. (6.35)
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From equation (6.32), without the introduction of significant

error,
bgoy = 27ke (g - (hpgp#rd)® o (21d)™ - (b 07+ 32)Y)
v [f o ((rz+h£in)_% - @) (e )T

* ((hp_hmin)z i (6.36)

The differential terrain correction to be used in the Stokesian
term in the indirect effect for the free air geoid is defined by

equations (6.33) and (6.36).

6.3 Computational Procedures.

The Non-Stokesian Term.

The non-Stokesian (potential) term of equation (6.31) has one
surface integral inside another. As the outer integral is a global
effect, the computer time required would have been excessive if the
inner integral had to be continually evaluated. The outer integral

uses area mean values of the function D (in gm/cmz), where,

D =o ((r?,+h2)1/2 - Ty - 5% ” dA {-i— - (r2+h2)_1/2}] ..... (6.37)

The size of the area to be used in the outer integral depends
on the distance of that area from the computation point. Upon exam-
ination of equation (6.31), it was concluded that for all regions
further than ry from the computation point the inner surface
integral could be approximated to the following series expansion,

noting that h <r_ <,

0



H aA = - o R ) N I MR cernn (6.38)

Ideally the evaluation of the right-hand side of equation (6.38)
would involve values for h at all small areas dA which are at a
distance r from the centre of the area dS which is to be used in
the outer integration. Point by point computations are impractical
and so mean height values over small areas must be employed. If
0.1° x 0.1° mean height values are used to represent the areas dA
for the inner summation out to a distance of 3° from the centre of
the area dS, then a complete world-wide coverage of tenth degree mean
height values is required. This is the same problem that makes an

accurate calculation of the Stokesian term impractical.

The problem is overcome in this case by assuming that all 0.1° x
0.1° mean height values within 3° of the centre of the area being used
in the evaluation are the same and are equal to the 1° x 1° mean height

representing the centre of the area. The summation of 13 and 15

T T
may now be separately undertaken on a tenth degree grid basis up to
3°. The results of these calculations for each degree of latitude
were obtained in the form of card output so that they could be fed
directly into the computer programs dealing with the calculation of
the non-Stokesian term. 3° was decided upon as the practical limit

for the summation of equation (6.38) after tests involving the con-

1
vergence of 3
T
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The non-Stokesian computations on a global scale were based on
a 5° x 5° area for dS. The value of each of these 5° x 5° areas was
derived from the mean of 25 values of the function D (equation (6.37))
where values of h used were the 25 1° x 1° mean heights enclosed by
the particular 5° x 5° area. Approximately 1200 5° x 5° areas had
values different from zero, the remaining 1400 areas being in regions
totally occupied by oceans, or possessing land masses of a size too
small to produce an overall positive mean height in a 1° x 1° world-

wide grid system.

An estimate of the accuracy of the mean height assumption in
equation (6.31) was obtained from the calculations below. This

2 4

assumption should provide summation values of 23 and —g to an
T T

accuracy of a few percent of the values obtained using detailed
height control. If an area is considered with an average height of
5 km, composed of tenth degree squares whose mean heights are 4 km
and 6 km, the value of h2 using the mean height for the total area

is 25 kmz, while h2 has a value of,

(16 ; 36) 1.2

= 26 km2

using the tenth degree squares. The error here is 4% and since the
global mean value of the non-Stokesian term is approximately 3 metres,
this corresponds to 12 cm. The sign of this error will be globally

systematic but the magnitude will not be constant. The magnitude of

this error will be approximately the same as that arising from errors
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in the mean height values themselves,

The method of computation which should give the best results is
numeric integration. Mean values of D were to be introduced into
the calculation over areas which increased in size with distance from
the computation point. Originally it was intended to use an input
data technique similar to that employed in the free air geoid calcu-
lation (Table 4.1). Preliminary calculations showed that the
technique referred to above was too time consuming and not essential
for the indirect effect formulae. The system employed in the calcu-
lations is best explained with reference to figure (6.6). The 5% x 5°
square that the computation point lies in is established, and then the
eight 5% x 5° squares bordering this square are located. This total
area of 15° x 15° is evaluated using 1° x 1° mean heights. The D

values of the precalculated 5° x 5° areas are employed for all regions

outside the 15° x 15° area.

The density used in the indirect effect formulae is one of the
two variable density with respect to height formulae developed from
a world-wide sampling (Hunter 1966). The formula chosen for the

purpose here is,

h

5T gm/cm3 for h<2.1 km.....(6.39)

p = 2.77 -

For values of h greater than 2100 metres the standard value
of 2.67 is adopted for the density. This formula is that which has

been adopted by Mather for his free air geoid studies in Australia.
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METHOD OF NON-STOKESIAN TERM EVALUATION

Computation point P, bounded by
XS"x 5° square thus 7

Z/
Z

/,
-

.4-011

o

.

/

/All other regions LI5°x|5° area evaluated with

evaluated with 5°x 5° I°x 1° mean heights thus
mean heights

FIG. 6.6
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The 1° x 1° height data set was prepared by W.H.K. Lee of the
University of California. The mean height values in this set refer
to topographical features, and as the indirect effect formulae includes
a rock density function which varies with height, (equation(6.39)) the
Antarctic ice coverage (Atlas Antarktiki) had to be converted to an
equivalent rock thickness. The base rock height values for Antarctica
are not extremely reliable at the present time. Their values have
been obtained from the limited amount of seismic study carried out
in the region with large areas relying on interpolation. This
situation cannot be expected to rapidly improve in the near future
and any solution for the indirect effect of the free air geoid will
be preliminary to this extent. The ice thickness in the Antarctic
often exceeds 2000 metres and as height terms enter the non-Stokesian
formulae raised to the second power, large errors would otherwise

have been introduced at this stage of calculation.

During the data preparation it was observed that a 5% x 5°

mean height data set designed solely for geodetic purposes of a
similar nature to this project did not exist. The result was the
geodetic height data set displayed in figures (6.7) to (6.10). All
ocean areas in the 1° x 1° mean height data set were given a value
of zero metres and then 5° x 5° mean heights were obtained. 1In the
Antarctic polar regions the ice coverage (Atlas Antarktiki) was con-
verted to an equivalent rock thickness by multiplication with the

ratio of ice to rock densities. Regions on these figures where no
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height values are displayed are ocean areas where any islands are too
small to record an overall positive mean height value in the 1° x 1°
grid system. There are 1160 positive values in the geodetic height
data set compared with approximately 860 in an ordinary 5° x 5° height

data set.

The other method for calculating the non-Stokesian term employed
spherical harmonic analyses of the 5° x 5° precalculated D set of
data. These analyses were carried out to orders 4,4, 6,6 and 8,8.
All these sets of coefficients appear in Table 6.1. The solution of
equation (6.31), excluding the term ¢ei which was separately calcu-
lated, can be expressed in spherical harmonic notation in the follow-

ing manner (after Heiskanen and Moritz, 1967, p.30),

27T T
= Eﬁl_tl_)_ 1 s ]
Y, (6,2) = e [ J f(e',A") Pn(cosw) sing' de' di'
'=o 8'=0 ... (6.40)

where Yn(e,k) is the spherical harmonic solution to degree n

representing ¢res {excluding the term ¢ei)’

¢ is a constant coefficient containing Yo R, k, etc.,
f (6',A'") are the spherical harmonic coefficients of the data
set D,

and P, (cosy) is the spherical harmonic representation of %u

The solutions were only performed to order 8,8 because the trends

of were clearly pronounced at this stage and any higher order

¢res

solutions would have involved excessive computer time.
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SPHERICAL HARMONIC CO-EFFICIENTS OF 5°x 5° DATA SET "D (gm/cmz)

D=p( (x2 + h®)% -rp- 1 [[dAl 1 - (x2 + h2)7% ) ....(6.37)
27 r
T3 5.6 8.8

n m Anm Bnm Anm Bnm Anm Brm
0 0 254.6 246.4 244.4

1 0 127.6 137.1 133.4

1 1 86.6 131.2 87.1 136.5  87.1 136.0
2 0 -53.6 -78.1 -83.1

2 1 -14.1  239.4 -13.3  240.2 -13.6  237.6
2 2 -181.0  44.6  -183.8  44.6 -183.8  44.6
30 -161.4 -122.8 -131.0

3001 -52.7  33.9 _47.6  86.8 -47.9  83.8
3 2 -227.3  73.8  -232.0  79.0 -235.9  79.1
3 03 _32.4  -20.4 _34.8  -3.5 -35.0  -4.4
4 0 44,3 -139.8 ~150.2

4 1 9.1 -108.7 14.7 -102.8  13.7 -112.6
4 2 -138.3  19.5  -181.7  20.6 ~-181.8  20.7
43 51.5 -206.5 52.4 -208.0  52.1 -210.1
4 4 99.1  86.2 84.5  90.5  84.9  90.6
5 0 _70.4 -102.0

5 1 14.5 -152.5 -16.3 -170.4
5 2 22.8 -25.1 -17.1 -23.9
5 3 22.6 -163.8  18.8 -182.8
5 4 190.0 -115.4 181.5 -118.2
5 5 0.9 116.3  -0.7 105.4
6 0 176.6 136.6

6 1 -15.2  -15.6 -20.8 -70.4
6 2 173.2  -4.2  172.5  -2.9
6 3 -5.3 9.7  -8.9 -18.6
6 4 181.1 -52.7 191.4 -50.2
6 5 269.5 102.5 -70.3  90.5
6 6 78.7  -24.2  -73.5  -26.0
7 0 59.0

7 1 4.6  45.7
72 141.5  -4.2
7 3 19.6  97.4
7 4 68.2  22.0
7 5 3.5 166.1
7 6 124.0  40.3
7 7 _48.6 -101.1
8 0 75.4

8 1 14.0  135.0
8 2 2.4 -4.2
8 3 15.8  125.0
8 4 -64.0  -15.6
8 5 9.0 113.3
8 6 -93.7  32.4
g 7 89.5 -75.7
8 8 22,0 -8.2

TABLE 6.1
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The term ¢,; was evaluated in two sections, as equation (6.10)
would suggest. The latter half of that equation was solved by direct
substitution of the nearest 1° x 1° mean height for the value of hp.
The double integral section was evaluated for the Australian case in
two parts; from 0.1° to 1° from the computation point with 0.1° x

0.1° mean height values and from 1° to 10° with 1° x 1° mean heights.,

This method of solution was impractical on a global scale due
to the enormous task of 0.1° x 0.1° height data preparation. The inner-
most four 1° x 1° mean height values were utilised for the first part
of the computation after considerations similar to those in the dis-
cussion of the preparation of the data set D. A maximum magnitude
of - 2.92 metres for the term ¢ was reached in the Himalayas and

a breakdown of this value is presented below;

2.55 metres

Direct substitution term (within 0.10) =

Integral term: 0.1O - 1O = - 0.34 "
" "o 10 _ 100 = - 0.03 1"
Total ¢gj = - 2.92 metres

In the Snowy Mountains region of Australia this term totalled
- 0.018 metres, nearly 200 times smaller than its Himalayan counter-
part. The relationship between the size of the indirect effect in
Australia and in the Himalayan Mountains is discussed in greater

detail in Section 6.4.



- 124 -

The Stokesian Term.

The differential terrain correction Ag. to be used in the
Stokesian term of the indirect effect has been defined by equations
(6.33) and (6.36) for outer and inner zones respectively. After some
experiments concerning truncation errors, it was decided that 0.1° x
0.1° mean heights should be used on the outer zone formula from
0.1° to 1° and 1° x 1° mean heights from 1° to 5°. Height values
further away have no significant effect on the result. In fact,

approximately 90% of the value of Ag. comes from within 0.1°,

A calculation of the Stokesian term of the indirect effect on
a global (or continental) scale would require a global coverage of
values of Ag.. Until a method was devised for estimating values of
Ag. from mean height values, the only reasonable alternative was to
perform test calculations of the Stokesian effect over mountain ranges
that were relatively isolated from other large topographical features.
It was assumed that the Stokesian effect of distant zones would be of
a constant nature to the regions concerned and the results obtained
would validate the relevant formulae. The experience gained in per-
forming these calculations was expected to provide a basis for obtain-

ing estimates of Ag. on a global scale.

Point by point computation would be the ideal method for the
inner zone computation, but to derive mean heights for areas smaller
than 0.1° x 0.1° would greatly increase both computer and data

preparation time. An efficient system of height data input was
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required for the computation of equation (6.36) in a reasonably fast
time. Speed was essential since the Stokesian term profile (see
Section 6.4) computed across the Himalayas was 17° in length and
values of Ag.; from equation (6.36) were required every 0.1° along

the centre line and up to 5° either side of it.

The cylinder of minimum height part of equation (6.36) was
evaluated by averaging the four 0.1° x 0.1° mean heights around the
computation point to give a value of hp' The minimum height value,
hpin, was the smallest of these four height values. The radius r,
of this cylinder was obtained by making the area of the cylinder
base equal to the area of the four tenth degree squares around the

computation point.

The undulating topography term (second part of equation (6.36))
used the above values for hp and hp;,. Each of the four 0.1° x
0.1° mean height values around the computation point were considered,
in turn, as the height, h, of a quarter of a cylinder of radius 1,
situated on top of the cylinder of minimum height. When h = hyip
the undulating topography effect is zero, a simple test of its
derivation. The distance r was from the computation point to the
centroid of each quarter cylinder. Using these procedures, this term
can be quickly evaluated in a computer program. The time taken to
compute the differential terrain correction at a point was less than
1 second and while this appeared to be fast, it meant that the gravity

anomalies for the Himalayan profile took nearly 2 hours to compute.
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6.4 Indirect Effect in Mountainous Regions.,

Two studies of profiles were undertaken to investigate the vari-
ation of the indirect effect over a mountainous region. One was along
the meridian 90° East from 18° to 35° North latitude and the other was
along the parallel 36° South from 145° to 152° East longtitude. The
former corresponded to a section across the Himalayas whilst the latter
was through the Snowy Mountains, the highest region of the Great Divid-
ing Range in Australia. In both cases 0.1° x 0.1° height values were
obtained for 5° either side of the centre line of the profile and 1° x
1° mean heights were available for 10° either side. 5° x 5° mean
heights were used to calculate the outer zone effects of the non-
Stokesian term {equation (6.31)) for regions outside the above-

mentioned areas.

The differential terrain correction was calculated in the manner
described in the last Section. The outer zone effect (equation (6.33))
was divided into two calculations; from 0.1° to 1° using 0.1° x 0.1°
mean heights and from 1° to 5° using 1° x 1° mean heights. The inner
zone component (equation (6.36)) of Ag. was also divided into two
calculations. The first part consisted of the cylinder of minimum
height and the second of the undulating topography above this cylinder.
In rugged mountainous regions the undulating topography effect was as
much as twice the magnitude of the minimum height cylinder term. These
two terms, which were always positive, together constituted approxi-

mately 90% of the value of Ag..
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Following these procedures, values of Ag. were computed in a
10° band and used as data for a Stokesian evaluation along the profile
centre line. While 5° is a suitable limit for the evaluation of Age,
a Stokesian evaluation should really be extended to a global coverage.
As the profiles were situated in regions possessing the largest values
of Ag. on their respective continents, the distant zone Stokesian
effects were assumed to be of a constant nature throughout the pro-
file. The variation of the indirect effect N value along the

profile was the major consideration in these calculations and on this

basis, the outer zone Stokesian effects were neglected.

Profile along Meridian 90°E.

The contribution of the non-Stokesian term for the indirect
effect N value is shown in figure (6.11). Compared with the
average topography it rises smoothly and not as sharply as the
physical surface. Mean 1° topography values have been plotted
because the rapidly changing profile surface could not be accurately
represented at the small abscissa scale. Deviations from the mean
height values plotted of over 1 km in less than 0.1° of latitude
were not uncommon in this region. As figure (6.11) depicts, these
rapid variations in height are not directly reflected in values of
N obtained from equation (6.31). The outer zone contributions

remained constant at approximately 6.3 metres throughout the profile.

The values of Ag. computed from equations (6.33) and (6.36)

are greatly influenced by rapidly changing surface gradients. It is
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PROFILES ALONG MERIDIAN SO°E
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PROFILES ALONG MERIDIAN 90°E
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interesting to note that at latitude 27050N, the value of Ag. of
+ 65 mgal contained only + 11 mgals from outside a radius of 0.1°,
The other + 54 mgals were composed of + 19 mgal from the cylinder
of minimum height and + 35 mgal from undulating topography on top
of that cylinder. The values of Ag. reduced to a fairly constant
average of approximately + 22 mgal per 1° x 1° square when the
computations were performed in the plateau-like region from lati-
tudes 31°N to 35°N. These values, shown in figure (6.12), are

similar to those derived by Pellinen (1962, p.64).

The Stokesian N value (figure (6.13)) computed from the
differential terrain corrections described above shows a marked
similarity to the mean surface topography. This similarity per-
sists even when the Stokesian and non-Stokesian N values are
added together (figure (6.14)). The correspondence shown in
figure (6.14) displays the relationship existing between topo-
graphic masses above sea level and the indirect effect for the

free air geoid.

Profile along Latitude - 36°N.

Although this profile is across the most mountainous region
of Australia, the total non-Stokesian N value (figure (6.15)) is
only 3 cms larger at the top of the range than it is 4° away where
1t has a value of 2.63 metres. The contribution of the near zone

terms rises from 4 cms at 145°E to 10 cms at 149°E longtitude, but
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this is masked by a fall of 3 cms in the outer zone contribution.

This fall is caused by increasing distance from the Himalayas. At
first appearances this increase in the non-Stokesian indirect effect

N value may seem very small when compared with the near zone contri-
bution of 10 metres across the Himalayas. However, the non-Stokesian
term in the indirect effect does not respond quickly to relatively
small mountain peaks, and will only reflect the presence of vast areas
of high elevation. It would be difficult to accurately assess the
comparative volumes of matter above sea level considered in the two
profiles but an approximate estimate which includes the regions up

to 5° either side of the centre line would be,
Himalayan profile : Australian profile = 15:1

Since the height term enters all indirect effect formula raised
to at least the second power, the ratio of the volumes squared is of
the order of 200:1. On this basis, which is not strictly valid because
of density variations with height above sea-level and terms in higher
powers of h, a 6 cms rise in Australia would be equivalent to a 12
metre rise over the Himalayas. Allowing for the obvious approxi-
mations made in this qualitive approach, the above result does
indicate that the method of computation in the rigorous solution

does not include gross errors.

The magnitude of Ag. 1in Australia (figure (6.16)) is much
smaller than its Himalayan counterpart, and this can be easily ex-

plained by two facts. Firstly, the effect of the cylinder of minimum
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height will be much smaller because mean heights along the profile
are much smaller. The undulating topography term must also be less
because sufficient topographic height does not exist to allow for
large undulations. Variations in height the size of the whole
Australian profile occur within a few tenths of a degree along the

Himalayan profile.

A Stokesian summation will only attain a large value if the
area around the computation point is represented by large values of
the same sign. While this was the case with the Himalayas, in
Australia only comparatively small values of Ag. were detected in
a limited region causing the Stokesian value of the indirect effect

N to be accordingly low (see figure (6.17)).

The correlation of the total indirect effect with topography
across the Himalayas is not repeated to the same extent in Australia.
However, the correlation between Ag. and the topography along the
Australian profile is remarkable. Steep rises in topography produce
corresponding increases in the values of Ag. and even the small
plateau between longtitudes 149°E and 150°E is reflected in a

stabilising of the value of Ag. in that region.

Unlike the Himalayan example where the centre line profile
depicted in figures (6.11) to (6.15) is nearly identical with pro-
files up to 5° either side, the Australian profile is on the southern
end of a long mountain chain which runs parallel to the coastline and,

as a consequence, just south of the profile the centre line changes
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PROFILE ALONG PARALLEL =-36°N
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PROFILE ALONG PARALLEL -36°N
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its axis from a southerly to a westerly direction. This means that
cross-sections either side of the profile centre line are not similar,
The differential terrain correction profiles either side correspond-
ingly differ. The Stokesian integration along the Australian example
will therefore not reflect, to the same extent as in the previous
case, the topography along the actual centre line. The resultant
smoothened total indirect effect depicted in figure (6.18) is to be

expected when the above facts are considered.

6.5 Estimation of the Differential Terrain Correction on a Global

Scale.

Incorporating the approximations detailed in Section 6.3, a
global estimation of the non-Stokesian term for the indirect effect
for the free air geoid could be evaluated. A similar estimation of
the Stokesian term was required so that the total indirect effect
derived for Australia from the available 0.1° x 0.1° height data

could be examined in view of a total global estimation.

A technique for obtaining estimates of the differential terrain
correction Ag. without recourse to the preparation of enormous
amounts of 0.1° x 0.1° height data was required. A calculation of
Ag. for the land masses of the earth on the same basis as in the
last Section would require in excess of two million 0.1° x 0.1° mean
height values. The only reasonable approach available to this problem
was to utilise the 1° x 1° height data set that was conveniently stored

on computer disk.
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Several methods for obtaining estimates were tried and only the
most successful of these is presented. The test calculations were
performed in the regions of the profiles discussed last Section where
reasonable estimates of Ag. derived from 0.1° x 0.1° mean heights
were calculated. The first approximation made was to neglect the
outer zone calculations from equation (6.33) as these usually con-
tributed less than 10% of the total value of the gravity anomaly.

The emphasis in the investigations was therefore centred on equation
(6.36) which contained the cylinder of minimum height and undulating

topography terms.

The basis of the estimation method was to develop a system for

deriving values for the terms h, h i, and hp in equation (6.36) which

would produce values of Ag. from that equation which were represent-
ative of the 100 0.1° x 0.1° areas in the 1° x 1° area under con-
sideration. The following system was evolved for defining values

for these terms;

(1) hp was assumed to be the value of the 1° x 1° mean

height nearest to the computation point,

(ii) the four values of h were derived from the mean of

h, and the values of the 1° x 1° mean heights to its immediate

P

north, south, east and west and referred to as h,, hg, he and h

respectively,

and (iii) the value adopted for hp;,, was the minimum value of

h,, he, h,, hy and 0.95 h If, as is the case in sections of the

n’ s> e P
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Himalayas, hp, h,, hg, he and h, are all equal then equation (6.36)
will produce a value of zero mgals for Ag.. Even though a Bouguer
plate representation is obtained from some 1° x 1° mean heights in
this region, there are, in reality, considerable undulations in
topography within each 1° x 1° area. The average differential terrain
correction for these regions is approximately 20 mgals (see figure
(6.12) Section 6.4). The value of 0.95 hp was included with hy, hg,
he and hy for the evaluation of hpj, so that these significant

anomalies would be detected in the global estimation.

An analysis of groups of 4 0.1° x 0.1° mean heights within
1° x 1° areas in mountainous regions showed that the average minimum
height, relative to the mean height (hp) of the 4 values considered
was 0,95 hp. The value of 0.95 was derived from several hundred
tests and had a standard deviation of * 0.03. The only regions con-
sidered for these tests were high mountainous areas where the assump-
tions (i) and (ii) above would lead to a zero value from equation
(6.36). The tests were restricted to these regions as they provide

the largest values of Ag. and were therefore the most important

for a global estimation of the Stokesian term.

In regions of low topography it was shown in the last Section
that the magnitude of Ag. was comparatively small, e.g. 6 mgal was
the maximum value in the highest region of Australia (figure(6.16)).
The general trends of the Stokesian effect on a global scale will be

mainly derived from the regions of high elevations and on this
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assumption the inclusion of the term 0.95 hp with the values of h,

hg, he and hy for the determination of a value of hpj, was justified.

s>
The values of Ag. obtained from the estimation method and
displayed in Table 6.2 for the Australian region are generally less
than and within 1 mgal of the rigorously calculated values. The
value of hpij, used in each of these calculations was always con-
siderably less than 0.95 hp, as was expected in regions of compara-

tively low topography.

The values of Ag. derived using the estimation technique in
the Himalayan region are also close to the values derived for the
profile, with the exception of the estimated value of 81 mgal. This
anomaly occurs on the edge of the mountain range where the values of

hy, hy, he, and hy are 5000 metres and the value of hg is 2400

p>
metres. The assumptions of paragraphs (i) to (iii) above do not
hold in these regions. If the values of hp, h,, hg and h, were
only of the order of 3000 metres and hg was 500 metres, then these
assumptions would provide a good estimate of the gravity anomaly.
It is only when the topography has a sharp gradient in one direction

in regions of very high topography that the estimation technique

described above loses precision.

A study of the major topographical features of the earth
revealed that the lowering in precision of the estimation technique
to this degree could occur in a maximum of 35 1° x 1° areas, with no

. ) o o o}
more than 5 occurrences in any one 5 x 5 area., The 17 x 1
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COMPARISON OF 1° x 1° MEAN DIFFERENTIAL TERRAIN CORRECTIONS

CALCULATED FROM RIGOROUS METHOD (SEC. 6.4) AND ESTIMATION TECHNIQUE

Test Rigorous Method Estimation
Calculation Mean of 100 values at Technique (Sec. 6.5)
Region 0.1° Grid Spacing (mgal)
(mgal)
Snowy 4.1 3.5
Mountains 4.5 3.0
Australia 4.9 5.4
Himalayan 9.0 9.0
Mountains 25 26
Asia 58 54
27 81

TABLE 6.2
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. . . . . . o) o)
differential terrain correction estimates were meaned into 5 x 5
. 0 o
areas, so the error in any 5 x 5 area could not exceed 10 mgal due

to this cause.

On this premise, values of Ag. were calculated globally and
5% x 5% area means obtained. These were analysed in the manner of
spherical harmonics to orders 3,3, 4,4 and 6,6 so that global esti-
mates of the Stokesian term could be obtained. A calculation using
the direct substitution of the 5° x 5° mean values of Ag. 1into
Stokes' integral was performed to check the spherical harmonic

solutions.

A summary of the theory which justifies the use of spherical
harmonic analyses of gravity anomalies is presented below. If Ag
is a gravity anomaly it may be conveniently represented as, (for

example see Heiskanen and Moritz, 1967, p.100 et.seq.).

2Ny . 9Vd
Ag = - (—T{-Y—+§Tl—] ceeel (6.41)

where N 1is the geoid spheroid separation,

y 1s the value of normal gravity,

R 1is the mean radius of the earth,

Vg
oh
respect to height, and

is the rate of change of disturbing potential with

Vg o= Ny e (6.42)

If the disturbing potential can be represented by a set of

spherical harmonics A.n then,
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vd_z R_l ..... (6.43)
hence N = & f .. (6.44)
Y L wrl R G
Upon differentiation of Vd with respect to height,
oV ®
5-9 = - ) (n+1) b (6.45)

o R+2

Incorporating equations (6.42), (6.43) and (6.45) into {6.41),

0 A [oe)
Ag = - 22 n2'2(n+1)An2
n=o R4 n=o R+
0 An
= n-1) —, . (6.46)
nzo R1+2

Let g, be a surface harmonic of degree n representing values

of Ag, such that in equation (6.46),

1) 2n
gn = (1’1— ) Eﬁ:’z
Ap gn R

n#l ceaes (6.47)

°F T TaeD

Substituting equation (6.44) into (6.47),

- % °z° , nFl (6.48)

Equation (6.48) shows that a spherical harmonic representation
of gravity anomalies should not include terms of degree one if the

harmonic representation is to be used for an evaluation of values
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of N (ibid, p.89). The term (n-1) in the denominator of equation
(6.48) precludes the inclusion of first degree harmonics for this
purpose. In general, if the first degree terms are included in a
spherical harmonic analysis, the spheroid of reference is no longer
centred at the earth's centre of mass (Mather, 1970a, p.57). The
spherical harmonic method of Stokesian solution was chosen for three

reasons,

(a) The results of the global analysis of the values of Ag.

could be compared with the results of Pellinen (1962).

(b) The computer time taken is much less than the conventional

method of direct substitution into Stokes' integral,

and (c) The zero order term of the Stokesian solution is immediately

available.

Pellinen (1962) obtained values for the conventional terrain
correction of the order of 20 mgals in the regions of the Caucasus,
the Alps and the Himalayas. Using these values as a basis, he 'fore-
cast the Agpyp values in similar areas elsewhere'. For these fore-
casted values, spherical harmonic coefficients to order 3,3 were

obtained.

The magnitude of the terrain corrections obtained by Pellinen
are less than those obtained from equations (6.33) and (6.36).
Pellinen's method was to express the mountainous topography as an

infinite series of ''sinusoidal ridges'". This is a smoothened
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topographical approach which in view of the calculations in the prev-
ious Section, where the undulations of topography within 0.1° of the

computation point contributed approximately 60% of the value of Age,

would indicate a considerable underestimation of the magnitude of

the differential terrain correction.

Pellinen included the first degree terms in his spherical harm-
onic¢ analysis which precludes the use of his 3,3 coefficients in the
formula given in equation (6.48). So that his work could be directly
compared with the results of this thesis, Pellinen's spherical harmonic
coefficients were used to regenerate his data set on a 5° x 59 area
basis. This set of data was analysed to produce 3,3 spherical harmonic
coefficients with the first degree terms held fixed at zero. Table 6.3
shows Pellinen's original 3,3 spherical harmonic coefficients, his
recomputed coefficients described above and a set of 3,3 coefficients

0

o .. . . . ) .
of the 5 x 5  differential terrain corrections which used the esti-

mation technique proposed earlier in this Section.

A study of Table 6.3 indicates that the trends of a global Stoke-
sian solution using Pellinen's coefficients would be similar to those
obtained from analyses of the values of Ag. derived from the esti-
mation technique. Global Stokesian solutions (Section 6.6) enforce
this statement, and show that only the magnitudes of the global mean

values and the fluctuations differ.

In Table 6.4 spherical harmonic coefficients to orders 4,4 and

6,6 of the differential terrain correction are presented. The Ag,
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COMPARISON OF 3,3 SPHERICAL HARMONIC ANALYSES OF GLOBAL

ESTIMATES OF DIFFERENTIAL TERRAIN CORRECTIONS

Pellinen (1962) Pellinen Recomputed Results of Sec.6.5

Alm’ Bip, # 0 Aips Bip = 0 Aims> Bim = 0
n Amm Bom Anm Brm Anm Brym
0 0.39 0.390 0.828
0 0.24 0.0 0.0
1 0.08 0.18 0.0 0.0 0.0 0.0
0 -0.07 -0.070 0.002
1 0.00 0.32 0.000 0.320 -0.038 0.413
2 -0.28 0.08 -0.280 0.080 -0.603 0.120
0 -0.21 -0.099 -0.332
1 -0.05 0.06 -0,045 0.072 -0.021 0.311
2 -0.28 0.19 -0.280 0.190 -0.558  0.255
3 -0.07 -0.04 -0.070 -0,040 -0.159 0.012

TABLE 6.3
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SPHERICAL HARMONIC CO-EFFICIENTS OF GLOBAL ESTIMATES OF THE

DIFFERENTIAL TERRAIN CORRECTION

4,4 6,6
n m Anm Bim Anm Bnm
0 0 0.841 0.828
1 0 0.0 0.0
1 1 0.0 0.0 0.0 0.0
2 0 0.065 0.028
2 1 -0.036 0.580 -0.033 0.595
2 2 -0.545 0.113 -0.551 0.114
3 0 -0.333 -0.228
3 1 -0.021 0.311 -0.045 0.399
3 2 -0.558 0.255 -0.562 0.284
3 3 -0.159 0.012 -0.170 0.060
4 0 -0.113 -0.259
4 1 -0.007 -0.546 - 0.015 -0.442
4 2 -0.406 0.050 -0.501 0.077
4 3 0.169 -0.518 0.174 -0.509
4 4 0.219 0.255 0.186 0.270
5 0 -0.171
5 1 0.070 -0.249
5 2 0.017 -0.144
5 3 0.105 -0.461
S 4 0.405 -0.375
5 5 0.043 0.237
6 0 0.270
6 1 -0.059 -0.281
6 2 0.379 -0.106
6 3 -0.036 -0.059
6 4 0.414 -0.189
6 5 -0.259 0.204
6 6 -0.149 -0.169

TABLE 6.4
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term alters by less than 2% when the analysis is extended from order

4,4 to 6,6.

6.6 Results.

The result of the computation for the non-Stokesian term of the
indirect effect for the free air geoid in Australia is shown in
figure (6.19). The significant feature of this figure is the depend-
ence on the non-Stokesian term in Australia on the high mountainous
regions of Asia. The local effect due to the Snowy Mountains region
was calculated in Section 6.4 (figure (6.11)) and amounted to a rise
of approximately 6 cms. This amount was reduced to 3 cms by a fall
across the profile of 3 cms from the outer zone contributions. The

bulge on the 2.6 metre contour line shows this local effect.

The Stokesian term computation for Australia derived from the
global 6,6 spherical harmonic analysis of the differential terrain
correction estimates is shown in figure (6.20). The local effect
due to the Snowy Mountains region depicted in figure (6.13) was not
included in figure (6.20). In Section 6.4 the Stokesian effect was
computed over a limited region. It would have been uneconomical to
continue the rigorous method of Stokesian term computation over the
entire continent and therefore figure (6.20) only shows the general
trend of the Stokesian term across Australia. The values of Ag,
derived for the region of the Snowy Mountains were, however, included
in the global 5° x 5° data set of differential terrain corregtion

estimates.
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The Stokesian term for Australia when viewed with respect to
its global estimation (see figure (6.23)) is in a region possessing
a very small rate of change. The influence of the mountainous
regions of Asia is dissipated by 10° South latitude, 120° East longi-
tude while the effects from Antarctica and South and North America

tend to cancel one another in the Australian region.

The total indirect effect for Australia is depicted in figure
(6.21) where the variation of the effect across the continent is
shown to be less than one metre. The rigorous Stokesian term calcu-
lations in the Snowy Mountains region do not appear on this figure
as it was not possible to extend their evaluation across the entire
continent. It could be estimated that a rigorous Stokesian calcu-
lation would increase the value of this term along the eastern
coastal regions by approximately one metre. The total indirect
effect would be increased by this amount along the eastern coast-
line and by lesser amounts over the rest of the continent but it
is unlikely that this would alter the statement that the variation
across Australia of the indirect effect for the free air geoid is

less than one metre.

The global estimation of the indirect effect for the free air
geoid is shown in figure (6.24). It is a combination of figures
(6.22) and (6.23) which represent global estimates of the non-
Stokesian and Stokesian terms respectively, The numerical inte-

gration method for the computation of the non-Stokesian term provided
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a solution which was more detailed than the corresponding 8,8 spherical
harmonic solution. The global mean value can be directly obtained from
the latter and was found to be + 2.6 metres. The Stokesian term was
computed from both a direct solution using Stokes' integral and from a
6,6 spherical harmonic analysis of the estimates of the differential
terrain corrections derived in the previous Section. The global mean

value was found from the latter solution to be - 5.4 metres.

A consideration of figure (6.24) shows that in the region of the
Australian continent, the rate of change of the total indirect effect
is the global minimum. To a limited extent, the non-Stokesian and
Stokesian terms tend to cancel one another across Australia. This
means that the free air geoid solution for Australia, apart from a
zero order correction, is a very good representation of the geoid

itself.

A representation of a global geoid solution is presented in
figure (6.25). The global free air geoid solution (Rapp, 1969, p.59)
has been used in combination with the estimate of the indirect effect
displayed in figure (6.24). When figure (6.25) is compared with the
free air geoid solution it can be seen that several of the extreme
values of that solution are decreased in magnitude by the addition
of the indirect effect. The global geoid solution displays essent-
ially the same trends as the free air geoid with the rate of change

of N values slightly reduced in most regions.
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A check on the global estimates of the differential terrain
correction was provided by the work of Pellinen (1962). Table 6.3
displays these comparisons and the text pertaining to that Table
discusses the different techniques used to obtain the respective

sets of spherical harmonic coefficients.

The non-Stokesian term in comparison to the Stokesian term is
less variable globally, but the value of + 17 metres for the Hima-
layan region of Asia was investigated further. The assumption of
isostatic compensation, using the Airy-Heiskanen model (Heiskanen
and Moritz, 1967, p.136), was made and the net increase in potential
at the centre of a 1000 km square topographic block of density 2.67
gm/cm3 was calculated. The crustal thickness T was varied in steps
of 5 km from 20 km to 50 km and the height of the topographic block
in steps of 1 km from 1 km to 6 km. The formulae used in the calcu-
lations were applications of the general formulae relating to the
gravimetric potential and attraction of a simple cylinder (ibid,

pp.127-130).

The results of these calculations are displayed in Table 6.5
where it can be seen that for T = 30 km and a mean topographic
height of 4500 metres, the net increase in potential is approximately
18 kgalm. This indicates that the approximations made for the eval-
uation of the non-Stokesian term did not introduce gross errors.

The area chosen for the topographic model is approximately the size

of the Himalayas where the mean height of the topography is of the
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INCREASES IN POTENTIAL (KGALM) AT THE CENTRE OF A 1000 KM
SQUARE AREA FOR COMBINATIONS OF CRUSTAL THICKNESS AND TOPOGRAPHY

ASSUMING THE AIRY-HEISKANEN SYSTEM OF ISOSTATIC COMPENSATION

Crustal Mean Height of Topographic Feature
1 1yt

Thickness " | 4 4y 2km 3km 4km Skm 6 kn
20 km 2.4 5.1 8.2 11.7 15.5 19.6
25 km 2.9 6.2 9.8 13.8 18.0 22.7
30 km 3.4 7.2 11.4 15.8 20.6 25.8
35 km 3.9 8.3 12.9 17.9 23.2 28.9
40 km 4.5 9.3 14.4 19.9 25.7 31.9
45 km 5.0 10.3 15.9 21.9 28.2 34.9
50 km 5.5 11.3 17.4 23.9 30.7 37.8

TABLE 6.5
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order of 4500 metres. The value of 30 km for T was chosen in the
above example as it appears to be the generally accepted value in

most texts which deal with isostasy (ibid, p.136).

A test of the indirect effect computation was its addition to
the free air geoid so that comparisons with the astro-geodetic geoid
in the Australian region could be undertaken. It was expected that
the standard deviation of the residuals after back substitution of
the geocentric orientation parameters would reduce in magnitude if
the indirect effect calculation was correct. The 1968 free air geoid
for Australia has a variation across an earth centred spheroid in the
Australian region of approximately 90 metres. The line of maximum
slope lies in a north-easterly direction. The indirect effect for
Australia has a variation across the continent of less than one metre
and the line of maximum slope is in a south-easterly direction. The
geocentric orientation parameters obtained from the comparisons of
the geoid solutions were essentially the same as those derived in
Chapter 5, apart from a zero order term in AN,. The standard
deviations of the residuals did not alter. It may be concluded that
the 1968 free air and astro-geodetic geoid solutions were too insensi-

tive to detect any improvements arising from the indirect effect in

Australia.

6.7 Conclusions.

The complete definition of the geoid requires solutions for

both a co-geoid and an indirect effect. Computations of the free
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air geoid from combinations of satellite and terrestrial gravimetric
data over continental and global extents have been performed in recent
years. To the author's knowledge, very few serious attempts of the
computation of the indirect effect for the free air geoid have been
made, probably because at the present stage of global terrestrial
gravimetric coverage such calculations were deemed unwarranted. The
free air geoid has been shown to be a good first approximation of the
geoid itself (e.g. Mather, 1968b). The low standard deviations of
the residuals upon back substitution of the geocentric orientation
parameters for the Australian Geodetic Datum derived in Chapter 5

provide ample evidence to support this statement.

The calculation of the indirect effect over Australia shows a
variation of less than one metre compared with approximately ninety
metres for the free air geoid solution. When the total geoid was
obtained for Australia no significant differences in either the geo-
centric orientation parameters or the standard deviations of the
residuals were obtained. This implies that the 1968 free air and
the Fischer/Slutsky astro-geodetic geoid solutions for Australia are
not sensitive enough to detect any improvements arising from the
addition of the small indirect effect. The free air geoid is weak-
est near the coastline because of extrapolation of the gravity
fields into ocean areas. The astro-geodetic solution is at its
weakest in the mountainous regions, the largest of which runs
along the eastern Australian coastline. It is in this coastal

mountainous region that the local indirect effects are a maximum
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and therefore remain undetected. Similarly in the flat interior of
the continent the astro-geodetic and free air geoid solutions are

more accurate but the local indirect effects are minimal.

The indirect effect formulae as derived in Section 6.2 differs
only in emphasis from similar formulae derived by several geodesists,
notably Molodenskii et.al., (1962), Moritz (1968a) and Pellinen (1962),
all of whom used the terrain (or topographic) correction approach.

The changes in emphasis were outlined in the introduction to this
Chapter, the main aim being the derivation of formulae suitable for
computation on a large scale using the available data. This aim was
impossible to achieve in a strictly rigorous sense and several approxi-
mations were made so that a global estimation of the indirect effect
could be obtained. These approximations have been discussed in
Section 6.3, and in nearly every case involved the unavailability

of 0.1° x 0.1° mean heights. Assumptions which assign the height of
a computation point equal to the 1° x 1° mean height in that region
were made in the computation of both the Stokesian and non-Stokesian
terms. This assumption allowed the separate computation of the

summations of 13 and 13 so that a considerable saving in computer
T T

time could be made.

The accuracy of the indirect effect both in the Australian and
global solutions was affected by the assumptions made and the exact
extent of this lowering in precision is difficult to estimate. A

general aim of the calculations was to keep the errors due to the
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assumptions made down to a minimum and, if possible, as small as the
expected errors in the mean heights themselves. The relative errors
in the values of the height means were expected to be approximately
5%. The assumption involving the height of a computation point being
equal to the mean height in the region was shown in Section 6.3 to be

of this magnitude for the non-Stokesian term.

The errors arising from the global Stokesian solution could
exceed the above figure, as the technique for estimating values of
Ag. did have limitations along the escarpments of regions of high
topography. The purpose of the estimation technique was to obtain
the general trends of an evaluation of the global Stokesian term so
that the indirect effect in Australia could be viewed in the light
of a global indirect effect estimation. This aim has been achieved,
the spherical harmonic coefficients derived in Section 6.5 showing
the same trends as those of Pellinen. A study of the terrain correct-
ions of Pellinen has led the author to believe that a smoothened
topographical approach underestimates the magnitude of Ag.. The
necessity to preclude the first degree spherical harmonic terms from
analyses dealing with terrain type corrections was illustrated in
that Section where Pellinen's harmonic coefficients were recomputed.
Doubts must still exist, however, about the extreme values of the
Stokesian term displayed in figure (6.23) as they are larger than

were expected.

If the magnitudes of the differential terrain corrections
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derived in Section 6.4 for the mountainous profiles are accepted
however, the magnitude of the global Stokesian term is justified.
The regions of large differential terrain corrections, viz., the
Rocky Mountains in North America, the Andes in South America and
the Himalayan regions of Asia, are so situated on the earth that
they complement one another in a Stokesian evaluation to produce

relatively large positive and negative values.

Australia is situated in relation to these large mountainous
regions such that the Stokesian term is comparatively constant across
the continent, the Himalayan contribution being negative and the
North and South American influences being positive. The non-Stoke-
sian term is also comparatively constant in Australia , with its
slight gradient across the continent tending to nullify the Stoke-

sian term effect.

The use of low order spherical harmonic analyses to check the
general trends in the numerical integration solution for the non-
Stokesian term proved successful. The main areas of disparity
between the two methods are the regions of high mountain ranges
described above. These differences in solutions are attributable
to the orders of the harmonic analyses employed being too low to
detect sharp gradients and the method of near zone calculation for
the numerical integration solution being more sensitive than the
spherical harmonic solution. The spherical harmonic analyses pro-

vided the best estimates of the global mean values for both the
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non-Stokesian and Stokesian solutions.

A zero order term must be added to the geocentric orientation
parameter AN, derived from free air geoid studies in Australia
although the exact value of the zero order term is a matter which
requires further investigation. In Chapter 4, Section 4.3, it was
shown that a difference of approximately 17 metres occurred in ANg
values for the Johnston Origin when the global free air anomaly
data sets of Kaula and Rapp were alternatively used. The value of
17 metres was composed of approximately 5.0 metres from differences
in Stokesian solution and 11.6 metres from the difference in the
zero order terms of the global mean free air anomalies. The 1970
free air geoid solution for Australia (Mather, 1970a), however,
has included the zero order term of the global free air anomaly

data set used.

The global mean value of the differential terrain correction
estimates was approximately + 0.8 mgal which corresponded to a
zero order term of - 5.4 metres. The global mean value of the non-
Stokesian term was + 2.6 metres. The zero order term arising from
the global estimation of the indirect effect can be interpreted in

either one of two ways;

(i) If W, is assumed to be equal to U, then the zero order
term of the indirect effect can be interpreted as a global linear
displacement between the geoid and Reference Ellipsoid 1967. This

would imply that different volumes are enclosed by these surfaces,
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a condition which does not affect the definition of the geoid given

in equation (6.1) (see Mather, 1968b, p.42).

(ii) If the geoid and Reference Ellipsoid 1967 are held to
possess equal volumes, the zero order term of the indirect effect
can be used as a basis for deriving the difference in potential
between W, and U,. Any differences in potential would be indic-
ative of the existence of errors in one or both of the adopted values
for a and kM in Reference System 1967, assuming the value adopted
for f from satellite methods is reliable. External evidence from
scale determinations would be necessary before any changes in the
currently adopted value for a would be warranted. The adoption of
this line of reasoning could only lead to altering the presently

adopted value for kM.

It was not the intention of this work to derive new values for
the parameters of Reference System 1967 as the implications arising
from the adoption of new values for a, f or kM require careful
examination. The global estimate of the indirect effect was obtained
to illustrate the indirect effect computation in Australia with respect

to its global trends.

The variation of the indirect effect across the Australian con-
tinent has been approximated in this Chapter and it is unlikely,
even with refinements in global estimations of the differential
terrain correction, that it will exceed one metre. The global in-

direct effect displayed in figure (6.24) shows that the Australian
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continent is in the region of minimum indirect effect gradient.
The free air geoid in Australia can be used directly for extensive

geoidal investigations as it approximates this surface closely.
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CHAPTER 7.

THE EFFECT OF THE GEOID ON A GEODETIC CONTROL NETWORK.

7.1 Introduction.

The free air geoid in Australia has been defined (Chapter 4)
and has been shown to be an excellent first approximation of the
geoid itself in this region (Chapters 5 and 6). This Chapter is
designed to investigate any effects, perhaps systematic, the geoid
may have on a geodetic control network that has been calculated with-
out making any allowance for its presence. The investigations take
place in Sections 7.3 and 7.4 under the broad headings of the Effects
on Loop Closure and on Scale. It is meaningless to quote the size
of the effects between any two stations on the network in metres or
express them in parts per million (p.p.m.) unless the magnitude of
the error that can reasonably be expected to be present between the
two stations is also quoted. Thus Section 7.2 of this Chapter attempts
to evaluate the random, systematic and total errors that can be
expected between any two control stations depending on the average
length of line between adjacent stations and the method of traversing
(instruments) used. The total length between control stations is
varied from 15 km (triangulation baselines) to 3000 km (baselines for
geodetic satellite purposes) so that the results obtained will be as

general as possible.
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7.2 Error Propagation.

The use of standardised invar tapes is virtually only of histori-
cal interest in geodetic surveying. Baselines for triangulation control
and trilateration networks are observed with electronic distance
measuring devices which use differing sections of the spectrum of
electro-magnetic radiation. The tellurometer uses a section consist-
ing of micro waves and the geodimeter uses part of the visible section,
i.e. light waves. The laser geodimeter uses a very small bandwidth of
the visible light section in a highly concentrated energy form and on

present indications is the most accurate of these instruments.

Although these instruments can measure distances up to 60 km in
the time space of minutes, there are errors involved which require
closer examination. These errors are summarised generally as being
partly systematic (of an instrumental nature) and partly random (due
to varying atmospheric conditions affecting the velocity of the wave
propagation). Unlike some other error systems, the systematic errors
in this context have a tendency to vary in sign over a period of time,
e.g. a calibration crystal may '"wander' slowly about its assumed

frequency (Hodges, 1969, p.21).

The instrumental errors for electronic distance measuring devices
can be expressed as * a 10"'2 metres per measurement, where a is in
centimetres (ibid, p.20). The magnitude of a remains unaltered
irrespective of the line length as it is representative of the uncer-

tainties in the instrument make-up. Typical values of a are
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presented in Table 7.1. The atmospheric-type random errors are
conveniently expressed in terms of parts per million. They arise

due to the observers not being able to sample the prevailing metro-
logical conditions with sufficient accuracy to obtain a precise value
for the refractive index of the atmosphere along the wave path. The
refractive index controls the velocity of the wave propagation and
is, of course, directly related to the accuracy of the distance
measured. Let this random error be designated by = b (p.p.m.) and
thus if the distance between two adjacent stations is & (kms), then
the magnitude of the random error in metres is + b £ 10_3. To obtain
a complete expressioﬁ for an estimate of the total error e in a
measured line between two adjacent stations these two types of errors
can be combined as follows,

e=+al10% b 107> L. (7.1)

In the above form, this total error estimate (virtually a
standard deviation estimate) 1s quite awkward to manipulate due to
the presence of the two sets of * signs. A much more convenient form

of this error estimate would be as below,
-2 -3
e=* (210" +Db 2 10 7) metres  ..... (7.2)

In equation (7.2), the error estimate takes the largest values
of equation (7.1) and so any error estimate thus derived will indi-
cate the extreme upper and lower limits of the range in which the

real standard deviation should lie.
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The general law of the propagation of variances can be applied
to the quantity e as it is analogous to a standard deviation (Clark,
1964, p.8). Basically this law allows the variances e2 for each
section of the line between adjacent stations to be summed to produce
a variance for the entire length between the terminal stations. For
the following calculations, it will be assumed that all n sections

2 of the entire length L are equal in length.
Thus L=n & L (7.3)

If E 4is the error estimate for the entire length L, then from

the law of the propagation of variances,
-2 -3 1/2
E=%(al10” +Db & 10 ") n® metres ..., (7.4)

If A is the relative accuracy for the entire length,

_E
AT
-5 -6

a 10 b 10 6

= £ [‘"ﬁ;" + T J 10" p.p.m.
2 n* n*

ie. A= i(a 12 + P—l/;Jp.p.,m. ceer (7.5)

4 n n

where a 1is in centimetres, b in parts per million and

2 1in kilometres.

Estimates of values for a and b were obtained for various
types of tellurometer and geodimeter instruments from the results of
investigations of Robinson (1968) and are displayed in Table 7.1.

The value of 5 p.p.m. for b for tellurometers in Australia in
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Table 7.1 requires clarification. Generally a figure of 6 p.p.m. would
be an acceptable estimate considering the diversified conditions
encountered on most survey operations. However, such diversified
conditions are the exception rather than the rule over the majority

of the Australian continent where the topography, except for some
isolated areas, shows very little relief. The metrological conditions
thus tend to become somewhat more stable than would generally be the

case.

ESTIMATES OF SYSTEMATIC AND RANDOM ERRORS IN ELECTRONIC
DISTANCE MEASURING DEVICES FOR USE IN AUSTRALIA.

INSTRUMENT a (z cms) b (¢ p.p.m.)
Tellurometer
MRA 1 6.5 5
MRA 2 5 5
MRA 101 2.5 5
MRA 3 (101) 2.5 5

Laser Geodimeter

A,.G.A. Model 8 0.5 1 to 2

TABLE 7.1
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The figures in Table 7.1 for the tellurometer are for a measure-
ment of a line in one direction only. The procedure adopted for the
Australian Geodetic Datum was to measure the line from both ends and
use the mean value. This has the effect of reducing the size of the
error estimate for a line by a factor of the square root of two.
Although the MRA 1 was used in the early stages of the Australian
Geodetic Datum (mainly composed of large tellurometer loop traverses
with some triangulation and trilateration), the MRA 2 was used most
extensively throughout the entire network and therefore it is with
the estimates of it's errors that the following discussion is con-
cerned (Bomford, 1969). The estimate of error e 1in the mean
measured distance of a line length & in Australia, when the instru-

ment used was a MRA 2 tellurometer is given by,
-2 -3
e =% (3.510 © + 3.5 & 10 7) metres veeas (7.6)

Similarly the error estimate for a line measured both ways with

the laser geodimeter is given by,
-2 -3
e =+ (0,35 10 7 + 1.4 2 10 7) metres coees (7.7)

To test if these error estimates, especially the tellurometer
one, were representative of those actually encountered under field
conditions, the results of the adjustment of the Australian Geodetic
Datum were examined (Bomford, 1967a, p.66). Briefly, the adjustment
was performed by obtaining bearings and distances for 161 section
lengths between terminal stations (average section length was 313 kms)

and by using a variation of co-ordinates program (Bomford, 1967b) to
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give adjustments in length and direction to each of these sections
simultaneously. A comprehensive system for weighting each section
was devised and generally this system appeared suitable for the

task (Bomford, 1967a, pp.62 et.seqg.). The average section adjust-
ments were 0.45 metres lengthwise and 0.56 seconds in azimuth. The
average number of stations per section was eleven with a station
spacing of 28.5 kms. If the values of a and b in equation (7.6)
are applied to equation (7.4) with % and n equal to 28.5 km and
11 respectively, then the error estimate E for an average section
of the Australian Geodetic Datum is obtained as 0.44 metres. This
is so remarkably close to the actual value of 0.45 metres that one
must presume that the values of 3.5 for both a and b are extremely
good estimates of the actual errors present. On this premise, these
values have been adopted for use in later work in this Chapter where

error estimates for various lengths are required.

With regard to the adjustment in azimuth, if the laws of propa-
gation of variances are applied to the section adjustments, the
average azimuth error per section may be expressed as 0.17 nl/2 seconds
where n 1is the number of control stations spaced approximately 30 km
apart. The errors to be expected in azimuth can only be considered as
approximations as the spacing of Laplace stations over the control
network was not regular. The azimuth between two stations widely
spaced on the continent could be determined more precisely from the

results of latitude and longitude observations at those stations (see



- 173 -

Table 4.1) than from "carrying'" the azimuth through the control net-
work. This Chapter is concerned more with distance measurements than

with azimuth control methods.

For a certain electronic distance measuring device, given esti-
mated values of a and b and a definite length L to be measured,
is there a particular value of the lengths & that will make the
total error estimate E a minimum? A formula can be found to satisfy
this question and it is derived by differentiating either equation
(7.4) or (7.5) with respect to &. In the following, equation (7.4)

has been used.

From equation (7.3),

1
=L (7.8)
2/2
Thus equation (7.4) becomes,
a 1072 L3
E =+ (54— +b%07°) 1> ... (7.9)
2]2

where L 1is the total length to be measured. Differentiating
equation (7.9) with respect to & and putting it equal to zero for

a minimum,

a =
-3 2
b 10 ¥ _ a 10
i.e > = s e (7.10)
Solving, % = 10 2 (7.11)
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To test 1f this value of & 1is a minimum, equation (7.11) was
substituted into the second derivative of E with respect to 2%
and a positive result was obtained. Hence equation (7.11) gives the
value of & (in kms) that for a given instrument with estimated values
of a (in cms) and b {(in p.p.m.) will produce an error accumulation
of minimum size. This value of & also produces the lowest possible
figure for the relative accuracy (p.p.m.) for the total length L
for the given instrument system. Note that the total length is not
a contributing factor here, except of course, from an economic point
of view. It may be impractical to use this method of minimum error
accumulation if the optimum length & 1is so small that the cost

involved with a large number of set-ups becomes prohibitive.

At this stage, it would therefore be prudent to re-examine
the values for a and b in equations (7.6) and (7.7), derived from
Table 7.1. Using equation (7.11) with the a and b values for the
typical tellurometer traverse on the Australian Geodetic Datum, it can
be seen that line lengths of 10 km would produce minimum error accumu-
lation. Although some areas of Australia have series of lines of this
length, the national average station spacing is approximately 30 km,
A consideration of figures (7.1) and (7.2) shows the differences in
error accumulation and relative accuracy that occur by using ¢ = 30 km

and £ = 10 km.

An interesting application of equation (7.11) is to use the a

and b values for the laser geodimeter, in view of the fact that
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Error Estimates Vs Total Lengths between Terminal

Station for Laser Geodimeter and Tellurometer
for various values of intermediate lengths 9
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refers to Tellurometer traverse, expected error
propagation given by equation (7.6) as * (0.035m
+3.5p.p.m) per line.

= - — refers to Laser Geodimeter traverse, expected

. error propagation given by equation (7.7) as

. +(0.0035m + 1.4 p.p.m) per line.
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this instrument is being used to check the measurements of the high
precision sections of the Australian Geodetic Datum that constitute
baselines for satellite tracking stations. The main advantage of the
laser geodimeter has been described as its ability to measure lines

up to 60 km with a relative accuracy considerably lower than the
tellurometer due to less dependence on varying metrological conditions.
However, the use of equation (7.11) shows that 2.5 km is the ideal

line length for using the laser geodimeter. The laser geodimeter is
generally used over lines much longer than 2.5 km and as figures

(7.1) and (7.2) illustrate, a distance measured with a laser geodimeter
traverse composed of intermediate line lengths of 50 km should be
twice as accurate as a tellurometer traverse with average line lengths

of 10 km.

No mention has been made of other important considerations in
the above analyses. There is always a centring error at the master
and remote stations, and this error will accumulate more rapidly if
the length of line is comparatively small since the number of set-ups
will be larger. The improved accuracy arising from short lines from
the error propagation of the factors a and b will be offset by an
increased accumulation of centring errors. Large survey organisations,
in general, do not have the staff or the time to observe lines of
length smaller than approximately 30 km and so this economic consider-
ation will most probably design the configuration of the geodetic

network.
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It should be stressed that the figures for relative accuracies
are really internal consistencies. There may be overall scale errors
in the network of the order of a few parts per million, but these
will remain undetected until inter-continental connections to other
geodetic datums are made. Once a high order of internal consistency
has been obtained, it is a simple matter to apply an overall scale
correction to the entire network. Although Section 7.4 of this
Chapter refers to a scale effect, the word scale is applied in a
slightly different sense to that mentioned immediately above. In
Section 7.4, the scale effect examined is really an effect of vary-
ing scale throughout the network caused by the use of elevations
above the geoid in the reduction of measured lengths. A varying
scale throughout a geodetic control network constitutes an attack
on internal consistency, i.e. relative accuracy. Thus although
the word scale appears in Sections of this Chapter, it does not

necessarily preclude the use of relative accuracy estimates.

Whilst figures (7.1) and (7.2) give examples of the magnitude
of the errors and relative accuracies that can reasonably be expected
from length measurements over long lines, no mention of the accuracy
attainable over triangulation baselines has yet been made. Figures
(7.3) and (7.4) are intended to show this, for distances from 5 to
60 km. These figures contain two studies. The first one assumes
that measurements from both the laser geodimeter and the tellurometer

are made from the terminal stations of the baseline and the mean value
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adopted. The error estimates and relative accuracy values for the
curves denoted by (i) will therefore be indicative of the maximum
standard deviations and accuracies arising from the a and b
factors that one could reasonably expect upon measuring the baseline

with only set-ups at the terminal stations.

The other study (ii) uses the optimum lengths for both the
tellurometer and laser geodimeter so that comparisons of the two
types of baseline measurement can be made. This second method has
a number of intermediate set-ups and so takes longer to perform. A
greater accumulation of centring errors will be present in this
method, although the use of modern centring devices should keep these
errors to a minimum (Hodges, 1969, p.24). The distance between the
master and remote instruments is comparatively small in this case
and the b factor will probably be reduced as the observers should
be able to obtain metrological data which is representative of the

actual conditions along the line.

From figures (7.3) and especially (7.4) it can be seen that to
obtain a baseline measured with an internal consistency approaching
one part per million that several measurements using method (i) would
have to be taken from both terminal stations. For a baseline 20 km
long, at least 25 readings from both ends would have to be taken using
a tellurometer and approximately 4 from both ends using the laser
geodimeter. The figures clearly illustrate that the use of the

optimum length & for each instrument allows the minimum error
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Error Estimates for various Baseline Lengths for both
the Tellurometer and the Laser Geodimeter
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accumulation of the a and B factors. The size of the relative
accuracy that could be expected in the pre-electronic distance measur-
ing devices era was estimated to be one to two parts per million

(Bomford, 1962, p.61). The time taken for the determination was much

longer however.

The results that emerge from this Section presume that electronic
distance measuring devices have error estimates for single measurements
that can be represented in the form of equation (7.2). If reasonable
estimates for a and b can be obtained, predictions concerning the
internal consistency between control stations in a geodetic network
can be made. Figure (7.4) indicates that the relative accuracy
between adjacent stations in a control network may be of the order of
4 or 5 parts per million. Over longer distances the relative accuracy
decreases and at a distance of 3000 km it may be lower than one part
per million (figure (7.2)). When the electronic measuring devices
are used for short baselines several repetitious measurements are

necessary for a high internal consistency.

7.3 Loop Closures.

In the previous Section the adjustment of the Australian Geodetic
Datum was mentioned. Briefly, the adjustment was performed by obtain-
ing bearings and distances for 161 sections of geodetic control between
terminal stations, and, using a variation of co-ordinates program,
adjustments were given in length and direction to each of these

sections simultaneously. A comprehensive weighting system was used
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in the simultaneous adjustment.

During the calculations to give the bearings and distances
between the terminal stations for the 161 sections, whenever a number
of sections forming a loop had been calculated, the loop closure in
latitude and longitude was computed. Each loop was numbered and the
perimeter length, number of stations and the misclosures in both
metres and parts per million tabulated (Bomford, 1967, p.61, Table 2).
The average loop had a perimeter of 1438 kms and a misclosure vector
of 2.19 parts per million (equivalent to a length misclosure vector
of 3.15 metres). The loop misclosures were compiled so that a check
was provided for the section calculations. This ensured that gross
errors were not present in any distances or bearings to be used in the
overall national adjustment. A loop misclosure of approximately 4
parts per million was the maximum allowable before the section calcu-
lations were re-investigated. This could even result in a field

re-investigation of a certain section if the mistake was not found.

The procedure adopted for the adjustment of the Australian
Geodetic Datum appears to have been suitable for the task involved,
viz., to provide control for topographic mapping and to establish
preliminary distances for satellite tracking stations. It was un-
avoidable that orthometric, instead of spheroidal, heights were used
in the reduction of measured distances. An astro-geodetic geoid
solution for Australia (see Chapters 3, 4 and 5) was not available

until after the adjustment.
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This Section investigates the effect on loop closure arising
from the direct use of orthometric heights for the reduction of measured
distances. If the geoid and spheroid were parallel to one another in
the region of a loop, then obviously no effect on loop closure will
occur. If the geoid spheroid separation is not constant around a
loop, the individual lengths around that loop will possess different
scale errors, with the result that the loop closure will be adversely
affected. A derivation of formulae to calculate this effect follows

below.

Consider figures (7.5) and (7.6) and let ¢ be the curve
(traverse loop) around which the misclosure effect caused by the use
of orthometric heights instead of spheroidal heights in the reduction
of measured distances is to be found. This misclosure effect could
have been avoided if values of N,, the astro-geodetic geoid spheroid
separation, had been added to the orthometric heights. Let the axes
system be as illustrated, the y axis being oriented along the line
of maximum gradient of the geoid spheroid separation slope. It shall
be assumed, for the purpose of expediency of solution, that the geoid
slope 1s constant with respect to the spheroid in the regions of the
traverse loop. This assumption is not unreasonable when the average
size of a traverse loop and the generally uniform geoid slope over

the majority of Australia is considered.

From figure (7.6),

o

_t_=£dx+3—-x ..... (7.12)

ds s
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FIG. 7.5
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tangent vector
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normal vector
ds.

FIG. 7.7
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and since t.n=0 L., (7.13)
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then n =
A form of Gauss' Theorem (divergence theorem) states,

§ v.n ds = { Vvd L. (7.15)
c A
where subscripts ¢ and A refer to the curve and the area
inside the traverse loop respectively.
To manipulate equation (7.15) into a more suitable form, put,

v=iP+jQ .. (7.16)

where P, Q are scalar functions of position and i, j are

unit vectors.

Note that Z.K = X —a—}'" ..... (7.17)
Also vo=EP+1Q GF-i P
_pdy o dx
= P ra Q = e (7.18)
~ dy dx
and % v.n ds = § (P Fr Q EEJ ds
¢ c
= § Pdy -Qaxy ... (7.19)
c.

From equation (7.17),

f V.v dA = { G+ Eg) a L. (7.20)
A A
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Thus the divergence theorem in the desired form is,

_ [ P L 30
§ (P dy - Q dx) = f (§+ ay) a . (7.21)
c A
If figure (7.5) is again considered, an equation for the geoid

spheroid separation N, could be expressed as,

This implies that in the region of the traverse loop under
consideration, the geoid is considered planar with respect to the
spheroid. This is not an unreasonable assumption (discussed earlier).
If the misclosure vector is designated by m (see figure (7.5)),
then a component of this misclosure dm caused by a short distance
ds which has not been reduced to spheroid level with a spheroidal

height, can be represented by,

Equation (7.23) is analogous to the reduction of a measured
distance to the spheroid (viz., %—s); where R 1is the mean radius

of earth curvature over the line of length s.

Resolving dm into its x and y components,

_ N
dmx = § dx ... (7.24)
an, = Y4 (7.25)
y T R Yy e .

If R is set equal to the mean earth radius in the area of the
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traverse loop, the total misclosures in the x and y directions

will be given by,

1
m = §-§ Ndx i (7.26)
c
and m o=xéNdy i (7.27)
y R
c
If we put - Q=N
=C+Dy
and P =0 into equation (7.21)
then § N dx = - J D dA
c A
=-DA i (7.28)
Hence m_ = - 2-A (7.29)
X rA e .
Also if we put P =N
=C+Dy
and Q=0 into equation (7.21)
then § N dy = i (0 + 0) dA
C
=0 i (7.30)
Hence my =0 . (7.31)

These misclosures have been obtained for the case of one of the
reference axes (the y axis here) being oriented along the line of

maximum gradient of the geoid spheroid separation slope. In general,
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if we consider the North and East directions as reference axes, then

equation (7.29) can be expressed as,

- QR-A- sine (7.32)

m (north)

and m (east) Qﬁﬁ cosa i (7.33)

where the angle o 1lies between the north direction and the
line of maximum geoid spheroid separation slope (see figure(7.7)),

the angle being measured clockwise from the north direction,.

An examination of equation (7.22) reveals that the term D 1is
the tangent of the maximum value of the deflection of the vertical ¢.
This maximum deflection angle is assumed to remain constant over the
region of the traverse loop and can be expressed in terms of ¢ and n,
the deflections of the vertical in the meridian and prime vertical

directions respectively by,

Y
1}

z coso

and ¢ sine L. (7.34)

=
1}

where the azimuth o 1is defined as previous.

Since ¢ for Australia is never greater than 25 seconds of arc,
the tangent of ¢ can be considered equivalent to its radian value,

i.e.
D=1¢ (radians) ..., (7.35)

Hence the formulae for obtaining the loop misclosure due to geoid

spheroid separation neglection are,
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- DA
m (north) = R 206265 metres eeees(7.36)
and m (east) = + LA metres (7.37)
R.206265 et

. . 2 .
where the area A is expressed in metres”, the mean radius of

curvature R is in metres and £ and n are in seconds of arc.

A feature of the formulae above is the sign of the misclosure
which arises because the mathematical procedure of mapping involved
the transferring of the curve c¢ from one surface to another (from
geoid to spheroid), with directional vectors. A starting point was
assumed and by proceeding anti-clockwise, the entire loop was trans-
ferred to the new surface. Although the loop was a closed figure on
the geoid, it will not form a closed loop on the spheroid with the
difference being designated by the misclosure vector m. The direction
of m and the direction of calculation was illustrated in figures
(7.5) énd (7.7) and it was upon resolution of the misclosure into the
north and east directions that the algebraic signs of equations (7.36)
and (7.37) occurred. The sign‘convention will be as shown in equations
(7.36) and (7.37) only if the loop calculation proceeds in an anti-
clockwise direction. If the loop calculation is performed in a clock-
wise direction then the signs of equations (7.36) and (7.37) must be

reversed.

Another significant feature of these formulae is that although
two constants (C and D) are relevant to the equation of the geoid

(equation (7.22)), only the constant D is of importance in the final



- 192 -

formulae for the loop misclosure. The constant C vrefers to the
magnitude of N at the origin of the axes and is the factor which
relates to the general scale of the loop. If C 1is equal to 6.28
metres, a scale factor of approximately one part per million will
exist in the initial section of this loop. The scale factor C 1is
of no significance to the size of the loop misclosure, but it is an
important quantity to consider when the inter-connection of two loops
takes place. If these loops have C values of different magnitude
then the whole network loses homogeneity and the calculation of a
line from one loop to another will possess an irregular scale error.

This type of error is dealt with in Section 7.4 of the Chapter.

It was believed that during the process of the above 'derivation
a system may have been evolved which would indicate an optimum con-
figuration for geodetic control traverse loops so that misclosure
errors could be minimised. Such a system did not eventuate, simply
because no particular arrangement of loops will have any inherent
minimum error producing qualities with respect to any other system of
shapes of loops. Equations (7.36) and (7.37) show that the only
factors of relevance are the area of the loop and the values of the
deflections of the vertical in this area. When a large area such as
Australia is to be covered by control traverse loops, no special
configuration of the loops can be devised which will inherently account
for neglect of the geoid spheroid separation. The considerations that

will decide the configuration to be used will consist of access, the



- 193 -

type of surveying to be used (triangulation, trilateration or tellur-
ometer traverse), the topographical features, the desired spacing of
azimuth control (Laplace stations) and check baselines and most
importantly, the density (total number) of first order control stations

desired in the total area to be surveyed.

The direct application of equations (7.36) and (7.37) to the
Australian Geodetic Datum would not be strictly correct. The co-
ordinates of control stations on that datum were not intended to apply
to an earth centred reference figure directly. For the purpose of
illustrating the above-mentioned equations however, let it be assumed
that the co-ordinates of control stations on the Australian Geodetic

Datum were intended to apply to an earth centred reference figure.

The misclosure effect for the traverse loops on the Australian
Geodetic Datum as calculated from equations (7.36) and (7.37) never
exceeded 0.40 parts per million (average value was 0.25 p.p.m.). A
planimeter was used to obtain the loop areas from a large scale map
of Australia which showed their location. Since the average loop
misclosure was 2.19 parts per million, it can be seen that this effect
was generally one order smaller than all other error accumulation. As
the directions of the original loop computations were unknown, no

attempts could be made to correct for this effect.

A computer program which calculated the amount gﬁ:’ along each

line of length s around a loop was devised to test if equations

(7.36) and (7.37) had been correctly derived. This represented the
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extra amount of reduction that would have occurred if spheroidal and
not orthometric heights had been used to reduce measured lengths to
spheroid level. The azimuth of each line s was calculated and then
the effect ﬁﬁi was resolved into north and east components., All
these components were summed for the misclosures in the north and

east directions. Loops numbered 7, 14, 52, 75 and 76 on the Australian
Geodetic Datum (Bomford, 1967a, figure 1) were used as data for this
program and the results were compared with those obtained from the use
of equations (7.36) and (7.37). In every case the results were close
enough to be considered identical, especially after considering the

accuracy attainable with a planimeter and the fact that the geoid slope

is not exactly uniform,

7.4 Scale Effect.

The previous Section of this Chapter showed that if a control
traverse loop possessed a variable scale around its perimeter, it
will also possess a misclosure. This misclosure is directly attri-
butable to the use of orthometric instead of spheroidal heights for
the reduction of measured distances to assumed spheroid level. The
extra amount of reduction is Eﬁi (metres) where N 1is the average
geoid spheroid separation value for the line length s and R is
the mean radius of earth curvature. This Section attempts to find the
error due to the above-mentioned cause which would be present in dis-

tances calculated from geographical co-ordinates on the Australian

Geodetic Datum and intended to represent lengths on a geocentred
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reference spheroid. For the purposes of this Chapter, the geocentric
orientation parameters as per equation (5.1) have been adopted. Zero

order terms in AN, have been neglected (see discussion Section 6.7).

The value of N does not vary very much over short baseline
distances, hence the value of N at the mid-point would suffice to
obtain an estimate of the error of the assumption in the previous
paragraph. For distances of continental extent, the geoid slope across
an earth centred spheroid in the Australian region is not completely
uniform, and it would not be acceptable to merely use the mid-point
value of N to obtain what shall be termed the scale effect T. To
obtain T to an acceptable degree of accuracy the terms Eﬁi should
be calculated approximately every 30 km along the line using the mean
values of N for each of these sections. The total scale effect T
will be the sum of the scale effects for each section. This method
would be tedious over a length of 3000 km. This Section derives a
formula to calculate T from an integration approach and checks that
the derived formula is correct. Some examples of the size of the
scale effect on both hypothetical triangulation baselines and proposed

satellite baselines on the Australian Geodetic Datum have been given

in Tables 7.2, 7.3 and 7.4.

The general aims of the derivation were to keep the formula for
T as general as possible, the geographical co-ordinates of the terminal
stations and the geocentric orientation parameters being the only data

input requirements. The value of T should be obtained from the use of
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one formula. No form of repetitious calculation such as discussed
earlier (every 30 km) was desired, although the formula was to be
incorporated in a computer program so that T could be rapidly

calculated over several lengths in a minimum of time.

The scale effect t in the immediate vicinity of any point P
(¢,A) on the line between P1 (¢1,21) and Py (¢2,A2) can be

represented by,

g=Nds (7.38)

where N is the geoid spheroid separation, ds 1is a length
increment at P and R is the mean radius of earth curvature at P.
In Chapter 2, equation (2.29), it was shown that N at any point P

{(¢,A) can be represented by,

N = Aty (pothg) (- sing cos¢p + singg cos¢ cos (A-Ag))

- Ano (vothg) cos¢ sin(A-Ag)
+ ANy (sin¢ sing, + cos¢ cosdy cos(r-2,)) veeae(7.39)

where AE,, Ang and ANg are the geocentric orientation parameters
for the origin P, (¢5,%,) of the geodetic control network. From a
consideration of spheroidal geometry, the distance ds may be expressed

as,
ds = p d¢ cosA + v dX cos¢ sinA eeesa (7.40)

where A is the azimuth of the line P{ Py and p, v are the
radii of curvature in the meridian and prime vertical sections

respectively. The total scale effect T will be the sum of all the
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individual scale effects along the line Py P, and can be expressed

as,

Equation (7.41) cannot be integrated in this form directly. To
make an evaluation both possible and convenient, the following approxi-
mations will be made,

(1) R =p = v =Ry = mean earth radius

.. . . . . di
(ii) Azimuth A is constant along the line i.e. o = constant
(iii) Mean values, subscript [, will be used for ¢ terms when

the integration is with respect to X and vice versa,

On these premises, equation (7.41) may be expressed as,
$2 A2

T = cosA J N d¢ + sinA cosdy J Nd (7.42)
1 M

Upon integration, after substituting equation (7.39) for N,

T = A&, R {cosA cosé, (B + C F singg)
+ sinA cos¢, (E sin¢, cos¢p - H singy cos¢y)}
+ Ang R {-C G cosA + D sinA c052¢m}
+ AN, {cosA (C F cos¢y - B singg)

+ sinA cos¢y (H sin¢y, sin¢y, + E coséy cosép)t ..., (7.43)
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where B cos¢, - cOSdy
C = sin¢y - singy

D = cos(Ay - X5) - cos(ry - Ag)

E = Sin(>\2 _ )\o) - sin‘(kl - )\0)

i

F = cos(Ay - 20)

G = sin(A, - A4)

H = (A - A) radians e (7.44)

To check if equation (7.43) had been correctly derived, it was
incorporated into a computer program which calculated T by the
summation of the individual scale errors every 30 km along the line.
The difference between the two methods was never greater than 0.1 parts
per million. The standard deviations of the residuals for N found by
back substituting the geocentric orientation parameters derived from
the 1968 free air geoid solution was approximately * 5 metres, so the
value for T stemming from the integration of equation (7.39) should

not be incorrect by more than 0.8 parts per million.

Error estimates were also calculated for each line considered.
The error propagation estimate for a two-way tellurometer traverse
of * (0.035 metres + 3.5 p.p.m.) per line was adopted as it had been
shown in Section 7.2 to be an error estimate with a high degree of
reliability for Australian conditions. The average station spacing

was assumed to be 30 km. Note that this error estimate will under-
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estimate by up to 20% the error that would be actually propagated
because it is calculated on the assumption of measuring the shortest
possible distance between the terminal stations. In practice, the
path of the traverse will wander due to topography, access, etc., and
will be longer than the shortest distance. A lateral error estimate
was also calculated and was expressed in both seconds of arc (azimuth
error) and metres. The lateral error estimate was based on an expected
error of * 0.17 seconds of arc per 30 km section of the total line.
Although this error will also underestimate by approximately 20%, it
was shown in Section 7.2 that little emphasis can be placed on its
results as astronomical determinations of position at the terminal

stations will provide the best methods of azimuth control.

The data for Table 7.3 was an adaptation of that used by
(Lambeck, 1968b, p.283) for a feasibility study of the application
of the geometric method of satellite geodesy to the Australian
Geodetic Datum. Lambeck gives the names and approximate geographical
co-ordinates of nine stations where satellite tracking equipment is
either installed or could be in the near future. Twenty lines would
be observed between these nine stations, and equation (7.43) has been
computed for them. The nine stations and their approximate co-ordinate
values are shown in Table 7.2 and figure (7.8). Table 7.3 gives the
estimates of scale error if Australian Geodetic Datum co-ordinates
weré used to calculate the distances between the stations in Table 7.2

and these distances were intended to represent lengths on a geocentred
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Approximate Co-ordinates

Station Name Latitude Longitude

(degrees) (degrees)
Woomera -31.1 136.5
Muchea -31.4 115.6
Port Hedland -20.2 118.4
Darwin -12.2 130.4
Thursday Island -10.4 142.1
Townsville -19.1 146.5
Culgoora -30.3 149.6
Hobart -42.5 147.2
Alice Springs -23.4 133.5

TABLE 7.2
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. Distance Scale Length Lateral
Line Under
between Error Error
Stations Effect T Estimate Estimate
Consideration
km m p.p.m. m p.p.m.; sec p.p.m.
Woomera -  Muchea 1990 -4.5 -2.3 1.2 0.52 1.4 13.4
- Townsville 1670 8.7 5.2 1.1 0.63 1.3 10.3
- Culgoora 1260 4.1 3.31 0.9 0.73 1.1 6.7
-  Hobart 1590 0.6 0.44 1.0 0.65 1.2 9.5
-Alice Springs 920 2.1 2.34 0.8 0.8} 0.9 4.2
Muchea -Port Hedland 1280 | -4.6 -3.6}1 0.9 0.73 1.1 6.9
- Thursday Is 3630 9.2 2.6 1.5 0.437 1.9 33.0
- Townsville 3430 5.4 1.6 1.5 0.44 1.8 30.3
-  Hobart 3100 | -8.9 -2.9 1.4 0.46 1.7 26.0
-Alice Springs| 2000 {-2.8 -1.4} 1.2 0.58 1.4 13.5
Port Hedland -Alice Springs 1600 1.9 1.2 1.0 0.65 1.2 9.7
- Darwin 1560 4.8 2.7 1.0 0.66 1.2 9.2
Darwin - Thursday Is 1300 11.5 8.9} 0.9 0.72 1.1 7.2
~Alice Springs 1280 6.3 4.9%¢ 0.9 0.73 1.1 6.9
Thursday Is -Alice Springs 1700 12.5 7.3 1.0 0.63 1.3 10.6
-  Hobart 3600 19.8 5.5 1.5 0.43 1.9 32.4
- Townsville 1080 11.1 10.1} 0.8 0.80 1.0 5.3
Townsville - Culgoora - 1280 9.4 7.31 0.9 0.73 1.1 6.9
-Alice Springs 1430 9.0 6.3} 1.0 0.69 1.2 8.2
Culgoora -  Hobart 1370 3.1 2.33 1,0 0.70 1.2 7.7
TABLE 7.3

Geocentric orientation parameters used in equation (7.43) for the

above calculations were Ago = -4.65 sec, Ang = -4.40 sec, ANp =14.0 m.
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spheroid in the Australian region. The free air geoid solution for
Australia does not extend to Hobart or Thursday Island, but it has been
assumed that its sloping trends will continue unaltered to these points.
While this assumption will not be exactly correct, it is unlikely that
the scale error estimates in Table 7.3 would be incorrect by more than

one part per million due to this cause.

A consideration of Table 7.3 reveals some interesting features.
For the network as outlined, scale errors ranging from - 3 to + 10 parts
per million would exist if the control station co-ordinates were not
corrected by the application of the geocentred orientation parameters
for Johnston Origin. In every case, the scale error exceeds the size
of the expected error propagated from two-way tellurometer traversing

at a station spacing of 30 km.

Table 7.3 shows that the azimuth between two control stations
separated by more than 1000 km can be obtained more precisely from a
calculation involving astronomical co-ordinates than by being 'carried"
by the traverse. In practice, the azimuth would be computed from the
nationally adjusted co-ordinate values of the control stations involved,

but for the purpose of this Chapter, the above discussion is valid.

The scale effect over long lines only has been investigated in
Table 7.3 and the use of equation (7.43) to do this has been justified.
For short distances, the only consideration necessary is the magnitude
of ﬂ_. Over a triangulation baseline of length 8 to 20 km, the mid-

R
point value of N may be used to calculate the scale effect without
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THE SCALE EFFECT FOR HYPOTHETICAL TRIANGULATION BASELINES

IN AUSTRALIA

Baseline Co-ordinates | Scale Effect
State
Latitude Longitude (p.p.m.)
o} 0
New South Wales -32°N 146°E 3.8
o o}
Queensland -23°N 1447E 7.9
. o) o)
South Australia -29°N 1357E 1.9
. o o}
Western Australia -26°N 122°E -0.7
. . o o}
Victoria -37 N 1457E 2.3
Northern Territory -21°N 134°E 5.0

TABLE 7.4
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the introduction of significant error. This procedure has been adopted
for Table 7.4 where the scale effects for hypothetical baselines in
each state of Australia are shown. Baselines such as these do not
actually exist, Table 7.4 was intended to illustrate the magnitudes
of the scale effect that would be introduced into a geodetic control
network based on triangulation in the Australian region if the exist-
ence of the geoid geocentred spheroid slope was ignored. The Aust-
ralian Geodetic Datum has been scaled from the vast lengths of
tellurometer traverse which run through every chain of the old
triangulation scheme (Bomford, 1969). The Australian network is
based on a reference spheroid which has been oriented approximately
parallel to the geoid slope in the Australian region and therefore

the comments in this Chapter are not directly applicable.

If a geodetic control network was established using the base-
lines shown in Table 7.4, the scale errors, which in this case are
relative to a geocentred reference system, would not be detected
when the control was carried from baseline to baseline. The use of
orthometric heights for the reduction of all distances will preclude
the detection of the scale errors. No indications of a sloping geoid
will be found as all measurements and calculations will have been made
relative to the geoid. Only connections to other geocentred contin-
ental datums where spheroidal lengths have been used will show the

existence of the geoid slope.

This Chapter has presented, in effect, a case for the establish-
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ment of gravimetric geoid determinations over the regions covered by
the major geodetic control networks of the earth, using as illustration,
the situation in Australia if the geoid geocentred spheroid separation

had been neglected.
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CHAPTER 8
CONCLUSIONS.

8.1 The Free Air and Astro-geodetic Geoids in Australia.

The free air geoid was defined in Chapter 1. In Chapter 4 a
description of its calculation in Australia from the gravimetric
data available in 1968 was presented. In 1970 a recalculation of
the free air geoid in Australia (Mather, 1970a) showed that the
regions delineated as being of lower precision in the former solution
have had their gravity anomaly fields strengthened to a considerable
degree. The new geocentric orientation parameters for the Johnston
Origin differ slightly from those obtained from the 1968 solution
(equation (5.1)). A zero order term for AN, has been included
based on the value of the global mean free air anomaly obtained from
a composite set of gravity anomaly data consisting of an amended
version of the Rapp (1968) data set and the terrestrial gravity
anomaly data held at the University of N.S.W. (ibid, p.85). The
Australian region is a very favourable one to perform calculations
of the free air geoid as a dense terrestrial gravimetric coverage

on a 0.1° grid basis is available.

Comparisons with astro-geodetic deflections of the vertical
and an astro-geodetic geoid solution have shown that thenfree air
geoid for Australia is an excellent approximation of the geoid it-
self in this region. The number of Laplace stations on the Aust-

ralian Geodetic Datum has been increased from approximately 600 in
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1966 to 1200 in early 1970 with this figure expected to rise by another
300 by early 1971. A revision of the preliminary astro-geodetic geoid
for Australia (Fischer and Slutsky, 1967) will be undertaken by the
Australian Commonwealth's Division of National Mapping in 1970, This
revised astro-geodetic geoid determination should be able to discrim-
inate small geoid fluctuations to a finer extent than was possible

with the 1967 solution.

The reliability of the 1970 free air geoid solution has improved
to the extent that the standard deviations of the residuals of the
original observation equations, upon back substitution of the geo-
centric orientation parameters, reduced in magnitude when the inner
zone effects of the free air geoid solution were omitted from compari-
sons with the Fischer/Slutsky astro-geodetic geoid. This indicates
that the latter is over-smoothened, which is not surprising when the
station density of one per 12,000 km2 is considered. The 1968 free
air geoid solution was insufficiently precise to detect this effect,
with the result that an estimated standard deviation of = 1 metre
for the 1967 astro-geodetic geoid solution in Chapters 4 and 5 was

considered to be valid in most regions.

The lack of observed values of gravity anomalies in the ocean
areas surrounding the Australian continent is the major factor pre-
venting improved free air geoid determinations in Australia. The
exact nature of the deflections of the vertical in limited regions,

especially mountainous regions, is incompletely understood at present.
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The Snowy Mountains regions of the Great Dividing Range on the eastern
coastline of Australia would be an interesting location for an exact-
ing study of this type, but the weak gravity fields in the nearby
Pacific Ocean and Tasman Sea would significantly limit the investi-
gations. It is believed that the Australian Bureau of Mineral
Resources will strengthen the paucity of observed gravity data in

this region in the near future but until such time any investigations
of the nature described above must be considered preliminary. A

dense coverage of astro-geodetic stations in the high mountainous

regions of Australia would also be a prerequisite to allied studies.

8.2 The Indirect Effect.

The indirect effect for the free air geoid has been formulated
and estimations calculated on global and continental bases in Chapter
6. All co-geoids will have an indirect effect which will consist of
a potential dependent term (non-Stokesian in character), a Stokesian
term and a zero order effect. The free air geoid is generally held
to be the best approximation to the geoid itself and the only co-
geoid of fundamental geodetic significance (e.g. Mather, 1968b, p.45).
The magnitude of its indirect effect is therefore generally held to be
comparatively small.

For the case of Australia the above statement appears to be

valid, the calculations in Chapter 6 showing that the indirect effect

does not possess a variation of more than 1 metre across the continent.
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The geocentric orientation parameters for the Johnston Origin of the
Australian Geodetic Datum did not significantly alter when the indirect
effect was added to the 1968 free air geoid. It has been preliminarily
concluded that the 1968 free air and the Fischer/Slutsky astro-geodetic
geoid solutions in Australia are not accurate enough to detect any

small improvements arising from the addition of the indirect effect.

The estimate of the global indirect effect (figure (6.24)) dis-
plays variations which are much larger in magnitude than those that
were originally expeéted. The close agreement of the free air and
astro-geodetic geoids in Australia and the small indirect effect in
this region do not, in themselves, provide sufficient evidence to
conclude that the global estimation of the indirect effect is correct.
Australia only represents 1%% of the total surface area of the earth
and to extrapolate from studies in this area is unwise. The global
solution does indicate that Australia lies in the region of minimum
indirect effect gradient, a fact which also neither proves nor dis-

proves the existence of the magnitudes of the global indirect effect

variations.

Very few serious attempts at global estimation of the indirect
effect have been undertaken, probably because geodesists have con-
sidered its evaluation unwarranted in view of the limited free air
geoid studies of continental extents which have been performed.
Pellinen (1962) obtained values of a terrain correction in the mount-

ainous regions of the Alps, the Caucasus and the Himalayas and used
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these values to forecast values for other regions. He obtained a
3,3 spherical harmonic analysis of these terrain corrections which,
while showing the same general trends, 1is considerably smaller in
magnitude than the spherical harmonic analysis of the global esti-
mates of Age. derived in Chapter 6. The smoothened topographical
approach used by Pellinen was shown in Chapter 6 to lead to an under-
estimation of the differential terrain correction whose magnitude is

considerably influenced by the near zone undulating topography.

The exact calculation of both the Stokesian and non-Stokesian
terms. in the indirect effect requires a very precise global height
data set. A significant improvement to the estimate of the indirect
effect computed in this thesis would involve the preparation of a
0.1° x 0.1° height data set on a global basis. Modern automatic
photogrammetric plotters have a facility for digital readout of
topographic height, so the preparation of such a data set would not

be an overwhelming task for a large mapping organisation.

The technique developed in Chapter 6 for the global differential
terrain correction estimates was shown to have a serious defect along
the escarpments of high mountainous regions. This defect is not,
however, the major cause of the large magnitude of the global Stoke-
sian term shown in figure (6.23). The large mountainous regions of
the world are so situated with respect to one another that the Stoke-
sian contributions from these regions globally complement one another

to produce the variation pattern in figure (6.23). The non-Stokesian
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term complements the Stokesian variations to a considerable degree
in the Asian and American regions. Across Australia it has the

effect of reducing the magnitude of the Stokesian term variation.

The only check on the non-Stokesian term was provided from
the consideration of the isostatically compensated (Airy-Heiskanen
model) topographic block of dimensions similar to those of the
Himalayas. This check had several limitations but the results
indicate that the approximations made for the calculation of the
non-Stokesian term did not introduce gross errors into its evalu-

ation.

The implications of the adoption of the zero order term of the
indirect effect with respect to the adopted values of a, £ and kM
for Reference System 1967 were reviewed in Section 6.7. The purpose
of the global indirect effect estimation was not to revise these
values although the calculations presented could form a basis for

such a revision.

An estimation of the global geoid solution (figure (6.25)) was
obtained from the addition of figure (6.24) and the free air geoid
solution of Rapp (1969). The inclusion of the indirect effect has
smoothened most of the regions of extreme high and low values shown
on the global free air geoid solution by approximately 10 metres.
The magnitude of the geoid surface gradient has generally been
reduced, although the basic trends remain unaltered. The geodetic

and geophysical significance of this is a matter of conjecture, and
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as the prime objective for obtaining the global indirect effect esti-
mate in this thesis was to assist an evaluation of the indirect effect

in Australia, the matter will not be further discussed.

8.3 The Application of the Geoid to Geodetic Control Networks.

The Australian Geodetic Datum has been discussed in several
sections of this thesis, notably in Chapter 3 where a critical study
of the National Mapping Council Resolution 293 which aligned the
Australian National Spheroid parallel to an approximation of the
mean geoid position in Australia was presented. In Chapter 7 an
analysis of the tellurometer traverse loop misclosures resulted in
the formulation of error estimates for electro-magnetic distance
measuring devices which it is felt can be used in other contexts

with a reasonable degree of reliability.

The free air and astro-geodetic geoids in the region of the
Australian Geodetic Datum have been discussed in Section 8.1. The
indirect effect for the free air geoid in Australia (Section 8.2)
has been shown to possess a variation of less than 1 metre. The
addition of the indirect effect to the 1968 free air geoid in Aust-
ralia did not change the values of the geocentric orientation para-
meters AE, and Ang displayed in equation (5.1). A zero order term
in AN, will result from the adoption of the Australian and global

indirect effect solutions.

The effect of neglect of the geoid in the reduction of measured
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distances to assumed spheroid level was illustrated in Chapter 7. If
control station co-ordinate values on the Australian Geodetic Datum
are considered as referring to a geocentred reference spheroid, errors
several times the magnitude of the relative positional error between
these control stations may be introduced into distances for geodetic
and satellite tracking baselines. For the purpose of intercontinental
satellite triangulation, the adoption of geocentric orientation para-
meters as a means for referring control station co-ordinates to an

international geocentred reference figure is recommended.
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