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PREFACE

The contents of this monograph have been put together
primarily for the use of students following degree courses in
Surveying at the University of New South Wales, in the absence of

a suitable text.

The writer has based his approach in the latter sections
on P.D. Thomas' Conformal Projections in Geodesy & Cartography which
provides a comprehensive summary of earlier work, while the initial
material is considerably influenced by J.E. Jackson's lectures on the

subject at the University of Cambridge.

A study of the table of contents will show that the first
three sections are developed from the point of view of a spherical
reference surface. Emphasis is placed on the classification of
projections and related basic, principles which enable any projection
to be developed, once a handful of common basic rules are postulated.
In addition, the concept of families of projections is stressed, as
many common projections comprising the conical family, are developed

from the same.basic set of rules.

The projection of an ellipsoidal surface of reference is
dealt with in the last two sections. The development is influenced by
the needs of undergraduate students with an emphasis on the minimum
set of concepts necessary for compiete formulation. The necessary
ellipsoidal geometry is developed in the appendix which can be
considered to be self-contained, if preceded by about two hours of

lectures in basic differential geometry.

The second edition removes certain anomalies in the
development, as presented in the first edition, and provides a
consistent development of the chord to arc correction and the line

~-9
scale factor for the transverse Mercator, correct to order 10 ~.

The writer is grateful to Messrs. A.H.W. Kearsley and
M.Maughan for bringing inconsistencies and suggestions for improvement

to his attention.



Preface

TABLE 0F CONTENTS

A guide to notation

no

Introduction
1.1 Co-ordinate systems for the representation of
position on the Earth's surface
1.2 Map projections
1.3 Definition of fundamental terms
1.3.1 The mapping equations
1.3.2 Convergence on a projection
1.3.3 The scale
l.u classification of common projections

A
1.4.1 Introduction
1.4.2 The cone as an enveloping surface

Perspective projections

2.1
2.2

Introduction

The gnomonic projection
2.2.1 The polar case
2.2.1 The non-polar case

The stereographic projection

The orthographic projection

Conical projections

3.1
3.2

3.3

3.4

Introduction

Conic projections on a tangent cone
3.2.1 The equidistant case

3. The equal area case
3.

Conic projections on a secant cone
3.3.1 The equidistant case

The equal area case

The conformal case

The equidistant case
The equal area case

2
3
4
Projections on a tangent plane
1
2
3 The conformal case

2.2
2.3 Conformal conic with one standard parallel
3.2.4 Summary of projections on a tangent cone

Page No

~ o

13
13
13

14
16
17

17
17
21
22

24
25

27

28
31

The summary of projections on a secant cone 33

34

35
36

ctd.



Table of

3.5

3.6

contents - 2

Projections on a tangent cylinder
3.5.1 The equidistant case
3.5.2 The equal area case

3.5.3 The conformal case

Transverse Cylindrical projections
3.6.1 Introduction

6.2 The equidistant case

6.3

3.
3. The conformal case

4. The relation of observations to the projection plane

4.1
4.2
4.3
4.4
4.5

4.6

Fundamental terms

The curvature of the projected geodesic

The line scale factor on a conformal projection
The chord to arc correction

The set of formulae for computations in
plane rectangular co-ordinates

Computation of projection co-ordinates from the
grid bearing of the projected geodesic and the
measured length

5. The conformal mapping of a surface onto a plane

5.1

5.2
5.3
5.4
5.5

The. ellipsoid of revolution as a reference surface
The Cauchy Riemann equations for conformal mapping
The point scale factor in conformal mapping

Grid convergence on conformal projections

Conclusion and summary

6. The transverse Mercator projection of the ellipsoid

in zones

6.1 Introduction

6.2 Conversion of ellipsoidal co-ordinates to
projection co-ordinates

6.3 Grid convergence in ellipsoidal co~ordinates

6.4 Conversion of projection co-ordinates to
ellipsoidal co-ordinates

6.5 Grid convergence from projection co-ordinates

6.6 The point scale factor from projection
co-ordinates

6.7 TFormulae for computations using plane
rectangular co-ordinates
6.7.1 The chord to arc correction
6.7.2 The line scale factor

Appendi x

References

Page No.

36
37
40
40

42

45
50

56
56
58
63
66

72

73

77
77
78
82
86
88

92
92

93
96

99
104

107

109
110
113

211



A GUIDE T0 NOTATION

Commonly used notation

X, = xi(ul,uz), i=1,3 2 X.,x, and x, are functions of the
variables u1 and u2.
X X
1 - 1
(sz} = the value of (52 ) at ¢ = 0
2
=0
o Z the value of 0(: U(S)) ats=0
-3 -
x =10 = order of magnitude of X is 10"3
X + 0.002 T X is approximately equal to 0.002
but not 0.0020.
-6 -
o{x™ "t = the terms neglected have a maximum
magnitude of x~
1 = &x
% . ds
212 _ d?xy2
(x*) = (3379
(3¢44)

equals, on applying equation (3.44)

Equations are derived in sections 4 to 6 for the general case

of the line P1P2. Quantities capable of evaluation at both ends
of the line are assigned the subscript 12 if evaluated at Pl'

and 21 if at P2.

Commonly used symbols See

a = equatorial radius of reference ellipsoid Section
C = constant,usually of integration

dx = differential change in x

E = FEast rectangular Cartesian projection co-ordinate 3.6

e = eccentricity of meridian ellipse

f = flattening of meridian ellipse

h = linear separation of chord from arc 4.2
hs = elevation above ellipsoid

k = the scale;point scale factor for conformal projections

kc = constant of cone 1.4.2
kZ = line scale factor (QP/Z) 4.1
ko = central scale factor 3.5(ii)
k scale at a point along projected meridian(parallel) 1.3.3

¢ (A)
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Commonly used symbols (ctd)

length of geodesic on reference surface
length of projected geodesic
length of chord on projection

linearisation factor; i.e., the metric tensor for an
orthogonal system of isometric surface co-ordinates

linear displacement along normal
North rectangular Cartesian projection co-ordinate
the general point

radius of projected parallel in conic projections;
alternately, distance from eguator

v/p
radius of spherical reference surface
linear displacement along tangent
tan ¢
isometric latitude
surface parameters )
rectangularCartesian co-ordinates
azimuth
grid bearing of projected geodesic
grid cohvergence
chord to arc correction
a change in X
co-latitude

grid bearing of chord on projection; called plane
bearing

longitude, positive East

See
Section
4.1

4.1
4.1

5.3(ii)
4.4
3.6

w o s

4.6
1.3.2
4.1

4.4

radius of curvature in the prime vertical normal section

on ellipsoid

radius of curvature in meridian normal section on
ellipsoid

curvature of projected geodesic

X o+ + ...+ X
the sum (xl + 5 x3 n)

latitude, positive North
foot point latitude

the angular distance on the reference surface between
two points on it

v (-1)

the mean value of X

5& 6
App



A guide to notation (ctd)

4.

5.

Suffixes See
Section
£ = quantities evaluated at the foot point latitude ¢f 3&6
o = related to the standard parallel or the centre 1 -3
of the projection, as the case may be
o = evaluated at the initial terminal of the general 3 -6
line PlP2
c = values for the reverse line at a station 4
£ = co-ordinates referring to the transverse Mercator 3 -4
projection
& = evaluated along a meridian 1-3
y S evaluated along a parallel ' l1 -3
12 value at Pl for the line Ple 4 - 6
* = the equivalent quantity on a projection
Terminology

It has been conventional to use the term oblate spheroid

and/or spheroid in Commonwealth countries, including

Australia, to describe the solid of revolution obtained by
rotating an ellipse about its minor axis. It is also
current geodetic practice to call such a figure an
ellipsoid of revolution and/or ellipsoid. The latter
practice is followed in the revision of this monograph,

the terms being considered to be interchangeable.



THE THEORY AND GEODETIC USE

OF SOME COMMON PROJECTIONS

by

R. S. Matner

1. INTRODUCTION

1.1 Co-ordinate systems for tne representation of position on
the Eartn's surface

Two co-ordinate systems are available for the representation
of position on the Earth's surface. The first is that afforded by a
three dimensional rectangular Cartesian co-ordinate system. An older
and more common reference frame is that provided by a closed mathematical
surface and its normals. In the case of the Earth, such a surface
approximating to mean sea level (MSL) deviates from a sphere by one
part in 300. The physical sea level datum, called the geoid, deviates
from the shape of an ellipsoid of revolution (oblate spheroid) by
magnitudes of the order of f2(e.g., Mather 1969,fig 4), where f is the
flattening of the reference ellipsoid. Current parameters adopted by
the International Association of Geodesy (IAG) are those defining
Reference Ellipsoid 1967 (IAG Resclutions 1967,p.367), where the
equatorial radius a and the flattening f are, for most practical

purposes, given by

a =6 378 160 m ; £ = 208.25 (1.1)

Thus the magnitude of the deviations of the geoid from
a well fitting reference ellipsoid are of the order af?(= 60 m), while

those from a sphere of mean radius R are of order Rf(= 18 km).

Position on the Earth's physical surface (point P in figure
1.1) can be represented by the co-ordinates of the point P_ on the
reference surface, the surface normal at which passes through P,
together with the displacement PPO(hs) along this normal.

The co-ordinates of a point PO on the surface of a solid of
revolution are best defined by the following parameters shown in

figure 1.1. They are
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Relative Displaccmcnts on Reference Surface & Projection
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(a) the angle A between the plane containing P and the
rotation axis and a similar plane through some point
of reference Pr;

and (b) the complement of the angle between the rotation axis
and the normal to the surface at Po.

The latter quantity is called the latitude ¢ of the point PO while

A is termed the longitude. These parameters comprise a set of
co-ordinates which, in the case of an ellipsoid, completely define the
position of P_, provided the dimensions (a,f) of the figure are

specified.

The locus of points on the surface of an ellipsoid of

revolution given by the equation

A = constant

is an ellipse, called the ﬁeridian ellipse, while that of points satisfying

¢ = constant
is a circle of radius v cos ¢, called a parallel of latitude; v being
the length POF in figure 1.1. The rotation axis Ox3 is normal to the
plane of all parallels of latitude.

Thus the set of curvilinear co-ordinates (¢,A,hs)
completely defines the location of P in Earth space if the parameters
defining the ellipsoid are known: Any change in the values a and f
will alter the values (¢,X,hs). However, once the curvilinear co-
ordinates have been established for a particular ellipsoid, .t can te
camputec for any other reference system using formulae for the
transformation of co-ordinates. The system postulated above is commonly
used because the quantities ¢, A and hS can be either measured or defined

directly in terms of observed quantities.

The x,x_xX. rectangular Cartesian co-ordinate system, where

123
the x3axis conventionally coincides with the Earth's axis of rotation,
the x; and X,3%ES peing in the equatorial plane, the former lying in

some reference meridian and the latter at right angles to it, is capable
of affording a reference frame with practical applications. From a
consideration of equation 13 in appendix 1 and figure 1.1, direct

resolution gives
ox = (v + hs)cos ¢,

where Ox is the intersection of the equatorial plane with the meridian

plane at P.  Further resolution gives

X

1 (v + hs)cos d cos A (1.2a)

X

i 1l.2b).
2 (v + hs)cos ¢ sin A ( )



If PP3 is parallel to Ox,

Xy = 6Xl-e2)+ hs]sin ¢ 1.2¢c

The rectangular Cartesian co-ordinates of the point P
cannot be observed directly, but can be deduced from either the
curvilinear co-ordinate set (¢,K,hs) or from differences in X1s Xy
and x5 computed from field observations, provided those of one of the
terminals is known.

It is conventional in classical geodesy, to express final
co-ordinates in the (¢,A,hs) system but the rectangular Cartesian system
2,x3) is of impcrtance in derdiving expressions for the properties
of curves on the ellipsoid and their projection onto a plane.

(xl,x

1.2 Map projections

The Earth's topogréphical features can be most easily
comprehended from models.  The ideal physical representation is a globe
showing tactval relief, Such a model, while affording the possibility
in thecry, of accurate representation without distortion, is not a
practical proposition because of its unwieldiness at representations
used for normal large scale mapping {e.g., 1 part in 50,000), as well
as its limitations with regard to accuracies attainable in mensuration.
Consequently, man from the time of Ptolemy, has been concerned with the
problem of representing the Earth's physical surface on a plane. The
task has been dealt with in two stages using the system of curvilinear
co-ordinates defined in section 1.1. The first is the projection of points
onto the reference surface along the relevant normal (P to P in figure
1.1), the representation of the altimetry (or normal displacements) being
treated separately from that of position on the reference surface. The
former can be represented in the form of contours on representations of

surface co-ordinates which are most conveniently expressed on a plane.

losed surfaces cannot be represented on a plane without
undergoing some distortion. These distortions can, however, be controlled
by means of mathematical formulae in order that some property fundamental
to the surface representation is retained. The set of mathematical rules
which enables the reference surface to be unambiguously represented on a
plane is called a map projection. An infinite number of map projections
are possible in theory. The type of projection adopted in practice
will depend on

(a) the shape and extent of the area to be mapped;
and (b) ﬁhé specific property of the reference surface which is

to be retained on the projection.

The position of points transferred on projection from the

reference surface to the plane can be uniquely defined by means of a



two dimensional Cartesian system. The definition of both the projection
and the projection co-ordinates of a point on the Earth's surface
provide the necessary and sufficient conditions for the unique definition

of position on the reference surface.
1.3 Definition of fundamental terms
1.3.1 The mapping equations

The basic relations necessary to completely define the
general point P, whose co-ordinates on the reference surface are (ul,uz),

on the X %, projection plane, are of the form

x, = x,(u

i jugsuy) =12 1.3.

In common practice, equation 1.3 can be interpreted as

x, =E ; X, = N 1.4

where £ is a co—érdinate axis near enough to the local prime vertical

and N is the other axis of the rectangular Cartesian set on the projection
plane which approximately coincides with the local meridian and is called
the grid meridian. It is also possible to interpret uy and u, by

the equations

ul = X ; u2 = ¢ 1.5,

but caution should be exercised in assuming such definitions to be the
only ones possible. Equations 1.3, as interpreted in terms of equations
1.4 and 1.5, comprise the final form desirable for plotting individual

points on the projection.

A second problem is also of considerable importance in
practical geodesy. In this case, positions of points are fixed relative
to one another using a system of local polar co-ordinates. The most
common system is afforded by the azimuth a and length £ of a geodetic
line on the reference surface. The required mapping equations in such

a case are of the form

Xip ™ Xp < Axi = Axi(a,l) 1.6.

The reverse problem is also of relevance. In this case, it
is required to find the geographical co-ordinates er the azimuth and
length of a line from the projection co-ordinates, the required relations
being of the form
= .= .7
u, ui(xl,x2), i=1,2 1

in the first case, and



2’ = Q/((X.,, j=lr2), i=1,2)
o = a((xi_, j=1,2)' i=l,2) sreeecose

1.3.2 Convergence on a projection (grid convergence)

The geographical meridian on the reference surface can be
plotted element by element onto the projection plane using either
equation 1.3 or 1.6. The resultant curve will be complex in the
general case. The angle between the tangent to the projected meridian
and the local grid meridian is called the grid convergence y. A study
of figure 1.2 gives

dxl

tanY=-[——J .
dx2 A=const

As X is a constant along a given meridian,

ax X ax
1 1 1
. __[sr]dk +[§5Jd¢_ [%J .
an'y = axz (axz = 7 sz [ . 1.9,
[ﬁ]‘” ' W)d‘b {'a‘]

Other expressions are also possible for the definition

of y. For example, along the projected meridian,

2
o= ][R, = o
i=1 i
Thus [BX ]
tany = - [ff}J = 5;5 1.10.
dx2 A=const [%A ] e
*1

Equation 1.10 is of relevance when the expressions available for relating
the two sets of co-ordinates are of the form
A= X(xl,xz) ; ¢ = ¢(xl,x2) ...... 1.11,

which is the reverse case. The convergence is of importance in
determining the relation between the grid bearing B of the projected

curve and the azimuth o®* on projection. Refer figure 1.2.

a* = B+ Y i 1.12.

It should be noted that a* is not necessarily equal to the
azimuth a of the line. This would only occur in those projections

which are characterized by small areas retaining their shape.
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1.3.3 The scale (Point scale factor in conformal projections)

The scale is defined as the ratioc of an elemental
distance on the projection plane dﬂp to the distance df between

corresponding points on the reference surface. Thus

and is, in general, given by equations of the form

k = k(d,A,a) = k(xl,xz,u“) ...... 1.14.

In the case of projections where small areas retain their
shape, outlines on the projection in the limit are geometrically
similar to their equivalents on the reference surface, resulting in k
being independent of a. For other projections which do not hawve this
property, k can be completely defined by two components k¢ in the
meridian and kk at right angles to it. The changes in X and x, as a result
of changes d¢ in ¢ and dA in A can be expressed as

TSXi 3xi
dx, = Lga-)d¢ + (5X-]dx ,i=1,2 ... 1.15.

If the particular curve is the projected meridian,
di = 0 and

1

(dxi)z)% _ [ § [g%i]2}£d¢ .

i=1

2
de_ = ( Zl

If the reference surface is an ellipsoid, the equivalent length d& in

the meridian is p dé¢. Thus

- 2 3Xi 27 %
di izl {56']
k(b = d—Q_, = o e 1.16.

Similar consideration of the projected parallel along which dp = 0,

gives
2 3
L)
de Ly X
= = = ———— L, .17
kk dg Vv cos ¢ 1.1
In those projections where small areas retain their shape,
= = . 1.18,
k¢ kX k
where k is called the point scale factor. If small extents are to

retain their area on projection,



1.4 A classification of common projections
1.4.1 introduction

Projections may be classified in terms of either distinct
characteristics used in the mechanical construction of the projection or
properties of the reference surface which are considered desirable and
retained on the plane representation. It should be borne in mind that
each projection is merely an adopted set of rules which can be represented
mathematically and, in some cases, by simple geometrical concepts.

These rules can then be "bent" to retain certain desirable properties of
the reference surface. Unless the projection adopted is totally
unsuited for the mapping being undertaken, there will always be at least

one point on the projection where

k¢ = kk = 1.

Such a point or locus of points is called the centre or
central (standard) curve, as the case may be, of the projection and
represents locations where the reference surface is mapped on the plane
without distortion of any kind. As the distance of the region being
mapped increases from the centre or central curve, distortion of one

kind or another occurs and, in the general case,

k¢ # k>\ # 1.

If, on the other hand, restrictions are introduced in the
rules governing the mapping, in order that certain properties of interest
on the reference surface are retained on projection, it is possible to
control the resulting distortion to suit the needs of the mapping being
undertaken.

The properties of interest are as follows.

1. Restricted regions retain their area on projection.

The resulting projection is called equal area or authalic.

Such projections are of interest in instances where comparative
studies of different areas on the projection are to be made; e.qg.,
demographic investigations.

2. Restricted regions retain their shape on projection.

The projection obtained in this case is called a eonformal or
orthomorphic projection. In such projections, small features
like lakes and bays retain their shape but regions distant from
the centre may have larger areas than on the reference surface.
Conformal projections are therefore of interest in geodesy and
surveying as observed directions over geodetic lines, if
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correctly interpreted, are transferred without significant
distortion to the projection plane.
These properties can be superimposed on any set of rules comprising a
simple projection.  Such projections have been given the title
aphylactie. The specific characteristics of the common projections
are defined with comparative ease for cases where the reference surface
is a sphere. This assumption is valid so long as large scale maps are
not involved. In addition, various simple stratagems are available
for extending spherical concepts to allow for the ellipsoidal nature of
the reference surface at larger scales so that accuracy is not lost

in the process.

Projections can be classified as follows for a spherical reference
surface.
1. Perspective projections

These are purely geometrical projections of a spherical
reference surface onto a plane from a centre of projection;
e.g., the gnomonic projection.

2. Quasi perspective projections

Such projections do not have a common centre of projection.
Instead, some curve on the sphére (e.g., a parallel of latitude)
is entirely projected onto an enveloping surface from a centre
of projection. This results in each of the family of curves
so projected having its own centre of projection. Some
references (e.g., Deetz & Adams 1945,p.27) are inclined to
treat this class under 1 above but this gives rise to
unnecessary ambiguities. The entire family of conical
projections, obtained by the use of an enveloping cone as the
surface of projection, belong to this class.

Conical projections require curves orthogonal to the
family being projected to remain orthogonal on projection with
no change in scale. Such cases are called equidistant
projections. Either the equal area or conformal property may
be introduced by varying the scale along the orthogonal family
of curves to satisfy the characteristic property required.

3. Pseudo projections

This class of projection is of the quasi perspective type but
without a simple relationship to an enveloping surface. It
would, in fact, be simpler to consider both types 2 and 3 as
convenient sets of rules for mapping the sphere e¢nto a plane.

4. Non-perspective projections , -

Projections in this class are used primarily for atlas and
world maps and will not be covered in the present development.

1.4.2 The cone as an enveloping surface

A right circular cone is said to envelop the spherical reference
surface when it rests on the latter. The cone has the advantage of
being a developable surface in that it can be cut along a line joining
the‘apex to its circular base (slant height) and its surface area spread



Developed Cone
Reference Surface & Enveloping Cone

FIG (1.3)
The Enveloping Cone as a Projection Plane

X
andO

Reference Sphere Projection Plane
FIG. (2-1)

Perspective Projections
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out, without distortion, on a plane. Consider the case when the
axis of the cone passes through the poles of a spherical reference
surface.  The sphere and the cone will have a series of common tangent
planes along one parallel of co-latitude 8, This co-latitude is related
to the slant height r of the cone and the radius R of the sphere by

the direct trigonometrical relation

r = R tan 8 Cheee 1.20.
o

The parallel so defined is called the standard parallel. The
developed cone is a sector of a circle. The sphere is projected
geometrically onto the cone from a common perspective centre for each
parallel as described in section 3.1. In the case of the standard
parallel, this centre is coplanar with the curve on the sphere and lies
on the rotation axis. Thus the standard parallel of length 2mR sin eo
projects as a circular arc BCB in figure 1.3, of length 2ﬂkcr, the
meridian AB being represented by, two lines, on development of the cone.
As these lengths are equal by definition,

kr=Rsin®  ...... 1.21.
c o

The combination pf equations 1.20 and 1.21 gives

k = cos®8 ... 1.22.
C o}
kc is called the cosntant of the cone. When kc = 0,
the standard parallel coincides with the equator, as 6, = um and

the cone becomes a cylinder, as its apex is at infinity.

When kc =1, the cone becomes a plane tangential at the pole

as 0 = 0.

Thus the general theory of conical projections covers the

following three classes of projections

1. Cylindrical projections when kc =0 ; 60 = Lm;
2. Conic projections when 0 < kc <1;0¢< eo < Mg
and 3. Azimuthal projections  when ,kc =1 ; 60 = 0.

This particular classification is of significance as nearly all
mapping projections in current use fall into one of the above categories.
Further, the basic mathematical concepts for defining all the above
projections are identical,stemming from a common general theory for a

spherical reference surface.

A classification of some common map projections is given in
table 1.1 under the headings
A.  Perspective;
B. Quasi perspective
C. Pseudo;
and D. Non-perspective.
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Type Conformal Equal &r=s | Equidistant | Other Remarks
k, =k k,.k, =1 k, =1
| ¢ A A ¢
A!:- PERSPECTIVE PROJECTIONS
Gnomonic {from
£285 &na
Stereographic {tr
géggeter
Orthographch{infinity
—————————————————————————— ’--————————-——-———— — — — —
B:-QUASI PERSPECTIVE PROJECTIONS
1.  Conteal prLjectionL W
Conic o<kc<1
1 std.
T t <6 <hm i i
angent cone 0 o 3 Lambert Simple Conic parallel
Secant cone Lambert Albers de L'Isle 2 std.
. parallels
Cylindrical kc=0
Equatorial 60=%ﬂ Mercator Equal area [Plate Carré
tangency
Transverse Transverse Cassini- Meridian
case Mercator Soldner tangency
Azimuthal (Zen{thal)
gczo Conformal Equal area Equidistant
o
________ _.._____._.._.._.__._._.__....____.-’,.._._.______._____.___--.__.____
C:~-PSEUDO PROJECTIONS
Bonne
Sanson-
Flamsteed
Werner
Polyconic
Mollweide
D:=NON PERSPECTIVE PROJECTIONS
Hammer-
Aitoff

TABLE 1.1
A classification of some common projections

The present development is confined to perspective and

quasi perspective projections only.
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2.  PERSPECTIVE PROJECTIONS

2.1 Introduction

Attention will be confined to those perspective projections
where the point from which the projecting lines are drvawn (the point
of projection or the perspective centre) is on the diameter through the
point at which the projection plane is tangential to the reference

sphere (the centre of projection)..

The three common cases are

1. The gnomonic projection
with point of projection at G in figure 2.1;

2. The stereographic projection
with perspective centre at S;

and 3.  The orthographic projection
with point of projection at infinity (0).

The centre of pr.voj ection can be at any point on the
spherical reference surface. When at the pole, it can be seen that
meridian great circles project as straight lines in all three cases.

This same characteristic is possessed by all great circles passing
through the centre of proiection in non-polar cases, no angular distortion
occurring. Further, all small circles whose centres lie on the axis

of projection which is the line joining the point of projection to the
centre of projection, plot as concentric circles.

It follows that the projected meridians and parallels form
an orthogonal, though not necessarily conformal system of curves in the
polar case. In non-polar cases, & similar -system will be formed by
azimuthal great circles which plot as straight lines, while curves of
equi-angular distance Y from the centre of projection plot as
concentric circles. This is equivalent to the (¢,A) system being
replaced by a (¥,a) system of surface co-ordinates.

2.2 Tne gnomonic projection

Point of projection :- Centre of sphere

Special property :- All great circles project as
straight lines

Primary use := Navigation .

Details . :- See (Deetz & Adams 1945,p.147 et seq)

2.2.1 The polar case

Centre of projection :~ Pole
Radius of parallel of latitude on projection (figure 2.1)= R tan 6
=R sin 6

Radius of parallel of latitude on sphere

Thus

=Rtan 6 _ oo eeens 2.1

Ky "R sin® -~
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The meridional element of length R d6 (L2L3 in figure
2.1) plots as a straight line L§L§ on projection. 'If L;C is
perpendicular to GL§, as L§C = R sec6df,

L’;L‘g = L§C sec 6 = R sec?0d9 .

Thus
_ R sec?0 do 2
k¢ = R d6 = sec“0 L ceeae 2.2,
Notes: -
1. The equator plots at infinity, the scale along meridians
increasing from unity at the cgntre of the projection to 50%
greater (i.e., 1.50) at & % 35, Thus the gnomonic projection

is of limited value in measuring azimuths and distances from
projection values at any significant distances from the centre of
projection.

2. The gnomonic projection is of considerable antiquity, being
ascribed to the period of Thales (c. B.C. 550).

3. It has advantages in great circle route navigation.
2.2.2 The non=-polar case

Centre of projection :~ Any point P(¢o,l°) on the Earth's surface.

The meridians in the polar case are replaced by great circles
of constant azimuth o and the parallels by small circles of equi-angular
distance ¥ from the centre of projection. These circles of equi-angular
distance ¥, by analogy with the polar case, plot as concentric circles

of radius R tan ¢ , with centre at P.

The general point Q on this circle at an azimuth o from P, will
project as the point Q* on the projection plane, as shown in figure 2.2.
The angle o is unaffected by perspective projection as the azimuthal
great circles pass through the centre of projection. If P is also the
origin of the rectangular Cartesian system of reference on the projection
plane, such that the N axis is coincident with the projected meridian at
P and the E axis with the prime vertical, the co-ordinates (¢,A) of Q
in terms of the (y,a) polar system of co-ordinates are given by

Ny =Rtanycosa 2.3

EQ R tan V¥ sin o
The (y,0) co-ordinate system at P can be related to the normal
surface co-ordinate system (¢,)) by the solution of spherical triangle

NPQ on the reference surface when

Y = cosfl(sin Q)sin ¢ + cos ¢Bcos ¢ cos AN ),
where

AN = A - Ay >
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The Stereographic Projection
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and
o = sin-l(cos ¢ sin Y cosec AN), if A £ 0
or
-1 sin ¢ - sin ¢°cos Y
@ = cos cos % sin ¢ oA d)o #

and the case is non-trivial.

Notes:-
1, Formulae for manual computations are given by Deetz & Adams
(1945,p.149 et seq.).
2. The gnomonic projection is also classified as an azimuthal

projection (e.g.,Robinson 1960,p.69) as lines of constant azimuth
from a specified point (the centre) project as straight lines,
retaining the angle between them on the projection.

3. The scale at any point on the non-polar case can be obtained
by analogy with the polar case as seczw along lines of constant

azimuth from the centre, and sec Y tangential to circles of

equal VY.
of these quantities.
4.
and intersect the equator which,
straight line on the projection.

5.

2.3 The stereographic projection

Perspective centre

k, and kA can+*be obtained from vectorial considerations

The meridians plot as straight lines passing through the pole

in the non-polar case, is also a

The projection is symmetrical about the N axis.

:= diametrically opposite centre of

projection
Centre of projection :- pole
Special property 1= conformality

Principad uses T

A study of figure 2.3 shows

star charts; mapping polar regions

that the parallel of co-latitude

8 plots as a circle of radius 2R tan 40. Thus,
_ 2R tan %0 _ 2
kk = R einp = sec 50.

The parallel of co-latitude 6+d6 plots

2R tan % (6+d8). Therefore

as a circle of radius

2R{tan %(0+d6) - tan %0} _ 2{tan %0 + 4d6 sec’4® - tan %0}

¢ - R db

sec?kf

=k

As k¢ A’

the projection

Notes:-

1.

dé

is conformal.

The projection is an azimuthal one, all meridians and

parallels having geometrical characteristics similar to those
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exhibited in the gnomonic projectiog.

2. Non polar cases are possible and, in all instances, circles
on the sphere project as circles. This property is unique to
the stereographic projection, making it suitable for the
preparation of star charts and other representations of spherical
position requiring ready interconversion between two different
sets of surface co-ordinates (e.g., {0,A} to {¥,0} ).

3. The scale exaggeration over a hemisphere is easily verified as
being 100% thereby making it an acceptable conformal representation
of a hemisphere.

2.4 The orthographié projection

Point of projection :— " At infinity
Centre of projection s Pole
Special property s - Scale exaggeration decreases
from unity at the centre
Uses - Mapping hemlspheres, lunar
¢ charts

All parallels plot true to scale as circles of radius
R sin 8. Thus,

The scale along the meridians is obtained by considering
two parallels of co-latitude 8 and (6+d8) when

K o= R{sin(A+dB) - sin 6} sin 6 + d6 cos 6 - sin ©
o R d6 do
= cos & < 1.
Note that k ¢ + 0 as 0 > Lm. Consequently, regions near the great

circle at an angular distance %m from the centre of projection are badly

distorted.

3. CONICAL PROJECTIONS

3.1 Introduction

The cone as an enveloping surface has been dealt with in
section 1.4.2. Three major classes of projections are possible in the
case where the axis of the right circular cone coincides with the
diameter of the spheri cal reference surface passing through the poles.
These are set out below in table 3.1.

The rules for constructing the equidistant case of all conical

projections are identical. They are as follows. o
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Standard parallel eo K Class of conical projection
c
60 = 0 kc = 1 Azimuthal (Zenithal)
0 < 0 < hm 1 > k > 0 Conic
o C
80 = L7 kC = 0 Cylindricgl

TABLE 3.1
4 classification of conical projections
1. Plot the standard parallel, whose co-latitude is 6 , as a

circular arc of radius R tan 8_ (see equation 1.20), and
length 2R sin 90. ©

2. Plot all parallels as concentric circular arcs of radius r,
given by

r=fR{tan® - (-0} ... 3.1,

o o

and length £,defined by the equation

2 = 2mk R{tan 6 - (8 -0)} ... 3.2,

c o o

where kc is given by equation 1.21 as

k = cos 6 .

c. o
3. Represent the 27T variation in longitude on the sector of a
circle formed by the developed cone, as described in section 1.4.2;

the bounding radii of the sector representing the same meridian on
the sphere, as shown in figure 3.1.

4. The meridians are straight lines joining the centre of this
circle, which is the apex of the cone, to the appropriate point
on the standard parallel, divided true to scale.

Step 1 is equivalent to perspectively projecting the standard
parallel onto the enveloping cone from the centre of the sphere. Step 2
can be interpreted as perspectively projecting each individual parallel
from its own perspective centre C cn the common axis, whose distance x

from the centre G of the sphere can be obtained by the geometrical

consideration of figure 3.2. As triangles P¥*P*'C and PP'C are similar,
x + R{lcos 6+ (8 - 8)sin 8 } X + R cos B
o] (¢} [e] -
r cos 8 R sin 6
(o]

On using the relations set out in the key to figure 3.2,
x{sin 6 ~(8 -B)cos 6 - sin 6}= R{{cos 6 +(8 -B)sin 8 }sin 8 -
o] o] e o (o] O
cos 6{sin 6 -(8 ~B)cos 8}) .
[0} o] o]

The re-grouping of terms, together with the use of elementary

trigonometry gi\)es
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KEY TO FIG.(3:2)

AS =R tan.g,
SP*=R(90-6)

AP*ar =R [tan.es (6,-0)]
P*P*:rCose,

wl

RSin6,(650)

et

FIG. (3-2) Y

. C
The Quasi-perspective nature of Conical Projections

A %

Sphere . S*
FI1G.(3+3) Projection Plane

Conic Projections- Equal Area and Orthomorphic Cases



21

R{cos(6_-8){8 -8}~ sin(8_-8))

sin 6 - sin 8 -{8 -Bl}cos 6
o o o

The properties of orthomorphism and equal area are introduced
by varving the distance between the parallels on the projection,i.e.,
they are no longer equidistant. The rules 1 to 4 are fundamental to

all conical projections on a tangent cone.

Summary : -

The mathematical equations governing the equidistant cases of
all conical projections on a tangent cone are

k = cos & ..., 1.21
¢ o

r

R{tan & -(6 -8)} ......3.1 ...... 3.4;
(o) (o)
g =2tk r ... 3.2
[o]

all parallels being concentric circular arcs, while the
meridians are straight.lines radiating from the common centre to
the truly divided standard parallel.

Equal area and conformal cases are obtained by
varying the spacing between the parallels, k¢ no longer being
unity.

3.2 Conic prejections on a tangent cone

o < k < 1.
c

Along the standard parallel,
r k =R sin © ceeeen 3.5,
o cC o

where rO is the radius of the standard parallel on the projection plane.
3.2.1 The equidistant case

This case is described in section 3.1 and illustrated by

figure 3.1. TIquation 3.4 applies. By definition,

k¢ = 1.

From equation 3.2,

[} k {tan 6 -(6 -6)}
C (o] [o]

kk = 27R sin 6 sin © '

The use of equation 1.21 gives

sin 6 - (Gr—e)cos 6
o o o

A sin 6
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The variations in kA can be studied by putting

A8 =86. -8
(o]

and replacing 6 by functions of A8 when the use of the first three
terms in the expansion of the resulting denominator by Tayior's theorem
gives

sin 80— A8 cos 6

(£9) 7}--1

k,= R
2

A sin(6 ~AB)
o

®=(1-00 cot 8 ){1- 46 cot b -

Expansion of the right hand term using the binomial thecrem and

restricting attention to terms of order (AB)? or greater,

k

o= (-8 cot 6.) (1 + 88 cot 8+ 5(80)% + (46)% cot?6,)

1 - A8 cot & + AB cot 6 + L(AB)% - (AB)2cot?H + (AB)? cot?®
o) o [} o)

1+ 500)2 + ol (00)%) .

The scale at points not on the standard parallel will therefore

always be too great, increasing with distance from it.

3.2.2 The equal area case

1. The scale is true, as before, along the standard parallel
and hence '
rokc = R gin 60 ...... 3.5.
2. All parallels are concentric circular arcs.
3. All meridians are straight lines rediating from the centre

to the truly divided standard parallel.
4. The spacing between parallels is varied to introduce the

equal area property.

Hence,
a. the standard parallel no longer plots as a circular arc of
radius R tan 60;
“and b. kc # cos 60

The general expression for r 1s obtained by considering
the projection of an elemental triangle on the sphere, as shown in
figure 3.3, and consisting of an elemental length R d6 of the meridian
and an equivalent displacement R sin 6 dA , corresponding to the
arc of the great circle joining the adjacent points P(s,1) and
QLo+d8 , A+dN).

If the parallel through Q projects as a circular arc of radius

r and that through P as one of radius r+dr, the projection will be equal
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area if the two equivalent triangles PQT on the sphere and P*Q*T* on
the projection plane, have the same area. It is therefore necessary
that the differential equation

R?sin 6 a6 dA::rkch dr .. 3.6

be satisfied. The required expression for r is obtained on integrating

equation 3.6, when
- R? cos 6 =1;r2kc + C.

The constant of integration is assigned by choosing a value for
r at a specific co-latitude.  In practice, the use of the condition

r = 0 when 6 = 0
gives simple expressions for r and kc as
c = -R%.
The earlier equation then becomes

2R*(1 - cos 0) = rzkc

Simple trigonometrical manipulation gives

r? = 4k;1 R% sin® %0
or
ro= 2k;5 Rsink ... 3.7.
Along the standard parallel, © = eo, and
r’k? = R%sin’@
o C (v}
2 . 2 _ n2 . 2 2
kc (4R? sin 3560) = R? (4sin *:60 cos ’:90)
Therefore,

k

C

il

2
sesene .8.
cos %Go 3

Thus the conic equal area projection with one standard parallel
can be defined by the following set of equations.

k = cos?kd
c (o)
r = 2R sec lzeo sink ... 3.9
2 = 2wk_r
c

The scale is given by the expressions
dr 2R sec %eocos %0 Xdo

k = Rds " R do = sec %0 _ cos %6 ...... 3.10
and 7
r kc 2R sec ‘:eosin ) coszlgeo
K\ " Rsin® - 2R sin %0 cos %0 = cos 4 sec %6 .... 3.1l
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Note than k¢'kk = 1 which confirms that the projection is
equal area. Also k¢ =k =1 when § is put equal to eo in
equations 3.10 and 3.11. The characteristics of scale on this projection

can be directly verified from these same equations and summarised as

> < > >
k, <1 when 6 > 60 while ky <1 when 0 < 90.

¢

3.2.3 Conformal conic with one standard pargllel

Conditions 3.2.2(1) to 3.2.2(3) hold in this case too.
Condition 3.2.2(4) is amended in order that the spacing between the
parallels is now varied to introduce the conformal property. This
condition will be satisfied if the two elemental triangles PQT on the
sphere and P*Q*T* on the projection in figure 3.3 are similar. The

required differential equation in this case is

R db . dr 3.12

Rsinfdx =~ vkd 77T
Integration gives
log r =k a9 J __ a9 : -k J(co§ 40 %30  (-sin %6 %de))
cj sin 8 ¢ j2sin %0 cos %0 c)' sin %6 cos %0
Thus

log r = kc log{tan %0} + C ,

where the constant of integration C is defined by adepting a value for
r at a particular co-latitude 6. For the conformal conic with one

standard parallel, it is conventional to adopt
r = R tan 6
(o] o]

as in the case of the conic equidistant projection (e.g., Thomas 1952,
p.123; Jordan-Eggert 1962,111 sec 75). In this case,

k = cos 6
C (]
and C can be evaluated at 0 = eo , when

C

log r_ - kc log{tan 500}
and

tan %6
(tan 560)'

log (% )
o

kc log

which can be written as

k
(tan 0 ] C _R tan 8 (tan %0 {cos 60) 3.13.
o o

tan %0 tan X9 / Tt
o o

For limited extents of latitude, equation 3.13 can be written

as (Jordan-Eggert 1962,111 sec 74)
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dr = r - r
o

- 1 3 _ 1 2 4
rocot GOAG + e rocot GO(AG) 24 rocot GO(AS)

_ 1 3 _ 1 L

= R 46 + = R(49) SR ocot 8 (A8)" ... 3.14.

Equation 3.13 should pose no serious problems for computer use.

The scale on this projection is given by the expressions

(k -1) 2
Koo dr -k (tan 16) T sec”sd ndo
v R b (tan %eo)kc . R d6
r k

—_—

R sin 8
. _ r kc (3i15) .
A  Rsin8 o)

which verifies the conformal property.

3.2.4 Summary of projections on a tangent cone

Projections on a tangent cone are completely defined by

relations of the form

k

k (8)
c c o

r r¢ ,0
o

Rectangular projection or grid co-ordinates (N,E) are defined
by a Cartesian system with its origin at the intersection of the standard
parallel and a meridian of longitude A o which is central to the region
being mapped. The rectangular co-ordinates (N,E) of the general point
P($,)A) can be defined in the case of all three projections on the tangent
cone, by equations of the form given below.

N = ro -r cos(kcdx)

...... 3.17
E

r sin(k _d})
C
where

dA A=-X e 3.18.

(o]

]

The above formulae can be improved in instances where di is
small by replacing the trigonometrical functions in equations 3.17 by
the larger terms in the series expansions of sine and cosine which are
of the form
n »(—l)l (kcd)\) 2i

cos(kcdk) = 'Z 21!
i=0
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and
n i 2i+l
sin(k_d\) p oL kah
i=0 (2i+1)!
The properties of the projection are summarised in table 3.2,
Y - -
Projection kc(eo) r(eo,e) k)\ kq)
sin 6~(8 -B)cos ©
Equidistantcos © R{tan 6 -(6 -8} °_0 o 1
o o o sin ©
Equal area |coé 1:60 2R sec ‘seosin 30 cos %0 sec 40 sec 1P cos LP
cos 8 |sin 6 tan %0 k
Conformal 6 Rean 6 (£20 48 ° o cl,
onforma cos 9 tan o(m-e:) im0 o %eo as at !e.i
.
TABLE 3.2
Projections on a tangent cone
The grid convergence Y in all cases is given by
Y=kc dA creans 3.17a.

3.3 Conic projections on a secant cone

0 < kc < 1.

Projections on a tangent cone result in the scale being
true dlong the é¢irdle of comion tdngency but too great at all other
points in the equidistant case. It is desirable, when using projections
for large scale mapping, to control scale errors in order that the reduction
of common field observations will not be affected by their existence.
This is achieved in the case of conical projections by introducing
the concept of two circles along which the scale is true. In the
. case of the common conic projections, where the axis of the cone
coincides with the polar axis of the reference surface, the two circles
become two standard parallels and this class of projection is referved
to as the conie projection with two etandard parallels. This can ,
in concept, be visualised as a quasi perspective projection on a
secant cone, as illustrated in figure 3.S5.

Along the standard parallels of zo-latitude 6 1 and 6,
which pyeject as concentric circles of radil r) acd 7.,

kr, =R.sin0, , i=1,2 veees. 3.109.
Cc 1 1 .
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3.3.1 The equidistant case

Also known as
1. Simple conic projection with two standard parallels;

and 2. the de L'Isle projection.

As the projection is equidistant,

k = 1,
¢ 1
From figure 3.5, it can be seen that
BC = B(C%= R(ez - 91) = r2 - rl ..... 3.20.
The combination of equations 3.19 and 3.20 gives
kc(r2~ rl) = R{sin 92(— sin 91) = ch(92- 91).
Thus
sin 6, -~ gin 6
kK = 2 L 3.21

c 62 - 81

The specification of 6, and 6, will therefore define y
and r, through equations 3.19 and 3.21. The parallel of co-latitude
which projects as a concentric circular arc of radius r is defined by
the equation
R sin 91(92—61)

17 RO-6) = — 6, - sing_ " R(6,-6)

_‘
]

Rr sin 91(92—6) - sin 92(61-6) ]
[ sin 62 - sin 91

The simple conic projection with two standard parallels is
therefore defined completely by equations 3.21, 3.22, 3.2 and 3.17.
The scale along the parallels is given by
r kc sin 61(62—6) ~ sin 62(81—6)

= > = . cees. 3.23.
A R sin 6 sin 6(92— 61)

k

Direct verification of equation 3.23 will show that
ky <'1 between the standard parallels and kA > 1 outside this
region.

Notes: -

1. The use of the secant cone instead of the tangent cone
has the advantage of smaller scale errors over larger extents.

This type of projection is suited for areas which have
a considerable variation in longitude but only a limited
variation in latitude. It is therefore adequate for the
small scale mapping of regions like Australia, Canada,
the Soviet Union, the United States, etc. The conic
equidistant projection has been used for the production of
the 1:2,500,000 map of Australia (1968) with standard
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parallels at 1893 and 3605. This is in keeping with
common practicé-for areas of this extent where the standard
parallels are placed one sixth way in from the north and
south limits of the area being mapped. The maximum

scale error within the standard parallels is less than 1%3%
(k, = 0.987), while the scale errors on the peripheries

has appgoximatel the same magnitude {(k, = 1.0l = 1% at
both 14°S and 40°8). Scale errors of T—L%% can be
considered to be acceptable for projactions of this type.

3.3.2 The equal area case
Also known as Albers projection

The relation between this projection and the equidistant

case is the same as that between the equivalent projections on a

tangent cone. The elemental triangles on both the reference sphere
and the projection plane are defined as in section 3.2.2. Thus
equations 3.6 and 3.19 apply. If r, and r, are the radii of the

concentric circular arcs represeriting the standard parallels of

co-latitude 91 and 62 on the projection,

rlkC = R sin 6l
..... 3.109.
r2kc = R sin 82
The integral of equation 3.6 gives
kcr2 = 2{C - R%cos 68} T i 3.24,
where C is the constant of integration. Squaring and differencing

the equations at 3.19 gives

2
kc{kcr ) 1

5 - kﬁri} = R%{gin%6_ - sin?6_}.

The use of equation 3.24 on the left hand side gives

R Gin 62— sin 91)(sin.82 + sin 61)

2R2(cos 91 - cos 62)

[2 6l+62 . 62—61){7 i 6l+62 os 61—62)
- cos > sin 5 2 ci 5 3
pes 0149 e2“61]
21 2sin 5 sin >

_ cos 61 + cos 62

2

The constant of integration C in equation 3.24 is evaluated

by the use of equation 3.19 at either standard parallel when
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) ) ) sin26l
C =% kcrl + Rcos el = R [_EE:__ + cos 91)
(3,25 R*{1 + cos 6, cos 92)

= cesena 3.26.
cos 61 + cos 62

The pole no longer plots as a point. Albers' projection
is completely defined by the equations

k
c

%(cos 61 + cos 62)

Rz(l + cos elcos 62)
2kc

_‘
|

= {% (C -~ R%cos 6)}15
c

The scale along the meridian, as seen from figure 3.3, is given by
4(2 )" R2%sin 6 do
ko= 9r_ . c - Rsin 8 _
¢ RdO T pic - R%cos 6)%d6 k"

1
K\

Notes: -~

1.The variation in scale with co-latitude has the same characteristics
as in the equidistant case, the extent of scale error reaching
the same magnitudes.

2. For the ellipsoidal case and notes on the construction of
a grid, see Deetz & Adams (1945,pp.96 et sea).

3. The projection which has been used for demographic maps
of regions with a considerable east-west extent, but a limited
extent in latitude (30 - 35 degrees), is attributed to H.C.
Albers (c. 1805).

3.3.3 The conformal case

Commonly titled
the Lambert conformal conic projection with two standard
parallels.

As the projection is conformal, the relevant equations
are those governing the conformality of elemental triangles (equation
3.12) and the condition for standard parallels (equation 3.19).

Thus

-
x
]

R sin 81
. cenens 3.19,
r.k = R sin 62

where r and r, are the radii of the concentric circular arcs on the

projection plane which represent the standard parallels of co-latitude
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61 and 62 respectively. The conformal condition, as developed in

section 3.2.3, on integration, gives

log r = kclog{tan ¥} o+ C' .. 3.28.

The constant kc of the cone is evaluated by applying
equation 3.28 to the two standard parallels and differencing, when

log r, - log r, = kc[log{tan %92} - log{tan %el}

2

On consideration of the equations at 3.19 in logarithmic form,
differencing and substitution in the left hand side of the above

equation give

log{sin 92} - log{sin 91}

kc = logitan %92} - logf{tan %91} """ 3.29.
Equation 3.28 can be expressed as
k
r==C tan “%6 . )
Evaluation on the standard parallels give
r r
C = 1 _ 2 .
(tan % Gl) c (tan % 92) c
) R sin Gl ) R sin 92
) k %9 Ko k 6 Ko
o (tan 39 ) o (tan %9,)
The second equality can easily be verified as being
equation 3.29. Therefore the Lambert conformal conic projection with

two standard parallels 61 and 6, can be completely defined by the

equations
log{sin 6_} log{sin 6 }
K = 2. 1
¢ log{tan %92}— logitan %61}
R sin © R sin 6
C = — 2 - S— 3.30
kc(tan %61) ¢ kc(tan %6; ¢
k
r = € (tan %8) c
r kc
ks =%\ = Rsin ®
Notes :-
1. The Lambert conformal conic projection with two standard

parallels is used by many countries as the basis for a plane
co-ordinate system though, at the present time, there is a
tendency to favour the Universal Transverse Mercator (UTM)
system for this purpose. It has been used recently in
Australia for 1:1,000,000 mapping.

2. The projection.is attributed to J.H. Lambert and was first
published in 1772.
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3¢ For details regarding the drawing of grids for small scale
maps, see (Deetz & Adams 1945,pp.85 et seq).

4. The use of this projection for large scale mapping has
resulted in considerable attention being paid to the characteristics
of curves on the reference ellipsoid, on transformation to the
Lambert projection. This is not covered in the present development
as the principles of such representation is covered in full for

the more commonly used UTM projection in section 4.

3.3.4 Summary of projections on a secant cone

Projections on a secant cone are completely defined by

equations of the form

x~
i

kc(el’ez)

r

r(e,el,ez)

where 8, and 0, are the co-latitudes of the standard parallels which are
placed one sixth way in from the north and south extremities of the
region to be mapped. The basic characteristics of the three common
cases are listed in table 3.3. The scale ervor for an area the size
of Australia which has a range of latitude in excess of 30 degrees,

is never greater than 1%%.

The plane projection co-ordinates for the general point

P(0,A) are obtained from figure 3.4, on using formulae at 3.17, as

N = r - r cos(k dx)
o c

and 3.32,

m
1]

r sin(k _dX)

C
where Yo is the radius of curvature of the parallel of co-latitude 90
on which lies the origin of co-ordinates (GO,AO), and

d = A= X ... 3.33.
o

The grid convergence is given as before by



Name k (8
1

8 8
C{( 1 2)

de L'Isle 5
2

+ cos © )

%(cos 91 .

Albers

log{sin 62 }- log{sin 61}

Rz@ + cos 61cos 62)

2k
c

R sin @
sin 7,

Lambert
log{tan %8}~ log{tan %6} YK
2 1 k c
C(tan %611
TABLE 3.3 ctd. below
N 1 ~
ame r(9,91,o2) S\ kg
Risi A o iy L . Ay - _
do L' Isle sin 6,(6,-6)-sin6,(6,-6)} |sin ©,(6,-6)-sinB,(6,-6) .
sin 82 - sin 61 sin 6(62— 91)
Albers % [c - R%cos 8)% ___Ec_:____ i
c R sin © kx
. Kk k r
Lanbert C(tan 50) — o
R sin ©

TABLE 3.3

ctd from above

Summary of properties on secant cone projections

3.4 Projections on a tangsnt piane

Alternative headings
(1) Azimuthal projections

(ii)' Zenithal projecctions

Characteristics
k = 1; 8
c

1
(@]

3.4.1 The equidistant case

4

Alternative title

As 6 =0,
o

:~ the azimuthal equidistant projection

the standard parallel'is a point which, in the

case where the axes of the two solids coincide, is the pole.
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This can be treated as a special case of the equidistant
‘projection on a tangent cone, developed in section 3.2.1, in the
instance when 6, = O. The parallels thus project as

concentric circles of radius r given by

r = R6 ...... 3.353.-

The length ¢ of the parallel on the projection is defined by

L =2mr =2MRG ... 3.35b.
k¢ = 1 by definition.
6 -1 .6 76° 5
= — =90 KA >
k) pro 8 t Tt 3t o{6°} 1
The scale error reaches 1% when 6 % 1u4°.
Notes:-
1. The use of the concept of a central scale factor as developed
in section 3.5.1.2 , can extend the region over which the scale
error is less than 1% to ' 6 & 20°.
2. Azimuthal projections are suited to polar regions. Non-

polar cases have the characteristic property that great circles
cf constant azimuth from the centre of projection, plot as
straight lines.

3.4.2 The equal area case

Commonly titled the Lambert azimuthal equal area projection.

Refer to section 3.2.2. The equal area property is
introduced by varying the spacing between the parallels which still
project as concentric circles in view of the fact that 60 is zero and
kg is unity. The modified forms of the equations at 3.9 become

2R sin 6 ... 3.36

1
fl

and

L = 27mr .

(3¢10) (3¢ll)
k = cos %0 ; kA = sec 0.

3.4.3 The conformal case

On applying the development in section 3.2.3 to the polar

case, the evaluation of the the basic integral when kc =1
gives ’

k = C tan %0 .

Cc

In theory, it is possible to choose C such that either

a. some parallel of co-latitude GC is at a distance RGC
from the pole ;
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or
b. a parallel central to the region being mapped is true to
scale.
In case a,
r = RO = C tan %8
(o] (e} (o]
when L 3.37.
t = RGC cot %Gc
In case b, if the selected parallel is of co-latitude Gc,
r =Rsin6_ =C tan %6
o] C C
when Ll 3.38.

C 2R cos®%8 -
c

In both cases it can be seen that

” 2R(1 + of08?}) ,

and when C=2R ,
the projection reduces to the stereographic projection, developed in

section 2.3.

Notes: -

1. The scale error in the case when C =2R reaches 1% at
8 & 11%°.

Non-polar cases are possible when azimuthal great circles
from the centre of projection, plot as straight lines. In
addition, points with equi-angular distance y from the centre of
projection retain this property on projection. As illustrated
in figure 2.2, the general point Q(¢,A) is related to the
centre of projection P(¢O,Xo) on the projection plane by the
equations

=
it

C tan % cos o
and e 3.39,

E C tan % sin o

where ¥ and 0 are given by equations at 2.4 and the N and E
axes are taken along the meridian and prime vertical directions

at P.

3.5 Projections on a tangent cylinder (Cylindrical projections)

In this case,

6 = = when k = 0.
o 2 c

The cone becomes a cylinder tangential at the equator. The apex of
the cone, which is the centre of the concentric circular arcs
representaing the parallels, is at infinity. Consequently, the
parallels project as pardllel straight lines. The meridians which
radiate from infinity to the truly divided standard parallels, which in
this case is the equator, will be a family of straight lines orthogonal
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to the projected parallels.

Cylindrical projections, illustrated in figure 3.8, will
therefore exhibit the following characteristics.
(i)  All parallels are of the same length 2mR on projection.
(i1) The projected meridians and parallels form a
rectangular grid.
Notes:-

1. The cylinder can, in general, have common tangency with
any great circle on the sphere.

The rules of cylindrical projections can therefore
be generalised as follows.
1. The great circle of common tangency projects as a
straight line.

2. All orthogonal great circles project as straight
lines perpendicular to and correctly spaced on the great
circle of common tangency.

3. All small circles parallel to the great circle of
common tangency, project as parallel straight lines of the
same length  2mR. °

3.5.1 The equidistant case

Alternate names
1. Square plate projection

2. Square projection

The equator plots as a straight line, true to scale. All
parallels cf latitude project as parallel straight lines of the same
length % given by

£ = 2mR

The meridians divide the equator truly and the other parallels
in correct proportion. As the projection is equidistant, the spacing r
of parallels from the equator is given by

r = R¢ s where ¢ is the latitude
and
k, = 1.
) 1
cesess  3.40.
R
kA ~ R ocos ¢ sec ¢

Notes:-
1. k. increases from 1 to © between ¢ =0 and ¢ = km,
the sca}e exror reaching 1% at ¢ = 89,
2. The central scale factor k

Projections on a tangent cylinder can only map a band of
approximately 16° in latitude, symmetrical about the equator, if
the resulting scale errors are to be comparable in magnitude with
those in secant cone projections covering a thirty degree variation
in latitude.
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N
R Cos® dA A
- Rdld*
dr
p*
r
l Equctor‘ﬂ”,E
Reference Sphere . Projection Plane

F1G.(3:8)

Projections on a tangent Cylinder

R Cos.® dA

FIG.(3-9)

- Elemental Triangle
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The same concept can be introduced in the case of
cylindrical projections. Let the cylinder cut the reference
surface along two parallels (+¢ ,-¢ ) symmetrical with respect to
the equator. Its radius rc will then be given by

Fo = Rko ' where kc> <1

Along parallels of common tangency,

2R cos ¢

i

21R k .
o

Thus,

=~
i

cOos - -
s ¢o

If all other characteristics of the projection are retained,
the quantities 2, r, k¢,vkk defined above are given by the equations

£ = 2mR k
o)
r o= koR¢
cos ¢°
k¢=COS¢O ; k>\= m.
If ¢o = 80; at the equator, k = = 0.99;

at parallel 8° 0. 69, ky = 1.00;
at parallel 12 k$ = 0.99, k) = 1.01.

This technigue enables an area of 24° , symmetrical about the
equator, to be projected without scale errors in excess of 1%.

Conceptvally, the quantity k can be considered to be a
constant scale factor, called the dentral scale factor, which is
used to scale down all linear quantities on the reference surface
prior to projection. This has the effect of replacing scale
errors e of the form

> > i > >
e 2 e 20 over the latitude range ¢21 ==|¢| 20

by scale errors of the form
o,

v

o]

v

> e 2 -

Z'— over the range ¢2

ml 2

where
¢£2 - (bﬂq > 0.

The purely positive scale errors in tangent cylinder projections
are now replaced by both positive and negative scale errors by the
use of a secant cylinder, thereby extending the range of latitude
over which the projection has scale errors e less than- some
prescribed limit e 'l

3. The plane projection co-ordinates (N,E) of the point P(¢$,))
with respect to an origin Po(¢o,xo) are given by
N = R¢
E = R dx
eeesee3.4l.
dA = hA- A
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The central scale factor should be applied to these
relations when relevant.

4, The square plate projection, like all equatorial cylindrical
projections, is used to produce world maps, as the grid is simple
to construct. The scale error near the poles is excessive. A
hemisphere has an area 72 R? on this projection, as compared
with the true surface area of 27mR%, the exaggeration being
approximately 50%.

The projection can therefore be said to be satisfactory
for the mapping of equatorial belts with a limited north-south
extent.

3.5.2 The equal area case

The equal area property is introduced by varying the distance
on the projection between the family of straight lineg orthogonal to the
projected meridians, and representing the parallels of latitude.

The elemental *triangles are as shown in figure 3.8. The equal area
condition is obtained from the ‘same considerations used in setting up

equation 3.6 when
R%cos ¢ dd dA = R dr dX.

The: imposition of the limiting condition

0 when ¢ =20 after integration, gives

-
n

r = R sin ¢ .

- - -1
k¢ R4 " cos ¢ = kx '

Ky being the same as in the equidistant case.
Plane projection co-ordinates in this case are given by
N =R sin ¢ ; E = R dA ; Y = O vee. 3.43.

Notes:=-

1. As cylindrical projections tend to gross scale exaggerations
at high latitudes in the absence of imposed conditions, the
introduction of the equal area property results in the considerable
distortion of shape at high latitudes (e.g., see Robinson 1960,
p.75). In all other respects, observations similar to those
described in section 3.5.1 for the square plate projection, are

of relevance.

3.5.3 The conformal case

Commonly called the Mercator projection.
Originator :- Gerhard Kramer (c.1569). For a historical
summary, see Deetz & Adams (1945,p.103 et seq) .
The property of conformality is introduced as in section
3.5.2 by varying the distance between the parallels on the projection
using the elemental triangles defined in figure 3.8, on lines similar

to those utilised in setting up equation 3.12, when
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dr _ 4o
R  cos ¢ '
do  _ d¢ _ Ldd _ cosbsT+%9) %dd _(-sin(%"+%¢) kddy
cos $  sin(dm+d)  sinuT+%d)cos@GM+%$) ~  sin (AT+4d) cos GT+59)
Integration gives
_do_ Te9y oo
f os & log{tan(4 + 5)} = R
or
T, ¢
r= R 1og{tan(z-+ 5-)} creenn 3.44.
Aiso,
o G 1
k¢ T Rdd T cos & kk'
Notes:-
1. An tsomeiric system of surface co-ordinates

An iscmetric system of surface co-ordinates is afforded by
two curvilinear parameters (u,,u,) such that the linear
displacements (dll,dﬁz) equivalént to unit changes in

u, satisfy

u and

dQl = d£2.

Alternatively, if hl and h2 are quantities which satisfy
dl. = h. du., i=1,2 [
i i
the parameters (ul,uz) form an isometric system if

hl = h2 = m

the elements df, and dl? being perpendicular to one another.
The (u ,u2) systen is tHen an orthogonal one. The quantity m
is cal}ed the lineavisation factor for the isometric system of
orthogonal surface cou-osvdinates .

The (¢,)) system of surface co-ordinates on a sphere do
not form an isometric system as

dzk = R cos ¢ d)
while
d£¢ = R d¢ .
Thus, if uy = A and u, = ¢

e
fi

B, = K cos ¢ ; h2 =R # hl-

I1f, on the oilm

a1

hand, ¢ was replaced by the parameter Uy

given by
du, = —d¢ ceeaes 3.46,
2 cos ¢
the same lineayr meridian displacement d2¢ (= dzu ) can be
written as 2
= = G d =
d£¢ Rdp =R cos ¢ ESES$- R cos ¢ du2.

Thus the (A,u.) system of surface co-ordinates is an orthogonal
isometric one in that
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1. the same increment (e.g., one arcsec) in both A agd
u2 produce a common linear displacement R cos ¢ (1m)ra ;

and 2. hl = h2 = R cos ¢.

The quantity u_, which is similar in nature to the
geographical latitude ¢ i§ called the isometric latitude.

As
- d¢
du2 " cos ¢ '
(3,44)
- do 4 T ¢
Y2 T J cos & log{tan(y + 5)} ..... 3.47.

The plane projection co-ordinates in terms of the isometric
orthogonal set of surface co-ordinatesare given by

N = R U, ; E =R dA ;Y =0.

2. Rhumb Lines

Loxodromes are curves on the reference surface which cross
successive meridians at the same azimuth. If two adjacent
points P and Q on a loxodrome of azimuth O have a difference of
latitude d¢ and a difference of longitude dx,

R cos ¢ dA
tan G = ——ﬁ—a$*——— ..... 3.48.

The equation of the loxodrome is obtained by the integration
of equation 3.48, holding O as a constant, when

¢
A - A= tan o J d¢ '
o cos ¢

where Xo is the meridian at which the loxodrome crosses the
equator. The evaluation of this integral on the lines set out
in the derivation of equation 3.44 gives

i ¢ ‘
A~ A= a -+ D e .49.
o tan log{tan(4 + 2)} 3.49
On the Mercator projection, defined by equation 3.45, the

surface variables (¢,A) can be replaced by the projection
co-ordinates (N,E) when the above equation becomes

E = K.N + K
1 2f
where K, and K, are constants. This is the equation of a
straigh% line,“as 0 is a constant for a given loxodrome. The

plot of a loxodrome on a Mercator chart, and called a rhumb line.
is therefore a straight line and has resulted in the considerable
use of Mercator charts for navigation. Deetz & Adams (1945,p.110)
estimate the usage at around the 90% mark of all nautical

charts.

3.6 Transverse cylindrical projections
3.6.1 Introduction

Tangent cones become tangent cylinders in the limiting case
when kc = 0. The projections which result when the circle

of common tangency is a meridian, are called transverse cylindrical
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Transverse Cylindrical Projections

FIG.(3-11)

Transverse Cylindrical Projections- Basic Triangle
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projections.

Cylindrical projections, as shown in section 3.5, have the
property that the great circle of common tangency projects
i. as a straight line ; .
and ii. trueto scale.

The family of great circles orthogonal to the circle of
common tangency, project as straight lines perpendicular to the latter.
In addition, small circles parallel to the great circle of common
tangency, plot as parallel straight lines, equal in length to the
latter. In the case of transverse cylindrical projections where the
~circle of common tangency is a meridian central to the region being
mapped, and called the central meridian, two families of curves forming
an orthogonal set on the sphere, project as orthogonal sets of straight
lines on the projection plane. The central meridian and all small
circles lying in planes parallel to it, comprise the first set. It
is conventional for the grid meéridian to be chosen parallel to the
projected central meridian as it simplifies computations. Hence the
family of curves referred to,project as the set of straight lines

given by
E = constant.
The second set of curves is made up of the family of great
circles orthogonal to the central meridian. These curves project as

straight lines perpendicular to the projected central meridian, and

are given by the equation
N = constant.

In the equidistant case, the projected small circles
correctly divide the second set of curves described above. Thus
PQ¢ in figure 3.11 is equal to P"‘Q"f’ on the projection in figure
3.10. As such a system affords a set of co-ordinates where the
position of a point is fixed by measuring arc lengths along two mutually
perpendicular great circles, it is said to provide a system of
rectangular spherical co-ordinates. The direction of the N axis is
commonly called that of grid north.

Equal area and conformal properties are introduced by
varying the distance between the projected positions of small circles
parallel to the central meridian. Only the conformal case will be
covered in the present development. This forms the basis of the
transverse Mercator projéction which is the most commonly used

projection for large scale mapping in the world today.
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3.6.2 The equidistant case

Common names:-

1. Rectangular spherical system of co-ordinates;
2. Cassini-Soldner projection.

If the origin of co-ordinates Po(¢°,lo) lies on the central
meridian of longitude Ao, which plots as a straight line true to scale,
let the general point be P(¢,A), as shown in figure 3.11. The
projection co-ordinates, as defined in section 3.6.1, are given by

N = Pon ; E = PQf ..... 3.40,

where Q. is the point at which the great circle through P and orthogonal
to the central meridian, intersects the latter. The latitude ¢f of Qe
is called the foot point latitude. The significance of this quantity
is discussed in section 3.6.3.4.  As the arc PQ; is perpendicular to
the central meridian and therefore, to any direction parallel to it at

P, and if the convergence vy is defined as in section 1.3.2,
' Ll
5‘¢r

where N is the pole. lLet the arc PQ = ® . The application of
Napier's rule of circular parts to the spherical triangle NPQf, right

i

m m
Mo =g Y Mo =g céps WP

angled at Qf, .

which states that

sin(any part) = M{tan(adjacent parts)} = Il{cos(opposite parts)}
..... 3.41,

provides a solution for the projection co-ordinates of P.
Problem :~ Given the geographical co-ordinates of the origin

P (¢ ,r ) and the general point P($,\), determine the projection
cd-ofdifates (N,E) and the convergence Y at P.

N =Rid, ~ o)) = Rt¢ - ¢) + R, - ) N 3.42,

where (¢f- ¢) is a small angle if
dA = A =X deeess 3.43
o

is of limited magnitude. The application of equation 3.4l to the
the right angles spherical triangle NPQ gives

sin (%m~dA) = tan ¢ tan(%ﬂ—¢f) ..... 3.44

or
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tan ¢f = sec dA tan ¢
and
sin® = cos ¢ sindx  _.... 3.45.
As the projection is equidistant, the scale is true along
i.  the central meridian whose equation is E = 0;
and ii. the family of straight lines N = constant.

A study of the development in section 3.5.1 shows that
the scale along the lines

E = k., where k is a non-zero constant,
increases with E, analogous to the square plate projection;  the

increase being a function of the arc length 6 (=PQf).

Consider two adjacent points P, and P, which are both
at angular distance 6 away from the central meridian along orthogonal
11 @d PQg,
The distance PP, on sphere 1s equal to R(<1>f2 - ¢, )cos 0,

great circle arcs (P in figure 3.12).

where ¢, (i=1,2) are the foot point latitudes of the points P, (i=1,2).
The projection distance Pi‘P’é’ is equal to the spherical distance

QiQey = ROy -~ gy
Thus the scale error e along the arc Pleis given by
e = L -1 =1+%24+ {6} -1
m cos ©
= 9% = Hdn2,

It has been recent practice to adopt a value of 1 in 10°
as the maximum scale error acceptable for day-to-day cadastral work.
The introduction of a central scale factor as described in section
3.5.1.2 will reduce this to about half the magnitude (i.e., 5 parts in
10*) which would enable all field work apart from the establishment
of control, to be computed on the projection without the application
of corrections for scale in all but large scale work. The adoption of
these criteria will restrict the range of dA to satisfy

2,. 0

N2 3 x0T or a3 5x 107 4= 3).

Tt will therefore be assumed in the subsequent development
that transverse cylindrical projecticis are being formulated for
cadastral purposes where the scale error, prior to the application of
the central scale factor, should not exceed 1073, This would, in effect,
restrict the region being mapped to a zone of 6° width in longitude,
symmetrical with respect to a central meridian.

As 8, d) are small angles (=5x1072 or less), it is
convenient from a computational: viewpoint, even in this computerised
era, to replace the relevant trigonometrical functions by the larger

order terms in the series expansions , as both
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R(dx)® and Ro® = 10 cm or less.

The expression for N

Refer to equations 3.42 and 3.44.  As (¢.-¢) is a small
angle, consider the relation
tan % - tan ¢

tan(¢f— ¢ = 1 + tan ¢ftan ¢
(3i44) tan ¢ (sec dA - 1)  tan $(1l - cos dA)
1 + tan®d sec dA = cos dA + tan‘®

The above relation is simplified by noting that

1. tan ¢ is (sin ¢/cos ¢);
_ : a2y oopdd 1 @dhR2_@doF. o1
2. 1 -cosdk=2sin'hdd = 2(5- 2 )= (1- S ?)+
(dA)
d24 }I

) y
and 3. cos dA = 1 - %(d\)2 + of%%) }.

Further

tan(¢ -¢) = ydn? = 1077
Thus

tan(9_-0) = (6.-0) + of207"}

where R X107° < 1 cm and can be neglected, and

2 -
o, - ¢=4 sin ¢ cos 9(dN)?|1 - (%) }(coszd){l - n(dPM sin?e) L
U
( 2
=% gin ¢ cos ¢ (dA)? {1 -~ @A)ZJ [l + (dr) coszth
12 2
Py ( 2 di 6
=% sin ¢ cos ¢(dk)‘kl - (%%) (1 - 6 cos?9 )] + o{(iag I.
The use of equation 3.42 gives
N = R(¢$ - ¢o) + % Rsin ¢ cos cb(d)\)2 - %ﬁ-Rsin ¢ cos (1 - 6 coszd))(d)\)q +
of R(d)®x107>}...3.46.
If A 3 3% ¢ % us® the second and third terms

in equation 3.46 will be of order 6x10° metres and 10° metres
respectively at the most.
The expression for E
E is obtained by the use of equations 3.40 and 3.45 as
E =R L. 3.47,

where

[

sin @ cos ¢ sin dX.
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As 6, dX are small angles, the trigonometrical function
sine is unstable and it is convenient to replace it by the larger
terms in the series expansion when terms of order R(dA)®x10”>
are negligible for most practical purposes. As

. ~1
sin "X

1]

x
+
o=
w(x
+
X

w

+
(o]
—_—
x

~
[S—r
w
-
®

and

sin X = X X + X
3! 5

8 = sin l(cos ¢ sin dA)

]

cos § sin dA + }6-cos3¢ sindd)  + Z—O cos®¢ sin’dX.

As
L34y _ 3 dn2)® 3 2y 7
sin®dA = (d0)?)1 - == = @31 - %N + ol@dn)7}

+

and
sindx = (dA) > + o{lw@N)7} ,

1 1 1 (dA)?
cosd@r - ZdAf + 550 °) + = cos’ @ - 5 )+

D
]

3 5 5
20 °°s ¢ (dX)

.3
= cos ¢ dA - %cos ¢ (1 - cos?¢) (dA) + 5%2—52(1-100052¢+9cos~¢) (dr)s.

1 - 10 cos®d + 9 cos*d = sin®¢ - 9 cos?¢ (1 - cos?¢)

= sin%¢ cos?¢ (sec?d - 9) sin’¢ cos’®6 (tanZ¢- 8),

the use of equation 3.L47 gives

R cos ¢ dA - %Rcos ¢ sin®¢(dA} + 1—]2-:-6Rcosa¢ sin?¢ (tan’d - 8) (d}) 5+

m
fl

ofR(dN) 7x1073}... 3.50.

The maximum order of magnitudes of terms in equation 3.50 for
ar$3° ;5 ¢4 us® are 3x10% 102 and 10" metres respectively.

The expression for Y-

The application of equation 3.4l in triangle NPQ. gives

sin ¢ = tan Yy cot dX .

Y = tan (sin ¢ tan dA}.
( )

As
3 U5
tan Ix = x - §-+ %— +olx’} ... 3.51
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and
tan X = X + = 4 2x° + o{x"} 3.52
3ty tolxt L. .52,
, (d)) 2(dA 1. i
Y = sin ¢[dx el 13—’J - 3 sin’6(dh (10 @ ?) + 5%5—9 CINN
= sin ¢ d) + 3 sin ¢(1-sin®9) (dN)° + E%f}iﬁ (2-5 sin®¢+ 3 sin®¢) (dN)° .
As
2 - 5 sin$ + 3 sin*¢ = 2 cos?d - 3 sin?o cos?¢
= cos'd (2 sec?d - 3 tan?d ) = cos"d(2 - tan?¢),
Y = sin ¢ dA + % sin ¢ cosz¢>(d>\)3 + E%—I—Sl—-(-b-coshd) (2-tan?¢) (dA) ° +
oftdM)’y ... 3.53.
The maximum order of magnitude of terms in equation 3.53 for
dr 3 3% ; ¢ % us° are 3><10_2,‘ 107> and 1077 radians respectively.
3.6.3 The conformal case
Alternative titles:-
i. The transverse Mercator projection;

ii. The Gauss conformal projection.

The ellipsoidal version has been given the titles
i. The Gauss Schreiber projection (no longer used);

and ii. The Gauss Kruger projection.

The title "transverse Mercator" is currently used to describe the

ellipsoidal case.

As explained in section 3.6.1, the property of conformality
is introduced by varying the distance between the small circles parallel
to the circle of common tangency, as in the case of the Mercator

projection described in section 3.5.3.

Consider the general elemental triangle (PQS in figure 3.13)
on the sphere, where P and S are the same distance from the central
meridian, measured along the great circle arcs Z0SQ c and ZPP £ orthogonal
to the central meridian. The N co-ordinates remain unchanged on

introducing the conformal property by varying the spacing between the

curves E = constant. Thus
%% = = Pk = = -
PQ% PQ, = P dN Ny = Np >

where N has exactly the same meaning as in section 3.6.2.  Further,
SQ =dE = EQ - EP,

where E too, has the same significance as in section 3.6.2. The

projection is made conformal by expanding the length S*Q* on the
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projection in relation to the length SQ on the sphere in order that
the triangle P*Q*S* on the projection is similar to triangle PQS an
the sphere. Differentiating between the east co-ordinate E on the
Cassini-Soldner projection, which is the spherical great circle arc
length, and that on the new conformal projection (E ¢)> then
S*Q* = dE, . The triangles P*Q*S* and PQS are similar if

PS _ S
FFE C TF
or
_  DbEg%
dEt- 55 dE

The ratio P*S*/PS is obtained by noting that P*S* and PQ ¢
are of the same length ( = dN ). By analogy with the pole-equator-
parallel system, it can be seen that

i E dN
PZ = 7 "R ; P20 = ]
and
PS = R[ %g cos %-) + o{5-6 mm}
or
pP%g® . E E2 5 (Eyt
= = gec - 1+ Eﬁz +-EZ fi ...... 3.55.
Also,
PS__ PS E_ 1 (B2, LEw
SE - N - °Sr=1-3 &+ =&

Substitution in equation 3.54 gives

1(Ey2 5 (Eye
a1+ 20 5 @

Integration with respect to E gives

1 (Ey2 1 (Eyu
e 102 @ % Q)
(3, 50)
4 R cos ¢ dX - %-R cos ¢ sin2¢(dA)® +

1
6

R sin?¢
120

R cos®0 (dA)(1- % sin’$(dA)2 )+ 25 cos®6(dA)’

cos®¢ (tan?¢ -

- g)(drn)° +
On re-arrangement,

5
E, = R cos ¢ dx + %-R cos¥d { 1-tan?¢}(dr)’+ 5—%%%42 (tan2¢(tan2¢- 8) -

10 tan2¢ + 5)(dA)° .
Thus
E, = R cos ¢ dA + 5 cos®% (1-tanZf) (M) ? + o5 cos®¢ (tan'¢ -
18tan?¢+5) (dA)° + o{R(dA)7xlo‘3}.3.57.
Also, Nt(=N) is given by equation 3.u46 as

- R . 2 _ R . 3 2459 (d))* +
N. = R(¢=- ¢,) + 5 sin ¢ cos ¢(d]) >z Sin ¢ cos ¢ (tan?¢-5) (d))

o{R(dA)5x10-3}..... 3.46.
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As Yo =Y from the properties of the projection,
the former is given by equation 3.53 as

sin ¢

. 1 . 2 3
= A —
Y sin ¢ dA + 7 sin ¢ cos“P(dry” + e

t cosq¢(2-tan2¢)(d)\)5 +

oltdny?y L., 3.53.

The above equations completely define the projection co-ordinates
on the transverse Mercator projection and the direction of the grid
meridian in relation to the true meridian, provided the geographical

co-ordinates of the point and the origin are available.

The point scale factor k on this conformal projection

"is given by

dE (3,55)
_  _t ¥ 1 (Ey2 Eyu
k = 5f = 1+ 3 (—R—) +o{(ﬁ) oo 3.58.
Notes:~ .
1. The scale on the Cassini - Soldner projection along the E
axis (kE) and the N axis (kN) by the relations
(3,55)
_ _dN 7Y 1/Ey2 Evuy
kp=1 : k=35 = 1+2(R) +o{(R) 1

Thus the transverse Mercator projection is merely the Cassini-
Soldner, converted to conformality by increasing the scale along
the E axis.

2. The plot of the scale error em, given by

e = k-1

m
for the conformal case, against E , will be parabolic, as shown
in curve i in figure 3.14. e will take a maximum value of
0.0011 at E = 300 km (= E 7).

The introduction of the concept of a central scale factor k_,
" as defined in section 3.5.1.2, which reduces the scale factor ©
uniformly over the entire projection, can be used to reduce the
magnitude of the scale error on the final representation. In
this case, the uniform reduction of the scale error by the
constant factor

g2
1 max
2| " 2R?)’

where IE x|‘is the largest value of E as a consequence of the
zone widbh adopted. If
g2
1 max
ko -1-= > [2 Rz] = 0.0005 cese. 3.59,

then

k = 0.9995

o

and the scale error is reduced as shown in curve ii in figure
3.14. This has the effect of replacing the irrelevant
characteristic of having only positive scale errors by that of
both positive and negative ones, but with reduced magnitudes.
This is equivalent to computing on a sphere of radius koR.
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KEY:

(1) = E2/2R?
(2) = E/2R2-(1-K,)

S
C
A 10
L
(e x10" E
R
oL
R 5
(1)
(2)
L J 1 | 1 J
-300 -20Q -100 100 200 300
E (Km)
~-5
10
FIG.(3+14)

The accumulation of scale error (e, ) on the transverse
Mercator Projection

*
, )
Grid
True North
Xz(N)‘ North
N
Lo
2 *
R
L
A x4(E)
Reference Surface Projection Plane
FIG.(4°1)

Relation between Projected curve and the chord
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3. The Universal Transverse Mercator (UTM) system of
eo-ordinates

The Universal Transverse Mercator (UTM) s&stem of
co-ordinates has been adopted on a global basis as a means of
providing a unique conformal' representation of the Earth for
day to day mapping and cadastral purposes. The entire glcbe
with the exception of the polar regions beyond: latitudes +84 N
and -80ON, is divided into 6 zones, whose central meridian
(Xo) is related to the zone number N by the relation

¢

Ag = - 177 + (N- 1)x5 ..... 3.60.

The UTM zone number of any local zone can be obtained
from the following equation as the truncated portion of
given by

180 + 20
_-—-——+

N = =

1. S e - 361,

where ko is the local longitude in degrees. Thus the Australian
continental region is entirely covered by zones 49 to 56.
Continuity between zones is maintained by having half degree
overlaps between adjacent zones.

The origin for each zdne is the intersection of the
central meridian and the equator.

UTM co-ordinates (N 'Eutj' which are in metric units,

ut
a. are based on a central scale factor of
: ko = 0.9996
(AMG 1969,section 2.1);
and b. have the dubious characteristic of being referred to

a false origin such that

ymet) _y(met) . 0 if 020

ut DR . 110,000,000 if ¢ < 0
and e 3.62.

gmet)  _ pmet) 205 000

ut t

It should be borne in mind that UTM co-ordinates, corrected
for the false origin, are 4 parts in 104 smaller than true
transverse Mercator co-ordinates. The regeneration of properties
characteristic of the projection, should not be attempted till
this has been allowed for. This is achieved by using

k R for R and kol for measured distances %
o 1

in all calculations both to the reference surface from the
projection plane and vice versa.

4, Convergence from projection co-ordinates

An expréssion for the convergence ‘from projection co-ordinates
is of considerable importance. Reference to figure 3.10 and the
equation for circular parts at 3.41, gives

“sin B = tan Yy cot ¢f.

Y = tan_l( sin 8 taq ¢f)

(3¢51) 1 1 5
= tan ¢fsin 0 - 3 tan3¢fsin36 + 3 tan5¢fsin 8.

From equations 3.47 and 3.56,



55

where E is the r ectangular spherical co-ordinate. Then

(3,56)
¥ Ee 1Ey2, 1 (Ey4)"t B 1(Ey2z 1 (Ey»
o 1T i@ HOT - Fh - 50

To a first approximation,

1 (Ey2 1 B 1.Eir2
LT -k 36

Whence
_ E 1 (k2 1 1y By
e R Il
E 1 Bz 1 Elw
_ Et [1 -2 (Et] v 3 (Et] ] ..... 3.63.
Further,
3 )
sin 6 = 6 - %- + T%B
E 1(Eiys 1 (Evs 1(E 1rE. 2 E.\5
- £ - HEY H69°- 369 - 1697 e
E 1(E.N2 E . ¢
- B[ - 369 2@
Thus . s
E E
o = (911 -G9°] 5 e =G0 .
Hence,
1E.y3 2 (E48 E E,\2
vt <3G BE9Y- eerte G- GO

1 5 E.\5
5 tan’d, (Et)

E 1 E..2 1 E 4
e _1 2 e 1 2 " Te
R tan ¢f[l 3(1+tan ¢f)(R ) + 15(2+5tan ¢f+3tan ¢f)(R ) ]

+o{(;-t]7} 3.64.

Equation 3.64 enables the convergence Yy to be computed
at a point P on the transverse Mercator projection whose
co-ordinates (Nt,Et) are known.

The foot point latitude ¢_., which is the latitude of the
point on the central meridian wﬁich has the same N_ co-ordinate
as the point in question, is a known quantity once N, is
specified, as can be seen from figure 3.11, being given by
equation 3.42 as

N
¢p = N 3.65.

R ()
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4. THE RELATION OF OBSERVATIONS TO THE PROJECTION PLANE

4.1 Fundamental terms

a. On the reference surface

Measurements made in the field can be reduced and/or
corrected to give the azimuth @, and the length 212 of the curve PP,
on the reference surface.

’ The length 212 is unambiguous for a sphere, being the

great circle distance. The problem is more complex for the ellipsoid.
A unique definition is afforded by the geodesic, described in appendix g,
which, incidentally, is the great circle on a sphere. From a

practical point of view, it is more meaningful to define 212 in the
normal section, described in appendix d. The lengths of the geodesic
and the normal section can be considered to be equal for all practical

purposes over normal geodetic distances which seldom exceed 125 km.

The azimuth o, 1s the angle between the plane of the
meridian at P and that containing the curve P1P2, if the latter is
planar. In the case of a skew curve like the geodesic on the
ellipsoid, the latter plane would be the osculating plane at P;.  The

azimuth a,, is therefore unique only when the nature of the curve P P,

12
is defined.

b. On the projection plane

Any curve on the reference surface can be plotted, element
by element, on the projection plane, giving a projected curve with a
variable curvature o. The geodesic on the reference surface does not
transform into a geodesic (straight line) on the projection plane due to

variations in scale along the line.

Consider the projection of the meridian NP? and the curve
PP, as shown in figure 4.1. Let Pft be the tangent to the projected
curve at Pf and an the associated normal. If PiG is the grid meridian

at P1 and the tangent to the projected meridian is PfT; the angle
P = o
would be equal to a, if the projection were conformal.
The grid convergence y is given by
y = TIAD_'{"G
The grid bearing B of the projected curve is given by
| B = GPf%,
while the grid bearing § of the chord, alsc called the plane bearing of

PiPy> is given by
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6 = GPP%,
1P2
The chord-to-are ccrrectior & ls defined by the equation

§ = P§P§t .
It is related to the plane bearing by the relation

8 = B- & - S
Also,
0 = Yy+B=v+8+3§ R :
If the projection is conformal,
a = .= Y+ B=vy+6 + 8§ cenas 4.3.

The curve P1P2 of length & on the reference surface, projects
as a curve of length Zp. Let the chord P?Pg on the projection be of
length QC. If the curvature of the projected curve is extremely small,
i.e.,

g = 32 +o{1o”8},
P c

these two lengths are, for all practical purposes, equal. The angular
separation 8 between the chord and the curve has still to be considered

as it still has a significant magnitude in such cases.

The line scale factor kz

= =P
k2 N R 4.4.

It should be noted that

Lim k, = k
[ g T2

where k is the point scale factoir in the case of conformal projections.

Conversely, for most practical purposes,

(%
k, = = ke df e 4.5.
vt T,
Notes: -
1. Plane rectangulor co-ordinates

& seqguence of lengilis Qc and plane bearings § which satisfy

AN = QC cos § ;o AE = RC sin 6 e e 4.6

conforme o conventionsl concepts wnen computing in plane rectangular
i Such a system is aftorded by & and O defined

.n noection 4.1L. The ficld observations § and u,. can be made

compatible with such a syscem through equations “ 4.1 to 4.5,

if the convergence y, the chord-to-arc correction § and the line

scale factork, are knuwn.
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2. Sets of equations which would completely define the
conversion of field measurements on the reference surface, to
differences of projection co-ordinates Ax, are as follows.

i

a. Using the measured length L and the grid bearing B of
the projected curve

Y = vY(¢,A)
821 = Bl2 + T 4+ AB(SL,Blz) eree. 4.7,
Axi = Axi(Q,Blz) , i=1,2

where 612 is the grid bearing of the projected curve P,P,
and B Is that of P;P,. As shown in figure 4.l.and the
subsequent development,

xl = E ; X =N .... 4.8.

b. Using plane bearings and distances

Y = Y@

6 = 6(x11,x12’2r8) s se e 4.9a
kl = kﬁ,(xll'xlz'ﬂ"S)

B = B - 6

Rc = § + (kg' 1L ceses 4.9
AX, = R cos 6, , i=1,2,

i c i
where
61 = 0 : 62- =kt - 06 .... 4.10.
3. As nearly all projections used for mapping purposes are

conformal, it will be assumed in the subsequent development, that
the scale at a point is independent of azimuth, as discussed

in section 1.3.3 and can therefore be represented by the point
scale factor k.

In addition, the projected curve will be assumed to be a
geodesic on the reference surface as its characteristics on
the latter are clearly defined.

4.2 The curvature of the projected geodesic

Consider the representation of a geodesic of length £ on the
reference surface, on the projection plane. If R (xji,j=l,2), i=1,2
are its terminals on the latter, the projected length being 52,p. Let
Plt be the tangent to the projected geodesic at Pl with a grid bearing

B. ..
12

Let the grid bearing of the general element of length ds at
the point P(x,,X,) cn the projected geodesic which is a distance s from
P,, be B. If Q(xl+dx1,x2+dx2) is the other terminal of the element of

length,
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dx .d_xz dx
tan B = X, ; cos B = Is ; sin6=El .. (4.11) .

The curvature o of the projected geodesic at P is given
by

0 = === seseens 4.12.

If d? is the corresponding element of length on the reference
surface, the consideration of equation 1.13 gives

! 1 2 2%
dt = pds = T ((dx )" + (dx,)")
1 X 2\]!
= (l +(a,—<i) J dx, .
Therefore .
X
12
2 =J | dxl ...... 4,13,
X1
where
I=£(l+(x1)]l§=l(xxx1) 4.14
k 2 /72020t - !
as
k = k(xl,xz).

The quantity xlzin equation 4.14 is defined by the relation

x! =
2

ala
bad

.1

Equation 4.13 will apply to any curve on the reference surface after
projection. The geodesic has the characteristic of being the shortest
distance between the terminals on the reference surface. In such

a case, the appropriate expression for | must give a minimum value for
2. Assuming that | has continuous partial derivatives with respect to
Xis X, and x;, | can be interpreted as being a function of the general
element of length along any of the infinite number of projected curves

possible between P, and Py.

This family of curves, as shown in figure 4.3, can be defined

by equations of the form

x, = xz(xl).

If a curve in the vicinity of the geodesic on the projection plane
can be defined by an equation of this form, any adjacent curve can be

represented by an equation of the form
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X = +
20 X, v dx,

xz(xl) + 0 f(xl) 4.15,

where 6 is a parameter; different values of 6 defining the family of
curves between P1 and P, in the neighbourhood of the geodesic. 2
will take a maximum or minimum value when

_d_Q,. (4il3) _d_ X12 | . . ~
d6 = de (Xl,X2,X2 ) Xl =0 ... 4.16.

11
On changing the variables for the region under investigation
using equation 4.15, the above equation becomes

d X2 . dx df
— . —
15 [ [ l[xl, x2,6f(xl), E;i + 6 dxl] dxl
1

X X
12 [ 31 df 31 ) 31 Y12
J [ 5! dx, ¢ BX,f(xl)] dx) = If(xl) Bx 1 +

X1

X .
12 al d (3l _
[ e 5 - al(x;)] dxy = O

The nature of the function BI/BX; is such that its value
is zero at both Pl and P2, all the curves being coincident at these
points (e.g., Jeffreys & Jeffreys 1962,p.315). Thus the integral
in equation 4.13 is stationary if the equation

al d (al
= - = (=) =0 ... 4.17
8x2 dxl axz
is satisfied. This condition must be satisfied by all projected

geodesics.  Referring back to equations 1.1%, 1.15 and 4.14, it can be

seen that k is a function of Xy and X As
1y 1 1y2) %
(X r%y,%5) = Ko %y (2 + x)?) 7

the use of equation 4.1l gives

ol 1 23k
= = = T o= cosec B ceeee 4.18,
sz k sz
1
a1 "2 0l _cotB _ 1 .
axy ~ k Y T Kk cosec B = k
2 (l + (x;)z)
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and
d (3l y _ 1 3k 3k 1 . ,dB
dxl(axz) =- kz(g;i + 5;2 cot B) cos B - % sin B g7 cosec 8
...... 4.19.

The substitution of equations 4.18 and 4.19 in equation 4.17, gives

ok 2 ak
5;5 cosec B(l - cos“B) - 5;1 cos B) .

Hence the curvature of the projected geodesic can be expressed by
the equation

Notes:-

1. It can be shown that eguation 4.20 expresses the curvature
as the derivative of the scale factor in a direction normal
to the curve (Thomas 1952,p.78).

a. In the case of the transverse Mercator projection of
sphere, k is given by eguation 3.58. 1/k can be obtained
from equation 3.55. Thus, as
_ 1 E)Z Eyt
k = 1+ Z(Rﬂ + o{[R) P,
ok 3k 1 E Ev3 ak ok
3%, ~ 3E R[R+O{(R)J] and ErT
1 2

Therefore

g = [l - %{§J2+ o{(gﬂh}] %Q{l + o{[%}z}J cos B

or

Q
]

Es 2
L [1 + ol (3) }J cos B 4.21.
R R

The evaluation of_Eerms in the case of six degree zone widths

(i.e., E/R * 5x10 ) indicates that the curvature of the projected
geodesic is of order 10-5 xm~i.

3. The order of magnitude of the difference (& - &), as
illustrated in figure 4.1, can be obtained from this esfimate of
a. If the projected geodesic is assumed to be circular arc of

curvature ¢, the difference in length between the arc of length
and the chord fc is given by the standard arc-to-chord
correction

On allowing a maximuﬁ length of 100 km for normal geodetic lines,

P . 4510® +4mm ..... 4.22

and can be neglected.
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4.3 The Tine scale factor on a conformal projection

Also referred to as the finite distance scale (e.g. ,
Bomford 1962,p.168).

Its difference from unity, on multiplication by the length
of the line is commonly titled the (s-S) correction.

While the point scale factor k is independent of azimuth
at a point on a conformal projection, the line scale factor kg s given

by the equation 4.4 as

is dependent on the location on both terminals of the line being projected.
Considering an element of length d%pon the projection, assumed conformal,

the point scale factor is given by

dg,
k = =P
d2 !
where df is the element of length on the reference surface which is
being projected. As k is position dependent, its magnitude will

vary with length s along the line whose length on the projection is
lp. Its value at any point can be expressed by the Maclaurin's series

’

g dlky
7 G

=
]
=~
+
It~

i=1 2=0

where k is the value of k at & = O. This is a convenient form in that
(o)

2
L= J k d% .
p
0
This facility is offset by the fact that k is a property of the projection
plane and best expressed as derivatives with respect to the length s of the
projected geodesic, the increment ds being equivalent to dzp. Thus

) (l¢l3)

dk _ rdk g ¥ 1y
(E—JZ—) =0 (d,Q,p ﬁ,p_—.o (E‘fp}!%fo ko o
and
de d2k df_ .2 g_k- 2d2, - L2 2 1y 2 .
@7 0 = (d_lg) GF) (dzp} Frsl 2.0 kg (k)2 + (k)™ kK

Further differentiation giVes



d3k d3k d2& 3 d2k (98 ~2dk dk d2k (42 ~2  (dk y3d
S0 [ 55 G 2 05 @Ere w28k Ok T @5
P P P P p p P
_ 3 3 2 1 2 1,3
= kAk )P4 k2 kotk ) (kDT ok

d*k
G0~ v @ @ a @
p P P P P
d?ky2 42 3 d%k dk 2 d¥ (2 d2k 2 d2 |2
4(3{:’) (dg) +8d—gz(m)(a—gp)+3“‘z(%)(ﬁp] +
p P P p
dk )udQ,
a2 /3 Je=0
p p

_ 4 4 3 1 3 2,2 3 2 1 2‘ 2 1.4
= ko(ko) + 7kO ko(ko) o 4(ko) (ko) + 11ko(ko) (ko) + (ko) ko.

The combination of the above six equations gives

2, .
_ 1 Lrpe2 2 1,2 2 . 1 3
2, = Io [ k o+ kD ko o+ (k2 (k) ? o+ (k) k JO8 + =K 0% 4
1 y
+ —2—21‘]{22 dl,
where
K, = K3k ) + ak? KMk )2 + (khHik
(o) [e] (o] [e) (o) (o) O
and
- L 4 3 14, 3 2,2 3 2 1.2 2 1
Ky =k:k)' + 7k k (k) + 4(k2)® (k)* + 12k2 (k) (k) + (koi*ko.

Integration gives

- 11y g2, L2 T VA P A
zp B kI+3 kg kA5 G(ko(ko)z * k) ko} , * 34%3 *
1 5
- K
+ 355 Kgh v ool 4.23,
Thus
L 1 1 1, 2 1
= ~P = = .1 . (.2 2 ‘ 2 . '3
k=2 kg * T koky 27+ FlkE (k)T + (i) ko)& toa K
. .
+———l20 K2 2t 4+ ... 4,24,
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_ 9 = - 11 02, 1002 2 1 3
- 8=k - 12 o+ 3Kk 82 4 Z(k2(k )+ ()2k )27 +

P 6
1 4 1 5
— K —_=
4 ZQ * 155 K2 L 4.25

Notes :-

1. For the transverse Mercator projection of a sphere, ko is given

by

(3,58)
¥ 1(Ey2 Eyt
k, = 1+ Z(R) + o{&ﬂ }.

The order of magnitude of its derivatives with respect to s(i.e.,
QP) are defined by the following relations.

dk ok dE E
(H’i’ ]2._.0 = ('a"E- a‘fp]g =0 = 'ﬁ}[l + O{(g-)z})sin g.
p

[1[% L _&’_[ﬂ JEC
2 =0 (GE\dR _Jd& 3gld2 _Jd% _|& =0 ’
b Y p p)] P

o)
- ST-%
o

=~
| —
1]

which from equations4.ll and 4.21 becomes
d2k 1 Ey2q] . 2 2 sin’B Ey2
(W)Q, =0=E2 [1 + 0{(E) }JSln B -E'l‘cos B =Tz—l+0{(i‘) .
P P
Ssimilarly,

d3k . E d"k . 1
Gr o = & ¢+ (@@de-e = &
P P P P

The angle B in the above relations refers to the
grid bearing of the projected geodesic at the initial terminal of
the line.

For 100 km lines,

-3

k -1 = 10 ; -7
(o)

1k ~ sx107% Lhyrz = 107/
o O 6 ©

m#—'

the only other terms of magnitude 10—8 or larger (i.e., (R/R)6 or
greater) are 3

R AR U R AR
o o o RY 7 ) ) R**

On ignoring terms smaller than lO_6 in the case of a spherical
approximation of the Earth, the use of the above relations in
equation 4.2.4 gives

. 2 .2
1k 1 1,E.,2)E & sing 2°sin”B -7
kz 1+ 2[R )ﬁ 2[1 + 2(R } RZ + ERZ +oi5%10 }
3g2+ 3E % sin B + %%sin?B
=1 + 1 A
6R2
. 2
E; + Ej(E; + £ sin B) + (E; + 2 sin B)
=1+ 7 )

Thus
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1 2 2
= +
kz 1 gffz— ( El + E1E2 + E2 ).

The correction (kl - 1)2, commonly called the (s-95)
correction, is given by

- = (s~ 8) = =2 g2 £ 2
(k- 1) = (s = $) = (B2 4+ EE +ED) ....4.26.

A final working formula“on the transverse Mercator with six 4
degree zones, for the line scale factor, and correct to {&/R) 7, is

1,1 ir,2 2 1,22
k = — —
g =kt klk e+ 6[ko(ko) + (k) )22 +
L (kP + ak? K')2® + L (k* + 4(k2)2)2“+o{E%22 }
24 o) o o 120 o o) Re
...... 4.27.
2, It should be noted that the quantity E in the above eguations,

refers to the true distatce along the orthogonal great circle
system (i.e., Cassini-Scldner co-ordinates) and not T.M. co-ordinates.
For all practical purposes,

E, =E+ o{Exax10~%} ;

Eg,: : - -
}é-({-)z = 1‘6: (%)2 + o{if%}zxm =107} ... 4.28.

Thus ne significant error is cobtained on using transverse Mercator
co-ordinates in lieu of E when evaluating equation 4.26.

4.4 The chord to arc corvecticn

Also commonly known as
i. the arc to chord correction
and 1i. the {(t-T) correction

but with revereed signs.

The properties of smooth curves with limited length, can
be studied with relative ease by considering their departure from the
tangent Plt at the initial terminal Pl as a function of the length s
along the projected curve, to the variable point P on it. If s is
measured from Pl along Ple, consider the element of length ds of the
curve at P and its relation to the tangent (t) - normal (n) system of
rectangular co-ordinates with origin at Pl. The angle £ between the
element of length ds and the associated changes dt in t and dn in n,

are related by the equations

—

d

3
=

_dn ds _

t ds t

tan £ =

.
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dn
ds
dt

INSET

F lG.'(4-4)

The pojected geodesic on the tangent normal system

Grid
Meridian

R

5, 5(=512)
P

FI1G.(4-5)

Sequential computations on the projection plane
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The basic relations are illustrated in figure 4.4. The curvature

g

o ds

is obtained by differentiating the above relation with respect to s, when

1 2 2.1 _ 1.2
sec25%=sec.2€o=- n 21:2+ 2, = nt -nt
(t1) t (¢1)?
As cos?E = (th)?
6 = n2tt-nter L. 4.29
and
(Y2 + tH2 =1 L. 4.30

(the notation is explained in the Guide to Notation).

The t and n co-ordinates can be expressed as a Maclaurin's

series of the form

. . . K
i dix ik d*x
x, = (——rds =0 P xS = [(—-—v—dsl s=0] ..... 4.32.

The successive differential coefficients are obtained by
differentiating equations 4.29 and 4.30 when these quantities are
obtained in terms of the derivatives ol of the curvature with respect

to s, where

Operation on equation 4.29 gives

1= ne't1 + n2t2 - nzt2 - nlt3 =n

Q

o2= n*t! + n%t? - n%t? - nlt® s 4.33.

8= ¢l +on"t? -2n2t" - nlts

Q

The differentiation of equation 4.30 in a similar manner gives

n'n? + t't? =0
nlnd o+ (032 + ()2 + ted =0
...... 4,347
aln® 4 3(n2n® + t2t%) + tit* = 0
2
nln® + 4(n2n* + t2t%) + 3(n®) % + 3(t%) + t'tP =0
The quantities to be substituted-in equationsit.3l are obtained

by evaluating equations 4.32 and 4.33 at s = 0 when ¢ = o
is the curvature of the projected geodesic at the initial terminal P1 s c:
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being the derivatives of the curvature with respect to s and evaluated at

Pl'
When s > O,

the curve coincides with the tangent, and

The substitution of all known quantities into equation 4.29 gives
n =g
o] o]
Further substitution into the second equation of set 4.34 gives

£ = —(0)°
o Vo .

Continued substiution in to the first equation of set 4.33 and repetition

of the procedure gives . 3. 4!
"™~ o !
t* = -30l0 it = o2 - (0}
(o] (o2 o] : o] (o] o]
£5 = 46 )" - 0% - 3(0H2 - 3@ ); n® = o° - esl(0)?
o} [o] (ol e] o] (o] (o] O o O
= (0 )u - 452 g - 3(01)2 ...... 4.35.
o] o] o] (o]
The substitution of these values in equations 4.3l gives
N 1 2.3 _1 SR S g ey 1,2 _ 4 5
t=s-2l0)?s® - z00s S5(dolo, + 3(0)) ") s%.... 4.36
_ 1 2 1 1.3 172 _ 3y 4, 1 (43 _ 1 2.5
n= 205" +z0ls’+ 57(02 ~(0) )s" T35 (02 - 6 0,t0) )s

The chord to arc correction § is obtained by the evaluation

of equations 4.36 and 4.37 when s = lp , using the equation

n
tanG—?— %Oolp
For mapping projections of the transverse Mercator type,
g, = 10—5 km_l. Consequently, § = 100 arcsec or less even for lines
of length 100 km. Thus, for all practical purposes,
3 -
tan § = § + g- 4 ... =8 +o{20710% .
As
oo doo_ 30 9% oo O, a0 df
ds axy ds 3x2 ds 9B ds

@ being given by equation 4.21 for the transverse Mercator, it follows
that
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ol = %zcos 8 sin B(l + o{(—i—)z}) ..... . 4.38,
while
o = ‘E’q ..... 4.39a,

as variations of magnitude (/R)* can be considered to be negligible in the
context of a spherical approximation of the Earth. Further,

o = %.. ..... 4.3%

for the transverse Mercator with six degree zone widths and geodetic lines
which do not exceed 100 km in length, when the following are maximum
orders of magnitude.

0% = 107 . olg? = 1078 ;@222 = 107%  ; olow? = 1077,
P P p P
(o)3 2; x 1072 ; o2gd = 1077 ; o3 = 1078,

b p

Adopting the criterion that values of § should be correct to
07001, the terms required in the evaluation of tan § are

1 1 1,2 1 1 2) ok
tan § = [—é-colp + SO Z(0?-10,)%) 8} . + 555(02- 60l (q) )2] x

o} (Go)%z'p * 60 Uo

(02-602 () %) z;] x

1 202 , 1 1 3
[1 + 6(00) ILP + 3 oooolp J

On considering terms to order (o0)%g® or greater, tan § is given by

1

3 1 393 (o)
t = = 14+ = .
an § 8(0) 2 [ ,QPJ

1

g
_ A 3,3 o
tan § 24(00) A [1 + Oo 'Q'PJ

O
]

1 a2, 1o, 3 3)93 4+ 63+
Ok * 0% t 7 (o220 ) ® +2(0 ) *) e} 720( ol

1 2{-36+20+45-30 g
s to ) })JLP

1 11,2 2 2p3 L s n 2% yof1072t
= 5%.% * ot * 2% * 555(602 = o (0,) )Lp of }
...... 4.40.

Equation 4.40 gives the chord to arc correction in terms
of the curvature at the initial terminal of the line.
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Notes: -

1. For the transverse Mercator - spherical case

The use of equations 4.21 and 4.38 in equation 4.40 gives

1 E
§ =3 g [l +o{ ( —J }] Qpcos B+ g%z[l + o{(EJZ}JQ;cos B sin B
3
= é%g E %~£ sin B) Qpcos B + of §§§(=1o'6)}

If(N,,Ei) are the co-ordinates of P, (i=1,2), as
§ ~ 100 sec, the abdve formula can, for most priactical purposes,
be written as follows.

4 cos = N_ - N, = AN : ') i = -
o B 3 5 1 p Sin B 3 E2 El
and
§ = -
6R2( EL+EDIN, - N) Ll 4.41.
R The parametric equatlons of the projected curve can also be
used to give
i. The linear arc to chord correction (& -2 ) by the
relation P
%
.= (n? 4 thH7,

when (Thomas 1952,p.80)

1 2,3 1 1 g 1 2 142 4 5
L =8 = = + + -
P Rc 24(00) Zp Ezﬁooozp * 5760(720000 64(00) 3(Oo) ) Qp
...... 4,42 ;
ii. the normal displacement h of the projected geodesic

from the chord at the general point P(n,t) at a distance S
frem the initial terminal P., as measured along the curve
whose projected length between the terminals Pl(0,0) and
Pz(nl,tl) is QP. A consideration of figure 4.4 shows that

n+ hcos §

tan § = h sin &

r+
]

or
h{cos?6 + sin®8} =t sin § - n cos 6.

The use of equations 4.36 and 4.37, together
with equation 4.40, and the approximations

cos § = 1 - %687 ; sind= ¢ + %}63 '
gives (ibid,p.82)

1 1,2 .2 1 2,03 .3
= (9 - + - + - +
h 2(2p s)oos goo(zp s9)s EZGO(QP s°)s
Lo )3(32252+2s‘*—s£3-4sszp) ...... 4.43.
48 "o P P
For s = %% , in the spherical case of the transverse
Mercator, the maximum separation hm is given by
h =26 22 + 20l8% + olox1077} ...... 4.44.
m 8o p l6op
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The use of equations 4.21 and 4.38 gives

1 Lycos B 1, .. E32
n"- B —9—§7——(El + E-£p51n B) + o{lxﬁr—

3
E 2}

[
1—6?7 (N2 - Nl)(El + E2) + o{zx—Rq- ... 4.45,

For a 100 km line, h_ = 10 metres, the
term neglected having a magnitude approaching 1 cm.

4.5 The set of formulae for computations in plane rectangular co-ordinates

The results obtained in sections 4.2 to 4.4 can be
summarised to obtain the following set of formulae for the computation of
plane rectangular co-ordinates using plane grid bearings 6 and lengths
L, (= R,P + 0{107%2)) . The field observations made at a point P,
whose projection co-ordinates (N13E1> are known, are usually available

in one of two forms.

i. An azimuth o and a length £ of a curve on the reference surface
between P1 and an adjacent point P2, whose projection co-ordinates
(N2,E2) are to be established. The required set of formulae in
this case are as follows. The equation numbers refer to positions
in the preceding text, all relations being for the transverse
Mercator projection.y

- 1 .
c 2 +¢O ..... 3.65,

where ¢o is the latitude of the origin

E 1, .2 Ey2, 1 2 4 ELe
tan ¢f El 1- §(l+tan ¢f)(ﬁl) + 13{2+5tan ¢f+3tan ¢f)f§1)

‘Y =
. 3.64.
B=o - Y
N.= N+ fLecosB + o{sx10™%}
2 1
E.= E + 2sinB + o{axi0 %}
2 1
) [= 5+ 0{10_82]} =g |1+ =—(E2 + E.E + E2) ..4.26.
c P GR2\"1 172 2
1 E3g
= —_— - 3 cecees .41,
$ arz Ny~ Np) (2B + Ep) + ol ) 4
8 =8-26 4.3,
N2 = Nl + lccosrﬁ ; E2 = E1 + 2051n B ... 4.6.
ii. The second form in which the field data may be available

is encountered in the represéntation of orientation in the 19ca1

horizon. The alternative is a reverse grid bearing Br and
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a measured horizontal angle B instead of the azimuth o. A

study of figure 4.5 shows that

8 6 + B

# r
even though the projection is conformal as the straight on the
projection plane has no direct relation to the reference surface.
The angle between the tangents to the projected geodesics

however, is true on a conformal projection. Hence,

8 =6 +686 +B~8§  L..... 4.46,
r r

where 5r is the chord to arc correction for the line P Note

P .
lx
that the chord to arc corrections at the two ends of a line are
not equal in the case of the transverse Mercator projection as

the significnace of equation 4.41 is strictly algebraic.

4.6 Computation of projection co-ordinates from the grid bearing of
the projected geodesic and 'tne measured length

It is also possible to obtain the transverse Mercator (TM) grid
co-ordinates of the point Pl(Nl,El) from those of P2(N2,E2) and the set
of observed quantities which could either be of the form

a. L, a
or else

b. 2, B, B,
all quantities having the same significance as in the previous section, Br
being the reverse grid bearing of a projected geodesic used as a reference
direction from which the angle B has been measured to P1 from P2.
Case a can be made identical with case b by the use of equations 3.64
and 4.3 in the case when the grid meridian is made tangential to the
reference geodesic and

B =B .

Thus, for a sequential distribution of points Pi’ it is common
for observed data to be in couplets of the form (B,%) and hence it is
necessary not only to compute the grid co-ordinates of the fore point P,
but also a reverse grid bearing (821) for the projected geodesic at F,.

On the ™ which is a conformal projection,

812 = Br + B e 4.47,

which is less complex than equation &.46, though not by much. The problem

can therefors be sumarised as follows.

Given :~ Nl’ El’ L, (Br.B) or 812 ;

Determine :- .AN(hence Nz), AE (hence E2), 821-

From equations 4.3, 4.6, 4.26 and 4.41,
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AN = lccos e ; 8 = B -8
Thus
Ny - Ny = (B + d2)cos(B-8) =(2 + d) (cos B cos § + sin B sin §)
where

2
4 = 6—RT[E%+ E.E, +E§)'

-3 - -
As &8 = 5x10 7; d2 = 10 3 and d@xd = 5x10 75L, on ignoring terms
smaller than 10°°

=z
1
=
]

(2+ dQ)(cos B + § sin B)

Lcos B + d cos B+ 6 2 gin B +o{5X1o_%G

E3 + E\E,+ E2 2E, + E,
&R? T TTeR?

% cos Bil + £ sin BJ,

as
N2 - Nl = { cos B
with sufficient precision in small order terms. A slightly simpler formula
may be obtained by making the substitution
E, = E, - £ sin B
in these small order terms, when

1 . 2 .
N2 - Nl = { cos B[ 1+ gﬁy((ﬁz- L sin B) +(E2— £sin B)E2 + E; +
{2(E,- 2 sin B) + E }L sin 8)
= % cos 3[1 + 2%2(353 - 3E,2 sin B + #2sin’8 + 3E.% sin B
- 2225in28)J.
Thus
E; 1 2 2
N2 - N1 = % cos S{l * 3R? T @RT 2°sin“B ] ...... 4.49.
Similarly,

E.-E = QC sin B = (£+dR) sin(B-8) = (L+dQ) (sin B -8 cos B +o{10_8})

% sin B + d2 sin B - § & cos B

L cos B

. 2 sin Br.2 2 _
=% sin B+ Tmr—(E] + EJE, + E5)- Tmpr— (N,- N (2B;+ E).
As
. el -3
£ sinB = E, -E + o{#x10 "}
and
£ cos B = N, - N + o{£X1o’3},
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_ - : 1 2 2 2 2
E2 El % sin B + Wwe (E1+ E1E1+ E2) (E2— El)— L4cos B(2E1+ E2)

Effecting the substitution

E,= E +2sing rol1073e},

the above equation becomes

_ - . i 3 3 2 2 .
E, El-—251n8+€§7[52— El-lcosB(3El+9,sz.nB))
g2- g} E,g%cos?B
= % sin B + 46R41 - 12R‘ - é%zlssin B cos?B

ceee 4.50.

Let 612 and § 21 be the chord to arc corrections at P1 and
P2, as illustrated in figure 4.5. Then

By, =0 + &, = 8
and
821 =7 + 0 + 621,
where
_1 . . _ X cos B
812 = GreNym NP QRE+ Ep) = —gr— 2B+ E)
and
S R cos B
(321 = 6R2(Nl Nz) (2E2+ El) =~ TeRZ (2E2+ El).
Note: - 612 and 521 are of opposite sign, as illustrated

correctly in figure 4.5, in the numerical sense, but the above

equations are consistent with the fundamental algebraic definitions.

Therefore,

6 = By, - O, = By - TS5
Byy = By v M H Sy =8
N 2 cos B
= B, T~ -—Tﬁif—-(El+ E2) ..... 4.51.

Thus the required sequence of computations is

E,= E, + &sin B8+ {10738}
2

) E3- E3  g,4%cos B 15, )

E2 = El + % sin B+ eRZ - TR - -6—Rzz sin B cos“B .
...... 4.52
- EZ 1,3 .2

N2 = Nl + % cos B + 2R2’Q’ cos B - 6R22' cos B sin“R .

_ % cos B

Byp = By v T SRz (Eg*+ B
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Notes :-

1. The two groups of formulae set out in sections 4.5 and
4.6 are only marginally different as regards convenience for
hand computations and can bz applied to the ellipsoid provided
R? is replaced by the local mean radius of curvature in the
normal section, as developed in appendix f.

2. The formulae developed in section 4.5 are in common
usage currently as the plane grid bearings € and the plane
distance L. are quantities used directly in plane computations.

3. The central scale factor k, is applied to the equations
in sections 4.5 and 4.6 on the basis that its usage is equivalent
to computing on a sphere of radius k R , as discussed in section
3.6.3.1. This requires that all measured distances £ are scaled
down to ko, resulting in a uniform reduction in length of 4 parts
in ten thousand. This consequently reduces all co~ordinates
(E,N) to (kgE,kgN). Hence when computing ratios of the type
(E/R, AN/R), where the projection co-ordinates are based on a
central scale factor, the corresponding terms in the expression
become

E AN .

kR ’ KR -
o o'
It follows that when the central scale factor k _1g used,

the equations in section 4.5 become o

]

N
d)f = T(;ﬁ + ¢O ..... 4.53.

E, ( 1 2 Eyve 1 2 y Ey
Y = tan ¢f " 1 - 5(1+tan ¢f)£E;ﬁ9 + E§(2+51an ¢f+3tan ¢B(koR

kR |
4.54.
B= o- Yy i 4.3.
N - N. = AN =k £ cos B + O{QX10~4} ..... 4,55,
2 1 o)
E-E. =AE =k % sin 6+ olox10™} ..., 4.56.
2 1 e}
_ 1 2, g 2
8= k2L + G35 (E2+ EjE+ Ez)] ...... 4.57.
‘5 = ——%—T(ZE + E YN ~-NHY el 4.58.
6kOR 1 2 2 1
6 = B ~- & . 4.1.
AN = % cos O ; AE = £ sin 6 ..... 4.6.
c c

The co-ordinates (E,N) in equations 4.53 to 4.58 refer to
the transverse Mercator projection where the central scale factor
k ° has been applied.

«

similar expressions can be deduced for the equations at
4.52.
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5.  THE CONFORMAL MAPPING OF A SURFACE ONTO A PLANE
5.1 Tne ellipsoid of revolution as a reference surface

The development in sections 1 to 5 is based on a spherical
reference surface. The reference figure which best fits the geoid
is an ellipsoid of revolution, the current estimates of whose

parameters are

6,378,160 metres

-1 298.25 e 5.1,

a
f

where a is the equatorial radius and f the flattening, as described in
appendix a.

The magnitude of the. deviations of the geoid from a sphere
of best fit are of the order of f(i.e., 3x107>) and hence all previous
formulae would only be correct to this order of accuracy. It should
be borne in mind however, that in all cases, relative angular displace-
ments between identical points on both the ellipsoid and the equivalent
sphere are in agreement to a much higher order of accuracy. In the
case of surface displacements of geodetic magnitude (i.e., less than
100 km), these are smaller than 100, The discrepancies in co-ordinates
arise in the conversion of measured distances to angular displacements.
In several cases, adequate formulae may be obtained by replacing the
spherical radius R by the appropriate radius of curvature on the
ellipsoid as given in appendix d. The comparisons will be drawn
at the appropriate points in the subsequent development.

Angular observations on the ellipsoid are made in planes
containing the local ellipsoid normal. Further, all electro-magnetic
distance measurement (EDM) is also reduced in the normal section.

Thus ellipsoidal curvatures in the normal section are of importance.

The set of curvilinear surface co-ordinates (¢,A) have parametric curves
with relatively simple geometry. The rotation axis is normal to all
parallels which are circles, the equator having a radius a. The
meridians, as shown in appendix a , are orthogonal ellipses.

The perspective projection of the ellipsoid can be effected
without difficulty as in the spherical case, once the nature of its
geometry has been allowed for. The quasi perspective conical projections
could be said to have some geometrical significance in the ellipsoidal
case, too, but are best treated as a consistent set of mathematical

rules.
Consider the following example.
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Projections on a tangent cone - equidistant case

Refer section 3.2.1.

Rule 1. The scale is true along the standard parallel of
co-latitude 0,. As the radius of the parallel of co-latitude ©
on the ellipsoid is V sin 6, it follows that

rk = i
L v051n 60 ..... 5.2,

where V has the same significance as in section 1l.1l.

Rule 2. All parallels are concentric circular arcs,
the standard parallel plotting as one of radius r,, given by

r = Vv tan 6 .
o o o
Hence
k =cos 6 .
c o
Rule 3. All other parallels are circular arcs of radii
r, given by
§]
r=vtane—Iopde ..... 5.3,
o a
0
where
eo
o db
46-

is the meridian distance on the ellipsoid between the parallel
of co-latitude 6 and the standard parallel.

Such concepts are not complex in some of the direct cases
but cause problems in oblique and transverse cases. These difficulties
can be surmounted in the case of conformal projections by utilising the
fact that the scale at a point is independent of the orientation of
the element considered. In concept, the reference surface is mapped,
element by element, onto the projection plane, using this condition,

the process being known as conformal mapping.
5.2 The Caucnhy Riemann equations for conformal mapping

It is required to map the w system of points P comprising
the reference surface, illustrated in figure 5.1, onto the projection
plane where they will be represented by the z system of points P¥.

Let the position of points on the reference surface which is assumed to
to continuous and non-singular (e.g., Jeffreys & Jeffreys 1962 ,p.355),
be defined by two surface parameters (ul,uz), similar in concept
though not equal to the (¢,A) system on the ellipsoid. In the
subsequent development, it is assumed that the (ul,ué) system is an
isometric one, as described in section 3.5.3.1. The general point

P on the reference surface will be uniquely represented by the
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W,/ RUTAL LFAL,)

P (W,u,)

Reference Surface Projection Plane
(w System) (z System)

FI1G.(5-1)

The elements for conformal mapping.

tangent to A%
Meridian 7
#*
R
AU
R
Au, P
Projected Grgj‘f:;;d
Meridian ¢
P tonggnt
Reference Surface
p* Xy

Project ion. Plane
F1G.(5-2)

Convergence on conformal projections.
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complex number

where
v (-1)

z
and (u 109 2) are a set of swface co-ordinates on the reference system
which are isametric. Let w be a single valued function in that any
specified pair of values for u, and U,, within prescribed limits, defines
a unique point P on the reference surface. Let the peint P be represented
on the projection plane by P*, the latter being defined by the
camplex number

2= X, ko Ix. 5.5,

where (x),x ) are the plane rectangular co-ordinates of P* on the
projection plane.  This representation is called the Argand diagram in
pure mathematics (e.g., ibid,p.337 et seq), where it is primarily used

for the illustration of the basic’ concepts of complex numbers. The
essence of the above equations is that position on analytic two dimensional
frames can be uniquely represented by a single complex number, in that

two real numbers equivalent to the two surface co-ordinates, comprise

the complex number. These complex numbers satisfy the general rules

of algebra and calculus, provided the relevant functions are continuous.

Let the set of points P (ul,ua) on the reference surface
be mapped onto the set of points P* (xl',xz) by the mapping equation

flw) e 5.6.

N
L}

or

X, + X

1 5 f(ul+ ’LUZ)

If the real and imaginary parts of the expression on the
right of the equality at 5.6 are separated and equated with equivalent
parts on the left, two relations of the form

= i=1,2 = ... .7
xi xi(ul,uz) , 1=1,2 S

will result. If the mapping function f£(w) is analytic, i.e., it is
continuous and its derivatives exist,

= f'(w) 5.8.

ala
€N

Consider the point Q(ui+Aui,i=l,2), adjacent to P on the
reference surface, and which maps as the point Q*(xi+Axi,i=l,2). The
vectors PQ and P*Q* represent changes Aw in w and Az in z respectively.
Thus

' = Lim bz _ dz
f(w)-—l&gow ™
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From equation 5.7, changes Ax; in x,(i=1,2), due to
changes A”i in ug (i=1,2) are given by

A i) I f I
X, = u; + u, = u , i=1,2.
i E)ul 1 ’c)u2 2 e 3uk k’
Further,
2 ( ox d
= —1  —2 ;
bz 1| 3g By + 75 Aui ] ...... 5.10.
i=1 i i

Similarly, the consideration of equation 5.4 gives

A = AuJL + 7 Au2 ...... 5.11.
Thus ,
X 9Xx X ox
1 s 0%y 1 . 2
- To9g /A =5 /A
frw) = Lim ( U, " “1) b * (5“2 T 3”2) )
Buy , bu_>0 Aup + % A,

If the projection is conformal, the value of f£'(w) at P
must be independent of the the orientation of the element PQ on the
reference surface. When Aul £ 0,

ax 3 3% ax_ . AU
1 » 2 1 . 2
e t o, v )

Ay
l+7:KGi

£fr{w) = A Lim
ul,Au2->0

Evaluation in the limit when Au 5 7 0, gives

X ., 9%,
f'(w) = N + 1 -5‘-:1 ...... 5.12.
1

Similarly, when Au 2 £0,

E)x1 . 0%,y Au, 3%, . 3X,
, (o, * ¢ 30 ), * 6, * o,
f'(w) = L im Jm
buy, Bu,0 —l 4+ 7

Au,
Evaluation in the limit when Au 17 0 gives

£' (w) = -—LW: togm e 5.13.

For a conformal projection, f'(w) must have the same



82
value through both equations 5.11 and 5.12, as it is independent of
the combination of values taken by Buy and Bu,. Thus

The equation of real and imaginary parts gives

X, 9%, ox

Bxl
W, T 3y, i Ju

- mz ...... 5.14.

These relations are called the Cauchy Riemann equations

- for conformal mapping.

Notes:-

1. The reverse case is also true. The derivation of equation
5.14 was a general one, as no specific properties were implied for
either the (u,,u,) system.or the (xl,xz) system, except that of
isometry and that the surface to be mapped was continuous and
non-singular.

The projection plane can therefore be mapped onto the
ellipsoid (the reverse case) by the following equations, using
the same developments as before.

w = £(2)
...... 5.15a;

£'(2)

—2 = = =1 5.15b.

5.3 Tne point scale factor in conformal mapping

Consider the two adjacent points P(u,,u,) and Q(u +Au,,
u,+Au,) on the surface to be mapped in figure 5.1, and the equivalent
points P%(x,,x,) and Q*(x,*+Ax, ,x,+Ax,) on conformal projection onto the
plane. The positional displacement can be represented by the vector
Aw while the equivalent change on the projection plane is the vector
Az. Each vector can be represented by its modulus and direction
(e.g., Jeffreys & Jeffreys 1962,p.63). As elemental changes are
conformally mapped without change of orientation, the modulus dg on
the surface is mapped into the modulus dzp on the projection plane.

If the parametric curves

ui =-constant , i=1,2

form an orthogonal isometric system on the surface,
de_ = ((Ax)? + (Ax )2)%
P 1 2

and

-
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df = m((Aul)2 + (Auz)z)l’ ...... 5.17,

where m is the linearisation factor for converting the curvilinear

co-ordinates u, and u, to their linear eguivalents. From section

1.3.3, the point scale factor k is given by

d& Ax A 1
k = L [ [(AX1)2 + (hy2)° . ]
d—fp Aul,Aum+O m{ (Bup)® + (Dup)2) 3

If the mapping equation is given by equations 5.6 and 5.7,

( 9xj 9% 4 2 9x,
Ax, = Lim =" Au +.1Au}= Lim[ lAu]':J,z
1 A\11,Au2->0 { oup 1 —552 2 Aul,Au2—>0 jzl Tu—j i i
...... 5.19.
Thus
%, 2 3%, 2) Ox, ¥x,  9x, 3x,
Ax 0%y X2 2 Xy o 2
1£ ( ) [(Bul) * (Bul) J(Aul) + z[aul 'auz Qdu, ou JAU Au
.. 2 3%, 2 22 9x 9x. ox
(1) "+ (== }(Au)2= {-—J’Z(Au)2+ J JAuAU}
(G eyt §T (GE@teyt wlw)

If Au 1 # 0, divide both: numerator and denominator of

equation 5.18 by Auy when

§ ( 2 8x. 9X. Au2 L
21 8u1 3u2} Aul EBu1 3u2 Au
k = N L z'} m A= 5 ”
u, Au_>0 u,.\2
1 2 m [ 1+ (Ei)}

As k is a function of position only and not of orientation in
conformal mapping, the value of k is independent of those assigned to

the increments Au, in u; and Au, in u It is therefore possible

1 2 2°
to select a convenient set of values for u. and u, which will provide

a unique evaluation of k at the point in qu;stion. : Selecting Aul £0
and Au 5 = 0,

Au 2/Au 1
Thus

ax dx c
1 2 2

The use of the Cauchy Riemann conditions from equation 5.1

gives



X, .2 X, . 2 ax ax %
k = ;:,L; (a—ui) + (-332) = %{(3—52)2 (mi ZJ 5.21
Notes: -
1. The second equality could also have been obtained from
equation 5.20 by selecting the set of values
Au2 # 0 ; Aul =0

for the evaluation of k.

2. The linearisation factor m

It should be noted that u, and u_, which constitute an
isometric system of curvilinear Surface co-~ordinates , have been
converted to their linear equivalents by the use of the
linearisation factor m, which is a constant at a given point,
but is a function of position. In the case of an ellipsoidal
reference surface, the element of length df equivalent to changes
di,dd in the surface co-ordinates is given in appendix ¢ as

d22 =  vZcos?d drZ. + p2de®  ...... 5.22

where the (A,$) system of surface co-ordinates is not an isometric
one, as discussed in section 3.5.3.171. The required isometric
system of surface co-ordinates is afforded by the parameters
(X,uz), where

_ P
du2 = v S5 0 de L. 5.23.

Thus

d2 = Veos @M% dugfi

which is of the form

m( dui + duz}%

2
given in equation 5.17. The linearisation factor for the (X,uz)
system is given by
m = veos ¢  eeeee. 5.24
and is a position dependent function. The parameter uz, given by
= | —L2—d 5.25
u2 J\)cos S o e .25,

is called the isometric latitude.
3. The Jacobian functional determinant

A convenient means of representing the alternate possibilities
in equation 5.21, which are

5 Xou2 AXqn 2 X s 2
G &) - ) ) S

is afforded by the use of the determinant
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3x1 sz
Bu 3u
8(x1,x2) E J[xl'xz] ) 1 .
8(u1,u2) ul’u2 BXI axz ceeeDe [
B u,

also called the Jacobian (e.g., Jeffreys & Jeffreys 1962,p.183)
or the Jacobian functional determinant (e.g., Thomas 1952,p.21)
and represented by either of the notations at the left of
equation 5.27. The application of the Cauchy Riemann conditions
to the right hand side give both terms in the equality numbered
5.26. Thus

el
1 )(1,)(2
k= = J[————— ceeeen 5.28.
m u,,u,
4. Equation 5.28 is of significance in the definition of the

point scale factor only if expressions are available for the

projection co-ordinates (x%;, i=1,2) in terms of the surface co-ordinates
(uj,i=1,2) through equations of the type at 5.7. If, on the other
hand, the reverse relations were available for the definition of

the surface parameters in tetms of the projection co-ordinates, by
equations of the type

X,) o, i=1,2 ceeaen 5.29,

the point scale factor can be expressed through the following
equations obtained on the same principles as used in the derivation
of equations 5.19 to 5.21.

Using the same co-ordinate increments as before,

=
Au, = == Ax , i=1,2
i 521 3xj 3
2 2 2 Ju ou
(hu,)? = [ ~—X}7 ax? + k K Ax, Ax J .
izl X 321 k-Z: (axj) oxy 9x, 1 TR
If Axl # 0,
2 ¢ du ou. o Ax du. du. Ax
(@7 + G @ 2 e 50 )
1 L k=1\ %1 X X Xy 9%y BXy
= =m i m
k ,Ax >0 Ax_ 2
12 ' 1+ (3;2)

As k-1l is independent of the values assigned to the set
(Axl,sz) on a conformal projection, evaluation for the specific
case

gives Ax2 =0 ; Axl #0

e [ LG e (G e

The use of the Cauchy Riemann conditions for the inverse
case, given in equation 5.16, provides the final form for k as
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1 au1 2 au2 2)% du, . au 235 Uy sl c
be o[ 67 <ol G - el
...... 5

5. Conclusion

Given expressions for either the projection ceo-ordinegt s
in terms of the surface co-ordinates or vice versa, it 1& poszible
to derive expressions for the poirnt scale factor k by partial
differentiation and manipulation of the results. This is of
considerable significance in deriving formulae for point-to-
point computations on the ellipsoid, as a knowledge of the
expression for K enables the curvature of the projected geodesic
to be computed by the use of equation 4.21. This, in turn,
provides expressions for all related quantities through the
equations set out in sections 4.4 to 4.6.

5.4 Convergence on conformal projections

Consider the general case of the geodesic P{P§ on a
conformal projection and let its grid bearing at Pf be B.  Let the
plane bearing of the chord P¥P§ be 6.  Elementary trigonometry gives

tan 8 = —' L. 5.31,

where ,

Let the corresponding changes in the parameters on the

reference surface be Au,(i=1,2), where

Au = U - u i=1,2 ... 5.33.

i i2 i1’
If o is the angle between the geodesic and the parametric

curve

u, = constant
at Pl and if the parametric curves on the reference surface form an
orthogonal system,

u
tan o = Lim Ay L 5.34
Au],Au2+O Au,

As the projecticn co-ordinates are related to the surface parameters
by equation 5.6,
) N 5.6
the quantities in equation 5.32 are related to those in equation 5.33

by the equation

oX. X .
= — i=
AXi au Aul AT AUZ"l 1.2

1 2
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Thus,
f Eil Au
tan 6 (siBl) Lim l‘:-]:i(—k— .
Aul'Au2+o f g;g Auk
k=1 k

If Au2 # 0, the use of equation 5.34 gives

9%y Au,y + 3%, 9%, 9%y
du, Au, u, u, Mt G,
tan 6 = gx—mg——F9x, =
an _52 _EJ + —52 Eﬁz oo o Ei? as Aul, AUZ* 0.
ou, Au, Au, ou, du,
Note:~
If Au2 =0 and Aul # 0, o =T or %’ﬂ
In this case
(axl/aul}
tan 6 = L i Mmoo 5.35.
Aul“*o ( xz/aul]
When a = 0, 6 =2m -y and
(axl/auz)
tan (27-Yy) = —x————
(ax2/8u2}
or
(axl/Buz)
tan Y = - m ...... 5.36.
2

Alternately, as the projection is conformal, the use of

the Cauchy Riemann equations gives
9%

( 2/8u1)

tan Y = m—————
( Xl/Bul)

Equation 5.37 can also be obtained directly from equation
5.35, as the angle between the prime vertical and the grid meridian is

mo- Y.

Notes: -

1. Equations 5.36 and 5.37 are convenient expressions for the
evaluation of the convergence from surface co-ordinates. Relations
for the reverse case can be obtained either as shown in section
1.3.2 or by the use of the partial derivatives of the equations

at 5.29 in equation 5.34 when

2 BU.

Au, = Lim —1 Ax, , i=1,2.
i Axl'AXZ_*O kzl 3xk k't

It A, # 0,



du; Ax;  du, ou, du,
5;1 Z;; ¥ 5;; 5§;tan o+ X,
tan O = Lim =
Ax. , Ax..+0 312 éil au, ou, ou4
R 3%, Bx, T Ox,) 3x,an 0+
When o =0, 8 =2m - v, whence
3
(*1/3x,) (*41/0x)
tan(2m-Y) = - —m————— or tan Y = ..5.38.
(*1/9x) (5“1/axl)

The use of the Cauchy Riemann equations as set out at 5.16, gives an
alternate expression for tan Y as

(auz/axl)
)
(M2/0x,)

It should be noted that the use of the Cauchy Riemann conditions
makes other expressions possible.

tan Y = - cee s 5.39.

2. The relation between scale factor and convergence

Convenient expressions relating the point scale factor to
the convergence are also of interest in the study of those conformal
projections with limited variations in one of the surface
parameters u_( and hence X, ). In these cases, the expressions
at 5.6 and 5729 are rapidly converging power series in either Aul
or X; and consequently, the partial derivatives

Bx1 sz aul du,
3, ' and X, Ox
1 1 1 1
are easy to evaluate. Tan Y can be defined in terms of these

derivatives only through either equation 5.37 or by the relation

(SUZ/axl) 5.40
tan vy = - m ...... . ’
1)

which is obtained by the use of the Cauchy Riemann conditions
and equation 5.39. The combination of equations 5.37 and 5.21
gives

3%, 2.k
3, (1 + tan?y)* L.l 5.41.

similarly, equations 5.30 and 5.40 give

1 Yy 2.4
= = —— é ceesce 5.42,
K m X, (1 + tan Y}

5.5 Conclusion and summary

If position on the reference surface is defined by an
orthogonal isometric system of parameters (uj,u,), the surface can be
conformally mapped onto the (xl,xz) projection plane by the use of
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the mapping equation

Xp + 1 X, = f(ul+ 7 u2) ...... 5.6.

The equation of real and imaginary parts of this equation
give the required expressions for projection co-ordinates in terms
of surface parameters, in the form

Xi = xi(ul,uz) ...... 5.7.

Direct partiel differentiation of the equations at 5.7, give
expressions for tan vy through equation 5.37, and hence for k through

equation 5.4l.

Similar equations can also be defined for the mapping of
the projection plane onto the ellipsoid, and called the reverse case.
The formulae necessary for the sequential calculations which arise in
the case of the establishment of a gecdetic network, are obtained by the
use of equations 4.20, 4.0 and 4.25 which are all capable of

casion for k has been defined.

evaluation once the exp
Three distinct cases can be outlined in practice.

Case 1. The conversion of surface co-ordinates (ul,uz) to

projection co-ordinates (xz, x2) .

The required equations are
a. the mapping equations
X, + 1%, = f(u+ Zu
17 2 (uy 2)
and hence

b. X, = xi(ul,uz), i=1,2.

The sorting of terms after partial differentiation gives

. 3
-1 (axz/aul} 21 (xl/au2 ) » )
Y = tan Pt Yoty = tan ©pmeee——— 1 = YU, U
[3xl/aul) (axz/auz ) 1’72
and
1 a«‘il 2 3
d k = = ”55, (1 + tan 'Y) = k(Ul,UZ) ----- 5.41

Case 2. Comversion of projection co-ordimates (.rl,xz) to
surface co-vedinates (14_!,u2)
The required equations for the reverse case are
a. the mapping equation

u, + iy, = f(xl+ zxz)

and hence
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b. ui = ui(xl'xz)’ i=1,2,

Partial differentiation of the above equations, gives

C. Y = tan - ——— = Y(xl,xz) ...... 5.40

or any other convenient version which can be obtained by the

use of the Cauchy Riemann conditions;

and
ou ~1
S T R 2., Y% _
d. k= = Bxl(l + tan?y ) J = kix ;X)) ... 5.42.
Case 3.  Point-to-point computations :-
Given Pl(le,le),ﬂ,and 8 to determine Ly Ty and hence
PZ(x12,m22)

The curvature of the projected geodesic O can be obtained from

equation 5.42 through equation 4.20 as

0 = %—(EE cos B - géz sin B) = {

3%, 1,B,l)..4.20,

X117%

where B is obtained from the measured azimuth O through equation
4.3 as

The length Qp of the projected geodesic is obtained by the

use of equation 4.25 as
19 2, 12 2 1,2 3
= = h - ceoe 4.24
2 k &+ Sklk 2%+ 6[ko(ko) (k)) ko)JL + .24,
where the expressions for k and its derivatives are evaluated
at Pl' Thus

Rp = Qp(xll,le,ﬁ,l);

The chord to arc correction § is given by equation 4.40 as

1 1 1,2 2,3
= =0 =0 -0 cee = X..,B8,2) .. 4.40;
8 =08, Tk * 2% Y 8y g r%5p B0

the final equations giving the co-ordinates at Ei
being numbers 4.4 and 4.6, which are

= i=1,2 eeen.- 4.3
Xi2 Xjp * By L ’

where
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Axl = Q,C cos § ; Mx, = R,Csin 6 ...4.6,

8 and L. being given by

8= B -6 and % =2 +o{107%).
c P

Notes: -

1.  Initialisation or definition of the mapping equation

The mapping equation is merely the set of rules to be used
in effecting the representation of the reference surface on the
projection plane. For example, in the case of the Mercator
projection of the ellipsoid, the equator plots as a straight line,
true to scale. Hence

a. u, =0 when ' X, =0

and

where A is the difference in longitude from the reference meridian
which plots as a straight line whose eqguation is

x1=0.

Hence

3 + zxz = f(ul+ tuz) = a(A + zuz).

The equation of real and imaginary parts, together with the use of
equation 5.25, gives

x, = a i

and ceeae 5.43.

¢ P
2 2 aJO\)cosd)dd)

X
[}
»
=
il

The integration of the second equation at 5.43 gives

_ ¢ (1-e?) do B ¢d¢ -e cos¢_§_e cos ¢

X, =@ o (1-~efsinf¢jcos & 2 1-e sin¢ 2 1+ sin ¢
(3,44}
1 } T  ¢yrl-e sin ¢
= g - e ... 5.44.
cos ¢ ] @ log[tan(4 * 2) (1+e sin ¢ }
Thus u, for an ellipsoid, is given by the
equation
e sin
= ¥ ceoeas 5.45
Y2 log (tal( )(l+e sin ¢ ) ]

As ax2/3‘11 = 0, the use of the procedures outlined above will
give )

=0, k=L, = -2 5.45.
Y 0 ma V cos ¢

The mapping functions for other projections are more complex.
The projection of most interest is the ellipsoidal version of the
transverse Mercator. The relevant formulae are derived in
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section 6.
6. THE TRANSVERSE MERCATOR PROJECTION OF THE ELLIPSOID IN ZONES

6.1 Introduction

The basic characteristics of the transverse Mercator
projection have already been dealt with in sections 3.6 and 4.
This projection has been adopted for affording a consistent global coverage
" using six degree zones about a central meridian in what is titled
the Universal Transverse Mercator (UIM) system of co-ordinates, and
described in section 3.6.3.3. Such a reference frame incorporates a
central scale factor which deviates from unity by half the maximum
scale error on an equivalent transverse Mercator projection.
Congequently, the purely positive scale errors on the latter, with
a maximum scale error = 10_3, are converted to both positive and
negative errors with a maximum magnitude of 5><10_u , on the former.
The reduction in the magnitude of the scale errors so achieved makes

the projection suitable for large scale cadastral work.

The transverse Mercator projection was strictly the
transverse case of the Mercator projection in the spherical case.
The conformal condition was introduced by varying the east co-ordinate
distance, which is measured along the great circle orthogonal to the
central meridian, as described in section 3.6. An exact "transverse
case" of the Mercator projection is not possible on the ellipsoid.
In fact, the meridians and parallels form the only geodesic isometric
system of parametric curves on the ellipsoid (Thomas 1952,p.69).

It is possible to derive expressions for the projection
of an ellipsoid by appropriate amendment of the cylindrical
equidistant projection (Cassini-Soldner) where the great circle,
orthogonal to the central meridian, and constituting the east axis on
the projection plane in the spherical case, is replaced by the
equivalent geodesic on the projection (Jordan-Eggert 1962, vol 111
second half,section 27). The resulting projection can be made
conformal by adopting the technique used in section 3.6.3. The
end product is slightly different from that obtained by the use of
the technique outlined in section 5.4. The system of co-ordinates
obtained by the latter technique are also known as Gauss-Kruger
co-ordinates (ibid, section 32).

Two cases will be considered.

a. Mapping the ellipsoid onto the projection plane

In this case, the geographical co-ordinates of
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the general point P(d,M), where AA is the difference in longitude
from the central meridian, positive if P is east of it, are defined,
along with the latitude ¢o of the origin P_- It is required to
find (xl,sz) at P through the intermediate isometric ellipsoidal

parameters (AA,uz), where U_ is the isometric latitude, given by

2
¢ P
u, = —— dé ... .25.
2 J Vv cos ¢ dé 5.25
0
b. The conversion of transverse Mercator co-ordinates

to ellipsoidal co-ordinates

This problem requires the determination of (¢,AX,Y) in terms
of the defined projection co-ordinates (Xl,XZ), using the

intermediate isometric parameters (Ak,uz).

A third problem is déscribed as case 3 in section 5.h4.

6.2 Conversion of ellipsoidal co-ordinates to projection co-ordinates

Problem:-

Stated as case a in section 6.1.

Given (AX,$) at the general point P on an ellipsoid, and the origin
PO(0,¢O) on the central meridian;

required to find the TM projection co-ordinates (X ,X,) = (E,N)

of the equivalent point P* on the projection plane, as shown in
figure 6.1, and the convergence Y in terms of the geographical

co-ordinates.

The general mapping equation is

x, *ix, = f(ul+ ¢u2)
where u, = AX and u, is the isometric
latitude, given by equation 5.25. The characteristic properties

of the transverse Mercator projection are

a. the central meridian plots as the straight line X, = 0;
Thus, when u; = AN = 0,
(5¢6)
X, = 0 and X, = f(1u2)
and b. the central meridian plots true to scale.
¢
Hence when x. =0, X =J pdd ...... 6.1.
. 1 2
¢o

The right hand side of equation 5.6 can be expanded as a
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Taylor series, f(ul+ iuz) being an analytic function whose derivatives

exist.  Such an expansion is a power series in AX and is

convergent as
Ax 3} 3°(=5x1072)
In such a case,

5

xl + Lx2 = £{AN + ’i,uz) = f(7/u2) + Z

w4t
i=1 i d(iuz)

o{107%% ... 6.2,

fu_y) 4
i( f(1u2;/ +

As f(iu2) is the value of f(ul+ iuz) when u;= 0, i.e., on

the central meridian, it follows from b above that

¢
f(1u2> = x, = 1 J Op d¢ .... 6.3.

From equation 5.25,

d , 3 , dp =~ du,
d@u) (f(“"z)) = 8¢[f<w2)]du2 d@u.)
= 1ip \)'cgs % =V cos ¢ 6.4

From equation 18 in appendix c,

d? . : 9 , d¢ , du _ . 4+, Vcosd .1
d(iuz)z&(ﬂuz)) = gaiV cos ) du, E??ﬁ;} = - Q0 sin ¢ 5 '3
= iVcos $sind ... 6.5.
Further differentiation in a similar manner gives
d? . . 9 . v cos ¢ 1
W(f(’buz)) = 7 73‘5(\) cos ¢ sin ¢) 0 5
2 2,y V cos ¢ 2,V 2
= (—p sin“d + vV cos d)] Y cos qb(p - tan d))\) cos ¢

As the derivative of V/p with respect to ¢ is given by equation 30 in

appendix e as

CIAY N ~ -1} ... 6.7,
g = - 2 van o=~ 1)
d* - AV 2 sgV-cos ¢ 1
m—z—)"; (f(’luz)) "8*5\(9 - tan“9y Vcos (b} ) 7
= Y cgs ¢ ¥ - tan’¢) (ZCos ¢{-sin ¢p)v cos ¢ - p sin ¢ COSZdJ} +

+ Vv cos3¢(—2tan (b(-:)—) - 1) - 2 tan ¢ sec2¢>} ]

Y
i Ycos ¢ c%s p cos?¢ sin ¢ (2% + 1) (ﬁ - tan?9) + 2%(—‘) - 1+l+tan2¢)]

iV cos’®d sin ¢% - tan®¢+ 4%}2 ) 6.8,
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5

. d . .
In computing m(f(w 2)) , it should be borme in mind that
2

(A)8/51 = 1077, Also,

v 1 - e%sin?® 1 -e? 4+ e?(1l - sin®
re Y- iptmetoloe s 0o snh ) e cos’
=1+ ofex10”%) R 6.9.
Thus,
ds (£(u.)) = 4 'é‘b’ 3 o 2 2 }v cos ¢ 1
ET?E;TF 5 = 5% cos sin ¢(r - tan“9 + 4r°) 5 7
\Y
= __E%?ilﬁ (r - tan2¢ + 4r2)(—p sin ¢ cosz¢ sin ¢ -

V cos ¢ sin ¢(2cos ¢ sin )+ V cos®d cos ¢]+ v cos’d sin ¢ x

(—2tan $(r - 1)~ 2tan’ ¢ sec2¢ + 8r{-2tan ¢(r - l)}))

The above expression is simplified by grouping the factor p cos*¢
and replacing sec? by (1l+tan® ), when
45

d(Zu )5(f(iu2)]= - coss¢[(r - tan®¢ + 4r2)(tan2¢ + 2r tan2¢ - r)+
2

r tan®¢{(r - 1) (2 + 16r) + 2 + 2tan2¢]]

= -V cos5¢[tan“¢(-1 +r(2 - 2)) + tan?o{r(1+)+

r2 (2+44-16+2) + r3(+8+16)) - r’- 4r3J

=\)coss¢ [tan“¢ - tan2¢(2r—8r2+24r3) +r2 o+ 4r3J

Note :-
The above forms can be reduced to any of the common expressions
(e.g., those given by Jordan-Eggert and/or Clark) by making
the appropriate substitutions, bearing in mind that
2

r = % =1+ o{exlo_a} =1 + E%;; cos?p =1+ ¢ cos?¢

=1+ n?,

where n2 is the abbreviation used for the term of order e? by
Jordan-Eggert. . From a computational point of view, the difference
of r from unity can be considered to be negligible when

evaluating terms of small order.

A study of equations 6.3 to 6.10 shows that the terms

obtained for even values of i in equation 6.2, along with f(iuz)
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Meridian
X, (N)

u,
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Pxpxy)  %y(E)
Reference Ellipsoid Projection Plane
FIG (6:1)

The transverse Mercator projection of the reference ellipsoid

the direct case

x, A
*ﬂ-—-————-ﬂ -
P R (x,3,)
(qxz)-
B
%4
Projection Plane Reference Ellipsoid

FiG.(6°2)

The transverse Mercator projection of the reference ellipsoid

the reverse case
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are imaginary while those for odd values of i are real. On equating
real and imaginary parts of this latter equation, the required

expressions for (xl,xz) in terms of (¢,AA) are given as

X, =V cos ¢ A+ L, cos’d (r-tan®d) (AN ® + Loy cos ¢(tan ¢ -
1 6 120
2r (1-4r+ 12r2)tan®0 + rZ+ 4r®) (M) %+ 0{1071%
and ce..6.11
¢ 1 2 1 3 2
X, = s p d¢ + 5V cos ¢ sin ¢ (M) + 5 cos’¢ sin d(r- tan“¢+
o
ar?)y (A0* + 020710 Ll 6.12.
Notes: -
1. Equations 6.11 and 6.12 can easily be transformed
into the forms given by Jordan-Eggert (1962, 11| Second Half,

section 32)or Thomas(1952,p.2) by replacing r by (1+n?).

The current form has the advantage of having less terms and
being easier to differentiate. It is also no more difficult
to evaluate on an electronic computer. In the present form,
it is possible to perform a differentiation to any order with
a knowledge of only two special derivatives,

. d 9
i.e., §$%v cos ¢) and §$(r)
2. For the equivalent spherical expressions,
see equations 3.46 and 3.57. The discrepancies are of
order 3 -3 '
(AX)x6x10 7,

provided the correct radius of curvature is used.
6.3 Grid convergence in.terms of ellipsoidal co-ordinates

On referring to section 5.4, it can be seen that the simplest
expressions for convergence are those obtained from equations 6.11 and
6.12, on partial differentiation with respect to A.  From equation
5.37,

(Bx

2/33)
tan = ———"— ... 6.13.
ox

L)

An expression for y which will have an accuracy of 0V01 under
all circumstances for six degree zones, can be obtained only if all
terms of order larger than (AXA)® are considered. It will therefore
be necessary to consider the term arising when i=6 in equation 6.2.
This is obtained by differentiating equation 6.10 and adopting the

abbreviations
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3 (6,7)

¥
ga(r) =

t = tan ¢ ; -2t (r-1) sesse. 6.14,

when the use of equation 6.10 and the relatien

sec2¢ =1+ t?

gives

d® .. ) Vv 1
Ezzagygtt(luz)} = §${V cos®¢{t¥~ t?(2r- 8ri+ 2ar®)+ r24 4r3]J——-555§5——(‘ti =

) 7

- V cos ¢
p

[}

[(t“u t?(2r- 8ri+ 2ard)+ r24 4r3)(—p sin ¢ cos'¢ -
4v cos ¢ cos®$ sin )+ v cos’d(at? (1+t?)- 4t r(1+t?) (1-ar+l2r?)-
2t?(1-8r+36¢2) {-2t (r-1) } + (2r+12r2){—2t(r—1)})J

.V ;;‘('
=1 ‘“jEEiJED sin ¢ cos'| (1+ar) (t"-t? (2r-sr?+2ar®)4 r

e {

2+ 4r3) +

r{ar (14t?) (i~ars120?)~ 462 (1-8r+36r2) (r=1)+ 4r (1+6F) (r=1) -
4t2(l+t2))}

= 1V cos’$ sin ¢{t“(1+ r(a-4) )+ t2(r(-2-4+4)+ r? (+8-8+4-36)+

r3(-24+32-16+176) + 1" (-96+48-144) )+ r? (1+4-4) +

Thus,

6
= leu,y) = i cso® sin ¢[t“+ t2 (-2r-32r+168r’-102r*)+
d(@uz) 2

re 280y asr“} .

Tiw appropriate expression for X, which

is of adequate precision prior to differentiation is

¢ 4
x. = J 0 db + v cos ¢ sin G(AN)’ + ==V cos’® sin ¢ (r-t2+4r2) (AN) 4
2 b 2 24

[e]

6
7%6” cos®® sin ¢(t%- 2t%r (1+l6r-84r2+96r°)+ r2- 28r’+ 88r*) (A))

...... 6.15.

The partial differentiation of equations 6.15 and 6.11 with
respect to A gives
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ax
2 . 1 1
55 =V cos ¢ sin ¢ Ak(l+ Ecosz¢(r-t2+4r2)(AA)2+ I36c05“¢(t“_
2t?r (1+16r-84r2+96r®)+ r?- 28r’+ gar*) ()" + o{(AX)e}J
ad 6.16
ax
511 =V cos ¢(1+ %cosz¢(r-t2)(Ax)2+ 5%cos“¢(t“-2t2r(1—4r+12r2) +
rZeard) (o« ol Y L. 6.17.

The substitution of equations 6.16 and 6.17 in 6.13, and

the use of the binomial expansion on the denominator, gives the

following relations. . As
(1 + %cosz¢(r—t2)(AK)2+ 5%cos“¢(t“-2t2r(1—4r+12r2)+ rls 4r3](AX)“}_1
=1 - %cosz¢(r-t2)(AA)2- gzcos“¢&?(1-6)-2t2r(1-6-4r+12r2)+ r? (1-6) +
ar3) (an® + of(arf}
therefore,
tan Y = AX sin ¢(1 + %cos2¢(r—t2+4r2)(m)2 + E%BCOS"¢(t“- 2t%r (1

16r-8ar?+oerd)+ r2- 28r+ ser“)(Ax)“][l - %cosz¢(r-t2)(AA)2+

gjcos“¢(5t”- 2t%r (5+4r-12r%)+ 5r2- 4r3)(Ax)“]
= A\ sin ¢[1 + %cosz¢(r(l—3)+ ar?- t2(1-3)) (A2 +

1%6005“¢(t“(l+25—10)+ t?r{ (-2-50+20)+ r(-32-40+40) +

r?(168+120)-192r }+ r2(1+25-10)- r’(28+40+20)+ 88r*) (AM)"*].
Completion of the additions and slight simplification gives

tan Y = AX sin ¢[l + %cosz¢(2r2—r+t2)(AX)2 + f% cos*¢ (2t“-

at?r1+r-orieerd)+ 2r%- 11r% llr“)(AA)“J+0{ (A7} -..6.18.

5
tanaY + tan Y

Y = tan y - 3 5 v

3
- taf3Y' _ %sin3¢(Ak)3 1+ %cosz¢(2r2—r+t2)(AA)2J3

%sin $ cosz¢(AX)3(—t2- cos?¢ t2(2r?-r+t?) (AN) 2)+ of(an) "}

and
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5
t 1 . .
—E%—l = 3 sin®® (M) = i%cos“¢ sin ¢(AA)5(3t“)+ o{ (a7},
Thus

Y = A\ sin ¢{1 + —13—cosz¢(2r2—r+t2—t2) (AN 2+ —cos(t" (2-5+3) -

15
t2r (4-5+r (4+10)-36r24+24r%) & 2r%. 1173 11r“)(Ax)“}.

Thus the final expression for 7 is

Y = AX sin ¢[1 ¥ Tcos2¢(2r2-r) (AN 2+ —2cos" (t?r (1-14r+36r2-24r3)+

6.4

3 15
2r2- 11r%+ 110%) (AN Y + o{(AX)G}] ...... 6.19.
Notes:~
1. For most practical purposes, the term in (M) can

be simplified by putting

r =1+ olex107%},

when
(%%)io{6X1o'3}= 1070,
Thus, for |¢| * T,
= A} sin ¢{1 + %cosz¢(2r2—r)(AX)2 + %gcos“¢(2-t2](Ax)“}
e 6.20
with adequate precision.
2, Also see equation 3.53 for the spherical case. The

difference in magnitude between the spherical and ellipsoidal
expressions have an order of magnitude

(A/\)3><6><10_3 = 10—6 < 1 arc sec for 6° zones.

Conversion of projection co-ordinates to ellipsoidal co-ordinates

Problem:-
Stated as case b in section 6.1. Given the TM projection
co-ordinates (xl,xi) of the general point P* on the projection

plane, and the geographical co-ordinates (0,¢O) of the origin.

Required to find the surface parameters A} and
u2( and hence ¢), along with the convergence in terms of the

projection co-ordinates.

The problem is apparently complicated by the fact that

all the small order correction terms are latitude dependent. As in

section 3.6.3.4, use is made of the fact that for any given value
of X5 there is a unique latitude e called the foot point latitude,
which is the latitude of the point P"fE in figure 6.2, on the central

meridian and with the same x, value as the general point P*. The
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difference between the latitude ¢ of P and ¢f can be seen to be of

order
3

(A% = 107 rad
from the development preceding equation 3.66. Thus X, can be
uniquely defined by the equation
o}
£
x. = [x Jo_~ = J pdo ..., 6.21
2 2 Xl—O b

The required mapping equation in terms of the orthogonal

isometric system of co-ordinates on the surface of the ellipsoid is

A u_ = f(x Xy .. .
A+ 5 £{ 1 + 2) 6.22,

where u, is the isometric latitude, given by equation 5.25. As the
mapping function is analytic, the application of Taylor's theorem

to equation 6.22 gives

. . q x> [ dt . )
AN+ luz = f(%X2) + E T H?Z;;TT( f(sz)}

i=1 Xl=0
...... 6.23,
where the derivatives are evaluated at x; = 0, and hence equation
6.21 applies. Initialisation on the projection plane gives
A =0 when x, = C.
Thus, on the X, axis itself,
(5,25) (¢
. . ¥ . £ o
= = e ... 6.24,
Hog f(txz) ks JO Vv cos ¢ ¢

where ¢f is the foot point latitude, as described above. Thus,

d : (B gy, do, _9x }
dGix,) (£6ixy) ‘[ 5 ke (1%5)) 3, Ty w0
I P 11 - —1 . .6.25a,
- {l Vecos ¢ 0 7 J¢=¢f vgcos Of a

where the subscript £ refers to evaluation at the foot point latitude.
Further differentiation on the same lines using equation 18 in

appendix ¢ gives

@2 ooy _ (3 1 311 =_<'Sm’—.l—}
d—(ZTZT’(f‘“‘z)) - [ 5% (G oosd) b 7 foo [(V cos §)% T0f 4

and
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3

d , _ |8 (s sin ¢ A, 1
—Wz) (f(’bxz)) = [a¢( ?»'—“—'(\) oS '¢)2} ) '{ ]x -0

1

_[__].__25in<b s cos

_L 0 [ (v cos ¢)3(ps:m¢)+ (v cos ¢) ”x=0

1
- i 2 v 2 -
= {ésm¢+pcos¢)m]x=o
(6,9) . ) '
= —[ ‘\)T—c—c:s——d){Ztan o+ r} ] ...... 6.25¢c.

¢=9¢
£
When i= 6 in equation 6.23, the order of magnitude of the
" term is controlled by the expression
6
1 X1 ~ <10

755 &) = 10
Hence truncation of the series at i=35 will be adequate
for most geodetic purposes. Further differentiation, using the

abbreviated forms defined at equations 6.14, gives

1

d"’ , = -a_ in2 2 1 c_]Lo !‘_
TG (ixz) (f(z.xz)) —l 8(1)[_(2 sin‘¢ + r cos ¢)‘\)3co_ss¢] o 7 Jx o
) 1
.11 3 i . 1 .
= 7,[-5 [ b—f,)c%%ql (2sin?¢ + r cos?¢)+ Ly (4 sin ¢ cos ¢ +
cos?¢{-2t (r-1)}- 2r cos ¢ sin d))] J
x,=0.
1
Thus
d" . . 1 . L2 2
m;(-z—)q—(f(txz)} = 7 T oos"d 3 sin ¢(2s1n ¢ + r cos“d +
r cos?¢ sin ¢(4-2(r—1)—2r))}xl___0
TS PR S 2 -
= @[vu — ¢&{3(2t +r)+ r(6 4r)}}l o
1
_ 1 2 _ a2
= t[v“cos 3 t{et?+ or - 4r )) ...... 6.25d.

4=b,
d5

. d 1 . .
-a-(—ix—z)—g(f(‘z,xz)) = [w(mln ¢(6sin?¢ + 9r cos?¢y -

4r2cosz¢} L i
e 1y
1
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5

a__g_—y(f(ixz)) = %-[(65in2¢ + 9r cos?¢ - 4r2cosz¢}(

W) a0 sin2¢ +
X
2

Vicos’h

cos ¢) sin ¢

T o0sTd v“cos“¢'@25in ® cos ¢ - 2cos ¢ sin d(9r-4r?) +

cosz¢(9-8r){—2t(r-l)}}J

xl=0
- |3 —3—9—3—cos”¢ (6t2+9r—4r2)(4t2+r) + r(12t2 -
0 V cos’¢

2t? (or-4r?) - 2t2(r—l)(9—8r))]

17°
- 1 ( 2 i 2 2,2 2
= QEESE~$((6t +or-ar?) (at?+r) + r(12t2=2t* (26r-12r2-9)) B
Xl—
- 1 4 2 2 3
= |55 ¢[24t + t2(r (36+6+12+18) + r2(-16-52)+ 24r°) +
or? - 4r3J
xl=0
Thus
d® .
-;———g(f($x )) = “g*i*—— 24t + t2(72r—68r2+24r3)+ 9r2— 4r3
d(Zx.) 2 Vv cos ¢
2 o=,
..... 6. 25e.

The substitution of equations 6.25 a to e, in equation 6.23,
together with the equation of real and imaginary parts, gives

the expressions for AA and u, as

Real parts
S T S it 1 2y X1y% Lorgp2_4y3 4
M= ¢ [v ) - 6(r+ 2t )(V ) + 120(9r Ar3424tt+
X, |5 -
at?(1sr-17r%6r’} (51) ] +ol10719}.  e.26.
/ ) .
=0,
Imaginary parts
As set out in equation 6.24,
- ot Xy L2 geiary (Ray Y -10
uy = | vy T e gl T et AT G | el )
f
...... 6.27,

where

t = tan ¢ ; ro= %— ...... 6.28.
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The difference Ad between the latitude ¢ of P and the foot

point latitude ¢f, given by

b =96 -0,
is related to the difference Au between the equivalent isometric
latitudes, given by

Au2 = U, - U,
through a Taylor's series of the form

3 d¢ 1 2 d%¢ -10
A = du, Hﬁé + F(bu,) Hﬁg + o{10 77} ,
the differential coefficients being evaluated at x, =0

at the foot point. Erom.equation 5.25,

dd¢ v cos ¢
du = —p ...... 6.29.
2
The use of equation 6.7 gives
d o (doy _ 3 (dode _ 2y v )V cos ¢
duz(du2J = 55 (du )duz =|cos ¢ 75(p) - getn ¢J b
= —(25in $(r-1)+ r sin ¢)r cos ¢
= r sin ¢ cos ¢(2-3r)y ..... 6.30:
As
(6 27) { 2 X
2 L e X -10
(Auz) = l i m(v) + o{10 77} ) ’

9=6,

evaluation at the foot point latitude using equations 6.29 and 6.30

gives

A = (Auzr cos ¢ + %(Au2)2(2-3r)rt cosz¢]¢ =¢f

The use of equation 6.27 gives

2 =0 - ‘bf:{—r ‘ [%(%’)2" sa(tere-or)+ or- ar’) el)“”df

£
Thus
1 )(12 1 2 2 xlf —10}
o= - Syt Syt (t% (12-9r)+ or- ar )3\7; + of10 ...6.31.
¢=6,

Equations 6.26 and 6.31 define the conversion of projection

co~ordinates to geographical co-ordinates.
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6.5 Grid convergence from projection co-ordinates

The grid convergence in terms of projection co-ordinates is

obtained by the use of equation 5.40

3
[ uz/axl}

tan Y= - —/——— .
3
( ”1/axl)

As in section 6.3, it is necessary to express u, in terms of
'xl to order (xl/\))6 so that the final expression may contain all the
relevant terms whose contributions are in excess of 0V0l. The term not

included in equation 6.27 is

6
Xz d® .
-T'd(@xz)G(ﬁ(txz)}
From equation 6.25e,
—-—.—d——s-—-(f(ix )) = __cos'd_ (24t*+ t2(72r-68r2+24r®)+ or?- ar?)
d(zxz)5 2 (Vv cos ¢)° % =0
1

The differentiation of this relation by parts, using equation 6.14%

and the relation

gives

6

& (e(ix,)) = 2 d® (¢ (ix ))).i.l
d(ixz)B 2 1) d(ixzjs 2 01

x1=0
.1 5 . " 4cos3¢ sin ¥ 2 2
- = 2 - PR m Lt t? (72r-68r°+
T p[( o cos )P ¢ cos ¢ ™ cos &) ?)é4t + t°(72r-68r

3 2_ 4.3 1 3 2 —ear2eoard
24r®)+ or?- ar®) + m(96t (1+t2) (72r-68r°+24r°)

2t (r-1) {t?(72-136r+72r%)+ 18r- 12r° }}]
x1=0

(

= |- %m[(s-h) (24t"+ t2(72r-68r2+24r%)+ or2- 4r3) +

F(96t"+ t2{96+144+r (144-416)+r? (-136+416)+r°(48-144) }+

r(144+436)+ r2(-136-60)+ r3(48+24) )]
x1=0
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d® . .t y 2 2
W(f(zxz)) -(-z;.;—ass—q)(t {120+ r(-96+96) + t?{r(360+240)+r’ (-340-288-272)

+r¥ (120+272+280)+r " (-96-96) }+ r2{4s+180}+ r3{-20-36-196}+

r“{16+72})]

xl=0

gt [120t“+ r #(600-900r+672r>-192r %)+
VPcos ¢

Q|
=
v\
x
[\S)
>
Fomn)
H
<
X
2
f—
"

225r2- 252r%+ 88r“]] ...... 6.32.
b=0

The combination of equation 6.32 with equation 6.27 gives

u, = [uz gl [ ( 1) - (Gt + 9r- 4r )(—-) 720(lZOt +

X1v6
t2r (600-900r+672r2~192r%)+ r? (225-252r+ 88r?)) &31) ]] ,
=0
£

which can be written as
¢ LXay2_ 1, %, 1 g%y
Y= [uz " Cos ¢ [EEG ) - EZA(U')‘+ 720 51 JJ¢=¢ .

Differentiation with respect to X gives

Qu

- =[ 5—;§§—$(§})[ - 916+ 326 J]¢=¢f

If equation 6.26 is written as

o[G0 ¥ 6 B, -

A 1 1.0%1y2, 1 (X144
2 =L_—_—- 2 - 2G5 26 ]] e 6.33.
1 o=¢

tan vy

L]
(ad
e

L
N
——
i
!

gl
~
|2
SNt
~

+

-1
1 X 1% 1 Xoq4
iEEB(;J)qJ(l - 3C ;J}2+ Ezﬂ(sl) J ]¢=¢
£

[%}1}% I%B(él}"][l + %c(:—‘l)ﬁ S=t6c -D) (—ﬁ-‘}“}] i

]
(ad
£

-
Nt
TR
1
QQA

e (1 + Lac-a) (22 2-(-5p+300 -1040) )
-t G+ Feen G 13 ) .
£



106
On making the appropriate substitutions,

X 1 X
tan Y = t(gl)@ + 2(-6r+ ar?) (31)2+ T;—a(t"(120-120«»120-120)+

2
t2{r (600-360+120-60~180) +r? (-900+340+80) +r > (672-120) -192r * }+

r?(225-45+30-90)+ r’(-252+20+40)+ 88r") (%1)4]

¢=0,
= t(%l]% - %(31’— 2r?) (%1)2+ l;—O(tz(120r—480r2+552r3—192r“)+
120r%- 192r%+ s8s8r") (%1]" ...... 6.34.
$=0
As
Y= tany =~ %tanaw + %-tansy — eeses ’

the small order terms are evaluated from equation 6.34 as

- %— tan’y =| - %t:*‘(gl]S 1 - (3r- 2r2}(§1]2J +o{1071%}

and
% tan’y = %{; (g;)s + 010719},
Thus,
1 1r.2 2y (X1y2, 1 b2
vy o= t(5h) ] - 5(t? 3r-2r ) (51 + T3t tr{1seise r(-60-10)+
6or2- 24r’}+ 15r2 - 24r® + 11r‘*)(§1)"} .
v
o=0 .

The final expression for the grid convergence in terms of

projection co-ordinates is therefore given by

X X
_ 1 1 2 2 132, 1 4 2 2 3
y = |t5) |1 - F(t?+ 3r- 2r 1+ 1'5'(3t + t2r(30-70r+69r2-24r’)+
X 4 -
1502 24r®+ 11e*) (51) J + of1071%. .. 6.35.
b=b.
Notes :-
1. Equation 6.35 reduces to the expression

obtained for the spherical case in section 3.6.3.4 if all
expressions which are functions of the eccentricity, are putequal
to zero. This is equivalent to assigning the value unity for

r-

2. As stated earlier, the foot point latitude

¢, is a defined value for every value of xz(i.e., the north
co-ordinate).
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6.6 Tne point scale factor from projection co-ordinates

An expression for the point scale factor in terms of
projection co-ordinates is obtained with the minimum effort from

equation 5.42 on putting = M when

Y1

x|+

=m % (1 +tan2y)® ... 5.42,
1

where m is the linearisation factor, given by equation 5.24 for the

ellipscid as
m =V cos ¢ .

As (ax/axl), given by equation 6.33, and tan Y , given by equation
6.34, are in terms of the foot point latitude be. The latter is a
known quantity once X, is defined. The latitude ¢ is however, an
unknown quantity which has to be determined. It therefore becomes

desirable to express m too, in terms of d>f.

This is achieved by expressing the variation of m with ¢ in
terms of a Taylor series in relation to the value m £ of m at the

foot point latitude and given by

m. = \)fcos d)f '
Thus,
_ dm 1 dzm 2
m = mf+a_d;A¢+§'W(A¢)+ ...... ,

where A is the difference (¢-o f), given by equation 6.31. Thus,

X\
m = [\) cos ¢ + p sindrt [—;—»(?)-1)2— %(tz(lz-m‘) + or - 4r2} (Ul) ) +

19 , 1 Kyt
3 35(-p sin 9) [zf‘tz(ﬂ ]]
As cb_d)f
o sin ¢ = %(\) cos )t = %(\) cos ¢)t ,

1 . 1 2
%Z(Zt(r-l))\) cos o t - -l-p sin ¢ t+ F«) cos ¢ (1+ t°)

%[p sin ¢)

%o cos ¢>[%—(r-—l)2t2r -t 4 r(1+t2)].
Thus,

.:.cb(_p sin q)) = - %p cos ¢(3t2(r-l) + l’),

and evaluation at ¢ = ¢, prior to substitution in the earlier
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equation gives

. 1%1yv2 1.2 2y (Riyt
m = 1|V cos ® + p sin ¢ rt[iig-) - Ez{t (12-9r)+ 9r- 4r J(G-) -
10 sind 1 2.0 2 Xy “]
§*—r— -t—'r t (31: (r-—l)+ r} (\—)-) J
¢=¢f
Xiy2
= MNcos ¢ + P sin ¢ rt[%(sﬁ) - é%{t2{12—9+l1—9+9)}+

12r- 4r?) (él}k”
4=,

2f{1(X1y2 1v¢.,.2 2y X1yt
= |V cos ¢ [l + t [E{g‘] - Ez(it + 12r-~ 4r )(G-) ])J
¢=0_
3
- LoagXaye(y _ L 2)
_\)cos¢>[l+2t(\)}kl.—121\\))J| ...... 6.36
=0,
From equation 6.3,
(1 + tan®y) I %tanz“{ - %tan“y + {10710}
As
.2 2 5 -10
% tan?y =[ =2 (=) {1 - %(Br-2r‘) (\TI]ZJ) + o107}
: d=
and
1 vy 1oy %1y
- & tan'y = - gtf[v J

X\ b
(1 + tamzy)lﬁ =[1 + %t2(§1)2+ %{tz{—m” 16r2}- 3t*) (51) }
o

f
_ 1o %1y2, _ 1 *yy2 37
_I1+ t[\))[l AT e 6.37,
=0
where
- - 2 2
A2 = 24rf l6rf + 3tf.
The evaluation of equation 5.42, using equations 6.33, 6.36 and
6.37 gives
1. LoXny2(y oL, X2 1% 2[1 -
E—{\)cos¢{l+2t (\).][1 12'41(\))) 1+ St2(=1)
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1 1 x
[ [l + 3(2t*-0) GY “ 'zlz(D-Altz-AZt2+6t‘*—1zct2] (%U"J
¢=0
X
= [1 - %"(31)2"‘ '212(‘-"2- ari+ t*(24-3-3+6-24)+ t?{r(72-24-12-12)+
r? (-68+16+4)+ 24r3})C;1)“J .
¢=0.

Thus,

and k is obtained by inverting the above equation, when

k =[1 + %T[%l)z- 5%[3r2-4f3+ t2(24r—48r2+24r3))(gl)iLo{lo_lo}

Notes :-

1. The final expressions in sections 6.2 to 6.6 can all be
converted to the form given by Thomas (1952,pp.92-106)
on replacing r by (1+n”), as noted in section 6.2.1.

6.7 Formulae for computations using plane rectangular co-ordinates

The procedures for obtaining these formulae have already been
outlined in sections 4.2 to 4.4. The curvature o of the projected
gexdesic is obtained from equations 4.20, 6.38 € 6.39, when

Qo

1 k
G—T(--———cosﬁ; 5—)—(—-0.

1 2

Qo

’ =“l = 30 (T 25(or®- ars ¢® (2ar-asrtraar®) (él)uJ g

[61x1cos B [1 - %(3r2-4r3+t2(24r-48r2+24r3))(g})z]}
Jo=b,

fx 1 ‘ X..2

- 651) L_E%E_ﬁ[l - E-(3r+ 3r?- 4rd+ t2(24r-48r%24r?)) [H) )]

=¢f

X1y £ B 1 X -11, -1
= .(31) r_cos .[1 - o B, (;1)2J] + ol2x10™""km “}...  6.40,
¢=0
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where

= 2 2 2
3 + 3r - + t<(24-
BZ r ¢ 4ar ¢ .:.( 4-48r +24r E).

6.7.1 The chord to arc correction

The chord to are correction § for the line PP, in figure
4.5, is obtained by the use of equation 4.40, given by

<

293 3 1 2) ok -11
- ..(4.40),
orot otp * 3% 55602 - ol (0 ) ]zp +0{107""}.. (4.40)

where Oo,oé‘and OZ are the curvature and its derivatives of the

. projected geodesic (1engjix%) at P (xll’le)' The derivatives

(cé,oé) of the curvature with respect to length on the projection

plane, are obtained by the differentiation of equation 6.40, noting that

(s0/3x,) =0,

when .

dx . X2
1 _ 3¢ 9%, 30 dB _rcosBsmB[ _}_B__l}
9 3% d2p+ % AT T — Y 3%t

ne (b |
d=b

64;40 l cos B sin B [l _ %B leJ,.;. [_ X;sin B ][_ x,cos B

oV Iov oV pV +
d= ‘
X::Q:z
Thus , of =5
. X\ 2
ol - |sinBeos® |, (L1p_ (| ... 6.41,
R 1 R
o=b.
where
1 1 1
I T 6.42
Similarly,

R p
cos B ( in2B (B.-3) + 28) + of ﬁ.&a} 6.42a
= ———RT—X]. SlnB 1 cos RE s oesDe

and
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s 30 9%, 302 dg i
- 3 T g e Lssﬁfﬂ(siﬁswl-sn coszﬁ)]+
p p ¢=b,
xZo*
e e S 6.42b.

2
As the term 0'(0 )" is of the order of magnitude of terms neglected,
the use of equations 6.41 and 6.42a-b along with equation 6.40 in

4.40 gives, on evaluation at P ,
1

{ 2 cos B x
=8 =] R 22
6R?

% cos B % sin B
1 X
: [l B %Bz ("”}7+ £ R [1 +

.
(- ) (En)j- “Sare %1, (Bgsin®B(By=3)+ LcosE) -

2 cos B 2 sin B
1% P

o2
22 2,2 %
(Rpcos B + (31-3)2psm B)Lo{——R-s- L

120 R*
. o=0_
On replacing B, by 2 in the smallest term,
L. cos B % cos B
= B ; _ 2 .
§ = T (3Xll+ Slpsn,n B) —gﬁr— xll[Bl (2X11+ 2X112p51n B +

225in28)- % sin B(4x..- 3 % sin B) + choszﬁ) -
P b p P

11

% cos B & sin B ‘ : -
— R P (0%0s®B - 22sin?B) ] + of107%hL
120R P P d=0
£
As the order of magnitude of the first term is 10_4,
and that of the second 10"6,

f,cos B -
P . 6
§ = Rz (3xll+ Rp51n B)+o{10 }] .
o=0.
The plane grid bearing 6 of the line PlP2 on the projection is
related to B by equation 4.1 as

Thus

cos B =cos 8 - § sin 0 + 0{10-8}

sin B = sin 6 + & cos O + 0{107%}.

The replacement of 8 by 6 in the expression for § does not
affect the equation except in the first term which is three orders
larger than the other t#rms. The first term can be replaced
by the expression
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L,cos B Ly{cos 6 - 6§ sin 9)
_EEET——(3X + stin g) = -E (3xll+ Qp(sin 6 +8cos 9))

11 6R*
Qpcos 8 S
= ——Eﬁt———[3xll+ 2951n 6) - gﬁf( stin 8 (3x11+ stin 8y - Qgcosze]

The second term above i1s four orders smaller than the first.
The use of the exact relations (subject to equation 4.22)

Ax2 =Xy = Xy = ﬁpcos 8 ; Axl= X1y = Xqy = lpsin 8
noting that
B, =2+ 0{10_2},
AXZ Ax
.= | o l2%, . + X S —— B, (x? 2y - -
127 | @ (g X)) — s < (B0 Ry max )X+
Ao (X9 5= %X14)
2 2 2(%127 "11 2 2
3{x_ - - — - -
(o7 %) x7) - —aer = (k) - x - X )
bxa 2 2
— 2 + - - -
Sere@qt Xqp) (3%pp Oxpm X g+ 0= x ) B () )J
d=0
This equation can also be written as
S, = > (2% + x| 1 - = (3x.. Ax. + (Ax)2- (Ax.)?)]|-
12 6R? 117 12 6R? 11 771 1 2
Ax2
2 2 2 2 2
50 7% (5xll{4xll + 50 )+ (Bx) b Axo bk ) 5= (Bxy) }) st
f
...... 6.43
on noting that
2 2 2
Bylxgy * Xpp) = 40xp= Xp)Xyy + 37 Xgy)
_ 2 _ 2 _ 2 2
= 9xll 10 X11%12 + 5 X1 4x11 + 5(Axl)

Notes :-

1. Note that all values of ¢ in equation 6.43 refer to the foot
point latitude, corresponding to the X co-ordinate of the
initial terminal P.( i.e., xpy) and no% to either the latitude
at the mid point o% the line or one third way along it.

2. The accuracy of equation 6.43 is 0.0001 arc sec over a 60 km
line for a six degree 2zone.

3. A formula correct to 0.0l arc sec is obtained under these same
circumstances is obtained by ignoring all the differential terms
in equation 6.43, which then reduces to

Ax '
- 2 1 .3
=| Rr2 (lel + X, T R *11 ) ...... 6.44
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The contribution of the third term over the extreme test line
given by Bomford (1962,table 1) between P. (25°N, 4°E) and P
(267N, SOE), is approximately 0.2 arcsec, § being approxima%ely
127 sec. The resulting error is less than 0.02 arc sec over a
line whose length is approximately 150 km and situated at the
extremity of a six degree zone.

6.7.2 The line scale factor

The line scale factor kIL for the line PP, is given by equation

4,27 as
ko = o=k o+ Dkl n o+ Lk2(k )2+ (kD)2k )2? +
2 2 o} 2 oo 6 0 o o o
N TE
EOX 21,1)43 b 2,2) o4 1
sglkir ek ) e 2o(kie a?)2)t + olde b .. 427,

ko, ké, k;, kg and k; are the values of the point scale factor
and its derivatives with respect to Q,p at P;.  From equation 6.39, it

can be seen that
(3k/ax )= o.

Thus
o= ak 9%y sin B, lBiil 6.45
o [ d2j, o | R wreta o 22
PopT £
where
B, =-Br2- ard+ t?(24ar-a8ri+24r?) = 1 0f{1073} ... 6.46
and

Further differentiation gives

d2 o8 d =
*1 %p P AT b
4
(6,40) 2 X X
¥ sin“B 1 1Y cos B cos J 11
z [ =T [1 + 332(5—1) ]+ X, TRT X1 ot + olzs
: f
.2 X2 2 X
sin“B 1 11 cos'B 2 X1y a7,
= [ (L + 585" ). Sm gy J¢=¢+°{ Re 6
£

2 .
ak? dx, ok? dp | _| sin3g 2cos’ B sin @
k¥ = {—-A + 38 g . =l TREvE By Xun” R% *11 "

3
2 sin B cos B cos X1
BRz (- Rzﬁ xll] + ofge }

=0
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K3 o= sin® cos?B sin B : x;
o 2 2 752 11 4 ——“R‘E"—"Xu + O{Es ..6.48,
¢=0
and
s [ok3 dxy 11 sin®B cos?B 2 x?
ky = [Bxl ) ol )= |58 5, - ¢ Bt ) sin 3} +olze'
=0 ¢=0_
...... 6.49.

Thus the point scale factor kl is given by substitutiong the results
of equations 6.39, 6.45 and 6.47-6.43 in equation 4.27, when

q
l 11 1

2
_ 1 2 X1 1 % sin B
ke =|1+ ¥t BermT t E{l+ ZR2 2( i RZ. ‘11t

L L2 2 i 2
W[51n6 [l+'§B2(U )}{l+——~2-R )———-Z——R X1y * TRT xll +

- 4

R® R2 RZ

_2_3 sin B [ sin’B B
24 RZ 11 vz 2

2 .2 ,
cosBJ+451nB s:.anll] +

2" ((sin®B cos’B sin'B x?l
120 {[ RZV? By- 4—%% ]51n B+ 4 oo + O{RG .. 6.50.

The major contribution to kl is from terms of the type
X .2 X, AX_ AX. 2
1Y%, 1 27 1
(—R") RZ and(R)‘

The appropriate sorting of terms gives

1

TR2 (3X32.l+ 3x119, sin B + SLzsinZB) +

B
—2 2_.. 2 3.3 b, b
136 Rz\)2(5xll+ le 2 sin B + le 2 sin“B + 5xll£ sin”f +4&'sin B) +

+

1 3 . 2 2. 24 _ 2 g2, .2
+156—§¢(30x112 sin B + 4Ox112 sin“B 2Ox112 cos“B

20x1123coszB sin B + 20xllﬂ3sin36— 49%cos?B sin?B +

49" sin"B) vof107y Ll 6.51.
9=0,

The above expression can be defined in terms of projection
co-ordinates alone, to this same degree of accuracy. As £ is the
distance on ellipsoid and B the grid bearing of the projected curve,
the relevant variables required in equation 6.51 are lp and 6.

The latter can, in turm, be directly related to the projection
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co-ordinates of the terminals by plane trigonometry. From equations
b.b, 4,27, 6.44 and 6.51, it follows that B can be replaced by 6
in all terms except the first, in the last equation. The

discrepancy between B and 6 in the large order term is allowed for

as follows.

As B = 06+ ¢ and & = zp—dﬁ,
where

dag = (k,Q - 14 ,
sin B=sin® + Scos 8 =1sin B (1 + & cot 6 + 0{10—8}).
" Thus,

2 sin B = (£ - d)sin 8(1 + § cot 6)

= Rpsin 8(1 - gé- + 8 cot 6 + 0{10_8})
Purther, .
2% sin?p = Résinze(l - 2% + 286 cot 6+ 0{10*8}).

The contribution of the larger order terms in equation 6.51 can

be expressed as

1 2 . 2 . 2 1 2 . 2 .2
—5 (3 + 3 2 + 2 = — 3x 2
or2 (3%, X 1% sin B sin“B ) 6R‘% 11t ¥y pSin 6 + 2p51n 8 +

3X112psin 8{8 cot B - %&} +22;sin20{5 cot B - d—z& })

(x..+ % sin 89) +{x
P

. A2 . 2 .2 ,
= 6R2(xll + %y lellpSln 6 + Q,p51n B8}

2

11"t
. de 2 de

3xllQ,P51n 6{8 cot 6 - 7 1+ 22ps:_n 6{§ cot 8 - Q,}) vee.6.52.

The first three terms are three orders larger than the rest
of the expression and reduce to

x2. + + x2 = x2 . ... 6.53.

11 T *11%12 12 1

Tt would suffice if & and d&/% were replaced by the expressions

5 sz
= _él?(zxn* S 6.54
ang

e 1 (2 ’ 1

[ 6R26(11 X%t X100 T oty e 6.55

when using the results of equation 6.52 in equation 6.51.  On doing

so, noting that

f cos 0 = Ax.  iieee. 6.56,
P 2
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B

1 2 & 4 3 2
k, =[1 + xS + 5x!_+ 10X z
% [ 6RZ “1u" T20R%V? ( 11 0%y %) 10X] ) (X]) 2% %) 5 %) )+
3 2 2 3 N 3 2 2 3 L
X X -3X - { - -
5% 3 (X=X X ¥ 3X g Xy o Xy I X5 7EX 1 X040 % ax)9%17 %)
2 g2 2 _
* 60R‘[9O 11( 1p7Xqp)F L20X ) (X)5=2% )X, X )+ 60Xy (X 12 3x11x12
2 3 2
X - -
3xll 12 Xll)+(12X1 48xllxl2+72xll 12 -48X llx12+12xll)
2 ? 2 2 2
X 27 -3 - -8 - - -
100X 1+ ) Xy 5#X] ) (200 5701 X575+ sz( BOX = 60Xy (X),=Xy;)
2 2
12(X]5m2%g %) p¥X )+ 10(2x 11+5X11x12+2X12)}J}¢_¢
£
as
dl 2 2 d¥
2 sin 9(6 0 - - 22%5in“6 (S B - = =
3x1l p51n (0 cot 7 ) + p31n (0 cot T )
% cos O (x.. +2x_ ) - —iqxz(x F2X. ) X, =% l) .
b 1172% ) T Tt YT

Purther sorting of terms gives

1 2 . Bg [
6RZ1u- 120RZvElT1L

= 1
k 1+ (5-10+10-5+1)+ xll 12(10 20+15-4)+

2

2
xll 12(10 15+6)+ xl1 lz(J 4)+X12)

1 [ 4 )
- -5 + - +
+ SEORT kxll( 90+120~60+12+10) x 11 l2(90 ~240+180~-48+20) +

2 -1
X171 12(l”O 180+72+10-10)+ X11% 17(60 -48-10) + x (12 20)+
)
2(,2
sz(xll(—60+60—12+20)+ X11x12( -60+24+50)+ xl (- 12+2O)]”¢=¢
f

On completing the summations,

B
1 2 2 [ 4 3 2 2 3 L Xt J
= - + X, X -
k [ R LTI T el G PR P L PR P A PR EU P M P

2 u v
e [(Sx —ox3 x. _-12x2_x? - s8xt ) -
SE0RT 11 7711712 115127711 12 12
2
...... 6.57.
20 % (4% 11 l2+4x )]¢=¢
£
As .

B 1 f
;% = re ¥ O{ﬁz ’

equation 6.57 could be simplified slightly to give
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K, =[1+ =ex? + = =5x* + 5x3 x._+ 15x% x% + 5x. . x%.- 5x*_ 4
% 6R“"1u 360R 11 1112 1112 117127 12

+ 2Ax (4x? u+ 3xllx12))]¢=¢f

1 2 1 2
1+ ——y -
[ BRZ X1t FaoRe (KX 5% ) (] x4 3x] )

+ 2 Ax2(4x +3X, X ))]
d=¢

11712
= 1+ = x2 + = (5{3x2 x2. ~(x, . -x. ) 2x2 }+ 2bx, (4x], +3x ))
6RZ "1u” 360R* 11712 12 11 1u w1112
=0
-9
+o{10 "} ...... 6.58.
Notes :-
1. An accuracy of 1 part in lO6 is achieved by the use of
the first two terms in equation 6.58. For exhaustive tests
of various expressions which allow for the fact that the first
two terms always underestimate k,(see Bomford 1962). He also

suggests the use of the following convenient expression obtained

by the numerical integration of the second term in equation

6.39 by Simpson's rule, together with the assumption that the third
term has an insignificant variation over any line. Hence, if

and
4 P . 1 _u
11 T 12 79 X
k=1 + & ~l—{x2 + ax® o+ x2 )+ ——§§—7 Lo
2 6 2RZ2'\711 im 12 24R“v 9 iu
o0,
N 1 2 1 2 }
7[1 + Eﬁleu(l + Egﬁfxluj ...... 6.59.
=
2. For most practical purposes however, the following set

of formulae will enable comgutatlons to be carried out with
an accuracy of 1 part in 10

6 = Oy =Y - 612 ...... 4.2,
where ¢
X X2 ) J
Y = —%}-[ - %{t2+3r—2r2)(549 + £§(2+3t +5t%) (51 } A
IS
ceeee. 6.35
and
Ax,
8., = wre(2x1+ Xy ceese. 6.54

Also,
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1 2
L =21+ 2
o W(Xll =+ Xllxlz + le) 'b ...... 6.55.

These quantities enable computations using plane rectangular
formulae

xi2 = xil + Kp cos ei, i=1,2 e 6.60,
where .
el=e, e2=‘5-e ...... 4.6
END

January 1972

The School of Surveying

The University of New South Wales
P.0. Box 1

Kensington NSW 2033
AUSTRALIA )




APPENDTIX

THE GEOMETRY OF THE ELLIPSOID OF REVOLUTION

A convenient mathematical model which best fits the geoid
(e.g.,Bomford 1962,p.84) to an accuracy of 1 part in 10° is the
ellipsoid of revolution, obtained by rotating an ellipse about its minor
axis. The positions of points P on the Earth's surface can be
uniquely related to a system of two dimensional system of parameters
on the surface of the ellipsoid, on representing P by the equivalent
point PO on the latter, the surface normal at which passes through P.

/ Thus points on the Earth's surface in three dimensional Earth space,
which has the same rotational and galactic motion as the Earth, can be
related to one of the following reference frames
i.two dimensional system of surface parameters (ul'uz)’ the
surface being kndwn;
ii.a general curvilinear co-ordinate system;
iii.a three dimensiocnal rectangular Cartesian co-ordinate

system(xl,x ,x3).

2

The second system will not be considered in the present
development.

As the ellipsoid is obtained by rotating an ellipse, called the
meridian ellipse, abeut its minor axis, it is a necessary preliminary

to study the geometry of the ellipse.
a. Geometry of the meridian ellipse

The relation between the general meridian ellipse, shown in
figure i, and the ellipsoid of revolution, is illustrated in figure 1.1
on page 2. The equation of an ellipse in relation to the axes as

shown in figure i, is well known to be

X

a

2
2 = 1 s e o s 00 l,

Nw N

T

where the lengths a of the semi-major and b of the semi~minor axes are

related to the eccentricity e by the relation

b2 = a2(1-¢%) ... 2.

It is customary, in geodetic literature, to refer to a and b

as the equatorial and polaf radii respectively. The flattening f



FIG. (i)

The meridian ellipse

Afix)

FIG. (ii)

The mean value of f(x)
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of the meridian ellipse is given by

or

Cartesian co-ordinates

If PF is the normal to the meridian ellipse at the general point

P, and is of length Vv, and the geocentric radius OP is of length r,
the position of P can be defined by
etther a pair of Cartesian co-ordinates (x,xz),
or the latitude ¢‘which is the angle the normal PF makes
with the major axis Ox.
These quantities are reclated by the equations at 5

which follow from figure i.

X v cos & = r cos ¢C

Xx. = Vv sin¢ - OF =r sin ¢
3 c

¢c is the geocentric latitude.
The differentiation of equation 1 with respect to X, gives
s 9%

2 — = 0.

X
a’ b dx

If Y is the angle the tangent to the ellipse at P, makes with

the x axis,

dx X b
:——3:———- .
tan ¢ ix X, T2 e 6
As the gradient of the normal is tan ¢ and
tan ¢ X tan Y = -1,
2
1 _ x, a
tan ¢ = - tan ¢  x b?’
The use of equation 2 gives
(%)
Xy = x{1-e)tan ¢ = v(l-e?)sin ¢  ...... 7.
From equations 5 and 7,
OF =ve’ sin ¢ ... 8.

The substitution of equations 5 and 7 in equation 1 gives



v

vZcos?d v? (1-e?)sin?¢ 1
a‘ aZ(l-e%) :
Hence
via - ezsin2¢) = a2,
or
v L s,
(l-e sin’¢) T
where
T=1- ezsin2¢ e 10.

Curvature in the meridian ellipse

If the radius of curvature in the plane of the meridian

ellipse is p, the curvature 1/p is obtained from equation 6 as follows.

Loodb o df 1@s) SR S ot P
p ds  ds a dx 4 a dx_y2 dx\dx / ds
[l+ (d—'3} )
X
where dl is the change in Yy over the element of length ds along the

ellipse, corresponding to changes dX in X and dX3 in X,.  Thus

dx dx

= L im [ }-
s ax,dx,>0l ((dx)2+ (dx3)2)% [1 + (%;ﬁ)z)%

and b2 x dx
1 3
d (dx4 - [— - ——'}
1 a—x'(a-;} 52 X3 g'dX)
0T —dx3y2)3/2 T ¢ dX3y273/2
[1 + (Ei-} ] Ll + (dx ) ]
b2 b2 (x5  x?
L AT b a%x3.
- 2 ;% ~3/2 T oAt} w_233/2
[l N f% EQ } / aX3 (a'x5 + b'x ) /
a* x3

The use of equations 5 and 7 gives

a® (1-e2) 2 _at(1-e??

aG(vz(l—ez)zsin2¢ + \)2(1—e2)2c052<1>)3/2 vi1-e2)?

1
0

The use of equation 9 gives

a(l-e?) _ all-e?) 11.

[1-e2sin2¢)3/2 73/2




b. The ellipsoid of revolution
Fundamental quantities

As the ellipsoid of revolution is obtained by rotating the

meridian ellipse about its minor axis, the x3 co-ordinate and the

latitude are invariant on rotation. The exact location of the
meridian plane can be defined wuniquely by

either the angle A between some reference plane x,0x,) in figure 1.1

and the general meridian plane x3Ox ;

or the co~ordinates xl.and x2 in a rectangular three dimensional

Cartesian system (xl ) » with coincidence between the rotation

X, X
23
and x3 axes, where xl and x2 are related todefined in equation

5, and A by the equations

X, = X cos A ; X, =X sin A ...... 12.

Thus position on the ellipsoid of revolution can be defined by
etther the set of surface parameters (0,A)
or the set of three dimensional rectangular Cartesian co-ordinates

(xl,xz,x3).

A study of equations 5, 7 and 11 shows that these two

systems are related by the following set of equations

Xy = V cos ¢ cos A
X, =V cos ¢ sin A ..., 13,
Xy = v(l-e2)sin ¢

which is of the form

X, = xi(¢,k) ...... 14.

The direction cosines Zi(i=l,3) of the normal to the ellipsoid at P

are given by

= —— = )\
ll oF cos ¢ cos
2 *2 in A 15
2= Fp = ©o°s ¢ sin A ...... .
P3F
b3 = F =sind

c. The element of lTength on an ellipsoid

The general element of length ds on the surface of the reference

ellipsoid can be defined in terms of the equivalent changes dp and dA



v
in the surface parameters, or in terms of the changes dx, (i=1,3)
i

in the Cartesian co-ordinates. Obviously,

3

ds? = ) (@x)* L. 16,
. 1
i=1

which, from equation 13, can be expressed in the form

3 2
) axy X,
ds? = lzi e dd + ﬁldk
3 Sxi.2 3 9x; X, 3 9xiy2
= (d¢)? ‘Z (551) +2dpdr ] % 3% CISR NG AR A
i=1 i=1 i=1

Two special derivatives are required to evaluate equation

17 for the ellipsoid. The first is

(9) .
] ? s [ cos ¢ ]
—(V cos ) = a xx|————T1
26 a¢ (l'—ezsinzd>}i

_ a{—sin1¢ + (o Ly ces ?(—2ezsin 6 cos ¢)J
5 2 3/2
T T
. 2
= -2 sin ¢ 1 - e?sin’d - e’cos?d| = - all-e’) sin ¢
T3/2 T3/2
(li)
= -0 sind  eeeae. 18.
Also,
9X . 2. 3 ( sin ¢} _ 5 |cos ¢  sin ¢ 2 . J
% = g(l-e”) -3-(-[)'[ ——;%*} = a(l-e”) le + T3/2\_ sin ¢ cos ¢
2
= all-e )cos ¢(l—ezsin2¢+ezsin2¢)= o cos ¢ .. 19.
T3/2

The differentiation of equations at 13, using equations

18 and 19 gives

X Cla .
55 = - p sin ¢ cos A ™ - Vv cos ¢ sin A
ax X
-%2 = - psin¢ sin A ... 20. w - V cos ¢ cos A ...21.
3x, X
3 CPeese wo-
Thus

ds? = (pzsin2¢(coszk + sin®\)+ p2c052¢)(dk)2+ (pv sin ¢ cos ¢ X
sin A cos A - PV sin ¢ cos ¢ sin A cos X}d¢ dx +

v2cos?¢ (sin®i+ cos®\) (dA)? .

Simplification gives

ds? = p?(d$) % + vicose A2 . eeeess 22.
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As dd is a change entirely in the meridian ellipse whose
curvature is p, equation 22 can be interpreted, in the limit, as a plane

right angled triangle, as shown in figure 3.9, where the length

vV cos ¢ dA is orthogonal to the local meridian.

d. Curvature in the normal section

The curvature 0 of the ellipsoid in the normal section at

any azimuth ¢ can be considered to have three components Oi(i=l,3)

along each of the Cartesian axes. These components are given by
de 3L, dA
o, = == oty 90 + ot —— i=1,3,
i ds a¢ ds 2 ds !

where Ri(i=l,3) are the direction cosines of the normal.

The radius of curvature Ru in the normal section is

given by
3
%2 = o= Y (0p* L 23.
a i=1 7
As
3
) (szi)2=1
i=1

(e.g., Eisenhart 1960,p.5), differentiation with respect to s gives

Thus the components Oi are proportional to the direction cosines of a
line in the tangent plane to the ellipsoid of revolution, corresponding

to the element of length ds, and which are equal to dxi/ds. Thus

dx
_—1
9 % ds
But (23) 3
1 2 RZ Y (@ . 24,
o, i
i=1

if ds lies in the normal section whose radius of curvature is Ra'
Therefore
at 25
—1 = i=1,3 = ... .
ds Ruci roIESy

Substitution of the result from 25 into 24 gives
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1 § 5 dxi § 8% do 3%, dAY( ax. db  9x_ dA
Tz = o ——i = —1 — S TN b R R —
R, T L T LB T TR dsJ[aqs ds+§>\—1ds}
3 932, 3 3 (32 2L
_ (4952 o, o do di 9%, Xy , 90X,
(7 iz 5t %) *acas izl[ﬁl N Y T
3
d )y 2 3L, ox
’l\'d—s_) z (gj\—l a)\l) ------ 26.
The differentiation of equation 15 gives
aL 3L
. 551 = - zin ¢ cos A §Xl = -cos ¢ sin A
3L, _ i 0%,
5% = - sin ¢ sin A T3 = cos ¢ cos A
5L 3L
55} = cos ¢ ) ©
...... 27.
Substitution from equations 20,21 and 27 in equation 26
gives
%. = (%%)A(p sin®¢ (cos?h + sin*M)+ p cosz¢)+
do dA +v cos ¢ sind cos A sin A -v cos¢ sinid cosA sin A + O]
e dA y +
ds ds +0 sin b cos pcos Acos A -0 sin¢cos psinAcosA + O
(%%JZ(v cos?d (sin) + coszk)).
Hence
1 ddy 2 dAy2
ﬁ& = p (HEJ + Vv cos?o (HEJ ...... 28.

On applying figure 3.9 to the ellipsoid, as

L i m{idscos al= p do and L i mids sin al= v cos ¢ dr ,
ds™0 ds>0

where o is the azimuth of .the normal section,
2 L2
cos‘Q sin“o
= + e 29.

1
ch 0 v

This result is known as Euler's theorem.

When a = 0, the normal section coincides with the meridian

and Ru L= p‘ ,
which is in agreeﬁént’with equation 11.
Similarly., whén

OL'=.!§TT‘,F

.



Thus V is the radius of curvature in the normal section
orthogonal to the meridian. This section is commonly known as the
prime vertical section and V is known as the radius of curvature in

the prime vertical.

e. The ratio v/p

An expression requiring frequent evaluation in
conformal projection theory is the differential of the ratio V/p
with respect to ¢. From equations 9, 10 and 11,
1 - e’sin’¢

v
4 = =587
o l-e .

Differentiation with respect to ¢ gives

Ji{YJ _ 2e?sin ¢ cos ¢ - . sin & e’cos?¢
9% \p’ 1 - e? cos & 1 - e?
2 .2 2
B i 1-e“sin“¢ e"-1
= -2 tan ¢ T-a? My
v A
= -2 tan ¢(—O— - 1) = -2t(r-1)  ...... 30.

f.  The mean vradius of curvature at a point on the ellipsoid

The mean value M{f(x)} of the function f£{(X) between the
limits X=a and x=b , is
n
Y OE(x))
. i

Mig(x)} = = ,

n
where the n values of f(X) are sampled at regular intervals

between the abscissae xi and xi. As

=1
. b2
" oTEx
1§ 1 (P
Moo}t =L i m) = Y E(x,) dx}= = J £(x) dx  ...... 31.
dx~0 -3 i=1 - 1 a

The mean radius of curvature R at a point on the ellipsoid

is obtained by the application of equation 31 to equation 29, when



R = M R = 3 da
J p SiI1 a + VvV cos“a '

As the function to be integrated undergoes the same changes

in each guadrant, the trigonometric functions being independent of

sign,
p
R = L 0 J%ﬂ __EEEEQ_QQ_ 2 5 (V)%jm d(VT;Jtan a]
T = = - N S
: 0 1+ %—tanzu m e 0 1+ %tanzu

v
2 -1 > -
= v (pv) [tan (/[%} tan G)Ji %-/(pv)( %-- O]

"
[}

=/(pv)y . 32.

g. The geodesic on the ellipsoid

An infinite number of curves can be drawn between two points
on the Surfdée of an ellipsoid. The curve of minimum length is
called the geodesic. By Meusnier's theorem (e.g., Eisenhart 1960,
p.118) which states that

the radius of curvature Ra in the normal section between
two adjacent points on a surface, is related to that of an oblique
section (RO)
a. between the same points;

and b. whose principal normal is inclined at an angle ©

to the surface normal,
by the relation

RO = Racos 5 33,

it follows that the shortest distance between two adjacent points on
a surface, in the limit, lies in the normal section between them.

1f the geodesic on the ellipsoid is defined by the

parametric equations

x, =x,(sY  eeeess 34,
1 1

where s is the distance along the geodesic from some reference point

on it, then x;, given by

a.

X

|

, i=1,3 e 35,

o

S

are the direction cosines of the tangent to the geodesic as



X7

3
I xpr=1 ) 36.
i=1

The differentiation of equation 36 with respect to s gives
3
i=1

As xi(i=l,3) are the direction cosines of the tangent to the
geodesic, and as the sum of the products of like direction cosines of

mutually perpendicular lines are zero, it follows that

2 .
xi « li , i=1,3,

where Zi(i=l,3) are the direction cosines of the principal normal to
the curve which, being a geodesic, has the normal to the surface as its
principal normal as it lies entirely in the normal section. Hence Zi
for the geodesic on the ellipsoid are given by equation 15. It

follows that

The use of equation 15 gives

2 2
1 _ X
1 X2
or
x,x2 - x,x*= 0
172 27 v
where xl and x2 are obtained from equation 13. Integration with
respect to S gives
1 1 _ -
X, X,= X,X; = Constant C,
where xi, x; are given by equations 17,20 and 21. Appropriate

substitution gives

VvV cos $ cos A(-p sin ¢ sin kég-+ Vv cos ¢ cos Xg%-]-
V cos ¢ sin k(—p sin ¢ cos Aaé-— V cos ¢ sin Xag ) = C.

Simplification gives

dA
2 24 A
vicos“o s C.

Consideration of the elemental triangle in figure 3.9, as

adapted to the ellipsoid, gives

<Dy _ sino
ds Vv cos ¢

The use of this relation gives the final form of the equation which

is satisfied by all ‘'geodesics on the ellipsoid, as



xii
vecos ¢ sinao = C ..., 37,

where C is a constant for a given geodesic.
END
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The expressions for 612 on P 112 and kl on P 117 do not take
into account the ellipticity factorwhich arises as a consequence of pv

having a variation with X If pv = R, then

2"
&), .- (it
1- i "
%’ =0 9| (l-e“sin=¢) “jdx, b=
1 £
a2 (1o M 9n? ad N 2
[ 23 (1-e Z{ Zj a:n & cos ¢] }J ’(%§ T?;? sin 2¢}
{1-e“sin“¢)° 0 ¢=¢f i ¢=¢f
= %; €? sin 2¢ A
2
e
where €% = - e? °
The contgibution to 0 on P 109 is
10k 3y R [N 2R . .
o, = - E-§;251n B =~ EE(EEJ §§2 sin § = (3§é < € sin 2¢sin B o=t
o X1 2 } £
= 5$s1n B8 (TT £%sin 2@) e (2),

o=0,
: b
whose order of magnitude is one smaller than that of order{xl/v} as £226x10 3.

Similarly, the contributions of significasce Oé to oland Uz to olare given by

1 80dx, | S (X1 .qa 3R [ cos®B; %1 o .
o, = 3X2d£2 = 5R (R \xns@ axocqs B = A ( 3 2esin 2¢)l~¢ e (3)
and . P ( \ < =0,
2 _ 00" dx [ -cosB sin B (2 .2 _.
0. = x, ab_ | R (v €” sin 2¢)] e ().
P ¢=¢f

/
The correction 5c to 512 is given from equation 4.40 as

’
§ =1%o &+ =o! 9% 4 L a2 g} to the required order of precision.
ol cop 6 cop 24 co'p

Thus the term

- 02 (3x, + xlz))] ceea (5)

§ = (—i—;zezsin 29 (6)(2 Ax
o}
4=t

12pv 1, 1
should be added to equation 6.43 on page 112, where
Ax1 =X, T X and sz =X, T Xy, el (6).
Similarly, the ellipticity factor ffects kz through the terms
1 1,202 1 353 : .
= = .27.
5 kOQ + 2 koﬁ + 24ko£ in equation 4.2

Similar consideration of equations 6.39, 6.45 and 6.47 give the correction

term klc to kg in eguation 6,58 as

2 .
_|_€°sin 2¢ 2 2
k%c == oo Ax§3x11+ 2Ky X * XP, ) ]¢_¢ eeesl(7)
f
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