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FOREWORD

The availability of fast and efficient computers and the introduction of statistical testing procedures
in surveying opened the way for more sophisticated design and analysis procedures in deformation
surveys during the last two decades. Prior to this change, the design and analysis of deformation
measurements was essentially based on semigraphic methods. The lack of a suitable textbook may
have been a reason why the newer techniques have found limited usage in practice. So far, the
topic of deformation analysis has been dealt with primarily in articles in journals and in congress
papers.

This monograph provides a comprehensive introduction to the design and analysis of networks in
general and of deformation measurements in particular. The related topics of "Outlier Detection",
“Reliability" and "Variance Component Estimation" are also presented in separate chapters. The
textbook is aimed at final year undergraduate and at postgraduate students, wishing to specialize in
this area as well as at practising surveyors and geodesists actively involved in deformation
measurements and crustal movement studies by geodetic methods. Previous knowledge in linear
algebra and least squares adjustments is an advantage. Some key reference books in these
subjects are mentioned in the text for the benefit of readers.

The book purposely does not cover all analysis methods which are being promoted by the
members of the FIG ad hoc Committee on the Analysis of Deformation Surveys. This Committee
was established in 1978 for the purpose of designing a generally acceptable standard approach to
deformation analysis. After eight years (and after an increase of the number of analysis procedures
from about four to ten) the Committee concludes that "it would be difficult to completely unify all the
approaches into one general set of guidelines for practising surveyors" and that "the final choice of
the approach should be left to the user" (CHRZANOWSKI and CHEN, 1986). Because of the
multitude of proposed methods, the author had to select a few appropriate methods for a detailed
discussion. The book emphasizes simple, efficient and transparent approaches for the detection
of single point movements from two epoch analyses although some alternative approaches
(including robust techniques) are also discussed.

The most important concepts are demonstrated with the aid of numerical examples. These
examples will be highly appreciated by all readers who wish to implement some of the computational
procedures. Sl-units have been used in these examples, with two exceptions: the four hundredth
part of a circle is called "grad” rather than "gon" (or centesimal degree), and the ten thousandth part
of a grad is defined as a centesimal second (1cc) rather than 0.1 mgon (one second of arc (1")
corresponds to 3cc or 0.0003 grad).

The editor is greatly indebted to B. R. Harvey and W. Haen for their assistance in proof-reading as
well as for their valuable remarks and to K. Kovacs for the careful layout of the book. Comments on
errors in English expression or on printing errors are welcome and should be addressed to the
editor.

It is the editor's belief that this monograph will greatly assist students in their studies on network
design, network analysis and deformation measurements and that it will enable practising surveyors
to upgrade the analysis of existing deformation measurement schemes to present standards.

J. M. Rueger

January 1987
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1. INTRODUCTION

The theory of deformation analysis has become popular during the last decade. However, the
demand for deformation analysis is much older. First applications date back to the early twenties of
this century. Geodetic methods for the determination of displacements and deformations of large
dams were first applied in Switzerland. Extensive literature exists on measuring methods and
equipment. A rigorous analysis of the measurements became feasible only recently with the
advent of modern computers. These permit data processing using sophisticated mathematical
models and are capable of dealing simultaneously with large numbers of observational data. The
development of new and improved instruments of significantly higher accuracy has also opened

new fields of application.
Today, deformation analysis is mainly applied to:

- recent crustal movements

- slope creep studies

- glacier and shelf ice movements
- ground subsidence

- deformation of man-made structures
The purpose of the monitoring of deformations usually is:

- establishment and/or verification of hypotheses in geophysics, geology, glaciology and
engineering sciences

- assessment of safety and performance of engineering structures

- protection of the population from hazards caused by rock slides, slope creep and
engineering structures

- determination of the responsibility for damages caused by mining, tunnelling and similar
activities

This monograph treats methods of monitoring deformations based on repeatedly observed
geodetic networks with emphasis on modelling, processing and evaluation of geodetic
observations. Other methods using special instrumentation (pendulums, clinometers,
extensometers, thermometers, pressure or strain gauges) or close-range and aerial
photogrammetry are important as well. The analysis techniques are similar to those outlined here,
so that no specific reference must be made.

The object or area under investigation is usually represented by a number of points which are
monumented or marked durably. Geodetic observations transform the cluster of points into a
geodetic network. The selection of points is, in most cases, governed by the topography or the
structure of the object. The question of the number of points necessary strongly depends on the
object and on the deformations anticipated. It is not possible to establish a general rule. An
interdisciplinary approach to this problem should always be aimed at. Usually, two types of points
are considered, namely reference points and object points. Two typical examples are depicted in
Figures 1.1 and 1.2. In the first case, the network consists of a reference and an object part. The
determination of displacements of the object points relative to the reference is the goal of the
analysis. In the second case, only object points exist. The network is divided into two sub-nets, by
a geological feature. In this case, only relative displacements between the blocks of object points

can be determined.
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Figure 1.1: Monitoring network consisting of a reference network and an object network.
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o

Figure 1.2: Monitoring network consisting of object points only, separated into two blocks
by a geological fault.



To investigate the deformations of an object or an area the geodetic observations are repeated at
different epochs of time. The observations of each epoch are adjusted independently. From the
coordinate differences between the epochs the parameters of a deformation model are estimated
and conclusions on the object deformations are drawn.

Theoretically, all observations of one epoch are carried out simultaneously. Since it is impossible to
meet this condition, deformations taking place during the observation period need to be
accounted for. If the rate of the deformations is small and the period of observation is short as
compared with the time between the epochs, then the effect can be neglected in most cases.
Otherwise, and especially in the presence of fast deformations, the observations must be centred
to a common date and/or time.

The deformation analysis is carried out in consecutive steps which depend on the expected
deformation pattern and on the type of network.

If the network comprises reference and object points (Fig. 1.1), the main steps are:

1. Screening of the reference points and elimination of unstable points.

2. Screening of the object points for single point movements, omission of the respective
points or modeling of their displacements.

3. Design of a deformation model comprising rigid body movements and object deformations.

4, Verification of the model by statistical tests.

If solely object points are given (Fig. 1.2) or if, by the nature of the problem, no clear distinction
between reference and object points is possible, the procedure starts with step 2. In this case it is
not possible to model absolute rigid body movements in step 3.

After the first repetition of the observations, when two sets of geodetic data are available, a two-
epoch analysis is carried out. The models used in this case are either static or dynamic. The former
adopts a pure geometric point of view and provides the result in form of displacement vectors. The
dynamic model links the displacements to their underlying forces. The result of this analysis is
usually the basis for decisions on the suitability of the established network and on the frequency of
future measurement epochs. Further two-epoch analyses are usually carried out after each new
epoch.

When three or more measurement epochs are available a multi-epoch analysis can be carried out.
The applied models are either kinematic or dynamic. The kinematic model does not include forces.
It describes the deformations by means of displacement velocities and accelerations.

The deformation analysis is a powerful tool in investigating the stability of objects. But one must not
forget that the results are always derived from carefully and accurately taken observations.

As the signal to noise ratio is small in most problems one has to be very careful in assessing the
quality of the geodetic observations and in specifying the mathematical models for the network
adjustments and for the deformations. All inaccuracies of the model, especially undetected
systematic and gross errors in the observations, as well as incorrectly evaluated a priori variances will
lead to apparent deformations contaminating the result. Therefore, it is of prime importance to
employ all known methods which can contribute to the development of a realistic model.

Accordingly, the next Chapters will present in detail the main tools and techniques of design,
optimization and verification of the pertinent mathematical models after the algebraic and statistical
foundations have been introduced. This sequence frees the subsequent treatment of the
deformation problem from distracting mathematical and statistical derivations.
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2. THE GAUSS-MARKOV MODEL (GMM)

21 Basic Assumptions

The GMM is a linear mathematical model consisting of functional and stochastic relations. It relates
the stochastic observations J; to fixed parameters Xj. In matrix notation it takes the following form:

E() = AXx or I=AXx+€
(2-1)

Eeg) = T = 0,2Q

To apply this theoretical model to the estimation of parameters from real data, it has to be rewritten
in the form of a sample modeil:

l+v = AX, P=Q1 (2-2)

The symbols above have the following meaning:

! n - vector of observations

E()  expectation operator

X u - vector of unknown parameters
A n x u - matrix of known coefficients
€ n - vector of true (real) errors

> n X N - covariance matrix

0,2  apriori variance factor

Q n x n - cofactor matrix of observations
n x n - weight matrix of observations

v n - vector of residuals

The original observation equations in geodetic networks are usually non-linear, e.g.:

distance: E@) = \/ Ax2 +Ay2 +Cy

azimuth: E() = arctan (Ay/Ax) + C4

direction: E(l) = arctan (Ay/Ax) + 0 + Cp,

To obtain the linear form as required in the GMM, a linearization (Taylor series) is carried out. With ajj
= dlj/oxj the observation equations read:

ll +Vj = ai1X1 + ai2X2 +...+ aiuXu, ie [1,n] (2-3)



where the orientation (0) and correction (C) parameters have been eliminated. The derivatives ajj

are computed with approximate values of the parameters. Thus, the vectors of observations and
unknown parameters in Eq. (2-3) are computed as:

lj = observed minus computed value of observation

X estimated minus approximate parameter

The weights of the observations are calculated from:

pi = 0,2/02 (2-4)

where G2 is the a priori variance of ;. Correlations between observations are hard to estimate
realistically. Therefore they are usually ignored.

2.2 Parameter Estimation

It is known from experience that all observations contain errors. Therefore, it is impossible to get
the true values of the parameters of Eq. (2-1). It is assumed that the errors are random with
expectation zero. The number of observations is usually much larger than the number of
parameters of the GMM. Equation (2-2) then represents an overdetermined system of equations
and it is possible to introduce certain criteria in order to get optimal estimates of the parameters.
There are different possibilities to define the optimality of statistical estimates. In the most
frequently used approach, which shall be adopted here, an estimate is considered as optimal in the
statistical sense, if it is unbiased and has minimum variance:

E(ij) = X (unbiasedness)
Vie (1,u) (2-5)

min. (minimum variance)

]
»
]

(Note: The upside down A means "for all".)
The mathematical derivation, which can be found in textbooks on statistics (e.g. KOCH (1980,

Section 32), RAO (1973, Section 4a), SEARLE (1971, Section 3)), leads to the estimation
function:

% = (APA)-TAtP; (2-6)

being referred to as BLUE (best linear unbiased estimator). Under the same optimality criteria the
variance estimator yields:

sg2 = ViPv(n-u) (2-7)

being the BIQUE (best invariant quadratic unbiased estimator) of the variance factor 002.

The estimation method dates back to the early 19th century and was developed independently by
Gauss and Legendre. It is usually termed least squares (LS) method, as it minimizes the sum of the
squares of the residuals. The same estimators are obtained by application of the maximum
likelihood principle under the assumption that the observations are normally distributed, which is
symbolically expressed by Eq. (2-8):

I~ N(Ax, 2) (2-8)

where Ax is the expectation of / and Y, its covariance matrix.



Later, the following cofactor matrices will be needed:

Q; = (AtPA)T

Q, = Q-AAlPA)-1AL (2-9)
Q = ANPATA'-Q-Q,

where:
? = l+v

The derivations of these matrices are not given. They may be found in many textbooks on
adjustments (e.g. BJERHAMMAR (1973, Section 21), KOCH (1980, Section 32), RAO (1973,
Section 4a)) or derived by the reader using the following rules:

To obtain the cofactor matrix of a vector of functions y of a random vector I with known cofactor
matrix Q; :

1. express y as a linear (linearized) function of I :

y = BI (2-10)
2. apply the propagation law of variances:

Q, = BQt (2-11)

3. simplify the right hand side of Eq. (2-11) if possible.

Upon completion of the computations it is essential to check whether the numerical results conform
with the model or not.

2.3 Global Test of the Model

The principles of testing hypotheses are treated in Chapter 5 in some detail. In this context only
the global model test is introduced without giving the underlying statistical theory.

The criterion of the so-called null hypothesis of the global test is: "The model is correct and
complete”. This can be expressed as:

Ho © E(sp2) = G2 (2-12)
and leads to the test statistic:

T = viPvio,2 (2-13)
which, under H, has a xz-distribution with expectation (n — u):

T~ x2n-u) |H, @19

where:

is distributed as

under the condition that (H,, is true)



After selection of an error probability, typically &t = 5%, the value of the 2-distribution with n — u
degrees of freedom at 0% is read from a table. This value xaz(n — u} is then compared with T of
Eq. (2-13). Ii:

T <y2(n-u) (2-15)

the test does not indicate contradictions between the observations and the mathematical model.
A test cannot prove the validity of the model or the correctness of the observations!

In the opposite case (T > %2) it needs to be investigated why the model or the observations or
both are wrong. Further statistical tests can help in these investigations. Possible error sources
are:

(a) In the functional model:

- map projection (coordinate system)
- instrument (calibration parameters)
- gravity field

- refraction model

- time factor

Previously unmodelled effects can be considered by reduction or correction of
the observations or absorbed by an introduction of additional parameters.

(b) In the stochastic model:

- a priori variances
- correlations

A more realistic a priori covariance matrix might be required.

(c) In the observational data:

- gross measurement errors

- booking errors

- mistakes in identification of points
- unstable monuments

- centring errors

Screening of observations and residuals in combination with statistical tests can assist in
cleaning the data.

(d) In the computations:

- programming errors

- input errors

- numerical stability of matrix inversions
- accumulation of rounding-off errors

The use of independent programs can indicate whether problems of this nature exist.

The detection of error sources is usually rather cumbersome. But every effort should be made to
arrive at a mathematical model which approximates the physical reality with an accuracy
considerably better than the precision of the observations.
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3. GEODETIC DATUM AND INVARIANT QUANTITIES

From a mathematical point of view the geodetic datum problem can be considered as the result of
improper modelling. When using the functional model:

l+v = AR (3-1)

parameters need to be chosen which are computable from the observations. It is trivial that no
information on absolute heights can be expected if solely height differences are observed.
Everybody knows that it is impossible to produce coordinates, when the observations comprise

distances and angles only.

Nevertheless the unknown parameters in the GMM of geodetic networks are usually chosen to be
heights and coordinates and this is done with good reasons:

- the observation equations are straightforward and easily programmed for computer
calculation

- the covariance matrix of the parameters is a by-product of the parameter calculation and
thus easily obtained

- the result is clear and easily visualised, and it is suitable for subsequent processing and
documentation

In consequence it is necessary to look carefully at the so-called geodetic datum problem in order to
find out how the shortcomings of the mode! can be overcome.

Prior to the advent of modern computers the geodetic datum problem did not appear in the
context of adjustment theory. The condition method of adjustment was preferred because of the
typically smaller number of equations to be solved for. But the condition method proved to be less
suitable for programming, particularly, if distance measurements are involved. The datum problem,
of course, always existed but it was dealt with independently, outside of the adjustment
calculations.

Before going into details, two simple examples are presented to illustrate the situation. Figure 3.1
depicts the datum problem for a one dimensional (1d) network. Six height differences are
measured. The heights of the four points are chosen as the parameters of the GMM. As a
consequence the coefficient matrix A only contains three linearly independent columns. The

fourth column is a linear combination of the other three, i.e., there exists a vector A = (A{, Ay, A3,

Apt with at least one A; # 0, such that:

AL=0 (3-2)

This equation is the definition of linear dependency. The 4 x 4 - matrix of the normal equations
APA has a rank identical to the number of independent columns of A, i.e. r(AtPA) = 3, hence this
matrix is singular. It follows that no inverse exists and that it is impossible to estimate the heights
from Eq. (2-6). The rank deficiency (or rank defect) d of AIPA is the difference between the

dimension and the rank of the square matrix; here d = 1. The deficiency can be eliminated by
introducing information on the height system, i.e. by defining the geodetic datum.
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GMM: l+v=A%, P=1
Hi 1 H
Observation Equations:
l1 +Vy = —H1 +H2 * *
12+V2 = o +H2 4 —H4
13 + V3 = . + H2 —H3 .
l4+V4 = ° b +H3 —H4
15+V5 = +H1 4 —H3 .
15+V6 = +H1 * * "‘H4
Hs
Geometric Levelling
Coefficient Matrix A 6 rows (observations)
4 columns (unknowns)
-1 +1 . . = 6 x4- matrix A
. +1 . -1
L] +1 -—1 . M=0f0r?\4= (1;111:1)t
. . +1 -1
+1 . -1 . = rnA) =3 d=4-3=1
+1 . . -1
Normal Equation: AAZ—AU = 0 for P = 1
Matrix of Normals: AA = N
+3 -1 -1 —1 4 x 4 - matrix N
—1 +3 -1 -1
_1 - +3 -1 NA =0 ford=(1,1,1, 10
-1 -1 -1 +3

= IN=3 d=4-3=1

There is no matrix B suchthat: NB = BN = L
= N does not possess an inverse.
=  The normals cannot be solved for %.

Definition of a Reference System:

One translation in height.

Figure 3.1:  The geodetic datum problem in a 1d-network: The definition of the height system
is missing.
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Observations:

a. 8angles: a;
b. 6 distances: dj
C. 12 bearings: by
Parameters:

8 coordinates

GMM: l+v = A%, P=qQ
>y
Braced Quadrilateral
a. 8 x 8 coefficient matrix A, r(A) = 4 = d =8-4 = 4
b. 6 x 8 coefficient matrix A, {A) = 5 =>d =8-5 =3
C. 8 coordinates plus 4 orientation unknowns:
= 12 x 12 coefficient matrix A, r(A) = 8 = d = 12-8 = 4
Normal Equation: APAR — APl = 0, APA =N
r(A) = r(N) = N does not possess an inverse.
= The normals cannot be solved for X in the usual way.
Detinition of a Reference System:
two translations: ty andty
one rotation about z: ‘ ry
one scale if no distances are measured: S

Figure 3.2: The geodetic datum problem in a 2d-network: The definition of the coordinate
system is missing.
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The second example, given in Figure 3.2, illustrates a two dimensional (2d) network. If the basic
braced quadrilateral is considered with eight observed angles and if the coordinates of the four
points are the parameters of the GMM, then the coefficient matrix A has the order of 8 x 8 with the

rank being only r(A) = 4. The rank of APA is 4 as well. In this case the rank deficiency is d = 4,
hence it is necessary to introduce four independent quantities in order to define the geodetic
datum. In a 2d-network these datum quantities are two translations which locate the coordinate
system, one rotation to orientate it and, possibly, the scale. If the distances in Figure 3.2 are
measured, then the scale can be defined by them. In the same way the orientation of the network
can be introduced by measured azimuths.

The generalization to a three dimensional (3d) network is easily carried out. The maximal rank
deficiency is d = 7 in this case. Seven independent quantities are required to define a proper
reference system. This number is reduced, if the scale is taken from distance measurements and
the orientation of the z-axis from zenith angle observations.

The examples illustrate the meaning of the geodetic datum and they underline the importance of
properly defining a reference system if coordinates are chosen as parameters in the GMM.

In national survey control networks this was done when the first observations of the first order
control were processed; in Central Europe more than one hundred years ago. All subsequent
observations extending or densifying the national networks are related to the national datum by
observations connecting new points with already fixed ones. Since the coordinates of the old
points do not appear in the GMM, they are kept fixed and thus provide for the geodetic datum. The
model, therefore, is of full rank, and apparently one has not to deal with the datum problem. It
should be mentioned that this traditional geodetic procedure has been questioned during the last
decade. Some geodesists advocate a so-called dynamic network in which all positions are allowed
to change when new observations are adjusted. Thus the datum is variable (weak) and has to be
defined in each particular case.

The situation is similar when a special purpose network (e.g. for deformation analysis) is
established. The required accuracy is usually much higher than in the existing national control. To
adopt the national datum would therefore degrade the results. Independent networks are
therefore required. The datum is chosen in an optimal way depending on the purpose of a
particular network.

3.1 Conventional Selection of Datum

To define a reference system some datum parameters have to be fixed. The number of these
parameters equals the datum defect, as shown in the examples of Figures 3.1 and 3.2. The
conventional approach is as follows:

1d-network: A surface of equal potential is the reference. It is introduced by arbitrarily fixing the
height (gravity) of one point. In most cases the scale is taken from measured
height (gravity) differences. If the scale is also considered as a datum parameter
one height (gravity) difference is kept fixed, in addition to the fixed point. Other
special 1d-problems are an arc of directions to unknown stations, where the
direction of an arbitrarily selected station is set zero, and EDM-calibration lines
where all distances refer to one pillar, usually selected at one end of the line.

2d-network: A Cartesian coordinate system is defined by fixing the two coordinates of one
point and one bearing to a second point. If no distances are available, or if the
scale shall not be taken from distance measurements, additionally, one distance is
to be kept fixed. In the latter case four coordinates of two points may be fixed
instead.

3d-network: Here, a Cartesian coordinate system is defined by fixing three coordinates of one
point, one bearing and two zenith angles. If the scale is a datum parameter then
one distance is also to be fixed. Alternatively, the reference system can be
defined by the six coordinates of two points plus one additional element.
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If a non-Cartesian reference system is used its definition has to be looked at carefully. A variety of
different datum parameters may be necessary. This problem is not considered any further in this
context.

One important condition of the datum definition is that it must not affect the geometry of the net.
The relative position of the points shall be defined solely by the geodetic observations. The datum
shall not impose any strain.

3.2 Conventional Datum Transformation

A change of the reference system is easily possible by the application of a transformation which
retains the geometry of the network. Again, the number of parameters of such a transformation
must not exceed the datum defect. It also has to be a so-called similarity transformation. The
maximum number of parameters and their geometrical meanings are:

1d-network: d = 1(2) Note: The numbers in brackets refer
to the datum defect if scale is
t; = shiftin z-direction also a parameter.
(s = scale, in special cases only)
2d-network: d = 3(4)
ty = translation in x-direction
t, = ftranslation in y-direction
r, = rotation about z-axis
(s = scale, if not derived from distances)
3d-network: d = 6(7)
ty = ftranslation in x-direction
ty = translation in y-direction
t; = translation in z-direction
ry = rotation about x-axis
y = rotation about y-axis
r, = rotation about z-axis
(s = scale, if not taken from distances)

So far, the scale factor has been treated differently from the other parameters, because the distance
measurements contain information on the scale. A thorough investigation of geodetic observables,
which usually are used to establish a 2d-network, shows that some other observables also contain
information suitable for the definition of a reference system. The results are compiled in Table 3.1.
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Datum Parameter
Observable ty ty ry s
distance measurements - - - X
horizontal angles - - - -
arcs of directions - - - -
azimuth (astron., gyro) - - X -
positions (astron., GPS) X X X X
position differences (GPS, inertial) - - X X
Table 3.1: Datum information contained in geodetic observables.

3.3 Zero-Variance Computational Base

The classical way of defining the datum of a geodetic network is to delete those columns of the
design matrix A of Eq. (3-1) which refer to the parameters being kept fixed. If the model is
partitioned according to this concept, assuming that the parameters in question are in the last
positions of the parameter vector, the model takes the form:

1+v = (Aq:Ay) ( :; ) (3-3)

where the d components of X, shall define the reference system. The columns of the matrix A, are
linear combinations of those of Ay. Their number equals the rank deficiency d. The linear
dependency means that there exists a certain matrix L, such that:

A1L = A2 (3'4)

Rearrangement of Eq. (3-4) yields:
AL-A, = (A 'A)( L )—0
1 2 1-72

which is a generalization of Eq. (3-2), with I being a d x d - identity matrix.
Substitution of Eq. (3-4) in Eq. (3-3) gives:
L+v—-AqlRo = Aq%4 (3-5)

which is a model of full rank, showing that the approximate coordinates of X, remain unchanged.
The well known least squares solution of Eq. (3-5) for X, = 0 reads:

2° = (APA)A R % = 0

1 - 1 1 1 2 =

[o} t -1 _ ~
Q - (AteA)T, Q = 0 (36)
Q.°. =0
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Sometimes it is desirable to leave the values of o undefined which leads to the general solution:

{%1} (A11PA})TTALIP( — A{LRy)

{%}

P ~

X2 = X2

f(1° - Lf(2 (3'7)
for any %o

The cofactor matrices 021, ng and Q)»<1)~(2 are independent of the selection of values for X,; they

are the same as in Eq. (3-6). But, of course, the covariances strongly depend on the selection
of points whose coordinates serve as datum parameters. These points are sometimes called the

zero-variance computational base of the model. All elements of the covariance matrix 2;(1 are to be

considered relative variances in respect to the computational base. This approach has the
advantage of leading to a reduced order of the matrix of normal equations and thus saving
computer time and storage; but it is restricted to the special case of defining the datum by
determination of d components of the vector x.

A more general approach consists of constraining the GMM by d condition equations.

3.4 Datum Constraints
The constrained GMM has the form;

Ax = [+v
(3-8)

Rix = g, ¢ = constant

and leads to the well known normal equations:

(A‘PA R)(RJ (AfPl)
= (3-9)
Rt 0 k c

with k being a vector of Lagrangian multipliers or correlates. The u x u - matrix AtPA is singular with

rank deficiency d = u — r(A). R! has to consist of d linear independent constraints. For a 2d-network
with computational base given by points P; and Pj, according to Section 3.3, the classical approach

takes the form:

% = (X y1 X2 Y2 o X Y e XY o Xyz Yy
0 0 0 o0 +1 0 0 O 0 0

Rt = |0 0 0 0 0+ 0 0 0 0
0 0 0 O 0 0 +1 0 0 0
0 0 0 O 0 0 0 +1 0 0

if, as usual, the approximate coordinates of Pj and Pj are kept fixed, then c is a zero vector. This
approach has the advantage that it can be generalized easily. The only condition to be met by the

constraints is that they must provide a unique solution for the parameter vector & of Eq. (3-9). This
means, algebraically, that the bordered normal equations must be made regular through suitable

selection of Rt:
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AlPA R
r =u+d
Rt 0

In this case the usual inverse exists, yielding the following parameter vector:
% APA R \-1( Atp
- (3-10)
k Rt 0 c

The direct inversion of the normals given by Eq. (3-10) is numerically inefficient. Because of that
and also to achieve a better understanding of this approach to the definition of the geodetic datum,
a detailed derivation of the inverse block matrix is warranted.

From the definition of an inverse, MM—1 = M—1M = I, follows, with AtPA = N:

N R Q Q I, o
t 11 12 _ u (3-11)
R 0 Qo1 Qo 0 Id

where the inverse Q of the normals and the identity matrix I have been partitioned accordingly. The
multiplications in Eq. (3-11) yield the following four equations defining the blocks Qij of the inverse:

a. NQ-| 1 + RQ21 = Iu
b. NQ12 + RQ22 = 0
(3-12)
c. RIQ;y = 0
d. RtQ12 = Id

Since the n x u - matrix A has a rank deficiency of d, there exists an u x d - matrix S of rank d such
that AS = 0. Refer to the definition of linear dependency in Egs (3-2) and (3-4) in this context. The
matrix S is not uniquely defined because:

AS = 0 holdsforany S = ST

where T is an arbitrary matrix with d rows.

One selection of S is related to the matrix L of Eq. (3-4). The same partitioning is used as before,
namely A = (A : Ap), where A4 consists of r independent columns of A, while the remainingd =u —r

columns, being linearly dependent on A4, are combined in A,. The following relations hold:

I
Aq = AT
0
0 L
2 I 1 (0) (3-13)
AjL-A, = A L - A 0 = A L =AS =0
0 I4 Iy

Equations (3-13) show that:
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- (4

is one possible selection of the required matrix. For the following derivations it is not necessary to
know S explicitly; only its existence must be established. On the other hand, Eq. (3-4) can be
solved for L, yielding:

L = (AgtA)"TA1A,

so that S can be specified easily if so desired.

Premultiplication of Eq. (3-12a) by St results in:
SIRQyy = St =  Qy = (SR)1s (3-14)

The inverse of SIR exists because S and R have (by definition) full rank d. Consequently thed x d -
product matrix is regular.

Premultiplication of Eq. (3-12b) by St yields:
SIRQp =0 = Q=0 (3-15)

as SR is of full rank.

Postmultiplication of Eq. (3-14) by R gives:
Q1R = (SIR)1SIR = Iy = RlQyqt (3-16)
Comparison with Eq. (3-12d) shows that:

Q2 = Qp¢t = S(RIS) (3-17)

Premultiplication of Eq. (3-16) by R yields R = RR!Qq,. Combining with AS = 0 = NS leads to an
equation for Q{5 which does not depend on the matrix S:

(N+RRHQ;» = R = Q2 = (N+RRY)" R (3-18)
Considering Eq. (3-12¢), Eq. (3-12a) expands to:

(N+RRYQqy = I, —RQyq (3-19)
By definition, R consists of d linear independent vectors which are not linear combinations of the

rows of A. Hence the sum N + RR! has rank r(A) + d and is regular. Therefore the inverse of N + RRt
exists. Premultiplication of Eq. (3-19) by this inverse together with Eq. (3-18) yields:

Q11 (N + RRt)—1 (Iu - RQ21)

(3-20)

Qy (N +RRY)™ - Qq,Qp1

To obtain a more favourable expression for Q4 4, Eq. (3-12a) is postmultiplied by N leading to:

NQ{{N = N (3-21)
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where S'A! = SIN = 0 and Eq. (3-14) have been used. Equation (3-21) shows that Q41 is a

generalized inverse of N. (Refer to Section 3.11 for a definition of generalized inverses.).
Considering Eq. (3-12¢) it is possible to expand Eq. (3-21) as follows:

(N+RRYQ4(N+RR!) = N (3-22)

which, after pre- and postmultiplication by (N + RRY)~1, gives an expression for Qq1. The
expression for the matrix Qq4 is independent of S and demonstrates the symmetry of the result:

Qi1 = (N+RRY)=IN(N+RRY)-T (3-23)

The definition of a geodetic datum by use of the constraints R'x = ¢ leads to the general solution of
Eqg. (3-10) provided that Rt meets the two conditions:

i. Rt consists of d = u - r(A) independent rows

ii. the rows of Rt are not linear combinations of the rows of A, so that r(N + RRY) = r(A) + r(R) = u.

The solution yields:

% Qi1 Qq ([ AlP
k = Qo1 0 c

& = Qq4AIPI+ QqC (3-24)
k = QuqAlPI = (SIR)-1StAlPI = 0

with:
Q1 = (N+RRU-IN(N + RRY)-1 (3-23)
Q2 = Qi = (N+RRY TR (3-18)

From the propagation law of variances follows:

Qg = Qq1APQPAQq; = Qq{NQqq = Qqq (3-25)

3.5 Constraints for the Conventional Datum

To illustrate the results of the previous section the general solutions are now specialized for the
classical approach of selecting a computational base as discussed in Section 3.3. Arranging the
parameters so that the last d elements of X refer to the datum points, and partitioning of A and Rt
accordingly, yields:

A (Ag: Ay

APA = N = ( N11 N2 J (3-26)

Rt Naq  Npp

(0:1y)

where Nij = AitPAj. In conformity with Eq. (3-10) the general solution for the parameter vector is:
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%1 Ni1 Nip 0 Y1 ( Atpe
% | =] Npy Nop Iy APl (3-27)
k 0 Id 0 C

The block matrices of the inverse of Eq. (3-27) are easily computed from the relationships given in
Eq. (3-28), which is a modification of Eq. (3-11):

N1t Ni2 0 ) Qi1 Qq2 Qi3 I 0 0
Nat Npp Ig || Qo1 Qp Q3 | = | 0 Iy 0 (3-28)

Carrying out the multiplications according to Eq. (3-12) leads immediately to the result:

Qi1 Q2 Qg Nit Nig 0 )1 Ny~ 0 -Niy7'Ny2
Qo1 Qoo Qo3 | = Npy Ny Iy = 0 0 Ly (3-29)
Qz1 Q32 Qg3 0 Iy o0 -NpyN¢¢1 Iy 0

Substitution in Eq. (3-27) yields in agreement with Eq. (3-7):

%1 = Nyg7TA{PI-Nyy~INge
% = ¢ k =0 (3-30)
-
QA = N ’ Q“ = 01 Q* A = 0
x.| 11 x2 x1x2

This conventional solution for the geodetic datum problem is encountered regularly in the context
of special purpose networks. It has the shortcoming that the parameter vector % and its cofactor
matrix Q; depend entirely on the arbitrarily selected datum points.

Nevertheless, this approach is widely used because the numerical computations are easily carried
out and the interpretation of the result is straightforward. The estimation principles as introduced in
Eq. (2-5) are:

= min

Examining the results of a so-called "free network" as defined by Eq. (3-24) and using E(/) = Ax
from Eq. (2-1), shows that the estimates are biased:

E(f() = Q11NX+Q120 # X (3-31)
and that the cofactor matrix:
Q; = Qq1 = (N+RRY)IN(N+RRYT (3-32)

obviously depends on the choice of the constraints.
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3.6 Invariant Functions

In spite of the biasedness of the derived estimates there exist functions of X which are invariant with
respect of the constraints R and therefore BLUEs in the sense of Section 2.2, lt is easily shown
that these functions, say f = Bx, must meet certain conditions. Substituting Eq. (3-24) for x yields

for the estimate ?off = Bx:

f

fl

. t
Bx = BQ AP+ BQ,,¢c
E(f)

BE(X) = BQ11Nx + BQ120
Hence,

BQN = B and BQp, =0 (3-33)
are two conditions B has to fulfil so that f become invariant estimable.

If B is selected with its rows being linear combinations of the rows of A, i.e. B = GA, for some matrix
G, then both conditions are met.

GA = B

GAQq{N

GAQy GASRIS)™ = 0

where Q11N = I, — Qq,R from Eq. (3-12a) and AS = 0 by the definition of S.

Two important examples for invariant functions are the adjusted observations and the residuals.
The derivation is again based on Eq. (3-12a) and the definition of S:

A

! I+V = AR = AQﬂAtPl

E() AQ, APE() = AQ, Nx = Ax

t t
Q+ = AQNQ,A = AQ A

v = AR-1 = (AQqAlP-1)
E(v) = (AQqAPP-DE() = (AQ{{N-A)x = 0
Q, = (AQqAPP-T)Q(AQAP - It
Q, = Q-AQA
The cofactor matrices:

Qf and OV

are independent of the selection of the constraints R because products of the form HAQAK (for
any H and K) are not influenced by the selection of Q (compare Eq. (3-21)) if Q is a generalized

inverse of AIPA (for more details see Section 3.11).

Because the adjusted observations and the residuals are independent of R, if R is selected
according to the conditions given at the end of Section 3.4, the quadratic form viPv and the
variance estimate s,2 are also independent of R. Thus these quantities are invariants of the GMM.
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3.7 Minimum Trace Datum

The trace of a square matrix M is defined as the sum of the diagonal elements of M, written as tr M or
sometimes tr(M). If M is a covariance matrix, then tr M is the sum of all variances and can be
interpreted as a measure of the overall accuracy of the associated vector of random variates. Since
the least squares estimate of the parameters in a free network adjustment is neither unbiased nor of

minimum variance in general - in fact {X} = Qq4A!P/ + Qqoc defines a manifold of vectors - the
question arises whether there are reasons to prefer one of all possible vectors of {X}.

In the conventional approach, as outlined in Sections 3.3 and 3.5, the computational base is
selected on the basis of geometrical considerations or arbitrarily. Considering the general solution

of Section 3.4 it is possible to investigate if at least one unique vector exists in {X} with minimum
trace of the associated cofactor matrix. Thus the criterion below can be established:

trQz = tr(N+RRY"IN(N+RRY~1 = min (3-34)

where N = APA and & is any element of {£}. In Eq. (3-34) the matrix R of the datum constraints can
be varied within the range defined at the end of Section 3.4 to achieve the minimum of tr Q;. It

turns out that the matrix S defined in Eq. (3-13) leads to the desired result. This can be proved in
the following way.

o

Let: Stx =

0
d

with AS
r(S)

be the datum constraints. Then, according to Egs (3-20) and (3-23), the estimates are:

2 =y

X = QAP+ Qb (3-35)
— t—1 = =

Q= Q = (N+ss)7'-Q,,3,, (3-36)
Qs = (N +8sh)1-gslsy(sts) st (3-37)

where the bars denote quantities which refer to the special constraints R = S.

Postmultiplying Eq. (3-37) by (N + SS!) yields:

Q:N = I-g(sls) st (3-39)

2
X

where QgS = 0 from Eq. (3-12¢) and AS = 0. On the other hand, NQ;N = N (Eq. (3-21)) can be

expanded to (N + SSHQgN = N which gives after premultiplication by (N + SSt)~1 and substitution
in Eq. (3-39):

I-s(sts)-1st = (N + SSt)-IN (3-40)

Considering Eq. (3-23) Qg = (N + SSY~TN(N + SSY)~1 and Eq. (3-21) NQgN = N indicates that the
following relationship holds:

Qs = (N+Ssh)™ NQ, N(N + SS')" (3-41)

x
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where Qg refers to any properly selected set of constraints Rk = ¢. Comparing Eqs (3-40) and
(3-41) leads to the result:

Qs = (I- S(StS)_1St)Qi (I-s(sts)~'sY (3-42)
X

which expresses Q» as a function of S and Qi'
X

= Q.+ s<s‘sr1sto)23(s‘3)‘1st - Q)ﬁ(S*S)“St - S(StS)_1StQi (3-43)

Ensuring that:
trABC = trBCA = trCAB (3-44)
holds if the respective products exist, application of the trace operator to Eq. (3-43) yields:

rQ. = trQ, - tr(s's)"'s'a.s (3-45)
X X X

In order to prove thattr Qs < tr Q)‘( for any Qi it is sufficient to show that:
X

tr (S's)-1stQ;S = 0

It follows from the definition of S that S!S is a regular symmetrical matrix. Therefore, a
decomposition (e.g. Cholesky) exists such that:

sts = (stg)1/(stg)1/2)t (3-46a)
and, correpondingly:

(sts)-—1 = [(StS)“1/2] t(sts)—1/2 (3-46b)

Using Eq. (3-46b) it is possible to rearrange Eq. (3-45) as follows:

tr Qa trQ —tr (s's)™ /2StO§(S[(StS)_1/2] t

X

trQ, -tr FlQ.F (3-47)
X X

where Ft = (StS)~1/28t. The second term on the right hand side of Eq. (3-47) has the form of a
cofactor matrix of certain functions F!% of the parameter vector X. Consequently the diagonal
elements of FIQzF are all positive or zero and the trace must be positive. This gives the final proof,
that tr Qg is smaller than or equal to tr Q;; for all cofactor matrices Qg according to Eq. (3-25) with
equalityonlyforR = S.

The matrix S which yields this optimal solution is not unique. Any matrix of rank d, fulfilling the
condition AS = 0 is a suitable choice.

In the context of geodetic networks the matrix S is usually found by geometrical considerations.
An algebraical method more appropriate for computer solutions is based on the eigenvalues of the

uxu-matrix N = A!PA of the normal equations.

(N—}\.iI)Si =0 (3-48)
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In Eq. (3-48) 7Li is called the eigenvalue or latent root of N and s; is the associated eigenvector of N.

It is well known from linear algebra, that a square matrix of type N with rank r possesses r non-zero
eigenvalues associated with r linear independent eigenvectors s;. If N has rank deficiency d, then a

d-fold eigenvalue zero exists with d linear independent eigenvectors s;, which can be merged in an

u x d - matrix S, yielding one selection of constraints for the minimum trace datum. For A = 0 from
Eq. (3-48) the relation NS = 0 follows.

Some of the above equations become simpler and the numerical computations easier and more
stable if the matrix S is normalized to S,

S, = S(stg)-12 = SaiS, = Iy (3-49)

Eigenvalue (or spectral) decomposition routines are usually contained in algebra computer program
libraries. They provide the normalized eigenvectors. (Normalization is explained in Section 3.10.)

So far, it has been proved that the cofactor matrix Qg of minimum trace exists and is unique. But
the corresponding parameter estimate, Eq. (3-35):

A
- ——— t —
X = Q11APl +O12b

still depends on the arbitrary selection of b, namely the right hand side constants of the constraints
Sn‘§ = b. To select one set of constants, say by,, by a meaningful method, the criterion:

AA

1x1 =&'%"2 = min (3-50)

is introduced. This approach is reasonable if the approximate coordinates available are very close
to the optimal estimates. In this case the coordinate unknowns will be small.

The Euclidean norm (or length) of X in Eq. (3-50) becomes a minimum if b, = 0 is chosen:

= = ator R b= At =
X = (Q11API+Q12b)(Q11API+ 012b)

toald B at Al A 5 B
= IPAQ, Q. APl + 2IPAQ,,Q,,b + b'Q,,Q,,b

From Eq. (3-17) follows Q45 = Qp4t = S(S!S)~1 which leads after substitution to:

1% = I'PAGy1Qq1API + 21'PAT,1S(S'S) b + bl(s's) b

Use of Eq. (3-12¢c) Q41S = 0 simplifies the quadratic form to:
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&' = 1I'PAQy1Qq4AlPI + bYS'S) b

Since both terms of the right hand side are strictly positive, the minimum with respect to b is
attained, when the second term is zero. For the positive definite form matrix (S'S)~1 this requires
b, = 0.

Givenb, = 0 the norm of X depends on the selection of the constraints Rtk = 0. It can be shown

that the criterion tr Qg = min as introduced in Eq. (3-34) is equivalent to the condition || X|| = min.
Hence, both criteria require R = S and then hold simultaneously.

Summary:
In the GMM of a free network adjustment:

E() = Ax, X = 0,2Q, P=q
the least squares (LS):

viPv min

minimum norm:
X = min

estimate of the parameters with minimum trace of the cofactor matrix:
trQ; = min

is obtained by introducing the following constraints on the parameters:

Stk = 0
where AS = 0
S) = d
yielding:
X = QqAlP
(3-51)
Q; = Qqy = (N+SSH-INN+SSH-1

where N = APA and v =A%—1 The columns of S are the d linear independent eigenvectors
associated with the d-fold zero eigenvalue of N.

It should be noted that the matrix Q; = Q44 is not needed to compute the parameter vector, as it
follows from Eqs (3-14), (3-20) and from StAt = 0 that:

Qq4Al = (N+ RRY)-1At

Therefore, it suffices to invert (N + RRY-1 if no cofactor matrix is required.
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3.8 General Datum Transformation

In Section 3.2 the conventional datum transformation has been addressed without going into
detail. It has been pointed out, that a similarity transformation with d properly selected parameters
does not deform the shape of the network and, thus, is suitable to change the reference system.

In this section the transition from one datum, i.e. set of constraints, say R1">‘< = 0 to another one,

Ro!% = 0, is investigated. A linear transformation, namely the so-called S-transformation shall be

established, which provides the datum transformation without requiring a repetition of the inversion
of the u x u - normal matrix.

LetRy = B4S and Ry = B,S, where AS = 0 and S!S = Ij. Further let By and B, be selection
matrices which are diagonal and have coefficients of +1 or 0 only, with at least d elements being +1.
B obviously fills zeros in those rows of S which correspond to zeros of B and retains all other rows
leading to a special structure of R. Thus by simply changing B a variety of constraints can be
produced, for example:

1. B =1 =R =S = the minimum norm least squares solution.
0
2. B = = the conventional datum with the last d coordinates serving as zero-
Iy variance computational base.

0
3. B = I , k>d = asolution which minimizes the partial norm || X || consist-
0 ing of those k unknowns, which are indicated by the
block matrix Iy of B. At the same time the sum of the

corresponding k variances, i.e. the partial trace of the
cofactor matrix, attains a minimum.

It is possible to define any reasonable datum for a network adjustment by correspondingly
designing B.

The parameter estimate X4, associated with the constraints R1"x = 0, possesses according to Eq.
(3-23) the cofactor matrix:

021 = N+RRYINN+RRY (3-23)

A different set of constraints, e.g. thx = 0, yields the new parameter vector )”(2 with cofactor matrix
Q).(z. These two solutions can be connected by virtue of the relationship NO).(N = N of Eq. (3-21),

which is correct for any Q;(:

t,—1 t\—1
0;(1 = (N+R,R,) NQ).(ZN(N +RyR,) (3-52)

Since N and (N + R{R4!~1 are symmetrical matrices, Eq. (3-52) can be written as:

Qi1 = K1Q).(2K1 ! (3-53)

with the substitution:
Ki = (N+RyR{)-IN (3-54)

Equation (3-53) resembles the result of the general law of propagation of variances if applied to the
linear function:

A

X1 = K1 f(z (3'55)



26

In fact, it can be proved that this relationship exists. To demonstrate that Eq. (3-55) holds it is
sufficient to show that:

A t t
Xy = Q§1A Pl = K1O)~(2A P! (3-56)

is valid for any vector ! of observations. Considering that P is a regular matrix, Eq. (3-56) is
equivalent to:

Q, A' = K.Q A (3-57)
X1 X2

If Eq. (3-57) is premultiplied by (N + R{R4!) and the relationships Ry = B4S and S'A! = 0 are
employed then:

NQ§1At = Nof(2 Al (3-58)

is the result which is correct for any matrix Q; = Q44 as defined in Eqgs (3-12) and (3-21). Thus the

S-transformation is established which can be used to transform any solution %, Qg of the general
GMM into another solution based on the datum constraints matrix Ry = B4S. It is not necessary

to know the constraints which have been used for the original solution.  But they must be of type
R = BS as introduced in this section. The computation employs the equations:

% = Kyx (3-55)
Q, = KK, (3-53)
1
where:
Ky = (N+RqR{)~'N = I-S(R4!S)-R4t (3-54)

The second solution for K4 on the right hand side of Eq. (3-54) is computationally more convenient

than the first one. It only involves the inversion of a d x d - matrix while an u x u - matrix N + R{R4lis
to be inverted in the other case. This expression for K4 follows from Egs (3-20) and (3-23), in
combination with Eq. (3-17).

In the case where a second change of datum is required to meet the new set of constraints (for
example: Rolx = 0, Ry = B,S), it suffices to compute the new transformation matrix K, and to

apply Egs (3-55) and (3-53) on %4 or on X yielding the same result:

Koy = Kok

X2

t t
Qiz = K2C’>‘<1K2 = KQuK,

This outcome is due to the general relationship:
KKj = K
which can easily be proved for any K; and KJ- for which the definition of Eq. (3-54) applies.

On completion of the discussion of the datum problem, a numerical example follows.
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3.9 Example

In order to illustrate the results of the previous sections a simple example is presented. The various
solutions should be carefully studied by the reader. A levelling network similar to that of Fig. 3.1 is
selected. :

Iy = Hy — Hy = 12 mm
Ib, = Hg - Hy = 16 mm
I3 = Hy - Hy = 1.7 mm
lg = H3 - Hy = 12 mm
Is = Hy — Hy = 21 mm
lg = Hy — Hz = 13 mm

Figure 3.3: Geometric Levelling

As all points lie on a horizontal plane, they should have the same heights. The levelling lines are
nearly of the same length. The sample model according to Eq. (2-2) is:

GMM: I+v=A% Z=0.2 = P=1

The vector x contains the heights of the u = 4 points, hence the order of the design matrix A is
o(A) = 6x4. Itisknownfrom Fig. 3.1 that A hasrank r(A) = 3. Thus the rank deficiency of A is
d=u-r=4-3 = 1. Asitisassumedthatalln = 6 observations have weight P; = 1 the LS

normal equations take the form:

AAR- Al =0
with:
[ -1 41 0 0 ]
-1 0 +1 0 3 -1 -1 -1
-1 0 0 +1 -1 3 -1 -1
A = 0 -1 +1 0 , AA =N = -1 -1 3 -1
0 -1 0 +1 -1 -1 -1 3
| 0 0 -1 +1 |

As pointed out several times, it is not possible to solve the normal equations for X without defining a
height system. Five approaches are discussed:

a. Conventional datum definition by keeping the approximate height of one point fixed.
Refer to Sections 3.1 and 3.3. If point P is chosen as the datum point, then the first

column of A, referring to x4, is dropped yielding the 6 x 3 - matrix A, and the 3 x 3 - matrix
N of the normal equations with rank deficiency d = 0.
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[ 3 -1 -1 ] 7
+ 0 0 Ng = | =1 +8 =1 |, Ai=| Ib +y -l
0 +1 0 L -1 -1 +3 | L I3+l +lg
0 0 +1
Ay =| -1 #1 0 , - _
-1 0 +1 [ +2 41 41 ~2.1
0 -1 +1 Nal=141 +1 42 +1 |, Alt =| +1.5 | mm
| +1 +1 +2 ] | +5.1
Ra = N1AN
X1a = 0 = 0 (datum!)
X2a = T2y +Hlo 4z -y g « ) = +0.6mm
X3a = 1/4( Iy +2b +lg +ig . -lg ) = +1.5mm
24 = sl ly 4 423  + 45 +g ) = +24mm
v = Agkg—1
vt = (-06 -01 407 -03 -0.3 —0.4) mm
viv = 12mm2
52 = Wvn-u+d = —2 - 04mm?
6—-4+1
0 0 0 O©
1 0 +2 +1 +1 3 _ o2
Q’A‘at = 4|0 41 42 4 | T Q)’Ea = "/2: Z)‘Ea =8 Q)“ca
0 +1 +1 42

[ %a (R,1%,)172 = 2.89 mm

Zero-variance computational base by introducing the datum constraint Rx = 0. Refer to
Sections 3.4 and 3.5. If the height of point Py is chosen as the zero-variance

computational base, then the constraint referring to x4 takes the form: Ry, = (+1 0 0 0)t.

Naturally, the result using this datum definition must be identical to that of the previous
subsection (a), as P4 serves as the only datum point in both cases. A comparison with

Section 3.8 shows that Ry, is of the form: Ry = B,,S, where:

+1
By = 0 and St=(1111)

as pointed out in Fig. 3.1. It follows from AS = 0 and Eq. (3-48) that S is an eigenvector
associated with the zero eigenvalue of N.
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Eq. (323): Gy = (N+ RyR,) NN +R.RY™

[(44 1 -1 4 4 4 4
-1 +3 -1 - 4 6 5 5
N+RpRp! = | -1 -1 43 -1 |, (N+RR) 1=y 4 5 6 5
L -1 -1 -1 43 4 5 5 6
[ -y -1 -3 -4.5
+l1 —14 —15 -2.1
Al = o  +Hy g = +1.5 [ mm
L +13 +15 +16 +5.1
Eq. (3-24): &, = Q;(bAtl

It is easily verified that: )“(b = >“<a and Q;(b = Qg . Furthermore, vands 02 are identical for
a
(@) and (b).

Minimum norm: || X || = min, minimum trace: tr Qz = min solution. Refer to Section 3.7.
As mentioned before, N possesses one zero eigenvalue due tod = 1. The associated

eigenvectoris St = (1 1 1 1)yielding NS = 0and AS = 0. Normalization of S, as
defined in Eq. (3-49), results in:

Sc¢ = S92 = 1,8 = 1/5(1 11 1)t = S5, = 1

. -1 1
Eq. (3-37): Qq = N+S.S,)7" - 88,
[+13 3 8 3] 7 33 3
3 +13 -3 -3 37 3 3
(N+SSch =Ty -8 8 +13 -3 |, (N+SSH1 =T 3 3 7 3
| 3 -3 -3 +13 | 3 38 3 7
[ 483 1 4 ]
-1 43 A -
Q. = g -1 -1 43 |, Qg =3,
L 1 1 A 43
[ g ]
- ~1.125
R =, A1 =V e s = | 7953 | Ikl = 1.82mm
SHRAL = = | +0.375 o Rl =1
2 4 6 +1.275
L Hg Hp ]

The solution X, meets the constraint S_ 1%, = 0. A comparison with datum (a) shows that

the minimum norm and minimum trace solution in fact produces smaller values of norm and
trace:

IR0 < IR, and Q< Gy
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Datum definition by minimizing the partial norm ()?dth(d)“z = min and, simultaneously,

the partial trace tr BQQdB = min. Referto Section 3.8, case 3.

It the points P, and P3 are chosen as datum points, then the selection matrix B reads:

Bq = (0 I, 0) yielding: Rg=BsS=(0110)

The datum constraint Ryl = Oyields %, + %3 = 0.

Eq.(323): Q; = (N+R.R)'NN+R,R Y™
%4 4R aRd

[+3 =1 -1 -1 5 2 2 3
-1 +4 0 -1 2 3 1 2
N+RgRg! = | -1 0 +4 —1|, (N+RgRg)'=Tg |2 1 3 2
[ -1 -1 -1 43 3 2 2 5
(43 0 0 +1] trQg, = 1
Qgy = g 31 9 partial tr Qg = 1/,
L +1 0 O +3J
[ -1.05
- t -0.45 -
L +1.35

partial [|%,l| = 0.64

The result meets the constraint. The comparison with datum (a), (b) and (c) shows, that

the partial trace, i.e. the sum of the diagonal elements of Q " referring to )‘(2 and >“<3 is less
than for the other solutions, while the complete trace exceeds the corresponding value
of (c). The same applies for the norm of the parameter vector.
A note at the end of Section 3.7 states that:

X = QAPI = (N+RRY-1AtP;
It is suggested that the reader verify this relationship by simple computations for the datum

definitions (a) through (d).

Datum transformations according to Section 3.8. If the results & and Qg for one datum are
available then any other datum can be introduced by simple transformation.

Transformation from (a) to (c):

Eq. (3-55): % = K&,

Eq. (3-53): Q = KchaKct

o]

Eq. (3-54): Ke I-S(R.IS)-1R!
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The constraints for datum (c) are S = R, Rol = 1/2(1 1 1 1), the matrix S repeatedly
used in these examples is S = (1 1)1, hence:

RIS =4, =2, (RIS =1/

+3 -1 -1 -1 -1.125
-1 +3 -1 -1 A -0.525

Ke =Y4 | -1 -1 43 -1 |, K&y = | +0.375 | mm
-1 -1 -1 43 +1.275

Eq. (3-53) can be readily verified. Similarly, it can be demonstrated, that the result of the
transformation only depends on R, thus:

o _ " _ t
X, = chd and Qf‘c = Kchch

It is suggested that the reader transforms the results of (a) and (c) into (d) using the
transformation matrix K4. Furthermore the reader is encouraged to establish the relations:

KaKg = Ka KdKa = Ky
and
KaKch = Ka, KchKa = Kc

3.10 Datum Constraints for Geodetic Networks

The previous sections have shown that datum definitions for geodetic networks can always be
introduced by means of constraints. Furthermore, it has been pointed out (in Sections 3.7 and 3.8)
that geometrically meaningful datum selections are of the form Rix = 0, where R = BS, with the
mairix B selected according to the definition in Section 3.8 and the matrix S so that AS = NS =

In this section some previously mentioned methods and some special cases of establishing S shall
be presented.

The matrices S required for common surveying networks are well known. For a 1d-network, as
demonstrated in Section 3.9, one constraint is required due to the rank deficiency of d = 1. The
constraint has theformSt = (1 1 1 ... 1 )a, where a is any constant. To achieve numerical stability
for computer solutions, the matrix S is to be normalized, i.e. the length (norm) of the rows are to be
made equal to unity. The general method of normalization is:

b= (Sle)128t = gtg, = 1 (3-59)

where:

(StS)—1/2 = [(Sts)1/2]—1 and Sis = (StS)1/2[(StS)1/2]t (3-60)

The factorization of S'S according to Eq. (3-60) exists for all regular square matrices. (Only square
matrices are considered in this context.). The standard method is the Cholesky factorization,
available from major program libraries. In the special case of the one-dimensional network the

normalization yields:
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8! =L (111..1) (3-61a)
u

where u is the number of non-zero elements of S. For the datum of a 2d-network with a rank
deficiency of d = 4, four constraints are required. If the arrangement of the coordinates of the p
points is:

xt = (x4, y1, X2, Y2, .. Xp» Yp)

then:
+1 0 1 0 ...|=23%x=0
ot 0 +1 0 +1 ... |[=>Zf=0 (3-61b)
+X1 +Yq +Xo  +Yp oo d = X(EE+ 7i?i) =0

X; and ¥; are the approximate coordinates while %; and ¥; are the small corrections to be estimated.

The same arguments as for the 1d-network require a normalization of S. Usually, this is done in two
steps. The coordinate system is shifted first to make the origin coincide with the centre of gravity of
the network.

X, = xio-ino/p, ;Ii = yio—Zyio/p (3-62)

where x® and y;° denote the coordinates in the original system. As a by-product of this translation,
the rows sjt of St become orthogonal, i.e.:

sits = 0 for i #k (3-63)

Hence S!S is a diagonal matrix in this case. The normalization is therefore achieved very easily.
The matrix (S1S)~12 js a diagonal matrix with the reciprocals of the square roots of the elements of
S!S as elements. The matrix Syt computed from Eg. (3-59) is thus orthogonal and normalized or, to
use another term, orthonormal.

Geometrically, the two first rows of St take care of the translations in x and y direction. The third row
defines the rotation about the vertical axis and the fourth row adjusts the scale of the observations
to that given by the approximate coordinates. This interpretation coincides with the datum
transtormation according to Section 3.2. If some observations contain datum information (see

Table 3.1), then the corresponding rows of St are omitted.

This matrix of constraints St defines the datum such that the network determined by the
observations is positioned relative to the cluster of the approximate positions of the points and so

that the criterion X% = min is satisfied. The overdetermined similarity transformation, sometimes

called "Helmert-transformation” satisfies the same criterion; instead of % the discrepancies in the
identical points are introduced.

In this version all approximate coordinates contribute equally to the geodetic datum. If certain

points are to be excluded from contributing to the datum, the corresponding coefficients of St are
simply replaced by zeros. This is most efficiently done by use of a selection matrix B according to

Section 3.8.

A 3d-network has the maximum rank deficiency of d = 7, hence a 7 x u - matrix St of constraints is
required. Under the assumption of the coordinates being arranged as:

xt = (xq, ¥4, 2, X, Yo, Zp, .. Xps Ypr Zp)
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St has the form:

[ 41 0 0 41 0 0 = 3% =0
0 +1 0 0 +1 0 =2 =0
0 0 + 0 0 4 =2%=0
st = 0 +Z; Yy 0 +Z, -% = 2:(2i9i"7|2|) =0 (3-64)
-Z 0 +X% -Z, 0 +% = Z(X2-Z%) = 0
+7 %, 0 +Vp X5 0 S| = ZO&-%) =0
L +Xy 47 +Z4 +Xp  +Yp +2p A = ZES TG+ 22 = 0

The approximate coordinates X;, ¥; and Z; are again to refer to the centre of gravity of the network

followed by a normalization of St to achieve numerical stability. The computations are along the
lines described for the 2d-network.

The first three rows of St dispose of the translations along x, y and z, respectively. The next three
rows define the free rotations about x, y and z, respectively, and the last row defines the scale of

the network.

The remarks on the meaning and the possible modification of the datum selection given with the
2d-case apply here as well.

In photogrammetry and special fields of geodesy (e.g. satellite geodesy), the geometry of networks
may not be as clear as in the cases considered so far. Quite often it is not even possible to find the

rank deficiency d from geometrical considerations, let alone the matrix St. In these cases the
singular value decomposition (SVD) of the design matrix A is the most efficient method of finding d

and St. A description of the SVD is commonly given in linear algebra and is beyond the scope of
this monograph. The interested reader will find the necessary information in textbooks on linear
algebra. Computer routines for the SVD are contained in several program libraries.

An alternative to the SVD is the eigenvalue decomposition of N = APA as introduced in Eq. (3-48).
This method is numerically less stable than SVD and should be applied in the case of small matrices
only.

A further method of determining St is based on Egs (3-3) and (3-4). The matrix A = (Aq:Ay)is
partitioned such that r(A4) = r(A) and A{L = Ay, where the u —r = d columns of A, are linear
combinations of the r columns of A4, expressed by a certain matrix L. This can be expressed as:

AL-Ay = A (_}'d)=AS=O (3-65)

yielding:

S = L 3-66
= "'Id ( - )

L is not uniquely determined, but can be derived from A{L = As:

L = (A'GA¢)~1A,IGA, (3-67)
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The matrix G can be chosen arbitrarily, provided that r(A4) = r(A{!GA4) holds. A reliable approach is
to replace G by the weight matrix P. This leads to:

Ny4—IN
S = ( 11 12 ) (3-68)
_Id

which can easily be computed from the bordered normal equations (3-27) yielding the result of Eq.
(3-29).

3.11  Geodetic Datum Problem in the Context of Linear Algebra

In the previous Chapters the datum problem has been treated on the basis of geometrical
considerations wherever possible. The algebraic point of view has been neglected. This approach
is pertectly adequate for a geodesist who is mainly interested in applications. Application oriented
geodesists may therefore skip this section. This section will provide a broader view for those who
are interested in the wider mathematical background and who are familiar with the symbols and
terms of linear algebra.

1. The Regular (Cayley) Inverse
Let Abe areal matrix witho(A) = nxn, r(A) = n = 3 A1, o(A~1) = nxn, r(A-1) = n
such that:
AAT = ATTA = T, (3-69)

A-1is the unique regular inverse of A. (The symbol 3 is short for "there exists a ...".).

2. The One-Sided Inverse

Let A be a real matrix with o(A) = nxu, r(A) = min{n,u}:
. frA) =u<n = 3 A1, o(AL™") = uxn, r(A."") = usuchthat:
ATA =T, (3-70)
A ~1is a left-inverse of A, which is not unique, since:
A1 = (APAY-TAIP (3-71)
holds for any n x n - matrix P of rank n.
ii. frA) = n<u = 3 AR, o(Ag™") = uxn, KAR™") = n suchthat:
AART! = T, (3-72)
Ag~1is a right-inverse of A, which is not unique since:
Ag~1 = PAYAPAY-1 (3-73)

holds for any u x u - matrix P of rank u.
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The Generalized Inverse

Let A be a real matrix with o(A) = nxu, r(A) = r,r < min{n,u}, = I A~, o(A") = uxn,
r < rfA") < min {n, u} such that:

AA-A = A (3-74)

A~ is a g-inverse of A, which is not unique. Let A = QR be a rank factorization, so that
o(Q) = nxr, o(R) = rxu, r(Q) = r(R) = r,then:

A- = Rg~1Q; 1 (3-75)

is one selection of A™.

Linear Equations

Let A be a real matrix with o(A) = nx u and A~ any g-inverse of A, then the general
solution:

i. of the homogeneous equations Ax = 0 is:

x = (I-AA)z, with z arbitrary (3-76)
ii. of the consistent non-homogeneous equations Ax = y is:

x = A7y + (I- A—A)z, with z ambitrary (3-77)

The proof follows from premultiplication by A.

The Reflexive g-Inverse

Let A be a real matrix with o(A) = nxuand r(A) =r,r < min {n, u}, then a g-inverse A~ of A
is called reflexive g-inverse of A if:

rA) = r(A) (3-78)
For reflexive g-inverses the following statements hold:

AA"A = A and A"AA~ = A~ (3-79)
Any g-inverse of A is reflexive if it can be expressed as:

A~ = ATAA (3-80)

where A~ and Aj— are arbitrary g-inverses. Conversely, if two not necessarily different
g-inverses are used to form the product of Eq. (3-80) a reflexive g-inverse originates.

LS-Solution of Inconsistent Linear Equations
Let A be a real matrix with o(A) = nxu, r(A) = r u<nand let:

Ax <y (= means 'approximately’) (3-81)
be a set of inconsistent equations, then % is a LS-solution of Eq. (3-81) if:

|AR -y || = [(AX —y){A% —y)]"2 = min (3-82)
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Assuming Gy = X to be a LS-solution, then by definition of Eq. (3-82):
IAGy -yl < ||Ax-yl| VxeRY, ye RM

(The symbols V,e and IRi are short for "for all", "elements of ..." and "domain of all real
vectors of dimension i", respectively.).

Now, substitutex = X +w =
IAGYy-y || <[|AX+Aw-y]|
< || (AGy —y) + Aw ||
| AGy-yI2 < (AGy -y){(AGy - y) + WiATAW + 2(AGy — y)!Aw
This inequality is correct if the last term on the right hand side disappears.
(AGy —y)!Aw = 0 Vwe IRY, ye IR"

Hence, G must be such that:
GIAIA = A (3-83)

which is equivalent to the two relationships:
AGA = A and (AG)! = AG (3-84)

and which show that G is a g-inverse of A. G is usually called LS-inverse of A. Any matrix:
G = (AA-A (3-85)

belongs to the class of LS-inverses of A. G is not unique, as any g-inverse of A'A can be

substituted in Eq. (3-85). Consequently the LS-solution % is also not unique. In fact, any
vector of the set:

{x} = Gy+(I-GA)z, zarbitrary (3-86)
where G is given by Eq. (3-84), is a LS-solution of Eq. (3-81). The vectors A%, A% —y and

the residual norm || A% —y || are unique, which follows directly from Eq. (3-82). The set of all
LS-inverses of A, forming a subset of all g-inverses, is given by:

{G} = Gy +{I-G,AU, U arbitrary (3-87)

where G, is any element of {G} and U a matrix of suitable order.

Minimum Norm LS-Solution of Inconsistent Linear Equations
Let A be a real matrix with o(A) = nxu, r(A) = r £ u < n. Further, let:
Ax =y

be a set of inconsistent linear equations and {G} the set of LS-inverses of A. To obtain the
shortest solution vector (|| X || = min) from the vectors of Eq. (3-86) (being LS-solutions of

Eq. (3-81)), a specific LS-inverse G from the set of all LS-inverses (Eq. (3-87)) must be
selected meeting the condition:
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IGy Il < IR V %€ {8 andye R"  (3-88)
Substitution of Eq. (3-86) yields:

IGyIl < |IGy+(I-GAz| VyeR", ze R"

= IGyI? < IGyIP+Il I-GAz|P +2y'GI-GA):z

This inequality is fulfilled if the last term on the right hand side disappears.

yiGHI-GA)z = 0 Vze RRY, ye RD

Hence, G must be such that:

—t —_—t—

G =G GA (3-89)
which is equivalent to the two relationships:

GAG =G and (GA)! = GA (3-90)

As G is restricted to being an element of the set of LS-inverses of Eq. (3-87), it meets the

conditions of Eq. (3-84). Thus G, usually denoted by A*, is defined by the four well-known
Moore-Penrose conditions:

AATA = A , ATAAT = At
(3-91)
(AAHE = AA+ , (ATA) = A+A
and termed Moore-Penrose inverse or pseudo-inverse of A.
A* is uniquely defined by Eq. (3-91) and can be calculated from:
At = AA(AIAAIA)>-AL = AYATAAN-AL (3-92)

where the involved g-inverses can be any element of the set of g-inverses as defined by
Eq. (3-74).

Application of g-Inverses to the GMM
Let the GMM be defined as in Eq. (2-1):

Ax+e =1, X = E(ee) (2-1)
where the n x u - matrix A has rank r < u < n and the n x n covariance matrix X is of full rank.
In order to apply the results of paragraph 7 of this section, Eq. (2-1) needs to be
transformed into the form of Eq. (3-81), where y is a random vector with covariance-matrix

Zy = I. The transformation is based on the factorization of the positive definite matrix X
analogous to that defined by Eq. (3-60):

Y = 21/2(21/2)t’ -1 = (2—1/2)tz—1/2 (3-93)
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Premultiplication of the Eq. (2-1) by Z-1/2 and application of the law of propagation of
variances yield:

Z—-1/2ZX . 22—1/2&3 _ 2—1/21
Ax + i-: =y
EGE) - 5, - 2—1/2E(££t)(z—1/2)t

2—1 /2Z (2—1 /2)t -1

Zy
and hence the homogenized sample model:
AX = y+w, Zy =1 (3-94)

Eq. (3-94) can be solved for by the Moore-Penrose inverse A+:

X = Aty, w = AAty—y
(3-95)

Qf( = A+(A+)t
The parameter vector X of the homogenized model given by Eq. (3-94) is identical to that
of the original model in Eq. (2-1). The same applies for the quadratic form:
where 6,2 = 1. A comparison of the criteria for the solution of the linear model of

paragraph 7 of this section with those of Section 3.7, as compiled in the summary shows
that Eqs (3-95) are nothing else but the least squares solution for the minimum trace

datum.

This section demonstrates that the datum problem is not restricted to geodetic networks.
It is a more general problem of the singular GMM or of inconsistent linear equations with a
singular coefficient matrix. The general solution in Eq. (3-95) has the disadvantage of
being less easily visualized than the solutions of Sections 3.4 and 3.7 which are based on
constraints. A proper interpretation is therefore difficult.

Computation of a g-Inverse

Let A be a real matrix witho(A) = nxuandr(A) = r, r < u < n, then a simple method of
computing a g-inverse of A consists of three steps:

i partition A such that Aq4 is a rx r - matrix of rank r:
A [ A1 Aq )
Az1 A

ii.  compute Aqq~!
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form the matrix:

ATt 0
A= =
0 0

of order u x n, which is a reflexive g-inverse of A.

In practice, step (i) does not have to be carried out at the beginning, if an inversion
algorithm with pivot strategy is used; in such a case, the rearrangement of A is done
during the computations.

Exercises

To understand how the geodetic datum problem fits into the general context, show that:

vi.

Qq4Alis a LS-inverse of A for any properly chosen set of constraints Rix = 0.
Qq4Al = At for the constraints S!% = 0, AS = 0.
Q41 = N*forthe constraints S't = 0, AS = 0.

Compute A+, N+ and the set {x} of LS-solutions and the set {G} of LS-inverses for
the numerical example of Section 3.9.

Compute the g-inverses N1~ by rank factorization (sub-section 4), N5~ according to
sub-section 9 and show that N3~ = N{~NN,~ is reflexive.

Show that the matrices G; = NjAl, N; from (v), are elements of the set {G} of LS-
inverses of A.
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4. MEASURES OF ACCURACY IN GEODETIC NETWORKS

In many cases the deformations to be monitored by geodetic methods are small; they often are of
the same magnitude as the observational errors. The network design and the assessment of the
achieved accuracy therefore play an important role in deformation analysis.

Practical considerations require coordinates of points to be selected as the parameters in the GMM
of the adjustment of geodetic networks. The previous section demonstrated that the coordinates

comprised in the vector X as well as the corresponding variance-covariance matrix 2z are not

invariant quantities of the model; they depend on the selection of the geodetic datum. The fact
that these results are not unique causes some problems in assessing the precision of the adjusted
positions of points.

The u x u-matrix of variances and covariances contains the information about the accuracy of a
network:

s = 0,2Qg, rg) =r=u-d (4-1)

where Q; is defined by Eqs (3-25) and (3-23). In a free network 24 has rank deficiency d, hence d
columns of ¥; are redundant. There is an infinite number of ways of overcoming the redundancy,
each resulting in a different base of the corresponding r-dimensional vector space.

Many methods have been developed to cope with the problem of non-uniqueness, but none is
entirely satisfying. The situation is better if a comparison of two covariance matrices is aimed at.
There exist relative measures which are datum independent.

An additional but minor problem is the selection of the variance factor in Eq. (4-1). If the variances
of the observations are known and if the GMM is correct, then G2 is of course the factor to be
used. But quite often the a priori information is vague and the model is only the best available
approximation of reality. Then 802 as defined in Eq. (2-7) is preferred, provided that the model has
enough degrees of freedom, i.e. the ratio (n —r)/r is greater than 0.5.

It follows from Eq. (4-1) that there are three possibilities of influencing the accuracy:

i. The variance factor can be controlled by the selection of instruments and the repetition
number of multiple observations.

ii. The matrix A depends on the geometry of the network, i.e. the relative position of points
and the connecting observations.

iii. The weight matrix P contains the a priori weights which are functions of the type of
observables and the relative precision.

Chapter 9 is devoted to the optimal design of monitoring networks. There, these problems will be
addressed in more detail.

It is not practical to assess the accuracy of a network by inspecting or comparing the covariance
matrices, as the number of elements of the u x u-matrix X3 is too large. Therefore, the mass of
information must be compressed into one or few representative measures which can be assessed
easily. Alternatively, graphical methods can be developed which display the information comprised
in Xz, or at least an essential part of it. Unfortunately, both approaches lead to a loss of information.
IThus the purpose of the network must be considered, to ensure that the desired information is not
ost.
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4.1  Eigenvalue Decomposition
The fundamental approach to the analysis of covariance matrices is the eigenvalue decomposition
of 2.

If x is the u-vector of parameters of the GMM, % the corresponding least squares estimates and Xz
the covariance matrix of rank r, then the quadratic form:

(x—R)>em(x-%) = ¢ (4-2)
is the equation of a r-dimensional hyperellipsoid with centre in x. Y5~ is a generalized inverse of 2z
as defined in Eq. (3-74). Considering Eq. (3-21) the simplest selection of the generalized inverse
is:

34 = 1/0,2N, N = APA (4-3)
Under the assumption of normality (refer to Eq. (2-8)):

X~ N(x, X3) (4-4)
for 002 known, the quadratic form of Eq. (4-2) has a x2-distribution with r degrees of freedom:
(x=R)Eg(x— %) ~ %2 (4-5)

After selecting a specific probability, e.g. 1 ~ o0 = 95%, the corresponding value x21_a(r) of the

probability function can be calculated. This value will be exceeded only in 0% of all cases provided
that the underlying assumptions are correct. Thus the quadratic form:

(X —R)'Tg(x=%) = X24_o(0) (4-6)

can be interpreted statistically asthe equation of a (1 — o)-confidence hyperellipsoid in the r-
dimensional space. This hyperellipsoid is defined by its r semi-axes and their directions in space.
Since the lengths of these axes are proportional to the square roots of the eigenvalues of X ¢ and

since the directions are given by the eigenvectors, the importance of the eigenvalue
decomposition in this context is obvious. A more detailed interpretation of Eq. (4-5) follows in later
sections.

The basic eigenvalue equation is:
Xz ~ADs; = 0, ief1,2 ..,u) (4-7)

where ), is the i-th eigenvalue or latent root of 2z and s; its associated eigenvector. Since ¥y is

symmetric and positive semi-definite by definition, there exist r(Xg) = r different positive

eigenvalues and a d-fold (d = u —r) eigenvalue zero. Associated with these eigenvalues exist u
different mutual orthogonal eigenvectors s;. The homogeneous equation (Eq. (4-7)) has a non-

trivial solution s; if and only if the matrix (X3 — IA,) is singular, i.e. if the determinant is zero.

det (S —Ih) = 0 (4-8)

Equation (4-8) is called the characteristic equation of 33. The elements of this matrix are as follows:
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(O11-2) C12 C1y
] (Coo — A o]
det 21 2= 2 -0 (s
Ou1 O (Cuu—A)

The development of the determinant leads to a polynomial of u-th order in A; the so-called

characteristic polynomial. The solution for A, is simple for small number of u only. But efficient

algorithms for large u are available for all modern computers. Details on direct and iterative methods
for the solution of Eq. (4-8) can be found in textbooks on linear algebra.

Once the eigenvalues are computed the linear homogeneous set of equations (Eq. (4-7)) can be
solved for s; by standard elimination methods. Since s; is defined except for an arbitrary constant,

its normalized form is usually given:

llsill=(sis) 12 = 1 (4-9)

If a diagonal matrix A of the eigenvalues is formed and a u x u-matrix S of eigenvectors:

A= ) , S = (81, 82, ..., §) (4-10)

Ay

then the n equations (Eq. (4-7)) can be replaced by a single one:
23S = SA (4-11)

Under the assumption of the eigenvectors being normalized according to Eq. (4-9) and
considering the orthogonality of the eigenvectors, the relation:

Sts =8st =1 (4-12)
exists, yielding in conjunction with Eq. (4-11), a very compact form of the eigenvalue problem:
St3:S = A, Y5 = SAS! (4-13)
One property of the eigenvalues is of great interest in the present context, namely their invariance
with respect to similarity transformations. Thus conventional datum transformations according to
Section 3.2 do not change the eigenvalues and hence retain all measures of accuracy which are
based on them. A note of caution may be appropriate with regard to the general datum

transformation of Section 3.9; this transformation is not a similarity transformation in the sense of
linear algebra and consequently alters the eigenvalues.

Usually, the eigenvalues are listed in decreasing order, i.e. A4 > Ay > ... > A, which simplifies the
analyses which are often based on the extreme values only. Each pair of A;s; defines one axis of

the hyperellipsoid of Eg. (4-2) by means of the length of the semi-axis a; = / cA; and its direction s;.

More details follow in Sections 4.3 and 4.4. Some further properties of the eigenvalues A; of
special interest for the accuracy analysis, are given below.
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21 Aj = tr g H17»i = detZg (4-14)
= =
528,
=\ s; = eigenvector of Z¢ (4-15)
SitSi
12, f .
Min < < Anax Vie R (4-16)

i

Equation (4-14) states that the sum of all eigenvalues equals the trace of the corresponding
covariance matrix. The product of the eigenvalues symbolized by capital pi in Eq. (4-14) equals the
determinant, and Eq. (4-16), the so-called Rayleigh relation, serves to estimate the extreme values

of certain functions f'x of the parameter vector.

4.2 Generalized Eigenvalue Decomposition

The generalized eigenvalue problem can serve as a basis for the comparison of two covariance
matrices. Therefore, a short presentation may help the understanding of its use in Section 4.5.

If A and B are two quadratic matrices, the generalized eigenvalues A;and the generalized
eigenvectors s; of A in respect of B are defined analogous to Eq. (4-7) by:

(A-AB)s; = 0 (4-17)

For B = I Eq. (4-17) is reduced to the ordinary eigenvalue equation. If Eq. (4-17) is premultiplied by
B~1, supposing that B is regular, then the result:

(B-1A-N)s; = 0 (4-18)

shows that the generalized eigenvalue of A with respect to B is the same as the ordinary
eigenvalue of B-1A.

The same applies to the generalized eigenvector s;.

4.3 Local Measures of Accuracy

The term accuracy as a criterion of quality of a geodetic network is a rather vague one. In a general
purpose network, such as a national control network, another measure of accuracy is required than
in an engineering network serving a special purpose, such as the monitoring of deformations. A
variety of measures is in use reflecting different aspects of accuracy, all being derived from the

previously introduced covariance matrix (Eq. (4-1)) Xz = 0'020;(, where:
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(011 Qi Qy; Q1p
Q1 Qo Qg Qg Qz2p
Qg = o;1 Qz « Q o O - Qp (4-19)
Qr Qe Qi:i Qj Qjp
| Qo1 Qpz o Qpi - Qg - Qpp

is partitioned (in 2d-networks) in 2 x 2-block matrices, each referring to one point or a pair of points
according to:

qxxk quk qxxkl qukl
Quk = ‘ or Qq = (4-20)

qyxk Ayy

In the following a 2d-network in an x,y-coordinate system is considered; a generalization to other
frames or dimensions is straightforward. An immediate local measure of accuracy is the standard

deviation of the coordinates. In case of a known population variance (502,

Oy = O-QJQXX , Oy = co,’ny (4-21)

are readily computed, where the cofactors q are the pertinent diagonal elements of Q. Whenever
O, is unknown, the sample variance 302 is computed according to Eq. (2-7) yielding:

Sx = So,/qxx , Sy = So,’ny (4-22)

These standard deviations are often called mean square errors of the coordinates. Since the
assessment of the standard deviations depends on the redundancy of the GMM, it is strongly
recommended to replace Egs (4-21) and {4-22) by the respective confidence intervals. To this end
the probability distributions of the population and of the ratio (x — X)/s, is needed.

If a normal population is assumed (refer to Eqs (2-8) and (4-4)), then the difference between the
unknown parameter and its estimate:

(x=%) ~ N(0, Gy) (4-23)
is normally distributed according to Eq. (4-23), and the probability relationship:

P{Coo < (x=R)/0y < Copo} = 1-0 (4-24)
states, that the parameter x is (with a probability of 1 — ) inside the interval given by:

P{)?—szO'x <X <X +Cpo0y} = 1—-0 (4-25)
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A typical value is & = 5% for which the 0v2 point C 0 = 1.96 from tables of the normal distribution,
such that:

P{X —1.9604 < x < X +1.960,} = 95% (4-26)
defines the 95%-confidence interval for %, replacing the less informative measure of Eq. (4-21).

If, under the same assumptions as before, only the sample variance sx2 is known, a confidence
interval can be derived from the t-distribution:

(x—%)/sy ~ t(n—r) (4-27)

with n —r degrees of freedom. Analogous to Eqs (4-24) and (4-25) the probability statements can
be given as:

P{—tw2 < (X—)?)/SX < tw2} =1-0 (4-28)
P{f(—thsx < X< X +t(X/28X} =1-0 (4-29)

where the value t,,, depends on the confidence level 1 — & and the redundancy of the underlying
GMM. Tables of the t-distribution can be found in textbooks on statistics.

n-r 2 4 6 8 10 15 20 25 30 40 120 ©o

a=5% 430 278 245 231 223 213 209 206 2.04 202 198 1.96

a=1% 992 460 3.71 336 3.17 2.95 284 279 275 2.70 2.62 258

Table 4.1:  Values t,, for selected combinations of @ and n —r. The last column lists the
corresponding value C,» of the normal distribution.

In special purpose networks certain functions are often of special interest. Examples are the
azimuth and length of an axis for a bridge or a dam, or selected directions and distances being
sensitive to expected deformations. These functions f(x) of the parameters (x) must be linearized
1o yield a form:

f(x) = fo(x) +f1xq + X0 + ... +f X,
= fg(x) +fix (4-30)
which is suitable for the application of the law of variance propagation:

g = flQgf

O = G, /qf or Si = S /qf (4-31)

and:
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The population and sample standard deviations of the function are denoted by ©; and s,

respectively. The more informative confidence intervals of f(x) are easily established using Egs
(4-25) or (4-29).

In practice it is most popular to display the precision of a network by its 2-dimensional standard or
confidence point error ellipses. The terminology shall be clarified first: Standard ellipses are
generalizations of the standard deviation (refer to Eqs (4-21) and (4-22)) while confidence ellipses
are the 2-dimensional equivalent of confidence intervals (refer to Eqs (4-25) and (4-29)). The
ellipses are termed absolute if they refer to one point and relative if they refer to the position
difference of two points.

In Section 4.1 the quadratic form:
(x = RMEGx = %) = X21_or) (4-6)

has been represented as a (1 — a)-confidence hyperellipsoid in the r-dimensional space. Now,
specializing Eq. (4-6) for the 2-dimensional position of a single point Py and multiplying by 0'02
yields:

(x—RQ 1 (x=R) = 6x2x21_(2) (4-32)

This is the equation of an error ellipse with axes being functions of the eigenvalues and
eigenvectors of Q.

According to Eq. (4-7) the eigensystem is:
(Qu—Ails; = 0, i=1,2 (4-33)
and can be solved for A; by using the characteristic polynomial:

k_}h k

q q

det l: X K q kxy ] =0
yy -2

(axx® - x)(nyk -7 - CIxkayxk =0
which has the two roots:

A = 172005+ qp K+ 2)

Ao = 12(ax + QK - 2)

where:

22 = Qe — Ay 192 + 4y Kay K (4-34)

Substitution in Eq. (4-33) results in the equations of the orthogonal eigenvectors s; = (i1, Sip)t:

|
[e]

(Oxx™ = Aj)sig + qukSiz =
i=1,2 (4-35)

Ayx"Si1 + (AyyK=Asip = 0
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from which the eigendirections follow:

Si2
tan o; = P with o, = oty +90° (4-36)
i1

More convenient is the expression:
tan 200 = 20, K/(quK — ayy) (4-37)

where o is the direction (bearing) of the major semi-axis of the ellipse.

It has been assumed so far that the population variance 0'02 is known, hence Eq. (4-6) gives directly
the confidence ellipse, defined by the semi-axes:

2

a = G MY _ (2
(4-38)
b = o, x2x21 2

and the direction o from Eq. (4-37). For the most frequently used significance levels of 95% and
99% the values of ¥24_y(2) are 5.99 and 9.21, respectively.

The standard ellipse is derived from Eq. (4-32) by replacing the value of the 2-distribution by unity.
The definition then reads:

(x—R)1Qu 1 (x - %) = 0,2 (4-39)

This simplification does not affect the eigensystem. It only alters the semi-axes into:

a= 0'0,/7»1 and b = cmlxz (4-40)

The probability o that the true position of Py is within the ellipse as defined by Eq. (4-39) is only
39.4%.

Usually, however, the a posteriori variance or sample variance s,2 is the best estimate of the

dispersion of the observations. In this case the distributional assumption of Eq. (4-5) no longer
applies. The quadratic form now has a Fisher-(F-)distribution with two and (n — r) degrees of
freedom. This leads to the following definition of the confidence ellipse:

X =T (x = %) = 25,2F1_g(2, n—n) (4-41)

where Fy_y(2, n—r) isthe (1 — a)-point of the F-distribution. A comparison with Eq. (4-32) shows

that the same eigenvalues and eigenvectors apply; only the length of the axes of the ellipses
differ. The standard ellipse is again a simplification of Eq. (4-41), where 2F 1_, is set to one. The

elements of the sample ellipses are:
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confidence ellipse:

[
|

so\/27u1 Fi_g(2 n- r)'

So \/2?»2 Fi_ogf2 n— r;

tan 200 = 2qyy/(Qux — dyy)

o
|

(4-42)

standard ellipse:

a = so\/K_; . b = so\/z (4-43)

The probability, that the true point is inside the standard ellipse of the estimated point, is a function
of the degrees of freedom (n —r) and reaches its maximum of 39.4% for (n—r) =

Sometimes the ellipses are approximated by circular regions simplifying the required computations.
There is a variety of definitions of error circles derived from standard deviations or confidence
intervals either based on the population or the sample variance. The most commonly used error

circles have the following radii:

i. circular standard error, probability = 39%:
Sp = 1/2(sy +sy) (4-44)
ii. circular probable error, probability = 50%:

iii. mean square positional error, probability depends on the ratio Sx/Sy (Helmert's point error):

sp=‘/s)(2+sy2 =y a?+b? =so,/7t1+7» = s, /terk (4-46)
iv. generalized point error, probability depends on the ratio Sy/sy (Werkmeister's point error):

) sonf MAp = s, Jdet O (4-47)

The absolute (point) error ellipses and the related circular regions have the disadvantage of
neglecting the inter-point covariances. This problem is partially overcome by using relative error
ellipses which express the relative accuracy of a pair of, mostly adjacent, points. The elements of
these ellipses are computed as outlined for the absolute ellipses with the only difference that the
cofactor matrix refers to the coordinate differences of the involved points:

w
it

Qi = Quk + Qi — Qu — Qi (4-48)
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Equations (4-39) through (4-43) apply for the computation of the axes and orientations of the
relative ellipses which are usually plotted around the midpoint of the line connecting the involved
points.

All measures presented so far suffer from being datum dependent. In the case of a conventional
datum the datum defining points are error-free, i.e. standard deviations, ellipses and circles vanish.
For all other points these measures increase with the distance from the datum points. This effect is
less pronounced with the relative ellipses and can be completely avoided with standard deviations
of functions, if solely invariant functions according to Section 3.6 are considered. The situation
changes completely if a minimum trace datum (see Section 3.7) is used. Then, all coordinates and
points feature measures of accuracy which grow only slowly from the centre of the network to the
boundary. They represent the so-called inner precision of the network.

The interpretation of the introduced local measures of accuracy is difficult and mostly not clear at all.
They can indicate weak zones in the network design and are an important tool for the comparison
between different designs and methods. The accuracy of a position, however, is only meaningful
as an accuracy relative to the geodetic datum. Therefore, a clear understanding is only possible if
the datum has been defined conventionally (Sections 3.1 and 3.3). In this case the standard
deviations, error ellipses and circles reflect the accuracy relative to the zero-variance computational
base.

Figures 4.1 to 4.5 show a selection of local measures of accuracy for different selections of the
geodetic datum. All plots are based on the same network design and the same set of observational
data. The extreme changes of the size of some ellipses underline how doubtful the commonly
used measures of positional accuracy are if no clear statement specifying the datum is added.
Since no better measures are available, geodesist have to live with this problem and should
exercise due care when assessing accuracy.

Scales:
0 10 20m
Network: t ) 1 J
0 1 2mm
Ellipses: L ] 1 -

Figure 4.1: Reference points of the monitoring network Montsalvens (compare Section 6.5).
30 observations, 18 unknowns, 4 rank deficiencies. 95%-confidence point error
ellipses from an adjustment with zero-variance computational base (Section 3.3)
P4, Po.
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Figure 4.2: 95%-confidence ellipses of the network of Figure 4.1 from an adjustment with
zero-variance computational base Py and P4. (Same scale as Figure 4.1.)

Figure 4.3: 95%-confidence ellipses of the network of Figure 4.1 from an adjustment
according to Section 3.7 (ir Q; = min). (Same scale as Figure 4.1.)
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Scale of Ellipses
0 1 2 3 4mm

L

\'\\\_-j 7 Datum So Sa Signature

[mm] { {mgon]
Fig. 61 | 0,65 | 046 | ———em
Fig.6.2 | 020 | 029 | ——————-
Fig.e3 | 0 [ 021

Figure 4.4:  Absolute and relative confidence ellipses (95%) of P and P of the network of

Figure 4.1 for the three geodetic datum as defined in Figures 4.1, 4.2 and 4.3.
The table shows the standard deviations of the distance (sp) and the bearing (sg) of

the line P3P.

NN Sx

/
l
(B .

Mean Sguare Posifional Error

Standard Ellipse

95% Confidence Ellipse —~ ——— Circular Standard Errer

————— 99% Confidence Ellipse —.—.— (ircular Probable Error

Figure 4.5: Different measures for the positional error of point P from the adjustment
according to Figure 4.3.



52

4.4 Global Measures of Accuracy

The most common global measure of accuracy is the average of all variances, namely the mean
variance:

LTS (4-49)

sometimes replaced by the mean point error:
S = 52‘/?

Unfortunately these measures, like the local ones, depend on the geodetic datum. The minimum
trace datum (Section 3.7) is preferred here, yielding an appreciably smaller number, characterizing
the inner precision. Nevertheless, for the comparison of network designs the mean variance
proves useful, if the adjustments are based on the same datum. The loss of information by
averaging can however lead to wrong conclusions. This problem is demonstrated with the aid of an
extreme example which also reveals the poor defintion of the term accuracy in the present context.
For the determination of a single point two observation schemes A and B are considered. The
scheme leading to the highest accuracy shall be carried out. For a decision based on objective
criteria the mean variance according to Eq. (4-49) has been calculated for both schemes. The
result is:

12rZ, = 1/2trX; = §

The conclusion, that both schemes lead to the same accuracy may be premature. The eigenvalue
decomposition of X, and X5 could show, for instance, that for A the semi-axes of the confidence

ellipse are equal: a =b =5, and for B very different: a=7,b=1. Figure 4.6 clearly shows that the
two schemes are certainly not equivalent irrespective of the same mean variance. But which
scheme is the better one? Another global measure of accuracy, favoured by many statisticians, is

the generalized variance which is based on the determinant of X:

=2 _u -
52 = Yfgers, (450)

It is defined as the u-th root of its value.

B

%

(X

Figure 4.6: ElipseA(a = b = 5) and Ellipse B(a = 7,b = 1) associated with the same mean

. -2
variance s;( = 25.
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Apart from being datum dependent, this measure is mainly ruled by the smallest eigenvalue of X4
(see Eq. 4-15). This property contradicts the general geodetic philosophy of worst case thinking.
For a singular X3 the determinant disappears and Eq. (4-50) becomes zero. In this case the

determinant is usually replaced by the product of the non-zero eigenvalues. The generalized
variance has a simple geometric meaning, since the determinant is proportional to the volume of
the ellipsoid or area of the ellipse.

The application of the generalized variance to the example introduced above (Fig. 4.6) leads to the

clear conclusion that scheme B is better than A, since S3XA) = 25 while 5¢2(B) = 7.

A measure of accuracy often recommended is the largest eigenvalue of T3. The motivation for this
measure stems from the following relationships. If:

g= ftX = f1X-| +f2X2+ +quu (4'51)

is a linear invariant function of the GMM, with the variance computed according to the law of
propagation of variances:

sa2 = flY.f (4-52)
¢ X

then the maximum value, which s§2 can reach for any vector f of coefficients, is restricted by Eq.
(4-16):

s? < Mfhmax (4-53)

where A, is the maximum eigenvalue of X;.

Since the worst case, namely the upper limit of the variance of any function, is usually of major
interest there are good reasons to introduce A4 as a measure of global accuracy, which is datum
dependent like all other measures.

If this measure is applied to the example introduced above (Fig. 4.6), it follows from Amax(B) = 49
and Ay a¢(A) = 25, that scheme A is better than B.

If the purpose of the network requires a homogeneous accuracy, then the difference Amax ~ Amin

can be used to judge the achievement of this goal. A small difference indicates that the error
hyperellipsoid is close to a hypersphere.

Datum tr Qg det Qg Amax Amin
Figure 4.1 0.802 1.43 E-14 0.641 0.0033
Figure 4.2 0.102 2.66 E-17 0.038 0.0021
Figure 4.3 0.061 8.14 E-19 0.020 0.0011

Table 4.2:  Global measures of accuracy of the network defined in Figure 4.1. The geodetic
datum of the three adjustments are shown in Figures 4.1, 4.2 and 4.3,
respectively.
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4.5 Comparison of Variance-Covariance Matrices

The scalar measures of global accuracy are necessarily rather course. Especially in the context of
optimization of geodetic networks, it is sometimes preferred to construct a criterion matrix which
represents the desired structure of the variance-covariance matrix. The comparison of the actual

matrix 2¢ with the artificial criterion matrix, for example on the basis of error ellipses, leads to an
assessment of the quality of the network.

For a general purpose network the criterion matrix is constructed so that all absolute ellipses are
circles of the same radius and that the relative ellipses, being circles as well, increase according to a
reasonably selected function of the distance between the two points involved. This
homogeneous and isotropic structure (Taylor-Karman Structure) is achieved either empirically or by
use of the theory of statistical vector fields. The datum problem appears here as well. It is essential
that the matrices being compared have the same geodetic datum. This can be achieved easily by
application of an S-transformation as outlined in Section 3.8 (GRAFAREND, 1984). The
comparison of variance-covariance matrices on the basis of local measures of accuracy (such as
error ellipses) is not satistactory because the correlations are not taken into account. A more
general approach is based on the generalized eigenvalue decomposition of Section 4.2.

If X5, Q, and X5, Qg are two sets of estimates of the parameter vector x with the associated cofactor

matrices belonging to different sets of observations or to two different network designs or where
one of the cofactor matrices is a criterion matrix, then a rule is desirable which allows the analyst to
decide which one of the possible relations between A and B is true:

precision (A) smaller or equal or larger than precision (B) (4-55)

The decision is simple if only one function y = fix is of interest. A comparison of the pertinent
cofactors f1Q,f and flQgf solves the problem. In the general case, where the overall precision

needs to be compared, all possible functions y; = fi’x must be considered. This leads to the
definition that A is better than or as good as B if:

flQuf < flQyt Vfe IRV (4-56)
holds. Rearrangement of Eq. (4-56):
Q- Qg)f < 0 Ve RY (4-57)

shows that Eq. (4-56) requires the difference of the cofactor matrices Q, — Qg to be negative semi-

definite, from which follows that all eigenvalues of the difference matrix are to be negative or zero.
A necessary but not a sufficient condition of this property is that all diagonal elements of Q, — Qg are

negative. It is important to note that the relationship tr A <tr B does not mean that A is better than
B in the sense of Eq. (4-56). In general it is necessary to compute the largest eigenvalue A, gy Of

Q, — Q. Equation (4-56) is correct if A4y iS less than or equal to zero.

Another possibility is to consider the quotient, which is always positive:

t1Q,f
k; = (4-58)

flQgt
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under the condition that fiQgf > 0. If:
ke < 1 VifiQef > 0 (4-59)

then the relationship of Eq. (4-56) is obviously valid and X, is more precise than Xg.
Equation (4-58) is equivalent to:

flQ,f — kflQpf = 1(Q, —kiQg)f = 0 (4-60)
This shows in comparison with Eqs (4-8) and (4-17) that Eq. (4-60) is only fulfilled if:

det (Q) —kQg) = 0

and, hence, if k; is a generalized eigenvalue of Q, with respect to Qg (see Section 4.2). This
propenrty of k leads to the following generalization of Eqs (4-15) and (4-16):

SitOASi
— = k (4-61)
S; Qgs;
e R; "ot
K < <k Vie RY|f'Quf > 0 (4-62)
flQyf

where s; is the generalized eigenvector of Q, with respect to Qg associated with the generalized
eigenvalue k;. Equation (4-62) immediately shows that X, with cofactor matrix Q, is more accurate
than Xz with Qg if the maximum eigenvalue of Q, with respect to Qg is less than one.

For more details on the construction of criterion matrices and on the comparison of variance-
covariance matrices the reader is referred to the literature, e.g. GRAFAREND (1984).
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5. GENERAL LINEAR HYPOTHESIS

The GMM as introduced in Chapter 2:
L+v = AR, T = 6,20, P=qQ (2-2)

is a set of functional and stochastic relationships based on observations, experience and
hypotheses, which represent the physical reality. For ease of computation and interpretation the
most simple model is usually aimed at. Quite often only a simple model is possible because of lack
of knowledge. Therefore it is always essential to consider and question the model assumptions
and to check how the model conforms with reality.

The global model test (Section 2.3) has been discussed previously as an example. It is based on
the comparison of 5,2 and 6,2 (see Eq. (2-12)) from which a y2-distributed test statistic has been
derived. In this chapter a verification or improvement of the parameter vector of Eq. (2-2) is aimed
at. This objective is very important, especially in deformation analysis, since errors in the model
tend to be interpreted as deformations and may lead to wrong and even dangerous conclusions.
Statistical testing is used as a guide for decision making.

The main questions to be answered are: is the parameter vector complete? Does it contain
insignificant components? Do the parameters meet certain conditions known in advance? Some

obvious examples are:

i. The vector of observations contains distances and zenith angles. Is it reasonable to
consider a coefficient of refraction and an additive constant?

ii. During a measurement epoch observations were taken on a site at two different dates. At
the second date the monument looked damaged. Has the control point changed its
position?

iii. Two epochs of deformation measurements have been carried out. The adjustments result
in slightly different sets of coordinates. Are the differences caused by significant
deformations?

iv. A number of points in an engineering network are to be situated on a straight line, a
construction axis for example. Do the estimated point positions meet the required
alignment precision?

As the testing of hypotheses is a statistical concept, knowledge about the statistical properties of
the estimates of the GMM is required. It is usually assumed that the observations are normally

distributed, which can be expressed as:
I~ N(Ax, %) (2-8)

since the estimators are linear with / as derived in Sections 3.6 and 3.7, Eqgs (3-32), (3-33) and
(3-51) the following distributions are assumed:

X ~ N(x, Zg)

(5-1)
% = 852N +RRY=IN(N + RRY)-1
v =N@O, I, Ty = Z-AXA (5-2)
1+v = N(AX, T;,,), Ty = AZGAl (5-3)

Prior to discussing the mathematical details a short summary of the fundamentals of statistical
testing and some necessary properties of the distributions of quadratic forms are given.
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5.1 Null Hypothesis and Alternatives

All hypotheses considered in this chapter can be put in the same form, so that a single testing
procedure can be applied to all cases. The general linear hypothesis as applied to the parameter
vector has the form:

Ho : Hx-g =10 (5-4)
where Htis a m x u-matrix with r(H) <m, 1 < m <u. Equation (5-4) represents m linear functions:

hix—g; = 0, ie{1,2 .., m (5-3)

which have to be invariant in the sense of Section 3.6. Hence the rows hit of Ht have to be linear
combinations of the rows of the design matrix A of the GMM, which, in turn, requires the existence

of some matrix L such that LA = H!. The vector g of Eq. (5-4) contains constants given by the
hypothesis. The formulation of a specific null hypothesis is the first step in the testing procedure,

followed by a transformation to the general form of Eq. (5-4). For example:

Ho: Xj—xc =0

From:
X = (Xq, X, s Xjy Xy Xfgo orns Xyt

follows:
ht = (0,0, .., +1, 0, -1, 0, ..., 0) and g=0

yielding in accordance with Eq. (5-4):
Ho: hix = 0

Consideration of a specific null hypothesis implies naturally an idea of what is true if H,, fails. This is

formulated as the alternative hypothesis, which is not always written down explicity but is kept in
mind by the person applying the test. Typical forms of alternative hypotheses are:

Ha: hix = g two-tailed alternative
hix > g
one-tailed alternatives
hix < g
hx=g=#g definite alternative

5.2 Test Statistics

The second step of the test procedure consists of the calculation of a suitable test statistic from the
GMM using the actual observations. The statistic is selected in such a way that its distributional
properties are known by definition if H, is true and that it is as sensitive as possible to departures

from H,. There is a large number of test statistics. When testing linear hypotheses in the GMM,
only four different types need to be considered, which are the most efficient ones under the
present assumptions.
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If: y ~ N, %)
z ~ NE, %)
are two normally distributed random vectors with expectation | and & respectively, then:
T, = (y;=M)/cy ~ N(0, 1) (5-6)
i
is normally distributed with expectation zero and variance 1,

T2 = (yi _n)/syi ~ t(f) (5-7)

exhibits Student's t-distribution with f being the degrees of freedom of the underlying GMM,
provided that y;and s, _are statistically independent:
|

Ta= (-, Ny -n) ~ x20) (5-8)

is xz-distributed withr = r(Zy) degrees of freedom, and:

(v-m'Z, " (y -
il T Fir,, 1) (5-9)

(z-8'Z, 'z -,

has a Fisher-distribution with ry = r(Zy) and r, = r(¥,) degrees of freedom if numerator and
denominator are statistically independent.

5.3 Risk Level and Critical Value

In a third step the very delicate selection of the risk level o follows. While the whole testing
procedure follows strict mathematical rules and, therefore, looks like a totally objective and rigorous

method, the selection of o is completely arbitrary. There is neither a right nor a wrong risk level, and

no satisfactory criteria or rules exist which can be applied. A decision on the risk level must be made
and must be made at this stage of the procedure; otherwise, the results of the subsequent

computations could influence the decision. Typical risk levels are & = 10%, &0 = 5%, 0. = 1% and
o = 0.1%, but any other number in this range can be justified equally. The fourth step of the test

procedure is the determination of the critical value of the test statistic for the chosen risk level «.

This is usually done by extracting the relevant value from tables or graphs of the distribution of the
test statistic. As shown in Fig. 5.1 it is important to distinguish between one-tailed and two-tailed
tests. The critical value is compared with the computed test statistic, followed by either a rejection

of the null hypothesis at risk o or, in the opposite case, to no rejection.
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Two - Sided Alternative One - Sided Alternative

Rejection |- NoRejecion —4 Rejection No Rejection —}« Rejection
|

|
| |
| |
| |
|

|
|
| f
| |

&2

E(t]Hg) E(tIH)

Figure 5.1: Rejection and non-rejection regions of one- and two-tailed tests with statistics
according to Eqgs (5-6) and (5-7).

It should be stressed that no test can prove a hypothesis. (The definitions of tests are not always
specific on this point.) The result of a test is either rejection or no rejection. In the latter case it is
not possible to prove a specific objection to the hypothesis. This does not testify that there exist
no other objections which have not yet been considered. If the null hypthesis is true, the

determined value of T will cause a rejection of the true hypothesis in & of all cases (see Fig. 5.1).
This erroneous outcome of the test is often called type | error of the test, which occurs with

probability o.. On the other hand it can happen that an alternative hypothesis is true although the
calculated value of the test statistic T falls in the region of no rejection (see again Fig. 5.1). This

erroneous result is called type |l error of the test and occurs with probability . This probability
depends on the density function f(t), the risk level oc and on the alternative hypothesis H,. Figure

(5.2) shows the relationship between o and 3.

Rejection —»fe— No Rejection __>F____ Rejection
L ftiHg) ! F Lt )
|
|
!
[
1
1 |
74 |
I
I A <
— O >
E(t1Hg) E(tIH) t

Figure 5.2:  Two-tailed test with risk level o and probability 3 of type Hl error for a definite H,.
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5.4  Some Properties of Distributions of Quadratic Forms

The distributions of the test statistics given in Eqgs (5-7), (5-8) and (5-9) depend on the statistical
properties of the quadratic forms involved. Although a rigorous derivation of these distributions is
outside the scope of this text, it is sometimes useful to have a rigorous definition of the underlying
theorems at hand. Therefore the basic theorems are given. Their proofs can be found in
textbooks on linear models such as RAO (1973) or SEARLE (1971).

Theorem 1: Lety ~ N(n, X), then a necessary and sufficient condition that the quadratic
formq:

g = (y-mAy-1) ~ %2
is: SASAS = SAS

where r = r(AY). If r(¥) = n then the condition reduces to:

A3A = A

Theorem 2: Lety ~ N(n, ), then a necessary and sufficient condition that:

(y=mA(y-m) and Ay
are statistically independent is:

YAXA1 =0

Theorem 3: Lety ~ N(M, X), then a necessary and sufficient condition that the quadratics:

gy = (y-MA(y-N) and gy = (y-MNAxly-1)
are statisitically independent is:

YA ZAE =0
The simplication for r(X) = n yields for the two last theorems:

A3As =0

Theorem 4: Lety ~ N(m, X) and gy = (y—m)"A¢(y-m) and gp = (y —M)!Ax(y — 7). If:

g =(y-mMAy-n) = gy +as

and: JAZAY = TAY
and: ZA1ZA1Z = EA-]Z
then: q ~ X2(), ar ~ X2(ry), ax ~ X2ro)

where: r = r(AY), ri=rA) and rp=rA2) =r1-r
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Theorem 1 gives the basic condition for the ¥ 2-distribution of a quadratic form and,
therefore, refers to the statistic Ty of Eq. (5-8). Theorem 2 provides the tool for testing the
required independence of numerator and denominator of T, in Eq. (5-7). Theorem 3
serves the same purpose for T4 of Eq. (5-9). Theorem 4 applies to the decomposition of
quadratic forms which plays an important role in testing linear hypotheses. As an example

for the application of the theorems the distribution of the quadratic form q = viPv (see
Eq. (2-7)) shall be investigated. According to Eq. (5-2) v has the Gaussian distribution

v ~ N0, X,), where 3, = ¥ -AX¢AL r(Z,) = n—r(A). Since P=Q1 and T = 6,2Q the
quadratic form can be expanded to:

0/0,2 = viz-lv (5-10)
It follows now from Theorem 1 that g/G,2 ~ X2 if:

EVZ‘1ZVZ‘1 T, = Z,2713,
which is easily verified by multiplication, hence proving:

-
ALY (5-11)
0,2

with: f=rE13,) = n-rA).

Linear Hypotheses in the GMM

The general linear hypothesis as introduced in Eq. (5-4) must be considered as a component of an
extended GMM:

AX +€, 3 = 0,2Q

)
Il

g = Hix

If Hy is true, then the relationship Hix — g = 0 applies. Since the least squares method only provides

the estimate X of the parameter vector x, there will be discrepancies between Hi% = § and the
constants g. If these discrepancies:

w = Hig-g (5-12)

have an expectation of zero (E(w) = 0) then there is no reason to reject H,. If in the opposite case
H,, is false, then significant deviations (E(w) # 0) from zero are expected.

When considering a single hypothesis H,, : hix — g = 0 the corresponding test statistic is computed

from the estimate g = htx which is distributed normally:

9 ~ N@, o5, 052 = hi3zh (5-13)
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Two cases need to be distinguished:
i. The a priori variance factor G,2 is the true variance of unit weight. The test statistic follows

from Eq. (5-6):

T = (G-g)og ~ N(©, 1) (5-14)

and the critical values are taken from the standardized normal distribution at a risk level o.

ii. The estimate s,2 of the variance factor is considered as a more realistic value and is used

for the test. Using Theorem 2 the independence of viPv and h% can be proved. Hence,
the conditions of Eq. (5-7) are met leading to:

T = (§-0)/sg, s§2 = so2hiQgh

T ~ t(n—r(A)) (5-15)

The critical value is taken from Student's t-distribution with n — r(A) degrees of freedom
using a risk level c.

If a composite hypothesis H,, : Hix — g = 0 is considered then a test statistic of type T4 (Eq. (5-9))
must be computed. It would be wrong to split H,, into single hypotheses and to repeatedly apply
Eq. (5-14) or Eq. (5-15).

The estimate g = H!% of the given vector g has the variance-covariance matrix 3g=HTgH. i Hyis
true, then the estimate is unbiased and distributed according to § ~ N(g, 2g). The distribution of
the quadratic form follows from Theorem 1 in Section 5.4:

aa = @-9'Qg7'(@-g) ~ o2Am) (5-16)

with m = r(H). Substitution of §— g = HY{(X — x) yields:

aa = (X = x)tHHQgH)"THYR - x) (5-17)

It can be readily verified with A = H(H!QgH)~1HY0,2 that the condition $3AT3AYs = ZAT; holds.

Furthermore, using Theorem 3, it can be shown that the quotients qA/Go2 of Eq. (5-16) and ¢/ 002
of Eq. (5-10) are distributed independently and thus meet the conditions of the test statistic of Eq.
(5-9):

g,/m

T= e F(m, f) (5-18)

The numerator and denominator are defined in Eqgs (5-16) and (5-11), respectively.

If Hy is true, then the test statistic of Eq. (5-18) follows the specified Fisher-distribution. Hence, the

decision is based on the comparison of T with the critical value F 4(m, f) for a risk level o as taken
from a table or graph of the F-distribution at m and f degrees of freedom.
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In this version of the composite test it is not necessary to know the true variance factor 6,2. Should
it be known then a more efficient test based on the statistic T4 of Eq. (5-8) can be employed:

T = gp/062 ~ X3(m) (5-19)

with g, and m as defined above. Here, the critical value of risk level &0 and m degrees of freedom of

the y2-distribution applies.

These tests of the composite null hypothesis H, : Hix — g = 0 are based on the following probability
relationships:

P(T>Fo(m, f) [Hp) =
(5-20)
P(T > %2(m) [Hp) = o

The above probabilities refer to the one-tailed test according to Fig. 5.1, i.e. the probability P, that T
is greater than the corresponding critical value in the case that H, is true, equals the type | error

probability ot.

5.6  Computation of Quadratic Forms

The composite null hypthesis Hx — g = 0 can be considered as a component of an extended GMM
as already stated in Eq. (5-12). It has the form of a set of conditions which must be met by the
parameters. Later, the influence of these conditions on the solution shall be investigated and the
algorithms derived which are required for the computation of the quadratic forms and the test
statistics according to Eqs (5-18) and (5-19).

Note: The meaning of the conditions Hx = g is conceptionally different from that of the
constraints Rix = ¢ of Chapter 3, which only serve to fix the geodetic datum. The
difference in terms of linear algebra is that the rows of H! are linear combinations of the
rows of A, while the rows of Rt are a complement of the rows of A in IRY. The conditions

Htx = g represent error-free information about the parameter vector. The constraints Rix =
c define a reference frame in which the parameter vector is located.

The normal equations of the extended GMM of Eq. (5-12) are:

NXy+Hk = API, N = APA
(5-21)

H'%, =4

where X, is the parameter vector under the conditions Hix = g. Using generalized inverses, the first
equation of Eqgs (5-21) has the solution:
%y = N(API - Hk) (5-22)

Since the parameter estimate of the ordinary GMM without conditions is % = N"AlPI, Eq. (5-22) is
equivalent to:

Xy = X—N7Hk (6-23)
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Substitution in the second equation of Eqgs (5-21) yields:
HIR—HIN-Hk = g (5-24)

Solution for k, leads to:
—k = (HIN"H)~Y(g - HIg) (5-25)

Hence, Eqg. (5-23) becomes:

%y = %+ N H(HIN-H)~1(g - Hg) (5-26)
and clearly shows the influence of the conditions on the parameter estimate.
The residuals of the GMM with conditions are:

vy = Axy- 1 (5-27)
leading to the quadratic form:

ay = (ARy— DIP(AR, - 1) (5-28)
The expansion of v; into:

vy = V+ ARy - %) (5-29)

demonstrates the contribution of the conditions to the residuals. Substitution of Eq. (5-29) in Eq.
(5-28) yields:

Gy = VIPV + (R — RIN(R, - %)

(5-30)

]

Qy = q+Qp

The second term on the right hand side is caused by the conditions. Using Eq. (5-26) it can be
shown that it is identical with Eq. (5-17). Rearrangement yields the computationally most

convenient equation for gu:
ga = (g~ HRHINH)~T(g - HIR) (5-31)

A solution for the extended GMM is not required for the testing of H,, if the solution X of the ordinary

model is known already. Equation (5-31) together with Eq. (5-18) or Eq. (5-19) establishes a very
efficient method of testing a composite null hypothesis.
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5.7 Example
Consider the levelling network of Section 3.9. Using the solution of version (a) based on a
conventional datum two different tests shall be demonstrated.

a. The null hypothesis states that points 1 and 4 have the same height:
HOZ X{ =X = X1—X4=0

hix =0 = ht=(1,0,0 -1; g=0

Hy : hix 20 = two-tailed test

Eqg. (5-13): § = h'g = —2.4mm

0.4 mm?2 has to be used. The test statistic

Since 0,2 is not known, the estimate s,2

follows from Eq. (5-15) with s§2 = sozthf(h

0.42/4) = 02; s5=+02:

A

T = (9-9)/s§ = —2.4/0.45 = -5.37

If Hy is true, then T has a t-distribution with 3 degrees of freedom. Some critical values are

(two-tailed):
o =10%, te(3) = £2.35
o= 5%, to(3) = £3.18
o= 1%, tx(3) = =5.84

The test statistic clearly exceeds the 5%-point but is just below the 1%-point. This result
stresses the importance of deciding on o before the computations are carried out.

b. The null hypothesis assumes that all points have the same height:
Ho: Hx=0 = g=0

-1 +1 0 0
Ht = | -1 0 +1 0
10 0 4+

Ha: Hx #0

Eq. (5-31): Hi% = (+0.6, +1.5, +2.4)' mm
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+2 +1 +1 +3 -1 -1
HIN-H = 17, | +1 42 +1 |, (HINH)™ = | -1 +3 -1
+1  +1 42 -1 -1 +3
Eq. (5-18): T = 1?'23 = 11.025

If Hy, is true, then T has a F-distribution with m = 3 and f = 3 degrees of freedom. Some
critical values are:

o = 10% Fo(3,3) = 5.39
o= 5%, Fo(3,3) = 928
o= 1%, Fo(3,3) = 29.46

Again, the test statistic falls between the critical points for 5% and 1%.

The tests do not depend on the geodetic datum, since Hix has the form of an invariant
function.

The matrix Ht for test (b) is not uniquely defined by H,. An alternative selection would be:

The outcome of the test is independent of the particular definition of H! provided that Ht
represents the null hypothesis.

The following null hypothesis is a typical application in deformation analysis.

Consider two epochs of observations of a monitoring network, and the respective free network
adjustments of Epochi (i = 1, 2):

with:

li+vi = Ax;, 3 = 0,°Q; Pi = Q!
. t 2

& = Q)‘ciAi P, Z*i = Sy, Q;(i

Soi? = VP, fi = ni—r(A)

Ho : Xy =xp = Hix =g

It
o

H = I =), X = (xq, X)t, ¢
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To compute the test statistic after Eq. (5-18) a common variance estimate s 42 = g/f and a common
cofactor matrix Qg is required. Provided that the two single epoch adjustments have been carried

out using the same a priori variance factor 0'02 and have been based on the same geodetic datum,
the variance can be pooled:

t t
s 2 _ V1 P1V1 +V2 P2V2 _ VtPV
0 f1 + f2 f

and the cofactor matrices can be merged to give:

The values of sc,2 and Q; are identical with the corresponding quantities of a combined adjustment
of both epochs.

The quadratic form g, can be computed from Eq. (5-31) as follows:

aa = (Rq = %)L ~DiQg(l: ~DI(%q - X2)
a, = (& -->“<2)‘(o,~(1 + O )y = %)

where any generalized inverse of the form matrix may be used. Under the condition that H, is true
(no deformations between the epochs) the test statistic of Eq. (5-18):

g,/m
7- 2

~ F(m, f)

So

has a Fisher-distribution with m = r (Qg



68

6. OUTLIER DETECTION

The classical theory of errors distinguishes random errors, systematic errors and gross errors.

The random errors are the unavoidable, usually small differences between the observations and
their expectations. They are unpredictable and follow statistical rules. Thus, only the average
behaviour can be expressed by equations and not the actual occurrence. For geodetic estimation
and testing procedures it is generally assumed that the random errors obey the normal distribution.

The systematic error or bias is defined as the difference between the functional model and reality.
Typical examples are insufficient reductions of the observations due to refraction, instrument
constant or map projection and omission of nuisance parameters. Theoretically it is possible to
eliminate the bias by refining the mathematical model. This can be done in two different ways:

i The bias is considered as a strictly functional part of the model, which is expressed by
fixed parameters or removed by reductions.

ii. The bias is considered as a stochastic effect which is accounted for by random parameters
or by a priori correlations between the observations.

The gross error is the result of a malfunctioning of either the instrument or the surveyor. Typical
examples are the incorrect reading or incorrect recording of results and the failure of the instrument
due to weak power supply or extreme environmental conditions. At least theoretically, gross errors
can be avoided by due care or they can be detected by carefully designed observation schemes.

This error philosophy is the key to the comprehension of adjustment models, but it is hardly helpful
in developing a strategy for the detection of gross errors in the GMM. The reason for this
shortcoming of the theory is the inability of separating the errors according to their classification in a
real world application. The estimation process provides residuals, which are a mixture of all error
types. Certain assumptions on the stochastic properties of the residuals are required in order to
deal with this problem. An outlier is defined as a residual which, according to some test rule, is in
contradiction to the assumption. This operational definition of an outlier allows for a test strategy
and a clear statistical concept, but it is only a relative definition, depending on the selected risk
level, the assumed distribution and the test procedure. Despite this fundamental difference
between the definitions of outliers and gross errors, it is naturally expected that the detected
outliers are caused by gross errors.

Whenever outlying residuals are detected, it is necessary to thoroughly check the records of the
observations in order to find out if a gross error can be traced. If no gross error can be found, the
corresponding observation is deleted and, if necessary, remeasured.

The approach to outlier detection is based on the well-known Gauss-Markov model. The first step
is usually a global model test. If this global test fails, procedures to flag erroneous measurements
follow.

6.1 Global Model Test

The global test of the model, as introduced in Section 2.3, is reviewed here in a concise form for
easy reference and completeness of the detection procedure.

GMM: l+v = AR, T = 0,2Q, P=Q1
(2-2)
o(A) = nxu, HA) = r <y, N = AlPA

The LS-estimates depend according to Chapter 3 on the geodetic datum. They are given by:

% = N-AP], Qg = NTN(N) (6-1)
v = (AN-AIP-TI), Q, = Q- AQzAt (6-2)

where N~ is any g-inverse defined by Eq. (3.74) and
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viPv

tPQ,PQ,P! = PQ,PI
(6-3)

vIPv/f, f n-r

$o2

Since all tests are based on statistical distributions, a reasonable stochastic concept must be
introduced. Normally the observations are assumed to be normally distributed:

I ~ N(Ax, X)
The above equation assumes the absence of systematic and gross errors. Solely random errors

are considered. From the law of propagation of variances and the linearity of the Egs (6-1) and (6-2)
follows:

X ~ N(x, 0,2Qy) (6-4)
v~ N, 6,2Q)) (6-5)
vIPv ~  6,2%2(f) (6-6)

The global model test questions the assumptions by comparing the a posteriori variance factor 502
with ,2:
Ho : The model is correct and complete; the
distributional assumptions meet the reality.

The test statistic follows from Eq. (2-13):

T = VIPV/G,2 = 15,2/0,2 ~ %2(f) (2-13)

6.2  Modelling Errors in the Observations

Should the global test indicate discrepancies between model and reality, and should these be
caused by the functional part of the model, then they could always be taken into account by adding

a vector A to the observations, leading to the corrected vector i :

i=1+A (6-7)

which brings the model in accordance with reality. The estimates in this corrected GMM are:

8 = NAPI+A) =% + NAPA (6-8)
v = v-Q,PPA (6-9)
viPv = vlPv + AlPQ,PQ,PA - 2A%PQ, Py (6-10)

Realizing that:
PQ, - PQ, = PQ,, EW =0, APv=0
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and assuming that v and A are independent leads after substitution of v = v + Q,PA into the most

right term of Eq. (6-10) to:

vIPV = viPv— AlPQ,PA - 2ATPQ PV
E@PY) = E(vPv) - E(AIPQPA)

62 = E(syd) - E(APQ PA (6-11)

The expectation of s°2, namely the variance factor computed from the incorrect model, is always

greater than or equal to the true variance 602, with equality for:

A=0 o Q/PA=0

that is:
E(sg?) = 042 VAeIR" (6-12)

The case of Q,PA = 0 occurs if A belongs to the null space of Q,P = (I - AQA!P), i.e. if A = Ag
for some vector g.

Thus the global model test cannot detect all errors of the functional model. It can never prove the
adequacy of the model! If A is assumed to be a deterministic vector then vth/cso2 has a non-

central x2-distribution with f = n - r degrees of freedom and a non-centrality parameter A:

H, : vIPViG,2 ~ x(f, ) (6-13)
A = APQPA/G,2 (6-14)
f(x?)
| ; py :
|
|

| :
! ]
I I
I ]
f :
! I
L |
|
[

- vtpy

- 50’

E(TIHy)=f E(TIHg)=f+ X

Figure 6.1:  Density function f(x2) under the hypotheses Hy and H for f degrees of freedom.

Full line: central 2-distribution for f = 4 and A = 0
Dashed line: non-central y2-distribution for f = 4 and A = 3
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6.3  Conventional Alternative Hypothesis

So far no specific alternative hypothesis to H, has been considered. From a large number of

possibilities, the so-called conventional alternative is selected. The conventional alternative
hypothesis is the only one for which a satisfactory but simple statistical concept exists.

Hy : One observation has caused the rejection of H,,.

In this case the vector A takes the form:

if the i-th observation is considered. The i-th unit vector (i.e. a vector with 1 in the i-th position and
zeros in all others) and the constant gross error of observation [; are denoted by e;and -A;,
respectively. Now Eq. (6-7) becomes:

I=1+A =1 +eA, (6-16)
where:

i =@, o .., & ., ' correctobservations

o=y, ., L=A, .., I) grosseror—Ajing;

eA = (0, 0, A, 0 )t correction

It the general estimation equations of the corrected model, namely Eqs (6-8), (6-9) and (6-10), are
specialized for this particular H, then the following equations are obtained:

=%+ N-AlPgA; = X+ N—a;p;; (6-17)
with a; being the i-th column of At and p; the weight of /; based on the usual stochastic model:
P = diag (p1, P2, - By - Pp)

The vector of residuals yields:

v = v-Q,PPeA = V- ayPid; (6-18)

where Qv, is the i-th column of Q,.

Equation (6-18) clearly shows the reason why the detection of gross errors is so difficult. The
whole vector of residuals is contaminated by A; and it is even possible that the effect of A; on
residuals other than v; is greater than that on v;.

The quadratic form changes to:
_t - -
viPv = vipy —Aizpi 2q\,i\,i - 2Aipiqvitvi
o = Else) -4 %ayy (6-19)

VIPViG 2 ~ 2t A) with A=A Zp; 2qvivi/002 (6-20)

where qViVi is the diagonal element of Ov referring to vi.
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The gross error —A; can be expressed as a function of the non-centrality parameter 7\4 of Eq. (6-20):

(6-21)

Atter these preliminaries three different methods of screening the residuals will be presented.

6.4 Baarda's Data Snooping

If the type I error is fixed at ¢ = ¢, and the type Il error at B = B, (refer to Section 5.3) for the test of

the residuals, then the non-centrality parameter A of the y2-distribution is solely a function of the
degrees of freedom f. The non-centrality parameter can be computed or obtained from tables or

nomograms of the non-central xz—distribution (see Figure 6.3). It is the offset of the expectation of
the test statistic under H, corresponding to the critical value:

X 2 (0

In other words, A is the offset of the expectation which the test statistic has to attain, in order that
the sample value exceeds the critical value with probability 1 — Bo- Denoting the boundary value A
by A this probability is defined by Eq. (6-22):

PO Ao) > X 20} = 1-Bo (6-22)

and depicted in Figure 6.2:

2
v ' Ao '
0,2 1 | I'
: | f=4
] ' /10=3
[
| 1
N / '
|
P % =~
ﬂO/ t
/ —_— X2= V PV
’f% f f - 6o?

T
1 A C 7 10

Figure 6.2:  Central and non-central )2-distribution for given o, B, and f:

C )
1-0, = f 1002(f)dX2, 1-B, = jf(xz(f, A) X2, ¢ =X 200 = x1_B02(f, A,)
[o] c o]
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The conventional alternative hypothesis assumes that one gross error exists. Hence, from A, for
f = 1 acritical value A,; can be computed for each observation. If a gross error reaches this value
Ay, then the probability of detecting this error is 1 — B, while the probability of rejecting a good

observation is .

Agi = — (6-23)

This critical error affects the vector of residuals:

Ao
AVO = qvipiAoi = qvi(so — (6-24)

QVivi

and the corresponding residual:

Avyi = Go, ’ }‘oqvivi (6-25)

BAARDA's test assumes that the residuals are normally distributed and that ¢, is known. It is based
on the standardized residuals:

uj = . = + i (6-26)
Oy c70\/av_iv-; Go_[Avy, Go
This equation can be written as:
uj = Uj + Au;
with obvious definitions of u; and Au;. The distribution of u; is given by:
uj [ Ho ~ N(O, 1); Ui | Ha ~ N(Au;, 1) (6-27)

The critical value:

of the standardized normal distribution depends only on 0. It will be exceeded with a probability of

1 - B, if a gross error A,; according to Eq. (6-23) occurs.

Some values of:

Jr
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for selected risk levels o, and B, and for f = 1 degree of freedom (one gross error is assumed) are
given in Table 6.1.

Bo Ol in per cent

in% 0.001 0.005 0.01 0.05 0.1 1.0 25 5
10 5.6 5.3 5.2 4.8 4.6 3.9 3.5 3.2
20 53 49 47 4.3 4.1 3.4 3.1 2.8
30 49 4.6 4.3 4.0 3.8 3.1 2.8 2.5

Table 6.1:  Values of | / Ao forot,, Boandf = 1. Refer to Figure 6.2 for definition.

For a better understanding of how data snooping works, it is helpful to express the gross error A;
as a multiple of the standard deviation of the corresponding observation:

Ai= Kkoi = koo / for (6-28)

Substituting Eq. (6-21) yields:

(6-29)

Therefore, a gross error of an observation /; has to reach a value of k,;o; to be detected with

probability 1 - B,. The value ky; solely depends on:
\/ 7‘0
from Table 6.1, the weight P, of the observation and the cofactor a4,y of the corresponding residual.
1

It is possible to compute these values prior to the execution of any observation to investigate the
feasibility of detecting gross errors in the respective GMM.



75

The risk level o of the f-dimensional global test of Section 6.1 must relate to the one-dimensional
test with type | error ¢, and type Il error 3, in such a way that a gross error A,j causes the test to fail
with a probability of 1 - B,. This is achieved by using the same Hg, i.e. the non-centrality parameter
Ao must be the same for both tests. This is symbolically expressed in Eq. (6-30):

Ao = Mat, Bo, ) = Ao, Bo, 1) (6-30)
Solution for o yields the type | error probability of the global test.  Since the explicit form of Eq.
(6-30) is rather involved, it is usually preferred to use nomograms. Figure 6.3 depicts a nomogram

for By = 20%. Additional nomograms may be found in BAARDA (1968).

Ao = Mo, Bo = 0.20,1} = Mo, B, = 0.20, 1}

w
10000) Ag @\ Aol 100%0] ug,
NG 2 “© O ” ~ T+
001 — al /bﬁ. /‘$ /\? /OE /; /N'V;S’ \‘::? ~ /\ ’.3' N A 001 40
’ 4 3
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Figure 6.3:  Nomogram for the determination of A, and Ug, @S functions of r,, and of & and

Xo2(f) as functions of o, and f, for Bo = 0.20. Similar nomograms for B, = 0.10
and B, = 0.30 may be found in BAARDA (1968).

01 = A, =170, u, =329

0

Example: 1000,

1000, = 0.1, f=20 = o =011, x 2(f)=20- 14 =280
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Based on 20 years of experience with data snooping (in the Netherlands, data snooping is a
standard requirement of the cadastral surveying regulations), BAARDA recommends that

probabilities of B, = 20% and O = 0.1% be used. Arisk level o = 1% corresponds roughly to

these values considering a degree of freedom of f = 20. Larger networks should be partitioned into
subnetworks of suitable size for this test.

6.5 Pope's Tau Method

Different to BAARDA's data snooping philosophy, POPE considers the true variance factor 6,2 to

be unknown in practice. Consequently, he does not apply the global test of Section 6.1. POPE's
approach is based on the Studentized residuals:

Vi / SVi

Unfortunately,

Vi and s"i

are usually estimated from the same data and are therefore statistically dependent. This means that
the t-distribution does not apply to this ratio. Instead, the ratio:

Vi / Svi

is governed by the rather involved T-distribution with f = n — r degrees of freedom:

vl [vil ’
T= — s —— -~ T, (6-31)

Tables of the T-distribution are not as easily accessible as those of the t-distribution. It is therefore
sometimes convenient to transform a T-variate into a t-variate and vice-versa (POPE, 1976):

Jt 14
Ty = ) (6-32)

f—-1 + t(f__-l)z

tt—1) for 1% < f (6-33)

Nomograms or tables of the t-distribution can then be used.

The null hypothesis of the T-test assumes that all observations are normally distributed with
E()) = Ax, so that the residuals of the LS-estimation in the GMM have an expectation of zero:

Ho E(v) = 0 Vie{1,2, ..,n} (6-34)

The conventional alternative hypothesis is:

Hy: one residual is an outlier.
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The probability of the type | error of the test, which consists of n individual tests, is usually chosen at
o = 5%. Arigorous computation of the risk level o, of the n one-dimensional tests is not possible,
as the residuals and consequently the tests are statistically dependent.

An approximate value for 0, ignoring this dependency, can be given as:

Op = 1—(1-0opt/n (6-35)

According to the rules of the test, H, is rejected for a residual vy, if the inequality:

T (f) (6-36)

k>

Tao/2

holds, which is a two-tailed test as defined in Section 5. The observation corresponding to the
tested residual is by definition an outlier and therefore a candidate for further investigation.

Data snooping as well as the T-method of testing are based on the assumption that just one
observation of the GMM is affected by a gross error. The whole theory breaks down, if the
observations include two or more gross errors. The following pragmatic approach, which usually
but not always gives the correct results, is recommended, if more than one test statistic T exceeds
the critical value of the one-dimensional test. The observation with the greatest test statistic is
discarded. The adjustment is repeated with the remaining n — 1 observations, leading to new

residuals and a new estimate s,2 of the variance factor. Thenanew 0., is computed and the test is
applied again with f — 1 degrees of freedom. This process is repeated until all outliers are flagged.

Both test strategies of Sections 6.4 and 6.5 have been applied extensively and proved to be very
useful in detecting and eliminating blunders in geodetic observations. This success is somewhat
surprising, considering the assumptions under which the methods have been developed:

i the observations are normally distributed,
ii. the GMM is perfect except for one gross observational error,

iii. the model is such, that the gross error maximises the test statistic of the corresponding
residual,

iv. the n one-dimensional tests are statistically independent.

6.6 Danish Method

The Danish method of treating outlying observations has been developed after a proposal by
KRARUP (KRARUP, JUHL and KUBIK, 1980).

It has been successfully applied in geodetic and photogrammetric adjustments for many years. The
basic idea is that large residuals indicate less accurate observations and vice-versa. Therefore after
a conventional LS-estimation of the parameters of the GMM, the a priori weights are replaced by
new ones being functions of the residuals. Then a new estimation is carried out and leads to new
residuals, from which again new weights are computed. This process of estimation and
modification of weights is repeated until convergence is achieved. Typically 5 - 10 iterations are
necessary. The Danish method is purely heuristic; there is no underlying probabilistic or statistical
theory, no assumptions are introduced with respect to the stochastic property of the observations
and, consequently, no statistical tests are carried out.
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Various reweighting functions have been proposed, which derive from the set of equations (Eq.
(6-37)) in most cases:

Pvit = Pyi(vy), v=12,..
(6-37)
( vy 1 J Py
1 for —————«<c¢
f(v,) %
V. =
A%
vy | f P,
exp - ——— else
CSg

Equation (6-37) defines an interval:

—C<v’p.I /S°<C

in which the a priori weights are maintained. The weights of all observations with residuals outside
this interval are reduced. The constant ¢ is usually selected between 2 and 3 depending on the
redundancy of the GMM and the quality of the data. The objective of the weighting strategy is to
reduce the influence of outlying observations on the estimates of the parameters and to obtain
results which are closer to their expectation.

All residuals greater than a selected boundary value are considered to indicate gross errors. The
corresponding observations are inspected thoroughly and, if justified, corrected. Obvious
blunders are deleted and, if necessary, remeasured.

This very effective and simple method of treating gross errors in the GMM deserves much more
attention than it has received in the past. It is closely related to the method of robust estimation as

advocated by HUBER (1964, 1981).
There are two alternatives for the final parameter estimation:
i. after discarding all outliers a new LS-adjustment with the a priori weights is carried out,

ii. the parameters of the last iteration step are regarded as the final and best estimates. No
observations are discarded.

It is stressed that none of the methods of outlier detection should be used as a black box which
automatically cleans the observational data if implemented in an adjustment program. All methods
should be used in an interactive mode with the computer flagging the suspicious observations, and
the surveyor deciding on what to do with them and how to proceed.

6.7 Example

The monitoring network previously introduced in Section 4.3 is used to demonstrate the methods
of outlier detection and localization. The monitoring network Montsalvens is characterized by:
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Montsalvens

Significance Level of Confidence Ellipses: 95%

cale of Network:
10 20m
| S E—

Scale of Elfipses:
0 05 1 15 mm
| NN R S |

Figure 6.4: Monitoring Network Montsalvens:

49 directions, 0 = 3°¢ (The dimension decimal second (1¢¢ = 0.1 mgon = 0.3") is
used here for convenience.)

6 distances, 0 = 0.3 mm;

24 coordinates; 5 orientation unknowns; 29 degrees of freedom; 3 rank
deficiencies; O, = 1°C.

, . 1 1 cc 2
weights: directions p= —, distances p = —— [——
9 P 9 P 0.09 [mm]

The adjustments are based on a datum according to Section 3.7 (tr Qg = min). The observations
are assumed to be uncorrelated.

i Adjustment with properly generated normally distributed observations (without gross
errors):

viPv = 2297, f = 29, s = 0.79

BAARDA's data snooping:

O = 0.1%, B, = 20% chosen for a single test. From the nomogram (Figure 6.3)
is taken:

,/xo =41, u =329, v2(29) = 365, o = 0.15

o]
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Global test:
tP 5
T-= % = 2297, Xo.1s (29) = 365
cO

Since T < xaz(f) the null hypothesis is not rejected and the assumptions of the

mathematical model are confirmed by the test. Hence no further data snooping is
required.

POPE's data screening:

Type | error & = 5% is chosen for the simultaneous test of n = 55 observations for
outliers. The type | error of the single tests is:

O, = 1-(1-0.05)1/55 = 0.00093 =~ 0.09%

Forf-1 =28 and , = 0.09% the value of the t-distribution is interpolated in

tables for the two-tailed t-test yielding t(f — 1) = 3.69. The critical value 1(f} is
calculated according to Eq. (6-32) resulting in:

T =3.08

The test stastic Tjis computed for all observations (Column 8 of Table 6.2) and

compared with T. Since none of the values exceeds T the absence of outliers is
confirmed.

Danish method:

The Danish method of Section 6.6 has been applied to the same data set with
¢ = 3 as the constant of Eq. (6-37). The residuals of this adjustment are listed in
Column 9 of Table 6.2. The comparison with Column 3, where the residuals of the
ordinary LS-solution are compiled, shows a perfect coincidence, confirming that
the Danish method yields classical LS-results if no gross errors are present.

Smallest detectable errors:

Independent of the actual occurrence of gross errors it is possible to compute
boundary values of errors which are just detectable if BAARDA's data snooping is
applied. Column 4 of Table 6.2 gives these values for the network Montsalvens
using the risk levels 0, = 0.1% and B, = 20%. Their effect on the corresponding
residuals can be seen from comparison with Column 5. In Column 6 the values k;
express the critical errors as multiples of the standard deviation. The interpretation
of these columns in conjunction with Figure 6.4 is obvious and indicates those
observations where gross errors are hardly detectable.

Adjustment using the same observations as under (i) except for two gross errors:

Observation No. 21 : A = 100 = 30¢¢

Observation No. 51 : A= 70 =21mm

Table 6.3 comprises all results of the three applied methods of data screening.



81

BAARDA POPE DANISH
No | fron to | LS| (€230 ) (625) 1 (629) (L) | (6-31) | meTHoD
V. A, Av ., k .,
i oi oi ol U Ti \

1 2 3 4 5 6 7 8 9
Directions In cc

1 1 2 0.76 16.40 9.34 5.5 0.34 0.38 0.76
2 1 13 0.40 15.76 9.72 5.3 0.17 0.138 0.40
3 1 14 1.90 13.99 10.95 4.7 0.72 0.81 1.90
4 1 3 -2,02 13.65 11.22 4.5 0.74 0.84 -2.02
5 1 9 -3.51 13.91 11.01 4.6 1.32 1.48 -3.51
6 1 4 0.42 14.07 10.89 4,7 0.16 0.18 0.42
7 1 6 -2.07 16.16 9.48 5.4 0.90 1.01 -2.07
8 1 7 1.70 35.05 4,37 11.7 1.60 1.80 1.70
9 1 10 -0.04 236.01 0,65 78.6 0.27 0.30 -0.04
10 1 11 -0.56 28.39 5.39 9.5 0.43 0.48 -0.56
11 1 12 3.03 16.91 9.06 5.6 1.38 1.55 3.03
12 2 1 0.67 19.41 7.89 6.5 0.35 0.39 0.67
13 2 10 0.21 41,00 3.74 13.7 0.24 0.27 0.21
14 2 1 0.49 28.38 5.40 9.5 0.37 0.42 0.49
15 2 12 -2.57 22.63 6.77 7.5 1.57 1.76 -2.57
16 2 13 -0.69 19.09 8.02 6.4 0.36 0.40 -0.69
17 2 14 -1.50 1h, by 10.61 4.8 0.58 0.65 -1.50
18 2 9 0.95 14,26 10.74 4.8 0.36 0.41 0.95
19 2 3 2.32 14.38 10.65 4.8 0.90 1.01 2.32
20 2 4 1.80 14,31 10.70 4.8 0.69 0.78 1.80
21 2 6 1.66 17.82 8.60 5.9 0.80 0.90 1.66
22 2 7 ~3.35 20.22 7.57 6.7 1.82 2,05 -3.35
23 3 1 -1.14 14.27 10.73 4.8 0.44 0.49 -1.14
24 3 10 -1.49 14.24 10.76 4.7 0.57 0.64 -1.49
25 3 2 2,00 14.51 10.56 4.8 0.78 0.88 2.00
26 3 11 ~3.29 18.91 8.10 6.3 1.67 1.88 -3.29
27 3 12 2.15 24.88 6.16 8.3 1.544 1.62 2,15
28 3 13 0.34 27.76 5.52 9.2 0.26 0.29 0.34
29 3 14 -0.01 30.96 4 95 10.3 0.01 0.01 -0.01
30 3 9 0.67 34,20 4,48 11.4 0.61 0.69 0.67
31 3 4 1,09 20.16 7.60 6.7 0.59 0.67 1,09
32 3 6 -1,66 18.20 8.4 6.1 0.81 0.91 -1.66
33 3 7 1.34 15.04 10.19 5.0 0.54 0.61 1.34
34 4 1 0.92 13.72 11.17 4.6 0.34 0.38 0.92
35 4 10 1.55 13.66 11.21 4.6 0.57 0.64 1.55
36 4 2 -3.51 13.60 11.26 4.5 1.29 1.44 -3.51
37 4 11 4.05 14.92 10.26 5.0 1.63 1.83 4.05
38 4 3 -1.29 15.49 9.89 5.2 0.54 0.61 -1.29
39 4 12 -2.78 16 .06 9.54 5.3 1.20 1.35 -2.78
Lo 4 13 -0.46 21.19 7.23 7.1 0.26 0.29 -0.46
L1 4 9 0.05 673.18 0.23 224.3 0.98 1.10 0.05
L2 4 14 -0.05 304.46 0.50 101.4 0.38 0.43 -0.05
43 4 6 -0.64 15.84 9.67 5.3 0.27 0.31 -0.64
Ly i 7 2.16 14.30 10.71 4.8 0.83 0.93 2.16
45 6 1 -2.42 16.11 9.51 5.4 1.05 1.18 ~2.42
46 6 7 0.91 21.55 7.1 7.2 0.53 0.60 0.91
47 6 4 -2,09 18.50 8.28 6.2 1.04 1.17 -2.,09
48 6 3 3.00 17.02 9.00 5.7 1.38 1.55 3.00
L9 6 2 0.60 16.29 9.40 5.4 0.26 0.29 0.60
Distances in mm
50 1 2 -0.31 1.32 1.16 4.4 1.10 1.24 -0.31
51 1 3 0.38 1.46 1.05 k.9 1.51 1.70 0.38
52 1 4 ~0,25 1.59 0.96 5.3 1.08 1.21 -0.25
53 2 3 -0.23 1.38 1.1 4.6 0.85 0.96 -0.23
54 2 4 0.17 1.50 1.02 5.0 0.68 0.76 0.17
55 3 4 0.07 1.38 1.10 L.6 0.25 0.28 0.07

Table 6.2:  Residuals v; of adjustment (i), least detectable error A, and its effect Av,; on the
corresponding residual, factor k,; of Eq. (6-29), the test statistics u; of BAARDA
and T; of POPE and the residuals of the Danish Method.
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Baarda's data shooping:

The procedure is the same as outlined in paragraph (i) and commences with a LS-
adjustment.

Step 1: Adjustment results:
WPV = 79.43, f =29, 8o2 = 2.74
Global test:
T = 79.43, X0.152(29) = 36.5

Since T > xaz(f) the null hypothesis is rejected and the observations have
to be screened. The residuals ¥; (Column 3) are normalized (Eq. 6-26)
yielding T; (Column 6) and the critical value:

u = 3.29
o

(o]

is interpolated in Figure 6.3. The test statistics U; of observations 21, 47,
49 and 51 exceed the critical value but only observation 21 with the

maximum value of Tj is deleted.

Step 2: The LS-adjustment is repeated without observation 21:
VPV = 39.85, f = 28, So2 = 1.42
Global test:
T = 39.85, Xo0.15°(28) = 35.6

Since T > xaz(f) the null hypothesis has to be rejected again. The

residuals ¥, (Column 4) are normalized yielding T; (Column 7). The critical
value is independent of f again:

u = 3.29
o

The test statistic T; of observation 51 exceeds the critical value and is

deleted.
Step 3: The LS-adjustment is repeated without observations 21 and 51:
viPv = 20.11, f=27, So2 = 0.74
Global test:

T=20.11, X0.152(27) = 34.7



83

) LS - Residuals BAARDA Test POPE Test Danish Method
No from to _ - _ - _ —
v, vy vy u; u; u; Ti TI Ti vi P

1 2 3 4 5 6 7 8 9 10 11 12 13
Directions in cc

1 1 2 0.32 1,13  0.78 0.14  0.50 0.3%4 0.08 0.42 0.40 0.77  0.111
2 1 13 -0.15 1,19  0.47 0.07 0.51 0,20 0.04 0.4 0.23 0.46  0.111
3 1 14 1,02 1.97 1.83 0.38 0.74 0.69 0.23 0.62 0.80 1.82  0.111
4 1 3 -3.55 -2,18 -2.19 1.30 0.80 0.81 0.79 0.67 0.94 -2.19  0.111
5 1 9 -4.56 -3.69 -3.64 .71 1.38  1.36 1.03  1.16 1.58 -3.64  0.111
6 1 4 -0.54 -0.51 0.18 0.20 0,19 0.07 0.12 0.16 0.08 0.18  0.111
7 1 6 4,31 -2,52 -1.53 1.88  1.24  0.76 1.13  1.04 0.88 -1.51 0.111
8 1 7 -0.30  1.07 1.41 0.28 1.03 1.36 0.17 0.8 1.58 .50 0.1
9 1 10 0.05 -0.01 -0.03 0.3% 0.06 0.18 0.20 0.05 0.21 -0.02  0.111
10 1 11 0.36 0,03 -0.38 0.28 0.02 0.29 0.17 0.02 0.34 -0.37 0.1
1 1 12 3.03  3.53 3.10 1.38 1,61 1.42 0.83 1.35 1.6k 3.10 0.1
12 2 1 1.82 0.81 0.80 0.95 0.43 0.42 0.57 0.36 0.49 0.80 0.11
13 2 10 0.83 0.34 0.29 0.91 0.38 0.32 0.55 0.31 0.37 0.29  0.111
14 2 n -0.4% -0.11  0.31 0.34 0.08 0.23 0.20 0.07 0.27 0.30  0.111
15 2 12 -2,51 -2.83 -2.61 1.53  1.73  1.59 0.92 1.45 1,84 -2.60  0.111
16 2 13 0.56 0.10 -0.45 0.29 0.05 0.23 0.17 0.0k 0.27 -0.44  0.117
17 2 14 0.50 -1.06 -1.24 0.19 0.4 0.48 0.12 0.35 0.56 -1.23  0.111
18 2 9 2,97 1.18 1.18 1.14  0.45  0.45 0.69 0.38 0.53 1.18  0.111
19 2 3 4.31 2,39 2.52 1.67 0.93 0.98 1.01  0.78 1.14 2,52 0.111
20 2 4 L.hh 1,40 1.99 1.71  0.55 0.78 1.03  0.46 0.9 1.99  0.11
21 2 6 | -13.11 - 6.29% - - 3.80% - - -26.68  0.000%
22 2 7 0.65 -2.21 -2.79 0.35 1.24 1.57 0.21 1.04 1.8 -2.78  0.111
23 3 1 -3.49 -1.57 -1.43 1.34  0.61 0.55 0.81 0.51 0.64 -1.43 0.111
24 3 10 -2.87 -1.60 -1.64 1.10 0.62 0.63 0.66 0.52 0.73 -1.64  0.111
25 3 2 1.57  2.01 1.96 0.61 0.78 0.77 0.37 0.66 0.89 1.95  0.111
26 3 11 -2.65 -2,92 -3,17 1.35  1.49  1.61 0.81 1.25 1.87 -3.17  0.111
27 3 12 1.75 1.52  2.02 1.17  1.02  1.35 0.71 0.86 1,57 2.01 0.111
28 3 13 -0.39 -0.89 0.08 0.29 0.67 0.06 0.18 0.56 0.07 0.08  0.1M1
29 3 14 -0.52 -0.20 -0.09 0.43 0.17 0.08 0.26  0.14 0.09 -0.09  0.111
30 3 9 0.27 0.64 0.62 0.24 0.59 0.57 0.15 0.49 0.67 0.62  0.111
31 3 4 2,33 2.15 1.38 1.26 1,17 0.75 0.76 0.98 0.87 1.37  0.111
32 3 6 4,79 -0.45 -0.86 2.35 0.24 0.46 1.42 0,20 0.54 -0.84  0.111
33 3 7 -0.79 1.32 1.4 0.32  0.54 0.46 0.19 0.45 0,54 1,13 0.111
34 4 1 -0.71 -0.02 0,61 0.26 0.01 0.23 0.16 0.01 0.26 0.61 0.111
35 L 10 0.51  1.02 1.37 0.19 0.37 0.50 0.11 0.3t 0.58 1.36  0.111
36 4 2 -3.14 -3.70 -3.50 115 1.35 1.28 0.69 1.4 1.k49 -3.50  0.111
37 5 N 4,96 4,70 4,24 1.99 1.8 1.70 1.20 1.58 1.97 4.23 0.1
38 4 3 0.09 0.03 -0.96 0.04 0.01 0.40 0.02 0.01 0.4 -0.95  0.111
39 L 12 -2,15 -1.71 =-2.55 0.93 0.74 1.1 0.56 0.62 1.28 -2.55  0.111
4o 4 13 0.52 1.16 -0.11 0.30 0.66 0.07 0.18 0.55 0.08 -0.11 0.111
4 4 9 0.10 0.06 0.06 1.79  1.09 1.08 1.08 0.92 1.25 0.05  0.111
42 L 14 0.04 -0.02 -0.04 0.31 0,20 0.29 0.18 0.17 0.33 -0.03  0.111
43 4 6 -0.61 -2.54 -0.94 0.26 1.09 0.4 0.16 0.92 0.47 -0.93  0.111
4y 4 7 0.41 1.03 1.82 0.16 0.40 0.70 0.09 0.33 0.81 1.81 0.111
45 6 1 -2.75 -2.90 =-2.53 1.19  1.26  1.10 0.72  1.06 1.27 -2.52  0.111
46 6 7 -0.23  0.52 0.74 0.14 0.30 0.43 0.08 0.25 0.50 0.74  0.111
47 6 4 -8.10 -4.02 -2.96 4,03 2,11 1,57 2.4 1,77 1.8 -2.97  0.111
48 6 3 3.56 4.b6 3.28 1.63 2.05 1.52 0.99 1.72 1.76 3.28  0.111
49 6 2 7.52  1.95 1.47 3.30% 0.93 0.70 1.99 0.78 0.81 1.47 0.1
Distances in mm
50 1 2 0.08 -0.07 0.24 0.28 0.27 0.85 0.17 0.22 0.98 -0.23  11.111
51 1 3 -1.17 -1.13 - 4.60*% 4 bhx - 2,78  3.73% - -1.57  0.001%
52 1 4 0.34 0.28 -0.11 1.6  1.20 0.52 0.88 1.01 0.60 -0.11  11.111
53 2 3 -0.02 0.15 -0.15 0.09 0.55 0.58 0.05 0.46 0.67 -0.15 11,111
54 2 4 0.48 0.51 0.25 1.94 2,07 1.05 .17 1.74 1,21 0.25 11.111
55 3 4 0.20 0.05 0.08 0.76 0.20. 0.29 0.4 0.16 0.33 0.07 11.111

Table 6.3:  Results of three different methods of data screening applied to the network of

Figure 6.4 with two simulated gross errors. The test statistics marked with an
asterisk exceed the critical value or are weighted down drastically.
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Since T < Y q(f) the null hypothesis is not rejected, confirming that all
erroneous observations have been deleted. The final residuals v;are
shown in Column 5. None of the test statistics u; exceeds the critical value:

u = 3.29

e,

Pope's data screening:

Step 1: A LS-adjustment is carried out yielding the residuals ¥; of Column 3 which

are used to compute the test statistics T; of Column 9 according to Eq.
(6-31). The critical value for f = 29 is computed in the same way as
described in (i) yielding T,(f) = 3.08. Observation 21 exceeds this value
and is deleted.

Step 2: A new LS-adjustment without observation 21 is carried out. The residuals
V; and the corresponding test statistics Ti are given in Columns 4 and 10,

respectively. The critical value for f = 28 is T, (f) = 3.07. Observation 51
exceeds this value and is deleted.

Step 3: A new LS-adjustment without observations 21 and 51 is carried out. The
residuals v; and the corresponding test statistics T; are given in Columns 5

and 11, respectively. None of the statistics exceeds the critical value
Ta(27) = 3.06. The efficiency of the method is confirmed since both
simulated gross errors have been detected and deleted.

Danish method:

The Danish method with ¢ = 3 yields the final result after 4 iterations. The residuals v; are

contained in Column 12; they coincide with the residuals of the third step of the other
methods. The final weights of the observations, given in Column 13, show that the
erroneous observations 21 and 51 are of no influence in the model.

All three methods have correctly detected the two gross errors. In general, when an unknown
(usually larger) number of outlying observations exist, the Danish method is faster than the other
two, since it arrives at the final result in one computational step without repeatedly requiring
statistical tests. Another argument in favour of the Danish method is that it does not require the
deletion of outlying observations. Instead, these are weighed down according to their departure
from the bulk of the data. Furthermore, the method is not based on questionable assumptions but
developed heuristically.

Whenever difficult problems are encountered, it may be wise to use all three methods in order to
get as much information as possible.
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7. CONCEPT OF RELIABILITY

Since deformation analysis using geodetic observations is based on the comparison of estimated
positions of points of monitoring networks, at different epochs of time, the quality of the network is
of paramount concern to the engineer in charge. The traditional way of describing the quality of a
geodetic network by means of measures of accuracy has been outlined in Chapter 4. lts result is
not really satisfactory, because it is based on datum dependent quantities, and neglects the aspect
of reliability.

Consider for example a local trilateration network observed with an EDM instrument exhibiting an
undetected frequency error. If no other errors occur, all measures of accuracy will indicate a good
result, and yet the adjusted coordinates are biased. The only way of detecting this error is through
an independent piece of information on the scale of the network. If the observation scheme is not
designed to acquire this information, then the network design and, as a consequence, the
estimated positions are unreliable. A deformation analysis based on biased estimates can lead to
completely wrong conclusions.

In this simple example the meaning of reliability is rather clear, but in general it is as indistinct as the
term accuracy. There is no absolute reliability and different measures refer to different aspects of
the concept. Furthermore, some measures depend on the geodetic datum, thus causing the
same problems as discussed in the context of accuracy.

Nevertheless, the concept of reliability is important for the assessment of geodetic networks.
Measures of accuracy and measures of reliability form together a sufficient basis for the assessment
and comparison of the quality of geodetic networks.

In quality control, the reliability of manufacturing processes and of products has always been of
great concern. The different measures used in this field are usually functions of the time of
continuous proper functioning of a device or a part thereof. The most commonly used measure,
playing an important role in specifications for military equipment, is the so-called Mean Time
Between Failures, MTBF. Of course, geodesists cannot adopt this concept without modifications.
But the fundamental ideas, which have proved useful in quality control, have stimulated geodesists
to develop a concept of reliability for the GMM. The first suggestions were published by BAARDA
(1968). Since then numerous other geodesists have contributed to the concept. However, a lot of
further research is necessary.

7.1 General Aspects and Definitions

Generally speaking, reliability of geodetic operations requires:

i. well-trained, responsible and careful, that is, reliable surveying professionals,

ii. precise and self-checking instruments, which rather cease measuring than give uncertain
results, for example, when the environmental conditions or the supply voltage become
critical,

iii. self-checking measurement procedures, for example, forward and backward runs, face left
and face right observations, closed traverses and levelling loops all provide a field check
for gross errors and, possibly, systematic errors,

iv. self-checking network designs, that is, designs in which all observations are checked by
other ones.

Below, measures of reliability are aimed at which are suitable for a rigorous mathematical
formulation. They shall be based on the GMM and on specific assumptions on the distributional
properties of the observables.

Following a suggestion of Baarda, the main criteria of reliability of geodetic networks can be
classified as:
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RELIABILITY
INTERNAL EXTERNAL
GLOBAL LOCAL GLOBAL LOCAL

The internal reliability refers to the desired property of the GMM of facilitating the detection of
systematic errors and the localization of gross errors without requiring additional information (self-
checking model).

The external reliability of the GMM measures the response of the model to undetected systematic
and gross errors or, in other words, the effect on the parameter estimation.

The measures or criteria are usually different for local and global considerations.

There is a close relationship to the theory of robust estimation. Refer to Section 6.6, Chapter 10
and HUBER (1964) as far as the objective is concerned. The approaches are different however.
The concept of robustness aims at the design of estimators, which are insensitive to deviations
from the underlying model, while the reliability concept retains the LS-estimator and aims at a
correction or refinement of the model.

The underlying Gauss-Markov model (GMM) has been defined in Chapter 2:

I+v = A% = 0,2Q, P=Q
E() = Ax (2-2)
o(A) = nxu, rA) = r<u<n

7.2  Global Measures of Internal Reliability

The measures of internal reliability are equivalent to the probability of detecting deviations from the
model, especially gross and systematic errors. The term global means that the detection as such is
considered, independent of the possibility of localization.

An obvious and simple measure is the number of redundant observations, if evenly distributed in
the network, since it parallels the probability of error detection.

A more sophisticated criterion of reliability is related to the global model test. It has been pointed
out in the previous paragraph that an error in the functional model of the GMM can always be

compensated by a vector A which is added to the erroneous vector ! of observations to yield the

conforming vector I-

l = [+A
. (6-7)

EQ) = Ax E() = Ax—A

The quadratic form of the vector v of residuals:
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— - 26, %) (6-13)
GO

has a non-central x2-distribution withf = n —r degrees of freedom and a non-centrality parameter:
A = APQ,PAG,2 (6-14)

The power of the global test, namely, the probability of detecting the existence of the error vector
-A, depends directly on the value of .  An analysis of Eq. (6-14) shows that vectors A yielding

A = 0 cannot be detected by the test. The form matrix of Eq. (6-14), PQ,P, is orthogonal to the
design matrix A:

PQ,PA = 0 (7-1)
Thus any error vector A of the form:

A = Ab (7-2)
forsome b, yields A = 0.

The geometrical interpretation of this result is depicted in Fig. 7.1. An error parallel to A%, i.e.
Ae S(A), does not change the residuals and is therefore undetectable. An error parallel to v and

orthogonal to S(A) creates a maximum value of A. Since, in practice, the vector A cannot be
controlled, one has to be aware of the fact, that the GMM is entirely unreliable with respect to errors

Ae S(A). An example of this unfavourable property is the previously mentioned case of distance
measurements with an EDM instrument having a constant frequency error.

4 A LS(A)

! A € S(A)

= S(A)

Figure 7.1:  Effect of A parallel to, and orthogonal to, S(A).

As a basis for the development of a measure of reliability with respect to an error Ag S(A) the
Rayleigh inequality of Eq. (4-16) might be considered:

M
9M9 . A Vg (4-16)

A <
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where A represents the eigenvalues of the matrix M and g any vector of suitable order. Comparing
Eq. (4-16) with Eq. (6-14) leads, for M:= PQ,P and A:=g, to the relationship:

A = APQPAGL2 < AA A /0,2 (7-3)

This provides an upper limit for the non-centrality parameter A, being proportional to the maximum

eigenvalue A, of PQP. Since the reliability increases with A, as has been pointed out, Apax
may be utilized as a global measure of internal reliability. This means that for a given error vector

A¢ S(A) the probability of detecting its existence is related to the magnitude of Apax(PQ,P). As
PQ, P is datum independent the same applies to Apax-

But the usefulness of A5, must not be overrated since it is not clear at all how close A comes to

the upper limit of Eq. (7-3). Hf all observations are of equal weight, thatis P = pl, A,ax may
become useless as a measure of reliability, because the matrix PQ,P gets an r-fold (r = r(A))

eigenvalue zero and an f-fold (f = n - r) eigenvalue p. Hence A, = 0 and Apax = p; other
eigenvalues do not exist.  An increase in the number of observations will definitely increase the

probability of error detection but will not change the magnitude of A, In this case Eg. (7-3) only
shows that A < A!A/G2 if the weight function p = ©,2/62 is used.

An alternative measure may be derived from the general relationship between conforming matrix
and vector norms:

AT < TTAT - JIx]l (7-4)
Setting x:= A and A:= Q, 2P and using the Euclidean norm, which is defined as:

vector: Ix]l = (xix)12

matrix: 1Al = (tr Ala)12

yields after squaring:

IQ2PA |2 < [1Q 2P 2 - || A2
or, explicitly:

APQ,PA < AlA(tr PQ,P) (7-5)
Substituting Eq. (6-14) yields the inequality:

‘A
A < =5twPQP (7-6)

%

>

The equation indicates that tr PQ,P, for a given error vector A, defines the upper limit of the non-
centrality parameter A. Thus, tr PQ, P may serve as a measure of reliability in the same sense as

Amax.
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A comparison of Egs (7-6) and (7-3), together with the relationship tr M = XA of Eq. (4-14), shows

that A4y is the closer limit for A and hence should be preferred. On the other hand, the

computational effort favours the trace. In the case of equal weight for all observations as
considered above, the trace becomes:

trPQ,P = ptrQ,P = pf

Additional observations increase the number of degrees of freedom f and hence the magnitude of
the trace, which indicates the increased probability of error detection.

Both measures are solely suitable for the comparison of model designs and should be used with
due care. It seems that further research is still required in this field.

7.3 Local Measures of Internal Reliability

The concept of local reliability is closely related to the probability of outlier detection. The greater
the probability of locating erroneous observations the higher is the degree of internal reliability of

the model.

The shift Av of the residual vector, caused by a single gross error A; in the observation Jj, is:

Av = —qv.piAi (7-7)
I

(compare Eq. (6-24)), where p; is the a priori weight of /; and q, the ith column of the cofactor
matrix Q,. The i-th component of Av: '

Av; = -q, PA; = —fA, (7-8)

1 iVi I
is the bias of vj, the residual of the affected observation.
The greater Av; for a single error A, the greater is the probability of localizing the erroneous

observation /. Also considering Eq. (7-8), the cofactor matrix Q, should have strongly dominant

diagonal elements q, . Since for a given error A; the bias Av; is governed by:
1

AP = f (7-9)

the so-called redundancy contribution, this expression can be used directly as a local measure of
internal reliability.

To assess the local reliability of a model, the values of f; are computed for all observations. This is
done before the observations are actually carried out. Screening the values of f;, exposes in terms
of reliability the weak parts of the model which need to be strengthened by additional observations.

Further interpretation and a justification of the term ‘redundancy contribution’ for f; of Eq. (7-9) can
be derived from the general relationship of Eqg. (6-9):
V-v=Av = -Q PA (7-10)

where:
QP = I-AQAlP (7-11)
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Since QP is idempotent, i.e. Q,P - Q,P = Q,P, the rank of QP equals the trace of this product:

tr (Q,P) = (Q,P) = r(I) — r(AQzAP)
hence:
tr (QP) = n—r(A) = f (7-12)

For a diagonal matrix P (independent observations) Q,P has diagonal elements:

Ay vipi = fi

Thus:
tr(QP) = Zf; = f (7-13)

The sum of the redundancy contributions f; of all observations equals the degrees of freedom
(redundancy) of the model. Each individual value of f; is the contribution of the corresponding
observation ; to the redundancy of the model.

Substituting the cofactor matrix of the adjusted observations:

Qr = AQA, [ = I+v
X

in Eq. (7-11) yields:

Qp = I-q;P (7-14)

This allows Eq. (7-9) to be rewritten as:

i = 1-appp = 1-ppp (7-15)

where:

is the i-th diagonal element of the cofactor matrix Q}, and its inverse the weight p,"i of the adjusted
observation /. i- Since the a posteriori weight P, of an observation is always greater than or equal to
1

the a priori weight p, the redundancy contribution is restricted by Eq. (7-15) to:
0 <f<1 (7-18)

The lower limit is attained when:

In this case the corresponding /; is not checked by other observations. Also, certain parameters
of the model cannot be computed without /. The upper limit is reached when:

Pr = oo

This means that /; is perfectly checked by the model and that the variance of the adjusted
observation is zero.
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Typical redundancy contributions in geodetic networks are:

Traverse networks: ff = 01-02
Trilateration networks: fi = 03-06
Combined networks: fi = 05-08
Levelling networks: fi = 02-05

Most authors agree that the minimum redundancy contribution for observations in geodetic
networks should be around f; = 0.3.

The close relationship of the measure f; of internal reliability with Baarda's data snooping, as
outlined in the previous Chapter, follows from Eq. (6-29), which can be rewritten as:

= JAU (7-17)

For the usual choice of 0, = 0.1% and B, = 20%, Eq. (7-17) takes the form:

k, = 4.1/‘/?;

In combination with the typical values of f; given above this shows that:
5 < ky £13

where K,i0; is the minimum value of a gross error which can just be detected with the probability
of 1 - Bo.

The average redundancy contributions:

;‘=f/n

is a reasonable global measure of reliability, provided that the f; are distributed evenly in the
network. The measures f; and f of internal reliability do not depend on the geodetic datum.

7.4 Global External Reliability

In spite of all the sophisticated testing procedures, there will never be certainty about having
detected all gross and systematic errors of the GMM. Furthermore, some small errors must be
expected which are just below the established boundary values. Therefore, one of the crucial
points of model analysis is to gain full knowledge of the effect of these model errors on the
parameter estimation.

A mathematical model is said to have a high external reliability, if it responds insignificantly to
undetected errors.

The bias of the parameter vector caused by the error vector A follows from Eq. (6-8):
8—% = AR = NAIPA (7-18)

where N~ is a generalized inverse of N = AlPA.
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Generally, when A is considered to be an unknown systematic error affecting all or some of the

observations, Eq. (7-18) is not very informative. But it is very useful to trace the effect of certain
biases, which can be modelled reasonably well as for example frequency errors or meteorological
effects in EDM measurements, uncertain refractive indices for zenith angles or systematic errors

in levelling.

Eq. (7-18) shows that AX depends on the geodetic datum as does X. An invariant average
measure of the biasing effect of A can be derived from the quadratic form:

rg = AXQpAR (7-19)

which is datum independent and reasonably small for a reliable model. Expansion of Eq. (7-19)
with Qg~ = N = A!PA yields:

gaz = APA(N)INN-APA
(7-20)
- APANAPA = A'PQ;PA
Based on Eq. (7-3), the reliability criterion can be established from the inequality:
t t n
AA Amax 2 APQIAPA, VAeR (7-21)

where Amax is the maximum eigenvalue of PQ; P. Thus, a smaller Amax yields a smaller maximal
possible effect of an error A on the parameter estimation and, consequently, a more reliable
(robust) model.

It should be noted that the interpretation of A, of PQ/P is as unclear as the interpretation of
Amax of PQ P. The latter has been shown in Section 7.2.

Since Ql"P is idempotent its eigenvalues are either all zero or unity and, in the case of equally weighted
observations, PQI"P has r-fold eigenvalues p and n—r = f-fold eigenvalues zero.

Additional observations of weight p do not change Am ax O the trace of PQI"P; they only increase the
number f of zero eigenvalues.

7.5 Local External Reliability

If the general Eq. (7-18) is specialized for the effect of a gross error in one observation according
to Eq. (6-15) then:

A% = NAPeA; = N-ap; (7-22)
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where a; is the i-th column of AL All parameters are biased by a single error A;. In practice, the
parameters appearing in the i-th observation equation with coefficient vector a; are expected to be
more biased than the other ones, thus the effect of one error can be regarded as local. But Eq.

(7-22) is not readily interpreted, since A%; depends on the geodetic datum.

If, for lack of better measures, the quadratic form of A%; is used again, then the conclusion should
be drawn that small values of:

At —aa

indicate a good local reliability.

Since A; cannot be controlled, the requirement for reliability can be put in the form:

plalQza; = p(1-f) =min, Vie{1,2 .. n} (7-24)

The criterion of Eq. (7-24) can be computed for all observables. It allows to check the reliability of
the model in the design stage of the network, when improvements are still possible. An average
measure of local reliability can be calculated from the sum of all individual values according to Eq.
(7-24), yielding:

n
% Y plalaa -:Ttr (PAN A'R)

(7-25)

1 A
—1r (PQ}P)

Equation (7-25) should be a minimum. It represents an alternative to Eq. (7-21) as a global
measure.

7.6 Synopsis of Measures of Reliability

It is not surprising that the global measures of internal and external reliability as compiled in Table
7.1 are very similar. It follows from Eq. (7-14), after premultiplication with the weight matrix P, that:

PQP = P-PQP (7-26)
For a given weight matrix P, the minimization of:
tr (PQIAP)

is equivalent to a maximization of tr (PQ,P). The same applies to all properly selected matrix
norms and hence to the maximum eigenvalue.
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Internal External
Global AmaX(PQVP) = max Amax(PQlAP) = min
tr (PQ JP) = max tr (PQIA P) = min
. 2t .
Local, Vi - f. = pg vy, = max P, & Q;(ai = min
Local average = global f = f/n = max %tr(POIAP) = min
Table 7.1: Useful measures of internal and external reliability in a GMM.

The result can be interpreted as follows: If the parameters cannot absorb the error vector the latter
causes a large shift in the residuals. In this case the bias of the parameters is smaller and the
probability of detecting the errors is great.

The derived measures of reliability are mainly used in pre-analyses of Gauss-Markov models for the
purpose of optimization of the design of the model, particularly for geodetic control. Hence, only
the relative magnitude is relevant. This avoids the need for an interpretation of the absolute values
which is rather unclear, especially as far as the global measures are concerned.

It should be stressed that the concept of reliability, as outlined here, is based on Baarda's data
snooping. A proper interpretation of the results has always to consider this context.  If Pope's

T-method of outlier detection were chosen to establish a reliability concept, the results would be

similar. As mentioned before, robust estimation methods provide an alternative to the concept of
reliability. Properly selected robust estimators ignore small deviations from the assumed model and
yield "reliable" results. The price for this property is a loss in efficiency of about 5-10% in
comparison with least squares estimation if no deviations from the assumptions exist.

7.7 Example

The monitoring network as defined in Section 6.5 is used to illustrate the local measures of
reliability. The a priori estimate of the standard deviationis ¢ = 3°€ (= 0.0003 grad = 1.0") forthe

directions and ¢ = 0.3 mm for the distances. With 6, = 1°C the weights become:

. 1
directions: = —
P=3
. 1 cc 12
distances: = — [—-—]
P 0.09 mm



95

No | from to £, (7-15) plaQea; (7-24)
a b c a b c

Directions Dimension [ mm/ccl?

1 1 2 0.569 0.551 0.548 0.038 0.037 0.038
2 1 13 0.616 0.594 0.583 0.032 0.033 0.034
3 1 14 0.782 - - 0.014 - ~

4 1 3 0.822 0,761 0.757 0.010 0.014 0.015
5 1 9 0.791 - - 0.013 - -

6 1 4 0.774 0.726 0.715 0.015 0.018 0.019
7 1 6 0.586 0.579 0.560 0.036 0.034 0.036
8 1 7 0.124 0.130 0.125 0.087 0.084 0.085
9 1 10 0.002% 0.040 0.040 0.101% 0.094 0.094
10 1 11 0.190 0.185 0.168 0.080 0.078 0.080
11 1 12 0.535 0.526 0.519 0.041 0.0k0 0.041
12 2 1 0.406 0.417 0.413 0.056 0.055 0.055
13 2 10 0.091 0.026 0.026 0.091 0.098 0.098
14 2 11 0.190 0.185 0.168 0.080 0.080 0.082
15 2 12 0.299 0.294 0.290 0.068 0.068 0.069
16 2 13 0.420 0.419 0.409 0.054 0.054 0.056
17 2 14 0.734 0.722 0.719 0.019 0.021 0.021
18 2 9 0.753 0.746 0.745 0.017 0.018 0.018
19 2 3 0.740 . 0.733 0.732 0.019 0.019 0.020
20 2 4L 0.748 0.747 0.737 0.018 0.018 0.019
21 2 6 0.482 0.495 0.480 0,047 0.046 0.048
22 2 7 0.374 0.378 0.360 0.059 0.059 0.061
23 3 1 0.752 0.728 0.724 0.017 0.019 0.020
24 3 10 0.755 - - 0.017 - -
25 3 2 0.727 0.683 0.679 0.020 0.024 0.024
26 3 1 0.428 0.418 0.404 0.053 0.053 0.055
27 3 12 0.247 0.246 0.240 0.073 0.073 0.073
28 3 13 0.198 0.193 0.169 0.079 0.078 0.08t1
29 3 14 0.159 0.16t 0.161 0.083 0.082 0.082
30 3 9 0.130 0.145 0.145 0.086 0.084 0.084
31 3 h 0.376 0.387 0.381 0.059 0.057 0.058
32 3 6 0.462 0.465 0.446 0.050 0.048 0.050
33 3 7 0.677 0.664 0.657 0.026 0.026 0.027
34 4 1 0.814 0.818 0.811 0.011 0.010 0.011
35 4 10 0.820 0.814 0.812 0.010 0.011 0.011
36 4 2 0.827 0.827 0.821 0.009 0.009 0.010
37 & 1 0.687 0.687 0.679 0.025 0.025 0.026
38 4 3 0.638 0.646 0.634 0.030 0.029 0.030
39 4 12 0.594 0.590 0.575 0.035 0.035 0.037
40 4 13 0.341 0.332 0.290 0.063 0.064 0.069
41 4 9 0.000%* 0.018 0.018 0.101%  0.099 0.099
42 4 14 0.001% 0,019 0.019 0.101% 0.099 0.099
43 4 6 0.610 0.629 0.579 0.033 0.031 0.037
Ly 4 7 0.749 0.751 0.740 0.018 0.017 0.019
45 6 1 0.590 0.700 0.696 0.023 0.019 0.020
46 6 7 0.329 0.348 0.345 0.052 0.058 0.059
47 6 4 0.447 0.605 0.574 0.039 0.030 0.033
48 6 3 0.528 0.647 0.604 0.030 0.025 0.030
49 6 10 0.577 0.676 0.674 0,025 0.022 0.022
50 6 14 - 0.723 0.723 - 0.017 0.017
51 6 9 - 0.701 0.701 - 0.019 0.019
52 6 2 - 0.616 0.584 - 0.029 0.032
Distances Dimension [ *]
53 1 2 0.874 0.876 - 1.395 1.372 -
54 1 3 0.719 0.719 - 3.118 3.114 -
55 1 ) 0.605 0.605 - 4,383 4,384 -
56 2 3 0.806 0.806 - 2.151 2.153 -
57 2 4 0.682 0.683 - 3.524 3.522 -
58 3 4 0.798 0.797 - 2,245 2,256 -

Table 7.2: Measures of local reliability for three versions of the monitoring network
Montsalvens (Figure 7.2). The asterisks indicate the least reliable observations.
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Montsalvens

Significance Level of Confidence Ellipses: 95%

10 20m
[ —)

Scale of Ellipses:
05 1 15 mm

Figure 7.2:  Monitoring network Montsalvens

Three different data sets have been generated. The corresponding redundancy contributions f; as
measures of internal reliability and the values of p2a!Qza; as measures of external reliability are
listed in Table 7.2.

The data set of version a is identical with the set on which Table 6.2 isbased. The observations 9,
41 and 42 have redundancy contributions close to zero. Hence, gross errors in these observations
would be undetectable and would cause a maximum bias in the parameter vector as seen from

pi?ailQgza;. A correct interpretation of the last numbers has to consider the dimensions. If for
instance the influence of an error of magnitude one sigma is asked for,i.e. A = 3% orA = 0.3 mm,
then the values referring to the directions must be multiplied by A2 = 9 and the values referring to
the distances by A2 = 0.09 to yield the quadratic form of Eq. (7-23) in mm? for both cases.

The data set of version b is an attempt to improve the case of version a without increasing the
number of observations. Three new observations (50, 51 and 52) are introduced replacing the
observations 3, 5 and 24. The selection of these observations is based on the geometry of the
network shown in Fig. 7.2. The redundancy contributions of the observations 9, 41 and 42 very
much exceed those obtained in version a but are still insufficient in terms of magnitude. This fact
can only be remedied by a change of the geometry of the net.

The data set of version ¢ has been derived from version b by omitting the distances. The change of
the measures of reliability listed in Table 7.2 is only marginal, indicating that the distances contribute

little to the reliability of the network.

The computation of the global measures of reliability of Table 7.1 does not make sense for this
particular network because all observations have the same weight. This represents the trivial case
mentioned in the previous sections where all eigenvalues are either p or zero.
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8. ESTIMATION OF VARIANCE COMPONENTS

It has been stressed several times that the establishment of a proper GMM for the adjustment of
observations is the primary goal of the first step of a deformation analysis, in order to avoid a
misinterpretation of the imperfections of the model as deformations of the object. While the
previous chapters are mainly concerned with the functional part of the GMM, this chapter focuses
on the stochastic model. So far, it has been taken for granted, that the stochastic properties of the
observations are exhaustively modelled by the variance-covariance matrix:

Z = E[-AI-A) = 6,2Q (2-1)

The matrix Q is a known coefficient matrix and 6,2 the a priori variance factor, which is checked and,
usually, replaced by the estimate of the a posteriori variance factor.

So2 = ViPv/f (2-7)

This is a simplification which is unlikely to reflect reality.

Consider, for example, a modern geodetic network with distances and angles measured with
different instruments under different conditions by different surveyors. Who is able to write the
proper variances and covariances of this inhomogeneous batch of observations into the matrix ¥ of
Eqg. (2-1)? Or consider a combined adjustment of first, second and third order levelling. Are the
relative accuracies known well enough to guarantee a realistic stochastic model? Consider finally a
multi-epoch adjustment for a deformation analysis. In the course of time new instruments with
higher precision are employed, new measurement methods are applied. How shall one know the
proper variances for the selection of the coefficients of X?

The first proposals to replace the simple model of Eq. (2-1) by a more flexible and sophisticated one
were made by F.R. HELMERT (1924). His method was not adopted at that time since the
equations are rather involved and the computational task is considerable. Unaware of Helmert's
work, C.A. RAO (1970) developed a new stochastic model which proved to be identical to
Helmert's model, if normal distribution is assumed. In the following years a flood of papers
appeared on this topic, authored by geodesists and statisticians. Today, improved and more
flexible methods of dealing with the stochastic model are available. Modern computers and
efficient approximation methods enable the geodetic community to readily adopt the method of
estimation of variance components. It seems that this breakthrough has not occurred yet.

8.1 The Stochastic Model

The Gauss-Markov model as introduced in Eq. (2-1) is expanded into the form:

E) = Ax = AX+€
(8-1)

E(eg))

k
2
T - i;ooi Q,

where the covariance matrix 3 is considered as a sum of k variance components G2, each
multiplied by the respective cofactor matrix Q;.  The problem is how to estimate the parameters x

as well as the k variance components (Soi2. This is a real generalization of the classical GMM of
Eq. (2-1), which is the special case for k = 1. The definition of ¥, in Eq. (8-1) can be established in
the following way: The vector € of true errors is a sum of linear functions of various small
independent primary errors €. Each €; belongs to a certain error source and is associated with a
known coefficient matrix G;. This leads to the model:
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k
e = D Gg (8-2)

ﬁ.
—_

From Eq. (8.1) follows:
t S t .t
S = E(ee) = ) GEES)G, (8-3)
i=1

which can be simplified under the assumptions:

EE€gh) = o7l Egl) = 0foriz
(8-4)
GiGit = Qj E(g) =0
to yield the final form of the stochastic model:
2z = 001201 + 0'02202 + ...+ Gok2Qk (8-5)

8.2 Examples of Variance Component Models

To illustrate the practical relevance of the expanded stochastic model, two geodetic examples are
given:

i. Geometric Levelling

Three main error sources contribute to the total error: a reading error not depending on
distance, a distance dependent error term, and a scale error, proportional to the levelled

height difference. The j-th component of the error vector € takes the form:

sj = s1j + /Dj €2j + AHje3j
and hence:
€ = G1&1 + Go&r + GaEg

with coefficient matrices according to Eq. (8-2):
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AH1
G AHo
B AH,,
From Eq. (8-4) follows:
Q1 = GiGyi=1
Q2 = GoGg' = diag (D1, D ..., Dp)

Q3 = G3Ga! = diag (AH12, AHS?, ..., AHD)
and yields the covariance matrix:
X = (701201 + 002202 + 0032Q3
comprising three unknown variance components to be estimated.
ii. Three dimensional network with heterogeneous observables. The coordinates of the

network stations shall be estimated from a GMM comprising four different types of
observables, namely:

p - direction observations

q - distance measurements

r - zenith angles

s - GPS vectors (differential positioning)

Each group of observations has its own error characteristic and has to be modelled
separately. The n x n - covariance matrix, n =p + q + r + s, can be written according to Eq.

(8-5) as:
2 = Goszp + (Soquq + Goerr + GOSZQS
If the observations are grouped in the order given above, then the cofactor matrices take
the form:
QQp 0 0 o0 o 0 o0 0
0 0 0 O 0 QG o0 o
Qp = , Qq =
0 o0 0 0 0 0 0 0
0 o 0 0 0 0 0 0
0 O 0 0 0 0 0 0
0 O 0 0 0 0 0 0
o = 5 , Qg =
0 0 OQ 0 0 0 0 0
0 0 0 o0 0 0 0 Qs

where the coefficient matrices Qp, Qq, Qr and Qs are given by the stochastic behaviour of
the respective observations.
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Example (i) is a model for additive effects while the second example (ii) is a model of group
variances. Models combining additive and group effects are possible as well.

It is important to note that the estimation procedure is only successful if the GMM allows the
separation of the variance components. This requires in the case (i) that the effects are far from

being colinear, and in the case (ii) that each group has sufficient redundancy and is strongly
correlated with the other groups by virtue of the functional model.

8.3 Three Lemmas on Traces and Quadratic Forms

The a posteriori variance factor of the GMM is estimated according to Eq. (6-3) from the quadratic
form:

viPv = PPQ,PI = B! (8-6)

o]
|

with:

B P — PAN-A!P, where: N = AlPA (8-7)

where N~ is a g-inverse of N, as defined in Eq. (3-74).

The estimators of the k variance components (Eq. (8-5)) must fulfil certain optimality criteria and shall
be quadratic functions of the observations. This is necessary since the variance is defined as the

expectation of the square of the errors, namely E(g2) = G{2.

To facilitate the derivations below, this section is devoted to three pertinent lemmas of matrix
algebra.

Lemma1: Let I be a random vector of n elements with E(J) = Ax and E([/ ~ Ax][l - Ax]!) = =
and let B be any real positive semidefinite n x n - matrix. ~ Then the quadratic form
q = I'BI has the expectation:

E(@@ = trBX +xABAX (8-8)

Proof: Let/—Ax = €, thenegl = AxxtAt —2Axt + it and
E(eel) = AxxIAt — 2AxE(lY) + E(it) = E(Y) - AxxIAt = Z.

On the other hand (refer to Eq. (3-44)):
E('Bl) = E@ri'Bl) = E(tr Bilty = tr BE(IlY)
with E(/t) = X + Axx!Al provides the proof:
E('Bl) = tr B(Z + Axx!Al) = tr BE + tr BAxx!At
E('BI) = tr BZ + xtAlBAx

Lemma 1 holds for all random vectors since no distributional assumptions have
been made.
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Let I be a normally distributed random vector with E(/) = Ax and
Y = E([Ax-[Ax—1]Y), i.e. I ~ N(Ax, ).

Further, let B be any real positive semidefinite matrix of order n x n and q the
quadratic formq = /'Bl. The variance of q is then given by:

G4 = 2tr BEBZ + 4x'AIBIBAX (8-9)

Proof: qu = E(q - E(q))2 by definition of the variance. An expansion using
Lemma 1 yields:

G2 = E(q-tr BZ - x!ABAX)2

E(q—tr B — (I - €)!B(l — €))2

E(q —tr BX ~ I'Bl - £!Be + 2¢!BI)2

which becomes after substitution of [ = Ax + €:

E(e!Be —tr BX + 2¢€!BAx)2

Q
N
]

E(e'Bee!Be) + (tr BX)2 + 4E(e!BAxe!BAX) — 2tr BZE(£lBe)
+ 4xIAIBE(ee!Be) — 4tr BEXIAIBE(€)

For normally distributed random errors the following equations are easily
proven by integration of the respective expectation functions:

E(g) = 0, E€?d) = o, E(egen) = 0
Thus the right hand side of 0'q2 can be simplified to:

042 = E(e'Bee'Be) + (tr BX)2 + 4E(e'BAXe!BAX) — 2ir BZE(€!Be)

Applying the expectation operator the right hand side terms take the
forms:

E(e'Bee!Be) = E(tr Bee!Beel) = (ir BY)? + 2tr BIBX

E(e'BAxe!BAX) = x!AIBE(eet)BAX = xIAIBZBAX
tr BZE(e!Be) = (tr BX)2
and lead to the final result:

oq2 = 2ir BIBY + 4x!AIBIBAX
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Lemma 3: Let A, B and C be n x n - matrices and let {f(A, B, C) be a scalar function of these
matrices. Further, the matrix of partial derivatives of f with respect to the elements

of A be denoted by d/0A f(A, B, C). If fis the trace of the products of the matrices,
then the following equations apply:

Syag - 8 (8-10)
0 t

9 {tABAC = (BAC + CAB) (8-11)
oA

9 yrABA'C = c'aB'+CAB (8-12)
dA

The proof is straightforward and requires simple calculations only.

8.4 Invariant Quadratic Unbiased Estimation (IQUE)

Let G be a vector comprising the k variance components Go;2:

O = (Gp12 Op2? - ... Oyt

and let p be a vector of k coefficients. The general procedure is to estimate the parameter vector x
and, additionally, the linear function plc of the variance components of the expanded GMM of
Eq. (8-1).

As established in Section 8.3, the required estimator must be a quadratic function of the
observations, hence the name quadratic estimator.

The criterion of unbiasedness implies the existence of a real symmetrical matrix B which yields:
E(1B) = plo
Substitution of the expectation of the quadratic form, as given in Lemma 1, results in:
E(tBl) = tr BZ + xtAIBAx = plo (8-13)
Expansion of £ according to Eq. (8-5) leads to:

k
2 t, 1t t
trBi;Goi Q +xABAX = p'o

k
Ztr BQo,,” + XABAX = pG

Thus, the criterion of unbiasedness requires:

tr BQ; = pj for ie{1,2, .. Kk}
(8-14)

0 = ABA = 0

xIAIBAX
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The linear function p'c is invariantly estimable, if a matrix B exists, and provides a quadratic
estimator which is independent (invariant) with respect to the parameter vector x. This requirement
translates into:

MBI = (I- AX)!B(l-Ax) = €!Be V xe IRY (8-15)
and leads to the condition:

ABB =BA =0 (8-16)
Since Eq. (8-16) implies AIBA = 0, the results of Section 8.4 can be summarized:

For B real symmetrical, #B! is IQUE
of p'c if A!B = 0 and trBQ; = p; (8-17)

To illustrate the contents of this section, it shall be verified that the usual a posteriori variance factor
302 is an IQUE (invariant quadratic unbiased estimator) of (502.

From Eq. (2-7) follows:

Sp2 = VIPVA, f = n—-r(A)

Substituting X = N-AlPlintov = A%~ yields v = (AN-A!P —I)i. Thus, the quadratic form can be
expressed as:

viPy H(PAN-At — T)P(AN-A!P — T)1

’(P -~ PAN-AP)I = B!

The matrix B = P — PAN-A!P is symmetrical, A'B = 0 and tr BQ = tr (I- PAN-AY) = tr I —tr (PAN-A}).
Since PAN-A! is idempotent, it follows that tr (PAN-AY) = r(PAN-AY = r(A), hencetrBQ=
n—r(A) = f. Finally vIPv = fs°2 is an IQUE of p<5°2 withp = n—r(A).

8.5 Best Invariant Quadratic Unbiased Estimation (BIQUE)

Since the IQUE of p'c of Section 8.4 is not unique, an additional criterion is required to define a
unique element of the set of IQUEs. For this purpose the following minimum variance criterion is
introduced:

G2(I'Bl) = E('BI - pt6)2 = min (8-18)
for 'B! being IQUE according to Eq. (8-17).
In agreement with Eq. (8-9) of Lemma 2, the variance is:

o2(/'Bl) = 2tr BEBX + 4x'AIBIBAX (8-9)

Since the minimum variance (best) estimator is restricted to the class of IQUEs, Eq. (8-16) must
hold. This reduces the minimum problem to:

trBXBX = min (8-19)

with the boundary conditions BA = 0 and tr BQ; = p;. Hence the Lagrange function of the
problem yields:
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k
L = rBEBE - 2tr BAA' -2 ), A (r BQ, - p) (8-20)
i=1

where Aisannxu-matrixand A = (Aq, Ay, ..., A)ta k-vector of Lagrangean multipliers. The
solution is found by equating the partial derivatives of L with respect to B, A and A to zero. The use
of Lemma 3 yields:

oL t s
o = 2ZBI-2M-2 2. Q. (8-21)
i=1

and leads to the set of equations:

k
t
B — AA —i;xiai -0

(8-22)
AB =0 tBQ-p =0
An auxiliary matrix R is introduced to solve Egs (8-22) for B:
R=2XT"-Z"AN-AZ
(8-23)
and is selected to meet the conditions:
RXBZR =B and AR =0
Pre- and postmultiplication of the first equation of Eq. (8-22) with R yields:
k
B = i; ARQR (8-24)
and subsequent postmultiplication by Qj results in:
k
BQ, = i; ARQRQ, (8-25)
Application of the trace operator and comparison with Eq. (8-14) leads to:
k
trBQ, = 2 At RQRQ, = p, (8-26)

i=1

Let hj = tr RQiRQ;, i,j €{1,2, ..., k}, then a k x k - matrix H can be composed of the elements hj,
and enables Eq. (8-26) to be written in the concise form:

HA =p (8-27)
with the k-vector A and p defined as before. Since the matrix H may be of less than full rank, a

generalized inverse (Eq. (3-74)) is used to solve Eq. (8-27) for A, the vector of Lagrangean
multipliers:
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A = Hp = Gp, G = H™ (8-28)
and

A p'g;

aip

where gt is the i-th row of the matrix G = H~. Substitution into Eq. (8-24) yields:

k
B = X pgROR (8-29)

i=1

and results in the estimator for plo:

Kk
B = Y plgfRamr = plo (8-30)
=

This equation can be put ina more suitable form, if f; = MRQ;R! is defined as a vector f =
(f, fo, ..., fiOt:

'8! = plat = plo
The final result is obtained as:

= gitf ie{1,2, ..,k (8-31)

with p = e; being the i-th unit vector.

An iterative numerical procedure must be employed because the matrix R, defined in Eq. (8-23)
and required for the estimator of Eq. (8-30), contains the true covariance matrix X, i.e. the vector ¢
of covariance components to be estimated. Starting with a reasonable vector of a priori variance
components a first estimation is carried out. The resulting variances G°i2 are multiplied with the
corresponding cofactor matrices Q; leading to improved covariance matrices. These serve as input

for the next iteration. This process is repeated until G converges towards the vector:

A t
oc=(1,1..,1)
More computational details follow in Section 8.6.

Certain difficulties arise whenever r(H) < k. [n such cases only r(H) components of G are estimable.
It according to Eq. (8-31) p; = ejis chosen, where e; is the i-th unit vector, then:

A
€0 =0,

is only BIQUE if e; € S(H).

The BIQUE /!B is based on the real symmetrical matrix B. No constraints have been imposed in
relation to the positive definiteness of B. Therefore, B may not be positive definite occasionally,
and may lead, possibly, to negative variance components. Such results are useless. An
improvement of the GMM through the addition of observations, reduction of the number of
parameters and/or variance components can remedy the shortcoming.

Despite these problems, the method outlined is a very valuable tool for the design of a realistic
mathematical model, particularly for inhomogeneous geodetic observations. It requires a
considerable amount of computations but yields reasonable estimates in all fairly well planned
networks which feature a sufficient number of redundancies. In case of normally distributed
observations the method is equivalent to Helmert's estimator. A generalization to the estimation of
covariance components is easily possible, but probably not relevant to geodesy.
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8.6 Numerical Operations

This section summarizes the equations for the iterative numerical computation. The equations are
arranged in a form to provide a computational recipe.

Mathematical model:

~
1]

AX+€ = AX+G181 +G282 +...+Gk8k
(8-1) - (8-5)

E(eel)

2 = 6012Q1 + (502202 +...4+ Goszk

i Compute the initial cofactor matrices:

Q1% = 6012Q1, @0 = 6022Qz, ... QO = OuPQy

ii. Forv = 0,1, 2, ..., compute X from Eq. (8-5) and R from Eq. (8-23):
Kk
> Q'
i=1
= EV—1 - Zv—1 A(At2v_1 A)—Atzv—1

iil. Form H and f on the basis of Egs (8-27) and (8-30):

HV = (hijv)’ hijv =tr RVQiVRVQjV

fy = (4%, fp¥, o BN, £V = IR,QVR,!

iv. Compute G from Eq. (8-28) and ¢ from Eq. (8-31) with the (generalized) inverse HV‘1 (Hy)

= Gy:

2v+1 A 2 v+1 A 2v+1t

t .
V. If cAy # (1,1, ..., 1) compute new cofactor matrices:

V+1

V+1 2v+1 v+1 A 2v+1Qv

Q (01)

Return to (ii).
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t . .
It (Afvn = (1,1,.., 1) compute the final variance components:
A m m
52 _ A2 A2 A 2 o
o=0 o=0
A A2 A2 A2t
C =8 =1(0p> Opz2: - Ook )

The number m of iterations required strongly depends on the initial values of ¢ and upon the

strength of the functional relations of the elements of the GMM. For large models up to 20-100
iterations may be required which represents a considerable computational effort.

8.7  Simplified Estimators

Because of the difficult mathematical background and the computational effort already required for
moderate sized models, approximate methods have been developed. They yield the same
numerical results whilst using fewer mathematical operations, provided the BIQUE exists as defined
in the previous sections.

The estimator as derived in this section only applies to group effects as outlined in example (i) of
Section 8.2. Since this type of problem is the most frequent one in geodesy, the results are of
practical importance.

The derivation begins with the special GMM:
I = AX+€, T = 0,2 (8-32)

where all observations are independent and of equal variance. This does not restrict the generality
since any general GMM (2-1) can be transformed into the form of Eq. (8-32) according to Eqgs (3-93)

and (3-94). In the model of Eq. (8-32) a unique BIQUE for 602 exists, namely:
So2 = viv/(n —r(A)) (8-33)

If Eq. (8-32) represents the model of a geodetic network with inhomogeneous observables
comprising k groups, each with a particular variance factor coiz, then the vectors ! and v can be
partitioned as follows:

It = ( l1t, lzt, feey lkt )
vi= (vl vol, .., vl )
O = (0012, 0022, S Gokz)

The quadratic form of Eq. (8-33) can be written as:
qa = Vvlv = vilvy +volvs + .+ vlyg (8-34)

where each term on the right hand side refers to one group of observations.
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In order to establish the relationship between the subforms v;lv; and the variance factors G,;2 the

mathematical expectations of the subforms are required. Fromv = AX~1 and € = I— Ax follows:
V+E = AX—X) (8-35)

Premultiplication with At and (A!A)~ = N~ yields:

]

Ale = AtA(%—x)

X—x= N-Ale (8-36)

where Alv = 0 and N-N(X—-x) = (X— x) have been used. Substitution of Eq. (8-36) in Eq. (8-35)
results in the relation between the residual vector v and the vector of true errors €:

v = AN-Alg - ¢ (8-37)
The subvector v; is given by:

v; = AN-Ale —g; (8-38)
Considering N; = Al'A; the above equation yields the subform:

vilvj = ggj— 2g/AN-Ale + e!AN-N;N-Ale

The subform has the expectation:

E(vilv)) = 0,2 — 2E(gAN-Alg) + E(E!AN-N;N-Alg) (8-39)

which can be simplified if E(g;) = 0, E(gle;) = nicoiz and E(eitej) = 0 for i#jis considered.
The second term on the right hand side of Eq. (8-39) yields after rearrangement:

2E(g!AN-Ale) = 2tr AN-AlE(eg)

20,2tr AN-Al = 20,2tr N°N;

and similarly the third term:

E(e!AN-NIN-Ate) = tr AN-N;N-AlE(eel)

k
2 _ _
- ._214%,- trNTNNN,

Substitution in Eq. (8-39) results in:

k
t 2 2. N 24 NI~NE N =
E(v;v) = no—20_trN Ni+j—§1 Oy tr N"NN Nj (8-40)
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The computations are iterative, and the estimates of each step are used to re-transform the model
to get the special form of Eq. (8-32). The iteration continues until the estimates of all variance

components are unity, i.e. 652 = 1 Vi. This justifies to set 6,2 = G, in Eq. (8-40), so that the
third term on the right hand side can be replaced by:

k k
2 — 2 — —
j; O ArNNNN, =G 2trN"NN j_Z1N

i
2 - — 2.
=Goi trN NiN N = Goi trN Ni

This leads to the following expression for the expectation of vi"vi:

E(vily)) = niGoiz - Goi2tr N-N;

Ooi2(n; — tr AN—AY (8-41)

From:
A ~
l.+v. =1 = AX

follows that the matrix product under the trace operator of Eq. (8-41) is nothing else than the
cofactor matrix of the group i of the adjusted observations, Q;‘i .

Since, on the other hand, n; equals the trace of a nj x n; - unit matrix I, , Eq. (8-41) can be rewritten as:
!

E(v'v) = o 2r 1, -Qf) (8-42)

Comparison with Eq. (7-14) and considering that P = I applies in the applied special model
according to Eq. (8-32), enables the bracket under the trace to be replaced by:

Ini—O;‘i =1 -QP, = QP
This leads to:
t 2
E(v,v) = o tr Q,P) (8-43)
|
and results in the final expression after use of Eq. (7-13):
E(viv) = oo (8-44)

The redundancy contribution of the i-th group of observations in the sense of Section 7.3 is
denoted by f;. The iteration scheme follows easily:
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i=12 .,k (8-45)

~ 1 ~
(ll +Vi = AI X)V =? (ll +Vi = AiX)v_1
[o]]

V=12 .. until (s52), =1 Vi

Soi2 = (Soid)1 - (Soid)2 * (Soi)3

Despite the simplicity of Eq. (8-45) the computing effort is usually considerable but less than in the
case of rigorous estimators of Section 8.5.

8.8 Example

The monitoring network Montsalvens which comprises 49 directions and 6 distances is used to
demonstrate the efficiency of the simplified method of Section 8.7. The data set has been
generated on the computer. All observations are normally distributed. The population variance of

the directions is G912 = (3°¢)2 and of the distances G2 = (0.3mm)2. (3°¢ = 3.104 grads = 1
second of arc.)

Montsalvens

Significance Level of Confidence Ellipses: 95%

————

tale of Network:
10 20m

Scale of Ellipses:
0 05 1 15 mm
[

Figure 8.1:  Monitoring network Montsalvens
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The estimation of the variance components is carried out using Eq. (8-45). As a priori variances for
the first estimation step the poor estimates sp12 = (1°¢)2 and 3022 = (1mm)2 are introduced
yielding the weight matrix P = 1. After three iterations the aim (3012)3 = (5022)3 = 1is achieved.

The computations are summarized in Table 8.1. The weights are computed with 602 = 1 so that:

1 1
Py =— and Py = —
s 2 5. 2

01 02

The current estimates in columns 6 and 7 are defined as:
Soi? = (Soi2)1 * (SoiP)2 -

and s,? is the common a posteriori variance factor.

lteration

Step (so1lv  (Soolv (P1v  (P2ly So1  Sp2 S0
v

1 2 3 4 5 6 7 8

1 1.00 1.00 1.00 1.00 1.00 1.00

2 2.64 0.29 0.143 11.89 2.64 0.29 2.40
3 0.99 1.01 0.147 11.89 261 029 099
4 1.003  1.013 0.147 11.89 261 0.29 1.005

Table 8.1: Summary of the computations of the variance components for
directions and distances of the network of Figure 8.1 using the
simplified method of Eq. (8-45).
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9. DESIGN OF DEFORMATION NETWORKS

The optimization of the design of a geodetic network is a theoretically very interesting and complex
problem. The body of literature on this subject is immense and hard to digest. Recent reviews
including numerous references have been given by CROSS (1983a), GRAFAREND (1981) and
SCHMITT (1982). The book by GRAFAREND and SANSO (1985) gives the current state of
research. In practice, apart from some special projects initiated or supervised by university
researchers, none of the mathematical optimization methods have found wide applications. The
main reasons for the lack of acceptance are that the methods:

- have a difficult mathematical background,
- require expensive computer fagcilities,
- often depend on assumptions which are hardly met in practice,

- sometimes yield unreasonable results due to unclear or awkwardly selected objective
functions,

- overrate accuracy measures and do not pay enough attention to reliability and feasibility.

The average practising surveyor rather relies on his experience.

Nevertheless, the optimization methods are of more than theoretical interest. They give an
excellent insight into the structure of a network model and into the connections between the
various measures of quality. Therefore, they can serve as a tool to study geodetic networks and, in
due course, help to gain the experience which is needed to do designs without the use of
optimization methods.

9.1 Objectives and Variables

The objectives of the optimization of a deformation network are:

- to meet a predetermined accuracy goal,
- to establish a self-checking and reliable mathematical model,

- to yield sufficient sensitivity in respect to certain a priori known functions of the
parameters,

- to design an observation scheme which is feasible under practical and financial
constraints.

The problems related to the first objective, namely accuracy, are easily recognized following the
detailed treatment in Chapter 4. All optimization results stemming from datum dependent objective
functions are questionable. Only the accuracy of invariant functions is suitable as a basis of an
optimization procedure. In monitoring networks it may be possible to work along this line if
sufficient a priori knowlege about the deformations is available.

The second criterion, namely reliability, has only recently been considered as an objective of its
own (van MIERLO, 1981; TESKY and GRUENDIG, 1985). In the past it was treated as a type of
boundary condition in accuracy optimization. Strict mathematical approaches towards reliability
optimization have not yet been finalized.

The objective of sensitivity is of special interest in the context of monitoring networks. If it is
possible to predict certain deformation patterns then it is possible to formulate the pertinent
hypotheses in the design phase of the net. In this case the optimization aims at a high probability of
identifying the true deformation. This criterion is sometimes called testability of pre-formulated
hypotheses. See for example NIEMEIER, TESKY and LYALL (1982).
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The last (and by scientists often underrated) objective is to control the cost of the observations and
to work out a feasible observation scheme. As far as cost is concerned there have been many
attempts to establish a mathematical model for this part of the problem, but it proved impossible to
include all important factors and to realistically assess cost and time implications.

The variables of the optimization methods are the geometry of the network and the weights of the
observables. A direct mathematical approach dealing simultaneously with these two variables in
order to achieve all four objectives is not feasible because of the complexity of the problem. All
direct methods which have proved to be useful combine just one objective with one variable. Not
all combinations are possible, since the geometry as a variable is very difficult to deal with. All
attempts to cope with this variable have turned out to be too restrictive to be of practical use. Most
of the scientific work, so far, has concentrated on the maximization of some measures of accuracy
for a given geometry by selecting the weights. For this special problem a number of efficient
algorithms are available (SCHMITT, 1982). A second direct method leads to an observation
scheme which produces a cofactor matrix of the parameters being just better than a previously
selected criterion matrix (GRAFAREND and KRUMM, 1983). Refer to Section 4.5.

9.2  Computer Simulation Methods

The most promising approach to the network design problem is the computer simulation method.
The method is flexible enough to consider all objectives quasi-simultaneously and to vary geometry
and observational weights. A criticism heard occasionally claiming that simulation methods and
particularly those of the trial and error type were pseudo-scientific and were never producing the
true absolute optimum, does not have any practical importance. The limitation of this method lies in
the computer equipment as such and the availability of programs. A good example is described in
MEPHAM and KRAKIWSKY (1984) while CROSS (1983b) provides a directory of existing software.

The design procedure consists of iterations of the following steps:

a. Selection of the locations of the points.

b. Specification of all possible observations.

c. Estimation of the accuracy of the observations based on the instruments considered and
on the number of measurements per observation.

d. Formulation of the GMM and computation of the project relevant measures of accuracy,
reliability and sensitivity; assessment of cost.

e. Computation of the influence of each observation on all four measures listed in step d and
ordering of the observations according to their influence on the objective functions.

f. Comparison of the results of step d with the given criteria and search for the minimum cost
solution with just sufficient accuracy, reliability and sensitivity by:
f.1 deletion of low ranking observations,
f.2 consideration of a change of instruments,
.3 increase of the repetition number of suitable observations.
After major changes of the design the steps d to f are to be repeated.

g. After obtaining a satisfactory result, the complete process should be repeated using

alternative point locations.

The extent of the computations when using this method must not be underestimated. Efficient
algorithms for matrix operations and the consequent use of sequential least squares techniques
are required. Interactive graphics may assist the designer in order to accelerate the decision
making process between trials.
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9.3  Some Details of the Design Steps
The steps listed in the previous section will be reviewed here in more detail.

Step a. The actual users of networks are frequently geophysists, geologists, glaciologists, civil
engineers or mining engineers. These specialists may anticipate a certain deformation pattern of
the object or the area to be monitored. At least they should be able to indicate the most important
part of the structure and where reference points are best established. This information is used as a
guide in the selection of sites under the constraint of intervisibility. The density of the network is
usually a question of available funds.

In Step b it is suggested to introduce all possible observations into the model for the first iteration.
In the following steps the number of observations is successively reduced until an optimum is
reached. Alternatively, some designers favour a start with a minimum number of observations and
selection of those additional elements after each iteration, which cause a minimal increase in cost
together with a maximal gain with respect to the other criteria. This alternative, however, is
computationally less convenient and yields a result, which unneccessarily depends on the
selected observables at the beginning of the simulation.

The a priori estimation of accuracy in Step ¢ should be conservative. The usual assumption, based
on independent observations, that the variance of the observations is proportional to the reciprocal
of their repetition number is very questionable. Practice indicates that all observations taken at one
site are dependent (physically correlated) or, in the case of distance measurements, even strongly
dependent. Thus it does not make much sense to repeat the observations more than three or four
times. Of course, the repetition number of the readings within an arc of directions has to be the
same for all targets. This practical rule is usually violated by direct optimization methods. The
selection of instruments is an effective way to control accuracy.

The most important point of Step d is the formulation of appropriate objective functions. Similar to
step a, the expected deformation pattern plays an important role. All the datum related difficulties in
assessing the accuracy, as outlined in Chapter 4, are to be considered. If suitable invariant
functions can be found, these should be used to establish the criteria (refer to Chapter 7). Some
guidelines for the sensitivity criterion can be found in Chapter 5. A cost model estimates the
expense of the current design. The number of measures to be reviewed in this step should be
moderate but sufficient. Computer graphics can be of great help.

In Step e the change of the objective functions caused by the deletion of each single observation
is calculated. According to the results of this calculation the observations are grouped with respect
to their influence upon the optimization. For this ordering certain rules must be established as the
defined criteria are contradicting. This step in the most expensive one in terms of computations.
Sequential algorithms are imperative to limit the expenditure. If the designer has enough
experience he can select certain candidates for deletion or enhancement. The computations can
then be restricted to these observables, thus reducing the cost of computing.

The decisions are made in Step f.  If the design exceeds the requirements, then the observation
scheme is reduced by deleting observables of minor significance. Theoretically, the whole
optimization process to this step has to be repeated after each deletion. But a skilled designer will
be able to estimate the simultaneous influence of a couple of observations thus speeding up the
iteration. If the set criteria are not met, additional observations or an upgrading of the accuracy of
selected observations is necessary. The selection of observables for this purpose is again guided
by the results (in descending order) of the previous step. When, after some iterations, a
satisfactory result has been found, the whole process can be repeated beginning with a different
and feasible first design. Since all optimization processes lead to a workable design with respect to
the criteria, the final decision is often based on cost arguments.

When the optimal design of the network has been established, the selected point locations are to
be monumented. Itis important to make every effort to establish marks which will remain stable over
a long period of time, and which facilitate the centring of instruments. If high accuracy is required, it
is often necessary to build observation pillars of reinforced concrete, equipped with a forced
centring system.
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9.4 Non-Geodetic Observables

Frequently, the object to be monitored is instrumented with a variety of sensors. Especially large
concrete dams are usually equipped with inclinometers, floating plumb lines, extensiometers, strain
gauges, temperature sensors and water pore pressure gauges. The readings of these instruments
are recorded at short intervals allowing a quasi-permanent monitoring of the object. The
observations are only relative and usually affected by time dependent systematic errors. Therefore
it is necessary to calibrate the installed devices at regular intervals and to relate the readings to
absolute observations. If this is one of the purposes of the geodetic network, then the selection of
the point locations has to consider the position of the installed sensors to allow the correlation of
the data. The processing is usually done in separate models for the geodetic and for the non-
geodetic data. This procedure is justified by the different frequencies of measurement epochs and
by the two dissimilar data sets. The calibration or updating of the non-geodetic results at the
epochs of geodetic observations is carried out by taking the geodetic results as a reference and by
adjusting the others to meet the geodetic results.

Recently models have been suggested to deal simultaneously with all data. This approach is
attractive from a theoretical point of view. But in practice large and complex models cause a lot of
difficulties. Particularly, the detection of outliers, the detection of systematic errors and the
assessment of the a priori accuracies are easier in moderately sized models.
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10. TWO-EPOCH ANALYSIS

The simultaneous analysis of two epochs of observations of a monitoring network is of great
importance in all deformation studies. It is usually carried out between any two consecutive epochs
and, additionally, between the first and the current one. The main objectives of this analysis are:

i. To confirm the stability of reference points and to detect single point movements. The
latter are considered as discontinuities with respect to time and locality, thus not
conforming to continuous deformation models.

ii. To provide a plot of deformation vectors which assists in developing a suitable deformation
model. This geometrical aid is particularly useful for the detection of trends, which may not
be detectable by statistical tests.

iil. To inform about the most recent deformations, which may be important for quick decisions
which cannot wait until the entire material is analysed.

In many engineering applications two-epoch comparisons provide completely sufficient information
and are all that is needed. On the other hand, in scientific projects in general and in geophysical
research in particular a full exploitation of the geodetic observations is imperative. The smaller the
signal to noise ratio, the more effort is required for the evaluation of the data.

From a didactic point of view, it is much easier to understand the complex approaches to multi-
epoch analyses if a comprehensive study of the two-epoch case has preceded. In the latter, the
notations and equations are simpler and clearer.

The deformation analysis based on geodetic methods consists usually of four steps:

. The first step is to establish a monitoring network and to develop an observation scheme
meeting all the requirements dictated by the anticipated deformation pattern and by the
specified accuracy (see Chapter 9).

. The second step is a thorough analysis of the geodetic data including outlier detection
(Chapter 6) and variance component estimation (Chapter 8). This has to be carried out for
each epoch separately and must lead to a proper GMM of the network. The importance of
this step cannot be stressed enough, since any undetected model errors will be
interpreted as deformations in the subsequent steps. Figure 10.1 shows the first two
steps in more detail. The flow-chart is self-explanatory in pointing out the links between
and the interactions of the various steps and substeps having been treated at length in
the previous chapters.

. In the third step follows a combined adjustment of the epochs yielding the information
required to detect single point movements, to establish a set of reference points and to
recognize rigid body displacements of the object or of parts thereof. This step results in a
vector of deformations of the object points.

. The fourth step aims at a description of the deformation pattern by a suitable deformation
model, the parameters of which are estimated and verified statistically.
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Figure 10.1:

Network design and single epoch adjustment.
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The last two steps are shown in more detail in Fig. 10.2 in form of a flow-chart. The figure does not
require further explanations.

Recent reviews of deformation analysis by geometric methods have been published by HECK et al
(1982) and CHRZANOWSKI et al (1985).
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Figure 10.2:  Two-epoch analysis.
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10.1 Single Epoch Adjustment

The main objective of the single epoch adjustment is to establish an optimal mathematical model of
the network. This is achieved by:

i. Screening the data for gross errors,

i. accounting for systematic errors by a proper selection of additional unknown ("nuisance")
parameters,

iii. estimating the a priori accuracy of the observations.

Although this objective is quite common to all estimation methods in geodesy, it is of particular
importance in monitoring networks, where an erroneous model will contaminate the estimated
deformation parameters. This fact has already been stressed in the introduction to this chapter.

The adjustment is carried out in a sequence of steps which partly form iterative loops and are
depicted in Fig. 10.3. The theoretical background has been given in the previous chapters.

a. The Gauss-Markov Model (GMM) is developed and comprises three patts:
. functional part E() = Ax (10-1)
k 5 k
. stochastic part Zl = 2,1 6, Q = i;Qi (10-2)

. datum constraints Rix—c = 0 (10-3)

It is usually advantageous to supplement all reasonable nuisance parameters to the
coordinate parameters in a first tentative model of Eq. (10-1). Omission from the model of
insignificant parameters in the subsequent steps changes the estimates less than an
addition of significant parameters does, see also step (d).

The decomposition of X; of Eq. (10-2) into a sum of matrices follows along the lines

discussed in Chapter 8. The number of variance components k should be moderate in
order to avoid numerical difficulties.

The selection of datum constraints according to Eq. (10-3) is not crucial in this adjustment,
as it is always possible to transform the single epochs to a common datum (see Section
3.8), before the deformation analysis is carried out. The decision of whether or not the
scale is to be considered as a free datum parameter has a large effect on the analysis.
Many examples show that a scale parameter can absorb a large portion of the existent
deformations. Being aware of this effect, it is advisable in uncertain cases to compute both
alternatives. This allows to assess the influence on the problem at hand.

b. A conventional LS-estimation is executed followed by a screening of the observational
data for outliers. Depending on the selected method (see Chapter 6), the calculations are
either iterative using a cycle of testing and deleting single observations followed by new
adjustments or in a re-weighting and re-estimation process.

C. After cleaning the data the variance components are estimated. The stochastic model is
adjusted to the new "a priori weights" and the computations are repeated. This iterative

process comes to an end when all variance components are stabilizing at soiz = 1. In

unfavourable cases it may be necessary to return to step (b), because great changes in
the original variances can alter the critical statistics of the tests for outliers.
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d. The final model should contain only significant parameters but all of them. Therefore, the
nuisance parameters are checked thoroughly in this step. Statistical tests along the lines
of Chapter 5 support the decisions. The exclusion of insignificant parameters will only
slightly change the results of the previous steps. Alternatively, if additional nuisance
parameters are required then all previous results are rendered obsolete. In this case the
whole estimation procedure has to be repeated. It is generally advisable to proceed very
carefully with this step since certain types of parameters tend to absorb deformations and
thus might spoil the following analysis. Therefore, not only statistics but also a good deal
of experience and a sensible attitude are required to achieve a realistic model.

After the model has been finalized the nuisance parameters are usually eliminated in a next step, in
order to facilitate the subsequent computations which solely deal with coordinates. For this reason
the parameter vector is partitioned into the subvectors x4 of coordinates and x, of nuisance

parameters, x = (x4, Xo)l. If the design matrix A is partitioned accordingly, the model reads:

X{
EQ) = (AjA9) x5 (10-4)

and yields the normal equations:

A1tPA1)?1 + A1tPA2)?2 - A~|tPl 0]

(10-5)

A2tPA1 )?1 + AthAzf(z - AthI 0

Provided that the inverse exists, the second equation can be premultiplied by A {IPAS(AxtPAL)™T
which results in:

A1TPAS(ALIPAL)TTALIPA Ry + AftPASRy — A{IPAL(ALIPAL)TALIPI = 0
This equation is now subtracted from the first equation of Eq. (10-5) yielding:
(A1'PA] — A{PAS(ALIPAL)TTALIPA )Ry — (A1IP — AJIPAL(ALIPAL)~TALP) =0 (10-6)

This represents the new normal equations which contain only the parameters of interest. For
standard cases such as elimination of orientation unknowns, additive constants or scale factors very
efficient algorithms exist, which take advantage of the special structure of the coefficient matrix.
Modern textbooks on adjustment discuss these cases (e.g. KOCH (1980, Section 32), LAWSON
and HANSON (1974, Section 25.5)).

The final results of this step, namely:
L X, % Qp=2X3 s, =1 (10-7)

will be subjected to further processing together with the results of other epochs.

10.2  Combined Adjustment

A combined adjustment of two epochs is only necessary in case that correlations between epochs
exist. Many practical reasons as well as experience support the presumption of correlations
between epochs. But, at present, no proven method is known which would reasonably estimate
such correlations. Therefore, it is usually preferred to ignore them.

Also if no actual combined adjustment is carried out, some calculations are required to make the
epochs comparable.
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Letfj+vj = Axj, Zjand [j + vj = Ajx;, X represent the Gauss-Markov models of epoch i and j,
respectively. Then the model for the combined adjustment can be expressed as:

() 200) (G o)w(as)

or in concise form:
l+v=Ax X =0,2Q

The only difference to a simple merger of the single epoch adjustments is that, here, one variance
factor 6,2 common to both epochs results. The estimate of this variance factor can also be

computed from the two single epoch adjustments provided that the same a priori factor 0'02 has
been used or, more precisely, the estimates have the same expectation:

E(soi?) = Esof?) = 02 (10-9)

This can be verified by the usual F-test. If the variance-component estimation (Chapter 8) has been
applied to the single epochs, then the equality of the variance factors is guaranteed. The common
or pooled variance estimate is computed from:

Soz—._

fisoi2+fjsoj2 ) q
fi+1j f

(10-10)
q = (VtPV)i + (VtPV)j; f = fi +fj

where fj, fj and f are the respective degrees of freedom of single epochs and combined
adjustment, respectively.

Two other prerequisites for the comparison of epochs are that:
i both of the models are based on the same geodetic datum, and that

ii. the same approximate coordinates for the common stations have been used.

While the latter requirement is self-evident and easily fulfilled in the process of Taylorization of the
initially non-linear observation equations, the former requires some explanations.

The outcome of the congruency check of the epochs is not influenced by the selection of the
geodetic datum. The zero-variance computational base (Section 3.3) and the minimum trace datum
(Section 3.7) are equally appropriate. The only condition is that the parameters of the points, which
are involved in the datum definition, are present in both epochs. Models which are initially
incompatible are easily transformed to a common datum by use of the equations of Section 3.8.

10.3 The Congruency Test

The objective of the congruency test is to detect whether or not the point group considered has
remained stable. The point group can consist of all points common to the epochs, of the points
establishing the reference net or of those belonging to a specified block of the network.
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In the first case the null hypothesis of the global congruency test reads:

Ho: The common points of both epochs are stable and
thus have the same expectation of the estimated

positions:
EX) = E(ij) = X (10-11)
For a correct mathematical model and normally distributed observations the quadratic form g/G,,2

computed from the model of Eq. (10-8) or from Eq. (10-10) has a central y2-distribution. Now, if H,
is true, then Eq. (10-8) as extended by the condition equations:

xi—x = Hx = 0
is a correct model, as well. Thus the quadratic form g,/G,2 of this model, where:

Ay = VPV, ~ Og2x2(R); fy = T4y (10-12)

is also xz—distributed with f; degrees of freedom, where f is defined in Eq. (10-10) and f, is the
number of independent estimates of x; or xj, i.e. the rank of the design matrices A;, A, of Eq. (10-8).
The inclusion of H,, in the model results in the difference g, of the quadratic form:

Qp = Oy—0q, fp =rH) (10-13)

Using Theorems 3 and 4 of Section 5.4 it can be easily demonstrated that q A/coz is y2-distributed
with f, degrees of freedom and that q and q, are stochastically independent. Hence, the ratio (refer
to Eq. (5-18)):

/f
WA R (10-14)
g/t

is a suitable test statistic with a central Fisher-distribution if H is true.

Two different but equivalent methods can be used for the computation of g,. Which method suits
best depends on the software available.

I The model of‘Eq. (10-8) is modified in such a way that the common points of the epochs are
introduced only once. If the corresponding coordinates are denoted by x¢ and the
associated part of the design matrix by A€, the modified model takes the form:

(o]
k Vi AiC Ain 0 X n
L] ! = ac o an | (10-15)
j Yj j j

where the subvectors x" represent the non-common points or nuisance parameters and A"
the corresponding blocks of the design matrix. The quadratic form of the residuals in this

model equals g, of Eq. (10-12), thus g, follows from Eq. (10-13).
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i The model of Eq. (10-8) is extended by the condition equations:

X
Hix = (I,-I) . =0 (10-16)
J
representing the standard case of Chapter 5. In this chapter it has been pointed out that
the corresponding adjustment must not be carried out, since g, can be computed directly

from Eq. (5-31):
g, = (%i- )‘Zj)t(Qii + ng)‘(ii - %) (10-17)

If the models of the epochs contain non-common points or nuisance parameters, these
have to be eliminated from the cofactor matrices Qg prior to the summation according to Eq.

(10-17). This elimination is achieved by deleting all rows and columns of the matrices Qg
referring to the parameters to be eliminated followed by a re-ordering of the matrices.

In case that the monitoring network comprises reference points and object points or the network is
split into blocks conforming to some expected deformation pattern, the procedure is usually
different. The reference block or the part with the presumably highest relative stability is selected as
the basis for the calculation of the deformation of all other points. In the sequel this basis is termed
reference block of the monitoring network or, in short, reference block. The parameter vector is

partitioned accordingly into the subvector x' pertaining to the reference block and x° referring to the
object points:

x = (xf, xO)t

The problem of investigating the stability of the reference block is solved by a test of the null
hypothesis:

Ho:  All points of the reference block are stable and have
the same expectation of the position in both
epochs:
E&" = Ex) = X (10-18)

The quadratic form q, can be calculated as outlined for the general case. The points of the

reference block replace the common points in Eq. (10-15) and the object points take the position of
the non-common ones, hence:

r
li Vi Air Aio 0 X o
S ! = A o Ao || % (10-19)
g Y j j X

The quadratic form q,, of this model has:
fH = fi + f} + fA

degrees of freedom, where f, equals the number of elements of x" minus the datum defect d. The
test statistic is formed with g, = g, —q and f, according to Eq. (10-14).

Alternatively, the quadratic form can be computed by explicitly introducing the conditions associated
with Eqg. (10-18):

Hix = Xir---Xjr =0

Equation (10-17) is then employed to compute the quadratic form.
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The result of the F-test of congruency is either a rejection of H,, leading to further analysis as

outlined in the next section, or a non-rejection in which case it might be possible to skip the next
section. But such a decision should be taken with due care, as a non-rejection does not mean that

the hypothesis is proved. The type I error probability of this test is usually @ = 5% (see related
remarks in Chapter 5).

10.4 Single Point Diagnosis

If the null hypothesis described in the previous section fails, it is necessary to investigate the
underlying reasons. The techniques for this investigation are outlined in this section and apply also
to cases where single points do not fit into a generally satisfying deformation model or, in general,
when the estimate of the variance factor under a certain hypothesis is suspiciously large.

The alternative hypothesis to H,, of the congruency test of the previous section reads as follows:

Ha:  All points except one conform to the considered
deformation model.
The deformation model used is either the model of Section 10.3 where "all points of the reference

block are stable” and the reference block may contain all common points or any other model
discussed in subsequent sections.

Two basically different methods have been developed to test H, against H,: a conventional

approach assuming normally distributed observations and employing least squares estimation and a
robust method which suits a larger range of distributions.

The conventional approach is more widely accepted. It exists in some variations which all lead to
identical results if applied rigorously. The basic idea is to split the quadratic form g, of Eq. (10-17)
into as many parts as there are points involved in H,. The splitting method, where each point forms a
part, can be interpreted as providing the contribution of such a point to the total form g . The point
with the largest part is considered as non-conformingly deformed in the sense of H,.

10.4.1 Decomposition by Implicitly Formulated Null Hypothesis

The method of decomposing g, is the most direct approach. It is very transparent but requires
extensive computations. The evaluation of the model of Eq. (10-19) yields the quadratic form gy
and the degrees of freedom f,. The contribution of a point P to this quadratic form can be
computed indirectly from the model of Eq. (10-20):

(li) + (Vi) = Ay (10-20)
lj Vj

where xP comprises the coordinates of point P being separated from the subvector x" and treated
like the parameters in the subvector x°. This means that the condition %P = X has been removed

and leads to the reduced quadratic form g,". The difference:
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AP = Gy=0y' = (A+0s)—(Q+0p) = Gp-0p' (10-21)

is exactly the contribution of the hypothesis E(xP —XP) = 0 to the quadratic form g,. The evaluation

of Eqg. (10-20) has to be carried out for every point of the reference block separately. In other words,
all points have to play the role of point P in turn. This leads to a set of quadratic forms with two
degrees of freedom each (in case of a horizontal network).

10.4.2 Successive Decomposition of the Quadratic Form

To facilitate the derivation, the Equation (10-17) is rewritten as:

ap = AlQ A, fA = (Qy) (10-22)
with:
A = )?l_)?j’ QA = Q)'EI'I'Q)‘(]

Successively, each point is considered as having changed its position and all others as being stable.
This corresponds to the partitioning of A into two subvectors:
A = (A Apt)"

where A, contains the coordinate differences of the considered point P while A, comprises the
differences of all other "non-changed" points.
The form matrix Qu~ = P, of Eq. (10-22) is partitioned accordingly, yielding:

A - (An ) Q= P, = (Pnn Pnp] (10-23)
Pon  Ppp

The quadratic form g, can be decomposed into statistically independent subforms by a

transformation of A. This has to be carried out in such a way that two orthogonal subvectors result
referring to point P and all other points, respectively. This transformation is obtained by:

_ ( I 0 ( A, J
- » A = _ (10-24)
Pop Ppn 1 Ay

To express Ppp—1 Ppn in terms of the corresponding blocks of the cofactor matrix Q, the g-inverse is
required. For the block matrix the generalized inverse has the form:

Py = Qp [an Qnp J_ [Pnn I:'np]
— A 3 -
Qon  Qpp Pon  Ppp
1 y (10-25)
Qnn~ + Q™ QnpB™'QpnQnn™ —QnnQppB
- ~B~1QpnQnn~ B-1

where:
B = Qpp - Qannn_an
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From Eq. (10-25) follows Py, = B~ and Py, = -B~1Qp,Qpn™, hence:
Ppp~"Ppn = ~QpnQnn~

which can be substituted in Eq. (10-24). Application of the law of variance propagation to Eq. (10-

24):
I 0 Qnn Qup I (-QonQnn )"
- —Qannn_ I Qpn QPP 0 I

>

yields:

(10-26)

(9]
[
I

an 0

The statistical independence of the subvectors A, and Zp is thus demonstrated.
The quadratic form for A:

Tt At - T - -1
AQ-A = AQ, A +AQ -Q,Q "0 )7 A

is thus decomposed in two independent subforms. Comparison with Eq. (10-25) leads to the
identities:

- -1

Q, = I:)nn_Pinpp F)pn
(10-27)
—1 -
Pop = Cpp ™ QpnCnn Qg
and to the final decomposed form of g,:
Aa’A - AlaoAa - A'a A + AP A
A - A n”nnTn P PP P
(10-28)
_ n p
U = 9% 9

Since the transformation of Eq. (10-24) is regular, it does not change the value of q A- The subform
qaP is the contribution of point P to the form q,. It is identical with qpP of Eq. (10-21).

This decomposition is carried out for every point, yielding a set of quadratic forms which serve as a
base for further investigations.

In statistical terminology Ap is the conditional estimate of Ap for A, given.
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10.4.3 Cholesky Decomposition

Through an application of the Cholesky decomposition, as fully outlined in LAWSON and HANSON
(1974, Chapters 19 and 25), the form matrix P, = Q4™ of the quadratic form of Eq. (10-22) can be

factorized in the product of a lower triangular matrix C and its transposed yielding:
Q™ = P, = CCt (10-29)

Compare also Egs (3-60) and (3-93).

The triangular matrix C can be computed by reduction of P, using the usual Gauss elimination

algorithm for symmetrical matrices with subsequent division of each row by the square root of the
diagonal element. The quadratic form can then be written as:

ap = ATQA‘A = AICCIA = did (10-30)
with:

d = CA

The cofactor matrix of the vector d becomes:

Qq = C'Q,C = clceh—C = (; g j (10-31)

If the reference block under investigation comprises m points, then A contains 2m differences in the
2-dimensional case. The rank of Q, is f,, thus Q4 has a rank deficiency of 2m —f,. Hence the same
number of rows of C and the corresponding elements of the vector d vanish. The identity matrix of
Eq. (10-31) is of order f5 x f,.

It is advantageous to consider Eq. (10-30) as a sum of independent quadratic forms:
gp = qu1 + qu2 + ... +qufA/2 (10-32)

where each subform refers to one point. The Cholesky factorization has two properties which are of
special interest in this context. Firstly, the value of the form q,Pi depends on the position of the

corresponding differences A%;, AY;in the vector A. Secondly, if q4Piis once calculated it is not
affected any more by position changes of points being positioned behind it in the vector.

The pivoting strategy discussed below leads to a decomposition of g, so that the first subform q 4P1
refers to the point with the greatest contribution to q,. The next form q,P2 is the greatest
contribution to the reduced form g, — qAP1, then follows the third greatest contribution and so on.
This ordering is achieved by cyclic exchange of the rows and columns of g, and of the
corresponding elements of A and the subsequent computation of the current q,P1. The point with
the maximal value of q,P1 gets the leading position in A, and the reduction is completed for this
point py. In the next cycle the remaining points are shifted successively into the second position
where the correspondent value of q,P2 is computed. The point maximizing this value gets the
second position and the reduction continues. After f5/2 cycles the decomposition is completed
and the result of Eq. (10-32) available.
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It is important to realize that the sets of subforms computed by the methods of Sections 10.4.1 and
10.4.2 are identical but different from the set obtained in this Section, 10.4.3. They correspond to a

set of subforms q,P1 which results when all points successively take the leading position during the
first cycle of a decomposition according to Section 10.4.3.

10.4.4 Statistical Tests

The conventional decomposition methods outlined provide the statistics for the testing of the
alternative hypothesis, that one point in the block considered is unstable. Various test procedures
are in use, which differ in the error probabilities applied and in the rigour of the statistical basis:

i. The failure of the congruency test at type I error probability o leads to the acceptance of H,
which gives reason for the decomposition of q,. The point with the greatest contribution to

g, is eliminated from the reference block and a new congruency test with the same risk o is
applied to the remaining reduced reference block. The corresponding reduced quadratic
form equals q,' of Eq. (10-21), 5" of Eq. (10-28) or g5 — g5P1 of Eq. (10-32) depending
on the decomposition method.

If the test fails again, the reduced quadratic form is decomposed and the point with the
greatest contribution is considered as unstable and excluded from the reference block.
This sequence of congruency test, decomposition and localization is repeated until the
test statistic falls into the region where H, is accepted. The partial network under

investigation (the reduced reference block or the reduced network of common stations)
contains then only statistically verified stable points.

ii. Following the data snooping approach of outlier detection (see Section 6.4) the variance
factor 6,2 replaces the denominator in Eq. (10-14) yielding a F(f, oo)-distributed test

statistic for the congruency test of the reference block. A rejection of the null hypothesis
gives rise to a test for single point movements. The test statistic:

0.5qu

Op2

T = ~ F(2,9) (10-33)

is calculated for each point, where q,P is computed from Eq. (10-21) or Eq. (10-28).
The critical value for the m (number of points involved) single point tests is taken from the
F-distribution for the error probabilities of 0, = 0.1% and B, = 20% of type I and type II
errors, respectively. These tests are related to the global congruency test by the common
type II error probability B = [, and the common noncentrality parameter A = A,. The risk

o of committing a type I error in the global test is defined by Eq. (6-30):

Ao = Mot Bo fa) = Mo, Bor 2) (10-34)

and taken from graphs or tables. For more details, the reader is referred to KOK(1982).

The point with the largest statistic according to Eq. (10-33) is considered as unstable and
transterred from the block of reference points to the block of object points. The test
procedure consisting of the congruency test of the reduced retference block, the
computation of the statistics of Eq. (10-33) and the localization and exclusion of the most
probable unstable point is repeated until a complete separation of stable and unstable
points is accomplished. The result is a confirmed reference block for subsequent stages
of the deformation analysis.
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iii. If the quadratic form has been decomposed by the Cholesky method, then f,/2 = k(f, =
rQ,) independent quadratic subforms q,Pi are available, which are ordered by the pivot
strategy described. The null hypothesis for each point:

E(0.504Pi) — 042 = 0
taking point P; as a stable one, leads to f,/2 test statistics:

0.5g,Pi
T = 2

i
562

. i=12,.,12=K (10-35)

which are F(2, f)-distributed according to Eq. (5-18). Since the T; are independent the k
tests can be carried out simultaneously. To tune the test with respect to type I error

probability oo of the global congruency test, the critical value of the F-distribution is
computed at:

o= 1-(-a'

All T; greater than the critical value indicate single point movements and lead to an
exclusion of the corresponding points. The remaining reference block is considered
stable and serves as a basis for further stages of the analysis. (For details see CASPARY
and SCHWINTZER (1981).)

The tests (i) and (ii) are similar as far as the procedure is concerned: an iterated congruency test is
executed. But the philosophy of fixing the error probability is different as is the computation of the
test statistics which is based on 002 or 502, respectively. In the procedure (iii) single point tests are

performed simultaneously using a type I error probability different from both (i) and (ii). No wonder
that the tests may give different results in marginal cases when the test statistics are near the critical
values. This should not be considered as a shortcoming of the test methods, but rather as an
indication that a test must never be more than an aid in decision making.

From a computational point of view a combination of successive decompositions (see Section
10.4.2) with test (i) is most efficient if only few unstable points are expected in the reference block.
For a greater number of unstable points (4 or more) the Cholesky factorization (Section 10.4.3)
together with test (iii) may be the best choice.

10.4.5 Robust Method

The robust method of single point screening is comparable with the robust outlier detection
method of Section 6.6. The difference vector A = X;— X; is considered as a vector of observations

of a deformation field, which can be modelled in some way. To keep in line with the conventional
methods in this chapter, this model is viewed as a similarity transformation, assuming that the points
can be brought to coincidence by relative translations, rotations and a scale adjustment. Thus only
the datum parameters (see Section 3.8) must be changed to obtain congruency of the networks
considered. The corresponding model is given by the equations of a similarity (or Helmert)
transformation.

Let m = u/2 be the number of points, A the vector of observed coordinate differences,  the
residual vector, H the u x 4 design matrix and t the vector of transformation parameters. Then:

A+d=H (10-36)

with:



A = (A, A, . A
8 = (81ty 82t1 ) Smt)t
Xk~ Xk ( Sxk
Ak = 7 8 =
A A k L Sy
Yik = Yik K
1 0]
H = (H, H), Hp)! 0 1
H! = - -
K Yo %
t = (txy ty; rz: S) - -
X Yk

The components of t are explained in Section 3.2. The coefficient matrix H is identical with the
matrix S of Eq. (3-61). The subvectors Ay and & refer to the point P. Obviously, the components

dx and dyy, of & depend on the orientation of the coordinate system. In contrast the length of the
residual discrepancy vector is independent of coordinate system's orientation:

- \/ &2 + 8y2 = \/ 8,'5, (10-37)

The parameter vector t is estimated by minimizing the sum of the lengths of the residual
discrepancies:

min (10-38)

Zm.
d
K1 X

The minimum of the objective function in Eq. (10-38) is obtained by forming its derivatives with
respect to t and setting them to zero:

m
ai Z (10-39)

Equation (10-38) can be expressed as:
Ok = Hit — A (10-40)

and substituted into Eq. (10-39):

m
Sat_z [(Hit — Al(Ht — AT = (10-41)

which yields:
m

Z HlSy / d = (10-42)
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The final estimation equation is obtained by expressing the above equation in matrix notation:

H'D™'Ht - HID™'A = 0 (10-43)

where the matrix D is defined by:

D = diag (d1, d1, d2, d2, vy dm, dn) (10-44)

The numerical solution for the parameter estimate t and the discrepancies J is carried out
through an iteratively reweighted least squares process, using:

ty = (H'Dy_q7H~HIDy_71A

v=1,2, .. (10-45)

A - Hty, D! =1

Sy

The computation is initialized with the "weights" Do—1 = I. Thus, the first step yields the usual

least squares estimate of t. The algorithm of Eq. (10-45) converges after 15 to 20 iterations. The
final residual discrepancies dy are estimates of point deformations.

The estimation method isrobustin the sense that large deformations of single points do not affect
the parameter estimate . The deformations emerge as residuals with full magnitude anddo not

contaminate the residuals of the stable points. Unfortunately, the covariance matrix of the
residuals Qg cannot be computed in the familiar way since the relation between A and t is
non-linear according to Eq. (10-43); thus the law of variance propagation does not apply. A
conservative estimate of 08 is the original cofactor matrix QA = Q’A‘i +Q*j; see Eq.(10-22). The

separation of stable and unstable points should be based on or supported by statistical tests. An
approximate test can be developed from the quadratic form gy referring to point Py:

Qk = Sk’05k4 8y (10-46)
where 05k= Q Ay is the 2 x 2-submatrix of Q, corresponding to point Py. The following expression
can serve as a test statistic:

Ok
Tk = — ~ X%@) (10-47)

Op

The statistic is 2(2)-distributed if Hy, (Py is stable) is true. The alternative statistic:

. Ok
T = _"_2 ~ F2 1) (10-48)
So

is F(2, f)-distributed under the same assumption; compare Egs (5-18) and (5-19).

The type I error probability o of the m tests should be computed from:
o = 1-(i-o'™

where 1 — ot is the overall significance level of, for example, 95%.
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10.4.6 Final Adjustment and Graphics

Based on one of the outlined methods of single point stability diagnosis, an undeformed reference
block will eventually be identified. A final combined adjustment is then executed, in which one set
of coordinates is estimated for the stable points, while the object points (including the points
removed from the reference block) are parameterized for each epoch separately. The model has
therefore the form of Eq. (10-19). The geodetic datum is introduced by minimizing the trace of the

submatrix of the cofactor matrix Q; which refers to the established reference block; for details see

Section 3.8. The position differences of the object points, as computed from this adjustment, form
the basis for all further deformation analyses.

In practice it is not required to actually carry out this adjustment, since the results can be derived
from a transformation similar to the decomposition method of Section 10.4.2. If the difference
vector A and the weight matrix P, are partitioned as shown in Eq. (10-23):

A = ( Ar ) Qp~ = PA=(P” P'°) (10-23a)
AO POI’ POO

where the subscripts r and o refer to the reference and object points respectively, then it follows
from Eq. (10-24) that:

-1
Ay= P PLA +A (10-24a)

and, from Eq. (10-26):

- -
QZO = Q=9 Q Qp = Py (10-26a)

The quantities Zo and Qx are exactly the inputs of the analysis required and are identical to the
[o]

results of a final adjustment as specified above.

The methods of stability diagnosis can be exemplified by supporting the numbers with graphical
means. The contribution of point P to the total quadratic form q, is computed, for example, from

Eq. (10-28):

P_Ats =% .
qA = Ap PppAp (10-49)

This equation defines a two-dimensional quadratic form which can be visualized as an ellipse. The
semi-axes and their orientation are given by the square roots of the eigenvalues and by the
eigenvectors, respectively, of the inverse of the form matrix:

According to the F-test applicable the axes of these ellipses are to be multiplied by:

s, /2Fa(2, f)

For details of the computation refer to Eqs (4-32) to (4-42). The resulting confidence ellipse is
sometimes called deformation ellipse (HECK et al (1982)) and can be plotted at point P together
with the deformation vector A, If the tip of the vector falls outside of the ellipse, then the point is
unstable. Since this is done for all points, a very good picture of the deformation field and a better
understanding of the result of the single point analysis is obtained. Furthermore, the plot contains
valuable information for the design of a deformation model.

All equations and descriptions in this chapter refer to two-dimensional (2d) networks. The
necessary modifications for 1d- or 3d-networks are readily established.
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10.5 Rigid Body Displacement

After the localization of points exhibiting a deformation feature which does not conform with the
general pattern of the surrounding, three different cases need to be considered for a further
analysis depending on the type of the monitoring problem:

i. The stability of the points of the reference block is verified. For these points only one set
of coordinates is estimated. The deformation vectors as depicted on a plan of the network
show the relative movements of the object points in respect to the reference block
between the epochs.

i. The network consists of two or more blocks, separated by geological features like faults or
by structural properties like cracks or crevices. Points exhibiting non-typical deformations
are eliminated from each block. One of the blocks is selected as the reference block and
plays the same role as the reference network in paragraph (i).

fii. No reference block is defined. The whole network consists of object points only. Single
points showing non-typical deformations are localized. Deformation vectors are plotted for
all points. They refer to a geodetic datum defined by one of the methods discussed in
Chapter 3.

In this stage of the analysis rigid body displacements are defined. These displacements can only
be modelled in a relative sense. Thus for case (i) the displacement of the object points with respect
to the reference block is estimable. Similarly, in case (ii), the movements of entire blocks relative to
the reference block can be modelled and estimated. In case (iii) no rigid body displacement can be
determined.

The model of a rigid body displacement is the same as for a similarity transformation which has
already been used in Sections 3.8 and 10.4.5. Following Eq. (10-36) the model may be expressed
as:

A+ 6 = Ht, ZA = SO2QA (10'51)

The vector A contains the "observations”, i.e. the coordinate differences of the m points of the

partial network under investigation. The residuals of the model form the vector 8. The parameter
vector t comprises the two translation unknowns t, and ty, the rotation term r, and the scale

parameter s.
t = (4 ty, 1z 8 (10-52)
It should be noted that the use of a scale parameter in two epoch comparisons is rejected by many

experts, and its role is questionable indeed. The design matrix H has already been given in the

context of datum transformations (Eq. (3-61)). The coefficients X; and ¥; are the coordinates of the

m points of the block to be analysed in a special coordinate system with its origin in the centre of
gravity of the block:

1 0 1 0 1 0
0 1 0 s Y o 1
H = - - _ ~ ~ (10-53)
Y1 X 2 X2 v Ym  Xm
Y 0V % V2 Xm  Ym

O+ @°%-Q%° - Q.0 ° (10-54)
i
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The superscript "o" refers to the object points as opposed to the reference points which are
indicated by the superscript "r".

The parameter vector t is estimated by the usual least squares method:

—
|

= (H'Q,~TH)-THIQ, 1A
(10-55)

]

Qi = (H'Q,~1H)-!

Alternatively, the estimation of 1 canbe integratedin the combined adjustment which follows after
the single epoch analyses. The model of Eq. (10-8) would then have to be modified in the

following way:
I Vi Air Aio 0
+ = X0 (10-56)
lj vj Ajr Ajo —AjoH .

The extension to three and more blocks with different sets of transformation parameters tis straight-
forward. Atthis stage the question arises whether or not the parameter vector 1 is significant. The
answer can be based on the usual F-test.

x>
]

Under the null hypothesis:
A
Hy @ Et)=t=0

that the parameters are insignificant and assuming normal distribution of the "observations" A it
follows from Theorem 1 of Section 5.4 that the quadratic form:

A

a = 't ~ 6% %4) (10-57)

has a central y(2-distribution with 4 degrees of freedom.

Since e is independent of the quadratic form q of Eq. (10-10) the variance ratio:

L F(4,1) (10-58)

is an F-distributed test statistic. The probability of the test statistic exceeding a critical value Fo(4, 1)

is 0. Upon completion of the estimation of the rigid body displacement a new plot of the remaining

and not yet modelled deformation vectors is useful for the decision on further steps of the analysis.
The question of whether or not the mode! applied so far suffices can be answered by inspection of
the vector plot and by another statistical test.

The null hypothesis reads now:

Hy :  All deformations not yet modelled are insignificant.
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The numerator of the corresponding variance ratio test statistic:

q,/f,
q/f

~ F(f, ) (10-59)

can be calculated either from the models of Eqs (10-56) or (10-51). Equation (10-56) can be
regarded as a model which includes the hypothesis that all points are undeformed apart of the rigid
body displacement of a block. Thus the quadratic form of the residuals of this model follows Eq.
(10-12). The associated model without the application of the hypothesis is given in Eq. (10-19),

thus:

aa d(10-56) — 9(10-19)

(10-60)

fa f(10-56) = f(10-19)

On the other hand g, may be calculated from the model of Eq. (10-51) applying the usual
equations:

an = o'Q,13, fa = 2m—4 (10-61)

The denominator of Eq. (10-59) follows from Eq. (10-10) as before.

It should be pointed out that the numerous tests applied so far are not independent. The true type

I error probability is therefore different from the selected value of . Unfortunately, there is no
rigorous statistical method to handle this problem. Thus the results of the tests should not be
overvalued. The decisions for further analysis should also be based on experience and a careful
assessment of the plotted vector field.

10.6 Strain Model

In numerous applications of deformation analyses and, particularly, in crustal movement studies,
the final aim is a representation of the deformations in terms of strain parameters. The basic
principles of strain analysis, as developed in the theory of elasticity, are applicable if the area or the
object covered by the monitoring network can be considered as a continuum deforming as such
under stress. Thus the deformation is continuous by definition. Since observations are only
available at discrete points of the network, the unknown and usually rather involved deformation is
to be interpolated over the entire object. This can be done either by continuous position
dependent functions, fitted to the observations by least squares, or by locally continuous functions
like straight lines and splines connecting the observed points. Considering again 2d-networks and
neglecting the error term the general equation is:

% — % =A = Ht +g() (10-62)

where Ht is the rigid body displacement of the previous section but without an unknown scale
parameter. The function g(x) models the actual deformations. In all geodetic applications
considered here, the deformations are small in comparison with the size of the network as soon as
the rigid body displacements have been removed. Thus the deformations may be modelled by a
differential relationship in the vicinity of the network points:

A = Ht + Edx (10-63)

where:
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JdAx 0JAx
oA “ox oy _ €xx  ©xy
.E T ox O0Ay OJAy ) (eyx eyyj (10-64)
xdy

is the infinitesimal deformation tensor with Ax, Ay being the components of the deformation vector

A. Strictly, the Eq. (10-63) is valid only in a differential vicinity of the points. In order to apply the
tensor in the entire area or object under investigation it is necessary to assume that the
deformations are homogeneous, i.e. that g(x) is linear in x. In general, this is a very tight restriction
which makes strain analysis unsuitable for many deformation problems. Fortunately it is possible to
relax the restriction in practice by splitting the network into finite elements. The deformations of
three points only are required for the solution of Eq. (10-63) hence the network can be
decomposed into triangutar elements. The requirement of homogeneity is then confined to the
interior of the triangles.

The non-symmetric matrix E of Eq. (10-64) is usually decomposed into the sum of a symmetric
matrix € and a skew symmetric matrix (:

E = 12(E+E) +12(E-E) = e+ (10-65)
with:
e Eyy + Byy)/2 € €
. ( N J i} ( o Exy ) (1068)
(exy + eyx)/2 eyy Eyx Eyy
and:
0 Eyy — Byy )2 0 .
® = ( (Bxy ~ 8yx) ) = ( Xy) (10-67)
(6yx — exy)/2 0 Wyx 0

The matrix € of Eq. (10-66) represents the so called strain tensor. The diagonal elements of € give
the extensional strain in x- and y-direction, respectively. The expression 1 + €, (1 + Eyy) is the
scale factor applying to all lines parallel to the x-axis (y-axis). The double of the off-diagonal

element 2¢,, = 2gyy is equivalent to the angular distortion of a right angle which was originally
parallel to the axes of the coordinate system. This effect is called shear strain.

The rigid body rotation is given by the angle Wyy of Eq. (10-67). For the 2d-case discussed here a
geometrical interpretation of the parameters of differential homogeneous strain is given in Figure
10.4.

Homogeneity means that straight lines remain straight and parallel lines remain parallel under the
deformation model. The strain tensor is independent of translations but its elements refer to the
coordinate system used. For further reading MARGRAVE and NYLAND (1980), CHEN (1983),
BRUNNER et al (1981), SCHNEIDER (1982) and WELSCH (1981) are recommended.
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Figure 10.4:  Geometrical interpretation of the parameters
of homogeneous strain.

Let Rq, be a rotation matrix, where @ is the angle between the original system (x, y) and the rotated

system (€, M):

R = ( cos ¢ sin @ )
¢~ .
~-sin @ cos ¢

The deformation vector A of Eq. (10-63):
A = A-Ht = Edx
takes the form of d after rotation by ¢:
6 = R(PA = R(pde (10-68)

Fromé& = Rex follows dg = Redx. Since Ry, is orthogonal, i.e. Rq,th, = Rq,Rq,t = I, the above
Equation (10-68) can be rewritten as:

6 = R(pER(ptdf; = E(pdf;
with: (10-69)

= t
Ey = RyERg

The general relationship is thus established, where E(p is the deformation tensor in the new system

after rotation by the angle ¢.
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For any symmetrical matrix A the following eigenvalue decomposition (also refer to Section 4.1 and,
particularly, Eq. (4-13)) exists:

A

]

SAS!, SIAS = A (10-70)
with:

A = diaghq, Ay, .., Ap)

being the diagonal matrix of eigenvalues and S the associated matrix of eigenvectors (rotation
matrix). Substitution of Eq. (10-70) in Eq. (10-69) leads to:

= tp t -
Eg = Rq,SAS Ro (10-71)
This demonstrates that the off-diagonal elements of E disappear and the diagonal elements
coincide with the eigenvalues, if Rq, = St is used, i.e. for a rotation by the angle ©, as given by the
eigenvalue decomposition of E:

Eg = A = RgERg! (10-72)

This transformation of E into its principal axes yields the semi-axes and the orientation of the strain
ellipse, which may be plotted and interpreted as the error ellipse of Chapter 4. The axes are

orthogonal and give the maximum and the minimum extensional strain. They have a bearing of ®
with respect to the original coordinate system. Since the shear strain is zero in the system rotated

by ®, a right angle with sides paralle! to the axes of the strain ellipse remains undistorted in this
model.

The linear deformation model of Eq. (10-63), which is usually applied for the estimation or
computation of the parameters of homogeneous strain, can be applied to point Py, after separation
of the rigid body displacement:

— Zx a; ao X
Ak - Hyt = Ak =| — = (10-73)
Ay «

Substitution of Eq. (10-65) yields:

_ ExxXk + ExyYk — Wyk
Ay = (10-74)
ExyXk + EyyYk + Xy

If the rigid body displacement shall be computed simultaneously with the strain parameters, then
the two rotational terms merge and Eq. (10-74) needs only an extension by the translation
unknowns t, and ty. This is the general approach to modelling deformations in terms of

homogeneous strain, where six parameters (Exx: €y Eyyr O, ty ty) are determined requiring a
minimum of three points.

Depending on the nature of the object under investigation and on the structure of the deformation
field it may be appropriate to compute either one set of parameters for the whole network, one set
for each block or one set for each triangular finite element. Usually the result is transformed into the
system of principal axes according to Eq. (10-72), and the strain ellipses or their axes are plotted in
the network plan.
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If more than one set of parameters is computed, it should be noted that the sets are correlated,
since points on boundaries between blocks or between elements enter into two or more
computations. When applying statistical tests of significance this fact would have to be
considered.

10.7 Polynomial Deformation Models

A generalization of the rigid body and strain models leads to the polynomial approach. The
contribution of point Py to the model has the form:

A Ax 8o + ayXK + Yk + agX2 + BgXYk + A5V + - 10.75
k = = 2 2 (10-75)
Ay k bo + b1Xk + b2yk+ b3Xk + b4xkyk + b5yk + ...

Foras = ty, by = ty, aj = by = s, by = —ay = 1, @ = bj = 0 foralli> 2 the rigid body
displacement model of Eq. (10-51) results. If the parameters are selectedas a, = ty, by = ty,
a1 = €y D1 = ey, ap =8y, by =-ey,, a=Db =0foralis>2 then the strain model of

Eq. (10-863) is obtained.

For the parameter estimation in the model of Eq. (10-75) the usual least squares method can be
employed (NEY, 1975).

As a rule, the use of a polynomial mode! of second or higher order should be questioned, since
the parameters do not have a clear physical meaning. This makes the interpretation of the results
difficult and does not lead to an understanding of the phenomena observed. Such models also
contradict the principle of always selecting the simplest model possible. Furthermore, the well
known drawbacks of higher order polynomials such as numerical instability and unwanted
oscillations between data points apply as well.

Despite these severe deficiencies there are applications where a polynomial model is suitable.
Altogether these special cases may even be in the majority. It should be kept in mind that
deformation analysis typically deals with special cases, despite all generalizing approaches. Usually
a model has to be tailored for a particular case. The models outlined in this section are by no means
exhaustive; they may serve as examples on how to approach a practical task, where a special
polynomial model may be appropriate.

Ground subsidence in areas where the mining industry exploits minerals or where oil, gas or water
is pumped shows similar features. A cross-section through the area has the form of a trough. The
lines of equal deformation (settlement) close, are of similar shape and resemble contour lines. The
changes in height are usually greater than those in horizontal position. A polynomial of second or
even higher order in a suitably selected local coordinate system may be most adequate.

— — Original Surface

—— Deformed Surface

Figure 10.5:  Cross-section of a subsidence trough.
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Large concrete dams are usually crescent-shaped in plan view and are locked at both ends into the
bedrock. The changes in water level and temperature cause regular deformations of the dam
which can be approximated by a parabola. The deformation model has to consider this regularity.
Only deformations deviating from the predicted values are of interest. If they are too large
dangerous conditions may arise.

——0Original Dam Centre Line

~— Deformed Dam Centre Line

Figure 10.6:  Sketch of a concrete dam with regular deformations.

Man-made slopes and dams of water reservoirs, large mining pits and along mountain roads are
often hazards requiring permanent monitoring. Certain deformations follow known patterns and
are non-critical. The general pattern of expected subsidence as depicted in Fig. 10.7 is similar to
that of Fig. 10.5. The horizontal deformations resemble those of Fig. 10.6. Again, a polynomial
model may be suitable to describe the pattern.

—~0riginal Surface

— Deformed Surface

Figure 10.7:  Bank of an open brown coal mining pit.

10.8  Graphical Representation of Deformation Patterns

It has been frequently mentioned in previous sections that a plot of vectors of position differences
is a very helpful mean to obtain a first impression of existing deformations. Unfortunately, the
vectors depend on the geodetic datum, so that their interpretation has to be done with caution.
Nevertheless, in many practical applications these vectors represent the result, particularly where it
is obvious at first glance that nothing has happened between the epochs which could give reason
for concern. Some simple examples of such plots are depicted in the Figures 10.5 to 10.7.
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A more sophisticated description of deformation vectors is outlined in Section 10.4.6. A display of
the single point displacements together with conditional confidence ellipses (refer to Eqs (10-49)
and (10-50)) conveys all available information of a two-epoch comparison in a very concise form.
This facilitates the interpretation.

A different method of graphical representation is adequate for monitoring relatively fast
movements as, for example, those of large glaciers. A plot of equally spaced lines across the
glacier which have been straight in the first observation epoch is usually chosen in this case.
These lines resembling contour lines give a fairly good picture of the ice flow. They are often
preferred to a mathematic analysis based on a set of polynomial coefficients of unclear meaning.

Plots of lines of equal deformations have been the sole and entirely sufficient result of subsidence
monitoring for many decades. These iso-lines are easily constructed from the observation results
and have the advantage of being intuitively understood and interpreted by the user, who is not
always accustomed to sophisticated mathematical models.

These examples and those of the previous section raise the question whether or not a
mathematical model of deformations is really useful and necessary in all cases. It seems to be the
trend of our times to mathematize all problems and to accept only abstract approaches as being
scientific. The proven simple methods, as for example the graphical representation, are too often
despised, albeit being the most suitable approaches in many applications.

10.9  Mixed Model Approach

All methods of deformation analysis discussed previously are based on the Gauss-Markov model,
which can always be put into the form:

A+0 =By, I5=235=0,2Q, (10-76)

where A = %;—%; denotes the vector of coordinate differences, d the vector of residuals, B the
design matrix and y the vector of unknown deformation parameters. The cofactor matrix of the

"observations" A is given as:
QA = qu + Qf(j - Q)?i)?j - Qﬁjii
and the variance factor 602 is estimated by the pooled variance according to Eq. (10-10).

Examples are the model of a rigid body displacement (Eq. (10-51)) and the model of
homogeneous strain (Eq. (10-63)).

The functional part By = E(A) of Eq. (10-76) can only be an approximation of the true and usually

complicated deformation pattern. Therefore, it has to be assumed that the residual vector &

comprises observational errors as well as model deficiencies. Based on this aspect the mixed
model approach into deformation analysis has been developed by SCHWINTZER (1982, 1984).

Let € be the vector representing the random observational errors, characterized by:
E(e) = 0, Ze = 0,2Q, (10-77)

The effect of model deficiencies may be expressed as Cz, i.e. as linear combinations, defined by
the matrix C, of some stochastic variables z. The residual vector & can now be written as:

3 =€-Cz, IZ§ = 0,2(Q,+CQ,CYH (10-78)

where € and z are assumed statistically independent. The magnitude of the term Cz depends on
how well the linear function By describes reality. As simple models are usually preferred, in order to

allow physically meaningful interpretations, the model's residual vector & might be considerably
greater than the observational error vector €.
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Nevertheless, it shall be assumed that the model is appropriate. The variables z can then be
considered as random variables with zero mean. By virtue of the central limit theorem of statistics it
is further assumed that z is normally distributed, hence being completely defined by the moments
of first and second order:

E() = 0, %, = 0,2Q, (10-79)
These considerations lead to an expansion of model (10-786) into the mixed model defined as:

A+g =By+Cz
(10-80)

€~N(0, 0,2Q,), z~N(0, G,2Q,)
The deterministic (parameter) vector y and the stochastic vector z need to be estimated.

The estimators ¥ of the parameters of the model of Eq. (10-80) are derived under the principle of
best linear unbiased estimation (BLUE), as outlined in Chapter 2. For this purpose the stochastic

terms of Eq. (10-80) are combined in the vector 8 as shown in Eq. (10-78). This simplifies the
mixed model to:

A+d = By, Zg= 0,2(Q)+CQ,CYH = 0,205 (10-81)

being equivalent to the usual GMM of Eqg. (10-76) apart from the special structure of the cofactor
matrix Qg.

The previously derived estimators can be adopted, if adjusted to the special covariance matrix of
Eq. (10-81). The result is the following set of estimation equations for the mixed model:

9 = (B'PB)'B'PA, 8§ = By -A
Qy = (B8'PB)7, so2= O'PS/ (10-82)
€=v = -QuP(A-BY), z = QC'PA-BY)

with:
P = Q' =(Q)+CQ,CH!

The application of the mixed model approach to deformation analysis requires two additional
assumptions in order to set up the matrices C and Q, of the model of Eq. (10-78).

Since, in practice, only a vague idea exists usually about the random variate z, the product Cz may
as well be considered as the actual model deficiency. This admissable simplification makes it
possible to put C = I and leads to a new form of the weight matrix:

P = (QA+QZ)_1 (10-83)
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The prior determination of the cofactor matrix Q, of the vector of random parameters z is

comparable to the estimation of the a priori weight matrix of an ordinary GMM and, hence, affected
by the same uncertainties. Usually, the observations as such do not contain sufficient information
for a selection of Q,. Therefore experience and reasonable guesses play an important role.

In most applications a smooth distance dependent correlation between the observed deformations
is assumed. The correlation decreases more or less quickly and vanishes beyond a certain
distance. It can be modelled by a simple positive definite function of the type:

r = exp {~(cd)3} (10-84)

for example, where ¢ is a parameter governing the steepness of the decrease of r and d defines
the correlation length. Good results have also been achieved with a diagonal matrix for Q,, i.e. for

r=0.

For the testing of the significance of the vector 9 of deterministic deformation parameters and for

a separation of random observation errors and model residuals, the quadratic form &PS of
Eq. (10-82) must be decomposed. This is achieved by considering the following system of
equations which is completely equivalent to Eq. (10-81):

By + Cz, ZA = GonA

>
+
™
[

(10-85)
052Q,

OZ +V = Z’ ZZ

The pseudo observation vector 0, = E(z) consists of zero elements only. The parameter vector

(y'z!) may be estimated using the usual Gauss-Markov model, i.e. minimizing the quadratic form of
the residuals. The analogy is obvious if Eq. (10-85) is written in the form:

A £ B C Y QA_1 0
o, | {v) T lor)lz) Pl o Q! (10-56)

The minimized quadratic form:

t . —
q=£Q g+V0q, (10-87)
can now be decomposed in the following way:
- AQTA - §ING - Stan s
q = A y 9)’ 2
(10-88)

= 4 - Q9 - Q3

where N9 and Q4 are the corresponding blocks of tf}e normal equation matrix and its inverse,
respectively, of the model of Eq. (10-86). The vector y isthe result of the model of Eq. (10-76),
i.e. of the ordinary Gauss-Markov model without stochastic parameters. The subform q 3 indicates
the reduction of the quadratic form q due to the use of the mixed model approach.
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The degree of freedom of O!PJ in the model of Eq. (10-86) isf = n — u, assuming full ranks of the n x
u-matrix B and the n x n-matrix P = QA“1.

Equation (10-86) shows that this degree of freedom is distributed between the subvectors A and 0, of
the total observation vector.

The deformation analysis using the mixed model consists of three consecutive steps:

i. Variance component estimation: the technique of variance component estimation as
outlined in Chapter 8 is applied to the model of Eq. (10-86) in order to estimate a scaling factor
for the matrix Q.. This is required for the correct relative weighing of the "observations" 0;
with respect to the coordinate differences vector A. The cofactor matrix Q, is assumed to be
known. It is kept fixed in the estimation procedure. This step requires the computation of the
redundancy contributions of the subvectors A and 0 of Eq. (10-86).

ii. Outlier detection: the estimated residuals Oi (being identical to the estimates
Qi ) are screened for outliers. The associated cofactor matrix is computed from:

Q) = Q, - Q)

Outliers are located by applying one of the methods of Section 6.4 or 6.5. Detection of an
outlier indicates that the corresponding point does not fit the adopted deformation model By.
If a non-conformingly deformed point is identified, it is deleted from the model and the
analysis is repeated starting again with step (i). This iterative outlier detection method is
repeated until all remaining points conform with the model.

iii. Significance testing: the estimated parameters 'f/are statistically tested for significance
using the resulting cofactor matrix Qyand the estimated variance factor s2 of Eq. (10-82). The
parameters identified as not contributing to the model are eliminated and, eventually, the final
adjustment is carried out solely considering those parameters, which are relevant for the
deformation model.

The mixed model approach stems from the sound principle that errors should be separated and
treated according to their different sources, wherever this is possible. Unfortunately, the resulting
equations are rather complicated and the numerical computations required are repellingly extensive
and expensive. Therefore, despite its appeal from a theoretical point of view, this approach is unlikely
to be used extensively.

10.10 Example: Dam Monitoring Network

The monitoring network Montsalvens serves again as a basis for an example of a two-epoch analysis.
All observations and deformations have been simulated. Figure 10.8 shows the plan of the network
and the observations, the 95%-confidence ellipses and the simulated deformations of points 3, 11, 12
and 13. The points 10 through 14 are located on the crest of the dam; they represent the object of
investigation. The points 1, 2, 3, 4 and 6 form the reference network reinforced by the two targets 7
and 9. The geodetic datum is defined by minimizing the partial trace of the cofactor matrix
corresponding to this group of reference points (see Section 3.8).

The network simulated for this example is a simplified version of the real network Montsalvens
(Schweizerische Talsperrenkommission, 1946). The scale and the a priori variances are realistic.
Tables 10.1 and 10.2 give the complete data of the two epochs of observation. The reader is
encouraged to carry out his own analysis and to use the data for testing of the methods of the previous
sections.
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0 1 2 mm
Ellipses and Deformations
Figure 10.8: Monitoring Network Montsalvens showing the simulated observations and

deformations together with the 95%-confidence ellipses. The geodetic datum is
derived from the reference points (shaded ellipses).

The simulated observations consist of five arcs of directions with an a priori standard deviation of G =
0.3mgon = 3°© = 1" and six distances with ¢ = 0.3mm. The same GMM is valid for both epochs. It
contains n = 55 observations and u = 29 unknowns (24 coordinates and 5 orientation unknowns).
The rank deficiency of the model is d = 3, hence the geodetic datum has to dispose of three degrees
of freedom: two translations and one rotation. This is achieved by minimizing that partial trace of the
cofactor matrix of the unknowns, which refers to the coordinates of the reference points (numbers 1 —
9). Thenetworkhas f = n — u + d = 29 redundancies. The dimensions for direction related
quantities are either grad (400th part of a full circle) or centesimal seconds (1 grad = 10 000°°). The
length units used are metre and millimetre. Tables 10.1 and 10.2 list the input data and parts of the
results of the two single epoch adjustments. The residuals vj, Column (7), their standard deviations sy,
and the test statistic Tj of Eq. (6-31) are tabled to facilitate a screening of the data for outliers. The
critical value T for a type I error probability of 5% and f = 29 is computed from Eq. (6-32) and yields T
= 3.09. The largest statistics Tj of epochs 1 and 2 are Tog = 2.385 and T37 = 2.856, respectively.
Since Top < T and T3y < T all observations are acceptable. Column (10) contains the redundancy
contributions as defined by Eq. (7-15). The values indicate that the observations 9, 41 and 42 are
hardly checked by other observations. Gross errors in these observations would be virtually
undetectable. They would change the positions of points 10, 9 and 14 greatly, as a brief look at Fig.
10.8 will tell. This problem could only be overcome by selection of additional reference points.
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Ti=
No | from to "observed” computed l; weight Vi Svi vi/SVi f;
directions in grad cc cc cc
1 2 3 4 5 6 7 8 9 10
1 1 2 0.00000 42.2524 0.27 0.111 0.863 2.363 0.365 0.5695
2 1 13 3.92813 46.1805 0.30 0.111 -1.558 2.459 0.634 0.6168
3 1 14 26.65768 68.9100 0.76 0.111 -1.277 2.769 0.461 0.7825
4 1 3 28.14169 70.3942 -1.08 0.111 1.230 2.839 0.433 0.8223
5 1 9 29.46106 71.7135 0.11 0.111 -1.590 2.786 0.571 0.7919
6 1 4 42.51533 84.7675 2.69 0.111 -2.959 2.754 1.074 0.7740
7 1 6 79.96743 122.2199 -0.49 0.111 0.190 2.398 0.079 0.5865
8 1 7 125.68087 167.9333 0.07 0.111 0.858 1.105 0.776 0.1247
9 1 10 272.63544 314.8878 0.19 0.111 0.064 0.164 0.389 0.0027
10 1 11 350.12485 392.3775 -1.91 0.111 1.961 1.365 1.437 0.1900
11 1 12 379.70302 21.9555 -0.91 0.111 2.218 2.291 0.968 0.5355
12 2 1 0.00000 242.2524 2.82 0.111 -1.494 1.996 0.749 0.4066
13 2 10 28.95076 271.2038 -3.87 0.111 1.264 0.945 1.338 0.0911
14 2 11 114.46143 356.7139 2.37 0.111 -1.935 1.365 1.418 0.1901
15 2 12 170.86868 13.1211 2.53 0.111 -1.951 1.712 1.140 0.2990
16 2 13 205.16361 47.4165 -2.54 0.111 0.767 2.030 0.373 0.4203
17 2 14 233.14019 75.3929 -0.43 0.111 -0.082 2.684 0.030 0.7348
18 2 9 236.90870 79.1612 2.02 0.111 -3.723 2.717 1.370 0.7534
19 2 3 239.06410 81.3169 -1.35 0.111 1.715 2.695 0.636 0.7408
20 2 4 252.26800 94.5213 -6.44 0.111 6.458 2.708 2.385 0.7481
21 2 6 306.12031 148.3730 -0.63 0.111 0.031 2.174 0.014 0.4824
22 2 7 365.52605 207.7782 5.562 0.111 -1.040 1.916 0.543 0.3745
23 3 1 0.00000 270.3942 -0.90 0.111 2.345 2.715 0.864 0.7521
24 3 10 7.24369 277.6373 5.08 0.111 -4.615 2.722 1.696 0.7557
25 3 2 10.92332 281.3169 5.39 0.111 -3.913 2.671 1.465 0.7278
26 3 11 35.65047 306.0446 -0.27 0.111 2.844 2.049 1.388 0.4284
27 3 12 71.45038 341.8449 -4.35 0.111 1.962 1.657 1.260 0.2475
28 3 13 119.97324 390.3675 -1.70 0.111 0.381 1.396 0.273 0.1987
29 3 14 195.22762 65.6219 -1.11 0.111 0.434 1.251 0.347 0.1597
30 3 9 204.68251 75.0772 -6.14 0.111 1.730 1.133 1.527 0.1309
31 3 4 243.91905 114.3133 -0.88 0.111 1.642 1.922 0.855 0.3767
32 3 6 347.23966 217.6338 0.13 0.111 -1.629 2.128 0.765 0.4621
33 3 7 383.60808 254.0017 4.74 0.111 -1.181 2.577 0.458 0.6774
34 4 1 0.00000 284.7675 -2.45 0.111 2.255 2.825 0.798 0.8141
35 4 10 3.71152 288.4789 -1.86 0.111 1.217 2.835 0.429 0.8203
36 4 2 9.75390 294.5213 -1.82 0.111 1.728 2.848 0.607 0.8277
37 4 11 24.10203 308.8692 1.10 0.111 -0.413 2.596 0.159 0.6877
38 4 3 29.54640 314.3133 3.70 0.111 -4.159 2.501 1.663 0.6384
39 4 12 45.87412 330.6413 0.13 0.111 -2.629 2.413 1.089 0.5941
40 4 13 66.81895 351.5862 0.26 0.111 -0.482 1.829 0.264 0.3412
41 4 9 86.84505 371.6120 3.32 0.111 -0.044 0.058 0.756 0.0003
42 4 14 97.16398 381.9311 1.31 0.111 -0.021 0.127 0.163 0.0017
43 4 6 370.06912 254.8368 -4.32 0.111 1.881 2.447 0.769 0.6108
44 4 7 388.29153 273.0587 0.64 0.111 0.667 2.710 0.246 0.7493
45 6 1 0.00000 322.2199 2.66 0.111 -2.436 2.405 1.013 0.5902
46 6 7 380.49429 302.7141 3.02 0.111 1.300 1.798 0.723 0.3297
47 6 4 132.61652 54.8368 -1.04 0.111 -0.958 2.094 0.457 0.4475
48 6 3 95.41328 17.6338 -3.31 0.111 1.031 2.276 0.453 0.5284
49 6 2 26.15275 348.3730 -1.33 0.111 1.062 2.379 0.447 0.5773
Distances in m mm mm mm
50 1 2 14.5970 14.5966 0.42 11.111 -0.428 0.293 1.461 0.8744
51 1 3 49.2300 49.2302 -0.22 11.111 0.078 0.265 0.294 0.7194
52 1 4 69.9970 69.9972 -0.16 11.111 -0.064 0.244 0.262 0.6055
53 2 3 36.5730 - 36.5737 -0.71 11.111 0.569 0.281 2.025 0.8064
54 2 4 59.2300 59.2302 -0.20 11.111 -0.047 0.259 0.181 0.6828
55 3 4 24.6210 24.6207 0.34 11.111 -0.454 0.280 1.623 0.7980

Table 10.1: Input data of the GMM of Epoch 1 and part of the resuits. Column (5) is defined as (5) = (4) -
(3) + (orientation). The weights are based on 6o = 1. Columns (7) and (8) give the residuals
after the adjustment and their standard deviations, respectively. POPE's test statistic Tj of
Eq. (6-31) is compiled in Column (9). Column 10 shows the redundancy contributions
according to Eq. (7-15).
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Ti=
No | from to “observed" computed li weight Vi SVi vi/S\,i fi
directions in grad cc cc cc
1 2 3 4 5 6 7 8 9 10
1 1 2 0.00000 42.2524 1.43 0.111 1.935 2.319 0.835 0.5695
2 1 13 3.92707 46,1805 -9.15 0.111 3.482 2.413 1.443 0.6168
3 1 14 26.65771 68.9100 2.21 0.111 -0.239 2.718 0.088 0.7825
4 1 3 28.14160 70.3942 -0.83 0.111 4.972 2.786 1.785 0.8223
5 1 9 29.46127 71.7135 3.36 0.111 -1.456 2.734 0.532 0.7919
6 1 4 4251552 84.7675 575 0.111 -3.578 2.703 1.324 0.7740
7 1 6 79.96779 122.2199 427 0.111 0.426 2.353 0.181 0.5875
8 1 7 125.68102 167.9333 2.72 0.111 -0.766 1.085 0.706 0.1247
9 1 10 272.63537 314.8878 0.65 0.111 0.120 0.161 0.744 0.0027
10 1 11 350.12351 392.3775 -14.15 0.111 -2.568 1.339 1.918 0.1900
11 1 12 379.70337 21.9555 3.74 0.111 -2.329 2.248 1.036 0.5355
12 2 1 0.00000 242.2524 5.43 0.111 -2.696 1.959 1.376 0.4066
13 2 10 28.95084 271.2038 -0.46 0.111 0.840 0.927 0.906 0.0911
14 2 11 114.45988 356.7139 | -10.52 0.111 2.666 1.340 1.990 0.1901
15 2 12 170.86840 13.1211 2.34 0.111 1.922 1.680 1.144 0.2990
16 2 13 205.16268 47.4165 -9.23 0.111 -0.311 1.992 0.156 0.4203
17 2 14 233.14009 75.3929 1.18 0.111 -0.812 2.634 0.308 0.7348
18 2 9 236.90861 79.1612 3.73 0.111 -3.394 2.667 1.273 0.7534
19 2 3 239.06490 81.3169 9.26 0.111 -3.955 2.644 1.496 0.7408
20 2 4 252.26813 94.5213 -2.53 0.111 3.061 2.658 1.152 0.7481
21 2 6 306.12038 148.3730 2.68 0.111 0.909 2.134 0.426 0.4824
22 2 7 365.52505 207.7782 -1.87 0.111 1.770 1.880 0.941 0.3745
23 3 1 0.00000 270.3942 -4.86 0.111 2.141 2.665 0.803 0.7521
24 3 10 7.24348 277.6373 -0.97 0.111 -2.023 2.671 0.757 0.7557
25 3 2 10.92269 281.3169 -4.86 0.111 3.945 2.621 1.505 0.7278
26 3 11 35.65159 306.0446 6.98 0.111 1.202 2.011 0.598 0.4284
27 3 12 71.45451 341.8449 33.00 0.111 -1.314 1.528 0.860 0.2475
28 3 13 119.97659 390.3675 27.84 0.111 -2.089 1.370 1.525 0.1987
29 3 14 195.22732 65.6219 -8.07 0.111 0.393 1.228 0.320 0.1597
30 3 9 204.68209 75.0772 | -14.29 0.111 1.579 1.112 1.420 0.1309
31 3 4 243.91734 114.3133 | -21.93 0.111 -0.018 1.886 0.009 0.3767
32 3 6 347.23917 217.6338 -8.73 0.111 -1.760 2.089 0.843 0.4621
33 3 7 383.60759 254.0017 -4.11 0.111 -2.056 2.529 0.813 0.6774
34 4 1 0.00000 284.7675 -3.70 0.111 2.049 2.772 0.793 0.8141
35 4 10 3.71172 288.4789 -1.11 0.111 -1.166 2.783 0.419 0.8203
36 4 2 9.75375 294.5213 -4.57 0.111 1.920 2.795 0.687 0.8277
37 4 11 24.10290 308.8692 8.56 0.111 -7.277 2.548 2.856 0.6877
38 4 3 29.54442 314.3133 -17.34 0.111 -1.559 2.455 0.635 0.6384
39 4 12 45.87526 330.6413 10.29 0.111 1.607 2.368 0.679 0.5941
40 4 13 66.82025 351.5862 12.01 0.111 2.707 1.795 1.508 0.3412
411 4 9 86.84463 371.6120 -2.13 0.111 -0.040 0.056 0.701 0.0003
42 4 14 97.16418 381.9311 2.06 0.111 -0.042 0.125 0.335 0.0017
43 4 6 370.06951 254.8368 -1.67 0.111 1.459 2.401 0.608 0.6108
44 4 7 388.29135 273.0587 -2.41 0.111 0.342 2.660 0.129 0.7493
45 6 1 0.00000 322.2199 2.30 0.111 -0.006 2.360 0.003 0.5902
46 6 7 380.49413 302.7141 1.06 0.111 -0.342 1.764 0.194 0.3297
47 6 4 132.61674 54.8368 0.80 0.111 0.400 2.055 0.195 0.4475
48 6 3 95.41305 17.6338 -5.97 0.111 -0.061 2.233 0.027 0.5284
49 6 2 26.15310 348.3730 1.81 0.111 0.009 2.335 0.004 0.5773
Distances in m mm mm mm
50 1 2 14.5960 14.5966 -0.58 11.111 0.414 0.287 1.442 0.8744
51 1 3 49,2290 49.2302 -1.22 11.111 0.145 0.260 0.557 0.7194
52 1 4 69.9970 69.9972 -0.16 11.111 -0.130 0.239 0.545 0.6055
53 2 3 36.5730 36.5737 -0.71 11.111 -0.197 0.276 0.715 0.8064
54 2 4 59.2300 59.2302 -0.20 11.111 -0.001 0.254 0.004 0.6828
55 3 4 24.6210 24.6207 0.34 11.111 0.130 0.274 0.473 0.7980
Table 10.2: Input data of the GMM of Epoch 2 and part of the results. Column (5) is defined as (5) = (4) -

(3) + (orientation). The weights are based on g = 1. Columns (7) and (8) give the residuals
after the adjustment and their standard deviations, respectively. POPE's test statistic Tj of
Eq. (6-31) is compiled in Column (9). Column 10 shows the redundancy contributions
according to Eq. (7-15).
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Approximate Coordinates Simulated Deformations
No X v AX AY Eigen values A of QQ
1 100.1030 100.0110 0.00 0.00 0.0000 0.0010
2 111.6010 109.0030 0.00 0.00 0.0018 0.0040
3 122.1810 144.,0130 -0.50 -0.60 0.0066 0.0107
4 116.6920 168.0140 0.00 0.00 0.0054 0.0086
[3 87.6610 134.1990 0.00 0.00 0.0324 0.0070
7 88.8550 106.2100 0.00 0.00 0.0523 0.0150
9 129.5510 161.8670 0.00 0.00 0.0010 0.0020
10 102. 4480 90.1670 0.00 0.00 0.0000 0.0021
1" 126.6760 96.8140 0.60 -0.75 0.0170 0.0000
12 143.9770 115.7720 1.10 0.50 0.0029 0.1291
13 145,.6870 140.4290 1.00 0.30 0.0358 0.0219
14 133.6100 163.0790 0.00 0.00 0.0294 0.0102
IFQ; = 0.396 f=29; P = 0.95 > F(2,29) = 3.33, t(29) = 3.09
N Adjusted Coordinates Parameter Standard Deviation 0.95 - Conf. Ellipses
o
X Y dX dy Sx Sy Sp a b a
1% 100.1030 100.0111 0.00 0.08 0.07 0.10 0.12 0.37 0.24 87.45
2% 111.6010 109.0031 -0.02 0.10 0.07 0.08 0.11 0.30 0.25 78.84
3* 122.1809 144.0130 -0.10 -0.03 0.06 0.09 0.11 0.34 0.19 70.70
L 116.6919 168.0139 -0.07 -0.14 0.07 0.11 0.13 0.41 0.27 89.02
6% 87.6610 134.1991 -0.03 0.14 0.09 0.11 0.14 0.39 0.34 85.53
7% 88.8552 106.2100 0.17 -0.04 0.10 0.09 0.14 0.42 0.29 42.39
9% 129.5510 161.8669 0.05 -0.10 0.10 0.1 0.14 0.46 0.25 57.17
10 102. 4480 90.1673 -0.03 0.26 0.08 0.25 0.26 0.90 0.29 99.18
11 126.6760 96.8141 0.02 0.09 0.20 0.17 0.26 0.87 0.41 159.54
12 143.9766 115.7721 -0.40 0.06 0.22 0.15 0.27 0.81 0.52 183.62
13 145.6869 140.4289 -0.09 -0.11 0.23 0.13 0.27 0.85 0.47 195.99
14 133.6099 163.0789 -0.07 -0.09 0.15 0.13 0.19 0.60 0.38 39.24
Epoch 1: s, = 1.043
1% 100.1032 100.0113 0.15 0.27 0.07 0.10 0.12 0.36 0.24 87.45
2% 111.6010 109.0032 0.00 0.20 0.07 0.08 0.10 0.29 0.25 78.84
3% 122.1805 144, 0124 -0.49 -0.61 0.06 0.08 0.10 0.33 0.18 70.70
Lx 116.6920 168.0140 0.04 -0.01 0.07 0.1 0.13 0.40 0.26 89.02
6% 87.6611 134.1989 0.12 -0.12 0.09 0.10 0.14 0.38 0.34 85.53
7% 88.8552 106.2103 0.16 0.26 0.10 0.09 0.14 0.41 0.28 42.39
g% 129.5510 161.8670 0.01 0.00 0.09 0.11 0.14 0.45 0.24 57.17
10 102.4481 90.1674 0.09 0.k4 0.08 0.24 0.26 0.89 0.29 99.18
n 126.6765 96.8134 0.50 -0.56 0.20 0.16 0.26 0.85 0.40 159.54
12 143.9782 115.7726 1.18 0.61 0.21 0.15 0.26 0.80 0.51 183.62
13 145.6883 140.4293 1.26 0.29 0.23 0.13 0.26 0.84 0.46 195.99
14 133.6100 163.0791 0.05 0.1 0.14 0.12 0.19 0.59 0.37 39.24
Epoch 2: sg = 1.024
Pooled Variance: s§ = 1,067, f = 58
m fa s T F(11, 58)
7 1 54,131 4,608 1.944 T>F =+ rejection
Decomposition of q, (Sect 10.4.2):
1 2 3 u ] 7 9
a, ap 9, a q, aA as
1.46 4.13 43,52 16.12 1.10 2.10 0.02 Point 3 unstable
m' fa aj T! F( 9, 58) \
6 9 10.611 1.104 2.030 T < F > no rejection

Table 10.3: Adjustment resuits, measures of accuracy for both epochs and single point
diagnosis in the reference network: Point 3 is unstable (P = 0.95). Datum points
are marked with an asterisk.
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The approximate coordinates of the stations, the simulated deformations between the epochs
and the eigenvalues of the cofactor matrix of the adjusted coordinates are given in the upper part
of Table 10.3.  For a degree of freedom of f = 29 and a probability of P = 95% the value of the
F-distribution for the scaling of the confidence ellipses is F = 3.33 (refer to Eq. (4-42)).

The middle part of Table 10.3 contains the adjusted coordinates, the estimated parameters
(differences between approximate and final coordinates), the standard deviations of the
coordinates and the mean square positional errors (Eq. 4-46) for both epochs separately. The last
three columns give the axes and the orientation of the 95%-confidence ellipses according to Eq.

(4-42). Since both a posteriori variances s,2 are close to the a priori value 6,2 = 1 the results can
be adopted without a global model test.

The lower part of Table 10.3 lists the results of the single point diagnoses for the reference part of
the monitoring network. The hypothesis of Eq. (10-18) is tested for m = 7 reference points,
where g, has been computed from Eq. (10-17). The test statistic of Eq. (10-14) exceeds the

critical value F(11, 58). The test fails therefore which indicates that not all points are stable. The
decomposition of q, is carried out along the lines of Section 10.4.2. The partial form g A3 of point 3
is by far the largest. Hence, it is concluded that this point is unstable. It is removed from the group
of reference points. With the remainingm = 6 reference points, the reduced quadratic form q A' =
da—aadandf,’ = 5 - 2 are used to compute the new test statistic T'. As the statistic is smaller

than the new critical value F(9, 58) the hypothesis, that the reduced reference network contains
only stable points, is accepted with an approximate type I error probability of 5%.

12 @ 13
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Ellipses and Deformations

Figure 10.9:  Monitoring Network Montsalvens showing the estimated deformations together
with their 95%-confidence ellipses. The geodetic datum is derived from the
stable reference points (shaded).
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The reference network for the analysis of the object points is now established. It comprises the
points 1, 2, 4, 6, 7 and 9. Since point 3 belongs to the group of points, which has been used to
define the geodetic datum of the previous single epoch adjustments, these adjustments must be
repeated with a new geodetic datum based on the stable reference points only. It is not necessary
to actually carry out these adjustments, as the transition to the new datum can be achieved by a
simple S-transformation, as defined by Eqgs (3-53), (3-54) and (3-55). The adjustment results,
referring to the new datum, are given in Figure 10.9 and Table 10.4. The differences with respect
to the previous results are very small in this particular case. This must not lead to the wrong
conclusion, that the transformation to the new datum is generally unnecessary.

Differences 2nd Adjustment  Differences 3rd Adjustment  Standard Deviation

[mm] [mm] [mm] [mm] [mm]  [mm]
1 2 3 4 5 6 7
1* +0.15 +0.19 - - - -
2* +0.03 +0.09 - - - -
3 ~0.39 -0.58 -0.43 -0.61 0.08 0.13
4* +0.11 +0.13 - - - -
6* +0.14 -0.25 - - - -
7* -0.01 +0.31 - - - -
o* -0.03 +0.11 - - - -
10 +0.13 +0.18 -0.00 -0.15 0.07 0.25
11 +0.48 -0.65 +0.52 -0.83 0.25 0.19
12 +1.58 +0.54 +1.56 +0.44 0.28 0.19
13 +1.34 +0.40 +1.29 +0.34 0.29 0.19
14 +0.12 +0.20 +0.04 +0.08 0.18 0.13

Table 10.4: Coordinate differences between epoch 1 and 2 relative to the confirmed
reference points (marked by an asterisk) and coordinate differences and their
standard deviations of the object points after the 3rd (final) adjustment.

A new test of congruency of the reference network, relative to the new datum, confirms the
previous result, that the points marked by an asterisk are stable. The corresponding test statistic T
= 1.101 is less than the critical value F = 2.030. The plot of the deformation vectors of the
reference points (Fig. 10.9) does not indicate any systematic effects exceeding the range of the
uncertainty of point determination.

The final (3rd) adjustment combines the epochs in such a way that the reference points get
identical coordinates and the object points different coordinates in both epochs. The resulting
coordinate differences and the corresponding standard deviations are listed in Columns (4) to (7)
of Table 10.4. These differences are the final estimates of the deformations of the object points.
This third adjustment has not been actually carried out.  The transformation as defined by Eqs
(10-24a) and (10-26a) has been applied instead yielding the required result as demonstrated in

Section 10.4.6.

A comparison of the estimated deformations with values predicted by an engineering model or
other sources of information would follow as a next step. If the discrepancies are small, then the
analysis can be regarded as completed. In uncertain cases the differences between estimated and
predicted deformations can be considered as "deformations” requiring further analysis. These
quantities then replace the entries of Columns (4) and (5) of Table 10.4 and the cofactor matrix
computed in the 3rd adjustment is allocated to this difference vector. A global congruency test
and a subsequent single point diagnosis along the lines of Sections 10.3 and 10.4 may clarify the

question.
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Based on the results of the single epoch adjustments of Table 10.3 another deformation analysis
has been carried out applying the robust method of Section 10.4.5. This has been done to
demonstrate the power of this approach. The model of Eq. (10-36) has been defined for the
reference points only, namely points 1 to 9. The results are given in Table 10.5 and have been

obtained after v = 19 iterations of the algorithm of Eq. (10-45). The residual deformations:

0 = Ht-A

(see Eq. (10-36)) can be compared with the differences of Table 10.4 and with the simulated
deformations given in the upper part of Table 10.3. The results of both approaches are
satisfactory; the robust method required, however, considerably less computations.

Robust Method Standard Deviation Standard Deviation Statistic
Simulated before Adjustments
No.
SX 8Y Sax Ssy SAX SAY StQa_1 8
[mm] [mm] [mm] [mm] [mm] [mm] [mm2]
1 2 3 4 5 6 7 8
1* +0.07 +0.04 0.08 0.05 0.10 0.14 1.47
2" —-0.03 -0.05 0.10 0.08 0.11 0.11 0.52
3* —-0.40 -0.68 0.08 0.14 0.08 0.12 43.56
4* +0.11  +0.07 0.14 0.09 0.10 0.16 1.07
6" +0.08 -0.34 0.12 0.20 0.13 0.15 3.64
7* -0.10 +0.18 0.13 0.10 0.14 0.13 3.29
9* -0.01 +0.02 0.08 0.08 0.13 0.16 0.09
10 +0.04 +0.01 0.11 0.32 0.11 0.36 0.18
11 +0.44 -0.83 0.28 0.19 0.28 0.23 20.71
12 +1.58 +0.38 0.27 0.20 0.30 0.21 35.56
13 +1.37 +0.28 0.28 0.18 0.33 0.18 28.18
14 +0.14 +0.12 0.19 0.15 0.21 0.18 1.10

Table 10.5: Results of the robust deformation analysis. Columns (2) and (3) give the final
deformations, Columns (4) and (5) the standard deviations estimated from 50
repetitions of the simulation and the Columns (6) and (7) the standard deviations
from the single epoch adjustments. The quadratic form of Column (8) is used as
significance indicator.

The deformations resulting from the robust method in a single step are listed in Columns (2) and (3)
of Table 10.5. In order to get a reliable estimate of the covariance matrix of the deformations, the
computations have been repeated with 50 sets of simulated normally distributed observations.
The resulting standard deviations, compiled in Columns (4) and (5), differ only slightly from the
corresponding values in Columns (6) and (7) which are derived from the single epochs for the

difference vector A. The statement of Section 10.4.5 that the cofactor matrix Q4 can be
considered as an estimate of Qg is thus verified. The quadratic forms according to Eq. (10-46) are

listed in Column (8). They may serve as indicators for significant deformations. An approximate
critical value can be derived from Eq. (10-48). With a degree of freedom of f = 58 of the pooled

variance 502 = 1.067, and an overall type I error probability of o = 5% leading to:
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a = 1-(1-)""2 = 0.43%

the critical value becomes:

(8'a5718) = 2s,%Fz (2,58) = 12.87

Column (8) leads to the distinct result that points 3, 11, 12 and 13 are significantly deformed while
all others remained stable within the range of the accuracy of the observations. This result is
emphasized by the plot of the deformation vectors together with the 95%-confidence ellipses in

Figure 10.10.

The final results of this example are reviewed in Table 10.6. The simulated deformations together
with the estimated values of the least squares and the robust approach show that the employed
methods of analysis work reliably. When assessing the differences between the methods their
standard deviations have to be considered. These amount to approximately square root two times
the values given in Columns (8) and (9).

12 13

Scales

Map
y o 1o 20m
. 6 ’ "l ' imm

Ellipses and Deformations

Figure 10.10: Plot of the deformations estimated by the robust method of Section 10.4.5.
The 95%-confidence ellipses are based on the single epoch adjustments. The
datum of the robust adjustment is based on the shaded points.
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95%-Confidence

Simulated Conventional Robust Estimates Intervals of Estimated
Deformations Estimates Deformations
No.
dX dy AX AY 60X oY Ax Ay
1 2 3 4 5 6 7 8 9
1 - - - - +0.07 +0.04 0.20 0.26
2 - - - - -0.03 -0.05 0.20 0.23
3 -0.50 -0.60 -0.43 -0.61 -0.40 -0.68 0.20 0.29
4 - - - - +0.11  +0.07 0.20 0.31
6 - - - - +0.08 -0.34 0.26 0.31
7 - - - - -0.10 +0.18 0.29 0.26
9 - - - - -0.01 +0.02 0.29 0.31
10 - - -0.00 -0.15 +0.04 +0.01 0.23 0.69
11 +0.60 -0.75 +0.52 -0.83 +0.44 -0.83 0.57 0.46
12 +1.10 +0.50 +1.56 +0.44 +1.58 +0.38 0.63 0.43
13 +1.00 +0.30 +1.29 +0.34 +1.37 +0.28 0.66 0.40
14 - - +0.04 +0.08 +0.14 +0.12 0.43 0.37

Table 10.6: Summary of results: Simulated and estimated deformations. The 95%-
confidence intervals are listed in Columns (8) and (9). All quantities are given in
millimetre.

10.11 Example: Crustal Movement Monitoring Network

The selected monitoring network can be considered as part of a larger first-order control network.
The design resembles that of the relative network, which has been used by a FIG Working Group to
check and compare different approaches into deformation analysis. Refer to the report by HECK
et al (1982) and the proceedings DEFORMATIONSANALYSEN '83. The simulation of the
observations of two epochs is based on a standard deviation of one centesimal second (0.3
second of arc) for all directions and 8cm for all distances. A geological fault divides the network into
two blocks. The northern block comprises six points which are identical in both epochs except for
point 39, for which a deformation has been simulated. All 10 points of the southern block show
simulated deformations. The deformation field consists of a functional part simulated by a strain
model and two local irregularities at points 39 and 43 defined by additional single point
movements. Figure 10.11 shows the network, the observations, the simulated deformations and
the 95%-confidence ellipses referring to a geodetic datum based on all points. The model
parameters and the derived deformations as generated for this example are listed in Table 10.7.
The Tables 10.8a and 10.8b give the simulated observations of both epochs as well as the
approximate coordinates. The interested reader is therefore able to carry out his own analysis to
exercise the outlined methods or to try other approaches.

The first single epoch adjustments were carried out using the minimum trace datum of Section 3.7
involving all points. The residuals of these adjustments and the test statistics for POPE's test of

outlier detection (Section 6.5) are listed in Tables 10.8a and 10.8b. Forf = 61 and 00 = 5% type 1

error probability the critical value of the T-distribution is T = 3.36. The maximum values of T, are
Ty = 2.96 and Tgo = 2.84in epoch 1 and epoch 2, respectively. Since both values are less than
the critical value no observations need be rejected. The a posteriori variances of both adjustments
(see Table 10.8b) are so close to the a priori variance factor 002 = 1 that no global model test is
necessary. The redundancy contributions f; of the observations of the monitoring network (see

Tables 10.8a and 10.8b) range between 0.31 and 0.89 indicating that the network possesses a
high degree of reliability. Altogether the GMMs of the single epoch adjustments are satisfactory.
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Figure 10.11: Monitoring network comprising 16 points divided into two blocks by a
geological fault. The geodetic datum minimizes the trace of the cofactor matrix.
The plot shows the 95%-confidence ellipses and the simulated deformations.
The shaded points are non-conformingly deformed.

Simulated Deformation Field Adjustment Results

Single Point Deformations Deformation Components Coordinate Differences

No. AX AY No. AX AY AX AY

35 -10.0 -10.0 3 - - +8.39 -0.86
39 -10.0 -15.0 5 - - +4.79 -2.52
43 +10.0  +10.0 7 - - +10.14 -3.93
11 - - +21.25 -6.84
39 -10.0 -15.0 -5.80 -22.31
Strain of the Southern Block: 41 - - +12.21 -5.41
€yx = -5.5 microstrain 13 +1.79 +16.27 +14.52 -3.41
Ey = +45 microstrain 15 +10.47 +27.82 +22.51 +4.35
€y = +4.5microstrain 17 -1.14  +44.44 +8.10 +17.63
21 -36.69 —6.39 -31.22 -11.68
o =0 35 -21.12  +2.14 -10.79 -9.73
: 37 -4.98 +29.65 +5.93 +9.17
ty = +10cm 43 -20.49 +11.78 -12.69 +2.42
ty = 0 45 -22.30 +12.68 -15.79 +1.93
47 -21.53 +27.58 -17.20 +15.64
19 -21.55 +45.85 -14.33 +15.55

Table 10.7: Simulated and estimated deformations in [cm].
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fi Epoch 1 Epoch 2
No from to Epoch 1 Epoch 2
Eq(7-15) Vi Ti v§ Ti
Directions  (grads) cc cc

1 2 3 4 5 6 7 8 9

1 3 5 0.00000 0.00000 0.3599 0.577 0.939 0.215 0.409
2 7 361,29765 361.29750 0.6078 0.408 0.511 -0.012 0.017
3 39 323.23110 323,23091 0.5784 -1.027 1.320 0.386 0.578
4 21 261.04079 261.04068 0.3981 0.043 0.066 -0.589 1.064
5 5 7 0.00000 0.00000 0.4322 1.115 1.657 0.030 0.052
6 39 352.76366 352.76347 0.5138 -0.553 0.753 0.036 0.058
7 3 261.80550 261.80562 0.3057 -0.562 | 0.994 -0.066 0.137
8 7 11 0.00000 0.00000 0.4526 -0.984 1.429 -0.257 0.436
9 41 359.69627 359.69668 0.5073 2.160 2.964 -0.077 0.124
10 39 282.23366 282.23324 0.4956 -0.309 0.429 -0.030 0.048
11 3 214,60760 214.60787 0.5739 -0.157 0.202 -0.329 0.495
12 5 191.50469 191.50468 0.4554 -0.711 1.029 0.694 .17
13 11 13 0.00000 0.00000 0.3864 -0.244 0.384 -1.488 2.726
14 41 330.15086 330.15042 0.5059 -0.028 0.039 0.363 0.582
15 7 291.11635 291.11585 0.4531 0.272 0.395 1.125 1.903
16 13 15 0.00000 0.00000 0.3658 -0.468 0.756 -0.527 0.993
17 37 336.27306 336.27361 0.5307 -0.439 0.589 0.175 0.273
18 47 290.81403 290.81445 0.6280 0.101 0.125 -0.543 0.780
19 35 236.92919 236.92853 0.5213 0.116 0.158 0.392 0.618
20 41 166.45696 166.45727 0.5383 1.602 2.134 0.150 0.232
21 11 120.03977 120.03991 0.4123 -0.912 1.389 0.354 0.628
22 15 17 0.00000 0.00000 0.3556 -0.702 1.150 -0.435 0.830
23 37 339.41639 339.41589 0.4733 0.285 0.406 0.045 0.074
24 13 273.00007 272.99954 0.3439 0.416 0.694 0.390 0.758
25 17 19 0.00000 0.00000 0.3047 -0.047 0.083 0.545 1.126
26 37 315,56894 315.56943 0.4599 -0.246 0.354 -0.456 0.766
27 15 264.10554 264.10636 0.3703 0.292 0.469 -0.089 0.167
28 19 47 0.00000 0.00000 0.4137 -0.815 1.238 0.996 1.764
29 37 349.95888 349.95939 0.5324 0.817 1.094 -0.385 0.600
30 17 298.63016 298.63009 0.3774 -0.002 0.004 -0.612 1.134
31 21 3 0.00000 0.00000 0.3833 0.997 1.574 0.137 0.252
32 39 338.03640 338.03608 0.4929 -0.441 0.614 0.270 0.439
33 43 274.75303 274.75227 0.3161 -0.556 0.966 -0.407 0.825
34 35 39 0.00000 0.00000 0.6158 -1.993 2.482 0.002 0.002
35 41 348.68556 348.68571 0.5377 0.851 1,135 -0.752 1.168
36 13 265.50773 265.50676 0.5050 -0.971 1.335 0.678 1.086
37 37 211.62875 211.62863 0.5836 -0.534 0.684 -0.878 1.309
38 47 156.58445 156,58512 0.5072 1.645 2.257 1.311 2.097
39 45 90.00839 90.00860 0.4763 -0.652 0.924 -0.545 0.900
40 43 54.00849 54.00866 0.5958 1.655 2.095 0.185 0.274
41 37 19 0.00000 0.00000 0.4248 -0.454 0.681 0.397 0.694
42 47 334.85504 334.85449 0.4796 -0.644 0.908 0.135 0.222
43 35 268.82727 268.82697 0.5787 -0.496 0.637 0.023 0.035
44 13 222.04981 222.05035 0.4929 1.612 2.244 -0.338 0.548
45 15 152,19326 152.19295 0.3551 -0.447 0.733 0.015 0.028
46 17 64.24003 64.24007 0.3738 0.428 0.684 -0.232 0.432
47 39 3 0.00000 0.00000 0.4903 1.277 1.782 -0.121 0.197
48 5 367.72739 367.72697 0.4636 -0.409 0.587 -0.489 0.818
49 7 305.69288 305.69191 0.4671 -0.140 0.200 0.281 0.469
50 41 243,73986 243,73907 0.5353 0.389 0.519 -0.422 0.657
51 35 183.72443 183.72425 0.6403 -0.025 0.030 1.103 1.570
52 45 153.46066 153.46083 0.6131 -0.317 0.395 0.144 0.210
53 43 109.45283 109.45312 0.4675 -0.284 0.406 -0.435 0.724
54 21 75.84623 75.84576 0.3708 -0.491 0.789 -0.062 0.117
55 41 35 0.00000 0.00000 0.5439 -0.441 0.585 1.551 2.396
56 39 311.32964 311.32922 0.5038 -0.573 0.788 -0.320 0.514
57 7 250.74544 250.74550 0.4216 -0.332 0.500 0.336 0.589
58 11 130.08325 130.08342 0.3385 0.524 0.879 -0.906 1.773
59 13 46.34978 46.35013 0.5106 0.822 1.124 -0.661 1.054
60 43 21 0.00000 0.00000 0.2736 0.647 1.209 0.168 0.366
61 39 296.89002 296.89131 0.4480 0.469 0.685 -0.926 1.576
62 35 225.17056 225.17111 0.6046 -0.123 0.155 0.695 1.018
63 45 199.72996 199.73055 0.4739 -0.993 1.409 0.063 0.105

Table 10.8a:  Simulated directions, the residuals v;, POPE's test statistics T; = Vi/sy for both
epochs and the redundancy contributions f; of the observations of the GMM.
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fi Epoch 1 Epoch 2
No from to Epoch 1 Epoch 2
Eq(7-15) v, T v; T
Directions (grads) cc cc

1 2 3 4 5 6 7 8 9

64 L5 43 0.00000 0.00000 0.4085 0.247 0.377 -0.724 1.290
65 39 341.16811 341.16827 0.5535 -0.524 0.688 0.866 1.325
66 35 261.44042 261.44043 0.4303 ~-0.391 0.583 -0.123 0.213
67 47 167.23344 167.23358 0.3353 0.668 1.128 -0.019 0.038
68 47 45 0.00000 0.00000 0.4655 -0.965 1.382 -0.446 0.745
69 35 360.78310 360.78339 0.5996 -0.327 | 0.413 1.107 1.628
70 13 323.59092 323.59096 0.6588 0.042 0.051 -0.561 0.788
71 37 281.85486 281.85440 0.5294 0.446 0.598 -0.771 1.207
72 19 197.04076 197.04054 0.3358 0.804 1.355 0.672 1.321

Distances in m cm cm
73 3 5 15822.626 15822.504 0.7193 -7.895 1.151 5.925 1.006
74 3 39 32261.868 32261.535 0.7836 -8.195 1.144 ~0.067 0.011
75 3 21 36246,786 36246.380 0,6907 4 646 0.691 4,134 0.717
76 5 7 25458 .44y 25458.387 0.7386 0.392 0.056 4,774 0.800
77 5 39 30444 ,032 30443.871 0.8041 4,281 0.590 -1.087 0.175
78 7 41 21106.654 21106,462 0.8415 -5.025 0.677 13.688 2.150
79 7 39 20792.677 20792.756 0.8854 17.175 2,256 -2.080 0.318
80 7 1 34763.631 34763.688 0.6907 -2.988 0,444 -12.400 2,149
81 11 13 31514.879 31514.828 0.7221 4,149 0.604 3.268 0.554
82 11 L3 21700.352 21700.303 0.7986 -6.628 0.917 -8.179 1.318
83 13 15 22989.885 22989.978 0.7562 -4.673 0.664 -5.252 0.870
84 13 37 22320.009 22320.066 0.8668 0.175 0.023 -7.820 1.210
85 13 47 35874, 440 35874,151 0.8340 9.361 1.267 2.834 0.447
86 13 35 19982.358 19982.266 0.8940 -5,254 0.687 -0.632 0.096
87 13 LY 28987.077 28987.111 0.8225 4,858 0.662 4,485 0.712
88 15 17 29540,163 29540.100 0.7078 3.154 0.463 -0.410 0.070
89 15 37 21750.955 21750.772 0.8376 -3.195 0.432 -0.814 0.128
90 17 19 28723,708 28723.422 0.6965 3.391 0.502 16.471 2.843
91 17 37 24493,897 24493.982 0.7977 0.331 0.046 0.507 0.082
92 19 L7 28934,874 28934.931 0.6876 -1.922 0.287 -5.430 0.943
93 19 37 32928.815 32928.521 0.7606 -0.606 0.086 9.331 1.541
94 21 39 32339.620 32339.419 0.7697 4 954 0.698 -1.536 0.252
95 35 I3 26856.765 26856.518 0.8567 -1.394 0.186 0.214 0.033
96 35 37 29804.167 29804241 0.8424 -11.829 1.593 5.272 0.827
97 35 47 27132.980 27133.016 0.8437 2.960 0.398 1.157 0.181
98 35 L5 15742.373 15742.093 0.8905 -9.669 1.267 6.124 0.935
99 35 43 33263.543 33263.564 0.7766 2.693 0.378 -12.468 2.038
100 35 49 41375.007 41374, 845 0.8657 -3.330 0.442 -4,786 0.741
101 37 47 23978.105 23978.008 0.8662 1.976 0.262 ~7.159 1.108
102 39 LY 23948.918 23949.122 0.8633 3.963 0.527 -7.494 1.162
103 39 45 33973.168 33973.158 0.8260 -0.642 0.087 3.568 0.565
104 39 43 27140.901 27140.746 0.8592 -2.128 0.284 2.323 0.361
105 43 45 21680.018 21680.126 0.7633 7. 441 1.053 =L 4ok 0.730
106 45 47 23576.305 23576.317 0.7856 -16.678 2.326 -7.278 1.183
Approximate Coordinates (m)
Stochastic Model (a priori)

No X Y

3 37;0.0000 31280.0000 Variance factor: og = 1

5 15980.0000 1690.0000 o - _

7 13860.0000 56320.0000 Directions: o =lcc > p=1

11 15600.0000 21600.0000 Distances: o =8cm » p=l/y

39 -6390.0000 61040.0000

41 2240.0000 38700.0000

13 ~15350.0000 15660.0000

15 -18220.0000 -7150.0000 A posteriori: Epoch 1 sp = 1,02

17 -46450,0000 -15850.0000 Epoch 2 sg = 0.88

21 ~31170.0000 81820.0000 Pooled sp = 0.95

35 ~24130.0000 33610.0000 . . -

37 -35500. 0000 80600000 Redundancies: fi1=f, =61, =122

43 -33140.0000 65630.0000 Rank Deficiency: d = 3

45 ~35850.0000 44120.0000

47 -49930.0000 25210,0000

19 -68270.0000 2830.0000

Table 10.8b:  Upper part:  simulated directions and distances, the residuals v;, POPE's test
statistics T; = v,-/s\,i for both epochs and the redundancy contributions f;.

Lower part: approximate coordinates, a priori and a posteriori variances, rank
specifications of the GMM.
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The coordinate differences between the two adjustments are given in the last two columns of
Table 10.7. The congruency test indicates that the differences (deformations) are highly
significant. For an analysis of the differences additional information is required. In this example,
this may exist in form of the following assumptions:

i the northern block is most probably stable,

i the southern block is possibly displaced relative to the former, and
fii. internally deformed.
These assumptions lead to the following step-by-step procedure.
Firstly a datum transformation (Section 3.8) is used to base the geodetic datum of both

adjustments on the northern block only. The transformed coordinates and their standard
deviations are listed in Table 10.9.

No Epoch 1 Epoch 2 Sx Sy Sp
X (m) Y (m) X (m) Y (m) cm cm cm

1 2 3 4 5 6 7 8
3% 3710.0172 91680.0336 3709.9399 91679.9596 1.93 3.27 3.80
5% 15980.0008 81690.0137 15979.9819 81689.9858 1.85 3.07 3.58
7% 13860.0025 56319.9885 13859.9903 56319.9733 1.72 2.10 2.71
11* 15600.0333 21599.9618 15599.9956 21599.9824 1.62 3.70 k4,04
39% ~6390.0362 61039.9983 -6389.9001 61040.1190 1.80 1.73 2.50
L1 2239.9825 38700.0040 2239.9924 38699.9800 1.38 2.1 2.78
13 -15350.0270 15659.9298 -15349.9830 15659.8417 3.79 3.37 5.08
15 -18220.0625 ~7150.0583 -18220.0386 -7150.2318 6.32 S.1h 8.14
17 -46450,0713 -15850,0411 -46449,8802 -15850. 4221 8.02 6.46 | 10.30
21 -31169.9635 81820.0231 -31169.6212 81819.9758 4.00 4.56 6.07
35 -24130.0146 33609.9813 -24129.7666 33609.9420 3.07 3.18 L 43
37 -35500.0516 6059.9617 -35499.8977 6059.6963 5.14 4,65 6.92
43 -33139.9637 65630.0672 -33139.7687 65629.8773 3.50 3.96 5.28
45 -35850.0108 44120.0219 -35849.7336 44119.8323 3.35 4,01 5.23
47 -49930.0410 25210.0498 -49929.7059 25209.6850 4,38 5.46 7.00
19 -68270.0590 2829.9345 -68269.6945 2829.5173 6.55 8.33 [ 10.60

Table 10.9: Adjusted coordinates of the single epoch models. The geodetic datum refers to
the points marked by an asterisk (northern block). The standard deviations of x
and y and the circular point errors are given in Columns (6), (7) and (8).

Prior to using the northern block as the reference block during further analysis its stability has to be
verified.  The hypothesis according to Eq. (10-18) leads to the quadratic form q, = 73.77 with

fo = 12-3 = 9 degrees of freedom. The test statistic of Eq. (10-14) yields T = 9.08 when using
the pooled variance of Table 10.8b in the denominator. It has to be compared with the critical value
Fa(9, 122) = 1.94 of the F-distribution for & = 5% type I error probability. Since T > F, the
stability of the reference block has to be questioned.

Considering the prior assumptions, a local instability could be responsible for the failure of the test.
Therefore a single point diagnosis for the northern block is carried out. The decomposition of g,

using the procedure of Section 10.4.2 leads to the following subforms:

11.92, a,39 = 66.16

gp3 24.43, aa’

12.45

g8 = 183, ol = 154 N

According to the philosophy of Section 10.4.2, point 39 is considered as unstable. The reduced
quadratic formq,' = 7.61 andf,' = 7 lead to the new test statistic T' = 1.21 being well below the
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critical value of F (7, 122) = 2.07. Hence the stability of all points but 39 of the northern block, is
established.

The estimated deformations are given in Columns (2) and (3) of Table 10.10 and are relative to the
verified reference block. Figure 10.12 depicts these deformations together with the
corresponding 95%-confidence ellipses.

A tentative continuation of the analysis could be a single point diagnosis of the southern (object)
block including point 39. The results of an analysis along the lines of Section 10.4.2 are given in
the Columns (4), (5), (6) and (7) of Table 10.10. Following the sequence of Column (9), one point
after the other is deleted as unstable until only one point is left. Hence the applied method is
unsuitable. As an alternative the Cholesky decomposition of Section 10.4.3 can be applied. The
sequence of independent quadratic forms, according to Eq. (10-32) is given in Column (8). If a

type I error probability of & = 5% is selected, then the critical value of the F(2, 122)-distribution
must be computed at:

T = 1-(1-0"™ = 047%
where k = 11 is the number of points involved in the multiple test, yielding:

F_= 56
o

It follows from Eq. (10-35) that the critical form:

p.
a | = 28fFz = 101

is less than the subform of point 17 and that all points but 13 are unstable. This confirms the
previous result that a single point method is not appropriate to model the deformations of the
object block.

Estimated Deformations Single Point Diagnosis

No. AX AY aa fo T Fo(fa, 122) apP No.

1 2 3 4 5 6 7 8 9
13 -1.24 +7.06 397.17 22 20.00 1.62 104.94 39
15 +3.76 +15.18 292.23 20 16.19 1.65 58.93 21
17 -11.55 +32.45 233.30 18 14.36 1.68 50.50 35
21 -36.59 —6.41 182.80 16 12.66 1.72 36.35 47
35 -23.11 +0.30 146.45 14 11.59 1.76 3142 19
37 -10.59 +22.26 115.03 12 10.62 1.82 29.16 45
43 -19.59 +12.06 85.87 10 9.51 1.90 3745 43
45 -25.96 +13.32 48.42 8 6.71 2.00 23.15 15
47 -30.28 +30.22 25.27 6 467 2.16 981 37
19 -30.89 +33.32 15.46 4 4.28 2.42 12.05 17
39 -14.21 -16.64 3.41 2 1.89 3.04 304 13

Table 10.10:  Object point analysis. The deformations [cm] of the object points are given in
Columns (2) and (3). The successively reduced quadratic forms q, and the
corresponding degrees of freedom are contained in Columns (4) and (5). The
test statistics T of Eq. (10-14) and the critical value of the F-distribution for o0 =

5% follow in Columns (6) and (7). Column (8) comprises the quadratic subforms
of Eq. (10-32) of the Cholesky decomposition, referring to the points as
ordered in Column (9), being also the sequence by which the points were
removed from the quadratic forms of Column (4).
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Figure 10.12: Estimated deformations of the object points and 95%-confidence ellipses
relative to the verified reference block (shaded).

For another trial of a deformation model the rigid body model of Section 10.5 is adopted. The inter-

epoch differences A of the object points of Table 10.10, Columns (2) and (3), are used as the
"observations" of the model of Eq. (10-51). The parameter vector t is defined by Eq. (10-52) with
the scale parameter s taken as zero. The estimated parameters and the residuals of the least
squares adjustment are listed in Table 10.11. The significance test for the parameters leads,
according to Eq. (10-568), to the test statistic T = 19.4. Comparison with the critical value F(4, 122)

= 3.91for @ = 5% of the Fisher distribution indicates that the model parameters are significant.
This does not prove the validity of the model, however. The residuals of the model yield the
quadratic form qg = 247.2 with f5 = 17. The test statistic according to Eq. (10-59) for the test of

the null hypothesis ('all not modelled deformations are insignificant’) is T = 14.8 and the
corresponding critical F-value F (17, 122) = 1.7. Hence the test fails, meaning that a more

suitable model has to be found.

The strain model of Section 10.6 with six parameters according to Egs (10-63) and (10-73) is
tested next in order to model the deformations of the object block. The estimated deformations of
Table 10.10 and their covariance matrix form the input of the adjustment. The results are given in
Table 10.11, under the heading 'Strain Model 1'. It turns out that the parameter vector is
significant, but that the model test fails. The latter is carried out in the same way as for the rigid
body model. The residuals obviously contain systematic effects which have not yet been
modelled. An inspection of the residuals does not help since no clear tendency is apparent.

There are two possible strategies to solve the problem. The first one is a sophistication and
extension of the functional model. This would cause difficulties in the interpretation of the result
and a reduction of the redundancy of the model. The second strategy retains the strain model and
excludes single points from the object block as non-conformingly deformed. This strategy is
adopted.
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Rigid Body Model Strain Model 1 Strain Model 2
ty +2.28 + 1.06 cm +4.90 £ 1.29¢cm +5.24 £ 1.33¢cm
ty —4.97 + 1.21¢cm —-4.44 + 1.15¢cm -4.03 £ 1.29cm
®, r, -1351+0.24-102grad  +0.29 + 0.30-102grad -0.20 + 0.32 - 102 grad
Exx - -5.9 £ 1.0 W strain —7.0 £ 1.0 U strain
Eyy - +5.6 + 0.5 p strain +4.9 = 0.5 Y strain
Exy - +1.5 + 0.9 W strain +2.0 + 0.9 W strain
Residuals Residuals Residuals
[cm] [cm] [em]
No.
Ox Y Ox Oy Ox Sy
13 +16.8 -9.9 +24 +3.1 +0.4 +0.1
15 +19.9 -15 +0.3 +5.7 -1.6 +1.9
17 +3.7 +17.8 -1.8 +0.6 -0.8 +0.4
21 -14.9 -14.8 +0.1 -4.9 +0.5 2.1
35 -4.7 -14.3 -85 -5.9 - -
37 +6.2 +7.0 +0.8 +2.1 +0.9 +1.4
43 +0.2 -0.3 +11.5 +5.6 - -
45 -7.5 -0.2 -1.1 +0.3 —0.6 +1.7
47 -12.9 +16.5 -3.9 +2.7 -2.1 +5.1
19 -14.8 +20.3 -1.7 -11.9 +1.9 -8.0
a5 = 247.42 gs = 82.94 ds = 6.92
fs =17 f5 = 14 fs =10
T = 14.82 T = 6.03 T = 0.70
Fu(17,122) = 1.70 Fo(14,122) = 1.76 Fo(10,122) = 1.90

Table 10.11:  Analysis of the southern (object) block. The rigid body model and the strain
model fail the model test. The strain model 2 disregards the points 35 and 43,
which show non-conforming deformations. This model is "verified" by the F-test

(o0 = 5%).

The residuals of strain model 1 given in Table 10.11 are screened for outliers. The procedure
parallels that of Section 10.4. The residuals are interpreted as deformations, which have
expectation zero except for one point. The decomposition of the quadratic form, according to
Section 10.4.2, indicates that point 43 does not fit the model. The quadratic form q5 = 82.94 is

reduced by q,43 = 53.54 yielding the new test statistic T' = 2.71. It still exceeds the critical value
Fo(12, 122) = 2.54. The decomposition of the reduced quadratic form indicates that point 35

does not conform to the model. The next step of reduction produces a test statistic which is
smaller than the critical value. The strain model is therefore suitable for the approximation of the
object deformations provided that the points 43 and 35 are excluded and considered as
independently deformed.

The final step of the analysis is a new adjustment in order to estimate the strain parameters from the
eight points of the object block fitting the model. The results of this adjustment are given as 'Strain
Model 2' in Table 10.11. A concluding model test confirms the suitability of the adopted analysis
procedure.
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The "observations" of the deformation model (Column (3) of Table 10.12) and the corresponding
covariance matrix is derived from the initial single epoch adjustments (Table 10.7). To simplify
matters, the strain model known from the simulation is employed as the sole model. However, no
measures are taken to account for non-conforming single point movements. A total of 21 iterations
are required to get the final result of the estimation as listed in Column (5) of Table 10.12. The
estimates of the parameters of the model are as close to the true (simulated) values as the final

results of the least squares approach. The quadratic forms 5t05‘16 of the points, already used
frequently as indicators for non-conformities (see Eq. (10-46)), clearly reveal that the points 39, 35
and 43 do not fit the model. The critical value is approximately 6,2 %2(2) = 5.99 for & = 5%.

The final deformations obtained using this approach (refer to Column (5) of Table 10.12) are in very
good agreement with the simulated values. The residual differences are insignificant and similar to
those of the least squares estimation. Considering that the estimated differences of Column (3)
constitute the sole input to the robust estimation process, the results are remarkably good.
Obviously, the robustness of the method is strong enough to ignore the three non-fitting points.
A one-step estimation procedure is thus possible in contrast to involved multi-step analyses of the
conventional type.

Figure 10.13 exhibits the final results of the analyses together with the true deformations and the
confidence ellipses of a single epoch adjustment with minimum trace datum according to Section
3.7. When comparing the methods it is important to consider the accuracy of the observations
characterized by the confidence ellipses of Figure 10.13. The simplicity of the procedure and the

reduced computational effort clearly favour the robust approach.

C :47
X 19 Scales

Map

—t>  simulated

[¢] 15 30km
t s p——te "
least square: 5 20 80cm

—— robust
EMipses and Deformations

Figure 10.13: Simulated deformations and final results of the least squares analysis using
strain model 2 and of the robust analysis. The 95%-confidence ellipses are
based on the minimum trace datum. The shaded points are non-conformingly
deformed.
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In Table 10.12 the final results of the analysis are listed next to the simulated deformations. It
appears that the superposition of the deformations by observational errors renders the
identification of the true model difficult. When assessing the outcome, the standard deviations of
the estimated coordinate differences should be considered. These amount to square root two
times the quantities listed in Columns (6) and (7) of Table 10.9. It is surprising how well the true
situation is approximated by the final model. All discrepancies can be explained with the random
errors of the observations. It is doubtful, of course, whether it would have been possible to identify
the true deformation model without knowledge of the simulated input deformations. Deformation
models applied to real world examples usually exhibit a worse fit.

To conclude the series of different solutions, an analysis based upon the robust estimation
method of Section 10.4.5 is carried out.

Simulated
Deformations

Estimated
Coordinate
Differences

Strain Model 2
Least Squares

- Strain Model
Robust Estimate

1 2 4 5
ty +10.0 cm +5.2+ 1.3 cm +14.8 cm
ty - —4.0+1.3cm 5.1 cm
) -~ -0.2+ 0.3 102 grad -1.3- 102 grad
Eyy -5.5 UL strain —7.0 £ 1.0 W strain ~6.7 W strain
Eyy +4.5 W strain +4.9 + 0.5 U strain +4.5 U strain
Exy +4.5 | strain +2.0 £ 0.9 W strain +2.3 W strain
No. AX AY AX AY AX AY AX AY &Qs16

[em] [cm] [em] [cm] [cm] [cm] [cm] [em]

3 - - +84 09 - - +5.3 +5.1 3.3

5 - - +48 25 - - -0.3 +1.0 0.0

7 - - +10.1 -39 - - +0.0 -0.0 0.0
11 - - +21.2 -6.8 - - +4.2 -33 1.4
39* -10.0 -15.0 58 -223 -142 -166 -15.0 -14.4 304"
41 - - +12.2 5.4 - - -14 +0.8 0.9
13 +18 +16.3 +145 -34 -08 472 53 477 0.4
15 +10.5 +27.8 +225 +4.4 +2.2 +18.1 -0.2 +14.6 0.0
17 -11 +444 +8.1 +17.6 -12.4 +328 -16.4 +33.5 0.0
21 -36.7 -64 -31.2 -11.7 -36.1 -85 -36.0 +2.0 0.0
35  -21.1 +21 -10.8 -9.7 -23.1 +03 -16.6 +88 12.0*
37 -5.0 +29.6 +5.9 +9.2 -9.7 +23.7 -15.7 +21.9 1.3
43* -20.5 +11.8 -12.7 +2.4 -19.6 +121 -32.6 +68 16.6*
45 -20.3 +127 -158 +1.9 -26.6 +15.0 -27.6 +13.4 05
47 -21.5 +275 -17.2 +15.6 -32.4 +353 -31.2 +26.2 28
19 -21.6 +458 -143 +15.6 -29.0 +24.3 -36.6 +42.3 1.9

Table 10.12:

Simulated deformations, coordinate differences of the single epoch

adjustments (input of analyses) and final results of the analyses using least
squares and robust estimation methods. Non-conformingly deformed points

are marked with an asterisk.
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11. MULTI-EPOCH ANALYSIS

The methods of multi-epoch deformation analysis have not been developed to the same extent as
the two-epoch analysis. This may be due to the fact that there are only few really new aspects, the
mathematical expressions become rather tedious, the computing effort increases considerably and
a sequence of two-epoch analyses is quite adequate for the majority of problems.

The first well documented examples of multi-epoch studies can be found in SCHWEIZERISCHE
TALSPERRENKOMMISSION (1946) and in SWISS NATIONAL COMMITTEE ON LARGE DAMS
(1964). The behaviour of large Swiss dams was (and still is) monitored regularly. The two reports
describe how the observations were evaluated by graphical methods and depict the deformations
in a large number of very illustrative and remarkable diagrams.

Mathematical modelling of deformations based on multiple epochs began in the early seventies
(SAVAGE and BURFORD (1970), DORRER (1971), GHITAU (1973), HOLDAHL (1978), PAPO and
PERELMUTER (1981) and SCHNEIDER (1982)). The changes of the object are expressed as
velocities and accelerations of movements, particularly in the vertical direction, or as strain
accumulations in the horizontal. The time can appear directly as a factor of the model or indirectly
via temperature, water level, progress of exploitation of mineral resources, etc. The methods of
modelling deformations in the geometry domain as developed in Chapter 10 are now to be
extended to the time domain.

Basically two computational approaches can be used. The first one is based on a simultaneous
adjustment of all epochs. This straightforward method is always applicable, but it has the
disadvantage of requiring enormous computer memory space even for medium sized problems.
Thus it is usually necessary to employ matrix blocking techniques which increase the amount of
programming effort and processing time.

The second approach is based on sequential updating methods and therefore is suitable for
relatively small computers. It assumes, however, that correlations between epochs do not exist.
11.1  Multi-Epoch Model

It is assumed that the geodetic data of k epochs of observations are available, that single-epoch

adjustments according to Section 10.1 have been carried out (all with the same geodetic datum
and the same a priori variance factor) and that the results are available as k sets:

% G S fori =1,2,...k (11-1)

Furthermore the parameter vectors X; are assumed to be partitioned into three subvectors:
X = (X, %°, x" (11-2)
where the reference points, the object points and the nuisance parameters, including points

appearing solely in one epoch, are denoted by the superscripts r, o and n, respectively. If some
reference or object points do not appear in one of the epochs, their positions in X; are filled by

dummy variables with zero weight.

The contribution of epoch i to the total model is given by:
X+vi = Ay;, Q;(i_= N; = P (11-3)
or in partitioned form using the same superscripts as before:
)‘Er yf prr PI'O Pm

20 + Vi = yo + B‘p ; Pl = POI' Poo Pon (1 1 —4)

&), y" pnr pno  pnn ).
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This shows that A; is of the form:

Aj=]l0 I B 0 (11-5)

and that:
E&N = EY
E(X19) = E(y°)
E&" = EON
where:
y' is the vector of coordinates of the reference points averaged over all k epochs
y© is the vector of coordinates of the object points at epoch 1 (reference epoch)
is the vector of deformation parameters
B; is the coefficient matrix of p associated with epoch i
yi" is the vector of nuisance parameters of epoch i

The weight matrix P; is identical with the normals N; of the single-epoch adjustment and is

partitioned in accordance to Eq. (10-2). I", I° and I are properly defined identity matrices. The
part of the model representing the required deformations of the object is:

E(X°) = y°+Bp (11-6)

The second term on the right hand side of Eq. (11-6) is the actual linear or linearized deformation
model. The general form for point m reads, if a polynomial expression is employed:

xm x° Po + P2X + Pa¥ + Peti + Pg¥2 + ...
A + Vm = + _ _ _2 (11_7)
Ym Ji i Yo Jm \P1 + P3X+ psY + prti + pgXe + ... S

For a linear model 8 parameters (pg to p7) are required. The number increases to 20 and to 40 for
polynomials of second and third order, respectively. The coefficients in Eqg. (11-7) are point

coordinates X, ¥,,, with reference to the centre of gravity of the modelled block and the elapsed
time t; since the first (reference) epoch. The polynomial model can be replaced without problems

by another linear (linearized) model of deformations such as ¢ - e~ or cos((T/2n)t + ¢).

By imposing constraints on the parameters, Eq. (11-7) can be specialized to model deformations
similar to similarity or affine transformations in the geometry domain. This corresponds to the rigid
body model of Eq. (10-51) and the strain model of Eq. (10-63) as developed in Sections 10.5 and
10.6. Simple arguments lead to a generalization of the model of Eq. (11-4) which considers two or
more blocks with different deformation patterns or with relative rigid body displacements but with
the same deformation pattern. If a reference block does not exist, the design matrix block I" gets
the dimension zero. If a multi-epoch global congruency test is considered in such a case the

matrices I° and B; do not appear in Eq. (11-5).
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There are only a few cases where the structure of the deformation model is definitely known in
advance. More frequently it is part of the objectives of the analysis to establish a suitable model.
Then a tentative estimation is carried out, for example, with a full set of parameters for a second
order polynomial according to Eq. (11-7). Statistical inference is applied to identify those
parameters which are significant. A new adjustment of the reduced model is required to obtain the
final values of the significant unknowns.

The selection of a deformation model is not unique. It is likely that more than one model will fit the
observed data. The selection of the most suitable model should be guided by criteria such as:

i. the final model should be fairly simple
i a physical interpretation of the parameters should be possible

iii. the associated quadratic form of the residuals should correspond to the pooled variance of
the single-epoch adjustments.

For details see CHEN (1983).
To clarify the matrices involved in the multi-epoch model, the complete equations for k = 3 are

given. For simplicity of presentation it has been assumed that the epochs are uncorrelated. This is,
however, not a condition since the equations are easily extended to the more general case.

Ir o 0 0 0 0
I0 0 0 0 0
yr
0 0 0 L» o 0 o
%1 Vi r o 0 0 0 O0 y
Xo | + | v = 0 I° By 0 0 0 pn (11-8)
%3 Va 0 0 0 0 LM 0 Y1n
y
Ir o 0 0 0 0 2n
P By o o o |7
0 0 0 0 Ig"
X + v = A y
nxi nx1 nxu uxi
Kk
P1 0 0 n=2ni
i=1
P=|0 Py O .
K
0 0 Pg u=2m+up+25i
i=1
with:
n; number of parameters of epoch i

m number of points (reference plus object points)

Up number of deformation parameters

G; number of nuisance parameters of epoch i
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The matrix A is of full rank u, but P has the rank defect of d' = k - d, where d is the datum defect of
the single-epoch adjustments. Since the parameters of Eq. (11-8) are again coordinates, except
for the additional elements of the subvector p, the normals A'PA have the same rank defect d as
the single-epoch models. Hence, a geodetic datum must be selected in order to define the
coordinate system of the solution of Eq. (11-8). In line with previous considerations the geodetic
datum is selected so that the partial trace of the cofactor matrix referring to the reference points is
minimized. The corresponding constraints are selected according to Section 3.8. The generalized
inverse of the normals follows from Eq. (3-18).

II’
Ry = 0, R = S, PS=NS=0
0
Qp = (A'PA + RRY~TAIPA(AIPA + RRY)~!
(11-9)
¥ = AR,  f = rP)-u+d
v = AJ-% q = viPv = 8'Pg = § 'AlPAY

The matrix S is required to develop the matrix R of constraints; it is defined in Eq. (3-61).

The structure of the matrix of normal equations is given in Eq. (11-10). All summations run from i = 1
to i = 3 in this example:

Zi Pirr Z‘ Piro Z PiroBi | P1rn P2rn PSrn
Z Pior 2 Pioo Z PiooBi

- I 1 2 3
| | i l
I
t Or ty 0O tp 00 tn On tH on
2", BP, iZBi P 2.: B!P,%°B, : o BP™ B,
APA = (11-10)
p4nr p4no 0 | Py 0 0
|
Py P, P,NoB, | 0 PN 0
I
psnr psno p3nOB3 ' 0 0 p3nn

The P-matrix is partitioned according to Eq. (11-4). Each additional epoch would lead to an
increase of the size of A'PA. This can be prevented by eliminating the nuisance parameters %"

from the single-epoch models according to Eqgs (10-4) to (10-6), so that only the partly reduced
leading block of Eq. (11-10) remains. The right hand side vector of the normals is:

ZZPl 81, ZZP°“ ZZBtPo” ZP"’* ZPZ”"z, ZP et (q111)

where: i=1,23 and j=r10n
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As an alternative to the model of Eq. (11-8) it is possible to return to the original observations /;.

The multi-epoch model can then be formulated as a generalization of Eq. (10-56) where the matrix
H has been replaced by matrix B of Eq. (11-6):

yl’
Iy vy AT A° 0 AN 0 .. 0|y
12 + \/) = A2r A2° —AzoBz 0 A2n p
. . . . . . . . V1 n (11-12)
b Vi AlOAS -ASB. 0 0 An )|
e

This formulation is easier to understand as, in particular, the role of the geodetic datum is much
clearer, but is computationally less convenient. An elimination of the nuisance parameters y;",
yo", ..., yk" prior to the combined adjustment of Eq. (11-12) would considerably simplify the
computations.

11.2 Parameter Estimation

The obvious method of calculating the parameter vector ¥ of models of Eqs (11-8) and (11-12) is

through the inversion of the matrix APA, where the constraints as given in Eq. (11-9) must be
considered in both cases. The solution equations of the observational model of Eq. (11-12) have
the same form as those given in Eq. (11-9). But there are two differences:

i. the residuals v; refer to the observations ;, and

ii. the number n in the equation for the degrees of freedom f is now the number of all
observations /.

All computations must be repeated whenever the data of a new epoch become available. Generally
more than one estimation is necessary, since the new data usually require a modification of the
model being achieved after several trial adjustments.

A reduction in the amount of computations involved in the estimation and savings in storage space
are achieved by application of sequential methods consisting of updating the matrix of normal
equations and the vector of absolute values. This method, however, cannot be used if correlations
between the epochs exist. Consider the estimation in the model of Eq. (11-8) covering k epochs
as completed and the results available:

A t

Further let it be assumed that the nuisance parameters %" have been eliminated from Eq. (11-2) in

the single-epochs adjustments, using the procedure outlined in Section 10.1. If a new epoch, say
epoch |, has been observed and adjusted, yielding:

% Qq Py = (A'PA)

X

then the results of Eq. (11-13) can be updated by evaluating the model:
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+ = Y, (11-14)
X, v, AI 0 Pf‘l
X + v = A vy, P

where the parameter vector after adding epoch | is denoted by y; and where v, is the vector of

corrections to the previous parameter vector 9k caused by the new epoch. The matrix of the
normal equations of Eq. (11-14):

t t t t
(A'PA), = (P?k + AP A) = (APA) + AP A (11-15)

is formed by addition of A,1P§|A| to the previous normals. The new absolute term is the sum of

two vectors according to:

(A'PR), = P?k?k + A"‘P;(Ifcl (11-16)

The updated parameter vector follows from Eqs (11-15) and (11-16):

~

9, (A'PA), (A'PR),
where: (11-17)

(A'PA),~ , F’?I = (AP,

091

It

The g-inverse is selected according to the datum definition of the single-epoch adjustments as
outlined by the set of Egs (11-9). The residuals and the variance estimate are given by:

Vi 1 . Vk
[l
v A X

_ % % | %
G = M (11-18)
0 P VI

—
|

r(Pyk) + r(P;(') -—u+d

The degrees of freedom of the model of Eq. (11-14) depend on the rank of the weight matrix
concerned, the number u of parameters and the datum defect d.

The quadratic form of the combined adjustment of all | epochs is computed from:
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q - Z1x Pei - 9, APAYg, (11-19)
I_

with:

i
-

rP,) — u+d (11-20)
|

being identical to the results of Eq. (11-9).

Similarly the quadratic form of Eq. (11-18) can be expressed as:
- Als A sty s Al aloa A
9 = 9 P?kyk + X P;(le - 9, (APA)g, (11-21)

Solving Eq. (11-21) for 9|‘(AtPA)|9| and substituting the results in Eq. (11-19) yields:

since:

and the quadratic form gy of Eq. (11-13) can be expressed analogous to Eq. (11-19):

21>‘<‘P - 9 lAtPA) g,
i=

The total form of | epochs yields the simple sum:
q = g +0q (11-22)
and, similarly, the associated degrees of freedom:

f = fk+iI (11-23)

Hence, in the sequential multi-epoch approach, the current quadratic form of Eq. (11-9) of the

simultaneous model is computed by accumulating the forms a of Eq. (11-21) of the single steps.

The same procedure applies to the computation of the current degrees of freedom. Also, it can be
easily shown that:

= 2 2
qI/cs0 and qk/cso

are independently 2-distributed, if the global model hypothesis of Section 2.3 is true.
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11.3 Statistical Tests and Model Adjustments

Statistical tests guide the professional in his effort to establish the most realistic deformation
model. But, as stressed repeatedly before, the test results should not be followed blindly. A
number of additional aspects not covered by the relatively simple test procedures need to be

taken into account.

In the sequel it will be assumed that the sequential estimation approach has been adopted. The
modifications required for using the simultaneous adjustment approach are easily established.
The following null hypotheses are usually considered:

Hp1 : The new epoch is in agreement with the already established deformation model.

: All points of the new epoch conform to the already established deformation
model.

Hos : Certain parameters of the deformation model are insignificant.

The null hypothesis Hy is identical to that of the global congruency test outlined in Section 10.3.
Basically the same equations apply; however, epoch i is to be replaced by the joint result of the
first k epochs according to Eq. (11-13) and for epoch j the results of Eq. (11-18) are to be
substituted. Thus the relevant test statistic of Eq. (10-14) takes the form:

ah F, f
T, = m o

(11-24)

T, is centrally F-distributed if Hp4 is true.

If the test fails several alternatives can be considered. Similar to the analysis of single point
movements in Section 10.4 a search for non-conformities in the geometry domain might be
successful. Hgp, is the corresponding null hypothesis. Based on the partitioning of the model as
given in Eq. (11-4) first the reference part of the network is screened followed by the object part.
If it is possible to explain the failure of Hg¢ by one or few single point movements, then these

points are flagged, removed from their block and added to the subset of nuisance parameters.

The test procedure is based on a decomposition of al of Eq. (11-18), applying one of the methods

outlined in Section 10.4, and leads to the test statistics T; as given in Section 10.4.4. Refer to
Eq. (10-35), for example. In subsequent epochs the flagged single points need special
attention. If they prove again to be non-conforming, it may be appropriate to model this effect by
an extension or modification of the deformation model and to transfer them back to their initial
position in the %-vector. If the non-conformity is also a singular event in the time domain then the
point remains in the group of nuisance parameters for the current epoch only.

It single point non-conformities do not explain the failure of Hy4 sufficiently, then a general

revision of the deformation model might be necessary. Cenrtain effects, which can be expressed
by a linear model in the geometry or time domain when solely a few epochs are considered, may
later prove to be of a more involved nature, thus requiring higher order terms of the model. In this
case a new adjustment of all epochs with new tentative models is necessary until a sufficient

agreement is obtained.

Another way of explaining the failure of Hpy may be based on the assumption that the object

under investigation (or a part of the area covered by the monitoring network) has experienced a
sudden shift, which can be modelled by an extra set of parameters for a rigid body displacement
of the corresponding block according to Section 10.5. The results of subsequent epochs will
demonstrate whether or not this discontinuity in the time domain is restricted to one epoch only.
If this is the case, the rigid body shift must be reversed in the next epoch. In the other case the
discontinuity is followed by a new continuous behaviour.
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These evaluations can be effectively supported by graphical representations of the deformation
field. After establishing a satisfying model the significance of the model parameters is checked with
the aid of the null hypothesis Hpz. Obviously non-contributing parameters should be ignored. But

the decisions should be made with due care, since moderately significant parameters of the model
might become highly significant, when subsequent epochs are added. As a rule, it is better to
consider too many parameters than too few. The test procedure is explained in Section 5. ltis
based on one of the test statistics given in Egs (5-6) to (5-9).

Altogether, the establishment of a deformation model is a trial and error process. Only general
guidelines can be given and no ready-for-use models are available. The statistical inference
applied in this process strongly depends on the underlying model. Thus any change of the
assumptions on which a model is based changes the inference as well.

11.4 Special Methods and Final Remarks

It has been stressed during the discussion of the two-epoch analysis that the strategies for
deformation analysis are strongly project orientated and that the multitude of tailored approaches
cannot be presented exhaustively in this monograph. Some short indications shall be given only.
The interested reader finds further information in the references.

If the same observation scheme and the same parameter vector are used in all epochs, then the
same design matrix and the same weight matrix result. In this case a multi-variate model can be
formulated, which has certain advantages as to the amount of computations required and to the
power of the applicable statistical tests, since the congruency test can be based on the Wishart-
distribution (KOCH and FRITSCH, 1981).

With the aid of a special selection of the parameters of the general model of Eq. (11-7) strain
accumulation or deformation velocities can be estimated. These parameters are of particular
interest in geophysical and glaciological applications of deformation analysis. Apart from some new
terms these special approaches do not contain new elements.

For many projects a good graphical display of the deformations is worthier than a numerical analysis.
The plot of movements-versus-time or subsidence-versus-time diagrams are typical examples. All
graphical techniques of visualizing three-dimensional processes can be used for this purpose. The
general merits of graphical methods as discussed in Section 10.8 in the context of two-epoch
analyses apply here as well.

Finally it should be remembered that it is always worthwhile to consider whether or not a sequence
of two-epoch comparisons serves the purpose of a particular project better than a sophisticated
and expensive multi-epoch approach. It must not be overlooked that a complicated method and a
large size model can veil effects which could be detected easily in two-epoch comparisons.
Therefore separate analyses in geometry and time domain may yield more realistic results in many
cases. In general, simple and medium sized models have obvious advantages in practical
applications over mathematically rigorous but oversized models.
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12. NOMOGRAMS OF DISTRIBUTION FUNCTIONS

Density Function

...............................................
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Nomogram 1: Density function of the Gaussian distribution. f(x) = L exp - %(X — 5)2.
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