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Preface

The practice of geodesy has changed dramatically in the last decade mainly
through the impact of satellite methods. For example, positioning for most
geodetic applications is now almost exclusively performed with GPS and the
finer structure of the earth's gravity field is increasingly being determined
from satellite altimetry. These changes are reflected in the teaching of
geodesy in the School of Geomatic Engineering (formerly the School of
Surveying) of The University of New South Wales.

This monograph is based on a course called "Introduction to Geodetic
Science" which has been taught at The University of New South Wales for a
number of years. The course is designed for First Year students who, it is
assumed, know nothing about the subject but who have a basic grounding
in calculus, the manipulation of matrices and physics. The course is taught in
fourteen two-hour lectures and about ten one-hour tutorials.

Chapter One introduces geodesy by describing what modern geodesy is,
tracing the development of geodesy through time, relating geodesy to other
sciences, giving some of the current applications of geodesy, briefly
reviewing geodetic activities in Australia and providing a selection of
international and local journals concerned with geodetic problems.

Chapter Two deals with the earth's gravity field and its variations over the
earth's surface, in particular those variations related to the shape of the
sealevel surface or geoid. It is shown how the geoid may be determined
from terrestrial gravity data and a gravity model for the earth using Stokes'
theorem and how the complex shape of the geoid may be built up from
spherical harmonic coefficients obtained from satellite methods.

Chapter Three is devoted to time and time keeping. The principles of atomic
clocks are described. The different time scales that are used in geodesy, and
which also occur in astronomy, surveying and navigation, are discussed.
Finally, the relationship between these time scales is given.

Chapter Four is concerned with the motion of a satellite about a parent body.
Kepler's laws of planetary motion, which to a first order also apply to artificial
earth-satellites, are given. The elements which are commonly used to
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describe the geometry of an orbit and to relate the orbit to a space-fixed
reference frame are defined. The various perturbing effects which cause an
orbit to depart from the ideal described by Kepler's laws are then discussed.
It is shown how some of these perturbations may be used to determine the

earth's shape.

Chapter Five discusses the coordinate types which occur in geodesy. The
two most important geodetic reference coordinate systems, the geocentric-
equatorial inertial or space-fixed system and the geocentric-equatorial
rotating or earth-fixed system, are described and it is shown how
coordinates expressed in the earth-fixed system may be transformed to
coordinates in the space-fixed system, and vice versa.

Chapter Six deals with the terrestrial geodetic positioning methods and the
measurement of terrestrial gravity. Horizontal and vertical control surveys
are discussed. It is shown that levelled heights are path dependent. The
concepts of orthometric, dynamic and normal heights are introduced to
overcome this problem. Finally, the relationship between the mean sealevel
surface and the geoid is explained.

Chapter Seven introduces the space geodetic methods currently used for
precise positioning and earth gravity field determination. The principles of
satellite laser ranging, GPS, VLBI and satellite radar altimetry are explained.
It is shown how these methods are used to determine geodetic parameters.
Measurement errors are discussed and methods of removing them are
presented.

This monograph teaches the rudiments of geodetic positioning and, to a
lesser extent, earth gravity field determination as performed today. As such,
the emphasis is on satellite methods. Numerous numerical examples are
given which the reader can work through to gain a better grasp on the
subject.

The finishing touches to the first edition of this monograph were applied
whilst the author held a Visiting Fellowship at the Research School of Earth
Sciences of the Australian National University where Clementine Krayshek
drew the figures.

In this second edition numerous revision exercises are given at the end of
each chapter. Material on geodetic datums, transformation between datums
and how to obtain orthometric height from space geodetic methods has
been added. Also, more worked examples appear throughout, new
reference material is included and typographical and other errors have been
corrected. Most importantly, however, we provide an index.

Art Stolz
July 1996



1 Introduction

1.1 WHAT IS GEODESY?

A dictionary might define geodesy, in modern usage, as being that branch of
mathematics which determines the figures and areas of large portions of the
earth’'s surface, and the figure of the earth as a whole. This definition, which
suggests that geodesy is no more than the study of the geometry of the earth,
does not, however, indicate the full scope or current extent of the science of
geodesy. There are at least two further essential components of geodesy: (1)
the study of the earth's gravity field and its temporal variation, and (2) the study
of the earth's rotational motion. Both are essential in the practice of geometrical
geodesy since one of the fundamental reference surfaces is the geoid, or the
equipotential surface corresponding to mean sealevel, and since positions on
the earth's surface are usually determined from observations made with respect
to a reference system fixed to the stars.

As a rough generalization, it can be said that there are three principal types of
activity in geodesy: terrestrial or classical geodesy based on measurements of
the geometry and gravity of points at the surface of the earth; space geodesy
based on observations of and from artificial satellites; and theoretical geodesy
which is concerned with the analysis and interpretation of the measurements.
Space geodesy also covers the use of radio interferometry to obtain
geometrical information from observations of extraterrestrial radio sources.
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Figure 1.2-1
Erastothenes' experiment.

Today, most practical geodesy is performed using space geodetic methods.
One strives to attain the highest accuracy possible. Relative positioning
accuracies of a few parts in 108, which is equivalent to a few millimetres over a
100 km long line, have been achieved with satellite laser ranging and radio
interferometric methods. Relative accuracies 1 part in 107 (1 cm for a 100 km
long line) are now almost routinely achievable with the satellites of the Global
Positioning System (GPS).

1.2 HISTORICAL DEVELOPMENT OF GEODESY

The history of the science of geodesy begins with the idea of a spherical earth.
As far as is known, the greek scientist Pythagoras was one of the first to propose
a spherical shape for the earth in the sixth century BC. Aristotle took up this idea
and gave it an observational basis by noting the apparent movement of the
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Figure 1.2-2
Oblate and prolate ellipsoid of revolution.

stars, the circular shadow of the earth during a lunar eclipse and the depression
of the horizon with increasing distance. However, it took about three centuries
before a serious attempt was made to measure the radius of the earth.
Erastothenes, the director of the famous library at Alexandria, determined the
earth's radius by observing the elevation of the sun at noon on the day of the
summer solstice in Alexandria. Since at that time the sun was at its zenith
position in Aswan, and since he was aware of the relative position of the two
cities and that they were located on approximately the same meridian,
Erastothenes was able to calculate the radius of the earth from simple geometry
(Figure 1.2-1). Remarkably, considering his poor measuring tools, his solution
was only 16% in error.

With the decline of the greek empire and the spread of Christianity in Europe,
scientific study waned and it was not before the end of the Middle Ages, that the
voyages by da Gama and Columbus revived the interest for determining the
shape of the earth. The idea that the earth was fiat was finally buried with their
discoveries and new attempts were made to determine the earth's radius. The
frenchman Fernel was the first to provide a new estimate in 1525. Fernel
observed the elevation of the sun in Paris and Amiens. Using astronomical
tables and the distance between the two cities, measured by an odometer, he
obtained a value which was only out by about 1%. The development of new
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instruments made other and more accurate techniques possible. The most
important of these for geodesy was the theodolite. Snell, a professor of
mathematics in Leiden, used it in 1615 to measure by triangulation the distance
between the dutch cities of Alkmaar and Bergen op Zoom. The scale of the
network was determined from a baseline observed with a surveyor's chain. With
astronomic latitude observations at the extremeties of the triangulation chain,
the radius was determined with an error of roughly 3%.

The discovery of his laws of motion, led Newton to conclude that gravity, as
observed by a pendulum, must decrease in magnitude from the poles towards
the equator, as a result of the centrifugal force of the earth's rotation. Newton, or
Picard, also hypothesized that the earth was an oblate ellipsoid, instead of a
perfect sphere. To test this hypothesis, the french Academy of Science
commissioned Cassini to perform a triangulation from Dunkerque, in the north,
to the Pyrenees, in the south of France. The splitting up of the meridian arc in
several sections would show whether the length of a degree depended on
latitude, as was the case with an ellipsoid. Surprisingly, Cassini came to a
conclusion opposite to Newton, that is, the earth was a prolate ellipsoid,
flattened at the equator rather than the poles (Figure 1.2-2). To resolve the
matter, the french Academy sent out two expeditions in 1736, one to Lapland
and the other to Peru, to measure the length of a degree of latitude in two
distinctly different places. From these expeditions and from the many others
which followed, Newton's hypothesis that the earth was an oblate ellipsoid, was
confirmed.

An important and fundamental discovery was made during the Peru expedition.
Bouguer noticed variations in gravity that could not be accounted for by
changes in elevation or latitude. These regional gravity variations provided the
first evidence for a nonuniform density distribution within the earth. Also, in
1738, Clairaut published the mathematical relationship between the gravity
flattening and geometrical flattening of the earth. This implied, that the earth's
geometrical flattening could be determined from gravity measurements. Stokes,
in 1849, obtained a more generalized expression relating gravity
measurements made at sealevel to the departure of the earth's shape from a
sphere.

Laplace, Gauss, Bessel and others soon recognized that at sufficiently high
observational accuracy one could no longer ignore the deviation of the
plumbline, to which the measurements refer, from the ellipsoidal normal. This
led to the concept of the geoid and efforts for its determination. The broadscale
features of the geoid are now well known from sateilite methods (Figure 1.2-3).
However, the determination of its fine structure remains an important problem of
geodesy, particularly with the present exacting requirements of oceanography.
Nevertheless, the oblate ellipsoid continues to serve as the basic reference
surface for geodetic computations.
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Figure 1.2-3
Satellite geoid.

1.3 GEODESY AND OTHER SCIENCES

The practice of geodesy necessarily includes several topics that are also
studied in connection with other fields of science and technology. The following
examples illustrate the wide scope of geodesy and the diversity of interests of
geodesists:

- Earth and ocean tides affect both the shape of the ocean surface and the
gravity field. Their measurement and interpretation may therefore be
regarded as essential to geodesy as well as to geophysics and
oceanography.

- Refraction of electromagnetic waves in the earth's atmosphere affects
geodetic measurements that are made at various wavelengths of the
electromagnetic spectrum, and so the interests of geodesists overlap with
those of the meteorologist, astronomer and ionospheric physicist.

- The study of the gravity field by surface measurements and by satellite
methods is of direct relevance to geology since it reveals the existence of
otherwise inaccessible structures at various depths inside the earth. An
accurate knowledge of the geoid is also required in satellite altimetry to
allow the identification of the undulations of the ocean surface caused by
currents and winds.
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- Local, regional and global movements of the earth's crust result in changes
in the positions of geodetic reference points, and so geodesy contributes to
the study of crustal dynamics, a term that is used to study the relationship
between earthquakes and plate tectonic motion. The space geodetic
techniques of satellite laser ranging, radio interferometry and GPS, are
providing direct determinations of the current rates of motion of the earth's
crustal plates.

- The rotation of the earth around its axis no longer provides the standard of
time, but a knowledge of the orientation of the earth with respect to a space-
fixed reference frame is necessary for interpreting many types of
astronomical observations. Thus, the study of the rotation of the earth is of
fundamental importance in astronomy. Moreover, variations in the rotation
rate and the orientation of the rotation axis provide valuable data on the
interior of the earth and about the interactions between the crust, oceans
and atmosphere. These studies, apart from providing useful data for
geophysics, oceanography and meteorology, are of significance to theories
of the origin and evolution of the earth-moon system. They may also provide
a measure of the possible variation in the constant of gravitation.

1.4 APPLICATIONS OF GEODESY

Apart from its applications to other sciences, geodesy is of some importance in
modern life. The most direct applications are to surveying and mapping, but
there are also indirect applications that help justify the substantial costs of the
basic geodetic measurements and associated data processing.

The techniques of surveying allow determination of precise relative positions of
points over limited regions, but coordinates assigned to points near the edge of
one such region are usually found to differ significantly from those given by
another independent survey of a neighbouring region in those areas where the
two regions overlap, and both sets of coordinates must be transformed to a
common reference surface so as to eliminate ambiguities. Such differences can
be of considerable commercial significance, for example, in oilfields that cross
boundaries which have been defined in terms of these coordinates.

The satellite techniques for accurate postioning and navigation depend for their
success on information that has been obtained as a result of past geodetic
investigations and on current determinations of the rotation of the earth. In turn,
these techniques are useful in geodesy since they provide the most economical
way of establishing a network of points, the positions of which are known in the
adopted terrestrial reference coordinate system.

It is possible that geodetic measurements in regions prone to earthquakes will
provide information that may indicate where and when major earthquakes will
occur; for instance, long lines straddling the San Andreas fault in California are
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being repeatedly measured by space techniques to determine where slipping is
occurring and where stress is building up.

Accurate positioning and other geodetic information are essential in many
engineering projects, such as the relocation of drilling rigs at sea and the
construction of long tunnels and canals. Furthermore, the observational and
computational methods developed for geodetic networks are being applied to
monitor motions in and around large civil engineering structures, such as dams.
These techniques are also being used in the very precise setting out and
monitoring of large scientific instruments, such as particle accelerators.

Information about geological sructures obtained from gravimetry is used in the
location of oil, mineral and ore deposits. The possibility of detecting storm
surges at an early stage, by using satellite altimetry with an accurate orbit and
geoid, could provide warning of the risk of flooding of coastal areas.

Correct interpretation of the images obtained by earth resources satellites such
as Landsat and Spot depend on determining the proper relationship between
the images and the actual surface of the earth which requires the prior
establishment of a network of control points whose positions are known with
respect to a standard reference coordinate system.

The regular monitoring of the rotation of the earth is used to derive a scale of
universal time which is used for navigation by ships and aircraft around the
globe.

1.5 GEODESY IN AUSTRALIA

Research in the science and application of geodesy in Australia is carried out in
a variety of institutions as a subsidiary activity rather than a principal activity;
there is no national geodetic agency or geodetic institute to play a central role,
as is the case in many other countries. Funding of geodetic activities is spread
between several federal and state government departments, the Universities
and the Australian Research Council. Similarly, there is no major learned or
professional society that explicitly provides for the presentation and publication
of geodetic research.

The Australian Land Information Group (AUSLIG) of the Department of
Administrative Services in Canberra is reponsible for maintaining the first-order
triangulation and levelling networks in the ACT, and for geodetic activities in the
Australian Antarctic Territory and certain offshore islands, such as Norfolk
Island. AUSLIG operates a space geodetic observatory in the Orroral Valley
near Canberra which, amongst other things, tracks near-earth satellites and
retroreflectors on the moon, and disseminates time in Australia. Each state
government is responsible for maintaining its own geodetic networks.
Coordination of this activity is maintained by an intergovernmental committee.
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Other government organizations with a direct interest in geodesy are the
Directorate of Survey-Army and the Australian Navy hydrography unit.

Geodesy is taught as a postgraduate activity at several universities in Australia,
principally the University of South Australia and The University of New South
Wales. The most active research group is in the School of Geomatic
Engineering, the University of New South Wales. Research activites there
include or have included the determination of large-scale crustal motion across
the Java Trench and in New Guinea, computing the fine structure of the geoid in
the Australian region, sealevel monitoring with GPS and, precision altimetric
measurements of the earth's land surface. The CSIRO Division of Radiophysics
performs geodetic radio interferometric experiments in collaboration with the
NASA Jet Propulsion Laboratory and geodetic agencies in other countries,
though not on a regular basis.

The Australian Academy of Sciences provides a valuable, but informal, forum in
support of geodesy in Australia as a byproduct of its responsibility for providing
a committee to act as a link to the International Association of Geodesy.
Geodesists drawn from the various organizations with an interest in geodesy
meet in the Geodesy Subcommittee of the National Committee for Solid-Earth
Sciences, to discuss Australian participation in international cooperative
projects and geodetic research.

1.6 GEODETIC LITERATURE

Useful reference books on geodesy are given at the end of each chapter of this
monograph. Among the international technical journals Bulletin Géodesiqué
and Manuscripta Geodaetica are concerned exclusively with geodetic
problems. In 1995 these two journals were discontinued and merged into a
single publication called the Journal of Geodesy. State-of-the-art articles and
reviews appear in , for example, Reviews of Geophysics and Space Physics,
Journal of Geophysical Research and Geophysical Research Letters all of
which are published by the American Geophysical Union in Washington, DC.
Geomatics Research Australasia (formerly the Australian Journal of Geodesy,
Photogrammetry and Surveying) publishes results of geodetic research mainly
for the Australasian region.

REFERENCES
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EXERCISES

1.1 What is geodesy? Why do we need to study it?

1.2 Geodesy is a global discipline. Explain why?

1.3  What is the relationship between geodesy and surveying?
1.4  Explain the requirement for high accuracy in geodesy.

1.6  The oblate ellipsoid continues to serve as the reference surface for
geodetic computations. Why?

1.7  Geodesy serves many other disciplines. Discuss this statement.

1.8  Give the main goals of geodesy.
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1.9  You have been asked to give a short lecture on geodesy to senior high
school students who have never heard of it. Your main aim is to get them
interested in the subject. What would you tell them?



2 The Earth's Gravity Field

2.1 INTRODUCTION

One of the most familiar facts about the earth is that a body released near it will
fall with increasing velocity. The rate of increase of velocity is called the
acceleration of gravity, g, and is the same for all bodies at a given point on the
earth. Newton formulated the principle of universal gravitation by deduction
from Kepler's laws of planetary motion, showing that these laws were evidence
of a force between each planet and the sun.

In the case of a body on the earth, the force of attraction is determined by the
product of the earth's mass and the mass of the body, and the distance between
the body and the earth's centre. If the earth were a uniform, nonrotating sphere,
the force on a body at a given distance would be everywhere the same, and
there would be a single constant value for g. However, the earth is nonuniform,
nonspherical and rotating, and all these facts contribute to the variations in g
over its surface.

Virtually all geodetic measurements are influenced by the force of gravity and
this must be taken into account when calculating geodetic parameters.
Moreover, those variations in gravity which are related to the departure of the
earth from a spherical form are of particular interest in geodesy. Measurements
and analyses of the variation in gravity also form a powerful branch of
geophysics; the determination of the structure of the earth's interior. Variations
which reflect the nonuniform density of the earth can be used to infer the
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pressure structure beneath the surface, and these are of interest to the
geologist.

2.2 UNITS

In the Sl system the unit of gravity is the ms-2. The magnitude of g varies from
9.78 ms2 at the equator to 9.83 ms2 at the poles. For investigations of the
earth's shape, or its internal structure it is necessary to measure variations of
105 ms=2 or less and it is convenient to introduce the units:

1ums2=10%ms2 and 1nms2=109ms=2.
In geodesy and geophysics, we often find the auxillary units:

1mGal=10%5ms2 and 1uGal=108ms=2.



The Earth's Gravity Field 13

These are derived from the unit Gal (1 Gal = 1 cms-2), named after Galileo. In
official and commercial communications of many countries, these auxillary units
are no longer permitted. However, in scientific circles they are still in partial use

as is the ums=2,

2.3 FUNDAMENTAL CONCEPTS

Newton's Law of Gravitation

Newton's law of gravitation for two particles of mass, my and my, separated by
distance, r, is:

E_.gMimz 2.3-1)

where G = (6.67259 + 0.00085)x10-11 m3kg-1s-2, is the gravitational constant
and, F, is the force on either mass, and is directed along the line joining the
masses. Hence, a unit mass located at the attracted point P (Figure 2.3-1) in the
gravitational field experiences a gravitational acceleration, b, due to the mass
element, m, at the attracting point P, ie.:

b=-G 2T (2.3-2)

where b lies on the line joining P and P' and is directed towards P".

Potential

A body such as the earth, composed of an infinite number of mass elements,
produces a gravitational acceleration on the unit mass, situated at the attracted
point, which is computed by summing the individual accelerations vectorially.
The computations are simplified, if we change from a vector field to a scalar
field. Now, a mass in the presence of an attracting body of mass, m, has energy
by virtue of the attraction. This energy:

V=- GT”‘ (2.3-3)

known as potential energy, can be evaluated by considering the mass to have
been brought from infinity and calculating the work done on it in the process.
We note that in geodesy we customarily make V positive. The potential has the
dimension of work/unit mass and the units are m2s-2. It is a relatively simple
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matter to show that the force of attraction, F, can be obtained from the potential
energy by differentiation ie.:

dV dV oV
F=gradV = (B_X’ ' 37 (2.3-4)

Equipotential Surfaces

A gravitational field can be represented by surfaces over which the potential, V,
is constant. These are known as equipotential surfaces. The force vectors are
everywhere normal to these surfaces, so that there is no component of force
along them. Thus the surface of a liquid in the gravity field coincides with an
equipotential surface and for this reason the potential and equipotential
surfaces are of great importance in the study of the sealevel surface of the earth

or geoid.
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Centrifugal Acceleration

The force acting on a body at rest on the earth's surface is the resultant of the
gravitational force and the centrifugal force of the earth's rotation. Here we

assume that the angular velocity, o, of the earth is constant and that the rotation
or spin axis is fixed with respect to the earth. The centrifugal acceleration on unit
mass is:

Z=w?p (2.3-5)

This acts in an outward direction perpendicular to the spin axis (Figure 2.3-2).
The earth's angular velocity, determined from astronomical observations, is:

2%
=86 164.10 s

=7.292 115x10-5 rad. s1.

If the Z-axis of an earth-fixed X,Y,Z-system coincides with the earth's spin axis,
then:

The centrifugal potential, @, is:

o2
Q= ®(p) =% p? (2.3-6)
with:

Z=grad ® (2.3-7)

For points on the equator, the centrifugal potential, ® = 1.1x10% m2s-2 and the
centrifugal acceleration, z =12z | = 0.03 ms2 corresponding to =0.3% of
gravitational acceleration, while at the poles, ® =0 and z = 0.

Gravity Acceleration

The gravity acceleration, or gravity, g, is the resultant of gravitation, b, and the
centrifugal acceleration, z:
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g=b+z (2.3-8)
The direction of g is known as the direction of the p/lumbline (ie. the opposite

direction to the vertical) and the magnitude, g = | g |, is called the intensity-of-
gravity or, often, just gravity. The gravity potential becomes:

W=V+d (2.3-9)

and the gravity acceleration is given by:

g=grad W (2.3-10)
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2.4 LEVEL SURFACES AND PLUMBLINES

The surfaces of constant gravity potential, W = const., are called equipotential,
level or geopotential surfaces (geops) of gravity. The potential difference, dW,
between two level surfaces differentially separated by displacement, ds, is:

dW =g - ds =g ds coso (2.4-1)

where 6 is the angle between g and ds.

We see that the derivative of the gravity potential in a particular direction equals
the projection of the gravity along this direction. If we take ds along the level
surface, then it follows from the fact that dW = 0, that g is perpendicular to the
level surface. Accordingly, the level surfaces are intersected by the plumblines
which are perpendicular to them and the tangent to the plumbline is the
direction of the plumbline. If ds is directed along the outward pointing normal, n,

to the level surface, then, since cos6 = -1, we have:

dW =gdn (2.4-2)

This equation provides the link between the potential difference, which is a
physically measurable quantity, to the difference in height, which is a geometric
quantity, of adjacent level surfaces. We return to this problem later on (see
Section 6.3).

If g varies on a level surface, then the distance dn to a neighbouring level
surface must also change. Therefore, the level surfaces are not parallel and the
plumblines are not plane curves. Also, as a result of an increase on 0.05 ms2 in
gravity from the equator to the poles, the level surfaces of the earth converge
towards the poles (Figure 2.4-1). The relative decrease of the distance between
two level surfaces near the earth from the equator to the pole is on the order of
5x10-3. Thus, two level surfaces which are 100.0 m apart at the equator are
separated by only 99.5 m at the poles.

2.5 TEMPORAL VARIATIONS OF THE EARTH'S GRAVITY FIELD

Time dependent variations of g are caused by the lunar and solar gravitational
forces acting on different parts of the rotating earth, in combination with the
effects of the orbital motion of the moon around the earth and of the earth
around the sun. These produce variations in the terrestrial gravity field on the
order of 10-7 g. Other variations of the gravity field with time, caused by
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terrestrial mass movements, such as the shifting mass of the atmosphere,
generally are at least an order of magnitude smaller than solar and lunar
gravitational effects.

2.6 GRAVITY AND THE SHAPE OF THE SEALEVEL SURFACE

The value of g varies over the earth for a number of reasons. Here, we give
particular attention to those variations which are related to the earth's shape.
The departure of the form of the sealevel surface from a sphere leads to
variations in g, even at sealevel; conversely, a study of these variations is of
great assistance in determining these departures. The study of the shape of the
sealevel surface is intimately related to many of the major problems of geodesy.

We consider the waters of the oceans as freely moving homogeneous matter
subjected only to the force of gravity of the earth. Upon attaining a state of
equilibrium, the surface of these idealized oceans assumes a level surface of
the earth's gravity field. This level surface is the geoid. The equation of the
geoid is:

W =W, = const. (2.6-1)

We may regard the geoid as being extended under the continents by a series of
narrow canals cut into the earth. Also, the land surface of the continents is
defined by its height above sealevel, which is the height above the geoid.
Accordingly, another way of visualizing the geoid beneath the continents is that
surface everywhere at a depth equal to the measured height below the land
surface. Where there are local variations in g, due to internal density anomalies,
the geoid is distorted. Most of these distortions are rather limited in extent, and
all of them are very small in amplitude (<100 m - see Figure 1.2-3) compared to
the earth's radius.

2.7 NORMAL GRAVITY

We customarily introduce a gravity model reference system to determine the
geoid. This model is called the normal gravity field. The source of this field is an
earth model which represents a good fit to the earth's surface and to the earth's
external gravity field. The earth's surface may be closely approximated by an
ellipsoid of revolution with flattened poles. This ellipsoid has a simple analytical
representation making it well suited as a model earth. Later on, we shall see
that the shape of the ellipsoid is defined by its semi-major axis, a, and the
flattening, f (see Section 5.2). The normal gravity field is obtained by introducing
the mass of the earth and its angular velocity as additional parameters. Normal
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Figure 2.8-1
Geoidal undulation and deflection of the vertical.

gravity is then the combined effect of the gravitation and rotation of this ellipsoid.
The gravity field in the space outside the ellipsoid is uniquely defined if we
further require the ellipsoid to be a level surface of its own gravity field. This
body is known as the level or equipotential ellipsoid. If the ellipsoid parameters
are now assigned values which closely match those of the real earth, then we
have the optimum approximation to the geometry of the geoid and to the
external gravity field. This body is the mean earth ellipsoid.

It can be shown that gravity, v,, at latitude, ¢, on the level ellipsoid is given by:

Yo = Ye (1 + B2 sin?¢ - B4 sin22¢) (2.7-1)

where 7, is normal gravity at the equator and, Bo and B4, are constants which
are on the order of 5x10-3 and 10-6, respectively. For specific values of B, and
B4 this equation becomes the International Gravity Formula.

Example 2.7-1

By how much does gravity increase in going from a point at sealevel at latitude
50° to one at sealevel at latitude 55°? Take ye = 9.78 ms2, B, = 5.3x10-3 and B4
=0.
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Solution

Equation (2.7-1) becomes:

Yo = Ye (1 + 5.3x10-3 sin2¢)
This gives:

Y50° = 9.78 (1 + 5.3x10-3 sin250°) = 9.810417 ms2
and:

1550 = 9.78 (1 + 5.3x10°3 s5in255°) = 9.814781 ms2
Thus:

AQ = Y550 - Y500 = 4364 pms-2

2.8 GEOIDAL UNDULATION

Mass anomalies, or lateral variations in density inside the earth, cause g at
sealevel to differ from the values predicted by the international gravity formula.
The effect of these variations on the geoid is that over a region of mass excess

there is an additional or disturbing potential, AV, and the surface is warped
outward. On either side of the region of mass excess, the plumbline is deflected
inward. A mass deficiency has the opposite effect. For a single mass anomaly in
an otherwise uniform earth:

_av

g

where N, is the geoidal undulation, defined as the separation or height
difference between the level ellipsoid and the geoid (Figure 2.8-1) and g is the
mean value of gravity along N. The problem in the case of the actual earth is
that there are a great number of mass anomalies contributing to the value of N

at any point. In general, neither the masses, nor the disturbing potential, AV, are
known, but the effect of the masses on g is.

(2.8-1)
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2.9 STOKES' THEOREM

The difference, Ag = g - Yo, between normal and measured gravity at a point on
the geoid is called the gravity anomaly. The relation between N and the gravity
anomalies, which is known as Stokes' theorem, was originally derived by
Stokes in 1849. Stokes' theorem says, in essence, that at a point P on the geoid
S, the geoidal undulation N, from a concentric reference figure with the same

mass and volume as the geoid can be computed from Ag provided that (1) the
gravity anomalies refer to the geoid, (2) S is an equipotential surface including
all the topographic masses, and (3) the value of g has been measured
everywhere over S. Stokes' formula is:

R
N=— |Ag S 2.91
4y 429 S(¥) do (2.9-1)

1

where R is the radius of a spherical approximation to the geoid, S(vy), is Stokes
function, vy, is the angle between the radius at P and the radius to the variable

element of surface over which the integration takes place, and do is an element
of solid angle. Stokes' function is given by:

S(y) = cosec g - 6 sin g+ 1-5cos y-3cos ylin(sin g+ sin2 \2—V) (2.9-2)

Effectively, S(vy), is a weighting factor which weights the gravity anomalies
according to their angular distance, v, from P. Its zeros are near y = 39° and y =

1180, At the attracted point, v = 0, S(y) becomes infinite, so that when
evaluating N careful attention must be given to the neighborhood of the
attracted point.

2.10 DEFLECTIONS OF THE VERTICAL

The angle between the normals to the level ellipsoid and the geoid at a point
(Figure 2.8-1) is called the deflection of the vertical. The components of the
deflection of the vertical in the north-south and east-west vertical planes, are
equal to the slopes of the geoid, and therefore the derivatives of N in these
directions ie.:

n=% and é=% (2.10-1)
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where X is towards north and Y is towards east.

2.11 REDUCTIONS OF GRAVITY OBSERVATIONS

Gravity on the continents is rarely measured at sealevel, and both geodetic and
geophysical interpretations of the measurements require that a correction be
made for height of the station. The variation of g due to a change in distance
from the earth's centre is obtained immediately by differentiation. If we assume
the earth to be spherical, and of mass, Mg, the value of g at a point distant, r,

from the centre is:

GMg
9="2
Hence:
GM 2
Tq“='2r—3=-—rg (2.11-1)

At sealevel this gives a vertical gradient of gravity of -3086 nms-2m-1. For most
purposes, this value may be used anywhere on earth. A more complete
evaluation takes into account the ellipsoidal shape of the earth.

Example 2.11-1

By how much does gravity decrease from the bottom to the top of a mountain
1000 m high? Take g = 9.8 ms2 and Rg = 6400 km.

Solution
Using (2.11-1) gives:

r = Re = 6400x1000 = ~3060 nms=m

Hence:

ke

Ag = —=- Ah = -3060x1000 = 3060 ums-2

r
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Figure 2.12-1
Harmonics and the earth's shape.

Equation (2.11-1) gives the rate at which g decreases with increasing distance
from the earth's centre, or height, if no additional mass is interposed between
the observer and the earth. The decrease is that which would be measured by
an observer rising in a balloon through the air, and the correction is therefore
called the free-air correction. If g is measured on the land surface at different
heights, at the same latitude, the variation with height will not be that predicted
by the free-air correction, because of the additional mass beneath the higher
station. Bouguer, in 1749, realized this during the course of his measurements
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in the Andes, and suggested that the additional attraction due to the material
above sealevel be aproximated by treating this material as an infinite horizontal
slab, of thickness equal to the height of the station. For a typical density of
crustal material, the correction is 1118 nms-2m-1. The effect, which is known as
the Bouguer correction, is of opposite sign to the free-air term.

2.12 HARMONICS OF GRAVITY AND THE SHAPE OF THE EARTH

The complex shape of the geoid can be built up by summing up the effects of
what are called harmonics of the earth's gravity field. Let us assume for the
moment that the earth is symmetrical around its axis and apply these harmonics
to the basic sphere (Figure 2.12-1). More specifically, these particular
harmonics are called zonal harmonics because they represent departures of
the earth's shape from a sphere in zones parallel to the equator. The first
harmonic is always zero if, as is customary, the earth's centre-of-mass is taken
as being in the plane of the equator. The second harmonic represents a
tendency toward an ellipse rather than a circle. This harmonic is another way of
describing the basic ellipsoidal shape of the earth. Accordingly, the second
harmonic is by far the largest of the series of harmonics. The third harmonic
represents a tendency toward a triangle, often called a pear shape because if it
were exaggerated the earth would look like a pear. The fourth harmonic is a
square with smoothed corners. The fifth harmonic looks like a flower with five
petals. The sixth harmonic with six petals, the seventh with seven, and so on,
can easily be visualized. The even harmonics are symmetrical about the
equator. Not so the odd harmonics. These give rise to different shapes in the
northern and southern hemispheres. This picture may seem complicated
enough, but it is in many ways greatly oversimplified. So far we have taken no
account of the variations of the earth's shape with longitude, having assumed
that the equator is an exact circle. Such variations, which are much smaller than
the earth's flattening, can also be accounted for by harmonics.
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EXERCISES
2.1 Virtually all surveying measurements are influenced by the earth's gravity
field. Discuss this statement using examples.

2.2  Gravity is not constant over the earth. Why?

2.3  Give the unit of gravity in the Sl-system. Why is a smaller unit used in
geodesy?

2.4  Show that the components of the force of gravity may be obtained from
the potential of gravitation by differentiation.

2.5 What are equipotential surfaces and why are they important in studying
the earth's shape?

2.6  Define gravity.
2.7  Define the gravity vector.

2.8 What are some of the temporal variations of gravity? Give their
approximate magnitude.

2.9 Show that the plumbline is perpendicular to a level surface.
2.10 Give the relationship between potential difference, gravity and height.

2.11  The geoid is both a concept and a reality. Discuss this statement.

2.12 Define normal gravity.
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2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

What is a level ellipsoid?
Define the mean earth ellipsoid.
Why do we need gravity models?

What essentially are harmonics of gravity? How are they used to build up
the shape of the geoid?

Define geoidal undulation. How is this used to define the shape of the
geoid?

What is a gravity anomaly?
What assumptions are made when using Stokes' theorem?

Distinguish between free-air and Bouguer reductions of gravity
measurements.

What are deflections of the vertical? Show that they depend on the shape
of the reference ellipsoid.



3 Time

3.1 INTRODUCTION

The measurement of time is of fundamental importance in geodesy. This is
demonstrated by the fact that time is the independent variable in the equations
describing the position of a satellite as it orbits the earth. Time also forms the
basis of all modern distance measuring devices used in surveying. Time is kept
by clocks and, unlike other measurable quantities such as length, mass and
temperature, cannot be held constant. A clock can be stopped; it then shows a
point or instant on its own time scale, ie. the time when we stopped it. However,
time goes on and if the clock we stopped happens to be the only one at hand,
we would have lost a time scale forever. If we start the clock anew, it will be
running late. By how much? This can only be found out with the help of another
clock which has kept going during our experiment. Here we have implicitly used
both meanings of the word time, namely time as date on a time coordinate axis
having a defined origin, and time as interval during which the clock was
stopped. In geodesy we use the term epoch to denote date (eg. the time at
which a laser is fired to begin the satellite range measuring process) and delay
to denote interval (eg. the time it takes for the transmitted photons to travel to the
satellite and back).



Time 28

3.2 FREQUENCY AND TIME

Frequency is a quantity closely related to time, sometimes very freely called its
inverse. This is not strictly true but the meaning of frequency is derived from the
observation of periodic events, ie. events which repeat at regular intervals of
time, as for instance the oscillation of a pendulum. If constant, this interval is

called the period ,T, and the frequency of oscillation, v, is indeed the inverse of
the the period:

v =% (Hz) (3.2-1)

Frequency is measured in hertz (Hz), one hertz being one period or one cycle
per second. A particularly outstanding feature of frequency and time is the high
accuracy of the basic definition and the precision of the measurements, which
during the last 40 years or so have progressed to such a level that they leave all
other measurements of physical quantities far behind.

3.3 THE SECOND

In the International System (Sl) of units of measurement based on the
convention of the metre, the fundamental unit is the second, the hertz being a
derived unit. Traditionally, the definition of the second was based on
astronomical concepts and observation and until 1956, the second was defined
as 1/86 400 of the mean solar day. The solar day is the time between
successive transits of the sun across the observer's meridian. Averaging this
time out over a year gives the mean solar day.

As the irregularities of the earth's rotation had become well known since the
early 1930s through the use of quartz crystal clocks as well as improved
methods and instruments for astronomical observations, a definition allowing
variations with time of the basic unit of measurement appeared no longer
tolerable. Thus, in 1956 a new definition was adopted, based on ephemeris
time (see Section 3.5), one second being 1/31 556 925.9747 of the tropical
year. The tropical year is the time between successive arrivals of the sun at the
first point of Aries (see Section 5.3). One tropical year is about 365.242 19
mean solar days. However, the ephemeris second was difficult to determine as
several years of observation were required to reduce the measurement error to

the required accuracy; a few parts in 109.

Meantime, new approaches to the problem of defining an invariant time unit
were undertaken in the field of atomic and molecular spectroscopy. Taking
advantage of the developments of microwave electronics before and during the
second world war, physicists had discovered many atomic and molecular
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spectral lines in the centimetre wave band. The use of a particular resonance as
a possibly invariant frequency led to a new device, the atomic clock. The first of
these devices was based on an absorption line at 23.87 GHz of the ammonia
molecule. Its accuracy was limited to about 1 part in 107 and could therefore not
yet compete successfully with traditional methods. However, subsequent
experiments with other methods, especially the caesium atomic beam resonator
led to rapid progress in the improvement of the accuracy of laboratory frequency
standards. This rapid evolution produced a new definition of the second, which
was no longer based on celestial mechanics but on quantum mechanics and in
1967, the second was redefined as follows:

"The second is the duration of 9 192 631 770 periods of the radiation
corresponding to the transition between the two hyperfine levels of the
ground state of the caesium atom 133"

Interestingly, frequency and not time is the measured quantity in this definition.
Whilst in the old definition the second was given as a small fraction of a long
period, we now have given the second as a large number of very rapid
oscillations. This new definition had practical consequences on the operation of
clocks.

3.4 TIME KEEPING

In the old practice, clocks were used to keep time ie. time was in the stars and
the clocks helped to keep it between observations. Hours, minutes and seconds
were the results obtained by dividing longer time periods such as the mean
solar day or tropical year. With the new definition, longer time intervals are built
up by successively adding elementary time intervals. Without changing their
inner mechanisms clocks became time scale generators.

Clearly, continuity must be preserved between the traditional and new ways of
defining and measuring time. There is a problem with our physical oscillator
generating stable periodic oscillations - strict periodicity implies that each
successive cycle is an exact copy of each preceding cycle. Hence, we can start
counting at any time ie. there is no defined origin in our time coordinate. This
problem is overcome by means of synchronization according to a conventional
origin. This has been agreed upon, namely 1 January 1958, Oh, Om, Os.

Frequency Standards

In experimental work in science and engineering, a standard built and used for
the purpose of physically realizing the defined unit is called a primary standard.
Closest agreement with the defined unit is required only from a few primary
laboratory standards. All other users can adjust the frequency of their clock
oscillators to the primary standards. Accordingly, the important quality required
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from these clocks is the stability of their frequency. The higher the stability of the
oscillator, the better the uniformity of the general time scale.

Relativistic Effects

With the accuracies and stabilities currently achievable approaching a few parts
in 1015, the consideration of relativistic effects is necessary, especially for
applications in space where high relative velocities and gravitational potential
values different from those on the surface of the earth are encountered. Atomic
clocks are currently the best available approximations to ideal clocks in the
relativistic sense which define Proper Time. Now, in a set of clocks, spatially
distributed within a given frame of reference, the time scale defined by these
clocks referred to each other by a set of rules, is called Coordinate Time.
Unfortunately, there is a danger of confusion with the term coordinated time
system (see below) which means just a system of synchronized (in time) and
adjusted (in frequency) clocks, not necessarily referred to a reference frame in
the relativistic sense.

The international atomic time scale, TAl, the abbreviation for this and most other
time scales reflecting the french order of the words (see later) is not only a
coordinated time system but also a physical realization of coordinate time
based on the Sl-second as determined at sealevel. The TAI time scale is
computed by Bureau International de Poids et Mesures (BIPM) in Paris as a
weighted mean time scale based on the operation of many caesium clocks
located at various laboratories around the globe. These clocks are now
intercompared on a regular basis by means of GPS.

It is important to note that for using high precision time ordered systems, the
theoretical basis is general relativity. This is especially true for distance
measurements made in positioning or navigation since we assume the
constancy and invariance of the speed of light, ¢, in vacuo and since distance
measurements are in fact electromagnetic wave propagation measurements.
We thus do not use metre sticks or even tapes but signal sources, clocks
counters and the postulate that ¢ is a universal constant.

Frequency Generators and Clocks

Oscillators provide frequency and, therefore, time in clocks. Examples of
oscillators used in precision clocks are, (i) quartz crystals, (ii) rubidium vapour
cells, (iii) caesium beam tubes and, (iv) hydrogen masers. The last three are
atomic frequency standards based on the principles of quantum mechanics. We
briefly describe these frequency generators below and review some of their
general properties.

Quartz Crystal Oscillators. Quartz crystal oscillators, which are relatively
inexpensive, compact and robust, are common devices used as stable
frequency generators. The piezoelectric effect of quartz makes it easy to excite
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Figure 3.4-1
Stability curve of an atomic oscillator (Allan variance).

mechanical vibrations by means of an oscillating electric field on electrodes
deposited on the surface of the crystal. A large variety of models exists, which
are made for many applications, ranging from the subminiature low power units
used in wrist watches to high quality oscillators enclosed in temperature-
controlled ovens.

Rubidium Vapour Cells. The rubidium vapour cell oscillator is based on the 6
834 682 605 Hz resonance frequency of the hyperfine energy transition of Rb87
atoms. At a cost of a few thousand dollars, they are the least expensive of
atomic clocks

Caesium Beam Tubes. As already mentioned above, caesium beam tubes are
based on the 9 192 631 770 Hz resonance frequency of the hyperfine energy
transition of Cs133 atoms and this is used to define the Sl-second. They are the
most accurate and most frequently used of the atomic clocks.

Hydrogen Masers. Hydrogen masers use the resonance frequency of a
hyperfine energy of atomic hydrogen. They are the most stable of atomic clocks
but also currently the most expensive. As such, they are used only in high
precision applications of geodesy eg. very long baseline interferometry (see
section 7.3).

Performance of Precision Oscillators

One measure which is used to describe the stability of a particular frequency
standard is the Allan variance. Its precise definition leads to a lengthy
discussion of statistics and is beyond the scope of this monograph. Suffice it
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Allan variances for atomic oscillators.

here to say that it is a measure of precision which allows for the fact that most
realworld oscillators exhibit both random frequency variations about an average
as well as a systematic frequency drift with time. Nonetheless, the smaller the
Allan variance the more stable the oscillator. The typical stability behaviour of a
precision oscillator is shown in Figure 3.4-1. We observe that the stabilty at first
increases as time elapses, then is steady for a while and subsequently drifts off.
Stability is commonly expressed in parts of some power of 10 eg. 1 part in 1011.

In comparing the performance of the various types of clocks or frequency
standards a distinction must be made between the devices used in national
standard laboratories and commercial instruments. National standards are
operated by experts and are evaluated at regular intervals. However, they are
not directly accessible by the great majority of users except through standard
frequency and time disemination services. In a commercial or field environment,
accuracy is not the concern; rather other factors, such as size, weight,
environmental behaviour, power consumption and cost have an influence on
the design. The ranges and time-domain stability measures of commercially
available frequency standards is shown in Figure 3.4-2. The more conservative
(upper bound) limit corresponds to manufacturers specifications. The best
(lower bound) values correspond to measurements made on units in good
laboratory conditions.
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Example 3.4-1

The stabilty of a particular oscillator is 1 part in 101!, How many years would it
take for this oscillator to lose 1 second.

Solution

The oscillator loses 1 second every 1011 seconds. This is equivalent to:

1x1011 1x1011

AT = 24x60x60 days = 86400x365 years = 3200 years

At present, caesium beam devices have an almost unique position in time
keeping insofar as the principle is used not only in national standard
laboratories as the primary reference but also in commercially available
instruments. The difference is not in the principle but in the accuracy and
intended use. Thus most caesium standards, whilst having the properties of
primary standards within their proper accuracy limits, are operated as
secondary standards of time and frequency. In these applications use is made
of their long-term frequency stability which is superior to that of all other
currently available oscillators.

Oscillator Reliability

Standard frequency generators used in clocks and timing systems must not only
have the best possible long-term frequency stability but also be very reliable
since any momentary failure immediately leads to the loss of the time scale. In
times of rapidly evolving technology it is difficult to find the best compromise
between high performance and reliabilty. Cost becomes the limiting factor if one
attempts to improve reliabilty by redundancy ie. operating several devices
simultaneously. Both caesium beam and rubidium vapour cell frequency
standards seem to have about the same lifespan, while crystal oscillators last
much longer.

3.5 TIME SCALES

Several time scales occur naturally in astronomy and geodesy. Before
discussing these, we review some basic concepts of time scales. We leave
aside philosophical concepts of time and considerations of gravitation and
relativity theories, concerning ourselves mainly with physical time scales
generated by clocks, especially in the form of a running display or sequence of
signals which are used for dating of events.
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Clocks and Time Scales

There is no readily available absolute time scale to be found in nature and an
ideal device generating a perfect time scale is a purely theoretical construction.
Thus, all real time scales based on either astronomical observations or on
physical instruments are imperfect approximations to that theoretical concept. In
a general sense, the concept of a clock, including the rotating earth and the
movement of celestial bodies, involves three main parts and functions, namely:
(1) a periodic movement which can be observed, (2) the continuous counting of
the periods, and (3) the display of the registered count. Methods of performing
these functions abound but whatever the method adopted, the result will be a
particular time scale defined by that particular clock system ie. each clock
defines its own time system. Among the periodic physical movements used to
define practical time scales are, (i) free spinning rotors, (ii) Keplerian movement,
and (iii) harmonic oscillators.

The earth is an example of a free spinning rotor and the rotation of the earth as
observed by astronomical or geodetic means defines Universal Time (UT). The
movement of a satellite around a central body based on some law of gravitation,
such as the revolution of the earth around the sun and of the moon around the
earth, are examples of time based on Keplerian movement (see Chapter 4).
This is the basis of Dynamical Time. Most kinds of mechanical or electrical
oscillations, including the oscillations of an electromagnetic wave (photon)
emitted or absorbed by a quantum-mechanical system, belong to the class of
harmonic oscillators. Examples are: pendulum, balance wheel with hairspring,
tuning fork, quartz crystal and atomic resonators. The free spinning rotors and
the Keplerian movement of celestial bodies form the basis of Astronomical Time
and Astronomical Time Scales., while the harmonic oscillators lead to the great
variety of devices known as clocks in the popular sense. Among these clocks,
we distinguish the atomic clocks as being the most accurate and this leads us
the concept of Atomic Time and Atomic Time Scales.

Starting from any of the abovementioned periodic movements to establish a
time scale by observation, continuous counting, registering and displaying,
there are two main actions which have to be undertaken to obtain a time scale:

(1) the period or its inverse, the frequency of the basic oscillation must be
measured, adjusted or defined; and

(2) the origin of the time scale must be specified.

The first action, which consists of establishing a unit of time interval, is not
sufficient to define the time scale. Only the choice of origin from which we start
counting the periods, completes the task. In practice, both actions require
conventions to be agreed upon. Indeed, the origins of all practically used time
scales are based on conventions obtained by international agreement.
Whatever type of phenomenon is used to establish a time scale, the most
important requirement is uniformity. Uniformity means that the intervals between
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time scale marks are equal ie. constant period and frequency of the basic
oscillation. Time scale uniformity and frequency stability are thus closely

related.

Discussion

1. There are some differences in the practical implementation between
astronomical time scales and atomic time scales. The duration of the period of
the phenomena used in astronomical time keeping is very much longer than
that of the oscillations used in laboratory clocks. In traditional astronomical time
keeping, clocks are, therefore, needed for subdivision of the observation
periods into smaller and more practical intervals such as hours, minutes and
seconds. Also, the various astronomical phenomena have periods which are
different and are not integer multiples of each other eg. earth rotation (1 day),
lunar orbit (28 days), earth orbit (1 year). Furthermore, the very high frequency
of oscillation occurring in atomic clocks allow the generation of time scales by
counting only.

2. There has been some misunderstanding between astronomers and
physicists in the years of atomic time keeping, most of it due to a conflict
between tradition and some disrupting new ideas. In the old days, the concept
of a time scale was not used. There was time and its passage had to be
determined by observing the stars. Clocks were neither accurate nor reliable
and the idea of relying on clocks to define a time scale was thought to be risky
and unwise. Atomic clocks were accepted for defining better time intervals but
not time itself. What would happen if all clocks stopped or were destroyed? In
such a case the time scale defined by these clocks would be lost forever. In
practice the likelihood of this occurring has been overcome by redundancy and
wide geographical distribution of time-keeping institutes. Astronomical
observations have not been discontinued either. Therefore, the risk of losing
time due to such a cataclysm is rather remote.

3. Today, there is no longer any controversy as both types of time scales are
continuously being kept and scientists working in positional astronomy, celestial
mechanics, geodesy etc. no longer dispute the convenience of accurate and
reliable time keeping based on atomic clocks. Also, the angular position of the
rotating earth with reference to the sun and the stars continues to be required
for geodesy, navigation and civil time keeping (day, night, noon etc.).

Clearly, several time scales are required. We give a short description of the
more important ones below.
Earth Rotation Time

The following time scales are based on the rotation of the earth:
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Sidereal Time. A sidereal day is the interval between two transits of the same
star through the local meridian ie. the duration of one period of rotation with
respect to the system of fixed stars.

Mean Solar Time. Actual solar time as determined from the position of the sun
in the sky is not uniform throughout the year because of the nonuniform motion
of the earth around the sun (Kepler's second law). By averaging over one year,
Mean Solar Time is obtained. This has a known relation to sidereal time, the
ratio of the sidereal day to the mean solar day being roughly 1.00274 ie. one
sidereal day is approximately 23 h 56 m.

Universal Time. Sidereal time at a given location on the earth converted to
mean solar time and referred to the Greenwich meridian is called UTO. Applying
corrections for the position of the pole (see Section 6.6) results in UT1 which is
the same at all points of the earth. UT1 gives the angular position of the earth
relative to the stars. Applying corrections for seasonal variations of the speed of
rotation of the earth results in UT2. However, there are unpredictable variations
in the rotation of the earth and over long time intervals UT2 is not significantly
more uniform than UT1. The term Greenwich Mean Time (GMT) is still popular.
This should be replaced by UT1.

Dynamical and Ephemeris Time

Ephemeris Time (ET) was the uniform time scale used to determine the position
of celestial bodies. The scale was defined by the orbital motion of the earth
about the sun. As already mentioned above, the second of ET was defined as
1/31 556 923 9747 of the tropical year for 0 January 1900. However, in practice,
ET was obtained from the orbital motion of the moon around the earth. Since
1976, two new dynamical time scales, Barycentric Dynamical Time (TDB)
andTerrestrial Dynamical Time (TDT), which are based on the Sl-second have
been used. A clock fixed on the earth exhibits periodic variations as large as 1.6
msec with respect to TDB due to the motion of the earth in the sun’s
gravitational field. However, in describing the orbital motion of near-earth
satellites we need not use TDB, nor account for these relativistic variations,
since the effect is the same on both the earth and the satellite. For satellite
computations we use TDT which represents a uniform time scale for motion
within the earth's gravity field and which has the same rate as that of an atomic
clock on earth. In the language of general relativity TDB corresponds to
Coordinate Time and TDT to Proper Time. TDT is aligned with the epoch of TAl
(see below) on 1 January 1977. ET, as such, is now only of historical interest.
TDT is defined by an offset from TAI, specifically:

TDT =TAl + 32.184 s
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Generalized relationship between time scales.
Atomic Time

Atomic Time is a time scale obtained by continuous counting of Sl seconds. By
international agreement, the origin of atomic time scales has been set at 1
January 1958, at Oh Om Os UT2. Since each clock defines its own time scale
and no clock is perfect, the time scales initially synchronized on this
conventional origin will depart from each other as time goes by. International
coordination of timekeeping activities is needed to reach a common recognized
time scale which is uniform. The institution charged with the task of establishing
the International Atomic Time Scale (TAl) is the BIPM. The fundamental unit of
TAI (and therefore TDT) is the Sl-second defined above. The Si-day is defined

as 86 400 Sl-seconds.
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Coordinated Universal Time (UTC). Despite its name, UTC is a time scale
generated by atomic clocks. The continuing requirement for a time scale
approximating UT is due to its wide application in surveying and navigation. A
compromise solution had, therefore, to be found which retains the advantage of
uniform time scale generation by atomic clocks and still follows the variations of
the earth's rotation. UTC is kept in synchronization with UT1 in such a way that
second jumps, or leap seconds, are introduced in UTC at the end of the last day
of a month when UT1-UTC exceeds 0.7 seconds. The earth rotation rate is
currently decreasing by about 1 second/year and this adjustment is made
accordingly. As a consequence of the irregularity of the earth's rotation, the
relationship between UT1 and UTC must be defined by observation. Also, UTC
differs from TAI by an integer number of seconds. UTC and TAI were identical in
1962. Currently (June, 1996):

UTC-TAI=30s

Each of the world's sites contributing to the BIPM keeps a local realization of
UTC, the offset and rate of which relative to UTC(BIPM) are monitored and
periodically corrected. In Australia, UTC(Australia) is maintained by AUSLIG in
Canberra and the relationship of UTC(Australia) to UTC(BIPM) is known to

within a few usec.

GPS Time (GPST). This is time determined by atomic clocks at the GPS master
control site near Colorado Springs, Colorado, USA. These clocks are
synchronized periodically with UTC and GPST was set to UTC at 0 hours on 6
January 1980. Thus, there is a constant offset of 19 seconds between GPST
and TAl, that is, at any instant:

GPST=TAI-19s
The GPS satellites broadcast GPST every second.
Figure 3.5-1 depicts the generalized relationships between the various time

scales. All clocks are assumed to run at the same rate as IAT clocks.

Example 3.5-1

A satellite is observed at epoch MJD = 48 7749333 333 333 333 UTC. Given
that UT1-UTC and UT1-IAT at O UTC for MJD 48 774 and MJD 48 779
respectively are -0.50810, -28.50810, -0.51690 and -28.51690 seconds,
determine UT1, TAIl, TDT and GPST in years, days, hours, minutes and
seconds.

Solution

The Julian Day Number is the number of the day in a consecutive count
beginning as far back in time so that every date in the historical era can be
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TABLE 3.5-1 Julian Day Number of Day Commencing at Greenwich Noon
on:

1992-1999

Year Jan 0 Feb0 Mar0 AprO MayO JunO Jul0 Aug0 Sep0 Oct0 NovO DecO

1992 244 8622 8653 8682 8713 8743 8774 8804 8835 8866 8896 8927 8953
1993 8988 9019 9047 9078 9108 9139 9169 9200 9231 9261 9292 9322
1994 9353 9384 9412 9443 9473 9504 9534 9565 9596 9626 9657 9687
1995 244 9718 9749 9777 9808 9838 9869 9899 9930 9961 9991 *0022 *0052
1996 245 0083 0114 0143 0174 0204 0235 0265 0296 0327 0357 0388 0418
1997 0449 0480 0508 0539 0569 0600 0630 0661 0692 0722 0753 0783
1998 0814 0845 0873 0904 0934 0965 0995 1026 1057 1087 1118 1148
1999 245 1179 1210 1238 1269 1299 1330 1360 1391 1422 1452 1483 1513

included as a positive number. This uninterrupted series of days began at
Greenwich mean noon on 1 January 4713 BC in the Julian Proleptic Calendar.
The Julian Date (JD) at this instant was 0. The Modified Julian Date (MJD),
where MJD = JD - 2 400 000.5, is used in modern work.

The Julian Day Numbers at Greenwich Mean noon for 1992 - 1999 are shown
in Table 3.5-1. This table tells us that the satellite was sighted on 1 June 1992

at 08h 00m 0500 UTC. In order to determine UT1 and IAT at this time we need to
interpolate the given values of UT1-UTC and UT1-1AT:

A(UT1-UTC) = AUT1-TAI) = “2022%0 0.3333= 0.000 59 s

Hence:
UT1 = UTC - 0.50869 s = 07 59™ 59549131
IAT = UTC - 28 s = 07" 59m 3250
TDT = IAT + 32.184 s = 08h 00™ 043184

GPST = IAT - 19 s = 07" 59m 13%0

Example 3.5-2

What is the Julian Date corresponding to a UT of 1 January, 1995 at 06h 48m?

Solution

Since the Julian Date is measured from noon to noon, then midnight, or exactly
1 January, can be thought of as occurring 12 hours after 31 December, Julian
Date. Hence from Table 3.5-1, for 31 December (0 January):



Time 40
JDnoon =2 449 718.0

To this number we add 12 hours or 0.5 days, so that:

JDMIDNIGHT =2 449 718.5

and, finally 06h 48m is converted into days:

6 48
A=5,4+ 60x24 = 0.283 333

which, when added to 1 January JD, yields the Julian Date at the required
instant:

JD =2 449 718.783 333
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EXERCISES

3.1 Time is used in what two basic contexts in modern positioning methods?
3.2  The definition of the second has changed over time. Explain why.

3.3 Define the Sl second.

3.4  State the ideal requirements of an atomic clock and explain what these
requirements mean.

3.5 Give a graph showing how the stability of an atomic oscillator varies with
time. Hence distinguish between the stabilities of crystal, rubidium,
caesium and hydrogen maser oscillators.

3.6 What basically is an Allan variance?

3.7 The stability of a particular oscillator is 1 part in 1014. How many years
would it take to lose 1 second?

3.8 What is a time scale? Why are caesium oscillators used to define modern
time scales?

3.9 Name three atomic time scales used in geodesy.

3.10 Distinguish between the solar and sidereal day. Why is one longer than
the other?

3.11 The earth is not a good time keepers. Discuss this statement.

3.12 Distinguish between dynamical, sidereal and atomic time scales. Why do
we need all of them?

3.13 Using a diagram to illustrate your answer give the relationship between
IAT, TDT, GPST, UTC and UT1 in a general way.
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3.14 What are Julian Day numbers? Hence define Modified Julian Date.

3.15 Show that 1 millisecond of time represents a position change of
approximately 45 cm at the equator.

42



4 Earth-Satellite Motion

4.1 INTRODUCTION

Satellites contribute to geodesy in various ways, (i) as a target for determining
the positions of tracking stations and, by repeating the observations over time,
to determine if relative movements of these stations occur, (ii) as a measure of
the forces acting on the satellite, predominantly gravity, and (iii) as a reference
frame with respect to which the motion of the earth as a whole can be
measured. The potential of satellites for geodesy was recognized in the late
1950s when J. O'Keefe suggested that they could be used as elevated targets
to strengthen geodetic networks on continental scales and to connect geodetic
systems on ocean-separated continents into a single uniform geodetic system
which could be used for precise mapping and navigation. The use of satellites
for determining the earth's shape and gravity field was also recognized around
this time and the first results for the earth's flattening were published soon after
the launch of the Sputnik spacecraft. The early tracking of satellites for geodetic
purposes was carried out using the Baker-Nunn camera network and these
instruments continued to provide important data through the 1960s. Valuable
geodetic data was also provided by Doppler tracking of the TRANSIT satellites.
Both these Doppler and camera observations provided positional accuracies
that were of the order of 10-20 m. Now the satellites are tracked with accuracies
of a few centimetres and better, using lasers and radar methods, and
positioning accuracies have improved by nearly three orders of magnitude.

Here we give the basic equations which describe the motion of a satellite about
a parent body eg. an artificial satellite and the moon relative to the earth, or a
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planet relative to the sun. We begin with Kepler's laws of planetary motion
which, to a first order, also apply to artificial earth-satellites. We then define the
parameters or elements, called Keplerian elements after Johann Kepler, which
are commonly used to describe the geometry of an orbit and to relate the orbit
to a space-fixed reference frame. Finally, we discuss the various disturbing
effects which cause the orbit to depart from the ideal described by Kepler's
laws.

4.2 KEPLER'S LAWS AND GRAVITATION

The basic laws which govern the motion of a satellite around a parent body
were discovered by Kepler. Using data meticulously collected by Tycho Brahe,
Kepler hit upon the ellipse as a possible solution of the various observed
positions of the planet Mars. From this, Kepler published his first two laws of
planetary motion in 1609. The third law followed about 10 years later. Kepler's
laws are:

1. The orbit of each planet relative to the sun lies in a fixed plane containing
the sun, and is an ellipse of which the sun occupies a focus.

2. The line joining the sun to each planet sweeps out equal areas of its
ellipse in equal times.

3. The squares of the orbital periods of the planets are proportional to the
cubes of their mean distances from the sun.

The first law describes the geometry of the orbit (ie. the orbit is an ellipse), while
the second and third laws define the motion of the planet in the orbital plane.
Kepler discovered them as unexplained facts. The full dynamical implications of
these laws were only seen about 100 years later by Isaac Newton after he had
formulated his laws of motion leading him to discover the law of universal
gravitation.

4.3 TWO-BODY ORBITAL MOTION

Let us examine the motion of a body relative to a parent body. This is called the
two-body problem in celestial mechanics. We use Newton's second law of
motion and his law of universal gravitation. Moreover, we make the following
simplifying assumptions:

- the bodies are spherically symmetric, enabling us to treat the bodies as
point masses.
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Figure 4.3-1
Two-body orbital motion.

- there are no external forces acting other than gravitational forces, which act
along the line joining the centres of the bodies.

Newton's laws of motion are valid only in an unaccelerated and nonrotating (or
inertial) reference frame. Newton described this inertial reference frame as
being fixed in absolute space. However, he failed to indicate how one found this
frame which was absolutely at rest. We return to this problem in Chapter 6. Here
we shall assume that such an inertial frame exists and has been found.

Consider a system of two bodies of mass M and m (Figure 4.3-1). Let X,Y,Z be
an inertial set of Cartesian coordinate axes with origin at the point O. The
position vectors of the bodies M and m relative to the X,Y,Z-system are ry and

rm respectively ie.:
r=rm-ry (4.3-1)

Applying Newton's laws in the inertial frame X,Y,Z and using a double dot
above the r to denote double differentiation w.r.t time we have:

.- GMmr
Mrm=-—7 (4.3-2)

- GMmr
Mr = 2 (4.3-3)
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or,
Fm= -C:\,_éw r (43-4)
}'M=(i—3m r (4.3-5)

Subtracting (4.3-5) from (4.3-4) gives the vector differential equation of relative
motion of the two bodies:

F=tm-Fy= W r (4.3-6)

We are particularly interested in the motion of an artificial earth-satellite, for
which m<<Mg, where Mg is the mass of the earth. Hence, we may write:

G(M@+m) = GM@ (43-7)

and the equations of motion become:
.. GM
r r—3@ r=0 (4.3-8)

Equation (4.3-8) is a second-order vector differential equation in time ie. there
are in fact three equations, one for each component of acceleration. Integration
produces the satellite trajectory or orbit. This integration is not routine and we
state without proof:

- the family of curves called conic sections (circle, ellipse, parabola and
hyperbola) represent the only possible paths for an object in the two-body
probiem.

- the prime focus of the conic orbit is located at the centre of the central body
(eg. earth and sun).

- the sum of the kinetic and potential energy of the satelllite stays constant,
implying that the satellite must slow down or speed up as it moves around in
its the orbit.

-the orbital motion takes place in a plane which is fixed in inertial space.
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Figure 4.4-1
Geometry of orbital ellipse

4.4 ELLIPTIC MOTION

We are especially interested in the orbits of artificial earth-satellites which are
ellipses. In Figure 4.4-1, the orbital ellipse AQB whose centre is at C touches at
perigee, A, and at apogee, B, a concentric circle C whose radius is, a, the semi-
major axis of the ellipse. The circle C is known as the auxillary circle, and is
related to the ellipse by the equation:

QN =Q'NV1-e2

Angle AFQ = v, is the true anomaly, where F is the occupied focus or prime
focus of the ellipse; the angle ACQ' = E is known as the eccentric anomaly. The
distance CF = ea.

Now:
r2 = (FQ)2 = (FN)2 + (QN)2 = a2(cosE-e)2 + a2(1-e2)sin2E

So:
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2
r = a(1-ecosE)= a(l-ef) (4.4-1)
1+ecosv

which is the equation of the orbit in polar coordinates r and v.

Further:
sinv = QN/r =V 1-e2 sinE/(1-ecosE)
cosv = FN/r = (cosE-e)/(1-ecosE)

which gives:
\Y 1+e E
tan 5= 1e tan > (4.4-2)

Equation (4.4-2) allows us to compute the true anomaly, v, from the eccentric
anomaly, E, and vice versa.

The mean motion, n, in an elliptical orbit is defined as 2rn/P, where P is the
orbital period. The mean motion may be computed from Kepler's third law:

1283 = GMs (4.4-3)

Let T be the time of perigee passage and t the time; t-T is the time since perigee
passage; then (t-T)/P is the fraction of the ellipse's area described by FQ since

perigee and this fraction is the same as n(t-T)/2n. The quantity:
M = n(t-T) (4.4-4)

is called the mean anomaly. But this fraction, the area AFQ divided by the area
of the ellipse, is the same as the area AFQ' divided by that of the area of the
circle, and AFQ' is the area of the circular sector ACQ' less the area of the
triangle CFQ'. Thus:

M Ea?-ea®sinE
2n~  2na?

Hence:
M=E - esinE (4.4-5)
which is known as Kepler's equation. Equations (4.4-4) and (4.4-5) allow us to

compute the mean anomaly from the time of perigeee passage, T, or the
eccentric anomaly, E.
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Two other terms frequently used to describe orbital motion are direct and
retrograde. Direct motion means easterly. This is the direction in which the sun,
earth and most of the planets and their moons rotate on their axes and the
direction in which all of the planets revolve around the sun. Retrograde motion
is in the opposite direction. Orbital inclinations between 0° and 90° imply direct
orbits and inclinations betwen 90° and 180° imply retrograde orbits.

Note

The complete solution of the problem of elliptic motion is contained in the
equations which have been given. Thus, suppose that GMg, a, e and T are
known. Then n can be found from (4.4-3). If the position of one object relative to
the other is desired at some specified time t, (4.4-4) furnishes M and then (4.4-5)

permits E to be found, from which by (4.4-1) and (4.4-2) one finds r and v.

Example 4.4-1

For a satellite in an elliptical orbit around the earth, a = 12.2700x10° m, e =
0.004 44 and T = 5 May 1976, 21h 40733 UT. Assuming that GMg =
3.9860x10"* m®s2, determine M, E, v and r on 6 May 1976, 0h 00m00 UT.

Solution

We first calculate the mean motion, n, of the satellite using (4.4-3):

GM 14
\/ =2 \/ 3.9860x10 " _ / 55410 rad. s
a 12.27x10%)3

For interest sake, we determine the orbital period, P:

P = 2nr/n = 225 min.
which is to say, that the satellite orbits the earth once every 225 minutes.

With t-T = 8380 s (2" 19m67), we obtain the mean anomaly, M, from (4.4-4):
M =n(-T) = 4.65x10*x8380x180/1 = 223°26
Kepler's equation (4.4-5) gives the eccentric anomaly, E

E =M + esinE

In this formula the angles M and E should be expressed in radians. The
calculations must thus be performed in the "radian mode" on our calculator. This
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can be avoided by multiplying e in (4.4-5) by 180/x, the conversion factor from
degrees to radians. Let e, be the thus modified eccentricity. Kepler's equation is
then:

E =M + egsinE
and we may now calculate in degrees.

To solve the above equation, we give an approximate value to E in the right
side of the formula. Then the formula will give a better approximation for E. This

is repeated until the required accuracy is obtained, here say 0°0001. For a first
approximation, we use E = M. We thus have:

Eo = M =223°26

E1 =M + eysinE, = 223°0856

Eo =M + eosinEy = 223°0862

Es =M + eysinE, = 223°0862

which has converged to the set tolerance level. Hence:

E = 223908

Equation (4.4-2) relates the true and eccentric anomalies:

V_aflte E_JM 0
tan5 ="\ 1¢ tan5 ="\ 1.0.00444 tan 111.54

Since v and E must lie in the same quadrant:
v = 222991
Finally, (4.4-1) gives the orbital radius, r:

_a(1-e?)

= = a(1-ecosE) = 12.3098X106 m
1+ecosv

Example 4.4-2

The period of an artificial satellite of the earth is 92.5 min and the semi-major
axis of its orbit is 6800 km. Given that G = 6.67x10-11 m3kg-1s-2, calculate the
mass of the earth?
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If the mass of the moon is 1/81 times that of the earth, what is the period of a
satellite about the moon in an orbit of semi-major axis 2000 km?
Solution

The mean motion is:

2
n=2m/P = —9—% = 6.8x10-2 rad. min-1

Manipulation of (4.4-3) gives:

243
Mo ="g = 6x10% kg

Thus:
My = Mg/81 = 7.4x1022 kg

Equation (4.3-3) gives:

n =’\/ %%’M— =7.86x10% rad. s

So, the orbital period is:

P =2n/n = 133 min.

4.5 THE ORBIT IN SPACE

It is usual to employ earth-centred (geocentric) equatorial axes OX, OY, OZ to
describe bodies that orbit about the earth; a sun-centred (heliocentric) ecliptic
system is used for bodies which describe orbits about the sun or for the lunar
orbit. The ecliptic is the plane of the earth's orbit about the sun . In Figure 4.5-1,
the origin O, is the geocentre; XOY is the plane of the equator; OX points
towards a particular position of the earth in the ecliptic plane, known as the
vernal equinox and denoted by the symbol, Y (see Section 5.3); and OZ points
towards the mean north pole (see Section 5.4). We return to this reference
frame in Chapter 5. The satellite's orbit plane intersects the equatorial plane in
the line of nodes ON, and if N is where the object crosses the equator from
south to north, it is called the ascending node.
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Figure 4.5-1
Orbit in space.

The angle XON is the longitude or right ascension of the ascending node, and
is denoted by, Q. Also, if OZ' is normal to the orbit, in which the object's motion
appears clockwise to someone looking along OZ', then ZOZ' is the inclination i
of the orbit. Thus the two angles Q and j, specify the orientation of the orbit
plane in space. The angle NOA, measured in the direction of the orbital motion,
defines the position of perigee, A, and is denoted by, . It is called the argument
of perigee and specifies the orientation of the orbit in its plane. The elements a
and e for an ellipse, specify the orbit's shape and size. Thus the six elements
which can be regarded as describing an orbit about a parent body are a, e, i, Q,

o and M. The elements T, E and v can be used instead of M but M is generally
preferred in artificial satellite problems. These six elements correspond to the
six initial data, three velocities and three coordinates of the satellite, that
determine the orbit dynamically. This is often called the state-vector of the
satellite.
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Figure 4.6-1
Main perturbing forces acting on a near-earth satellite.

4.6 PERTURBED ORBITAL MOTION

The actual orbit of a near-earth satellite departs from the Keplerian orbit due the
effects of various perturbing accelerations of gravitational and nongravitational
origin. These include the nonsphericity of the earth, the attraction of additional
bodies such as the moon, sun and planets, atmospheric drag, direct and
reflected (albedo) solar radiation pressure and, earth and ocean tides (Figure
4.6-1). Nonetheless, the orbit at any instant remains an ellipse which is
described by the current or osculating orbital elements a, e, i, Q, ® and M.
However, the orbital elements, and thus the shape, size and space orientation
of the ellipse, change with time. The equations of perturbed motion of the
satellite about the earth become:

. GM -
r=- r3®r+Ar (4.6-1)
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Figure 4.6-2
Perturbations of the semi-major axis due to gravity variations.
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Figure 4.6-3
Short-period, long-period and secular perturbations of the mean anomaly due
to gravity variations.
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where the first term represents the two-body or central acceleration and the
second term is the sum of the perturbing accelerations.

From observations it has been noted that the osculating Keplerian elements
oscillate about some average value. For example, the perturbation of the semi-
major axis caused by gravity perturbation of the orbit is shown in Figure 4.6-2.
The perigee, node and mean anomaly have a more complex motion. They
involve secular (varying linearly with time), long-period and short-period
perturbations as shown in Figure 4.6-3. Short-period perturbations usually have
a period of approximately the period of the satellite, while long-period terms
have a period proportional to the period of perigee or even longer. Below we
summarize the effects of the various perturbing acceleration sources on an
artificial earth-satellite.

Gravity Perturbations

Earth gravity perturbations of the satellite motion provide information on the
earth's geoidal shape. It can be shown that the even zonal harmonics of the
geopotential (the second, fourth, sixth and so on) produce secular perturbations
in m, Q and M, and short-period perturbations in all six Keplerian elements,
while the odd zonal harmonics produce long-period perturbations in all
elements except the semi-major axis.

By far the largest departure of the earth from a spherical form is due to the
flattening, or equatorial bulge. Earlier on, we saw that this departure can be
represented by the second zonal harmonic, which is often given the symbol Jo.
The corresponding orbital perturbations are:

a=e=/=0

3no

. R@ 2
W= 4(1—-62)5[ } Ja (1 -500821)

‘a
. 3no Re ]2 .
Q= m {?J Jo cosi

. 3n Re2 )
n=M=n,- 4(1T§)3/2[—a@} Jo (8cos?i-1)

where n, (= 21/T) is the mean motion for the two body-problem.

We see that the elements a, e, i undergo no secular change. In contrast, ® and

Q are subject to secular change and the mean motion is modified from what it
would be for the two-body problem.
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\
\

LINE OF NODES

Figure 4.6-4

Nodal regression (2) and rotation of perigee ().

Basically, the gravitational pull of the equatorial bulge makes the satellite's
orbit, (1) rotate around the earth's axis in a direction opposite to the satellite’s
motion, and (2) rotate around a line normal to the orbit plane in the direction of
satellite motion. The first effect is known as nodal regression and the second as
rotation of perigee (Figure 4.6-4). Thus, for example, an observer in space
looking at the satellite orbiting the earth would see the orbit of an eastward-
moving satellite gradually drifting to the west. The more flattened the earth, the
faster the drift. For typical near-earth satellites a = 1.1Rg and e = 0 and using
GMg = 3.986 008x105 km3s2, Rg = 6 378.155 km and Jo = 1.08x10-3, we get:

& = 3.6 [5cos2i -1] °day

Q) =~ -6.7 cosi °day’

n =M = no [1+6.8x10-4(3cos2i -1)]
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Since the actual drifts are quite rapid, we can measure their numerical values
very accurately by allowing them to build up for several weeks or even months.
All the even harmonics have similar a effect. Therefore, the values of the even
harmonics are found by measuring the orbital drift of a number of satellites at
different inclinations. The successive harmonics have different effects at
different inclinations, and so they can be sorted out from one another. The odd
harmonics give rise to different shapes in the northern and southern
hemispheres and so to gravitational pulls that differ in the two hemispheres. The
main effect of the unequal pulls is to make a satellite approach closer to the
earth's centre when it is at its perigee. Again by measuring several orbits at
different inclinations we can find the value of these harmonics.

Example 4.6-1

Assuming that Rg = 6.3780x10° m, Jo = 1.08x10™ and i = 109°8 in Example
4.4-1 determine the node rate, perigee rotation rate and modified mean motion.
Solution
For convenience, we first convert the mean motion, n , from rad. s'to® day'1:

No = 4.65x10™ rad. s = 4.65x10™x(180/n)x86400 = 2301°9 day™
The rotation rate of perigee is:

3no |:R@

2
0= 4(1-e2)2 ?] Jo (1-5c0s2))

__ 3x2301.9 6.378
~ 4[1-(0.00444)212 1 12.27

2
} x1.08x10-3x(1-5c052109°8)

=0%215 day’’

Similarly for the node rate, we have:
3no [RGBJQ .
51-e22| a Jo cosi

Q=31-62)2

_ 3x2301.9 6.378
= 2[1-(0.00444)22 X 12.27

2 (o]
} x1.08x10-3xcos10978

= 0%341 day’’
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The modified mean motion is:
. 3n Re 12 ,
n=M=n, - 4(17;)3/2{?@} Jo (3cos?j-1)

o 3x2301.9  [6.378
= 2301-9 - 4[1-(0.00444)252 ¥ 12.27

:|2x1 08x10-3x (3c0s2109%8-1)
= 2301°6 day’

Example 4.6-2

Calculate the J, for Mars given the following data for satellite Phobos: period =
0.32 days, semi-major axis = 9000 km, inclination = 191, rate of regression of
node = 0956 day-! and equatorial radius of Mars = 3375 km.

Solution
The mean motion is:
2%
= - = -1
n=2n/P = 0.3 = 19.6 rad day

Now:

a2 1 .
— _a2\2 | —/——
J2 = 2(1-€%) [R@} 3ncosi

Assuming a circular orbit (e=0), gives Jo = 2x103.

Quite often a situation arises which dictates that a satellite be inserted into a
specific orbit for the purpose of fulfilling a special mission objective. In general,

the four orbital parameters a, e, i and Q must be specified to define the shape of
the orbit and the orientation of the orbital plane in space.

Example 4.6-3

What values must we assign to a, e, i and Q to produce an orbital trajectory that
is always over the same point on the surface of the earth (geostationary orbit)?
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Solution

Since the earth rotates at a nearly uniform rate, we immediately conclude that
the satellite must also have a uniform orbital motion. Kepler's second law tells
us that this can only happen when the orbit is circular ie. e=0. Furthermore, to

satisfy the geostationary criteria, Q = 0, which implies that i = 0 (equatorial orbit),
and that therefore, Q is undefinable. Now only the semi-major axis remains to
be defined.

The rotational period of the earth is about 86160 s and consequently, n2a3 =
GMg = 3.986x1014 m3s-2 gives:

GM 3 [GMm 14 m3g-2
N 3'9%6;‘;&8? S~ = 4.21554x107 m
(p) (56160 s

Lunar and Solar Accelerations

The primary effect of the moon and sun are to produce long-period
perturbations of all Keplerian elements except the semi-major axis. Usually,
these effects are quite small (<100 m) over short periods of time (several days)
though exceptions to this rule can occur for high-eccentricity orbits (>0.5). Here
lunar perturbations can cause large oscillations in the eccentricity.

Drag Effects

The primary effect of atmospheric drag on a satellite is to produce secular
decreases in the eccentrity until the satellite orbit is nearly circular, and then the
semi-major axis will begin to decrease secularly. Atmospheric drag is usually
the main factor in ending a satellite's life.

Solar Radiation Pressure

The perturbations due to solar radiation pressure are also small for satellites of
normal construction, but can be large for balloon-type satellites or satellites
powered by large solar panels (eg. the GPS satellites) since these have a large
area-to-mass ratio. The effects are usually periodic, and if account is taken of
the earth's shadow, all orbital elements are affected. However, if the satellite is
in permanent sunlight, the semi-major axis remains unchanged.
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EXERCISES

4.1 Which Keplerian elements define the shape of the orbit?

4.2 Which Keplerian elements define the orientation of the satellite orbit in
inertial space?

4.3  Which Keplerian elements may used to locate the satellite in its orbit?

4.4 Distinguish between the true and eccentric anomalies.

4.5 Give Kepler's equation. What is it used for ?

4.6 Define the terms right ascension of ascending node and argument of
perigee.

4.7  Starting from Newton's law of gravity and second law of motion show that

the equations of motion of an earth-satellite relative to the earth are of the
form:
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4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

. GMg
r+ 3 r=0

Define all symbols used.

What simplifying assumptions are made in deriving the above equations.
Define the term mean motion.

What is a satellite state-vector?

Give the main perturbing forces acting on a near-earth satellite.

What are osculating orbital elements?

Give the equations of perturbed satellite motion in general terms.

The accelerations produced by the central part of the earth's gravity
potential exceeds all other perturbing accelerations by about three
orders of magnitude. Explain Why?

The earth's oblateness produces what two main perturbing effects on the
motion of an earth-satellite? Hence explain how the earth's shape can be
determined from satellite observations.

Describe the general effects of the earth's nonsphericity, the attraction of
the sun and moon, atmospheric drag and solar radiation pressure on the
orbit of a near-earth satellite.

Distinguish between a direct and retrograde orbit.

A satellite passed perigee at 669 15h 51m 515809 in 1981. lts eccentricity
is e = 0.7248470 and its semi-major axis is a = 26 561.955 km. Compute

n, M, E, v and r at midnight on day 67 of 1981. Take GMg =
3.986005x109 km3/sec?.
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Answer:

n = 12.600640 rad/day, M = 244.73385 deg, E = 218.74286 deg, v =
195.98736 deg, r = 41 578.848 km.

62



D Coordinates and
Coordinate Systems

5.1 INTRODUCTION

Geodetic positions are given in terms of coordinates which are simply a set of
directly observed or calculated numbers which locate the point of interest in
space. In geodesy we need four coordinates, three to define position relative to
a set of reference axes attached to the earth in some prescribed manner and,
the fourth to mark the time at which the coordinates were determined. We must
also specify the time or epoch at which the reference axes were defined. The
fourth dimension, time, is required because, with the accuracies now
achievable (a few centimetres or better over 100 km), the sites which in practice
define the reference coordinate system and the points whose positions we wish
to determine in this reference system, must be considered to be in relative
motion. Here we give the various coordinate types which occur in geodesy. We
also define the two most important reference coordinate systems which are
used and show how coordinates expressed in the one system may be
transformed to coordinates in the other.
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Figure 5.2-1
Cylindrical coordinates (r, A, z).
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Figure 5.2-2
Spherical coordinates (p, 6, ).
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5.2 COORDINATE TYPES

The positions of points on the earth's surface are usually given either in
Cartesian, ellipsoidal (geodetic) or natural (geographic) coordinates. Spherical
and cylindrical coordinates are also sometimes used, particularly with space
techniques. Most readers will be familiar with Cartesian coordinates, so we
discuss only the other coordinate types.

Cylindrical Coordinates

A point P can be located by cylindrical coordinates (r, A, z), Figure 5.2-1, as well
as by rectangular Cartesian coordinates (x, y, z). Essentially, these are just the
polar coordinates (r, A) used instead of (x, y) in the plane z = 0 coupled with the
z-coordinate. The transformation between Cartesian and cylindrical coordinates

is:
rcosA
(ﬂ=[r3ink] (5.2-1)
z 7 '
and,
r Xe+y?
[x] =| tan1¥ (5.2-2)
> X
z

A coordinate surface is a surface along which one of the three coordinates is
constant. If we hold r = const. and let A and z vary, the locus of P(r, A, 2) is then a
right circular cylinder of radius r and axis along OZ. The locus A = const. is a
plane containing the Z-axis and making an angle A with the XZ-plane.

Spherical Coordinates

A point P can be located by spherical coordinates (p, 6, 1), Figure 5.2-2. The
transformation between Cartesian and spherical coordinates is:

psin® cosi
(ﬂ: psin® sini (5.2-3)
z pcoso

and,
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N X2+ )24 22

cos1

_z
= Nry2i (5.2-4)

1Y
tan X

> D O

The locus of points p = const. is the surface of a sphere of radius p with centre at
O. The second spherical coordinate, 6, is the angle measured down from the Z-
axis to the line OP. The locus of points 8 = const. is a cone with vertex at O, axis
OZ and generating angle 6. The third spherical coordinate, 2, is the same as the

angle A in cylindrical coordinates, namely, the angle from the XZ-plane to the
plane through P and the Z-axis. Every point in the whole space can be given
spherical coordinates restricted to the ranges:

p=20,0<0<n,0<A<2n

Because of the analogy between the surface of a sphere and the earth's
surface, the Z-axis is sometimes called the polar axis, while 6 is referred to as

co-latitude and A as longitude. One also speaks of meridians, parallels, and
northern and southern hemispheres.

Example 5.2-1

The Cartesian coordinates of an observer on earth are:
-4 648 506.627
Y|=|2 546 493.215 | m
z -3 536 146.592

Calculate the corresponding cylindrical and spherical coordinates.
Solution
Cylindrical Coordinates:

Al=| tantY [=| 151°17' 87451

r X2+ 5 300 305.798
[z] (-3 536 146.592J

where r and z are in metres.
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. ((xy, z)
P" (o, Ah)

Figure 5.2-3
Geodetic or ellipsoidal coordinates (¢, A, h).

Spherical Coordinates:
VX424 22
z
_| cos-1————— |_
= VX2+ye+22 =

Y
tan X

123°%42' 34"528

6 371 622.577
[151° 17' 8451 ]

> O 0

where p is in metres.

Ellipsoidal or Geodetic Coordinates

A point P can be located by ellipsoidal cordinates (¢, A, h), Figure 5.2-3. For the
meridian ellipse, it can be shown that (see below):

X VCOosd
(Z) - (v(1 -eZ)sinq)) (8.2-5)

where,
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a
Ve——— (5.2-6)
1-e2sin2¢

is the prime vertical radius of curvature at P and, a and e are respectively the
semi-major axis and eccentricity of the meridian ellipse. For a point on the

ellipsoid at longitude A, we have:
vCcosd Cosh
[;J =| vcoso sini (56.2-7)
Z) \ v(1-e2)sing

The point P is usually at a distance h, measured along the ellipsoidal normal,
above or below the ellipsoid and the transformation between Cartesian and
ellipsoidal coordinates, and vice versa is:

(v+h)coso cosA
[;j: (v+h)cos¢ sinA (5.2-8)
z

[v(1-e2)+h]sing

( tan‘% \

A tan-" z(v+h)sinA
? 7] 7 yv(r-ea] (5.2:9)
X

\cosc]) cosh v ]

Equation (5.2-9) gives A directly while, to obtain ¢ and h, it is necessary to

iterate between the expressions for ¢ and h, since h is a function of ¢ and vice
versa. We return to this problem in Section 6.5.

In geodesy, we use a base figure called the reference ellipsoid which
approximates to the shape of the earth's figure over the globe or a particular
region of interest. The meridians of this ellipsoid are ellipses, the shape of
which are defined by a and e, while the parallels are circles of radius vsing. The
coordinate surface h = const. is thus an ellipsoid which is concentric with the
reference ellipsoid. The coordinate, ¢, which is called the geodetic latitude, is
the angle measured up or down from the XY-plane to the normal to the ellipsoid
and passing through P. The locus of points ¢ = const. is a cone with vertex on
the axis OZ, and generating angle 90°-¢. The coordinate, A, the geodetic

longitude, is the same as the angle A in spherical and cylindrical coordinates,
namely, the angle from the XZ-plane to the plane through P and the Z-axis.
Every point in the whole space can be given geodetic coordinates restricted to
the ranges:
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90° - ¢

Figure 5.2-4
Geometry of meridian ellipse. Polar axis of ellipsoid (OP), equatorial diameter
(EE’), tangent to ellipse at M (MA), normal to ellipse at M (MH), focus of ellipse
(F), normal terminating in major axis (MD), semi-major axis (PF=a), semi-minor

axis (OP=b), geodetic latitude (¢).

(v+h)>20,0<0<m/2,0<A <21

Example 5.2-2

For the meridian ellipse, show that:

(2)=(ucremsine)

where,

Solution

The general equation of an ellipse is given by (Figure 5.2-4):
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x2 Z2
¥+§=1

where a and b are the semi-axes. Thus:
2
Differentiating:
b2
2zdz=-2 22 X dx

or,
z_ bPdx
X~ a2dz

: dz :
Since dx "epresents the tangent of the angle a tangent at any point M on the

ellipse makes with the x-axis:

dz
- g = tan (90%9) = - coto

Hence:

2

z b
x = g2 tano (1)

By definition (Figure 5.2-4):

OF +a2-b2

€=0E~ a
Thus:
2
§ = % tan¢o = (1-e2) tano )
Also:

z2
X2+ 5a2=a?

and,
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o0, 2 2

or,
72 = (a2-x2)(1-e2) (3)
Squaring (2) and comparing this with (3) gives:

22 = (1-e2)2 tan2¢ x2 = (a2-x2)(1-e2)

So:
a2-x2 = (1-e2) tan2¢ x2
or,
x2[(1-e2) tan?¢ +1] = a2
Furthermore:
1-e2sin2
(1-e?) tan?¢ +1 = tan2¢ -e?tan?¢ + 1 = -e2 tan?¢ + sec2y =—c?¢¢
Hence:

. acoso
\ 1-e2sin2¢
Similarly, eliminating x from (1) and using the equation of the ellipse:
2.72
X2 = %_eiz = z2/(1-e2)2tan2¢
which reduces to:

a(1-e2)sing

1-e2sin2¢

Accordingly:

(5)=(ocremsine)
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Example 5.2-3

If the prime vertical curvature of the ellipsoid at M is the length of the normal
terminating in the minor axis of the meridian ellipse, show that:

a

1-e2sin2¢

V=

Solution

From geometry we see that:

X a
V= =
COSO [ 1-e2sin2¢

Example 5.2-4

The geodetic coordinates of an observer on earth are:
o\ (-25°54' 110780
A |=[134°32' 464570
h 397.5m

Given that a = 6 378 160 m and e2 = 0.006 694 541 855, calculate the
corresponding Cartesian coordinates.

Solution
Now:

ve—2 _6381506.340 m

\ 1-e2sin2¢

Thus:

(v+h)cos¢ cosh ) -3 026 602.098
[}]: (v+h)cos¢ sink =[5 018 916.297}m
Z [V(1'e2)+h]3in¢ -2 508 732.689
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UNIT SPHERE
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Figure 5.2-5

Geographical or natural coordinates (A, @, W). Line parallel to rotation axis
(PN), plane parallel to equatorial plane and normal to rotation axis (GPF),
meridian plane of P (NPF), plane parallel to Greenwich meridian plane (NPG).
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Natural or Geographic Coordinates

The system of level surfaces and plumblines may be used as a three-
dimensional curvilinear coordinate system. These coordinates may be
observed directly, as opposed to rectangular Cartesian, cylindrical, spherical or
geodetic coordinates which must be calculated from other measurements. The
direction of the earth's spin axis and the position of the equatorial plane are well
defined astronomically. The geographic or astronomic latitude, @, of a point P is
the angle between the vertical at P and the equatorial plane (Figure 5.2-5); it is
positive from the equator northward, negative to the south. Now consider a
straight line through P parallel to the earth's spin axis. This line and the vertical
at P together define the meridian plane of P. The angle between this meridian
plane and the meridian plane of Greenwich is the geographical or astronomical

longitude, A, of P; it is positive towards the east.

The geographical coordinates, latitude, ®, and longitude, A, form two of the
three spatial coordinates of P. As the third coordinate we take the distance
between the geoid and P as measured along the curved plumbline. This is
called the orthometric height, H (see also Section 6.3). Alternatively, we may
take the geopotential, W, at P as the third coordinate. The transformation
between (x, y, z) and (A, ®, W) or (A, ®, H) is of no interest here since this
requires that W or H must be known as functions of x, y and z, which is generally
not the case. The coordinate surfaces in natural coordinates are equipotential
surfaces (W or H = const.), cones (® = const.), and planes (A = const.). Every
point in the whole space can be given natural coordinates restricted to the
ranges:

W20,0<d<nt/2,0<A<2n

H is generally positive; however, for points below sealevel H is negative.

5.3 REFERENCE COORDINATE SYSTEM TYPES

A coordinate system is defined by specifying the position of the origin, the
orientation of the fundamental plane (the XY-plane),the principal direction (the
X-axis), and the direction of the Z-axis. However, since the Z-axis is
perpendicular to the fundamental plane it is only necessary to specify which
direction is positive. The Y-axis is chosen so as to form a right-handed set of
axes.

Coordinate systems are usually distinguished by the location of the origin.
Examples of origins are: topocentric, geocentric, selenocentric, heliocentric, and
barycentric. In topocentric coordinates, the origin is the location of the observer;
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CELESTIAL
MERIDIAN

\

CELESTIAL
EQUATOR EQUATOR

ECLIPTIC

CELESTIAL
SPHERE

Figure 5.3-1
Celestial sphere showing ecliptic, celestial equator and celestial meridian.

North celestial pole (NCP), astronomical zenith (Z), obliquity of the ecliptic (g)

FIRST DAY

FIRST DAY
OF SUMMER

FIRST DAY
OF WINTER

FIRST DAY
OF AUTUMN

VERNAL EQUINOX
DIRECTION

Figure 5.3-2
Ecliptic plane and vernal equinox. Seasons are for the northern hemisphere.
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the selenocentre is the centre-of-mass of the moon and; barycentric coordinates
refer to the centre-of-mass of the solar system.

The geocentre is usually taken as the origin of coordinates used in geodesy.
This point is accessible indirectly through observations taken on artificial earth-
satellites. Geodetic measurements provide both absolute and relative positions.
Positions measured from the geocentre are called absolute or point positions.
Satellite based positioning methods, such as LAGEOS laser ranging and GPS
pseudoranging, are best suited for determining absolute positions.
Conventional terrestrial surveys and some space-based geodetic methods,
such as VLBI and differential GPS, give only positions relative to another site on
the earth's surface. These relative positions must be combined with satellite
methods based on ranging if absolute positions are desired.

Fundamental Planes
Frequently used fundamental planes are:

Equator. The equator is usually that of the earth. It is the plane normal to the
axis of rotation, and the positive direction is that of the angular velocity vector of
the rotation. The point where the earth's rotation axis pierces an imaginary
sphere of infinite radius, centred at the geocentre, is called the celestial pole .
This imaginary sphere is called the celestial sphere (Figure 5.3-1).

Orbital Plane. The plane of an orbit is defined by two-body motion and the
positive direction is that of the angular momentum vector of the system.

Ecliptic. The ecliptic is the special case of the plane of an orbit. It is the plane of
the earth's orbit about the sun (Figure 5.3-2). The positive direction is that of the
earth-sun system's angular momentum vector. The point where the angular
momentum vector pierces the celestial sphere is called the ecliptic pole (Figure
5.3-1).

Horizon Plane. The fundamental plane is the horizon. The positive direction is
that of the local vertical.

Principal Directions

The principal direction is usually specified by giving the sense along the
intersection of the fundamental plane with some other plane. The other plane
may be a meridian plane, an equatorial plane, or another orbital plane. A
meridian plane is a plane which contains the axis of rotation of one of the
principal gravitating bodies. Frequently used principal directions are:

Greenwich Meridian or Prime Meridian. The Greenwich meridian is the earth's
meridian plane that passes through the former Royal Observatory at Greenwich,
United Kingdom.
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Figure 5.4-1

(ICRF).
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Figure 5.4-2

International terrestrial reference frame (ITRF).
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Geocentric-equatorial inertial (space-fixed) coordinate system. The barycentric
equivalent of this system is called the international celestial reference frame
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Vernal Equinox or Equinox. The vernal equinox is the fundamental principal
direction used in space geodesy and astronomy (Figure 5.3-2). It is defined as
the intersection of the ecliptic and the earth's equator with the positive sense
being from the earth to the sun as the sun crosses the equator from south to
north. The point where the principal direction pierces the celestial sphere is also
called the first point of Aries (Y) because it points in the general direction of the

constellation Aries.

Ascending Node. The ascending node is the intersection of an orbital plane and
the fundamental plane with the positive sense being from the origin towards the

orbiting body as it crosses the fundamental plane from south to north. Hence, Y
is an ascending node.

5.4 GEODETIC REFERENCE COORDINATE SYSTEMS AND DATUMS

Below we describe the main coordinate systems used in geodesy. We also
briefly discuss the concept of a geodetic datum. The two most important
geodetic reference coordinate systems are:

Geocentric-Equatorial Inertial (Space-Fixed) System

The geocentric-equatorial inertial (Xy, Yy,Zy) coordinate system (Figure 5.4-1)
has its origin at the geocentre; the Xy Yy-plane is the earth's mean equator at a
particular epoch, namely 12h TDB on 1 January 2000, designated J2000.0,
and; the Xy-axis is the intersection of the mean equator and mean ecliptic at

epoch J2000.0 and points towards Y. We leave the term mean undefined for the
moment. The barycentric equivalent of this system is called the International
Celestial Reference Coordinate Frame or ICRF. In practice, the directions of the
Xy, Yy,Zy-axes are defined by the observed positions of celestial radiosources.

Geocentric-Equatorial Rotating (Earth-Fixed) System

The geocentric earth-fixed (Xg, Yo,Zo) coordinate system (Figure 5.4-2), which is
also called the International Terrestrial Reference Coordinate Frame or ITRF,
has its origin at the geocentre; the Xg Yg-plane is the mean equator of the
period 1900-1905 and; the Xg-axis lies in the plane through Greenwich and the
mean rotation axis of the year 1984 as defined by the International Earth
Rotation Service in Paris. In practice, the ITRF is defined by a global network of
observatories and their relative motions.

Other reference coordinate systems which occur in geodesy, are: (1) the
topocentric horizon system and, (2) the orbit plane or perifocal system. The
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Figure 5.4-3
Orbit plane or perifocal coordinates.

topocentric horizon system and its geodetic counterpart, the geodstic horizon
system, are discussed in Section 6.5. Here we deal only with orbit plane
coordinates.

Orbit Plane or Perifocal Coordinate System

The orbit plane or perifocal (P, Q, W) coordinate system (Figure 5.4-3) has its
origin at the centre-of-mass of the parent body eg. the geocentre in the case of
an earth-satellite; the PQ-plane is the plane of the orbit; P points towards the
perifocus; Q is in the orbit plane advanced to P by a right angle in the direction
of increasing true anomaly, and; W completes the right-handed system.

Geodetic Datums

A geodetic datum is more than a reference coordinate system; it is a reference
surface for horizontal and vertical position as well. In general, the horizontal and
vertical reference surfaces are not the same. Most frequently, a horizontal
datum is an ellipsoid of revolution while the commonly used vertical geodetic
datum is the geoid. On each such datum a network of control stations is
emplaced to provide the user with accurate position coordinates.
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TABLE 5.4-1 Relationships Between Selected Geodetic Datums and WGS84

Datum a (m} 1/f

Ellipsoid Parameters Datum Shifts (m) Coordinate System Rotations (") Scale {ppm
Dx Dy Dz € A2 ® AS

WGS 84

North
1983

European 1950 6 378 388 297.0 -102 -102 -129

South
1969

Australian
Geodetic 1966 6 378 160 298.25 -127 -50 153

Indian 6 377 276.345 300.8017 227 803 274 -0.444 -0.645

Australian
Geodetic 1994 6378160 298.25 -116.0 -50.5 141.7

6 378 137 298.257 223 563 0 o] 0 Q o 4] 0

American
0.012 -0.1364

6 378 137 298.257 222 101 0.42 0.95 -0.62 -0.012 -0.006
0.413 -0.184 0.385 2.4664
American

6 378 160 298.25 -56 -3 -38 0.123 -0.569 -0.158 -0.6412
0.058 ~-0.018 -0.089 1.2065

-0.353 6.5931

-0.230 -0.390 -0.344 0.058

Eight parameters are needed to define a horizontal geodetic datum: two to
determine the dimensions of the ellipsoid, three to locate its centre, and three to
specify the orientation of the axes. Section 6.2 describes how this definition is
accomplished by terrestrial geodetic methods. Over time, literally hundreds of
such horizontal datums have been created. Generally, the ellipsoids were
chosen so that they would fit as closely as possible the geoid for the region. The
result is that the ellipsoids are not geocentric, that the centres do not coincide,
that they may have different dimensions and that their respective axes are
slightly askew to oneanother. Modern practice is to use satellite methods to
define a datum. Invariably, these satellite datums are geocentric. Table 5.4-1
gives the dimensions of some of the horizontal datums in current use.

The coordinates initially computed within GPS receivers refer to the World
Geodetic System 1984 (WGS84). This is a geocentric system defined by space
geodetic methods. The axes of the ellipsoid are aligned with those of the ITRF,
the semi-major axis is a = 6 378 137 m and, the flattening is 1/f = 298.257 223
563. Table 5.4-1 gives the relationships between selected geodetic datums and

WGS84.

5.5 TRANSFORMATIONS BETWEEN COORDINATE SYSTEMS AND
DATUMS

The components of a vector, such as the position of the oberver or of a satellite,
may be expressed in any of the coordinate systems described above. So it often
becomes necessary to transform these components from one system to another.
We deal with this problem in this section. We note that a coordinate
transformation merely converts the components of the vector in one coordinate
system to components in another system - nothing else. The vector still has the
same length and direction after the coordinate transformation, and it still

represents the same thing.
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Space-Fixed to Earth-Fixed Coordinates

The earth's pole of rotation is not fixed in space but precesses and nutates due
principally to the torques exerted by the gravitational fields of the moon and sun
on the equatorial bulge. Precession is the slow circular motion of the rotation
pole with respect to inertial space with a period of about 26 000 years (Figure
5.5-1). Nutation is a more rapid motion, superimposed on the precession, and is
comprised of a number of oscillations ranging in period from 14 days to 18.6
years (Figure 5.5-1). Both motions are predictable to a high degree of accuracy.
Each produces a motion of the instantaneous equator and equinox with respect
to the fixed equator and equinox of a given date. Precession changes the
celestial longitude of a point on the earth by about 50 arcsec/year. Celestial
longitude is longitude in the usual sense but with respect to the ITRF. Nutation
changes both the celestial longitude and latitude by as much as 20 arcsec/18.6
years. Removing the effects of nutation produces a fictitious equator and
equinox called the mean equator-of-date and mean equinox-of-date.

Two additional motions must be applied to relate the celestial and terrestrial
reference coordinate systems. The first is a rotation about the celestial pole
through the angle between the equinox and the Greenwich meridian (Figure
5.5-2). Although this is an angle and its units are radians or degrees it is called
the Greenwich Apparent Sidereal Time (GAST). The second accounts for the
fact that the position of the earth's equatorial plane relative to the crust shifts
slightly with time. This is known as polar motion. Polar motion is too irregular to
be predictable and, along with changes in the length-of-day (UT), is determined
from observations. Graphs of polar motion show a secular trend, a strong
periodic component, known as the Chandler wobble, with a period of about 14
months, and a component with an annual period. The amplitude of polar motion
is about 0.1-0.3 arcsec (Figure 5.5-3).

Denoting the ICRF coordinates by the vector Ry and the corresponding ITRF
coordinates by the vector rg, we have:

re = [W] [T] [N] [P] Ry (5.5-1)

where W, T, N and P are matrices which respectively account for polar motion,
GAST, nutation and precession.

The transformation from ITRF to ICRF coordinates is:
Ry = = ((W] [T] [N] [P])" ro = ([P][N] [T][W])T re (5.5-2)

where the superscript T denotes the transpose of the matrix.

Example 5.5-1

Neglecting precession, nutation and polar motion show that:
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Path of earth's rotation pole from 14 Feb. 1984 (MJD 45744) to 30 Dec. 1987

(MJD 47159). OX is parallel to Greenwich meridian plane.

Xy cosB —sinb 0 Xo
[YT]= sin@ cos6 0O [YEB)
Zy 0 0 1)\%

where 68 = GAST.

Hence calculate Xy, Yy,Zy for a site at latitude ¢ = 30°N, longitude A = 191°E, Rg

=6 371 km and 6 = 304°.

Solution

Figure 5.5-4 shows the geometry of the problem. Since we may neglect
precession, nutation and polar motion the Zy and Zg-axes coincide and both

point out of the plane of the paper. Clearly:
Xy = Xg c0sO - Yg sind
Yy = Xg SinO + Yg coso
Zy = Zg

that is,
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Yo A

Yo

Figure 5.5-4
Relationship between earth-fixed and space-fixed coordinates neglecting
precession and nutation.

Xy cos0 —sinb 0 Xo
(YT]= sin@ cosf O [YGB]
Zy 0 0 1)\

(X@) Recospcosi (-5 416 076.8 ]
= m

Also:

Yo -1 052 778.7

3 185 500.0

RgcososinA |=
Rgsing

and,
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Xr\ ,-3901424.8
Yr |=| 39014248 |m
Zy 3 185 500.0

Orbit Plane to Space-Fixed Coordinates

Orbit plane coordinates transform to space-fixed coordinates according to the
relation:

X P
[Yij =R (QJ (5.5-3)
Zy w

where,

cos®Ccos-sinmwcosisinQ  -sinmwcosQ-cosmcosisin®  sinQsini
R =] cosmsinQ+sinwcosicosQ -sinmsinQ+cosmcos2cosi -cos2sini
sinwsini cosmsini cosi

The transformation from space-fixed to orbit plane coordinates is:

P Xr
(Qj =RT (Yrj (5.5-4)
W Zy

Example 5.5-2

The orbit plane coordinates of a satellite are:

P\ /-9.0160
Q |=|-8.3811 [x 106, m
W 0

Given that:

®) (261.75
i |=|109.84 |deg.
Q 29.57

Find the space-fixed coordinates.
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Figure 5.5-5
Differential transformation between Cartesian coordinate systems.

Solution

The components of the matrix R are:

-0.3569 -0.8107 0.4642
R=|-0.5235 -0.2380 -0.8181
0.7737 0.5349 -0.3394

Multiplication gives the space-fixed coordinates of the satellite ie.:

Xy -4.3934
Yr |= |-6.4442 |x 106 metres
Zr 9.5241

Datum Transformations

Often we have coordinates on a global datum such as WGS84 but require them
on another datum eg. AGD66. This involves what is commonly called a datum
transformation which simply is a transformation of the coordinates from one
datum to another. There are many ways of doing this. We give only the similarity
transformation method here. This preserves the shape of figures, so angles will
remain unaltered. However, the lengths of the sides and the positions of the

corners may change.
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Figure 5.5-5 shows the coordinate system X(X, Y, Z) which is related to the
coordinate system x(x, y, z) by the translation vector T = (AX, AY, AZ)T between

the origins of the two coordinate systems and the small rotations (e,y,®) around
the (x, y, z) axes. The transformation equation expressed in the X coordinate
system is:

X=(1+As)Rx+T (5.5-5)

where (1+As) denotes the scale factor between the systems and R is a rotation
matrix.

Usually, the axes will be almost aligned, so that we may write:

X 1 o -y AX
[YJ = (1+As)| -© 1 € (;J +]| AX (5.5-6)
Z Y -€ 1)\2 AY

where the angles ¢, y and o are in radians.

Table 5.4-1 gives the transformation parameters between selected geodetic
datums and WGS84. These parameters are obtained by comparing coordinates
at common sites. Usually, there are many more points then there are
parameters. Accordingly, the solution is overdetermined and, therefore, more
precise. The datum shifts are the offsets from the centre of the WGS84 ellipsoid;
the coordinate system rotations represent the misalignment of the regional
datum coordinate system axes relative to those of WGS84, and; the scale
parameters account for the difference between each datum's length scale and
that of the WGS84 datum.

Example 5.5-3

The WGSB84 coordinates of a point on the earth are:
X -4 446 476.915
yl=1| 2678 127.000 | m
z -3 696 251.423

Transform these to coordinates on the AGD66. Use the values given in Table
5.4-1.
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Solution

The values listed in Table 5.4-1 are for transforming from the local datum to
WGS84. To transform the other way the signs must be reversed. So we have:

(1+As) = 0.999 993 407

1 1 0.353 -0.645
R= 0353 1  0.444
206264.8062 [0.645 -0.444 1 ]

227
T=(-803 |m
274

where the factor 206 264.8062 is the number of seconds in a radian.
This gives:

-4 446 460.774
R xwasga= | 2 678 126.654 | m
-3 696 271.092

-4 446 431.458
], m

(1+4s) R Xwassa = | 2 678 108.997
-3 696 246.722

-4 446 658.458
,m
-3 696 520.722J

Xagpes = (1+As) R xwgssa + T = ( 2 677 305.997
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EXERCISES

5.1 Distinguish between absolute and relative positioning.
5.2 Name a space geodetic technique which gives only relative positions.

5.3 Distinguish between geocentric, selenocentric, topocentric, heliocentric
and barycentric coordinates.

5.4 What is a coordinate surface?

5.5 Name the coordinate surfaces in (a) Cartesian coordinates, (b)
ellipsoidal coordinates, and (c) natural coordinates.

5.6  Why are ellipsoidal coordinates preferred in geodesy?

5.7 Using a diagram to illustrate your answer define the terms eccentricity
and flattening of an ellipsoid of revolution.
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5.8 Distinguish between geodetic and geocentric latitude. Hence show that
the two are the same at four points on the earth and that they differ by

about 11 arcmin. at ¢ = 45°,
5.9 Define the terms meridian and prime vertical radius of curvature.

5.10 What are natural coordinates? How do they differ from their geodetic
counterparts?

5.11 What is a triaxial ellipsoid?

5.12 For the meridian ellipse show that:

f=1-v1-2
where,

f = flattening

e = eccentricity
Hence find e2 for 1 298.257.

Answer:

e? = 0.006 694385

5.13 The geodstic coordinates of an observer on earth are:

= 1148° 56' 21"5252

(i -35° 38' 10"5140
A
1349.893 m

h

Given that a = 6 378 137.0 m and 17 = 298.257 calculate the
corresponding Cartesian coordinates.
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5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

Answer:

-4446476.915
y|=| 2678127.000 |m
z -3696251.423

Give the basic components of a reference coordinate system.

Define the following: equator, ecliptic and horizon plane. Why are these
used as fundamental planes?

What is the Vernal Equinox? Why is it called the first point of Aries?

Define the earth-fixed and space-fixed coordinate systems used in
geodesy. Why do we need both?

How is the earth-fixed system determined in practice?
How is the space-fixed system determined in practice?
What is the relationship between the earth's spin axis and latitude?

Distinguish between precession and nutation. Give their principal periods
and amplitudes.

Define Greenwich Apparent Sidereal Time.
What is polar motion? Give the three principal components.

Give the transformation from space-fixed to earth-fixed coordinates in a
general way.

Neglecting precession, nutation and polar motion show that:
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5.26

5.27

Xy cosB -sind 0\ /Xgp
[YYJ= sin® cos® O [YGBJ
Zy 0o o0 1)\%
where 8 = GAST.

What is the space-fixed position of a point 6.378 km above the reference

ellipsoid, on the equator, at 3029704 east longitude, for GAST = 8.6245
rad.? Take a = 6378.165 km and e = 0.08181.

Answer:
Xy -0.697
Yy |=| 0.718 | km
Zy 0
The AGD84 coordinates of a point are:
X -4 803 113.750
yl=| 2 679 285.334 | m
z -3 219 263.574

Transform these to WGS84 coordinates. Use the values listed in Table
5.4-1.

Answer:

X\ (-4 803 240.776
Y|=|2 679 230.706 | m
Z) {-3219110.130



O Terrestrial Geodetic
Methods

6.1 INTRODUCTION

The geodetic measurements which are made to determine positions on the
earth's surface can be divided into four categories. They are: (1) astronomic
determinations of latitude, longitude and azimuth; (2) gravity readings; (3)
observed horizontal angles, distances, zenith angles, and height differences;
and (4) measurements to artificial earth satellites, the moon, and extragalactic
radiosources. The measurements in categories (1), (2) and (3) form the basis of
the terrestrial geodetic positioning methods, while those in category (4) form the
basis of the space-based geodetic methods. Here we briefly discuss the
terrestrial methods.

The discussion of the terrestrial methods is usually divided into three parts: (i)
the establishment of horizontal control; (ii) the establishment of vertical control;
and (iii) the measurement of gravity. This subdivision is one of observational
convenience, a consequence of the instruments used and of the geodetic
objectives with which the measurements have been identified. These three
aspects are nevertheless closely related. Consider, for example, the
measurement of distance between two stations on the earth's surface. The
reduction of the measurement to the reference ellipsoid (see below) requires
that the height above the geoid and the geoid-ellipsoid separation be known at
the two points. The height above the geoid is determined from levelling and
gravity, while the geoid-ellipsoid separation is obtained from gravity.
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Terrestrial geodetic methods: triangulation, trilateration and traversing.
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Alternatively, the heights may be determined from vertical angles
(trigonometrical levelling), but only when the orientation of the observers
vertical has been determined from either gravity surveys or from astronomical
position observations.

6.2 HORIZONTAL CONTROL SURVEYS

Horizontal control networks have traditionally been established by a process of
triangulation, trilateration, or traverse surveys (Figure 6.2-1). Triangulation is the
process of determining the relative positions of a network of control points by
theodolite measurements of directions or angles between intervisible stations.
In trilateration, the relative positions are determined from distance
measurements between sites using mainly optical ranging instruments.
Traverse surveys consist of measurements of both directions and distances
along a series of connected lines, rather than a network of stations.

The conventional computation process is to reduce all measured quantities to a
reference ellipsoid. Two coordinates of each station are computed on this

ellipsoid: geodetic latitude, ¢, and geodetic longitude, A. The third dimension,
height, h, above the ellipsoid, is determined separately, either from levelling
and gravity data (see below) or from vertical angles. Traditionally, the reference
eliipsoid approximates the geoid over the survey area. A datum point is

selected whose coordinates are its astronomical latitude, @, and longitude, A.
All measured directions and distances are then projected along normals onto
the ellipsoid and the geodetic latitude and longitude are computed relative to
this reference surface. Astronomical azimuths determine the orientation of the
networks with respect to the reference ellipsoid. Astronomical measurements
made at points other than the datum point will not, in general, equal their
geodetic counterparts computed from the triangulation chain, even when no
errors have been incurred in the measurements and computations. The
differences in latitude and longitude reflect the nonalignment of the normals to
the ellipsoid with the observer's vertical. These are the deflections of the vertical
defined in Chapter 2. Computation schemes for three-dimensional networks
have also been explored but without much success, mainly due to atmospheric
refraction effects which limit the accuracy of the vertical coordinate of position so
determined.

Astronomic Latitude, Longitude and Azimuth

Astronomic latitude and longitude were defined elsewhere. The astronomic
azimuth, A, is the angle in the observers local horizon plane between the
astronomic meridian of the observer and the vertical plane passing through the
target point. In astronomy, azimuth is reckoned from the south point and positive
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westward to the north; however, in geodesy, it is positive from the north and in
the clockwise direction.

Astronomic latitudes, longitudes and azimuths are determined by observing
fixed stars. Measured with a theodolite and under field conditions, astronomical
latitudes and longitudes have precisions that are of the order of 0.3 arcsec. This
represents about 9 m in position on the earth's surface. Field observations of
astronomic azimuth have a precision of about 0.5 arcsec and this represents a
linear precision of about 3 cm for a line 10 km long.

Horizontal Angles, Distances and Zenith Angles

The horizontal angle is the angle measured in the horizon plane of the observer
between two vertical planes. It is formed by the difference in directions to the
two target points which determine the vertical planes. The horizon plane is the
tangent plane to the equipotential surface at the point of observation. A geodetic
theodolite is used for measuring these directions. First-order direction methods
typically have precisions of about 0.1 arcsec, representing a linear
displacement of 5 mm for a line 10 km long but in unfavourable circumstances,
and these occur frequently, atmospheric refraction associated with horizontal
density gradients, can result in errors which are several times larger than this.
Further errors arise from instrumental limitations and the centring of the
theodolite over the station, and more typical accuracies are 0.3-0.5 arcsec for
highest accuracy surveys.

Electromagnetic distance measuring devices are used to determine the
distance between geodetic stations. Pulses of frequency-controlled light are
transmitted to a retroreflector array and returned to the transmitter. The phase of
the return pulse is compared with that of the emitted pulse and the observed
phase shift is a measure of the distance in excess of an integral number of
wavelengths of the light pulse. Intervisibility requirements and attenuation of the
signal limit lengths of individual lines to about 30-50 km but the best results are
obtained over shorter lines. The precision of these measurements for a line of
length, L is usualy expressed as:

o, = (a2 + b2[2)12 cm (6.2-1)

where the constant a is mainly the result of calibration errors and the centring
precision of the instrument; typically a 1 cm. The length dependent term is
mainly the result of atmospheric refraction; typically b 106 cm-1.

The zenith angle is the angle down from the vertical to the target and is
measured in the vertical plane of the observer and the target. The zenith angle
is measured with the vertical circle of a theodolite. The principal observational
limitation is atmospheric refraction. Vertical density gradients are substantially
greater than horizontal density gradients and, therefore, the curvature of the
lines is very much greater than in the horizontal direction. For nearly horizontal
lines-of-sight and L = 20 km, the refraction effect is about 90 arcsec. These
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Height difference between widely spaced points.

effects may be reduced by observing the two reciprocal zenith angles from
either end of the line simultaneously. Accuracies of about 1 arcsec can be
reached for this difference when the separation between sites is less than about
10 km. Over longer distances and when the ray paths graze intervening
topography, the uncertainty increases rapidly.

6.3 VERTICAL CONTROL SURVEYS
Height Differences

Heights in terrestrial geodetic surveys are determined either by geometric
levelling or by trigonometrical levelling. Trigonometrically determined heights
are not very accurate principally due to atmospheric refraction effects and we do
not consider them further. In geometric levelling, the differences in height are
determined using horizontal lines-of-sight between points in close proximity to
each other. The instruments of levelling are a level and calibrated staves. The
level, either a level vial or prism/mirror suspended under gravity, defines the
tangent plane to the equipotential surface passing through it and the heights at
which this plane intersects two staves determines the difference in height of the
two stations. The distance between the staves and the level is limited to a few
tens of metres for otherwise the refraction induced curvature results in the line-
of-sight departing significantly from the tangent plane. Therefore, to measure
height differences over longer distances, the process is repeated by
successively moving the level and the staves along the line.
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The accuracy of defining the horizontal surface with precision geodetic levels is
about 0.1 arcsec, representing a height error of 2.5x10-2 mm for a 50 m
separation of level and staff. For a series of measurements along a line the
cumulative precision is about 0.1 mm km-1, provided that the random levelling
errors of the instrument represent the only source of uncertainty. This is not the
case, and systematic errors, mainly caused by atmospheric refraction, become
predominant over distances of 100 km or more. The accuracy of geodetic
levelling over a distance L can be considered as a sum of random and
systematic parts, namely:

oh = (a2L + b2L2)1/2 (6.3-1)

where a and b are constants defining the magnitude of the random and
systematic errors, respectively. In the highest quality levelling, where the
observations are designed to reduce many of the error sources which occur and
where the line has been levelled in both directions, a 1 mm km-2andb 0.2
mm km-1. This represents a cumulative accuracy of 20 mm for a 100 km long
line.

Height Systems

The height difference, AH, between two widely separated bench marks is

determined by the sum of a number of height differences, AH; Consider a
closed levelling loop from P to R via an elevated point Q and then back to P
(Figure 6.3-1). In the absence of observational errors, the sum:

Q R P
Y AH;+ Y AH; + > AH; = AH
P Q R

will be zero only if the equipotential surfaces are everywhere parallel along the
levelling route. This will seldom be the case for widely separated points and the
elevation difference measured along this route will not, in general, vanish. Thus
it follows that observed elevations are nonunique, that is, they depend on the
levelling route taken. To avoid this nonuniqueness in definition, height
differences are defined in terms of gravitational potential, dW, through the
relation dW = -g dh (see 2.4-2). The difference in potential between P and Q is:

Q
AWpq = - Jgdh

where g is the value of gravity along the levelling route. If point P lies on the
geoid:

Q

Q
AWg=- [gdh - Ygdh
Geoid Geoid
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Using this relationship unique heights may now be defined in a number of
ways. The various height systems in use are: (1) geopotential numbers, (2)
dynamic heights, (3) orthometric heights, and (4) normal heights. The
geopotential number, C, is simply the negative potential difference between the
point of interest and the geoid. Thus:

Q Q
Ca= [gdh  Ygdh
Geoid Geoid

To achieve reasonable agreement with the height in metres, the unit of
geopotential number is chosen as 100 m2s-2, This is called the geopotential
unit. In this way, because g = 9.8 ms=2, the geopotential numbers are about 2%
smaller than the corresponding heights. If we now chose to convert geopotential
numbers into units of length, we must divide them by a value of gravity, an
operation which produces what are known as dynamic heights. The value of
gravity used in this definition is usually chosen such that it represents the mean
value for the region of interest.

Geopotential numbers and dynamic heights have no obvious geometric
significance; neither can be plotted above the reference surface with a ruler or
fixed graduation. Orthometric and normal heights overcome this problem. The
orthometric height, Hq, was previously defined as the linear distance along the
plumbline from the geoid to the point on the surface. In practice, the orthometric
height is defined as Hq = Co/g', where g' is the mean value of gravity along the
plumbline between the geoid and Q. Actual values of gravity along the
plumbline are required to evaluate g'. Since a direct measurement of gravity
inside the earth is not possible, a mass distribution must be assumed with ¢'
computed on this basis. Therefore, H cannot be determined without hypothesis.
Moreover, because the level surfaces are not parallel, points of equal
orthometric height are not situated on the same level surface.

Normal heights differ from the other height systems in that they use a surface
called the quasi-geoid rather than the geoid as the reference surface. Suffice it
here to say that the quasi-geoid is a surface which coincides with the geoid on
the open seas, but departs from it elsewhere, typically by a few tens of
centimetres and up to a few metres under high mountains. It is not an
equipotential surface. Furthermore, normal heights are measured along the
"plumbline" of normal gravity. They are, however, obtained without any
assumptions about gravity between the reference surface and the surface point.

Satellite methods give heights relative to a reference ellipsoid. To obtain the
corresponding orthometric height we need to know the geoidal undulation at
the point in question. We discuss this further in Section 7.8.
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Example 6.3-1

Points A, B and C are connected by precise levelling and gravity. Calculate the
orthometric height of B and C given that:

Orthometric height of A.
Ha=1617.492 m

Levelled elevation differences.
Ahag) (188.3000
Ahgg -(253.9000)’”‘

Mean gravity along levelling route.

9.80229

9ns | (9.80266)
98C

Mean gravity along plumbline between geoid and B and C.
d'ap) (9.80313\
(gIBC) B (9-80287)’ ms*

Solution

Equation (2.4-2) yields the potential differences between the points of interest:

AWag) _|[-GagAhas | (-9.80266x188.3\ (-1845.841\ .

AWee ™| = ‘(-9.80229x253.9)‘(—2488.803)’m S
-ggcAh

gscAhBC

Dividing these by the mean value of gravity along the plumbline gives the
orthometric height differences:

-1845.841

AHag) | 9.80313 | (188.29098
AHgc |~ | -2488.803 [~ 253.88514)’"‘
9.80217

Finally:
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Figure 6.3-2
Local mean sealevel, instantaneous sealevel and the geoid.

He) (Ha) (AHag) (1617.4920\ (188.29098) (1805.7830
(Hc) = (HB) "l AHge )T (1 805.7830) * (253.8851 4) = (2059.6681 ) m

Note

The heights based on levelling data alone are:
hg) _(1805.7920
(hc) = (2059.6920)’ m
and the differences between these and the orthometric heights are:
Ag) _(0.0009
Ac —(0.0239) m

Ac by far exceeds the accuracy achievable with precision levelling.
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Vertical Reference Datum

Mean sealevel (MSL) is the surface that has traditionally served as the zero
reference datum for orthometric heights. Until several decades ago, it was
believed that MSL coincided with the geoid. Hence the task of locating the
position of the geoid with respect to a benchmark at the shoreline simply
reduced to determining the position of local MSL. The heights of all other points
of interest were then obtained from the heights of the reference benchmarks by
adding the height differences along the interconnected level lines. In fact, the
resultant heights above local MSL are only approximately equal to the true
heights above the geoid.

MSL is established by registering and averaging the ocean's water level over
longer intervals of time ( 1 year) using tidegauges. The variations of sealevel
with time, as long as they are periodic, are eliminated by averaging the
waterlevel registrations. However, since the tidegauges are often located in
estuaries or harbours, they do not generally have an undisturbed link to the
open oceans. Friction and bottom effects cause the readings to be falsified.
Also, there are atmospheric pressure variations and currents, which produce
changes in local sealevel. Averaging does not necessarily remove these
effects. Thus local MSL is not the geoid. The difference between the two
surfaces is called the seasurface topography and may amount to several tens of
centimetres. Figure 6.3-2 shows the relationship the local MSL, the
instantaneous sealevel and the geoid.

6.4 GRAVITY
Gravity Measurements

Gravity is measured with an instrument called a gravimeter. Two methods of
gravity measurement are currently used: free-fall and force-balance. The free-
fall method determines absolute gravity by measuring accurately the time
versus distance of a proof mass carefully dropped in a vacuum. Force-balance
instruments measure the force necessary to support a proof mass in the gravity
field. These instruments measure relative gravity.

The principle of a typical modern free fall instrument is shown in Figure 6.4-1.
Distance and time is measured simultaneously, with a Michelson interferometer.
Accuracies of the order of 10 nms-2 are achievable using interferometric
measurements with laser light and atomic timing devices. Transportable
instruments now exist. Most relative gravimeters employ a mechanical spring in
bending or torsion (Figure 6.4-2). The instruments used for most survey work
are La Coste Romberg and Worden gravimeters. The accuracy of these

instruments is about 1-0.1 ums-2.
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Gravity Networks

The values of gravity required in geodesy and geophysics must refer to a global
reference system defined by values of gravity at a number of accurately
surveyed gravity control points. These control points serve as a frame for
subsequent detailed surveys which are performed as traverses or area surveys.
We distinguish between: (1) global gravity networks; (2) regional gravity
networks, and; (3) local gravity networks.

Global gravity networks, with station separations of several 100-1000 km,
constitute the basic gravity reference system and are established by
international cooperation. Regional gravity networks, with station separations of
a few 10-100 km, generally represent the national network. Local gravity
networks, with station separations of 0.1-10 km, are mostly established for
geophysical exploration or geodynamical purposes.

6.5 TERRESTRIAL GEODETIC COMPUTATIONS

Below we illustrate how positions are obtained from terrestrial observations of
astronomical latitude, longitude and azimuth, horizontal and vertical angles,
and distance. We use the three-dimensional method because the formulas are
simpler. The computations are performed without reference to an ellipsoid. It is
convenient to introduce the topocentric-horizon system of coordinates (Figure
6.5-1). The origin of the topocentric-horizon system is the point on the earth's
surface where the observer is stationed (the topos). The fundamental plane is
the horizon and the N-axis points north. The E-axis points east and the h-axis

points towards the zenith. The determinations of astronomic latitude, ®, and

longitude, A, establish the direction of the vertical with respect to the ITRF
(Figure 6.5-1). The astronomic azimuth, A, establishes the direction of the
meridian plane, while the horizontal angles, distances, s, and zenith angles, z,
define the relative locations of points in the topocentric horizon system of the
observer.

The coordinates of the target point in the topocentric-horizon system of the
observer are (Figure 6.5-2):

AE sinA sinz (6.5-1)

AN cosA sinz
=5
AR’ cosz

These components may be transformed to components in the ITRF using:
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Figure 6.5-1
Topocentric-horizon system and ITRF.
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Relative position in the topocentric-horizon system.
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AXe AN
AYg |=C| AE (6.5-2)
AZs Ah'

where,

-sind®cosA -sinA cos®cosA
C =| -sindsinA cosA cos®sinA (6.5-3)
cos® 0 sin®

Note

The geodetic horizon is sometimes used. This is tangential to the reference
ellipsoid directly below the observer. The geodetic and topocentric horizons are
related by the deflection of the vertical. To transform geodetic horizon
coordinates to the ITRF we use the same equations but with geodetic latitude
and longitude.

Example 6.5-1

Figure 6.5-3 shows the angular observations made with a theodolite at point B
to connect the points A and C. Compute the ITRF coordinates of point C given
that:

ITRF coordinates of B.
Xo\ (-3 894 420.176
Xg=|Ye |=| 3847 223.501 | metres
Zo -3 262 482.840
Astronomic latitude and longitude of B.
@) (-30°57' 4608
A )7 {135°20' 5319
Astronomic azimuth BA.
Aga = 270°29' 1199
Zenith angle at B to C.

z=90°06' 14"9
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MERIDIAN —»

1670 30' 21".92

A C
A€ ) =
270° 20' 11".99

o

Figure 6.5-3
Horizontal angles and azimuth.

Slant distance BC.

§=23267.23m

Solution

We first compute the azimuth of the line BC from Aga and the measured angle
ABC:

Apc = Aga + 167°39' 2192 = 78°08' 33"91

Now, we compute the components of the line BC in the ITRF from (6.5-2):

AXg -sinzsinAsinA-sinzcosAsin®cosA+c0szcos®CcosA
AXgc =| AYg |= s| -sinzsinAcosA-sinzcosAsin®sinA+coszcos®sinA
AZg sinzcosAcos®+coszsin®
-17 727.176
=|-14 495.726 | m
4 121.303

Finally, we compute the ITRF coordinates of C, ie. X¢c = Xg + AXgc:
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Xo -3 894 420.176 -17 727.176 -3 912 147.352
Yo |=| 3847 223.501 |+|-14 495.726 |=| 3 832 727.775 | m
Zo -3 262 482.840 4 121.303 -3 258 361.537

Example 6.5-2

Convert the ITRF coordinates of point C obtained in Example 6.5-1 to ¢, A and h.
Take a =6 378 160 m and e2 = 0.006 694 541 855.

Solution

We have:

Yo (v+h)coso sini (5.2-8)

X (v+h)coso cosi
[ J [v(1-e2)+h]sing

Dropping subscripts:
Y [0} 1 "
lztan'1)—(= 1357 35' 150619

To obtain ¢ and h, we write:

p =V X2+ Y2 = (v+h)coso

Hence:

P -
= cost v (6.5-4)

Manipulation of (5.2-8) and dividing by p gives:

V4

\Y
= (12—
P (1-e V+h) tand

Accordingly:

— tan-1F2 (1-e2—y! ]
¢ =tan 1[p (1 e2v+h) ] (6.5-5)

Equations (6.5-4) and (6.5-5) are now solved iteratively for ¢ and h. As a first
approximation, we set h = 0 in (6.5-5), obtaining:
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oq) = tan"[g (1-e2)"] = -30°919711

Using ¢(1), we now compute an approximate value v using (5.2-6):

a
Vi) = T ———
V 1-e2sin2¢

Equation (6.5-4) gives h(1y = 176.418 m.

=6 383 804.327 m

As a second approximation, we set h = h(y) in (6.5-5), obtaining:

A% -
bz = tan1[Z (1-e2— ] = 30°91970641
P V(1)+h(1)

Using ¢(2), improved values of v and h are found and the process is repeated
until ¢ and h remain practically constant.

We get v(2) = 6 383 804.327 m and h(z) = 176.101 m.
The third approximation gives:

d(3) = -30°91970643, v(3) = 6 383 804.327 m, hg) = 176.106 m.
And, the fourth approximation:

4y = -30791970643, v(4) = 6 383 804.327 m, h(4) = 176.106 m.

which has converged.

Hence, the required geodetic coordinates are:
®) (-30°55' 109431
A |=]135°35' 150619
h 176.106 m

Example 6.5-3

Compute the forward and reverse azimuth of the line AB given that:

Geodetic coordinates of A.
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148° 56' 215252

1349.893 m

(0] -35°38' 105140
)\' =
h

Geodetic coordinates of B.

=|148° 58' 39"6605

) -35° 23' 54"4632
A
674.375 m

h

Use a=6378 137.0 m and -}— = 298.257

Solution

Equations (5.2-8) give the ITRF coordinates of A and B ie.:

Xa -4 446 476.915
Ya|=|2 678 127.000
Za -3 696 251.423

3

X -4 460 935.259
Yg|=| 2 682 765.697 | m
B -3 674 381.388

The components of the vectors AB and BA are then:

AYag |=| 4 638.697

AXaB -14 458.344
[ ], m
AZng 21 870.035

AXBa 14 458.344

AYBA =['4 638.697 } m

AZsp -21 870.035
Since:

AX AN

AY |=C| AE

AZ Ah'

We have:

110
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AN AX -singcosA -singsink cosd \[ AX
AE [=CT'|AY [=| -sinA  cosh 0 || AY
Ah AZ' cosdcosA cosodsini sing J\AZ'

Using 10-digit arithmetic to evaluate C' for both A and B we get:

AEaB 3486.114

ANaB 26 385.071
=[ ]’ m
Ahag -731.221

AEga |=| -3 476.216
Ahea 619.810

ANga (—26 389.229]
= ) m

As a check on the calculations we compute the distances AB and BA. We find
that AB = BA = 26 624.418 m.

The forward and reverse azimuths of AB are:

AEpg 3486.114
—_ -1 — 1 _ [o] 1 n
Aag = tan ANAg tan'5z3g5 071 = 7 3135169
AEga -3 476.216
= -1 [ [P L el _ [o] 1 "

Observe that Aga # 180° + Aag. This is because the meridians through A and B

are not parallel; rather, they converge towards the South Pole, in this instance.
The difference 1' 2026 is known as the meridian convergence. This increases
with increasing latitude and separation in longitude.
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EXERCISES

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

Briefly describe the geodetic surveying methods of triangulation,
trilateration and traversing. Give the strengths and weaknesses of each

method.

Distinguish between the projection and three-dimensional methods of
geodetic computation. Which is more accurate in practise. Give reasons
for your answer.

Name two terrestrial geodetic methods for obtaining height. Which is
more accurate? Give reasons for your answer?

What is a datum point?

What is an azimuth? How is it determined and what accuracy is
achievable?

Distinguish between a geodetic and astronomic azimuth.

Show that an azimuth error of 0.3 arcsec represents a linear precision of
about 3 cm for a line 10 km long.

How might satellite methods be used to establish an azimuth?
Why are horizontal angles more accurate than vertical angles?
What are reciprocal vertical angles? Why are they used?

Geodetic levelling is one of the most accurate geodetic measurements
which can be made. Discuss this statement.

Distinguish between dynamic, orthometric and normal heights.
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6.13

6.14

6.15

6.16

113

Using a diagram to illustrate your answer show that levelling alone does
not give orthometric height.

Mean sealevel need not coincide with the geoid. Discuss this statement.

Compute the latitude, longitude and ellipsoidal height of point B given
that:

ITRF coordinates of point A.

Xo -444 6476.915
Yo |=|+267 8127.000 | m
Zo -369 6251.423

Azimuth, zenith angle, slope distance of AB.

o 48°10' 00"32
Z|=1102°01'26"
S 1926.286 m

Take a =6 378 137.0 m and %: 298.257.

Answer:

=1148°57' 17"3027

) -35° 37' 29"'7450
by
948.883 m

h

The geocentric Cartesian coordinates of an observer on the earth are:
Xeo\ (-4460935.259

Yo |=| 2682765.697 | m

Zy -3674381.388

Calculate the corresponding geodetic coordinates ¢, A and h. Take a =6

378 137.0 m and %: 298.257.
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Answer:

A|=]148°58' 39"6605

[¢J -35° 23' 54"4632
h 674.375 m

6.17 What is meridian convergence? What happens to it at (a) the equator and
(b) near the poles?



/ Space Geodetic
Methods

7.1 INTRODUCTION

The space geodetic methods currently used for precise positioning and earth
gravity field determination are: (1) laser ranging to artificial satellites, (2) biased
range measurements to the satellites of the Global Positioning System, (3) radio
interferometric observations of extragalactic sources, and (4) altimeter
measurements from a satellite to the ocean surface. The altimetric satellites
orbit the earth at about 1 000 km altitude, the laser ranging satellites at about 6
000 km and the GPS satellites at about 20 000 km, while the extragalactic radio
sources are located at infinity. We briefly describe these systems here. Also, we
show how, in principle, they are used for determining geodetic parameters.

7.2 SATELLITE LASER RANGING

Satellite laser range (SLR) observations consist of the measurement of the time
taken for a short energy pulse to travel from the transmitter at the ground station
to the satellite and back. The time delay between transmission and reception is
thus a measure of twice the distance to the satellite. The pulse is generated by a
laser, focussed onto the satellite, and reflected back to the station by an array of
retroreflectors mounted on the spacecraft. Generally, the reflectors are uniformly
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Figure 7.2-1
Laser geodynamics satellite (LAGEOS): semi-major axis, 12 270 km;
eccentricity, 0.004; inclination, 109.9°; cross-sectional area, 0.283 m2; mass,
411 kg.

distributed over a spherical outer shell. This is the case for the two LAGEOS
satellites which were launched solely as a target for lasers (Figure 7.2-1). These
satellites are quite small (60 cm diameter) but heavy (411 kg).

The transmitted pulse length of current systems is approximately 200
picoseconds, which is equivalent to 6 cm of two-way travel time. Single-shot
system precision is well below 1 cm for the technology used in the most precise
laser systems which have been developed todate. Systematic error sources,
such as electronic delays within the transmitter and receiver, and epoch timing
errors currently vary from about 2-10 mm. Atmospheric path delay uncertainties
amount to about 5 mm. Two-colour laser ranging systems now under
development should reduce the atmospheric refraction uncertainties.

The three-dimensional positioning accuracy currently achievable with SLR is
about 1 cm. Several weeks or months of data are required to obtain this
accuracy. This is because 40-60 satellite passes are needed in cloudless
weather conditions. Currently, there are more than 20 laser stations operating at
various locations around the globe. Many of these stations are clustered in
Europe and North America; two are located in Australia, one near Geralton
(WA) and the other at Orroral (ACT). Both fixed and mobile systems have been

developed.
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Figure 7.3-1
Schematic illustration of VLBI observations. The signals are recorded
independently at the two antennas, together with clock signals, and later
brought together in the processor.

7.3 VERY LONG BASELINE INTERFEROMETRY

In Very Long Baseline Interferometry (VLBI), an extragalactic radio source is
observed at frequencies centred near 8.3 GHz and 2.3 GHz simultaneously
from two or more radio telescopes with antennas of 3-100 m in diameter (Figure
7.3-1). The radio source is typically a quasar. The received signals will be in
phase instantaneously at any two telescopes only when their distances to the

remote source are identical. In general, the difference in arrival time, A1, is
proportional to the baseline length, L, joining the two telescopes and to the

cosine of the angle between the baseline and the source, o

L = cAt cosa, (7.3-1)

In a typical 24-hour observing session, as many as 200 observations are made
to more than a score of radio sources, permitting estimates to be made of the
components of the baseline vector L to within a centimetre. Hydrogen maser
clocks and high-data-rate recorders are essential to record the radio frequency
signal from selected radio sources at each radio telescope. Simultaneous data
from several telescopes are processed by dedicated digital autocorrelators to
determine instantaneous signal delays and their rate-of-change with time. As
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with SLR systems, existing VLBI telescopes are concentrated in the northern
hemisphere. Australia hosts three telescopes with geodetic VLBI capability:
Tidbinbilla (ACT), Hobart, and the Australia Telescope near Narrabri (NSW).

7.4 THE GLOBAL POSITIONING SYSTEM

SLR and VLBI have major limitations when rapid, moderately accurate,
positions are required. The laser range measurements require clear weather
and several weeks of data to produce a position determination which is
accurate enough. VLBI systems can operate in all weather and can provide
accurate results from just 24-hours of observations. However, mobile VLBI is
expensive and not particularly portable. These limitations have been largely
overcome with GPS. A total of 21 satellites plus three spares are planned to be
in operation (Figure 7.4-1). They will orbit at an altitude of about 20 000 km in
six orbital planes with 12-hour periods, enabling simultaneous observation of
four or more satellites in virtualy all parts of the globe.

The system, which is now almost fully configured, has been used by geodesists
for some years. The GPS satellites are observed continuously from a global
network of permanent tracking stations and the orbits are computed at regular
and frequent intervals. The satellite positions and velocities are extrapolated
ahead of time and this information is transmitted from the satellite to the
observer at the time of observation. These orbits are accurate to about 10-40 m.
More accurate orbits may be obtained from additional GPS data taken
simultaneously from sites whose positions are well known from independent
measurements such as VLBI or SLR.

As with SLR, distance information in GPS is based on the travel time, 1, of a
satellite signal, obtained by measuring the difference between the transmit time,
tt, and receive time, tg, at the GPS receiver of a special ranging code. If we
ignore transmission media effects on the velocity-of-light, ¢, and timing errors,

then the true range, p, between the satellite and receiver is:

p = ct = c(tr-ty) (7.4-1)

This assumes that time kept at both the satellite and the receivers are
synchronized with a very high degree of precision. The satellites are equipped
with caesium and rubidium clocks and these are controlled by comparing them
with a ground station master clock. Clocks at the ground receivers may not be
synchronized with the satellite clocks so that each range measurement may be
in error by a constant amount. Also, the receiver clocks drift with time and the
offset between receiver and transmitter clocks does not remain constant. The
actual range measurement is therefore referred to as the pseudorange, R:

R =p + c(Atg-Aty) (7.4-2)
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Figure 7.4-1
GPS constellation: 18 satellites, 20 000 km altitude, 12 h orbits.

SPHERE

Figure 7.4-2
Principle of satellite positioning. The ranges to three satellites are measured
simultaneously. The locations of the satellites in an earth-fixed reference
coordinate system are known. The observer's position is determined by the
intersection of three spheres, of radius equal to the measured range and
centred on the satellite.



Space Geodetic Methods 120

where Aty is the receiver clock offset from GPS time and Aty is the
corresponding sateliite clock offset.

The GPS measurements of pseudorange can be made by means of special
codes transmitted by the satellites. Each satellite transmits two carrier waves of
about 1.2 and 1.6 GHz that are modulated with range codes that define a
sequence of accurate time marks that are also produced within the receiver.
Hence the phase shifts can be measured and this determines the pseudorange.
Two codes are available; a precision code with 30 m wavelength and a coarse
code with 300 m wavelength. The range precisions of these two codes are
about 1 and 10 m respectively.

Geometrically, the observed distance constrains the receiver to lie on a sphere
centred on the satellite and, in the absence of a receiver clock offset error, three
such observations to well-spaced satellite positions locate the position of the
receiver at the intersection of the three spheres (Figure 7.4-2). If a fourth satellite
is observed at the same time then, assuming that the satellite clock keeps
GPST, the station clock offset can be determined as well. The actual procedures
used for positioning with GPS and SLR differ only in detail from this outline.

Example 7.4-1

Figure 7.4-3 illustrates the geometry of earth-based satellite observations.
Show that small changes (dX,dY,dZ) in station coordinates (X,Y,Z) and small
changes (dx,dy,dz) in satellite position (X,y,z) produce a change in the range to

the satellite, dp, which is given by:

dp = X‘;—X (dx-dX) + yp—Y (dy-aY) + ZZ (dz-d2)
p

Solution

We first express the range to the satellite in terms of station and satellite
position:

p=V(x-X)2 + (y-Y)2 + (z-2)2
This is a function of four variables, that is:
p =f(x,y,z,X,Y,Z)
Accordingly:

9 P . 9 3 9
dp=§dx+£dy+£dz+§dX+—a$dv+a—§dz
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Figure 7.4-3
Geometry of earth-based satellite observations.

We square p before differentiating to obtain dp:
p2 = (x-X)2 + (y-Y)2 + (z-2)2
Then:
2pdp = 2(x-X)(dx-dX)+ 2(y-Y)}{dy-dY)+ 2(z-Z)(dz-dZ)

Finally:

(dx-dX) + ﬁ—Y (dy-dY) + Zp—z (dz-dZ) (7.4-3)

gp XX
P

In geodesy we call (7.4-3) an observation equation. It is used to improve
parameters of interest which are only approximately known.

Example 7.4-2

An observer locates his position in an earth-fixed reference frame by making
simultaneous range measurements to three satellites. The range

measurements are:
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/ .

(dX,dY,dz) P'Xo: Yo Zo)

Figure 7.4-4
Determining an observers exact location from satellite range measurements.
P'(Xo, Yo, Zo) is the observer's approximate position, P(X,Y,Z) is his exact
position, p is measured range and p, is the distance between the satellite and
P’

p2 [=]21 792 394.1

P1 20 913 888.3
, M
21 365 309.1

P3

The satellite positions in the earth-fixed system at the instant of observation are:

2 Y2 Z2 -12 609 197.8 -2 504 553.9 -23 183 608.5

1Y1 24 -24 490 981.3 3 022 488.5 -10 127 076.0
X = , M
Cg V3 Z3J [-9 561 367.8 10 473 490.4 -22 758 606.0]

The observers approximate coordinates are:
Xo -4 648 500
Yo|=|2 546 490 | m
Zy -3 536 140

Assuming that the range measurements and satellite coordinates are perfect
calculate the observers exact location.

Solution

Since dx = dy = dz = 0 in (7.4-3), we may write for each range measurement:
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Figure 7.4-5
GPS phase measurements.

dp = X20 gy Yo gy 22047 oo
p p p

where pg = \/(x-Xo)2 + (y-Yo)2 + (z-Zp)2 is the distance to the satellite
computed from the approximate position of the observer and the exact
coordinates of the satellite. Figure 7.4-4 depicts the geometry of the problem.

Now:

po1 = V(x1-X0)2 + (Y1-Y0)2 + (21-Zo)2 = 20 913 896.72 m
Similarly:
po2 =21792 401.71 m and ppz =21365317.80 m

The observation equation for the first satellite is:

X1-Xo gy V1Yo o Z1°Z0 4 o1 -
P1 P1 P1

Po1

Substitution gives:

0.9488 dX - 0.0228 dY + 0.3151dZ =-8.42 m
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For p2 and p3 we get:
0.3653 dX + 0.2318 dY + 0.9016 dZ =-7.61 m
0.2299 dX - 0.3710 dY + 0.8997 dZ =-8.70 m

Expressing this in matrix form gives:

0.3653 0.2318 0.9016 || dY -7.61

0.9488 -0.0228 0.3151y (XY (-8.42
[0.2299 -0.3710 0.8997)[dZJ_ (—8.70}

Solving for dX, dY and dZ:

dXy (-6.60
dY |=|3.31 | m
dz) |-6.62

Finally:
X Xo dX -4 648 506.60
Yi|=|Yo|+|dY |=| 2 546 493.31 | m
Y4 Zy dZ -3 5636 146.62

Note

124

We need to observe a fourth satellite if we admit a receiver clock error, dt.
However, the above equations must first be modified to include dt. Assuming

that Aty = 0 in (7.4-2) and using (7.4-3) we may write:

XXo gy YY0 4y 220 47 cht = p - po
p p p

Example 7.4-3

The simultaneous range to a fourth satellite in the above example is p4 = 19 878
167.2 m. Calculate the observer's position and the error of his clock if the
satellite coordinates in the earth-fixed reference frame at the instant of

observation are:

4 -17 965 588.1
Y4 |=| 12 319 810.7 | m
Z4 -14 594 136.4
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Solution
The appropriate observation equations are:

0.9488 -0.0228 0.3151 1Y\ /dX -8.42
0.3653 0.2318 0.9016 1 |[dY | |-7.61

0.2299 -0.3710 0.8997 1 || dZ |7 | -8.70
0.6699 -0.4917 0.5563 1 /\cdt -9.71

Solving for dX, dY, dZ and dt gives:

dX -6.39
dyY 3.26
dZz || -6.39 M
cdt 0.27

The station positions are:

Xy Xoy (dX\ (-4 648 506.39
Y|=|Yo|+|dY|=| 2 546 493.26 | m
Z) \Zo) \dz) (-3 536 146.39

We take ¢ = 299 792 458 ms-1. This gives:

0.27
dt =" = 1ns

It is also possible to obtain distance information from phase measurements on
GPS the carrier signal, keeping track of the number of cycles after signal
acquisition. Assuming perfect clocks and ignoring propagation effects:

p = NA + 0 = £(N+0) (7.4-4)

where N is the integer number of carrier wavelengths at signal acquisition,

which is initially unknown, ¢ is the phase in cycles, A is the wavelength and f is
the frequency (Figure 7.4-5). The phase measurement can give a precision for
the distance of about 1 cm or better. Also, since the wavelength of the carrier is
considerably shorter than the wavelength of the code, the resulting distance
measurement, though ambiguous by the initial number of wavelengths, is
considerably more precise than the pseudorange measurement.

The GPS satellites may be used in the relative positioning mode to determine
50 km long baseline vectors with an accuracy of 1 cm horizontally and 1-3 cm
vertically. For short baselines (<5 km) where atmospheric conditions at each
site may be considered uniform, relative elevations and baseline lengths may
be determined to subcentimetre precision, the main limitation here being
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RADAR FOOTPRINT

Figure 7.5-1
Geometry for altimeter observations. The observed quantity is the satellite
height, h, above a point on the ocean surface directly below the spacecraft.

instrumental system noise. The accuracy of longer lines is limited ultimately by
the accuracy to which the orbits of the GPS satellites are known and by the
effectiveness of processing procedures to eliminate imperfections in the data.
The GPS baseline uncertainty may be expressed in terms of baseline length, L
in km, as:

o7 =a?+ (bg)2L2 = a2 + h2, mm2 (7.4-5)
P ‘

where a is a constant of the order of 5 mm, related to instrument error, which
dominates the uncertainty for short baselines, and h is a fractional constant of
the order 10-8 that dominates for longer baselines. The constant h is largely a
geometric effect proportional to the ratio of the orbit uncertainty, d, and the

receiver-to-satellite distance, p, reduced by a geometrical factor, b, which is of
the order 0.2. If the satellite positions can be determined to 1 m, it is possible to
attain 1 cm accuracy for a line 100 km long. A satellite position error of 10 cm
permits a baseline accuracy of 1 cm for 1 000 km long line. However, orbital
accuracies better than 20 cm are a considerable challenge for the GPS
satellites mainly because of their large area-to-mass ratio, which make radiation
pressure effects on the satellite difficult to model.
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7.5 SATELLITE RADAR ALTIMETRY

In satellite altimetry the surface topography is determined by a radar altimeter
which measures the time for a transmitted pulse to travel to the surface and
back again to the satellite (Figure 7.5-1). The distance between the satellite and
the surface, combined with a knowledge of the satellite orbit, is then used to
construct a global map of the shape of the surface. Particularly important are
observations of spacecraft heights over the ocean because this surface
approximates to an equipotential surface so that the measurement provides a
direct representation of the shape of the ocean, and thereby a good
approximation of the geoid. If the satellite carrying the altimeter repeats its track
exactly, then changes with time in the sea surface can be obtained.

Uncertainties in the measurement of the seasurface are contributed by surface
waves, which distort the reflected altimeter pulse; air molecules and water
vapour, which delay the pulse in the troposphere (altitude 0-10 km); free
electrons in the ionosphere (altitude 50-1000km) which further delay the pulse;
and the instrument itself. Taken together, these can amount to an uncertainty of
10-20 cm under typical conditions. Fortunately, recent technology
developments allow these sources of error to be reduced to acceptable levels.
lonospheric effects can be measured by a dual-frequency altimeter.
Watervapour is measured by multichannel radiometers, and wave height is
independently measured by the altimeter itself. Only uncertainties in the satellite
orbit and in the ability to separate the instantaneous seasurface from the geoid
remain as important error sources. Orbits can be calculated with present
techniques to an uncertainty of about 30 cm in the height of the satellite.

Satellite altimeters flown on Skylab, Geos-3 and Seasat have shown the
promise of this technique. Observations from Geos-3 and Seasat have been
combined to map the marine geoid with an accuracy of 1 m over a grid with
roughly 100 to 300 km spacing. The three-month Seasat observations have
been used to map variable ocean currents. In the future, the TOPEX and ERS-1
missions, both of which are equipped with precision altimeters, will provide new
information on the geoid.

7.6 MEASUREMENT ERRORS

Errors arise from various sources: instabilities of the satellite and receiver
clocks, orbit errors, delays in the signals caused by uncertainties in propagation
velocity through the earth's ionosphere and troposphere, and instrumental
errors such as electronic path delays. These errors or biases may be removed,
or their effect reduced, by post-calibration procedures, by differencing the
observations or, as we saw in the previous example, by taking more
measurements than are necessary.
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> SATELLITE 2

RECEIVER 1 RECEIVER 2

Figure 7.6-1
Basic geometry of differential GPS measurements. The satellites are observed
simultaneously.

Example 7.6-1

Figure 7.6-1 depicts the basic geometry of differential GPS measurements. If the
ranges between the satellites and receivers are measured simultaneously,
show that the measurement biases introduced by errors in the satellite clocks
are removed by differencing the pseudoranges between satellites (single
differencing). Hence show that the biases introduced by errors in the receiver
clocks are removed by differencing the single differences (double differencing).

Solution

We rewrite (7.4-2) as follows:
R:‘ = p:‘ + CAtj - cAtk

where the subscript, i, denotes the receiver and the superscript, k, denotes the
satellite.

The pseudoranges for receiver 1 (i=1, k = 1,2) are:

Rl =p] + cAty - cAt! (1)

RZ = p7 + CAty - CAI2 (2)
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The pseudoranges for receiver 2 (i = 2, k = 1,2) are:
R} = pj + CAtp - CAt! (3)

R2 = p3 + CAtp- CAt2 (4)
Subtracting (2) from (1) and (4) from (3) ie. differencing between satellites gives:
Rl-RZ2=V'2=pl-p2.c(At! + At2) (5)
R}-RE =V} =p}-p5-c(At! +AR) (6)

This eliminates the receiver clock biases, Aty and Ato.

Subtracting (6) from (5) ie. differencing between satellites and receivers:
V-V = AV =P PPy P

This eliminates the satellite clock biases, At! and At2.

Note

Each time we difference we lose information, in this instance the geocentric
location of the receivers ie. the method gives only relative position. Also, the
number of measurements is reduced, from four to one here. As a result,
positions obtained from double differences are not as well determined as
positions obtained from the range measurements.

7.7 DETERMINING GEODETIC PARAMETERS

The basic geometry for estimating geodetic parameters from earth-based

satellite observations is illustrated in Figure 7.4-3. The observation vector, p(t),
of the satellite position relates to the geocentric positions, ry(t), of the spacecraft
and, Ry(1), of the station according to:

rr(t) = Ry(t) + p(t) (7.7-1)

where all three vectors are defined in the inertial reference frame (X,Y,Z)y. In

general, the vector p is only partially observed, for example, its magnitude, p, in
SLR. The geocentric satellite position vector, ry(t), is a function of the orbital
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Figure 7.7-1
Geometric method of satellite geodesy. The satellite simply is an elevated and
distant target. Observations are made simultaneously at two or more sites.

Figure 7.7-2
Dynamic method of satellite geodesy. A tracking network determines the
satellite orbit. New points are then located by tracking the satellite over a period
of time.
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elements at some reference epoch, t,, and the changes in these elements due
to the effect of the various perturbing forces in the interval, t - t.

The geocentric position vector, Ry(t), of the tracking station transforms to the
earth-fixed coordinates, Rg(t), according to the relation:

Re(t) = [W(H)] [T)] [N®)] [P®] Rx(t) (7.7-2)

where Rg must, in general, be considered as unknown and, at the present level
of accuracy of tracking data, be taken as time dependent due to tidal
displacements and crustal deformation of the earth. The parameters defining
polar motion, (W), and changes in length-of-day, (T), vary in an irregular and
unpredictable manner and are also unknown time-varying quantities unless
they have been measured by independent methods, while those defining
precession, (P), and nutation, (N), can probably be assumed known with
sufficient accuracy for most applications.

The above equations describe a complicated nonlinear relation between the
observed quantities and astronomical, geodetic, and geophysical parameters. A
solution is obtained by observing satellites or radiosources from a large number
of stations which are geographically well distributed around the world. Two
basic computation methods are used in satellite geodesy: (1) the geometric
method, and (2) the dynamic method. In the geometric method, the satellite
simply becomes an elevated and distant target. Observations are made
simultaneously at two or more stations (Figure 7.7-1). The unknown positions of
the satellite are eliminated in the observation equations by differencing the
measurements leaving only the site positions and measurement biases. Thus
the accuracy which is achievable is limited mainly by these biases. Obviously,
the method produces only relative positions. If geocentric coordinates of one or
more network stations are available, the geometric system can be centred at the
geocentre. In the dynamic method, we first use a tracking network of sites to
determine the satellite orbital parameters (Figure 7.7-2). Since the position of
the spacecraft is now known we can locate new points by tracking the satellite
over a period of time. Dynamic methods produce absolute positions and the
accuracy which is achievable is limited mainly by the accuracy of the computed
orbit.

Example 7.7-1

Show that a satellite range bias contaminates mainly the vertical coordinate of
position.

Solution

Because atmospheric refraction of the signal is difficult to model at low elevation
angles, we usually begin tracking the satellite from the time it rises above an
elevation angle of about 15° to the time it is within about 15° of setting below the
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Figure 7.7-3
Effect of a range measurement bias on position determination.

horizon. This tracking interval is known as a satellite pass. Figure 7.7-3 shows
the effect of a range bias on both the horizontal and vertical coordinates of
position. Clearly, the effect of the bias on the horizontal coordinates of position
averages out over the duration of the pass. However, the vertical coordinate is
never correct. We conclude that, in the presence of measurement biases, the
vertical coordinate of position is less well determined than the horizontal
coordinates.

Altimeter observations of the height of a satellite above the seasurface, h(t), can
be expressed by an equation similar to (7.7-1); however, Ry(t), now refers to
distance of the seasurface (or geoid) from the geocentre (Figure 7.5-1). Thus:

h(t) = re(t) - R(t) (7.7-3)

VLBI determines the rotational motion of the baselines relative to the radio
sources (inertial space) and, assuming that these baselines are rigidly attached
to the earth, of the polar motion, changes in length-of-day, precession and
nutation. In addition, the orientation of the baselines is also changed by
differential tidal displacements of the telescopes and by tectonic deformation of
the crust. Some of these time-dependent orientation changes can be
determined if a number of baselines are observed; for instance, rotational
motions will not deform the geometric figures formed by the baselines, nor will
they change the baseline lengths. Tectonic and tidal displacements, on the
other hand, will generally deform the baseline figures and introduce changes in
length, but on different time scales.
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EARTH'S

ELLIPSOID

Figure 7.8-1
Relationship between the geoidal undulation, N, ellipsoidal height, h, and
orthometric height, H.

7.8 SPACE GEODETIC METHODS AND ORTHOMETRIC HEIGHT

Space geodetic methods give Cartesian coordinates in the ITRF. These may be
transformed to geodetic coordinates by defining a horizontal datum with a
known relationship to the ITRF. WGS84 is such a datum. If the orthometric
height, H, is required, the geoidal undulation, N, must be determined. Figure
7.8-1 shows the geometry of the problem. Since the curvature of the plumbline
is very small and for all practical purposes equals the straight line distance, we
have:

H=h-N (7.8-1)

The geoidal undulation may be determined by astrogeodetic methods,
geometric methods, gravimetric methods, from models for the earth's gravity
field, or by combining earth gravity models with local gravity. In the
astrogeodetic method positions determined both astronomically and
geodetically are compared. The astronomic coordinates refer to the geoid while
the geodetic positions refer to the reference ellipsoid. The difference gives the
deflection of the vertical which is used to compute the change in N between
sites. This can be done with an accuracy of about 2 m. However, the method is
difficult to undertake and therefore expensive. As such, it is rarely used today.

The geometric method has been successfully applied in small areas where both
the orthometric and ellipsoidal heights are known for a number of well
distributed control points. Equation (7.8-1) is used to obtain N at these sites. At
other points, where only the ellipsoidal height is available, N is determined by
interpolation eg. if enough control stations are available in the area a plane or
surface may be fitted to the data. Centimetre-level precision orthometric heights
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The geoid for the Australian Capital Territory from a global geopotential models,
local gravity measurements and terrain data. The contour interval is 0.2 m.
(Courtesy Jim Steed, AUSLIG).
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can be obtained by this method. A proviso is that the distribution of control sites
must be reasonably dense (say 10 sites for an area 15 km x 20 km).

In Section 2.9 we describe how N is calculated using Stokes' theorem. The
gravity anomalies required for the integration are obtained from terrestrial
gravity measurements and satellite altimetry. The earth is divided into a number
of zones which are further subdivided into compartments. Each compartment's
contribution to N at the site of interest is evaluated and then summed. The
accuracy of the absolute determination is about 1-2 m. Changes in N between
sites are considerably more accurate, on the order of 2-3 parts in 106.

Earlier on we saw that the geoid may be built up from gravity harmonics. The
harmonics form what is called a geopotential model. Many such models exist
with the better known ones being produced at Ohio State University eg. OSU86.
The coefficients of these models are calculated from satellite orbit perturbation
analysis, terrestrial gravity measurements and satellite altimetry. High-order
representations can furnish N with an accuracy of a few metres for any part of

the earth. Higher accuracy, about 1-2 parts in 106 for AN, may achieved over
smaller regions by combining the global models with local gravity and terrain
data. Figure 7.8-2 shows such a high-accuracy geoidal model for the Canberra
region of Australia.
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EXERCISES

7.1 Give the range equation. Explain what it means.

7.2  Explain why the vertical coordinate of position is less well determined
than the horizontal coordinates in satellite positioning.

7.3 GPS range observables determined from phase measurements on the
carrier wave are ambiguous. What does this mean?

7.4  Distinguish between the geometric and dynamic methods of satellite
positioning. What are the major error sources of each method.

7.5 The equation relating satellite position, observer position and satellite
measurements is of the form:
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7.6

7.7

7.8

7.9

7.10

7.11

7.12

713

7.14

p(t) = r(t) - R(t)
where,
r(t) = position vector of the satellite at time t

R(t) = position vector of the observer at time t

p(t) = vector of observations defining the location of the satellite relative
to the observer

(i) Give four geodetic parameters implicit in R(t).
(i) Give two geodetic parameters implicit in r(t).

(iii) Name two methods whereby measurement biases may be
eliminated from p(t). Why must the satellites be observed
simultaneously for one of these to work?

Explain how SLR works.

Describe the LAGEOS-type satellites. Why are they spherical and so
dense?

Name two Australian SLR tracking sites.

Explain how VLBI works.

Name three Australian VLBI observatories equipped for geodesy.
Explain how GPS works.

What is a pseudorange?

In what way are SLR, VLBI and GPS complementary?

Distinguish between one-way and two-way ranging systems.
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7.18

7.19
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Describe the ionosphere and explain how ionospheric effects on
geodetic observables are reduced in practice.

Describe the troposphere and explain how tropospheric effects on
geodetic observables are reduced in practice.

Show how geoid height is determined from satellite altimetry.

Name two satellites used for altimetry.

In SLR and GPS the observer's position is determined by the intersection
of three spheres of radius equal to the measured range and centred on
the satellite. Explain how this problem is solved in practice. Why might
several iterations be required for the solution to converge?

Using diagrams to illustrate your answer explain how geodetic
parameters such as station position, gravity harmonics, polar motion,
precession, nutation, crustal motion and sealevel variations are
determined from space geodetic measurements.

Show that the difference in arrival time, t, of the signal from the radio
source at the antennas of an interferometer is given by:

T = (AXcosdcoso-Aycosdsino+Azsind)/c

where,

AX
Ay |=the vector separation of the antennas
Az

o = right ascension of the source
d = declination of the source

¢ = velocity of light in vacuo

Hence show that Az is poorly determined from the variation of t with time.
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absolute position, 76
albedo, 53
Allan variance, 31-32
altimetry, 127
angle

horizontal, 96

vertical, 96
anomaly

eccentric, 47

gravity, 21

mean, 48

true, 47
apogee, 47
argument

of perigee, 52
Aries

first point of, 28, 78
ascending node

longitude or right ascension of, 52

atmospheric refraction, 96
atomic
clock, 29
time, 34, 37
azimuth
astronomical, 95
accuracy, 96
Aristotle, 2
axis
spin, 15, 74

BIPM see
Bureau International de Poids et
Measures

Bouguer correction, 24

Bureau International de Poids
et Measures, 30

celestial sphere, 76
centre-of-mass, 25, 76
centrifugal force, 4, 15

Chandler wobble, 82
Clairaut, 4
conic sections, 46
control surveys
horizontal, 95-97
vertical, 97-103
coordinates
cylindrical, 65
ellipsoidal, 67-72
geocentric, 78
geodetic, 67-72
geographic, 74
natural, 74
orbit plane, 79
perifocal, 79
spherical, 65-67
coordinate surface, 65
coordinate transformation
between datums, 86-88
space-fixed to earth-fixed, 82-85
orbit plane to space-fixed, 85-86
coordinated time, 30
curvature
prime vertical, 68

datum

geodetic, 79-80

point, 95

transformation, 86-88
date

Julian, 39

modified Julian, 39
day

sidereal, 36

solar, 28
day numbers

Julian, 38
deflection of vertical, 21
differencing

double, 128

single, 128
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distance measurement
accuracy, 96

disturbing potential, 20

drag, 59

dynamic height, 99

dynamic method, 131

earth

angular velocity, 15

centre-of-mass, 25

radius, 3
earth ellipsoid

mean, 19
eccentric anomaly, 47
eccentricity

of orbital ellipse, 47
ecliptic, 51, 76
elements

orbital, 53
ellipsoid

earth, 18

level, 19

reference, 68
ellipsoidal coordinates, 67-72
elliptic motion, 47-51
equations of motion, 46
equator

of date, 82
equinox

vernal, 51, 78

of date, 82
equipotential surface, 1, 14, 17
Erastothenes, 3
epoch, 27
ET seetime

force
centrifugal, 4, 15
gravitational, 15
of gravity, 15

frequency, 28

frequency standard, 29
free-air reduction, 23
fundamental plane, 74-76

gal, 12-13
Galileo, 13
Gauss, 4
geocentre, 76
geocentric coordinates, 78
geodetic computations
classical, 95
three dimensional, 104-111
geodetic coordinates, 67-72

geodetic horizon coordinates, 106
geographic coordinates, 74
geoid, 1, 18, 133
geoidal height, 17
geometric method, 131
geopotential number, 99
geopotential surface, 17
geopotential unit, 99
GMT see time
Global Positioning System see
GPS
GPS
baselines, 125
clock offset, 118, 124
double differences, 128
pseudorange observable, 118
phase observable, 125
time, 38
single differences, 128
gravimeters
LaCoste Romberg, 103
force-balance, 103

free-fall, 103
Worden, 103
gravitation

Newton's law of, 13
gravitational constant, 13
gravity, 15-16, 93
gravity anomaly, 21
gravity formula
international, 19
gravity harmonics
and earth's shape, 25
effect on satellite orbits, 56-58
gravity networks, 104
gravity field
temporal variations, 17
gravity measurements
absolute, 103
relative, 1034
gravity reduction
Bouguer, 24
free-air, 23
Greenwich apparent sidereal time, 82
Greenwich meridian, 76

harmonics
and earth's shape, 25
zonal, 25

height
dynamic, 99
ellipsoidal, 68, 133
geoidal, 17
normal, 99
orthometric, 74, 99, 133
triangulated, 95
trigonometric, 95
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hertz, 28
horizon plane, 76
horizontal angle, 96

IAT seetime
International Celestial Reference Frame, 78
ICRF see
International Celestial Reference Frame
International Earth Rotation Service, 71
ITRF see
International Terrestrial Reference
Frame
inertial reference frame, 45
International Gravity Formula, 19
International Terrestrial Reference
Frame, 78-79
ionosphere, 127

JD see Julian date
Julian day numbers, 38

Keplerian elements, 44
Kepler's equation, 48
Kepler's laws, 44

latitude
astronomical, 74, 95
geodetic, 68, 95
geographical, 74
length-of-day, 131
level surface, 17
levelling
trigonometrical, 95
longitude
of ascending node, 52
astronomical, 74, 95-96
geodetic, 68, 95
geographical, 74, 95

maser
hydrogen, 31, 117
mean anomaly, 48
mean motion, 48
mean rotation axis, 78
mean sealevel, 18, 103
meridian
convergence, 111
Greenwich, 76
prime, 76
meridian plane, 76
MJD see modified Julian date
motion
equations of, 46
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mean, 48
two-body, 44
milligal, 12
modified Julian date, 39

natural coordinates, 74
Newton, 4
Newton's law of gravitation, 4, 3
node
ascending, 51
line of, 51
regression, 56
normal gravity, 18
normal height, 99
nutation, 82, 131

observation equation, 121
orbital elements, 53
orbital motion
direct, 49
perturbed, 53
retrograde, 49
two-body, 44
orthometric height, 74, 99, 133
oscillators
atomic, 30
caesium beam, 30
quartz crystal, 27
reliabilty, 33
rubidium vapour cell, 31
hydrogen maser, 31, 117
osculating elements, 53

pass
satellite, 132
perigee
argument of, 52
rotation, 56
perturbations
long-period, 55
orbital elements, 53-59
secular, 55
short-period, 55
positioning
absolute, 76
relative, 76
prime vertical curvature, 68
plumbline, 4, 16
potential
of centrifugal force, 15
gravitational, 16
and levelling, 97
precession, 82, 131
principal direction, 74
pseudorange, 118
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quasigeoid, 99

range bias, 131
reference coordinate frames
space-fixed, 45, 78
earth-fixed, 78
relative position, 2, 78
relativistic effects
on time, 30
refraction
atmospheric, 96
rotation of earth, 15

satellite altimetry, 5, 127
satellite geodesy
dynamic method, 131
geometric method, 131
satellite laser ranging, 115-117
satellites
geostationary, 58
GPS, 118
gravity perturbations, 56
LAGEOS, 116
satellite motion
drag effects, 59
lunar and solar accelerations, 59
solar radiation pressure, 59
satellite pass, 132
satellite state vector, 52
sealevel
mean, 18, 103
surface, 18
and geoid, 18
seasurface topography, 103
second, 28
sidereal day, 36
Snell, 4
solar day, 28
spherical coordinates, 65-67
spin axis, 15, 74
state vector
satellite, 52
Stokes' formuia, 21
Stokes' function, 21
surface
equipotential, 14
level, 17

TDB see time

TDT seetime

time
astronomical, 34
atomic, 34, 37

barycentric dynamical, TDB, 36
coordinate, 30
coordinated universal, UTC, 38
dynamical, 34, 36
earth rotation time, 35
ephemeris, ET, 36
Greenwich mean, GMT, 36
GPS, GPST, 38
international atomic, IAT, 37
mean solar, 36
proper, 30
sidereal, 36
terrestrial dynamical, TDT, 36
universal, 34, 38
time scales
atomic, 34
astronomical, 34
and clocks, 34
continuity, 29
origin, 34
stability, 30
uniformity, 30, 34
topos, 104
topocentric horizon system, 104
traverse, 95
triangulated height, 95
trigonometrical heighting, 81
triangulation, 4, 95
trilateration, 95
troposphere, 127
true anomaly, 47

undulation, geoidal, 20
UTC seetime
universal time

uTo, 36

UT1, 36

uT2, 36

vernal equinox, 51, 78
vertical

deflection of, 21
vertical angles, 96
VLBI, 117-118

WGS84, 80, 87, 133
wobble
annual term, 82
Chandler, 82
matrix, 82

year
tropical, 28
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zenith, 96
zenith distance, angle, 96
accuracy, 97






Publications from the

SCHOOL OF SURVEYING AND SPATIAL INFORMATION SYSTEMS
(formerly: SCHOOL OF GEOMATIC ENGINEERING)
THE UNIVERSITY OF NEW SOUTH WALES
ABN 57 195873 179

To order, write or fax to:
Publications Officer, School of Surveying and Spatial Information Systems,
The University of New South Wales, UNSW SYDNEY NSW 2052, AUSTRALIA
Fax: +61-2-9313 - 7493

NOTE ON MAIL ORDERS: ALL ORDERS MUST BE PREPAID.
NO REQUESTS FOR RETURNS ARE ACCEPTED.
CREDIT CARDS ARE ACCEPTED. CONDITIONS APPLY. SEE ORDER FORM FOR DETAILS.
WHEN PAYING BY CHEQUE, THE CHEQUES MUST BE PAYABLE TO 'SCHOOL OF SURVEYING & SIS, UNSW/,
IN AUSTRALIAN DOLLARS AND DRAWN ON AN AUSTRALIAN BANK.

MONOGRAPHS
Australian prices include GST #. Overseas prices include delivery by UNSW's air-lifted mail service (~2-4 weeks to
Europe and North America) #. Rates for air mail through Australia Post on application.
# For all (local and overseas) orders, add $11.00 for processing and handling (once per order).
(Prices effective May 2009)

Price # Price #
Australia Overseas

(incl. GST)
M1. R. S. Mather, "The Theory and Geodetic Use of some Common Projections”,
(3rd edition), 125 pp, reprint 1998, ISBN 0-85839-007-8 $16.50 $ 15.00
M2. R. S. Mather, "The Analysis of the Earth's Gravity Field", 172 pp, 1971 (no ISBN) $ 8.80 $ 8.00
M8. A. H. W. Kearsley, "Geodetic Surveying”, 96 pp, revised reprint 1988, $ 13.20 $ 12.00
ISBN 0-85839-036-1
M11. W. F. Caspary, "Concepts of Network and Deformation Analysis", 183 pp, $ 27.50 $ 25.00
3rd corrected impression, 2000, ISBN 0-85839-044-2
M12. F. K. Brunner, "Atmospheric Effects on Geodetic Space Measurements",
110 pp, 1988, ISBN 0-85839-048-5 $ 17.60 $ 16.00
M13. B. R. Harvey, "Practical Least Squares and Statistics for Surveyors",
(3rd revised and extended edition), 341 pp, 2006, ISBN 0-7334-2339-6 $ 38.50 $ 35.00

M14. E. G. Masters and J. R. Pollard (Eds.), "Land Information Management",
269 pp, 1991, ISBN 0-85839-061-2 $ 22.00 $ 20.00

M15/1 E. G. Masters and J. R. Pollard (Eds.), "Land Information Management -
Geographic Information Systems - Advance Remote Sensing Vol. 1", 295 pp,
1993, ISBN 0-85939-064-7 $ 33.00 $ 30.00

M15/2  E. G. Masters and J. R. Pollard (Eds.), "Land Information Management -
Geographic Information Systems - Advance Remote Sensing Vol. 2", 376 pp,
1993, ISBN 0-85839-065-5 $ 33.00 $ 30.00

M16. A. Stolz, "An Introduction to Geodesy", 2nd extended edition, 148 pp, 2001, $ 24.20 $ 22.00
Reprint 2009, ISBN 0-7334-1736-1

M18. J. M. Rueger, "Electronic Surveying Instruments — A Review of Principles,
Problems and Procedures", 1st ed., 166 pp, 2003, ISBN 0-7334-2083-4 $ 25.30 $ 23.00



UNISURV REPORTS - S SERIES
(Prices effective May 2009)

Australian Prices *: S8 - 520 $11.00 # S29 onwards $33.00 #

Overseas Prices **: S8 - 520 $10.00 # S29 onwards $30.00 #

* Australian prices include GST. #

** Overseas prices include delivery by UNSW's air-lifted mail service (~2-4 weeks to Europe and North America). #

S17.

S19.

S36.

S37.

S39.

S40.

S41.

S42.

S43.

S44.

S45.

S546.

S47.

S48.

S50.

S51.

S53.

S54.

Rates for air mail through Australia Post on application.
# For all (local and overseas) orders, add $11.00 for processing and handling.

C. Rizos, "The Role of the Gravity Field in Sea Surface Topography Studies", Unisurv $17, 299 pp,
1980, ISBN 0-85839-029-9

R. Coleman, "A Geodetic Basis for Recovering Ocean Dynamic Information from Satellite Altimetry",
Unisurv S19, 332 pp, 1981, ISBN 0-85839-029-9

A. R. Marshall, "Network Design and Optimisation in Close Range Photogrammetry”, Unisurv S36,
249 pp, 1989, ISBN 0-85839-054-X

W. Jaroondhampinij, "A Model of Computerised Parcel-Based Land Information System for the
Department of Lands, Thailand", Unisurv S37, 281 pp, 1989, ISBN 0-85839-055-8

C. Bosloper, "Mutltipath and GPS Short Periodic Components of the Time Variation of the Differential
Dispersive Delay", Unisurv S39, 214 pp, 1990, ISBN 0-85839-057-4

J. M. Nolan, "Development of a Navigational System Utilising the Global Positioning System in a Real
Time, Differential Mode”, Unisurv S40, 163 pp, 1990, ISBN 0-85839-058-2

R. T. Macleod, "The Resolution of Mean Sea Level Anomalies along the NSW Coastline Using the Global
Positioning System", Unisurv S41, 278 pp, 1990, ISBN 0-85839-060-4

D. A. Kinlyside, "Densification Surveys in New South Wales - Coping with Distortions", Unisurv $42, 209
pp, 1992, ISBN 0-85839-062-0

A. H. W. Kearsley (ed.), Z. Ahmad, B. R. Harvey and A. Kasenda, "Contributions to Geoid Evaluations and
GPS Heighting", Unisurv S43, 209 pp, 1993, ISBN 0-85839-063-9

P. Tregoning, "GPS Measurements in the Australian and Indonesian Regions (1989-1993)", Unisurv
S44, 134 + xiii pp, 1996, ISBN 0-85839-068-X

W.-X. Fu, "A Study of GPS and Other Navigation Systems for High Precision Navigation and Attitude
Determinations”, Unisurv S45, 332 pp, 1996, ISBN 085839-069-8

P. Morgan et al, "A Zero Order GPS Network for the Australia Region®, Unisurv S46, 187 + xii pp, 1996,
ISBN 0-85839-070-1

Y. Huang, "A Digital Photogrammetry System for Industrial Monitoring", Unisurv S47, 145 + xiv pp, 1997,
ISBN 0-85839-072-8

K. Mobbs, "Tectonic Interpretation of the Papua New Guinea Region from Repeat Satellite
Measurements", Unisurv S48, 256 + xv pp, 1997, ISBN 0-85839-073-6

M. D. Subari, "Low-cost GPS Systems for Intermediate Surveying and Mapping Accuracy Applications”,
Unisurv S50, 179 + xiii pp, 1997, ISBN 0-85839-075-2

L.-S. Lin, "Real-Time Estimation of lonospheric Delay Using GPS Measurements", Unisurv S51, 199 + xix
pp, 1997, ISBN 0-7334-1664-0

D. B. Lemon, "The Nature and Management of Positional Relationships within a Local Government
Geographic Information System", Unisurv S53, 273 + xvi pp, 1997, ISBN 0-7334-1678-0

C. Ticehurst, "Development of Models for Monitoring the Urban Environment Using Radar Remote
Sensing”, Unisurv S54, 282 + xix pp, 1998, ISBN 0-7334-1679-9



S55.

S56.

S57.

S58.

S59.

S60.

S61.

S62.

S63.

564.

S65.

S566.

S67.

S69.

S70.

S71.

S72.

S573.

S74.

S75.

S76.

Note:

S. S. Boey, "A Model for Establishing the Legal Traceability of GPS Measurements for Cadastral
Surveying in Australia", Unisurv S55, 186 + xi pp, 1999, ISBN 0-7334-0685-X

P. Morgan and M. Pearse, "A First-Order Network for New Zealand", Unisurv S56, 134 + x pp, 1999, ISBN
0-7334-0685-8

P. N. Tiangco, "A Multi-Parameter Radar Approach to Stand Structure and Forest Biomass Estimation",
Unisurv S57, 319 + xxii pp, 2000, ISBN 0-7334-0786-2

M. A. Syafi'i, "Object—Relational Database Management Systems (ORDBMS) for Managing Marine Spatial
Data: ADCP Data Case Study”, Unisurv S58, 123 + ix pp, 2000, ISBN 0-7334-1704-3

X.-Q. Lu, "Strategies for Improving the Determination of Displacements of Sea Surface Temperature
Patterns Using Consecutive AVHRR Thermal Images", Unisurv S59, 209 + xiii pp, 2000, ISBN
0-7334-1721-3

G. Dickson, "GPS-Controlled Photography: The Design, Development and Evaluation of an Operational
System Utilising Long-Range Kinematic GPS", Unisurv S60, 417 + x pp, 2000, ISBN 0-7334-1725-6

J. Wang, "Modelling and Quality Control for Precise GPS and GLONASS Satellite Positioning", Unisurv
S61, 171 + x pp, 2001, ISBN 0-7334-1766-3

Y. Wang, "Knowledge-Based Road Extraction from Aerial Images”, Unisurv $62, 178 + xi pp, 2001, ISBN
0-7334-1767-1

L. Ge, "Development and Testing of Augmentations of Continuously-Operating GPS Networks to
Improve their Spatial and Temporal Resolution”, Unisurv S63, 230 + xvi pp, 2001, ISBN 0-7334-1841-4

H.-Y. Chen, "A Study on Real-Time Medium-Range Carrier-Phase-Based GPS Multiple Reference
Stations", Unisurv S64, 182 + xxiv pp, 2001, ISBN 0-7334-1842-2

G. Y. K. Shea, "A Web-Based Approach to the Integration of Diverse Data Sources for GIS", Unisurv S65,
233 + xv pp, 2001, ISBN 0-7334-1845-7

M. Mirbagheri, "Analysis of Interferometric SAR for Topographic Mapping", Unisurv S66, 135 + xvii pp,
2001, ISBN 0-7334-1856-2

P. Wang, "Applying Two-Dimensional Kalman Filtering Techniques to Digital Elevation Models for Terrain
Surface Modelling", Unisurv S67, 175 + xi pp, 2001, ISBN 0-7334-1857-0

C. Satirapod, "Improving the GPS Data Processing Algorithm for Precise Static Relative Positioning",
Unisurv S69, 131 + viii pp, 2002, ISBN 0-7334-1901-1

R. Mason, "Developing Australian Spatial Data Policies — Existing Practices and Future Strategies”,
Unisurv 870, 258 + xv pp, 2002, ISBN 0-7334-1941-0

C. Ogaja, "A Framework in Support of Structural Monitoring by Real Time Kinematic GPS and Multisensor
Data", Unisurv S71, 191 + xiii pp, 2002, ISBN 0-7334-1958-5

L. Dai, "Augmentation of GPS with GLONASS and Pseudolite Signals for Carrier Phase Based Kinematic
Positioning”, Unisurv 872, 188 + viii pp, 2002, ISBN 0-7334-1975-5

C. Roberts, "A continuous Low-Cost GPS-Based Volcano Deformation Monitoring System in Indonesia”,
Unisurv 873, 271 + xvi pp, 2002, ISBN 0-7334-1976-3

V. Janssen, "A Mixed-Mode GPS Network Processing Approach for Volcano Deformation Monitoring",
Unisurv S74, 199 + viii pp, 2003, ISBN 0-7334-2059-1

Y. H. Lu, "Automatic Building Extraction for 3D Terrain Reconstruction Using Image Interpretation
Techniques”, Unisurv 875, 175 + xii pp, 2004, ISBN 0-7334-2141-5

Y. K. Lee, "Integration of GPS/Pseudolites/INS for High Precision Kinematic Positioning and Navigation”,
Unisurv S76, 200 + xiv pp, 2004, ISBN 0-7334-2149-0

From 1 January 2005, PhD and MEng theses are nor longer published in this series.

See  www.gmat.unsw.edu.au for information on post 2004 theses.



School of Surveying and Spatial Information Systems
The University of New South Wales
ABN 57 195 873 179

ORDER FORM

To order, mail or fax this form to: Publications Officer, School of Surveying and Spatial Information Systems,
The University of New South Wales, UNSW SYDNEY NSW 2052, AUSTRALIA Fax: +61-2-9313 - 7493

Name and postal address of ordering person/organisation:

Email : Fax :

Date :

Day time phone number :

Note: All orders must be prepaid. No requests for returns are accepted.

I/We order herewith:

$ 11.00

Postage and Handling (from 1 July 2004)

Total $

Payment Details:
[0 A cheque, drawn on an Australian Bank, in Australian Dollars and payable to 'School of Surveying & SIS,

UNSW'is enclosed
| Please debit my credit card: ~ [] Mastercard [] Visa

Name on Card: Signature:

Expiry Date :

Card No:







	mono16
	Mono16compl+
	mono16a
	mono16b
	mono16c


