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PREFACE

The contents of this monograph form the basis for a
course of lectures in the subject Dynamic Geodesy given as a
part of the Master of Surveying Science degree in the School

of Surveving, University of New South Wales.

The development is biased towards the determination, in
practice, of the best representation possible for an incompletely
surveyed gravity anomaly field at the surface of the earth. It
is also intended to be completely self contained on the understanding
that the reader has a reasonable knowledge of basic mathematical

techniques.

The rclevant topics in satellite geodesy are developed
with the intention of providing the reader with a good understanding
of the technigques involved and the sources of likely weakness in
the results which are to be combined with surface gravity data
to provide the continuous surface anomaly data set. It is not
intended to provide an introduction to satellite geodesy which
can be obtained from one or other of the references dealing with

the subject and listed in the bibliography.

The writer will be grateful if any errors are brought

to his attention.



A GUIE TO NOTATION

1. COMMONLY  USED  NOTATION

Conventions

Yy = The variables Yy and Yye
Yy = The variables Yy Y, and Yar unless otherwise specified.
(1;31)

v = bx = By the use of equation 1.31, y can be shown to be

equal to bx.
e = dax/dat.
ss =  Scale subscript. If subscript out of range, subtract

maximum possible value. E.g., if 1 > 3, subtract 3.

Summation convention
2

YoPa = E aa - Yi%3 t Y%,

g=l
Yi% = i__z_l YiZi T Y% Y YpZy * Yz

The range of subscripts will be specified in instances where

it exceeds the above values.

Yq = A+ Bxa = There are two equations obtained on
assigning the values 1 and 2 for the subscripts.
yi = A+ Bxi = There are three equations obtained on

assigning the values 1, 2 & 3 for the subscripts.

Vector representation

Ttalics, with one exception will be used solely for the

representation of wectors in equations.

Xi = Xiz = The vector with components Xl' X2 & X3

along the rectangular Cartesian co-ordinate axes which

are represented by the unit vectors 1, 2 & 3.
The exception is the case

i = /(-1) .

Such use is clearly defined in the text.
Other notation

RS 1967= Reference System 1967.



2. SNME FRENUENTLY USED SYMBOLS

aQa QO o0 o W

SR

&

o e e e o N U

c o Wn

Azimuth.

Evuatorial radius of the reference ellipsoid.
Polar radius of the reference ellipsoid.
Coefficient of spherical/surface harmonic series.

Centre-to-focus distance for the family of confocal
ellipsoids.

The separation vector.

The modulus of the separation vector.

A differential increment in X.

An clement of surface area.

The element of surface area on a unit sphere.

Eccentric anomaly.

Eccentricity of the meridian ellipse.

Flattenina of meridian ellipse; true anomalv{(section 8).
The value of observed gravity at the surface of the earth.
Orthometric elevation.

Height anomaly.

- Linearisation parameter,

= Normal elevation.

Spheroidal elevation.
The non-real part of the complex expression X.
Inertia tensor of order a.
Inclination of orbital ellipse.
V(-1).

. . _ -8 3 -1 -2
Gravitational constant T 6.673%X10 "cm gm “sec .

The mean value of X.

- The mass of the earth; Mean anomaly(section 8).

Mass (section 1 & 2);order of spherical harmonic(as subscript).
amz/ye.
a‘wkM .

The degree of a spherical harmonic (as subscript).

The mean motion of a satellite.

Associated Legendre function (section 3.7).

Associated Legendre function of the second kind (section 3.4).

Legendre function of the second kind.

The real part of the complex expression X.

= The Radius of the earth, assumed to be a sphere.

Distance between the element of surface area d5 (d0) and the
point of computation P; distance from geocentre;
a spherical co-ordinate.

Coefficient of spherical/surface harmonic series.
Time.
Potential of the reference system (sphero-potential).

Reduced {parametric) latitude defining position on the meridian
ellipse.



SOME FREQUENTLY USED SYMBOLS (ctd)

X E =
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Potential of the earth (or Geopotential).

Weight coefficient.

A geocentric Cartesian co-ordinate system.

A general Cartesian co~ordinate system.

One of the sphercidal set of co-ordinates. o = sin_le.

The second of the spheroidal co-ordinate set tan B = cos U.
Normal gravity; the global mean value of normal gravity.

A small change in X.

The gravity anomaly at the surface of the earth which, to the
order of the flattening, is the free air anomaly.

Kronecker delta, 6ik =0 if i # k; 6ik =1if i = k.
Deflection of the vertical.

Co-latitude; Greenwich Sidereal Time (G.S.T. in section 8).
Longitude, positive east.

sin ¢ = cos 8 ; Also B = kM (in section 8).

Radius of curvature of ellipsoid in the prime vertical normal
section.

Set of curvilinear parameters, on occasion defining the
separation vector.

Radius of curvature of ellipsoid in the meridian normal
section; density of gravitating material.

X, + X+ X+ X .
1 2 3 4

Surface area on a sphere of unit radius.
Degree variance of gravity anomalies.
Latitude, positive north.

Angular distance on a sphere between the element of surface
area dS and the point of computation P.

Right ascension of ascending node.

Angular velocity of rotation of the earth; the argument
of perigee (section 8)

Unit normal vector

3
5 .

) = 7
iz1 =,

TERMINOLOGY

The term reference ellipsoid is used to describe an oblate

spheroid, obtained by rotating an ellipse about its minor axis. The

term spheroid is used in this sense in section 5.



4.  SUASCRIPTS

Subscripts which are not indices, are introduced with the

intention of improving the comprehension of concepts by keeping

the number of basic variable names down to a minimum and hence

simplifying the written form of the equations.

Astronomically determined values! astro-geodetic values.
Correction to the free air geoid.

Value at the equator; referring to the earth ellipsoid.
Free air geoid values.

Gravimetric values; geocentric values

Constants defining the family of hyperboloids of
revolution constituting the spheroidal system of co-ordinates.

Values at the geoid or spheroid of reference
Evaluated at the fixed point P.

Rotational component; radial component in section 8.
Values referred to the reference ellipsoid.

Component perpendicular to the direction of radius.



THE ANALYSIS OF THE EARTH'S GRAVITY FIELD

BY

R.S. MATHER

1. THE REQUIREMENTS OF PHYSICAL GECDESY

1.1 Introduction

The term gravimetric geodesy is used to differentiate that
section of physical geodesy which deals with the definition of the
physical surface of the earth in relation to a reference system by
the use of observed values of the acceleration due to gravity (Q). This
excludes astro~geodetic methods which are based on a knowledge of the
direction of the vertical instead of measured values of d. Such a
classification must necessarily be simplistic. Geodesy is the study
of. techniques for the establishment of three dimensional co-ordinates in
earth space, which is the Euclidian space that has the same rotational
and galactic motion as the earth. True earth space co-ordinates are
essentially four-dimensional, but for short term practical purposes, the

variations in the fourth co-ordinate(time) can be assumed to be negligible.

Gravimetric geodesy cannot be considered to be a true geometrical
technique if considered independently of the other branches of geodesy as
it is concerned with properties of the earth's gravitational field which
is a consequence of a distribution of mass given by an equation of the

form
dn = dm (xi) oo (1.1)

that is an invariant in earth space in the short term, the space being
specified with reference to an xi axis system. The term invariant is
used to describe a quantity whose magnitude is independent of the

reference frame adopted. This mass distribution gives rise to a
Newtonian gravitational potential or gecpotential W which is also an

earth space invariant, being a scalar (tensor of zero order). g

itself is a first order tensor (i.e., a vector) and is obtained from

the gravitational potential. This vector field is incapable of definition
unless the mass distribution at equation 1.1 is completely specified, this
being physically impossible. The current practice which is adopted in

gravimetric geodesy to surmount this obstacle calls for the definition
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of a model for this mass distribution and the computation of the earth
space vector between equivalent points on the true and reference systems

being called the separation vector d.

As the characteristics of the mass distribution on the reference
system are specified, it is possible to convert the zero order gravita-
tional tensor or spheropotential U and its associated first order tensor
to earth space co~ordinates. Gravimetric geodesy concentrates on the
determination of the separation vector which, together with the characte-
ristics of the reference model would specify earth space position ©f the
zero order gravitational tensor or geopotential of at least one point on
the surface of the earth were known. This information cannot be
obtained by the techniques of gravimetric geodesy alone. On the other
hand, these techniques provide a method for the determination of earth
space co-ordinates which is totally independent of the vagaries of the

earth's atmosphere.

The capacity of gravimetric geodesy to define earth space

position is therefore dependent on the following points.
(i) Values of g must be defined at "all points” on the earth's

surface

(ii) The parameters adopted for the definition of the reference
model and hence the values of normal gravity Yy at all points exterior

to the bounding surface must bear an adequate resemblance to reality

(iii) A value should be available, at least in theory, for the
geopotential at a point on the physical surface of the earth.

The third point will not be directly covered in the present

development

1.2 The data requirements for computations in gravimetric geodesy

The separation vector d between equivalent points
as shown in figure 1.1 can be completely represented by three curvilinear
components Ei. It could also be referred to a local rectangular
Cartesian co-ordinate system X, when the modulus d of d can be

given by

d®> = h?2gz? L. (1.2)
1 1

where hi are the associated linearization parameters given by
h . =h,(X,) --.(1.3)1
1 1] .

Xj being the co-ordinates of Q with respect to a reference co-ordinate

system. The required quantities Ei are given by (e.g, Heiskanen §



Physical Surface

Reference Surface

FIG. 1.1

The separation vector

FIG. 1.2

The spherical system of co-ordinates
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Moritz 1967,p.121; Moritz 1968,p.326; Mather 1970b,p.56) equations f the

form

= K ” £(r) (Ag + f(h,hp))ds e (1.4,

Y

ip

where the subscript o refers to evaluation at the general point P on the
surface S of the earth, h being the elevation of the topography at the
element of surface area dS which is at a distance r from P. In the
above equation f(X) = a function of X. The gravity anomaly Ag at the

surface of the earth is given by
A = g - v ... (1.5)

where g is the value of gravity observed at the physical surface and Y the
value of normal gravity at the associated normal surface. Such pairs

of surfaces can be afforded by any of the following systems.

(i) The physical surface of the earth and the telluroid (e.g.,
Heiskanen & Moritz 3967,p.292 ; Mather 1968b,p.517).

(ii) The geoid and the reference ellipsoid (e.g., ibid, p.%22).
(iii) Any geop and its associated spherop (e.g., Moritz 1966).

The value of the gravity anomaly is thus dependent on the
system being used in the definition of the separation vector, though
the differences are in the third significant figure in non-mountainous
areas. These discrepancies arise in "reducing" the values of gravity
observed at the physical surface of the earth to the appropriate physical

surface, the reductions Agc being of the form

Ag = fth,h ) f(r) ds ... {1.8)."
< p

In all instances of the solution of the boundary value problem in
physical geodesy it is therefore necessary to define the value of
gravity and hence, the gravity anomaly, at all points on the earth's

surface.

The surface gravity data available at the present time
hardly meets the requirements of a complete coverage, there being con-
siderable extents of the oceans which have not been adequately surveyed.
Fortunately, this does not pose insurmountable problems in effecting
determinations of the separation vector from a practical point of view

as f(r) is primarily of the form

f(in)y = r—l or r‘z

which means that distant zones have significantly smaller influences per
unit area on computations than closer regions. Consequently, the former
can be represented by mean values over larger areas than near ones when

evaluating integrals of the type at 1.4 by guadratures. For an exampfe
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of subdivisions for practical use, see (Mather 1969,p.501).

The following points are implicit in the adoption of the above
procedures.
(a) f(r) in equation 1.4 is a linear function over the area

being represented by the mean to the required order of accuracy.

(b) The pattern of correlation between variations of individual
readings in the square from the mean, and position with respect to the
point of computation P, as exists over a significant number of such

squares should be negligible.

For an analytical treatment see (Mather 1968a, pp.156-163). The
procedure could be extended further by replacing the set of discrete
values Ag which are functions of position on the surface S by con-
venient continuous functions. As each of the three systems at (i) to
(iii) on page 4 is an ellipsoid of revolution or a sphere to order f,
while the last two are ellipsoids to order fz, the most obvious choice
of parameters for the definition of such continuous functions are sets

of either spherical or spheroidal co~ordinates.

1.3 Suitable sets of co-ordinates

Problems in gravimetric geodesy, as in any other mathematical
subject, are soluble with minimum complexity if an appropriate reference
frame is adopted. The earth's gravitational field is well represented
by a system of co-ordinates of the type Ei' where 53 defines a surface
which is preferably one of equal potential, while El and Ez define

position on the surface

53 = constant.

Such a system has been studied in detail by Hotine(1969,p.69 et
seq.). Its adoption as a reference frame poses certain problems as
the definition of position in earth space by a family of geometrically
irregular equipotential surfaces involves a quantity which is non-
linear and not without dimension as the E3 co~ordinate. If this
quantity had the dimensions of potential, changes AEB in 53 could be
converted to a linear equivalent h3AE3 only if the mass distribution
contributing to the potential were known, either implicitly or ex-
plicitly. It is therefore preferable to define general curvilinear
co-ordinates with purely geometrical significance and introduce

physical characteristics at a subsequent stage.

(1) Spherical co-ordinates

The position of the general point P in such a system is

defined by one of the concentric spheres of radius r and centred at the
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the origin O which passes through P. The exact position of P on the
sphere is fixed by two surface parameters A and ¢, as shown in figure
1.2. Thus

El = A E, = ¢ E.= 1 e (1.7

£l and 52 will generally be assumed to be surface parameters

while €3 defines the family of surfaces extending through the space.

(i2)  Spheroidal co-ordinates

In the following development, it will be assumed that the
reader is either familiar with the co~ordinate geometry of the ellipse
or has access to a standard text on the subject. An oblate spheroid

(ellipsoid of revolution) is obtained by rotating the ellipse

x2 x§
-+ - =1 ...(1.8)
a® b?

about its minor axis Ox3 in figure 1.3. The equatorial and polar

radii (a,b) of the meridian ellipse are related to the eccentricity

and the flattening f by the relations

b = a3 1-—e2]1/2 e {1.9)
a;b = f ... (1.10)
e?=2f - f2 ... (1.11).

The direct extension of the principles adopted in section
1.37 for the spherical case to the spheroidal one is not possible
as two parameters (a,e) are required to define the oblate spheroid,

while only one (r) is required to define the sphere.

The space can, however, be totally defined by a family of
confocal oblate spheroids. Such a system is scaled by the constant

distance C between the origin O and the common focus F, where

c = ae ... (1.12)
If OB is the minor axis of the ellipse, B being on the ellipse, let

OBF = o .

As the sum of the distances from any point on the ellipse to the two

foci is 2a, and as B is symmetrical with respect to the two foci,

The use of equation 1.12 gives



FIG. 1.3

The oblate spheroidal system of co-ordinates

FIG. 1. 4

The three dimensional cartesian system
and oblate spheroidal co-ordinctes
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sin o = 3 = e cea (1.13).

Thus a family of confocal spheroids can be completely defined
by the parameter a just as a family of concentric spheres can by the
variable radius Y. Position on the surface of the confocal spheroids
can be defined by two surface parameters as in the case of the spherical

system. These parameters are

where U is the parametric(or reduced) latitude defining position in
the meridian ellipse, whili: A has the same significance as in the previous
case. The use of the parametric latitude has the advantage that

X = acos U ; X 3 = b sin u L. (1010) .

Thus the adoption of the set of curvilinear co-ordinates
= ; =u ; E= ... (1.15
£, =2 &, 2 o ( )

permits a complete definition of all points in the space. The equivalent
three dimensional Cartesian co-ordinates wth respect to an Xi axis system,

where the plane of zero longitude A is defined by the XlX3 plane and

the equator by the X1X2 plane, are given by

Xl = a cos U cos A ,
x2 = a cos U sin A ,
and X3 = b sinu.

Complete definition is obtained on replacing a and b in terms of «q,

using equations 1.12 and 1.13, when

a =ce L C cosec O ...(1.16)

b = all - ez]Li = ¢ cosec o(l - sinza)% = C cot a..(1.17).

Thus the complete set of expressions for three dimensional Cartesian

co-ordinates in terms of spheroidal co~ordinates is

Xl = C cosec O cos U cos A
x2 = C cosec O cos U sin A c..(1.18).
x3 = C cot a sin u

It can be seen from equation 1.18 that the elimination of ) and u gives



, x:ZL + xg x§

. 2

sin“U + cos“Uu = + =1 .. (1.1
° c’cosec’a c‘coto, (1.19)

which is the equation of a family of confocal oblate spheroids whose

equatorial and polar radii are given by

a = C cosec @ ; b=c cota.

Similarly, the elimination of A and o gives

xi + xg xg

2 2

cosec q =~ t°a = - - =1 ...(1.20
co c¢cos‘u c’sin‘u ( )

which is the equation of a family of confocal hyperboloids of revolu-
tion, the parameters defining the basic hyperbola being

a8 = Ccosu ; bh = ¢ sin u L. {1.21).

The elimination of u and o gives

tan A = .0 (1.22).

2
*1
Thus position as defined on a spheroidal system of co-
ordinates can be visualised as being fixed as follows:-
(a) location in a plane given by the longitude XA;

and (b) position in the plane being specified by the intersection

- -1
of an ellipse (@ = sin e ) and a hyperbola (u = sec eh), as
the eccentricity e, of the hyperbola
x? x%
22 - pz =1
% h
is given by aﬁ [eﬁ - 1] = bi
and the use of equation 1,20 gives
C
eh = Coosu sec u ...{1.23).

The equation of the tangent to the hyperbola at P(a cos u,

b sin u ) is

X X

-» acos u - 53 bsinu =1
h
or
X
3 (b
2E) -2 @) =1

%4, h

The equation of the normal to the ellipse at P is
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ax secu - bX3 cosec u a? - Db?

The use of equation 1.21 gives

ax sec u - bX3 cosec u c2 = a? - Db?.

Hence the hyperbola is a normal trajectory to the ellipse and the
family of confocal hyperboloids of revolution are orthogonal to the

confocal oblate spheroids, both having a common centre and focus.

(iii) The conversion of spheroidal co-ordinates to spherical co-ordinates.

If the centre of the concentric spheres is the same as

the common centre of the confocal system, it can be seen from rotational

symmetry that

is unchanged on transformation between systems. The co-ordinates in

any meridian section on the spherical system are the equivalent geocentric
co-ordinates (r, ¢g) as shown in figure 1.3. If the spherical
co-ordinates are as defined in equation 1.7, it can be seen from a

consideration of figure 1.3 and the general geometry of the ellipse

that
X =V cos ¢ = a cos u = rcos¢g
.. (1.24),
X3 = v[1 - e?lsin ¢ =b sin u = r sin ¢g
where
a
V =PF = .. (1.25).
[1- e?sin?%$]”
Thus
tan ¢g = [1 - e2]% tanu = [1 - e?Jtan ¢ ... (1.26)
or
tan ¢g = cos O tan u (127

Substitution from equation 1.24 into equation 1.8 gives

r b
= T
1 - e‘cos”d

The use of equations 1.13 and 1.27 gives

.2 -1
sin" o
= -y ... (1.28).
r ¢ cot a (1 1 + cos“0a tan u] (

As sin o is a small quantity,
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sinZo + sin‘a +
1+ cos’a tan?u | l+cos’a tan‘ul?

r =C cot O (1 +

. 6
sin’a 4
[Trcos?a tantul® o{£"} <. (1.29).

To summarise,

T
El is unaltered on conversion
5 = ¢g = tan—l[cos a tan u] .. (1.30).
L2 -1
_ _ _ sin‘a ]
E3 = I =cCecot a(l 1 + cos‘a tanqu

1.4 A review of determinations of the geoid to date.

The determinations of the geoid in the past have nearly
always been evaluations of co-geoids which are obtained by the use of
a particular anomaly (isostatic, free air, etc.) in Stokes' integral.
Note that the term "gravity anomaly" has been avoided. In the ensuing
development, this term will refer to the guantity defined by equation
1.5 and has meaning only if the physical and reference systems being
related are specified. Thus the gravity anomaly for the physical
surface - telluroid system(Mather 1968b,p.526) is different from that
for the geoid-spheroid system(ibid,p.523). The free air anomaly is an

excellent approximation for the gravity anomaly on the former system.

Gravimetric geodesy was totally pre-occupied with the
Stokesian problem till the end of the Second World War. The original
problem, as specified by Stokes(1849), afforded a solution in the case
where the physical surface was a bownding equipotential, exterior to
all matter, with the same potential, mass and volume as the bounding
equipotential of the reference system. This gave rise to considerable
efforts on the part of geodesists in the late nineteenth and early
twentieth centuries to concentrate on the removal of mass exterior to
the geoid in order that the correct boundary conditions were created for

the use of Stokes' integral.

The anomaly which found most favour was that based on the
principle of isostasy, being initially used by Hayford in the U.S. in
1909 (Heiskanen & Vening Meinesz 1958,p.129). The use of isostatic
anomalies was vigorously championed by the Finnish geodesist Heiskanen
who founded an active group of researchers in physical geodesy at

Helsinki in the nineteen thirties under the auspices of the International
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Association of Geodesy and called the Isostatic Institute. He adopted
a crustal model imitially proposed by the British astronomer Airy which
is now known to agree satisfactorily with independent evidence provided
by seismology and the principal aim of the institute was the completion
of all isostatic reductions necessary at all points on the earth's
surface based on this crustal model(ibid,p.176 et seg.). At the same
time, progress of varying degrees was made in gravimetric geodesy at the
U.S. Coast & Geodetic Survey in the U.S.A., by the Survey of India under
de Graaff-Hunter and by Jeffreys at Cambridge.

The problem facing all research groups was the paucity of
gravity measurements at sea and in the southern hemisphere. During the
period preceding the second world war, the only means available for the
measurement of gravity at sea were the Vening Meinesz pendulums (ibid,
p.115). It was indeed very tempting to accept as valid, the arguments
of the Helsinki school in such a situation. These went as follows.

(i) The earth is in general isostatic equilibrium.

{ii) Hence the isostatic anomaly in the general case should tend
to the value zero.

(iii) Thus all unsurveyed areas could be represented by zero
anomaly values without significantly affecting the solutiom.
These arguments were, to the writer's mind, rather surprisingly supported
by Vening Meinesz despite his interest in the mantle and the possibility
of convection(ibid,p.72), as they implied that hydrostatic equilibrium
prevailed beneath a certain depth of compensation. This interest in the
mantle was probably a consequence of his observations of large scale

departures from isostatic equilibrium over many parts of the earth.

Two gravimetric geoids were computed on the basis of these ideas.
The first pioneering attempt was a free alr co-gecid by Hirvonen in
1934 which is chiefly of historical interest. The second was an
isostatic co-geoid based on four times as much gravity information as
that available to Hirvonen(Heiskanen 1364,p.4).  The solutions applied

Stokes' integral by quadratures to an appropriately divided earth.

A different technigue was adopted by Jeffreys who questioned
the assumptions made by the Finnish school in the representation of
un-surveyed areas. He reasoned {(correctly, as subsequent events have
shown) that the assumption of the concept of hydrostatic equilibrium
was not warranted in view of the numerous deviations from it. He
proposed the harmonic analysis of all available gravity data using a

surface harmonic series of the form

Ag =

i o~ R

C.{f(o,) ], ... (1.3
1 3 3

J
from which values could be obtained by least squares for the coefficients
C. and hence definition obtained for gravity anomalies at all points on

the earth's surface(Jeffreys 1962,pp.185 et seq.).
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It should be noted that Jeffreys' technique for the represen-
tation of the earth's gravity field is different in principle to the
approach of the Helsinki school. Jeffreys recognises the fact that
the earth's grvitational field is a continuous one and that the gravity
value at any point is dependent on the distribution of values elsewhere.
In principle, it makes no assumptions about either the nature of the
field or the internal constitution of the earth. The Helsinki
approach, on the other hand, assumes the assumes the existence of
isostatic compensation and its gravitational consequences as the
dominant contribution to the deviation of observed gravity from that
of the standard reference model. This is, in fact,so but other factors
make significant contributions to this deviation with far reaching

geodetic consequences.

While the foundations of the analytical approach to the
representation of g in unsurveyed areas were postulated by Jeffreys in
1941 (Jeffreys 1941), it was the Soviet geodesist Zhongolovich who produced
the first geoid map using this technique(Zhongolovich 1952). The geoid
undulations so obtained had magnitudes which were twice as large as those
obtained using the zero anomaly approach for unsurveyed areas. Compara~
tive geoid maps are given in (Heiskanen 1964).  Zhongolovich's solution
unfortunately included certain low degree harmonics in his analysis
whose omission could be interpreted geometrically. Nevertheless there is
little doubt that his sample was far too limited for an accurate solution,
modern determinations indicating that the truth lies between the above
extremes.

Kaula{1959) went a step further when he used a more comprehensive
data set in adopting analytical techniques for the determination of the
free air geoid obtained by the use of free air anomalies in Stokes' integral.
His major refinement was the use of Markov processes to estimate the area
means used in the harmonic analysis. The increased accuracy was
possible primarily as a result of the improved gravity coverage available
which enabled Kaula to use smaller basic units (lO squares in contrast
to 10° squares used by both Jeffreys and Zhongolovich) and hence obtain

greater accuracy.

In addition, Kaula introduced the concept of combining estimates
of the values of harmonic coefficients obtained from satellite orbital
analysis with surface gravity values to obtain an improved solution.
Looking back from 1970, there is no doubt that Kaula's combined solution
matches the astro-geodetic solution for the geoid in the Australian region
much more closely than either his pure surface gravity solution or the
isostatic co-geoid(ibid,pp.108-115). For a gravimetric solution of
geodetic accuracy for the Australian geoid, see (Mather 1970b,p.111).

Kaula's 1959 determination only used values of a few selected
low degree(i.e., long wave) harmonics. Significant advances in dynamic

satellite geodesy enabled Kaula to make yet another development. He
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produced the first acceptable combined solution for the representation
of the earth's gravitational field by fitting a harmonic representation
to (12,12) the the available surface gravity data and obtaining as a
by-product, improved values for the harmonic coefficients using the
theory outlined in section 7.3(Kaula 1966a,p.5311). This can be
visualised as an analytical technique for establishing values of gravity
in unsurveyed areas. The resulting data set has been used to obtain

geoidal solutions of geodetic accuracy(e.g., Mather 1969).

Thus physical geodesy in the seventies relies heavily on
these analytical techniques for the definition of the earth's gravitational
fieldas complete surface gravity coverage is still some years away.
The theoretical problems involved are many. Most of these resolve
themselves for solutions of the order of the flattening (i.e., *30 cm)
and the results obtained are quite adequate for practical purposes
(e.g., Mather 1970b). The present development attempts to outline
the problems involved in extending technigues to obtain solutions

2
correct to order f .

It should be noted that the estimation of the precision of
solutions to the order of the flattening does not mean that
geoid determinations have errors of this order of magnitude. In the
event of a complete representation of the gravity field becoming
available, the residuals between solutions correct to orders f and f2
will be position dependent. The shape of geops is dependent on two

contributory factors(e.g., Moritz 1968, Mather 1970b).

(i) The general shape and mass distribution of the earth.

These are long wave effects and best described as spherical or spheroidal.

(ii) The local deviations of the earth topography from the

regular reference shapes(i.e., topographical effects).

The analytical techniques covered in the present development

deal entirely with the spherical and/or spheroidal effects,
Summary

The same distribution of mass in earth space which defines
the geops and the values of dbserved gravity (g) at the physical surface
also cause perturbations in the instantaneous orbital elements defining
the inertial space motion of a near earth satellite. It is conventicnal
to analyse these perturbations using spherical functions from which an
estimate could be dbteained for the coefficients of a harmonic series
defining the earth's gravitational field. The low degree terms of
such a harmonic series can be used to define values for unsurveyed
ocean areas by field extension between the available gravity anamaly
data at the earth's surface.
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2, INTRODUCTORY THEOQREMS

2.1 General conventions

i. Reference systems

The space being considered can be defined by either of
the following Cartesian systems:-

(1) X, at the general point Py
and or  (ii) Xi at the centre of mass C of the system.

Note that P may be at C but such use precludes the utilisation of
any special properties of the centre of mass. Alternately, the space may
be defined by a family of surfaces and a system of surface co-ordinates

X
o
on a surface

x3 = constant.

The guide to notation gives an explanation of the significance of

subscripts.

i1. Vector representation
The general vector F in the space can be fully represen-
ted in terms of the three components along triply orthogonal Cartesian
axes in the space and the unit vectors 7 along the Xi axes. It will be
assumed in the following development that the rules of vector manipulation
are known'e.g., Jeffreys & Jeffreys 1962,pp.57 et seq.). They are

summarised here for ease of reference.
(i) 1Ir F,; and F,, are the three components of the vectors

F, and F

1 95 their moduli Fi are given by

3 2 1%
F, = [leFij] ... (2.1)

More specifically, the vectors Fﬁ can be represented by the equations

3
F. F.ii ... (2.2)

"

(ii)  The scalar product of the vectors F, and F, is given by

3
F,.Fy= F F,cos 8=F,F, (= ileling ] ...(2.3),
where 6 is the angle between the vectors in the plane containing the

vectors. If Fl and F2 are unit vectors, then Fijcan be considered to be

direction cosines.

(iii) The vector product FS of the vectors Fl and F2 is given by



le

F3 = F] X FZ
where
F](i +1) Fl(i +2)
F = , SS (208,
Fo41) Fti+0)

the term ss referring to the fact that aibscripts take all possible values,
being scaled when the value exceeds 3 by subtracting 3. Also

F3 = Fl F2 sin 6 . (2.5)

(iv)  Vectors are invariants in a given space. Hence the magnitude
and direction of a vector are unchanged on change of referer.ce frames.

For a complete treatment see (Hotine 1969,p.3).
2.2 The Laplacian

Scalars in a space are invariants having a magnitude ¢ whose
variations are a function of position alone. The operator V is the

vector defined by the relation

3
v =7 = i ... (2.6).

The operator is of significance in defining the divergence of a vector F

which is an invariant of the space, being given by the scalar product

oF
i

= e (2.7)
i

V.F =

I} o~1W

An important case is that of the vector F which is the
gradient of the scalar ¢ given by
F= Vo '

when

3 2
V.F = V% = ) g—é’i ...(2.8)

is called the Laplacian of ¢. Both the Laplacian and the divergence of
the general vector are invariants in the space. The gradient Vb of the

scalar ¢ is however, a vector.
2.3 The significance of V¢

Consider the surface given by the eguation
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¢ = C /
where C is a constant. This locus could also be expressed by the vector
R given by 3
R:zX"L
i=1 *
as shown in figure 2.1. If ds is an element of length wholly on the
surface ,
a¢
& = °
3 3¢ ax, 3 3 3 ax,
or l s =°- L st gt
i=1 °Fi 9 i=1 % i=1 %°
.. . ap
This is equivalent to Vo . s = 0.

As dR/ds lies entirely in the surface ¢ = C , the gradient V¢ of ¢

is therefore normal to the surface ¢ = C .

If ¢ is potential, V¢ is therefore oriented along the normal

to the equipotential surface ¢ = C .

2.4 The scalar 1/r

If r is the modulus of the vector F described in section 2.3,

then
§ .
Y = X.7z.
i=1 *
Hence
3 -y
1 _ (1 %)
r = i=1 ‘?
and
3 2X.
1 i . 1
V_ - z - ——, =—-—3R .--(2-9)
r i=1 2r° r
Further,
2l ol
v = -V.(% )
1 1
= -(R.V s+ VR

In the case when r # 0, V.R = 3 and

1

i __3 2 2
R.V 3= ;3(x1+ X

2y - _ 3
2+ X3) -

Hence
v2i_o ...(2.10).
r



_18-

The surface
¢ = Constant

FIG. 2.1

The position vector and equipotential surfaces

FIG. 2.2

Line integrals
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1/r is said to satisfy Laplace's equation.

2.5 Surface and volume integrals
1. Basic definitions

Surfaces and volumes in a given Euclidian space are defined in
terms of the loci of points in the space. Such points are specified by
the set of values taken by three variables xi. Curves, surfaces and
volumes are defined by continuous sequences of points in three dimensions.
The general theory of continuity in n dimensions is available in any
standard text on the subject{e.g., ibid, p.176). The main conclusions

may be summarised as follows.

(i) A function
£(P) = £(x,,i=1,n)
is continuous in m dimensions at a point P if the value £(Q) at the

general point Q in the neighbourhood of P satisfies the inequality

l£(q) - £(P)| < ¢

where € is a positive rational number.
(ii) The function f(P) is said to be differentiable if

T of Vo2 s
[f(xi+dxi,1=l,m) - f(xi,1=1,m) - ‘E dxi . ] el .Z dxi 12
i=1 1 i=1

here ¥
wher z dxi < 8%
i=1
8 being a positive rational number dependent on the location of P. This

assumes that the partial derivatives Bf/axi,(i=1,m) exist.

(iii) The mere existence of partial derivatives does not
imply that a function is differentisble. A function £(P) is differen-
tiable at P only if the partial derivatives Bf/BXi are continuous in the

neighbourhood of P.

(iv) If a functbon f(P) is continucus in the region around P, its

gradient at P is a vector provided f(P) is differentiable in the region.

(v) 1If Fi are the components of & vector function in a region,
a sufficient condition that BE{Bxi shall be a second order tensor is that

Fi be differentiable.

i1.Line integrals

Let C be a continuous curve in two dimensions defined by
the X%, plane, joining two points A and B in figure 2.2. Let f(xu)be
a function which is defined at every point on C between A and B. If the

arc AB is divided into n segments of length dsk(k=1,n) and if Q(xa% is
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a point in the k-th segment,then

n
Lim [kf flx,) dsk] = JC f(x,)ds ... (2.11)

dsk+0 =1

is called a line integral. The continuity of f(xa) is sufficient to
define the existence of this line integral. The equation of the

curve can be expressed in parametric form by the relation

xa = Xa(s)

and the concept extended without loss of generality to three dimensions.

iit. Surface and volume integrals

Similar concepts can be defined for surface and volume

integrals. The surface integral
n
” F(x,)dS = Lim ) [Fexp) ] dSk] c..(2.12),
as »0 k=1
S k
n->o

where the subscript X refers to values at the k-th element of surface
area, exists if F(Xi) is bounded, i.e., it is continuous on the surface

S enclosing the region V.

Similarly, the volume integral

m F(x)dv = Lim (krf [F(xi?kd\{(l ... (2.13)

\Y% av. >0 ‘k=1
n

exists if F(Xi) is bounded in the region V enclosed by the surface S.
For a detailed treatment of these integrals as double and triple integrals
together with the problems associated with change of variables, see

(idbid, p.180).

2.6 The divergence theorem

Also knam as Green's Lemma/ Gauss' theorem / Ostrogradskii's
theorem.
Let S be a surface enclosing a volume V and let the vector F,
given by an equation similar to 2.2 be defined at every point in V and
on S. If S is such that no straight line parallel to any one of the
Cartesian axes defining the space , intersects it in more than two points,

the divergence theorem states that
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[ 7z av- [ nrs

v S
where V is defined by equation 2.6, while ¥ is the unit vector in the

direction of the outward normal to the surface S.

Proof

The scalar product
3 aFi
vEo= ol
i=1 i
must exist everywhere within the surface S, when the proposition to be

proved can be written as

3 3 OF;
” N. ‘X F.i ds = ”f 1 = av ... (2.15).
i=1 i i

s y =1

From the definition implicit in equation 2.12, equation 2.13
can be considered as three separate integrals. For example, when i=3,
as shown in figuwre 2.3, S being a double valued surface over its pro-

jection on the X X2 plane , the element of surface area of such a

1
projection is composed of two parts. The first is the lower element

as,, with outward unit normal Nzand an- upper element ds2(normalﬂg) is

the second part. The four lines parallel to the X3 axis which bound

the elements of surface area 4S., and d82 also enclose a certain volume

1
within the surface. If the element of volume 4V is given by
3
av = 1 X, ,
. i
i=1

the terms obtained in the volume integral, when i=3 in equation 2.13

give

X
*2 ib} ax, dx_dx
% ax 1772
361)

3 3
which, on integration with respect to X3 gives

([ ooy,

2 1
where the subscripts s and s refer to values at the elements of
1 2
surface area dSl and dS2. From figure 2.3,
= . = - . S..
dxldx2 +N2 3 d52 N] 3 4a 1

Hence
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FIG. 2.3
The Divergence Theorem

P (within S)

P(exterior to S)

FIG. 2.4
Gauss' Theorem
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which gives

%= ffrns =

as dSl and d82 make up the surface S. As this expression was derived

without assigning any specific properties to the X3 axis, the three

equations

BFi

ffj X, av = f( Fi N.7i as
i

hold. Summation of these relations gives the original equation

I vea - [ nr a

Notes
(i) The divergence theorem is applicable only if V.F exists every-

where within the volume V ang (N.F), which is the scalar normal deriva-

tive of the vector F, exists everywhere on S.

(ii) It is obvious from the proof that the divergence theorem also
applies to those surfaces which are intersected by any line parallel
to one of the co-ordinate axis an even number of times. This makes it
possible to consider the case of the volume V enclosed between two
surfaces S and S', when the above proof can be extended to obtain the

relation

”f V.F av = ” N.F 4s +” N.F as ... (2.186),
s s!

where the normal N is always outward with respect to the volume

enclosed.,

2.7 Green's theorem

Consider the application of the divergence theorem to the

vector

where Ul and 02 are scalars , when the following relations are obtained.

{f[ V.(Ul VUZ)dV = ff N.(Ul VUz)dS
\Y S
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or

Similarly, in the case when

F= U W

!
2 1

2 -
”f[WBF% +%VUJdV_fo2VW(Hd&
On differencing the above equations,

JJJ (v,vu, - U, V%0, Jav = f[[ Uy V.MU, - U, V.MU, ) as LLL(2.17).

This result is known as Green's theorem and applies under the same

cond:tions as the divergence theorem.

2.8 Gauss' theorem

Let S be a surface enclosing a volume V, as shown in

figure 2.4. If the vector F is given by
(2,9)
F=Vl i-’l‘aﬁ,
X r
where 3
F = .2 Xil ,
1=1

the origin being at P in figure 2.4, the application of the divergence

theorem to F gives

If r#0, P is outside S and the volume integral becomes zero as shown in

the derivation of equation 2.10. Therefore

R . .

e d4s = 0 1f P outside S ... (2.18).
r equals zero only if the origin P lies either on the surface S or in the
volume V as shown in figure 2.4, In ether of these cases, an instance
occurs when 1/r is indeterminate. In the former, this instance can be

excluded by considering the volume V' which arises as a consequence of
removing a hemisphere of radius € and centred on P, from the volume V.

The application of equation 2.14 to the volume V' gives

E LR \ E. 4 ‘E !
JJ[V.( £3)av —fJSN. -3dS + st' Y. ds e (2.19).
v ]
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As

N' = -

R
c ; and R .R = g2

at all points on S', the second integral on the right evaluates as

Bl

as S' is a hemisphere as P is on S. The volume integral on the left of
equation 2.19 is zero for the same reasons which governed the evaluation

of equation 2.18. Thus

fj N . §3 ds = 2m if P is on S.
Similarly,
R
f N.fg ds = 47 if P is within S.
Summarising,
0 if P exterior to S
R . .
N. s ds = 2T if P is on S ... (2.20).
am if P is within S
This result is known as Gauss' theorem.

2.9 An extension of Gauss' theorem

Consider the function

L.(2.21),

where a; is a constant associated with the points Qi which are a
distance ri from some fixed point P. P could either be on the
surface when it would be associated with an element of surface area

dS or within it when it would coincide with an element of volume dv. Then

=
1
]

It e~
R
WP

"
\4
1}
i
i ~10

The application of divergence theorem to this vector gives

o 3 ] w-ffo.§ Sne

i
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FIG. 2.5

Extension to Gauss theorem

1

1

FIG. 2.6
Rotational potential
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The volume integral will be zero provided no r, is zero
for reasons given in section 2.4, This occurs when all the points
Qi are exterior to the surface S and P is within S as shown in figure
2.5. If on the other hand, all the Qi's are on S, they have to be
excluded from the volume prior to integration by as many hemispheres

as there are Qi's on S, when the use of equation 2.20 gives

n a, n
”N. ! 3 R.a = 41 ) a,.
. r. 2 . i
i=1 i i=1
To summarise,
0 if all Qi's exterior to S
noa, n
H N. ) =35 R.d =<2m ) a if all Q,'s on S .. (2.22)
. r, . i i
i=1 71 i=1
n
aT z a, if all Q,'s are within S
i=1* *

2.10 The potential due to Newtonian gravitation

The potential ¢p at a point P due to Newtonian gravitation
as a consequence of the distribution of a set of masses dmi at points

Qi(i=l,n) is given by

... (2.23),

where ri is the distance PQi and k the gravitational constant. The
quantity ¢ has the same characteristics as the summation whose divergence
was equated to F in equation 2.21. On studying the properties of the
gravitational potential with respect to the general surface S which
encloses the volume V, it can be seen that equation 2.22 could be

written as

0 if all Q,'s exterior to S
i
n dmi n
”N-% dS=—k”2 ?Ri ds = - ZTrkdei if all Q. 's on S.
i=1 i iml
n

ank Y am, if all O 's within S
i=1
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The use of the divergence theorem also gives

oo o - fff o o

Hence if 0 is the variable density of matter giving rise to the
gravitational potential, and if the matter dmi is contained within the

volume dv,

0 if no matter exists within S

{[J V¢ av = - .. (2.24).
4ﬂkfj{p av if all matter is within S

As V2¢is zero at all points not coincident with matter, the

equation
72p = 0 ... (2.25),

called Laplace's equation, is said to hold under these conditions. The

use of the result embodied in equation 2.24 shows that the equation

Vi¢ = -amkp ... (2.26)

is satisfied at all points occupied by matter. This result is known
as Poisson's equation and relates the Laplacian of the potential to the

density of matter at the point.

For comments on the relevance of the Newtonian theory,

see (Hotine 1869,p.147).

2.11 The gravitational potential of a rotating body

Points on the surface of a body rotating with angular velocity
w are subject to a centrifugal force whose modulus is
w?
where % is the perpendicular distance from the axis of rotation to the
point. This force is directed radially away from the axis of rotation
(e.g., Humphreys 1945,p.216).  If the X, axis is taken to be coincident

with the axis of rotation, the centrifugal force can be expressed by the

vector

2 X. 5 2
o= fw? E E% 1 = w E X, 1 L2027,
i=1 i=1 *t
where
_ 2 2. %
g9 = (xl + xz) .

The rotational potential ¢r is thus related to F by the

equation



This is eguivalent to

2
N 2 2
Cbr—%izl X w e (2.27).

The Laplacian of the rotational potential is given by

2, _ 2
v ¢r = W

He~110

5.}az{xi} = 202 ...(2.28).
i=1 %

The total potential V of a rotating body is therefore

given by

V = ¢ + ¢

I iti : .
n addition, at a point unoccupied by matter

[ 20
... (2.29)

l -41kp+ 202 at a point occupied by matter of density

Vv

The gravitational potential of the earth satisfies equation 2.29
at all points which rotate with it. This potential is commonly called

the geopotential and surfaces of equal geopotential are called geops .
Laplacées equation
V% =0
is of considerable interest as it is a second order differential equation
defining gravitational potential at all points in space which

(a) do not rotate with the gravitating body;

and (b) are unoccupied by matter.

Such conditions are satisfied by the external gravitational
field of the earth in regions affecting the orbits of near earth
satellites. The sections which follow deal with classes of functions
which satisfy Laplace's equation and have characteristic properties which
are useful in the analysis of data distributed over the surface of the

earth.

2.12  The solution of Lapiace's equation in general curvilinear
co-ordinates

Special types of curvilinear co-ordinates have been dealt
with in section 1.3. Attention will be confined in this section to

systems of curvilinear co~ordinates which are orthogonal. Position
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with reference to these curvilinear co-ordinate systems are completely
defined by three parameters Ei. The co-ordinates are orthogonal in that
the linear equivalent dsi corresponding to a change dEi in Ei and given

by

ds, = h ag, .. (2.30),
1 1 1

where hi is the associated linearization parameter, form a triply
orthogonal system of displacements in the limit. The spherical and
spheroidal system of co-ordinates described in section 1.3 are examples
of such systems. The general element of volume d&V in the space can

be defined by the equation

3
& = T h. 4 ... (2.31).

If the scalar Ufe.g., gravitational potential) satisfies
Eaplace's equation at any point in the space, it follows from eguation
2.25 that the space is unoccupied by matter. Consider the application
of the divergence theorem to the vector W over an infinitely small
element of volume dV in this space which is defined by the system of
curvilinear co-ordinates specified above. If the element of volume

is small enough for VW +to be assumed to be a constant over the region,

3
v3U T

h.at, = fJ .U as ..o (2.32),
i i i

1
where three parallel pairs of triply orthogonal surfaces comprise the
surface S which encloses the volume dV as shown in figure 2.7. Further,

each pair of surfaces is defined by parametric values of the form

Eiot mdE.

Further, the scalar product V.N is the normal derivative.

Hence
... (2.33).

FWH
M

3
V.= )
i=1

The contributions to the surface integral in equation 2.32 by pairs

of such surfaces is obtained by the use of a Taylor series as

d (y.mw as] + [V.N'U as] -
as . .=,
1 1 10

[V.¥N U as] + h dEi

giggio
y af, <2 [v.4'U ds]
pag Sho

where

ds =h h as z,

*
i+142%5 1% 400 r S8

This reduces to

* see "Guide to Notation".
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4 3 h, h,
at, g Tavas - (na) £ i W .
1 1

as N !

) 3 3 3 4 ( h'+1h' 5 30 )
ViU [ohedg, = (W dé.][ ) "i“_ﬁii“‘— , SS
i=1 11 ;£=1 P2 4 i %%y
or 3
V2 = 1 7 a ¢ Meier U ) (224)
u = 1A az‘ R gg = o , Ss.
123 i=1 i i i

Thus Laplace's equation can be expressed in terms of
gereral orthogonal curvilinear co-ordinates Ei and their associated
linearisation parameters hi by the equation

3 h, .h,
73 dxlirz 6)U)=o , s ... (2.34)

h, agi

1 i i
3,  THE SOLUTION OF LAPLACE’'S EQUATION IN SPHERICAL CO-ORDINATES

3.1 Introduction

Gravimetric geodesy is primarily concerned with the gravity
field exterior to the earth. This space can be completely defined
by the spherical system of co-ordinates described in section 1.3. The
validity of an adopted model should not be confused with instances where
physical characteristics are attributed to any one of the parameters.
Further, it should be noted that Laplace's equation as expressed in
equation 2.34 is only satisfied at points not occupied by matter.
None of these problems will however intrude at this stage of the

development if only the following conditions are imposed on the solution.

(i) The region applied to is exterior to all matter.

(ii) Positions in this volume are defined on a spherical

co-ordinate system.

The parameters adopted for the spherical system are given in

equation 1.7 and illustrated in figure 1.2, being the radius r, the

co-latitude 0 and the longitude A. It can easily be verified that
£,=0 & £ = A &= .
=r ; h. =r sin 6; h, =1 el

1
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for such a system of co-ordinates. This reference system can be
visualised as being composed of a series of concentric spheres defined
by 53, while position on these spheres is defined by the surface

parameters El and 5,2.

3.2 The solution in spherical co-ordinates

The substitution of the relations at 3.1 into equation 2.34

gives
dr . .U a 1 U dr 2 . U,
gsin b5 M o L gig ol alF sin® 57

As r, O and A form an orthogonal system, differentiation and

expansion of the above equation gives

1 32U 1 %%U . Eis) . 32
cos 6 ~g * sin 6 37 * Sin 0 332 + 2r sin © ¥t r’sin 6 37~ 0
cee. (3.2},
Let
U = U(r,8,)\)

be a solution of equation 3.2. Further, consider a solution which can
be expressed in the form

U(r,8,1) = R(r} S(6,)) ... (3.3),

where S(8,)) is a function of the surface co-ordinates 6 and A

alone. Substitution of eguation 3.3 into 3.2 gives

3S 3%s 1 3% 3R
R(X)%x + si s, L r si 3R
cos 6 R(X)zz + sin 8 R(r)zg7y + s7og Rir)gx% + 2 sin b S(e,x)ar +
2
r’sin 8 5(8,038 =0
r
Re-arrangement of terms and separation of variables gives
1 (. 3%R Ry _ 1 3’s 3s 1 3%s
R(D (* 5=+ 2r 55 )= - 56 ( o2t ot8 35t SaTe o2 )

The two second order differential expressions given above
have to be satisfied simultaneously. Two differential equations,
one in r and the other in (8,)A) , can be obtained from the above by
putting each side equal to a common constant. The adoption of the
term n(n+l) as this constant is of convenience as it enables a

simple solution to be obtained for the second order differential
equation in r(Hobson 1965,p.9). The two equations which result are
» 3°R 3R

T + 2r 3 nn+l) R{xr) =0 L. (3.4
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328 .38 1 #%s
N7 + cot O§§-+ Pspn el yvas n(n+l) S(8,A) ... (3.9).

In a similar manner, S{8&,)) can be considered as being the
product of two functions F(A) and G(6). The adoption of a relation

of the form

S(8,%) = F(h) G(8) ...(3.6)
transforms equation 3.5 into

2 2
F(A)g—é? + cot 8 F(V) —g% T 682 + nin+1) FOO G(8) = o.

The separation of variables and re-arrangement of terms gives

(o3

2y 1 v 392G Te .
7 )z ) (s1n29 563-+ cos B sin 6—§-+ n(n+1)sin?6 G(e)}.

1
F()) ( 3

[ob)

A repetition of the procedure used above gives the second

order differential equations in 8 and A if each side is put equal to

a constant, a ccnVenient form for which is m? . The resulting eguations
are
32F 2
3z oW F(X) =0 ... (3.7
and
2
sin®9 3—6% + cos 65in8%%+ [n(n+1l)sin®6 - m*] G(B) = 0 ..(3.8).

The solutions R{(r), F(}) and G(8) of equations 3.4, 3.7 and
3.8, on combination through equations 3.3 and 3.6 give the solution of
Laplace's equation U(r,0,)) in spherical co-ordinates. Eguations 3.4
and 3.7 are standard second order differential equations and the

solutions can be directly verified as

n B .
R(ry = Ar + 7 (3.9)
and
F(}) = Ccosm + D sinm L (3010

respectively, where A, B, C and D are constants of integration.

The solution of equation 3.8 is more complex. The intro-

duction of the change of variable

U = cos O

gives

G _ G a _ g C
as = du ae dy

and
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a’G _ . 2, 4% & 2,d°G 4G
35z = sin 6 aﬁy- cos 6 a = (1 u )Eﬁ?' u a

Thus equation 3.8 becomes

a2G 2
(1-p2) (l'uz)ﬁﬁf" u g%- - u(l—uz)g§~+ (l-uz)(n(n+1) - i¥ﬁ7 G(w= 0

or 2

2
(1- u%—ga%- - 2U L + [n(n+1) - ] G(w) =0 if p? # #1 ..(3.11)

m
au 1-p2

Note

In the case where m=0, the gbove equation reduces to a
form known as Legendre's equation.

Thus U can be expressed by a relation of the form

B
U =[Axn + T )[C cos M\ + D sir mA\] G(u) ce..(3.12) .
X
The constant A equals zero as U=+ 0 when ¥ * « Thus equation 3.12

can be written more generally as

1
n+1l
r

[C cosmh + S sinmi] G (W) ...(3.13),
nm nm m

which is a solution of Laplace's equation , Cnm and Snm being constants
whose values depend on N and m which, in turn, are not functions of the
co-ordinates but are constants, independent of position. Thus an
infinite number of solutions are possible depending on the combination
of values adopted for n and m, It is still necessary to obtain an
expression for Gnm(u). This is done in stages. In the first, m is
taken as equal to zero when a solution is obtained for Legendre's
equation. In the second, the solution for Legendre's equation is

extended to the case when m # O.

3.3 The solution of Legendre's equation

Legendre's equation is given from equation 3.11 as

2
2, d°G _ 4G _
(1-u“) -(E-z—n 2u aﬁ‘n + nn+l) Gn (W) =0 ...(3.14),

where U as obtained in section 3.2 lies within the range -1 < u < 1.
However, all possible values will be admitted for U in order that the

requirements of future sections can be met. A solution of the form

G w = ] au

is adopted for Gn(u). Successive differentiations give
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G _ v g im1
dy i;—w i
and
2 bl .
a°G oy g i-2
aﬁrﬂ = -i_ml(l l)ai u .
Thus equation 3.14 can be written as
fe o) ) 2 .
¥ (i(i~1)ul_ ¢ nm+eD) ~[1G-1 + 2i1h* a, = 0.
==

This equation will be satisfied if all the coefficients
of Ul are each equal to zero, i.e.,
[nn+l) - id+D]a, + (A+D+2)a;,, = 0
or

(i+1) {(i+2)

i SiGeD) nmrn) Ji+2 ... (3.15).

a

It can also be seen that if any ai is zero, all ai's for smaller values

of i in increments of two are also zero. This happens when

i = -1 or i = -2 for a non-zero coefficient a, oe
Thus all coefficients for 1 < 0 are zero even when coefficients
for 1 > 0 are non-zero. Also

(1-n) {i+n+1)
. = T . ...{3.16).
242 (1+1) (1+2) i ¢ ©)

Again, a5 = 0 when 1=n or 1= -(n+l) even when
a; # 0. Thus all coefficients a, are zero for i > n.
In addition, all ai's are zero when 1 is greater than -(n+l). Thus

equations 3.15 and 3.16 specify two series as illustrated in figure

3.1 The range of indices in each series are

(a) 0 <i<n

(b) —-» <] <-(n+l).

More specifically, the first series is of the type
n .
G =1 au (3.17)
n M . i T !
1i=0 .
while the second is of the form
[eo]

G = | a,
i=n+1 u

... (3.18).
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The first series is convergent for n->® when IUI <1 while
the second does so when IU[ > 1. The relationship between
successive coefficients in the series are obtained through equation
3.15, in the case of the expression at 3.17 which is of direct relevance
to the solution in spherical co-ordinates. When

When 1=n -2,

_ _ nm-1)
%2 T T 2D on"
When i=n-4,
a . _ (n-2) (n-3) _ n(n-1) (n-2) n-3) a
n-4 4(2n-3) n-2 2721 (2n-1) (2n-3) n’
Also, when 1 =n-6,
4 .. m=4@m-5)  _ n@n-1)(0-2) (0-3) (1-4) (1-5)
n-6 6 (2n-5) n-4 2331 (2n-1) (2n-3) (2n-5) n°
Thus the series
-2r
_ n_n(n-1) n-2 _yr n(n-1) (n-2) ... (n-2r+1) n
G, an(“ 2(en-n Pt e YUY oD (no3y L (-2 P
is a solution of Legendre's equation. The value of Gn(U) when
a - L.3.5... (-1 _ _ (2n)!
n' B
n 2n(n:)Z
is designated as Pno(u) (or Pn(u) in most texts) and called a
Legendre function.  The final expression can be written as
(2n): & r n(n-1)(n-2)...n-2r+l) n-2r
Pro = 55 LD v
2 (n!) r=0 2 rt(2n-1) (2n-3) .. (2n-2r+1)
& r (2n-2r) . n-2r
- = z (-1) o TaoT ¢ ... (3.19),
2 r=0
where
in if n even
t =
%(n-1) if n odd.
Notes

(i)  The upper limits of equation 3.19 can easily be verified

against the conclusions following equation 3.15.

(ii) It should be noted that Legendre functions are not only a

solution of Legendre's equation but also of Laplace's equation.

(1i1) In addition, it is equally important to realise that these

functions are not the only solution of these equations.

(iv) Legendre functions are convergent only if |u[ < 1.
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3.4 Legendre functions of the second kind

Legendre functions of the second kind are series of
the form expressed by equation 3.18. The non zero coefficient with the
highest index is obtained when 1 = -(n+l). The terms comprising
the series are obtained by the application of equation 3.15.
When 1 = -(n+3),
a - (N+1) (N+2)
-(n+3) 2(2Nn+3) -(n+1) "

Again, when i= —(n4+5),

a _ (n+3) (n+4) _ (n+1) (n+2) (n+3) (n+4)
- (n+5) 4(2 +5) —(n+3) 2727 (2n+3) (2n+5) ~(n+1) '

and, in general when 1 =-(n+2r+l), an extension of this technique

gives

(n+1) (n+2) (n+3) (n+4) ... (n+2r)

a = a .
(n+2r+d)  5Ter (2ne3) (2n45) . . . . (2n+2r+1) (n+1)
Thus
+2) ...
Gn(u) - a-(n+1)( (2+1)(n ) 2 n+§r+l]'
r=0 2 r!(2n+3) (2n+5) .. (2n+2r+1) u
a . .
When —(nt1) is assigned the wvalue
A ) n: _2"mn?
~(n+1) 1.3.5 ...{(2n-1) (2n+1)  (2n+1)! ,

Gn(u) is designated as Qno(u)[or Qn(u) in most texts], being given by

G W = 'no(“)
n 2 oo
.2 b y (N+1) (N+2) (N+3) ... (N+2r) 1
(2n+1) ! 0 25r (2n+3) (2n+5) . . . (2R+2r+1) Un+2r+1
I (n+r) ! (n+2r) 1
- n N+r) ! (n+2r) !
= 2 E r!(2n+2r+1) ! n+2r+l ... (3.20).
r=0 v

Qno(u) is also a solution of Legendre's equation and is

called a Legendre function of the second kind.

Notes

(i) The complete solution of Legendre's equation is therefore
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=A P
G () oW+ B Q) ... (3.2D)
where
(a) B = 0 for a convergent series when ]ul <1
and (b) A =0 for this same condition if tul > 1.

(i1) Legendre functions of the second kind[Qno(u)] are needed for a
development when the solution for Legendre's equation is required

for a parameter which takes values greater then 1.

3.5 Alternate methods for generating Legendre functions

i.  The function p

Consider a fixed point P at a distance Rp from an
origin O and a variable point Q whose distance from O is R, If
Qp = ¥, and the angle QﬁP =y, the application of the cosine formula

to triangle POQ in figure 3.2 gives

r

1

[R?+ R® - 2RR cos w]%.
p p
If R< R,
P

(1 +t? - 2ty] ... (3.22),

B
,UWIH

where R
t = R < 1 and Y = cos Y ... (3.23).

P

Equation 3.22 can be expanded by the use of the binomial

theorem to give

11 -y
7 R [1 -ty - ©)]
1%
et i 1.3 2 1.3.5 ...(2n-1 on
- (1 s at@u-t) ¢ miideeu-n P s B2 Yt (2u-t) 1™+

..(3.24)

The above series is convergent if

ft(eu - )] < 1.
In general, this is a double series and will be absolutely convergent if,
in addition, (2|lul + t) < 1 (Hobson 1965,p.15). The n-th term in

the expansion on the right in equation 3.24 is
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: (2n) ! tn((2u)n- (2u)n—l n(n:l)(zu)n-2 _ n(n-l{(n—z)(2u)n—3 +
n 2 2! 3!
27 (n!)
L+ (-1 T RAATD s M-rtl) )P ety L. F-1D™P) .. (3.25) .

. . .. n , .
Contributions to the coefficient of t° in a series of the form

1
r

=
s
o]

n=0

are obtained from the successive terms in the series on the right of
equation 3.24. E.g., the coefficient of t" can only be contributed to
by terms whose index V is less than n. The contribution of this term

is obtained from the inner series given at 3,25 when r = n-v, is

(2v) ! n-v v(v-l) ....(v-n-v +1) (2U)2v—n.

('l) t
22V(v!)2 n-v) !

The nature of the terms obtained are easily verified.

When V = n, the contribution is

(2n) ! n

2N (n1y?

When Vv =I -1, it is

(2p-2) ! 1 (n-1).n-2 n-2 (2p) ¢ 1 n(n-1) n-2
- (-1)" ——2 us o= (-1 i
22n 2[(n—l)!]2 1! 2n(n!)2 2(2n-1)

The contribution obtained when v=n-2 is

-4)! 2 -2 - - -
2n—;2n 4) = (-1) (n ;fn 3)  ,n-4 " 4
2 [(n-2)1] ’
- n(2n)é (_1)2 n(g—l)(n-z)(n—3) un—4 )
27 (n!) 2721 (2n-1) (2n-3)

the gereral term being given by V =h-r as

(2n-21r) ! r (n-2r+1) ..... (n-r) (n-r-1) n-2r
2n-2r 7 (-1 T HH
2 [(n-1r)!]
(2n)! rnn-1) ..... (n-2r+1) n-2r
= n > (-1) - U .
2 (n!) 2 r!(2n-1) (2n-3) ...(2n-2r+l)

On summing all the contributory terms, it can be seen that

the coefficient of t" is the series
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k
(2n) ! Tt nn-1) (n-2) ...(n-2r+l) Un—2r
n 2 = g
2"(ny© y=0 2% f(2n-1) (2n-3) ... (2n-2r+1)
(3,19)
3
= Po(w
no
Thus
1 1 .
L. X ) n
: R ) t Pno(u) ...(3.26),
p n=0

the summation commencing at n=0 to cover the first term in equation

3.24, as  t%=1 and P (u)=1.
[a]e)

Notes

{i) Faustion 3.26 is of concideranle sipgnificance in studving the

external rravitational (ield of the earth.

(ii) Tt hns been shown by (Fcker 1970)that the series at 3.26 is
convergent outside a sphere of radius R. He obtained this result

by generalising equation 3.26 to the form

o0

(11)

when the "sphere of convergence" is one of radius

Lin ”vﬂAni S (3.27).

i, Rodrigues! formula for Leacndre funetions

Consider the function

a’ n
F- — [in™)
du
f
2 2n-2_ n(n-1) 2n-4_nn-1)in-2) 2n-6
) dd [ 2l 2ne2, (2| ) ,2n=4_ ng ;5 ), .
i . .

(-1

F - on(2n-1) (2n-2) .... (n+D " - D2n=2)(2n=3) ... (n-1) WTe

2!
e (=1 F n(n’l)f;'<“"r+l)(zn-zr)(2n-2r—1)...(n-2r+1>u”'2r+
-2
_mf s nm-1) n-2 4 (o) TAM=D) .. (n-2r4 D) N
nt {7 2D 2%rt (2n-1) (2n-3) .. (2n-2r+1)

... (3.28).
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A comparison of equations 3.19 and 3.28 shows that

n

F = !
2'n Pno<u)
or
n
1 d 2 n
P (W = —— —xlw*-1"] ... (3.29).
no 2n n! du
Equation 3.29 is known as Rodrigues' formula.
11i. A recurrence formula for Legendre functions
Let
u=[1- 2ty +t2]7" —%
Then
Ju )y -2u + 2t
ot ~ 1-2ut+£2 1372
or
[1 2t u+ t ]at = u(y ~ t).
From equation 3.26,
u o= ) thP W
no
n=0
and ©
Ju n-1
T = Lnt P
n=0
Therefore,
IS 1
Z (n 7 p W [1-2 tu+t?l+ % P () [t- ull = 0.
neo no no
This relation holds if the coefficients of each degree in t
are separately equal to zero. The coefficient of tn_1 is

nPno(u) ~ 2u(n—1)P(n_Do(u) + (n-Z)Qn_zo(u) + P(n-aow) '”P(n-mo(“)=°

or

Pno(u) - u(2n-l%%_no(u) + (n—l)qn_zo(u) =0 ...{(3.30).

This recurrence formula provides a convenient method
for the numerical evaluation of Legendre functions provided they are

evaluated as a series.

1v. Conelusion

The Legendre functions Pno(u) , which are the solution of

Legendre's equation
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2
G G
(1 -uj g—yn - 2y g-n + nn+ G (W) =0
dau du n

are only a special instance of the solution of the general differential
equation

2 2
2, a°G dac m
(1 - %) aZ ~ 2U e + (n(n + 1) - ﬁ )G(U) =0 ...(3.11),
where G(U) is taken to represent the term Gnm(u) given in equation

3.13. This term completes the solution for gravitational potential

through Laplace's equation

1

]
U n+1
r

G [ C cosmr + S sin mi]
nm nm

It is therefore necessary to obtain the solution of the

general differential equation 3.11.

3.6 Associated Legendre functions

Assume a solution for equation 3.11 of the form

Gy = [1-v21™2 H(p) e..(3.31).
Then
a6 . 27%m-1 27 dH
@ - yml1-p?] 2u Haw + [1-p7] T
and
2
g—uf = -1y [1-02 172 4% B - m{1-02 1™ P HW -
m-1_  dH 2q%m-1_ &H 25m a’H
bl 107" L2 q - mil-w] 2u gy + [1-u R

2
[1-p2]) ™ gf;— ompf1-p21 1 %HJ +(mm-2)p2 172 -

Lbm-1 ]

mu(1-u?] H(W .

The substitution of these expressions into eguation 3.1l gives

2

2 2 >
H dH m(m-2) 2U°m m
- _ 2}‘5‘__ - at - - H(ul=0,
1 uzfzm i-u e 2u(m+1) o +( = + e m + n{n+1) T (u

which can be written as

4%l
au?

|

[1-p2] - 2u (m+l) +[ (n=m ) (n+m+1) JH(W) = 0 ... (3.32)

Q

1

on simplifying the coefficient of H(1) in the following steps.
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2 2
m<lil-
n(n+1) - %ﬁl——]— - m =n?+n-m-m
= (n-m) (N+m+1) .
Consider Legendre's equation at 3.14. Differentiation with respect
to U gives
2+1 2 1+1
2147 TGy a‘G aG a” G aG
P P™ -2u G - 2 G n - 2Wggn + nilign = o
au du
or
2+1 1+1
(10215 e &% + mmen-21 & - o,
2+1 1+1 du
du dau
A further differertiation gives
242 2+1 1+1 1+2
(121500 - 2ufsn - 200 S - 2
du du au au
1+1
n+1) - 2)%—5n - o
1+1
du
or
2+2 1+2 ot2
02198 242080 snmen —202+1)] &S = 0.
2+2 1+2 o+2
du du du

Successive differentiation m times gives

a g a%* s
[1-p2 15— - 2Dy S——2n + [nn+D) -mimr1) 1S——n= 0...(3.33).
2+m 1+m O+m
du du du
Hence den/dum satisfies equation 3.32. This implies that
Therefore aH
m
G = [1-u21™ L (p () ... (3.34)
m  no
du
is a solution of equation 3.11. A more complete solution is obtained

from equation 3.21 when

ym d@" ym d"
G = A (1?17 == _n}+ Blu?-11"" =g ('}
m  no m ho
du du
....(3.35).
Notes
(i) The series at 3.35 is not a convergent one unless at least
one of either A or B is equal to zero.
Iif A
If B

0, the series converges when lul > 1

0, convergence occurs when ]ul < 1.



m+n .
%md———[(f-l)“] ... (3.36)

—— [1-y?] —

2" n! du

culied =n agsocciated Legendre funetion of the first kind.

3.7 The function pnm(u)

It can be seen from a combination of equations 3.19 and 3.36

that
(ony b Q™ K n(n-1) (n-2r+1)
P — f1-p?] m————[un + (-nF N
nm 2"y au™ r=1 2ri (2n-1) (2n-3) .. (2n-2r+1)
Un—2r
.ol [1—,u2]v%m [ nm-1)...m-meP " 4
2

2 (n!)

B nn-1) (n-2) .. (n-2r+1) n-m-2r] .

) (<1)7 (n-2r) (n-2r-1) ... (n-M-2r+1 - _— u K

r=1 2°r!i(2n-1) (2n-3) .. (2n-2r+1)

where k' is different from k as the number of terms in the series

depends on m. Obviously m cannot be greater than n as the derivative
will be zero for all terms. In addition, there will be M fewer terms
in the new series. A Legendre series has ¥ in the range

7 n )

| 5 if n  even

G<r <k where Kk :J!c
\ -1
' 25- if n odd

The associated Legendre series will therefore have ¥ in the ranqge

[ n:m if (n-m) even
0 < r<k' where k' = + <
n";'l if (n-m odd.
Thus
nj ! n! -
an(u): (2n) 2[1-U21%m ?E:“;T,(Un my
27 (nt) T
kl
? (-l)r (n=m) (n-m-1) ..... (n-m-2r+1) un—m—2r 3.37).
r=1 2%ri(2n-1) (2n-3) ... (2n-2r+1)
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Tt is convenient, as will be seen in section 4.4to define

the associated Legendre function pnm(u) which has desirable properties

for surface integration over a sphere. pnm(u) is given by
. (n-m
an(U) a n! pnm(U)
(2n) ! 21%m{ n-m %l r {(n-m! (2n-2r)!_ n!
= [1-ul(u'+ (-1) e, X e X
2% —1 (n-m -2xr)! (2n) ! (n-r)!
n—m—2r]
u
J
(n-m) ! 2 1km g' r (2n-2r) ! n-m-2r
= ——= [1-p®] (-1) = e : - ..(3.38).
L —0 r! (n=m-2r) ! (n-r) .
Similarly,
nt
an(U) = ot pnm(u)
kl
_ 1 pg_ 27k X (2n-21) ! n-m-2r
T .n [1-u%) (-1) r! (n-m-2r) ! (n-r)! - (3.39),
2 r=0
where Qém if (h-m) even
k' =
r—‘—'—g“i if (n-m) odd.
Note

As m<n, pnm(u);P (w),

the equality holding when m = 0. Thus the function pnm(u) has smaller
magnitudes than an(u).

3.8 Some evaluations of Legendre functions

Lower degree spherical harmonic functions can be evaluated
with relative ease from equations 3.29 and 3.38. They can also be
expressed in terms of rectangular Cartesian co-ordinates in three

dimensions when the direct consideration of figure 1.2 gives

Xl = ¥ sin 8 cos A
X2 = r sin 8 sin A
X, = I cos 3]

The harmonics up to (4,4) are listed in table 3.1.



48

oo Kn§‘ an(cose) Equivalent polynomial
0 0 1 1 1
1 0 V3 cos B %
1 1 /3 sin © X5 X,
2l 0 Vs %{3C0329—l] l[Lx3~xl+x ]
ol /(23 3sin € cos © 3%,%, , 3%,X
/5 2 33, 23
o0 2 (ig] 3ain 0 3[xl—x2], 6 X%,
3l 0 i cos 6 [5cos26-3] x3[2X2—SX§—3X%]
3. 2 3 2 T2 2 2
301 ‘;«7/6 5sin @[: ®s 6-1] év&[MXB—zl—xg], Eﬁg[hxz—xi—xg]
2 i 8 6
3 (7/60 15 sin 3cos ]3.5x3[x:2L 2] 30;x1x2x3
31 31 A7/360 15 s5in°® 150%-3x,%,1, 15[x1x -x
Ll 0] Yo | §l35c0s"0-30c0s%68+3] | FlExi-2lad (e 1430 +x23 ]
Lo /(f% -5-[7cou 8-3cos B]sin B gxl[hx -3x (xl+x2)]
5
zxz[hx3—3x3(xl+x ]
- Loy 1 20 7 7win2 15, 2 2 2
S /(180) 5 [Tcos6-1]sin“® ?T{xl xe)[6x3 Xl'xg]
30
5 X% [6%g=3y =%, ]
b 3 /(é%;o) 105cos 8 sin’® lOSx [x —?xlx;] y 105x3[3xix2—x§]
[4
b i /(Sa%zzﬂ 1055in"8 105[xl—bxlx2+x 1, h?Oxlxg[x§+xg]

Table 3.1
Legendre functions with normalisation coefficients and

equivalent polynomials to (4,4)

¥ Normalisation factor which is the coefficient of an(u)

in equation 4.32

I, SPHERICAL HARMONICS

4.1 The general solution of Laplace's equation in spherical co-ordinates

It follows from equations 3.13, 3.35 and 3.39 that the

expression

U =

el pnm(u)[Cnmcos mA + S sin mh ] .. (4.1,
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where U = cos 9 and m,n are constants such that m<n
and 0 £n < ® when lu‘ L1, 1is a solution for Laplace's equation
for potential in space unoccupied by matter. As n and m are arbitrary

integral constants with only the restrictions defined above, a complete

solution for U is given by

(@
H
I o~1 8

n
1 .
vy} 2 pnm(u)[Cnmcos m + SnmSLn m] ...(4.2).
n=0 r =0

Equation 4.2 is said to express the potential at points
external to a gravitating mass like the earth, in an infinite series of

Spherical Harmomics, the term being attributed to Kelvin{Hobson 1965,

p-119). The spherical harmonic generated for each value of n, e.q.,
U = —— 5§
n n+l n
r n
o2 z pnm(u)[Cnmcos mh + Snm51n m ...(4.3)
rn+1 m=0

is called a solid harmonic or a spherical harmonic of degree n. The

series of terms

n
S =) S = mzo pnm(u)[Cnmcos m\ +Shmsin mh ] ... (4.4)

is called a surface harmonic,

The value of the index M is called the order of the term
Snm which contributes to the surface harmgnic Sn' A solid harmonic
takes values in all regions of the space satisfying the conditions for
Laplace's equation. A surface harmonic on the other hand, represents
variations on a sphere whose radius is defined by I. Thus the set

of surface harmonics

oo

I ose o

n=0 n

can represent the variations of any continuous function which takes
values on the surface of a sphere. A surface harmonic of degree n

has (2n+1l) terms. For a proof of this statement see (ibid,p.122).
4.2 Orthogonality relationships between surface harmonics

Consider two surface harmonics Sn of degree n and 52 of

degree 1. The solid harmonics Vn and VQ, given by

n _ %
Vn =r Sn and ‘VQ = r S2

satisfy Laplace's equation in regions not occupied by matter, as can be
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seen from equation 3.12, Hence the application of Green's theorem,
given in equation 2.7, to the scalars Vn and V'Q in the space V bounded
by the spherical surface S and in which Laplace's equation is satisfied,

gives

J

(1 oo, vy o [0, 3 -y, 2o s
v s

(2,24
= 0.

On completing the differentiation and evaluation at ¥ = a, where a

is the radius of the sphere ,

2-1 n-1 _ =1 _
”S(Vn!?, rS, - Vnr Sn)ds-a ”S SnSQ/(n—Q)ds

:—a2+n—l(n—Q)[f S S.ds = 0.
n £

4

Thus
J{ Sn SQ das =20 if n# ...(4.5),

on noting that the integration is performed over the surface of a sphere.
Equation 4.5 defines the orthogonal property of surface harmonics. This
is a most important relationship as it enables surface harmonic

functions to be eminently suitable for the analysis of data distributed
on the surface of a sphere. This characteristic also permits

functional manipulation of continuous representations of such data.

The case when n = % 1is dealt with in section 4.6.

4.3 Surface integration of a Legendre function

Consider an integral of the type shown at 4.5 when the

surface harmonics are the specific functions

= S =C
Sn cno pno(u) and g CRoplo(U)
respectively. Equation 4.5 will be satisfied if n # 4.
In the instance when n = {, the surface integral [

over the surface of the sphere which is considered to be of unit radius

becomes

T 5
I =Cc ¢ Jo J [pno(u)] sin 6 39 dx

As U = cos B , du= -sin® 46 . Change of variable

gives
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2T s 5
I[-=c ¢ f f [P a1 au an.
0 @]

Partial integration, together with the use of equation 3.29 gives

2T Cnocg t a' a"
- OJ —{ (1*-1)"] — [w*-1"] au.

22 o1 g du

On using the formula for integration by parts which can be written as

o 1 Yog
v u
J ug o= ludl - f_lvéid” .
-1
the term to be integrated in the above equation(l') becomes

1

n-1 n 1 n-1 n+1
s 1—=te?-n™ & (a?-n™ f e LR i L UL DR B
du du 1 g oA du
du  ..(4.6).

The integrated term will always have a factor (u2-1) as a factor and

will therefore be zero at both the upper and lower limits of the integration.

Successive integration N times gives

1 2n
I' = (-1>“f (uz—l)“—%;{(uz—l)“] ay
N au
As
2 2oy (2n) !,
2n
ay
and

1 1
f (u?-1)"an f -1 D) Pap =
-1 -1

1
1
[(u—l)n —1——<u+1>“+1] -—“—j -1 L™ @
n+1l -1

n+lj,
B (n!)2 22n+1
B (2n) ' 2n+1

due to the integrated term in the intermediate stage being zero at the limits

while the integral, on partial integration a further n times gives

1 2,1 2
2_.\n _ n (n!) 2n _ (_.,n___(n?!) 2n+1,1
fl (-1 7au = (- m)—:f_lmﬂ) = G Ry Tem e T
I' is therefore given by
oo mn? onn
T 2n+]
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2

I =2 '
i Cnocno 2n+1 (4.7
An important corollary is the result
(3 2 2
J_l[pno(u)] au = 507 ... (4.8).
4.4 A property of pnm(u)
The form of the associated Legendre function pnm(u)
lends itself to satisfying the important relation
(W = (-7 () (4.9)
P PremM ... (4.9).

This is obtained from a consideration of the function

Y n
U -[x3 +7. Xl] ,

where 7 = V-1, can be shown to satisfy Laplace's equation VU = o,

as a consideration of figure 1.2 gives
W= nx, + ix)V e 74 3]
3t !

el
nTer 14 1) = 0.

<7

!
[
i

n(n-—l)(x3 + mxl)

The conversion of the Cartesian co-ordinates to spherical co-ordinates

gives
U = (x3 + ”»)Xl)n = rn[ cos A + Zsin B cos A]n
=y i(l—uz)%cos 3" o041,
where !u‘ <1 and ",1(1—‘;12)1/2 = (u2~1)%, U being a solution of
Laplace's eguation. The expression on the right of equation 4.4 can be

replaced by a function of the term

1 s -
(b + (uz—l)jelx} - 1.

and

(u + (uz-l)%elx)2~ 1= pl o+ Zu(pz—l)% ezk+ (uz—l)ezix -1

= p?[1+cos 2)3]+1u’sin 2X + Zu(uz—l)%elx - (e%lx + 1)
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217 cos Alcos & + isin Al au(ui-1) %t (e?Ph e“’e™™h)

1§

A -7
_ 2 2 2 Y e + €
= ;:;;—(u cos A+ p(ui-1)® - ————5-————-J
= ~j%7( ((uz—l)cos A +11u2—l)%),
e
it follows that
n 2 ok n e hAR Y 2Xy2 n
(U + (-1 Tcos A)"= —“_———_~7I(U +(u?-1)7%e"") " - 1] co.(4.11)
2“(112—1);f

The term within the bracket on the right and raised to the power N

can be treated as a function of the form

£(x+h) = [ (u+h)2-11"

by Taylor's theorem, when

n
f(x+h) = z _1_' hn .CL.;)_[f(x)]_
n=0 ne ax
On putting
h = (Uz-l)%el)\ ’ equation 4.11 can be written
as
n y n .o e—ink 2n (W2-1)P 2oy &P .
r (U + (Uz"l) COs }\) = —r—l——-———l}n Z ~U.___;_.__ e p (U2_1) ]
' 2" (u2-1) M p=o P au®?

.. (4.12).

The upper limit of the summation includes all non-zero terms, the
higher differential coefficients being zero. The terms on the right
of equation 4.12 can be considered to be made up of three sets of
quantities:-

i The terms obtained when p =n

The relevant term is

n 3.29)

rn( L ~g—[(u2-l)n]j 2 e (W.

n n no
2 n! du

11 The n terms which occur when n+1 < p < n

Putm =p-n or p =n+m.

The relevant terms form the series

n .

n{ 1 1 2_qy %M _ZmA d 2_q40

r (—; Z T {(pc-1) e [(u?-1)"]
27 m=l
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n n+m
B n( 1 1 2 bm 4 [(12_1y0 . }
=T \ - 5 T (U ~1) —_—-n+m‘(u -1) ](cos mhi + Zsin ml);
2 m=1 du ]
iti  The n terms which ocour in the range 0 <p < (m-1)
Replace P by M according to m = p + N or P=m-n
The series so formed is
n n-m
1 N 1 - ° .
= i ———*—*q(Uz—l) m 4 [(U‘—l)n]( cos M\ - Zsin H&)}.
n (n-m ) ! n-m !
20 m=1 du ;
Thus
n n-m .
b N 1 1 - ZmA
(e 02D eos 1) = p ¢ 2 T [l T gyt
no n bo(n-m) ! -m
2 m=1 du
n+m .
1 P d Zroh
e M S wf-n e :
(n+m) ! d“n+m

As the expression on the right should not contain terms in

sin M\, all coefficients of sin m) should be zero. Thus

n-m n+m
1 2 -km 4 2 m i 2 klm 4 2 n
(U7 -1) S (2" = - T ——[*-1] ,r=ln.
(n-m) ! Q™ (n+m) ! dUn+m
L. 04.013)
pnm(u) is given by equations 3.36 and 3.38 as
, m+n
p_(n = —ﬁg:ggé-(l—uz)%m —— *-n™ Lo.(a14),
27 (nl) au
while }%(_m) (1) is given by
(n+m) ! 2, ~Hm dm—n I n c
Poem™ = 7 5 (1-u9) — [(p'-1) ] ... (4.15).
2 (nl) du

Equation 4.13 relates the cuantities defined in equations 4.14

and 4.15. As

~bm ~km o=t

! ~
L’"‘(1—u2)5‘“ and  (uf-1) = (-1) (1-1:%) ,

bmo_

(u?-1) (-1)

appropriate substitution into equation (4.13) gives

p__( = (—l)mpnkm(u) .. (4.9).
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1
4.5 The integral f [p (u)]zdu
1 nm

The relation derived in section 4.4 provides a means of

evaluating the above integral.

1 , (4,8 e
f_l [p _wlfa = (-1 Ll Py P _ (Wdu
(4‘1Qf4'15) (n-m) ! (n+m) ! ( l)m 1 dn+m ) n dn-m n
= _— - - 2_
nyd p20 f — -0 /w1 au
_ldu du

Integration M times by parts on the lines used in obtaining

equation 4.6 gives

1
(n-m) | (n+m) | J _qri ((u2-n™® Jau

1
2
f [pnm(u)] au =

1 1y 4 22" 1 a®
(3,29) , 1
b jg;ﬂﬁ;igiﬁi;f [pno(u)32du
(n!) -1
(4.8)
¥ (n-m) t(n+m) ¢ - 2
= > Shil ...{(4.16).
(nt)
Note
b o ( )]2d Ly {n-m) ! (n+ m)! (L.17)
pnm u o = Sl 5 o0h017).
o (n!)

4.6 The surface integration of products of harmonics

1. General principles

The results of the integration of the products of
surface harmonics over a surface is of considerable importance in
physical geodesy. The orthogonality relationships which exist
between surface harmonics of different degrees have already been
established in section 4.2. In the case of products of surface
harmonic series of the same degree, the following result is obtained.
Let Sn and SA be two surface harmonics of degree n, given by the

equations
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w

it

P (IC cosmh + S gin mi]
nm nm nm

I

and

S' = Z p__ ()l pm;M%+S',sh1m“].
nm
Then
I = fj S S'as
n n

ZW(l n
f J Z p (U) n cos mA +Snmsin m\ ] .z pnm,(u) [Cr'lmpos mi+
0 ‘“1lm=0 m'=0

S' sin mA ] du ar.
nm

The terms on the right can be considerably simplified by

observing that

2T 2T 27
f cos MA sin m'A dA :J sinm sin m'AdxX =J cos M} cos m'Ad}

0 0 0
= 0 if m#m' ... (4.18)
When m=m' , the longitude dependent terms take one of threc
forms
2m 2m 27
[ sin’m\ dx , J cos?mh d) or %f sin 2m d).
0 0 0

The last integral is zero while the first two can be

written as
am
5( 1% cosoami]arx = = Lo {4019y .

This series reduces to

4

nm nm nm

1l n
1 2 \ l
fJSnSnds nf 2[pnm(u)] [Cnmc S S8 ap
-1 m=0

1

- 2 1 C C' + S 8" Y(n-m!nsmt].(4.20) .

2n+1 (n')2 0 “nm nm nm nm
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S p_(w) au

n no

ds=bn
i1.  The product { '

0

The definition of the pole of a surface harmonic must

precede the evaluation of the above integral. This is defined
as the radius corresponding to € = 0 in the case where
n
Sn = z pnm(u) [Cnmcos mh + Snm51n mh ] ... (4.21)
m=0
where u = cos 0.

For a more detailed discussion see(Hobson 1965,pp.129 et seq.).

The integral

2T (1 n
f J 2 p (W[ C cosmi + S sinm]p (udu dr
nm nm nm no
0 -1 =0

(4¢5) 1 2
= 2 C [ [pno(u)] du
-1
(4,8)
¥ oA
= 507 G ... (4.22).

A study of equation 3.36 in the light of the observations

following equation 4.6“indicates that

pnm(l) =0 ... (4.23)

Also when U in equation 3.32 equals 1,

1 1 -1 1 n
r- i‘[l—t] = R E t
1% p n=0
(3,26) o
UL T .
R no
p n=0
Thus p (1) =1 for all n ...(4.24).
no
Similarly, when W = -1 (i.e., 8 =m
L1 eyt 22 § (-1n" "
r R "R
p p n=0
Hence
n
pno(—l) = (-1) ...(4.25).

It can therefore be seen from equation 4.21 that
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and

ds=4mT
{ S p (W as = AT 5 (0,0 ... (4.26),

where Sn(O,O) is the value of Sn at the pole of p_ (). This
result also implies that if the pole (0',X') of the Legendre

function is 70t that of the surface harmonic(i.e., 0,0}, the

relation
ds=4Tm
( S p_ (cos ¥ ds = AT 5 (g, Lo (427
J n ‘no n+1 n !
0

holds, where ¥ is the co-latitude with respect to (8',3') as pole.

iit.  Numerical characteristics of the surface harmonic Snm of

degree n md order m.

The general acssociated Legendre function is given bv

equation 3.38 as
kl

_ o{n-my oo oghm i F (2n-2r) ! n-m-2r
PomW) = 7 e (107 rio‘ D o2 ey ©

and its surface integral over a unit sphere has been shown in
equation 4.17 to satisfy
ds=4mn

2 _ 4 (n-m) ! (n+m) !
[pnm(u)] ds =

2n+1 (n!)Z

0

Consequently the magnitude of the function pnm(u) is
dependent on N and M which makes it unsuitable for analvsis as the
numerical values taken bv the cocfficients Cnm' Snmare influenced
by those of pnm(u). It is therefore common practice to use

normalised (sometimes called fullv normalised) harmonics pnm(L)

(e.r., Heiskanen & Moritz 1967.r.31) which satisfyv the relation

” [E;nm(u)]"‘ds = .

It can be seen from equation 4.17 that

( 2n + 1 B
n D ———

Pom ) (n-m) ! (n+m) ! |

nm

It is preferable to normalise the surface harmonic Snm itself

according to the relation
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ds=4m
f S 124 = an ...(4.28),

cos MA
pnm(U) sin MA

#

where S
nm

when the use of equations 4.17 and 4.19 gives

ds=4m
2 i (n-m) ! (n+m) !
[ S ] = Zn+1 2 » A0,
0 (n?!)
whence
S L (EmDe-dg T (4.29)
nm ( (n-m) ! (n+m) ! nm '
where 6om is the Kronecker delta which satisfies
s _¢° if 1Ak ...(4.30).
ik 1 if i =k

Normalised harmonics have the property expressed in equation
4.28 and comprise surface harmonic series on combination with the
normalised coefficients Egm' §gm. These coefficients approach the
same order of magnitude and hence lend themselves to the reliable
analysis of data . Hence normalised coefficients (E;m, §.nm) are

related to ordinary coefficients (Cnm'snm) by the relation

L
= _ 1 | (m ! (n-m !
Cnm ~ n! [(2n+l)(2-60m)l Cnm -e-(4.30) .

If, on the other hand, the function considered was

an(u), the use of equations 3.37 and 3.38 gives

-8 -m) ®
(2-8om (2041) -my 1) .. .(4.32)

) nm

nm

5(u)=(
(n+m) !

and the associated coefficients are related by equations of the form

b
= (n+m) ! )
C = [(2_60m) AT @] Com .. (4.33).

4,7 The interpretation of surface harmonics

A set of spherical hasmonics as described in equation
4.2 is adequate for the representation of the gravitational

potential U at all points in space exterior to the gravitating body.
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This definition can be considered to apply to a space defined by a
family of concentric spheres of radius r when the variations in

on a given sphere can be represented by the set of surface harmonics

U&=consﬁ -

]
o~
o~

p (cos 8)[C cos mA + S sin mA]..(4.34),
nm nm nm
n=0 m=0

where (8,)) are the set of surface co-ordinates defining position on
the sphere. Variations with co-latitude 8 in U are a consequence of
the term pnm(cos 0) while those with longitude are due to the terms

cos M\ and sinmA Three distinct cases arise.

(i) When m = 0.

In this case, the coefficient Sno is not of

consequence as sin M\ = 0 while cos M\ = 1. Thus

S = C

no no pno(U)
where U= cos 6 . It can be seen from equation 3.19 that the series
for pno(U) has n roots, being a polynomial in U. In addition, the

results of equations 4.24 and 4.25 indicate that pno(u) takes the values
+1 at 6 =0 and (—1)n at 0 = m, Consequently the function varies
with co-latitude being rotationally symmetric about the axis 0 = o0,
with nodal points tracing out parallels of latitude. The nett effect

is one of alternate bands of positive and negative values akin to the

two banded function sin X in the range 0 < x < 2T, which is positive

<

in 0 < X < T and negative in T < x <2m,

The function pOO(U) does not change in magnitude between

the poles while plo(u) has one nodal value in this range and satisfies

plo(l) = 1 and plo(—l) = -1
at the poles. Such a function is asymmetric about the eguator, this
being a characteristic of all odd degree Legendre functions. Similarly,

it can be seen directly from equation 3.19, which is a power series in 4
with an increment uz, reducing from a maximum index n, that even degree
Legendre functions are symmetrical about the equator given by 6 = &7
as 5 5
U = cos 9 and [cos(3m+x) 1= [cos(3m-x)]".

This class of surface harmonic is called a zonal harmonic,

an example being illustrated in figure 4.1.
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Summary

(i) A zonal harmonic of degree N has N zeros between
the poles giving rise to (n+l) bands between n nodal parallels (or
circles of equal 6), taking the values 1 at 0 = 0 and (-1)" at

6 = m.

{i1) The lower the degree of the harmonic, the wider the

spacing between the nodal parallels.

(iii) Even degree zonal harmonics represent variations
which are symmetrical about the equator while those of odd degree

represent asymmetry with respect to it.
i1 0 <m<mn
The appropriate surface harmonic in this case is

S = p (WIC cosm + S sin mA]
nm nm nm nm

an(U) is a polynomial of degree (N-M) and is given by equation 3.39.
This associated Legendre function takes the value zero at the poles.
In all other respects it is similar to the Legendre function pnm(u)
and has (N-M) zeros along parallels of latitude which are symmetrical
about the equator if (N-M) is even and asymmetrical if (n-m) is odd.
The function therefore has (n-m+l). bands between the poles and the
(n-m) nodal lines mentioned above. In addition, the term cos mA

has M zeros in the range 0 < A <7, the nodal lines coinciding with

meridians at a spacing of A/m apart.

The resulting network of nodal lines along meridians and
parallels, as illustrated in figure 4.2, has given rise to the
application of the term tesseral harmonic to this type of surface

function on a sphere.

Notes

(i) No tesseral harmonics are admissible in the analysis
of a function which has no variation with longitude on the surface of

a sphere.

(i1) Low degree tesseral harmonics have widely spaced
nodal lines. Some of these can be related to low order inertia
tensors of the earth's gravitational field if the function being

represented is the geopotential.

The limiting tesseral harmonic, on the basis of the
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above development, will have M nodal meridians in 0 < A <,
with zeros at the poles but not along any parallels. The resulting
harmonic is called a sectorial harmonic, being illustrated in figure

4.3,
1v. Conclusion

Surface harmonic series provide a useful analytical method
for the representation of data with a continuous distribution on the

surface of a sphere for the following reasons.

(i) Surface harmonic series satisfy Laplace's equation.
(ii)  The functions are capable of geometrical interpretation.
(iid) This facility can be used to relate certain charac-
teristics of the functions represented to other physical properties.
(iv) The representation by surface harmonics involves, at
least in theory, an infinite series thus restricting their considera-
tion, in the strictest sense, to mathematical manipulation alone. In
practice, significant applications are possible with the use of a
limited number of terms if their geometrical significance is fully
appreciated. Their usage can be considered to be analagous to fitting
a curve o a continuous set of data, the only difference being the
use of surface co-ordinates instead of plane rectangular reference
frames. The higher the degree of the harmonic function used in the
analysis of data distributed on a sphere, the more accurately will
surface harmonics represent the local fluctuations of the quantity
being analysed.

The usage is discussed further in section 7.

4.8 Statistical properties of surface harmonics

Consider a function X which can be represented by a set

of fully normalised surface harmonics as

o n
x(8,0 = ) ) X,
n=0 m=0 nm
where
X =p (cos 8)[C_cos m +S__sin mA].
nm nm nm nm

The value of the function at the pole is given by

X(0,0) =

I} o~18
|

no

n=0

The covariance C¢€) of the function at a distance 6 from the

pole and given by

cey= 7 7 C (&
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is defined by the equation

a7 o
1 g ral g i C ax
SR C m\ + S sin mMA]
C (&) = - [ p .(cos 6 [C cos Hr n‘ZO ro
0
0 » M # 0
L — T = 0 ...(4.35).
=f 5 c . m =
( pno(cos @)Cno HZO o

. . wer
This covariance function is also known as the powe

i d has
spectrum{Kaula 1967,p.87), being dependent on 6 alone, an

isti i i i f X. The
coefficients which are characteristic of the distribution o
general covariance function C(8) given by
o0 [es] — p—
1y ) c C
c@ = ) Y P lcos 8) ~ o “no
n=0 =0
can also be represented by the equation
- ~ 0 ,
C®) = ) ¢ P_(cos
n=0
where . oo .
¢hp= Cho L C .4,
n no v nb

and its magnitude can be obtained by the use of the equation

l -—
C = —
: i U C(o) P, (cos 8 das .. (4.37)

Hence it is possible to define the coefficients in the zonal

harmonic series which represent the covariance function through the

equation

8

Co) = C,
no

.o~

< pno(cos 8 = nZo pno(cos B)Cno

IMfe~1 8

n=0

n=0

...(4.38)
if C(0) is known.

The expressions derived so far refer to the covariance
of the quantity with respect to the pole. The mean covariance
over a sphere is the mean of the covariance at all points on the
surface of the sphere each treated as the pole in turn. If Crl
were treated as a function of position on a sphere, it could

be represented by a surface harmonic series of the type

8

o n
Con = ) c,n = ] ZO Ppp(W[a cos mi + b sinmi].

n=0 n=0 nm=

The mean value Oﬁ of the gqumre of the covariance function is given by

the series of equations
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(4,5) n
¥ 1 = T
= ZF—[[ ) pnm(u)(azmcos m o+ b;m51n mA] das
m=0
n
—
(4,28) ! @, +B) .. (4.39) .
= m=0

Oi is the average square of the N-th degree harmonic in the represen-
tation of the covariance function , being analogous to the variance

and is hence termed the degree variance (Kaula 1966a,p.5304).

The magnitude of the degree variance of wave number n
of a set of harmonic coefficients is a measure of the variability of the
function. These power spectrum values Gg are of significance only if
the coefficients Ehm,Egm were completely independent of one another.

Consideration should otherwise be paid to moments other than the second.

Notes

(i)  The application of degree variances to any function
could give a measure of local fluctuations. The greater the values

of O; with increase of N, the greater the variations with short wave-length.

(ii) The degree variances remain invariant on rotation
of axes and are thus a fundamental property of a given distribution
of a function on a sphere(Kaula 1959,p.52). For an example of the
magnitude of the degree variances of gravity anomalies, see (Kaula 1966,

p.5304).

4.9 The relevance of spherical harmonic expansions in the vicinity
of a gravitating body

The potential U in space external to a gravitating body satisfies
Laplace's equation and hence can be completely represented by a spherical

harmonic series of the type

(4;2) = 1 n .
U = N - ) Py (W (8 cos M + b sin m] .
n=0 X =0

It is convenient, for the purpose of analysis, to

express U by the relation

a_nn

v=2 7 () Ip (c com +5_sinm) ... (4.40),
n= m=0

0

where a, is the equatorial radius of the gravitating body, assumed
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ellipsoidal, M its mass and K the gravitational constant. The expres-
sion of equation 4.2 in this form has a distinct advantage in the case
of the earth as all coefficients Cnm' Snm are dimensionless guantities.
Coo in such a representation has the greatest magnitude, being unity.

All other coefficients, with the exception of C are of order 10-6, the

latter having an order of magnitude 10-3.

20

Two important factors should be borne in mind when using
spherical harmonic functions to analyse the gravitational field of a

body like the earth with its nearly oblate spherocidal symmetry.

Firstly, the ratio (ae/r) is less than unity at exterior
points. If r = ae + dr, the use of the binomial theorem gives
a n¥l ar -0+1) n+l . +1 i
(Z8) = 1+ %) -7 -uthHE ... (4.4
r a . i a
e i=0 e
where (n+l) B (n+1) ! 4.42)
i B ir(n-i+1)! Tt ’

This ratio has the characteristic of scaling down the
effect of higher degree harmonics, as can be seen from a study of table
4.1 which sets out the results obtained on evaluating equation 4.41
for different values of N and dr. It is well known that the potential
of any gravitating body acts as a point mass over great distances. This
effect is completely represented by the first term in equation 4.40 (i.e.,
when n=20. The effect of the other variations as represented by the
other coefficients Cnm'snm are made negligible due to the influence of
the factor (ae/r)n which is small. Consequently the effect of the higher

degree harmonics in U becomes significant as this ratio approaches unity.

The characteristics exhibited by (ae/r)n+l, as given in
table 4.1 indicate that the effect of higher degree harmonics is
considerably damped with increase of elevation above the surface of the
earth. Thus the motion of near earth satellites are more significantly
affected by harmonics of lower degree than those where N is large. The
effect of some higher degree harmonic terms is enhanced by the phenomenon

of resonance. For details see section 8.3.

Tt can therefore be concluded that some ambiquity may exist
in the values of harmonic coefficients determined from the orbital
perturbations of near earth satellites due to the variable dampina effect.
Thus the harmonic of degree 20 will have its effect damped by 50% in relation
to its value at the surface of the earth, at an elevation of 200 km, while
that of degree 3 will be damped by only 12%. Higher degree harmonics
as determined by this method will therefore alway$ be subject to some
uncertainty which restricts their direct application at the surface of

the earth.
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The second guestion of relevance is the applicability of spherical
harmonic expansions at the surface of the earth. Laplace's equation
must, for all practical purposes, be considered to be valid upto

the surface of the earth. Consider figure 4.4. The position of

a point P on the earth's surface can be referred to a spheroid of
reference whose equatorial radius is ae and flattening f, if its
spheroidal elevation hs were known. The relation between position
with reference to the spheroid and the spherical system of co-ordinates
(r,0,)) is obtained as follows. 6 is related to the co-latitude

eg of the spheroidal geocentric latitude ¢g by the relation

6 = 06 - ab ... (4.43).
g

The longitude A remains unaltered. The geocentric distance I is
related to the geocentric radius rg to the equivalent point Pq on the

spheroid by the relation
r =r cos a8 + h cos(¢-¢ -ab) ... (4.44).
g s 9
The geodetic latitude ¢ is related to ¢g by the well known re-

lation(e.g., Bomford 1962 ,p.496)

UER =[f + 4£%Tsin 20 + 4f% sin 40 + off3} ...(4.45).

The use of the relation preceding equation 1.28, together with
equations 1.9 to 1.11, expansion by the use of the binomial theorem

and slight re-arrangement of terms gives

ae(l_f) 3e2y o502 3e2_. 2
r = = a{1- (f+5f )sin® ¢ + Ef sind  +
9 [l—(Zf—fz)cosz¢éﬁ ¢ 9 4

ol £%1) ...(4.46).

The application of sine formula to triangle OPPg in figure 4.4 gives

h sin 4@ . ad
" T Sin(d-b -a1) " sin(d-9 ) - a0 cos (-0 )
g g g g
oxr
a8l r + h cos(d-d )] = h sin(d-d ).
g s g s a9
If terms of order (¢-¢q)3 z f3 are disregarded,
h (d-¢ )
as = 5 g >
r +h [1 - %(d-¢ )]
g S g
h
or ae = ;sf sin 26 + of{f®} ... (4.47).
g

The combination of equations 4.43 and 4.47 gives
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h

6= 8 - —°f sin20 =6 + off?}
g £ (o4 g

The use of equations 4.44 and 4.45 gives

h
r =r +h + off?} =r {1+ 2+ 0(£%]) ...(a.49).
g s g r,

On replacing rg by ae using equation 4.46 and eg by § , equation

4.48 becomes

h
r = a (l ~-(f + 2£2) cos?0 + §f2cos“e) 1+ == (1% fcos?8)
e 2 2 ae
hs 3 hs 3
_ S (e 3f2_ S 2 2 4 3
= ae(l + a {f+2f 3 } cos®® + Ef cos'® + off }).
Therefore
a, hS hS 2 3., hS
_ ) s g2 _ 4 _S, 2 _ L2 4
F = 1 3 +(a } +{£ + 2f 33 £ }cos®H Lf%cos'O +
e e e
o £}
= 1+ ol f} ... (4.49).
Some important conclusions can be drawn from the above
development.
(i) A spherical harmonic expansion for the potential is

valid, for all practical purposes, down to the surface of the

earth at all points in space exterior to the physical surface.

(i1) The ratio (ae/r) can be taken as being unity at the
surface of the earth to the order of the flattening.
(iii) The peopotential can be expressed to the order £ by

the series

|z

o h_ ey D
Z ( 1 - al + fuz) z pnm(u)[Cnmcos m\ o+

e n=0 e m=0

s .sin M+ o £2U} ...(L.50)
at the surface of the earth,

where U = sin ¢p .

(iv) The order of mapnitude of U is 6x lO6 kgal m, the major
contribution coming from the term n = 0. The second largest term,
on excluding those of degree one from the present discussion, is that
obtained when n = 2 which is shown in section 6.2 to be the main
ellipticity term of magnitude fU= 2><lOh kgal m. All other terms
can be seen from table 8.3 to be of magnitude f2u .

It would therefore appear that the full expression for

(ae/r), given in equation 4.149) should be used in equation 4.50 to
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define an expression for U to order f£iu. Such =z vrocedur=
is not necessary if the technique of linearisation i= adopted, as

developed in section 6.1.

No objection should therefore be raised to the
representation of the geopotential in terms of spherical co-ordinates
using equations 4.49 and L.50 at all points in space exterior to

the surface of the earth.

5.  SPHEROIDAL HARMONICS

5.1 Laplace's equation in spheroidal co-ordinates

The spheroidal system of co-ordinates is described in
section 1.3 17 , where any point in the space can be defined in
terms of the three parameters

(l¢16)
l:u; F=>\ H £=(1.

£
The first parameter U(i.e., il) which defines the family of unparted
hyperboloids of revolution can alsc be represented by the parameter

R when
cos U = sech B ; sin U = tanh B ... (5.1,

resulting in the simplification of subsequent differentiations. These
co-ordinates were shown to form a triply orthogonal system and will
also satisfy Laplace's equation in general curvilinear co-ordinates

which was derived in section 2.12 as

i d ( hi+1hi+2 B8] (2434) (*)
i=

- Fves = 0 , SS.
1 dEi h, agi

1

The linearisation parameters in this case are obtained
by referring to the expressions for position on a three dimensional

Cartesian reference frame which is given in section 1.3 7% by the

equations
(l$18)
X, = C cosec O sech B cos X
X, = C cosec 0 sech B sin A
X, = ¢C cot o tanh B

the functions in u having been replaced by equivalent expressions

in B by the use of equation 5.1. As both systems of co-ordinates are
triply orthogonal, it can be seen that(e.g., Eisenhart 13860,p.ul7)

(*)

h2ag? = ax?
1 1 1

* See "Guide 4o notation" for explanation



72

or

Thus differentiation of eguation 1.18 in its modified form gives

h; = h? = ¢ [cosec?atanh®f sech’B + cot®osech 8]
P

c?l (1 + cot®0) tanh®BR sech?B + cot?a(l - tanh?B)sech?R]

c’ltanh?B + cotalsech?B ...(5.2a)

il

Similarly,
h; = h? = c?cosec’a sech?RB ... {5.2b)

h. =h_ = c?lcosec?n cot?s sech’f + cosec’a tanh?f]
= c?{cosec’a (1 - tanhZB)cotza + (1 + cotza)tanhZB]

= c?cosec’abot?n+ tanh?g] ... (5.3).

The application of these results in equation 2.34 gives

J (C cosec O sech f(cotzd + tanth)% U ]

8_— 1 . +
8 sech B(cot?a + tanh?B) ? )

3 [c cosec @ sech R(cot’a + tanh?B) 93U N
on cosec & sech P Ih

_2_(C cosec O sech?f (cot’a + tanh?'[)))l§ 3U _
Do L J0. -

L cosec a(cot?a + tanh?B)

which simplifies to

z i——+(~t2 +t h26)32U+ thg—zg—o
cosec O aB? CcO o an W— sec aaz = .

This can be written as

"2 2 2
2 a3
cosh?g %Eg' + (cosh?f = sin‘a) §7g~+ sina %ag> =0 ...(5.4)

which expresses Laplace's equation in oblate spheroidal co-crdivates.

Notes
(i)  The (B,A,0) system of co-ordinates define the space
as the intereection of
(a) @un oblate spheroid with radii {c cosec a, ¢ cot al .
(b) a confocal unparted hyperboloid of revolution with
seml axen {c sech B ; ¢ tanh R} and with a common centre;
arnd (¢) the plane through the common axis of revolution and the

point, defined by the angle A it makes with a fixed plane.

(11) The entire space is covered by the range of values



0 <a<hr ; =0 <g < ; 0<)<m ...(5.5).

r

The representation is extremely unstable when a >0

as will be seen in the next section.

5.2 The solution

The technigque adopted for the solution of Laplace's
equation in oblate spheroidal co-ordinates follows closely on that

used in section 3.1. On adoption of a representation of the

form

U= L M@BE)y N ...(5.86)

for U app ropriate substitution in equation 5.4 gives

2 azM 2 .2 82N
cosh“B L) N(X)§Ey-+ (cosh“f - sin“o)L(a) M(B)gx7'+

.2 3L,
sin“o M(B) N(A)§&7-= 0.

The first stage of the separation of the variables gives

cosh?R 1 9°M . sin’q 1 9%L
cosh?B - sinZo M(B) 9R? 7 cosh’B - sin’a L(o) 997

%)
N>
=4
N

.. (5.7,

]

i
2
-
Qj.
>

]

3

the common constant being chosen for the same reasons given in the
formation of equation 3.7. The differential equation governing the
function N(A) is therefore

N

=z + m>N()) =0 ...(5.8).

wlar

The second stage gives

1 2, 3°M 2 20 _ 4.2 1 3%L s 2.
fgy cosh B8 38z + M cosh B = sin“a T 5&5-+r& sin“a = n(n+l),

the relations being satisfied simultaneously if they are both egual
to a common constant whose most convenient form is n(n+1l). The

resulting differential equations are

2
cosh?B %§¥ + M(B) [—mzcoshZB +nn+l)] =0 "...(5.9)
and
.2 3%L 2 .2
sin‘a A+ L[ m® sina - n(n+l)] =0 ... 5.10)

Both equations 5.9 and 5.10 can be transposed into the

form
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2

- i?gg‘) G(p) =0

a‘c aG

(l—o) =7 - 2p + {n(ml)

which is equation 3.11, whose solution is developed in sections
3.3 and 3.6. Equation 5.10 is transformed by adopting the

change of variable to w defined by the relation

w =7 cot a
when
d . . 4
— = - 1 2 = = - i
T cosec Em (1 )dw
and
—E;-* 2 {cosec’d cot o 4 . cosecta _éi
do © +oco dw dw?
As
sin‘a = = = L = 1
" cosec’a 1 + cot?a 1 - w2

equation 5.10 becomes

1 2, db 2 4%L m B
T 2w’y 52 - (- w?) 2 o7 | *Lw( oz -nmen) = o
as Zcot & = w, the equation reducing further to
2
». . d L dL m _
1" =7 - 2w =+ L [nm+l) - 7o) =0
which is identical in form to equation 3.11. Hence its solution
is given by equation 3.35. As cot O > 1, the required solution
in this case 1is
Lm a"
L(o) = B (l+cot’o) " ———— {Q (icot a)}=BQ (icot o)
d{{cot o)

.(5.11).

The appropriate change of variable in the case of equation

5.9 is
v = tanh P
when
_a 20
dan o ©av
and )
. 2 a 2092 &2
awz o 2sech“f tanh R v + {sech“RB) 32

Equation 5.9 therefore becomes

1 2dM aM _
W((l v?) - 2v(1-v?) av +M(v)[n(n+1) —-—-—:) =0

or
GURTCIN: i SP: - VY AU R L S
dv? dv v 1-v2 B

whose solution from equation 3.35 is
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M(B) = AP (tanh B) ... (5.12) .
nm

Thus

U = P (tanh B) Q (fcot o) (C' cos mh + S' sin mA) ..(5.13)
nm nm nm nm nm
is a solution of Laplace's equation in spheroidal co-ordinates.
A complete solution is given by

® n

U= z Z P (tanh B) Q (Zcot d)( C!' cos mh + S' sin H&)
nm nm nm nm
n=0 m=0
... (5.14).

At this stage, it is in order to revert to the variable b= u

when the use of equation 5.1 gives

n
} P_(sinu Q (fcot @) (C' cos mh + S' sin mA}.(5.15)
0 =0 nm nm nm nm

G
1]
| ~18

n

which is a complete solution of Laplace's equation in oblate

spheroidal co-ordinates.

Notes
. . . n+mtl .
(i)  The incorporation of the term < ' “in the
coefficients according to
n+m+l
cgm = 1 Con ... (5.16)

with a similar expression for S§' will result in C , S being
nm nm’ “nm

real numbers for real values of the geopotential U.

5.3 The evaluation of Qno(z', cot a)

The evaluation of Qno(icot ) is of importance in
section 5.4. The general function Qno(u) is most simply evaluated
from Pno(u). This is done by considering Legendre's equation given

in equation 3.14 as

2
2, d°G ac
- - + 3 =
(1-u°) 2t 2u aﬁ“ + n(n+l) Cn(u) 0

and whose general solution is

(3,21}
Gn(u) = A Pno(u) + B Qno(u).
Pno(u) is a solution of equation 3.21 when B = 0 and
A = 1. Also, if !pl # 1, consider the following solution of

Legendre's equation.
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Gn(u) =R P (W ... (5.17)

where R is a function of 1. pifferentiation of equation 5.17

with respect to U gives

aG ar W s w dPnO(U)
Eﬂ“ - du T no du
A further differentiation gives
2
d
a*G N a’r P o) + 2 dR dPno(U) + R Pno(u)
au™ T aq? “no H du du au?

Substitution in equation 3.14 after division by (1-12) gives

2
P
. (d no(U) ) 5 dPnO(U) N n(n+1) bW .

an 1-u du 1- U2 "no

2 apP_ (u)
d"R dR no 2 dR

_— - -— P =0 ..(5.18).

aﬂy-Pno(U) + 2 au a 107 a no(U) ( )

The term within the bracket is zero as Pno(u) is a solution

of Legendre's equation. Equation 5.18 is simplified further by
making the substitution
dR g
du
when this equation becomes
dP (1)
dr' ' no U
du no(U) + 2R du To147 Pno(U) = 0.

The separation of variables enables the above equation to be

written as

[ apP ()
1 dR + 2( 1 no _ uz ] -0

R' au Pno(u) du 1-yu

which, on integration with respect to p gives

2
log R'+ log[Pno(u)] + log(l-pu?) = C
where C is the constant of integration. Alternately,
R’ = B
2 2.
1-
[Pno(u) 17(1-u*)

Further integration with respect to j gives

R =A + B f dy
P () 1% (1-u?)
(P

A and B being constants of integration. Hence the solution of

Legendre's equation given by equation 5.17 takes the form
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G =A P (1) +B Pno(U)f dg . ..(5.19).
(p__(w] (1-u%)

The comparison of eguation 5.19 with eguation 3.21

gives
4
0 m =CP [ 5 o (5.20)
[P I%a-uH
no
where C is a constant. The limits of integration and the range

of U are obtained by studying

1

F = >
P w1 a-uH
no

This expression is a rational fraction which becomes

indeterminate at

(a) + 1;
and (b) all the roots of Pno(u) which are real and
lie in the range -1 <y < 1.
. 2

Hence if s>,

fm F au

u
is finite and determinate and contains no constant term. It is

conventional to adopt the value -1 for C when equation 5.20 as

Qno(u) = Pno(u)(oo du2 ... (5.21),
u [Pno(U)] (&1)

where U > 1.

When n = 0, P () =1
00
and o
_ au ~ P+l
Q) = fu o = % leg(iT) ... (5.22).
n = P =
When 1, lo(U) H
and
du a [
= = - +
Qo) =H ST Ufm N Uj .
H H M
1 m u+1
= = + 1 —
ul . 5 u log(S7r )
U
= %y log (MY - ...(5.23).
u-1
The direct evaluation of terms of higher degree by the use
of equation 5.21 is comparatively difficult. These are more

simply derived by the use of the recurrence relation for Legendre
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functions of the second kind given by (Hobson 1965,p.67)

no - (2n-LuQ )+ M=DQ L (u) = 0.

Thus
20, () = 3u (4 1oq(1‘j—j—] - 1) - % 109(1%%)
or
0,00 = - —;—u + %(3112-1) log(%} e (5.24) .

If qn(a) is defined by the equation

.n+ .
q (o) = ol QO (tcot ),
n no
the expressions for qn(u) when n < 2 are given by the following

series of equations.

. . cot o +1 . cos o -1SinQ
= ) = P e —_—
qo(a) Qoo(lCOt * LﬂlOgC:cot o -l) e (cos a*—tsinu)
-10
, e
= % ilog(Z>—) = « ... (5.25)

The use of the same principles on eguation 5.23 gives

.2 . . .
7 Qlo(lcot o)= 1 - Mtcot O (~210)

]

ql(a)

1 -0 cot O ... (5.26).

il

Similarly, the use of equation 5.24 gives

i3 Q2O(icot ay = —¢[- %—icot a + Y(-3cotia -1) - 27a]

it

q2(u)

1t

- %—cot o+ S0(1+3 cotzd) = %(u(3c0t2u+l)—300t ol
... (5.2 .

An alternate expression of interest is obtained by the

use of the change of variable

X = tan
when
=) 25—
- tan'x = ] (DT X =
4= sl 2s-1
s=1
e 1 (7 e+l x>57H
g, (@ = — | ) (-1) = (3 +x?) - 3x
2 2 L 2 -1
2X s=1 /

i

1 X3 xS X7 XS Xll
JX L XX X X 4 Y(3+x2) -3
?2’1 R - ¥ ] J(3ex2 ) - 3x

t
= 1 - s34y, o3 Held o o, L
= 3 Z(Xil L+xf (2 - $)+ %= 5+ 2 Jextt (- I
4 3 8 5 12 7 16 %+ I
= (3.5 ¥-oggX¥r79% Tomn
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Thus

_ 1 32 5 3 7. _ _4 9

qy (o) = 2 (3.5 tan’o - o tan 0 + Zegtan @ - oy tanoa)..(s.28).
Note
sin o = e
-2

and e = 8 x 10 for a spheroid with the same dimensions as the
earth, the term in tan®o = lO_lO and can be ignored.

6. THE REFERENCE SYSTEM IN GRAVIMETRIC GEODESY

6.1 Introduction

The exterior gravitational field of the earth can be
expressed in terms of either a spherical harmonic series of the type
at equation 4.40 or a spheroidal harmonic series of the type at
equation 5.15, as both are solutions of Laplace's equation. The
major contribution to U is from the term obtained when N = 0

. . : : , 6
as explained in section 4.9, being of the order of magnitude 6 X 10

kgal m( kilogal metres = cmzsec_zx 10-5). The second largest
contribution is due to the departure of the earth from a sphere, i.e.,
the ellipticity term whose principal contribution is through the
harmonic (N=2,m=0), being of magnitude 2 X 10" kgal m. The
contribution of all the other terms combined is unlikely to exceed
100 -~ 200 kgal m. Thus a considerable increase in accuracy can be
achieved without a related increase in the complexity of formulae

by merely removing the effect of the two terms of significant

magnitude.

This is done by introducing the concept of a reference
ellipsoid (or spheroid of reference) and superimposing its gravi-
tational field on the space. The potential due to this reference
system (spheropotential) U can be compared with the geopotential W
at every point in the space. The introduction of such a concept
with the adoption of well chosen parameters for the definition of
the gravitational field of the reference ellipsoid resultsin the

quantity Va, given by the equation

v, = W - U ... (6.1)

having an order of magnitude less than lO2 kgal m, as the effect

of the terms (n=0) and (n=2,m=0) described above would have been
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removed. The quantity Vd is known as the disturbing potential

(also potential disturbance; potential anomaly).

The primary function of the reference system is the
linearisation of the magnitude of quantities on the physical system.
In addition, the former can be used as a reference frame to define
the geometry of the space. The gravitational field of a reference
ellipsoid an be represented at all points in the space unoccupied by
matter by the use of either the appropriate spherical harmonic or
spheroidal harmonic series. There is little to choose between the
two representations which are dealt with in section 6.2, though
the spheroidal harmonic series lends itself with comparative
elegance to representations of ellipsoids of revolution by closed
expressions. This is offset by the fact that the representation
of the geopotential by a series of spheroidal harmonics is
cumbersome and subject to much the same limitations as a spherical
harmonic series as the surface of the earth deviates significantly

from the surface of an ellipsoid of revolution.

6.2 The gravitational potential due to an ellipsoid of revolution

An ellipsoid of revolution with a distribution of mass
which is symmetrical about both the rotation axis and the equator
produces a gravitational field with similar characteristics of
symmetry. Any harmonic expressions for the potential of such a
system should therefore satisfy the following conditions.

(1) A1l longitude dependent terms should make zero cortri-

bution to such a series, i.e., m= 0;

and (ii) The remaining zonal terms should have zero coerficients
for odd degree terms which make asymmetric contribution: sbout the
equator.

Thus the possible harmonic series for the representation

of the gravitational potential of an ellipsoid of revolution are

(a)
©  .ontl
.2n+ . ;
= i ... (6.2
Ug Z 7 Qmoﬁax o) Pmohﬂnlﬂaﬁo (6.2)
n=0
for a spheroidal harmonic series and
(b)
u = J 1l _p (sing) C e (6.3)
g 2n+l "2no g 2no
n=0 r

in the case of a spherical harmonic series.
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i.  The spheroidal harmonic series

Let the reference ellipsoid rotate with the same angular
velocity W as the earth giving rise to a rotational potential Ur
defined by equations 2.27 and 1.18 as

Ur = % c’cosec’a cos’u w? ... {6.4).

As
s cos?u = (1 ~ sinzu),

PZO(Sin U) is given from section 3.8 as

. 3, .. 2
P u) = = u - ... (6.5).
2O(SLn ) 2(51n 1) (6.5)
Thus
1 2 2 . 2
U = =—c - u ...(6.86).

. 3 cosecall P2O(s1n ) Jw (6.6)

In addition, the spheroid approximates to order £2 to
the geoid which is the geop W = Wo corresponding to Mean Sea
Level. It is therefore convenient to make it an equipotential surface

U= UO. In addition, the potential should tend to zero at

very great distances from the earth, approaching this value through

expressions of the form

for large values of ¥ which are eguivalent to small values of .
It can therefore be seen from equations 1.13 and 1.16 that the range

of values for o from the surface of the ellipsoid to = is

4%a2' > o > o.

Thus the total gravitational potential U is given by

U = U + U
g r

(6.2)(9.6) © 1 N
= z q2n(o¢)P2n ésin u)a2n0+ §-C2coseczq[l—P20(sin ufw?
n=0

where q2n(a) is given by equations 5.25 to 5.28 for2n< 2.

If this expression is to represent an equipotential surface when
o =a, where oy is the parameter defining the reference
ellipsoid whose potential at the surface is Uo' then Uo should be
independent of terms in u. On putting uy = sin u, the above

equation becomes

UO = qo(a) Poo(u) a.t qz(a)on(u)a20+ q4(a)P4O(u)a4O + ...+
1 2 2 R 2
3 G cosec ao[l on(u)]w ...(6.8),
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It therefore follows that

A = a = a = “ee = 0
40 60 80

and the coefficient of PZO(U) satisfies

1.2 2 2
oya - =C =
qz( o) 20 3¢ cosec’a w 0
or a - l'C2 cosec’d sz
20 3 qz(do)
As (l¢l6)
C cosec ao = a,

the potential of the reference ellipsoid is therefore given by

U = a o +%aw2 ... (6.9).

The potential U at any other point (u,\,d) exterior to the ellipsoid

of reference and which rotates with it is given by

2 2
C coseczaow

1
= o =
U a0 + 3 ——_QETQ—T____

o]

qz(d)PZO(sin u) + % cosec’a cos?uw?

...(6.10).

aOO is evaluated by the consideration of the gravitational potential

as expressed by equation 6.9 when r >~ ® in the space which does not

rotate with the ellipsoid. As

(l¢18) 3 L
r = ( X Xf) = ¢ [ cosec?y cos?yu + cot?qy sin?y]
i=1
As Y > w , cot n, cosec g >+ O and
2, - L 2 27, > 1 .1
cotfa = -7 -3 ¢+ ofa®}; cosec?q = ZTt3 ot o{n?}
Therefore

1 2 . 1
r=c [&é— SSanu + g»coszu + o{az}]5+ 5 as g > 0

.. (6.11).

Also qz(a) can be seen from equation 5.28 to tend to zero as o = O.

Hence

as r - o .

where M is the total mass of the reference system and k the gravitational
constant. Hence

kM

00 c
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The final expression for UO in terms of & and the
eccentricity e of the reference ellipsoid is obtained by the use

of equations 1.12 and 1.13 as

kM (sin—le ) 1 a® w?
a

U = = + E»E—Ta—y-qz(u) P20(51n u) +
2 0
5 c?cosec?a cos?u ... (6.12)
while that for Uo is
U = k—M(S—l—E—.—-l—e—) T (6.13)
o  a e 3 T
Notes

(i)  The potential U at the general point (u,A,a) is
given by equation 6.11.
(ii) Tt can be seen that the different confocal ellipsoids
are N0t equipotential surfaces of the reference system (spherops)

as the surface
U = constant

defined by equation 6.11 is not independent of u. Thus surfaces
along which no change of U occur with change of U are not surfaces
of
0 = constant.

In fact, the deviation of equipotential surfaces from the family of
confocal ellipsoids increases with the difference of a from ao.

(iii) The surface of theearth does not correspond with
either a spherop or an ellipsoid. Consequently the use of spheroidal
harmonics does not, in any way, facilitate the analysis of data

distributed on the surfare of the earth.

ii.  The spherical harmonic series

The potential UO on the reference ellipsoid is obtained

from equation 6.3 in this case on using equation 6.7, as

U = U +U
[e] r

cl
_ 00 1 ' 1 '
= - + r3 PZO(U)C20 + ;§P4O(p) C4O S Ur ...(6.14)

where the rotational potential Ur is given by

- 2 2.:2 _ 2 22 . 2
Ur = % r< g sin eg =% a% u (a) sin eg ,

a . being the equatorial radius of the reference ellipsoid, y and
eg defining geocentric distance and latitude respectively as in
figure 6.1 for a point on the surface. The use of equation 4.49

when hS =0 together with the relation
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' a’ w? . centrifugal acceleration at equator
m = M = - - ... (6.15)
equatorial gravity
gives
kM 3.2 32 2 2
U = % —m/{ 1-(f+ =£f + = - 2 .
. : 3 ( 1-(£+ 3£7) cos Bg 2f cos Gg] [1 - cos Gg]

As w = 0.729 X10-4 sec -l, simple verification of orders of

magnitude for a reference ellipsoid which fits the geoid (i.e.,

a=6.37%10° m ; £f71 ~ 3x10%) shows that

...(6.16).

Hence

m‘E

m'( 1-(1+ 2f)cos®0 + 2fcos’B_ + of £2}} (6.17)

Further, a study of table 8.3 shows that

N . -3 . -6
COO >~ 1 ; C20 = 10 ; C4O’ C6O’ etc 10 .

On following the lines adopted in the formulation of equation 4.40,

eéuation 6.14 becomes

kM a ay2 a4
v, = ?{ O R N N USRS

wm'[1 - (1+2f) cos®8  + 2f cos'f ] ]
(4.49) (table 3.1) . K g

= ——{(l+(f+ 2£%) cos?® -%f’cos"® ](l +
a 2 g g

2fcos?6 )C [§C0529 -5+ 2'-[35cos“6 - 30cos?6 +3]C._ + ..)+
g 20 q 8 q g

2 40

ym' - %m'(1+2f)c0528g + m'f cosl’ﬁg +of{f3} }

kM '3 3 - 15~
= 3([1-%c20+%m + L0 I+ Te + S+ MC, (3-2f-F) - =C, < (1+2F) Ix
2 3 35 b 3
S] - = ' {
cos“8 +[-f +C20(3f+ 2f)+ ??C40+m flcos eg + ol f }}
Thus
- kM [ 3 ' _ ' _3_ 2 _ ot 3 _fy _ 15 2
Uo =511 %C20+ §C4O+%m 1+ f-4m'+ 2f m' f+ §C20<l £) 7?C4O]COS 6q+
ve _ve2, 2 35 4 3
[m'f -%F+ 2C2Of+—é—C4o]cos Gg+ ol £71 ...(6.18).

As UO, being the value of the potential of the reference
system on the surface of the ellipsoid, is constant on the ellipsoid,

it must be independent of 6g in equation 6.18. Thus

3
U v 3
[1 <C + 3 c4o+15m + o{f’}].
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In addition, the coefficients of coszeg and cos“eg should also be

equal to zero. Thus

3g2 3 15
£ - vy 2F L 2 -fy - 2¢c =
im' + 3 m'f + > C20(1 ) 2 <40 0 ...(6.18)
and
' 2 f2 o, 33 -
m'f + 3 Czof L o+ 2 C40 =0 ... (6.19).

The elimination of C4O between the two equations gives

Te _ T 2r21 _ 3 ' A 21, 271 -
2f Zm+f[4 2]+mf[‘i 2]+C20[4(1f)+2f-}-0
oY
= o [1g _ T 152
5C, (21 + 33) = [2f oo of Lm'f].
Thus
e A Mt T e 15 2 Lo
Chpo = 7 [+ SET (5 D -f - 5 £ ']
- 3 - - 9- 2
= 3[15m £ —l~4mf+%f]
= L2 3. lea 3
= 3m 3f sm' £ o+ of + ol £7} ... (6.20).
The use of equation 6.20 in 6.19 gives
_ _§_ 2 _ |___9__ ll__2__
Ciwo= T [&f m'f- >f (5m 3f)]
= 5;‘—f2 - %m'f + o £%} ... (6.21).

The terms of order f° in equation 6.20 are dependent on the
assumption that terms of degree 6 do not make a significant contribution
to the result to required order of accuracy. For a result correct

to order e®, see (Cock 1959).
The spheropotential Up at any point P exterior to the
spherop U = Uo is given by

_ kM ay 2 a4
U= (1 +(E) Poo() Cop + (;) PaoWCyote- ... (6.22).

6.3 The formula for normal gravity on an ellipsoid of reference

The value of gravity on the surface of an ellipsoid of
reference whose bounding surface is the equipotential U = UO
is called nommal gravity (y). Y varies in magnitude with position
on the surface of the ellipsoid. The formula for normal gravity
can be obtained from either spherical or spheroidal harmonics as
in the case of spheropotential. The latter are preferred for

reasons given at the end of section 6.2.
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If the reference ellipsoid is defined by a4 = a ,
o

the value of normal gravitv is defined on the basis of the development

in section 2.3 as the guantity

Yy = -VY.NU

where / is the unit vector along the outward normal to the ellipsoid
which is an equipotential surface. It can also be seen from section

1.3 77 that the normal derivative is a function of the variable Q
alone in the immediate vieinity of the reference ellipso’d. Consider
two ellipsoids El and EZ’ corresponding to the parameters ® and a+Aq

respectively where Aa > 0. 1f P{(H,X,Q)E(Xl,xz

El while of (u,,a+do) = (Xi+AXj)} is on EZ' the elemental length PO

,x3)} is a point on

can be assumed to be normal to both ellipsoids under limiting con-
ditions. Thus

b
A%, = — Ao + of (hay?}.
i an

The changes AXi are related to Ao through relations which are

obtained by the differentiation of equation 1.18 when

AXl = =~ Ccosec O cot O cos U cos A Ao
AX2 = ~Ccosec O cot @ cos U sin A Aa ... (6.23).
AX3 = ~Ccosec’a sin u Aa

The element of length An along the normal is given by

An

1t

3

Limpp = () (Axiﬁli

Aor0 i=1

= —C cosec o Aofcot?acosu+ cosectsin? u?
1

= -C cosec Aa[cotzd + sinzu]2

}%

= —C cosec’a Aal[l - sin’a cos’u ... (6.24),

the negative sign allowing for the decrease in 0O with an increment
along the outward normal. The value of normal gravity Yo on the

reference ellipsoid is thus given by

o 3U
Yo © ° (V.5 U)U=U =T (ﬁ{)tﬁu
o] O
5U Aa sin o AU
= (Q—J)Uzuo (,—A—n—]U=UO = c[cot2a0+ sinul? (ﬁ)wao - (6.25).

The differentiation of eguation 6.12 gives

a? w?

9, (OLO)

U _ kM

Ja

%— qé(a)on(Sin u) - c’cosec’n cot a cos?u w? ..(6.26).

Evaluation at a = ao and the definition of F by the relation



P o= < ... (6.27)
o)
3q2(xo,
gives
2.2 z 2.2 :
Y = — - a‘wWcot o cos‘U + a“w‘F cosec o P. (sin ) X
o C o 20
( sin O
(@]
Ccosec o (1-sin‘c cos u)%
ol o
(l¢16)
as . .
c = a sin o
o

Let M be given by the relation

2

r = a¥m ...(6.28),

‘e

where Ye is the value of normal gravity at the equator. It should

be noted that m differs from m' defined in equation 6.15 by a
quantity of order £2. The use of this relation in the expression

for Yo gives

Y = kM _m Y cos O coszu +m vy FP_ (sin u) 1
o 2 e o e 20 .2 2
a [1-sin a_cos u]
... (6.29).
Equation 6.29 can be evaluated at the equator when Yo = Yoo
U =0 and P2O(Sin ) = =k The equation then reduces to
KM 1
e = (—a‘z —m\éCOS O(O - %mYeF)E‘é—S—'OC ...(6.30)

It follows that

(1,17)

L v (1 - £X1 +m) + 3mF)

— =Y (cos o (1 + m + gnF)
e O

{6030

The use of equation 6.31 in 6.29 gives

1

Y =Y (cos o (l+msinu )+mF{Y + P_ (sin u)}]
o e o) 20

[l-sinzaocoszu]2's

1

..{6.32).

Y (1 +mi+ g-F sec o | sin‘u
e 2 o] ]!2

[l+tan2aosin2u
The parametric latitude U is replaced by the geodetic
latitude ¢ by the use of equation 1.14 as follows. X and X

3
are given by the relations

X=acosu =V cos ¢ ; and x3 =pbsin u = V(l—f)zsin ¢ ,
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where v is PF in figure 1.3, the second equality in the first
expression following from the figure itself while a proof of that

in the second expression is available in (Mather 1970a,Appendix A).

Thus
b
7 tan U = (l—f)ztan ¢
or (1,17)
tan U = (1-fitan ¢ = cos @ tan ¢ ... (6.33).
Thus

cos @ sin ¢ )
Q,
sin U = o = COS_“o Sin ¢% .. (6.34).
]

[coszuosin2¢ +cos2d>]l~2 [1-sin?%¢ sinZOLO

Thus equation 6.32 becomes

Y 2 L2

e 3 cos“0_sin
Yy = 7 7 — 1 +m (l + >=Fsec a )_;2__4Lj__$
e tan“a cos<0 sin‘Pyk 2 o .2 .2
1+ o o } l-sin o sin ¢

l-sinzaosin2¢ J
which can be written as
coszaosin2¢

Y =% [1-sin®a sin2¢]%(l +m( 1+ éF sec O j—————— | ... (6.35).
o e o) 2 L2 L2
l-sin a051n o)

Notes
(i)  Fquation 6.3% is a closed expression and free from

approximations.

(ii) A pre-requisite for its solution is a knowledee of
the value of m which is dependent on ' through equation &.28.
Hence an iterative procedurs has to be‘adonted for the computation
of y_ which is obtained as special instance of equation ©.35 when

b= 0.

The evaluation of F
Equation 6.35 can also be expressed for most practical
purposesas a power series in f. This calls for the evaluation of

F which is obtained from equation 6.27 as

'{a )sin ¢
q2 OLo 2o

F =
332(ao)
where (5¢28) 1 , 5 . 3 , 4 . 5 11
i - - + +..
d, () 2(zigtan’s - gt + ggtan’a - goanta pgean at-l).
As
1 2 3 4
- 2. (i 2, _ 2 4 EX 6, - 2 8
qé(a) = 2sec u(S tan‘q 5 tany + 3 tanby IJ»tan o + ....),
. . 4.5
2-sec o _tan’q (l - {z~§tan2a - §—E*tan"a + ——tan®q }}
5 o o 7 o 9 o 11 o -

2 3 2 2 3 L 4 6
= - - G
5 tan ao(l 3.5{§77tan ao 7T§tan ao 9.lltan ao}}
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Thus
2.5 2.3 y 3.5 5 2.5.6 36
F = a - Za _ - = — = - —
sec o(l tan O[ - 5 ] + tan ao[ 5 + 5 ) 49])
4 2 68 Y L4612 6
= o R —_ - m————
sec o(l 3 tan ao + 147 tan ao [ 11310 tan ao])
As
(1,17) 2
A 1 2 _ 2f-f - 3 2
sec ao = 1-F and tan ao = > —2f[l+ Ef + 2f +O{fﬂ)

(1-f)

and as F is always multiplied by m(=f) in the expression for Yo'
a solution which includes all terms of f or greater is obtained

by approximating F by the expression

F = (1 +f) [1-f17—2f] = 1—%f+o{f2} ...(6.36)

The value of normal gravity at the pole (Yp) is given by

3,1
Y, = Y (-0 (1 +ml1 + S(1- =6 (4D ] + of £} )

as cos o =1 - f .
(o)

Defining the dynamic flattening B by the relation

]

(1-6) (1 + m{1 + %(1 + %f B -1

5 5 9
= é*m—f '2‘mf+-7'ITlf,
it follows that
vV s 17 3
B =B -2m - f.olmf o+ off}) ... (6.37).
Y 2 14
e
This equation is also known as Clairaut's theorem. In addition,
3
B =cos o {1+ ml+ =Fseco )} - 1.
o 2 [o}

Substitution into equation 6.35, where

m(l+stec0L)= (1 + B)sec o -1
2 o) [e}

gives )2

_ _f£2 2 1'2 _ -1 _ (l‘f sin2¢>
vy = ye[l—(zf £2)sin?¢] (1 + {(1+B) (1-f) 1} T-(3£-F7) sin’} )

]

ye[1—(2f—f2)sin2¢]';’[1-(2f-f2)sin2¢ +(B+E+8E+£?) (1-2f) sin?¢) |

The grouping of terms after expansion using the binomial theorem
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gives

Ye(l + [B+f -Bf -F22f+F24 (2F~F2) Jsind +[ §f2+8f-f2]sin“¢ +

<
13

o{fa}).
As

sin'¢ = sin2¢(l-cosz¢) = sin?¢- ysin?2¢ ,

Ye(l + [B- BENE2+Bf+uf2 Isin?d + 4[BF+yf?Isin?2¢) .

=<
1

= Ye[l + Bsin’d + stin22¢ + ol £3}] ...(6.38),

where

B, = ul( gm SE)F 4 4f2] = %[gmf - %f2] .. .(6.39).

Equation 6.38 is the required series form of the

formula for normal gravity.

Notes
(i) The most commonly used formula for normal gravity,

riven by equation 6.38, was that provided by the International
Gravity Formula provided by the International Ellipsoid, defined
by the parameters(e.g., Heiskanen & Moritz 1967,p.79)

{a=6378388m; 7 =297.0} o (6.00)
and the value of equatorial gravity given by

Y, = 978 049.0 mgal

The spheroid was based on the isostatic investigations of the 17.9.
geodesist Hayford in 1909, while the value of Ye was obtained by
Heiskaner in 1928 by a global analysis of the available isostatic
anomalies. The adoption of these parameters is equivalent to the
other constants of the reference system taking the following values.

{ xM = 3.986 329X10200m3sec-2; B = 5.2884x107> ;3 B, o= 5.ox1o'6}

L (60
The value- of Ye was based on the so-called Potsdam datum which was

approximately 14 mgal too high.

(ii) The value of the flattening obtained from isostasy is
consistent with estimates obtained from other studies based on the
theory of the earth's interior being in hydrostatic equilibrium
(Jeffreys 1962 ,p.152). The results obtained from the orbital
perturbations d near ~arth satellites are sigmificantly different
from the above value, indicating that hydrostatic equilibrium
cannot be assumed to prevail at the shallow depths of compensation

implied in the isostatic assumption.

(iii)  The following set of parameters was adopted at the
seneral assembly of the International Association of Geodesy (IAG) at
Lucerne in 1967 in place of the International Gravity Formula

(TAG Resolutions 1967,p.367)



91

6

{a=6378160m; C . =-1082.710™° ; kM= 3.986 03 10°Ccmisec=2)

20
.o (6.42)

The equivelent flattening of the reference figure, known as
Reference Ellipsoid 1967 is approximately 1/298.25. The resulting
model was called Reference system 1967(RS 1967) but cannot still be
said to be in common use at the time of writing. Tts use in
geodetic work must be combined with a change of -14 mgal in all
observed values of gravity based on the old Potsdam datum (Mather
1968c,p. 3uk).

The formula for normal gravity on RS 1967 is given by
(Bursa 1969; Moritz 1969)

Y, = 978 031.8 [1 + 5.302kx107>

sin%¢ - 5.9x10‘6sin22¢]..(6.h3).

(iv)  For a development of formulae for normal gravity

using a spherical harmonic development see (Heiskanen & Vening
Meinesz 1958, p.47 et seq.).

6.4 Gravity at an external point rotating with the ellipsoid

This section will consider closed expressions for the
value of gravity at points rotating with the reference ellipsoid.
The principles adopted are the same as those used in section 6.3.
Let the general point P have co-ordinates { (B+AR,A,a+Aq)= (XifAXi)}
being equivalent to the point Pé}B,A,a)E(Xi)} on the ellipsoid,
there being no change in the rotationally symmetric co-ordinate ).
The co~ordinate U has been replaced by B as differentiation is in
involved in the definition of normal derivatives. Equation 5.1

applies. The differentiation of equation 1.18 with respect to B

gives
Axl = -C cosec a sech 8 tanh B cos A A
Ax2 = -C cosec o sech 8 tanh B sin X AB ...(6.44).
Ax3 = C cot a sech?B AB
Thus
%%— = € sech B [cosec?n tanh?B + cot?g, sechzs]%
(551) y
= € cos U cosec a[l - sin?g cos?u] ...(6.45).

Thus normal gravity y at the general point P exterior to the

ellipsoid can be considered to have two components Yo and Yo+

(a) The first component Yo is given by
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a3U o0
N’("X = - ( Ja t on )
(6.25),(6.26) L2 2 2
! sin @ 5(‘%’% %————-—a (“; a5 ()P, (sin W) =
¢ l-sin’a cos?u] 9t e,
c?cosec?o, cot o cos®u wz}
1 { kM (a)z . ay 1 sin o ' . -
= - = my (——] I ooy 9P, (sin v
[1-sin’a coszuf2 a? % e ap 3 q2(ao) 2

a
my, fg% cos o cos®u ] ...(6.46),

where M, kM and ¥ have the same significance as in section 6.3.
e

(b) The second component YB is given by the differentiation

of equation 6.12 according to the relation

U 08
Yo =-( 57 - )
sin o

= 5 . (~Czcosec2a sech?B tanh B w? +
Ccosu [1l-sin®ocos u]

2 2
1 a” w 3 2
+ g qu (a) % D) 2tanh B sech*‘pB ]
2 o
(5.1),(6.28) mY cos u sin u a q., (o)
M e . (_[-;P)+ (éa_)q_______z(a ) ] ... (6.47)
[1-sin®acos?u] p 2 o

where YB is directed in the direction of decrease of # with n,
i.e., the pole., and ap is the equatorial radius of the ellipsoid
through P.

Notes

(i) The first term in equation 6.46 makes the major

contribution, beings the pravitational attraction of a sphere
with the same mass and at an external point. The second term is
that due to the rotation while the third is due to the ellipticity.

The total acceleration due to rravity is given by

y = [yfx + yé]x’ ,..(6.48)

and actc in a direction which is not alone the normal to the spheroid
at P_ but along that to the spherop at P as shown in figure 6.1.
Thusuthe direction of the spherop normal at P differs from that at
the equivalent point on the spheroid by an angle A¢n given by

\:
tan A%= — (61@),

Yo

where the magnitude of v, is dependent on both the ellipticity
B

and the rotational characteristics of the ellipsoid.
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ST ONG
Yeeocheiee of voriables whiech occur between the ~eneral

roint Poandd the equivaloent point on the reference e1llipsoid are in

.y o from O to o
(‘::) u from U to UO
or ¢ from ¢ to ¢o.

Tnese changes occur on moving alone the trajectory
orthoponal to the familiy of svherops definings the resultant
rravitational field exterior to the reference ellipsoid. Position
exterior o the latter for a given value of ¢ can be expressed in
terms of oue of three variables. They are:-

i. The difference in potential U between the values

at. the reference ellinsoid UO and at P(U). Thus

AU = U - ‘U = AU(¢,h) =AU(¢,A0)
whera Aot i Lhe change in o between the ellipsojd(ao) and P(a)
o. Aoy is eiven by
Ay = a - a ... (6.50)
o

3. The spheroidal elevation h eiven by

h =h(¢, AU) = h(¢, Aa).

6.5 The chanae in spheropotential AU with Ax

The potential U at an exterior point P(u,\,do~Aa) is

given from equations 6.12 and 6.50 as

a, (o ~Ac)
U = Lu -ro) + Yalwlcos®u + + alg2—am [3sin2U - 1]
c © P 6 q, (o)
(6,28) a a, la_~Ax)

M Ty 2 .2 1 2% 2
= ‘é‘(do‘/\(x) + R (15 [“5‘) (l1-sin“w) + g W B sin®u —l])

The term Yo @ is obtained from ecuation 6.30 as

. kM Lm(l- &
ay, i Foop(l-ma-H - w(l- 5D)

= T dn corer Mo Zne g4 oy

(O8]

or, more precisely,

kM 3 3 1, ..
,’ea = . ti- (1~ 2‘1“) - ym(1- ‘12 n+f ) (1 - ‘7-'f) ]
kM | 2 9 3
= E;-[l L 7mf Foof{f3}] ...{6.51),

as cos o =1 - f.
o
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As equation 6.13 can be written as
kM 1
U = —a + =
o c o 3 YeM 2 !

it follows that

a q,(a_-Ao)
kM 1 2 172 7o
AU =U-U-=— = - -sin? - ——
o CAa+Yema(3 %(—alj (151nu)+6 TR
2 7o
g, (o -Aa) a, 2
sin?u(y——2— - 4(-F) ) ..(6.52).
qz(a ) a
o
It should be noted that
A -
oo A_U: 10 3.
-1 a 4 U
As o = 10 7, Ao = 10 and terms of (Aa)? which are of
order lO—8 will be treated as negligible. In addition,
N kM
Ve @ © T
- -7.
and m Ao = 10 .
The term (ap/a)2 is evaluated as follows, noting that it is

always multiplied by m.

a C cosec{a -An) sin o
D [e] 0]

i - =

a C cosec U.O

2 .
sin o - Aa cos o - L(Aa) “sin o
o o o

1 + Ao cot a + %(Aa)z(l + 2cot2ao)+ of (Ao, cot ao)3}

()2 = 1+ 200 cot o+ (Am?(1 + 3cot’a) + of (ha cot o )}
a o} o} e}

A consideration of equation 5.28 gives

= _g_ 3 - - 2 2 - _ 1 iy -
q, (o -ba) = 75 tan’ (o -00) (1 - 15[5ztan® (0, -0a) - ytan’(a -Ao) 1.
As
tan(a -Aa) = tan o - Ao sec?o  + o{107%)
O 6] [o]
-8
tan? (o ~Aq) = tan?a (1 - 2 Aa sec’q cot o + o{10 })
o) o o o
and -3
tan’{a -Aa) = tan’a (1 - 3 Aa sec?a cot a_ + o{10 1y,
° 0 o o
q, (o ~ha) 6 2 2
—L = — =[1 - 3 Au sec’a cot @ ][1 - = tan“a (1 - 2Aasec’a cot O ) Ix
qz(ao) o o 7 o o) o

6 2
1+ 7 tan ao]

1 - Aa cot o sec?a (3 - lztan2 o )
o fo} 7 o

i

]

1 - Ax cot o [ 3 + 2-tanza 1 + of(hocot « )2} ...(6.55).
o 7 ] o
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The use of eguations 6.53 and 6.55 in equation 6.52 gives

AU

kM
== A0 +vyma (l - % - Ao cot o -%(Aa)?(1+3 cotla +
o) e 3 c e}
1 1 9 2 1 2 2 2 36 2
2 _ L1, 2 = - -
& " & Qo cot a(3 + = tan a)+ 6(Ad)sec & (6+3cot™n Ssec ag)
sin®u (4 - % o cot a_(3+ %tanzdoﬂ— 5 (0w *sec’a (6+3c0t’a -

36 2 2 2
sec ao)— % - Ad cot ao— L(Aa) (143 cot Oo))

The use of equation 6.51 together with the relation

C =Db tan «
gives
AU = &M-Aa cot O |1 + m(1- gm)(-l— l-(3+ gtanzOt ) - Ad cot @ -
b o 2 6 7 o o
L2 5 9 2
sin u( 5 than ao ) }
which, on rounding off to order £3 gives
kM 3 9 2 3 . 2
AU = 5 Aocot ao((l T oM M- pmtantal -mAa cot o )+
2 5 9 2 _ 15 2 3
sxnu(§m+l4mtan0to Sm? )+ olf}] ... (6.56)

The solution is completed On replacing u by ¢ using

equation 6.34 when

cos?a sin2¢
1-sin“a sin“¢

sin’u

= cos®a sin?¢[1+ sin’a sinZ¢ ]+ o{f?}

= cos2u0(1+ 2 Ao tan aobin2¢ {1+ sin2a0(1—2 Ao cot agsin2¢}

= sin®¢ coszao(l+2 Ao tan ao) + sin”¢ coszaosinzao

= sin?¢ (1-2f) + 2f sin"d + o{f2} ...(6.57).

Thus, on replacing tan a by 2f + ole?},

- kM _ 3 82 _ 3 . _
AU = b Aocot o (1 Sm o+ om 7n& m Aycot o *

3 . 2,15 15 2 26
- ~ == mf] -
Zf + sin®d[Sm- - ]

m Ao cOt o + smf sindto{f’}

—~—
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The term Aa cot o within the bracket is multiplied by m and
hence its magnitude is only approximately required for evaluation

therein. This is given by

_ .. AU
Ao cot o = b ™ -

Its more precise value is obtained by inverting the expression for

when

_ b 3 209 94y, 3 AU
Ax cot o= M AU {1 + 50+ m [4 4 }+ 7mf + m -

2, 15 15 o 15 » 26 . 4, (25 2
sin ¢(§m - St St - frmf)+ sin ¢(zﬁn - 5mf)
_ b 3.3 AU . 5 (5 15 , 26
= AU [l +5m D nf + mk)kM - sin ¢(§m + g m- frmf]+
( -24—5m2 - smfsin‘d + o{107®) . [ 6.58).

Notes

(i) Terms of order (Aa )? have been ignored in the

above development as they are of order 10-8

(ii) For a development correct to order (Aa)?, see

(Hirvonen 1960,pp.17 et seq.)

(iii) Equation 6.56 gives the change in geopotential for
a change Ao in a. Note that (kM/b) = U .
(iv)  Thus the term (m bAU/kM ) = £?

6.6 The evaluation of the angle A¢nbetween the spheroid and
associated spherop normals at the surface of the earth

The angle A¢n defines the displacement between the normals
to spherop and the member of the family of confocal spheroids which
passes through the relevant point at the surface of the earth, being
obtained from equations 6.49, 6.46 and 6.47. The use of equations
6.51 and 6.54 in equation 6.47 gives

m Yecos u sin u
YB = 5 -1 - Ao cot uo + (1- Adcot ao)(l -
( 1-sin®o coszu)

1
3 Ad cot o + ofAa cot a )2})
o o)

my cos U sin u
= = Ao cot ao(—S + of{An cot ao}] ..(6.59) .
( 1-sin®a cos?u)

=1 = 10
As Ao cot ao 0 7, YB Y

Thus |tan 8¢ | = {YB/ya| = 10~ or (A¢n)3 = 10
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Hence

16}

o = + of{10”

<i <
w

a
and the expression for Yu is only required to order Aa cot ao.
This is obtained from egquations 6.31 and 6.36, together with equation

6.51 as

Ye 3 L2
YQ = y 1+ Em - f 4+ ¥m(3sin“u - 1) -
(1-sin®a cos?u)
m(l-sin®u) + o{f?}
Ye 5 .2 2
= (1 - £ + 2m sin%u + o{f?}).

(1-sina cos?u) 2

It follows from equation 6.59 that the outward spherop normal
is displaced towards the pole in relation to the spheroid normal.

Adopting this as the magnitude for A¢n,
A¢n =m cos U sin u (Ao cot ao)(s + o{f}) ...(6.60).

Proceeding on lines similar to those used in the derivation of

equation 6.57,

sinu= sin¢ (1L - £ + f sin®¢ + o{f?})
and
cos u = cos ¢ (1 + f sin®¢p + o{f?})
Thus,
8 =m sin ¢ cos ¢ (Aa cot a) (5 + off} ] ...(6.61).

6.7 Changes Ay in ngrmal gravity with potential (aY)

Strict expressions for the required changes can be
obtained by operating on eqguations 6.36, 6.46 and 6.47, adopting
principles similar to those used in sections 6.5 and 6.6. These
results can however be obtained with comparative ease by the use of
relations derived in the above mentioned sections along with

development using Taylor series.

The spheropotential U at any point P can be expressed by

the series

AU 3%U
U=Uo+h§{+%hzgﬁy+ ... ..{ 6.62),

where h is the spheroidal elevation and Uo the value of the potential
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on the reference ellipsoid. It can be seen from section 2.3 that
the gravity vector is normal to the local equipotential. It
can also be seen from equations 6.49 and 6.60 that the change in

direction between spherop and ellipsoid normals at equivalent points

is of order (i.e., 2 arc sec or less). Thus
3U -
= = -v +ofl0 104 ... (6.63)
“h

and

U =U -U=vh -5h2 3 4 o{107° ... (6.64).

J
o oh
The quantity (3yv/dh) is known as the vertical gradient of normal
gravity. It is most conveniently evaluated by the application of
Laplace's equation at the surface of a spherop

U(x.) =0 . ... (6.65).
i c

The curvatures q]in the principal sections of the

spherop are given by

2
a"x,/ .2
c _ ( 3 dxg)
5] 0 - adx 3/2
’ (“( - H
dx
o

where n, are the principal radii of normal curvature with reference

....(6.66),

to a triply orthogonal local Cartesian system with the positive

direction of the X, axis coincident with the local outward normal.

3
In practice, the X1X2 plane coincides with the tangent plane at the
local point and the Xl and X2 axes can be taken as being oriented

north and east respectively.

As the equation of the equipotential surface is
given by equation 6.65, differentiation with respect to Xa along
the surface in the immediate vicinity of the origin gives

dx

u U T

X ox, dx

o 3 o

Repetition of the procedure results in

2

2y, oty P sty Fs o au Ty pPuaxg 6
E3% dX_,0xX _ dx 9X 9x. dx 3%, dax° X2 ax
o 370 o o 3 o 3 o 3 63

As the differentiation is performed along an equipotential

surface with the X axis oriented along the normal,

3

ax

-3 =

dx

a
Thus 2
22u . au 4%
axt X, ax?
o 3 o
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If 0 and V are the principal radii of normal curvature
in the case of the reference ellipsoid, being in the meridian and
prime vertical sections respectively, the use of equations 6.63

and 6.66 gives

p%U 3%U (1,1
w ooz g T

The use of equations 2.8 and 2.29 which define Laplace's equation

in the case of a rotating body, gives

3 \2
vy = 7 20 L g ... (6.67).
X I
i=1 i
As
,g_zll= - Ay
%z oh
appropriate substitution in egquation 6.67 gives
a3 1 1
==y lp+ ] - 202 ...(6.68).

This expression, attributed to Bruns, gives the vertical gradient

of normal gravity. On using the well known relations(e.g., ibid,
appendix A)
a(1 -£)°?
p = ( L) 372 and Vv = a ;’ ;
[1-(2£-f?%)sin?¢) [1-(2f-£?)sin?¢]

1 -
S o %: —;-(1— ) 2[1—(2f—f2)sin2¢]1’{1-(2f-f2)sin2¢, +(1-)?]

= %([1+2f1[1-fsin2<b 1[1- £ - fsin®0]) + off?}
= % [1+ f - 2f sin®d + off?}]
Also ) my_ (6,38) ) ——_
= X - : - _ .2
w 3 3 f1 sin®d] 3 [l+(5m fYsin®é]

The combination of the above results gives

= -2 % [1+m+f- 2f sin?¢ + off?}] ...(6.69).

The use of this result in equation 6.62 gives

2
AU=U-U=yh - Ij§~{l + m +f - 2f sin?0] + of £’}

=Y h (1 - g—[l +m+ £ - 2f sin?d] + o{fa})

Thus h is given by
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A 2
h = T,g (1 + %[1 +m+f - 2f sin¢ ]+(ka—1) + o{£%})
AU AU . 2
= = (1+ sJ1+m+ £ - Fsin’e I+ (g%) + o{£%}) ..(6.70).
Notes

(i) The relation between spheroidal elevation h and
geopotential AU is best studied by defining the latter in kgal m

(kilogal metres) which are given by

1 kgal m = 1077 x cmZSec_g.
Thus
AU(kp;al m) _ h(m) « Y(kgal)
- 0.98 x h(™
or
aolkeal m) _ ggq p(m) . (6.71).

Thus spheroidal evelations are approximately 2% greater than

the difference in geopotential in kgal m. Equation 6.70 is correct

to order f3, being correct to 0.1 mm in all circumstances on the
earth's surface. Terms of order £ in this equation reach a marnitude
of 1 mm when h = 25 m, while those of order £ achieve this

magnitude when h = 1.5 km L (6072)

(ii) The geometrical significance of the spheroidal
elevation has not been specified. In the context of equation
(6.62), it is merely a parameter defining position on normals to
successive equipotential surfaces and not the distance along the
ellipsoid normal which passes through the surface point. As

the maximum displacement is of order f% this is equivalent to

-y
(s

linear differences of order 10-9, which is of the order of 10~
mm even for a 10 km elevation and such differences can be
nerlected. Thus linear displacements along the curve normal to
successive equipotential surfaces are, for all practical purvoses,

equal in length to lengths along the relevant ellipsoid normal.
6.8 Normal gravity vp at a surface point

The value of normal gravity Yp at a surface point can

also be defined by a Taylor series of the form

] 2y 2 2
Y Yt hal +xn §E¥' ... c . (6.73) .
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The contribution of the third term is extremely small and can be

obtained from a consideration of the first term in equation 6.46,

when
¥y . km dy 3%y _ kM 27y
W= ey volfy)  aa -6 S oleh
P j
or
8%y ' th
WE - s L o+ oled ... (6.74).

The combination of equations 6.74, 6.69 and 6.73 gives

[1+ f+m- 2f sin2¢] - §~(§)2+ o{f3})

o

by =y -y = -2y

... {6.75).
Notes

(1) The quantity Ay is commonly known as the free air
reduction.

(ii)  The spheroidal elevation is a derived rather than
an observed quantity except when expensive astro-geodetic procedures
are resorted to. Tt is therefore relevant to define the free air
reduction in terms of the difference in potential AU which, in
practice, is a measured quantity.

The incorporation of equation 6.70 in 6.75

gives

AU

2
20 4w o ste s ) 3(9))

N
Y ay 2 ay

1

"
CAUG s f - of sin?s - X0 4 o{£2)]. . (6.76).
a ay

(111) A development, correct to order fa, is miven

by Hirvonen(1960,pp.17-2u),

(iv)  The maenitude of the principal term in equation

6.75 is 6

eyh . o2x100 (m) () o

a 6X1o6

It is necessary to use the terms of order £2if the correction
Ay is required to the nearest tenth-meal in the case where h > 1 km.

It iz also necessary to know the elevation to the nearest 1/3 of a

(v) It is conventional to adopt the correction

¢ = 0.308 h{™ meal 60T

as the free alr reduction fer practical use.

(vi) Laplace's equation doeés not hold in regions occupied

by matter, in which case Poisson's equation holds. This expression
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is given in the case of a rotating body by equation 2,29. Equation

©6.68 takes the form

Ay _ i, iy, \

~h [ 5ty ) 2w°  + 4mkp ...(6.78)
in this case, p' being the density of matter at the point where

the gradient is being evaluated.
Summary
(i)  The angle between the normal to the confocal

spheroid and the equipotential surface of the reference system at a point

in space exterior to the reference ellipscoid is given by

-5 . h 3
Ap = 5mosin 2¢ 7+ of£7) ... (6.79),
as
(6,58) (6,70)
¥ AU 2 ¥ h 2
Ao cot a = —aY+o{f} = g+o{f} . ...(6.80).
(i) Given the difference in geopotential AU

between a point PS on the reference ellipsoid and the general point
P,
(a) the spheroidal height hsis given by

(6,70)
¥ AU AU . 2 AUy 2 21},
h, = —Y—[l+é7(1+f+m—2fsm¢)+(§]+o{f}},

(b)  the difference in normal gravity Ay is given by

(6,70
Ay ¥ (L+f+m-2f sin’¢ - % é% + of{£?})?

a
(6,75)
LA %?-(1 + f + m-2f sin% - %-§-+ o{£?})

(iii) The above equations define both the position
and gravitational characteristics of all points in the space exterior
to the reference ellipsoid and rotating with the same angular
velocity, provided the spheroidal elevations are not in excess of
20 km.

The system described in this sectlon affords a reference
model for studying the gravity field of the earth provided the
difference of geopotential in relation to the geoid were known at

all surface points.
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FIG. 6.2

Oblate spheroidal co-ordinates and elevations
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FIG. 7.1

The geocentric and associated co-ordinates
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/. THE EXTERIOR GRAVITY FIELD OF THE EARTH

7.1 Introduction

It has already been shown in sections 4.1 and 4.9 that the
gravity field of the earth exterior to it can be represented fully

by a spherical harmonic series of the form

kM an n
-— 1 & 1 P [ C cosmh +S sinm] e (7.1
n=0 m=0
where ae is the equatorial radius of the earth, U = cos 9 and

(r,8,)) define the set of spherical co-ordinates. A study of table
8.3 shows that the coefficients Cnm' Snm are all of magnitude 10—6
except COO which is unity and C20 which is of order 10_3. Thus

the contributions of the former terms to the magnitude of W will each
be of the order of 10 kgal m or less, while those of C & Cooare of the

order of 10 kgal m and 6X10 kgal m respectively.

It is therefore desirable to remove the effects of the
terms COO and C20 in order that the contributions of all terms to
the function being studied are of the same order of magnitude. If
the earth were a sphere to order f2, all terms other than COO
would make contributions of order f2. The earth is not a rotational
ellipsoid to order f due to departures of the topography from this
shape. It would therefore appear that all values of Cnm’snm

should also be of order £ 1like C20' This is not so in the case

of the exterior field due to the existence of isostatic compensation.

The deviations of the mass distribution of the earth from the
isostatic model influence the orbits of near earth artificial satellites.
As the resulting coefficients defining the earth's exterior gravi-
tational field are of order £2, it must be assumed that the gravity
anomalies based on such a density model must also be of the same
order of magnitude. The effect of the higher degree harmonics
which are of short wave length, is rapidly damped out as expected from
purely empirical considerations, due to the term (ae/r)n, as shown in

table 4.1

Thus the harmonic coefficients determined from the analysis
of the orbital perturbations of near earth satellites cannot
necessarily be considered to be applicable at the physical surface of

the earth as the effect of the higher degree harmonics, which are
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damped out by the factbr‘(ae/r)n at the relatively higher altitudes
relevant to satellite orbits, re-assert their effect at lower
altitudes and hence, any evaluation of W based purely on the
analysis of satellite orbital perturbations provide an over-
smoothened representation of the gravitational field at the earth's

surface.

Low degree harmonics, on the other hand, are less effected
by the departures of (ae/r) from unity and hence more reliably
determined from satellite orbital analysis than those of higher degree.
These low degree harmonics afford a convenient means of estimating
values of gravity for the representation of the unsurveyed regions
of the world. The techniques currently adopted for doing so are
developed in section 7.3. The higher the degree of harmonics
determined from such analysis, the more accurate will be the field
exXtension. The upper limit to the degree of the harmonic which
can be adequately determined in this manner is governed by the
lowest possible altitude at which a satellite can orbit the earth
without suffering significant drag effects as a consequence of
friction between the satellite and the atmosphere. This fixes
the minimum altitude of geodetically useful satellites at 200 km.
It can be seen from table 4.1 that harmonics of degree less than
6 can be determined with confidence from satellite orbital analysis
alone as the elliptical orbits have apogee height of over 1000 km in
this case. Analyses up to degree 20 should be possible if an
appropriate variety of orbital sizes and inclinations are included
in the solution with appropriate computational precautions.
Harmonic coefficients up to degree 8 and zonal harmonics of higher
degree seem to be cappable of reliable determination at the time of
writing though combined solutions up to degree 16 have been

obtained using techniques outlimed in section 7.3,

Computational stability is obtained by resorting to the
procedure of linearisation. The principles involved are as follows.
A model is adopted for the function being represented in order that
the residual variations between the real magnitudes of the function
and those predicted from the adopted model are small, preferably
giving rise to terms of the same order of magnitude in the

representation of the linearised function.

In the case of the geopotential W represented by equation 7.1,
linearisation can be effected to a limited degree by adopting a
spherical approximation for the earth. The potential U of a sphere
with the same mass as the earth at an external point P, distan? r

from the centre of the sphere, is given by
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Thus the disturbing potential Va obtained by linearisation
is
= W—
Vd U

kM an
e (<)

I o~1 8

n
mZo pnm(sin ¢)[Cnmcos m o+ Snmsin mh ]

n=2

. (7.2)
if the centre of the sphere were at the centre of mass of the earth.
This is developed further in section 7.2. It should however be
noted that C20 is still three orders of magnitude larger than the
other coefficients. Its effect could be eliminated by adopting a
spheroidal model of reference with symmetry about the minor axis.
The resulting spheropotential U can be expressed by equations

of the form

a 2n
(—;) Pono (8in ) Guuo ... (7.3).

ol
te~18

n=0

The coefficients which result from the use of eguation 7.3 in

defining 7.2 will now be of the same order of magnitude (10—6).

The spherical reference model will however be used
when studying the dynamic effects of the earth's gravitational
field on the orbits of near earth satellites as the use of
such a model with a uniform density distribution will result
in a satellite orbital plane which remains fixed in inertial space
(i.e., space which does not rotate with the earth) if not

influenced by any other factors.

7.2 The dynamic significance of selected low degree harmonics
of the earth's gravitational field

The disturbing potential Vdp at the general point P

in earth space exterior to the physical surface, is given by

= W - U o (7.4,

the subscript o referring to evaluation at P. Wp is given by

where r is the distance of the element of mass dn at Q in figure
7.1 from P. If R is the distance of P(Xi)from the centre of mass
C of the earth, which is chosen as the origin of the Cartesian

co-ordinate system X.l  this location being purely a matter of
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convenience,

X, =R2%
1 1

X - RY ... (7.5),
ci c ci
where Xci are the co-ordinates of O and Rc the distance of O from

C. If p is the density of matter within the volume dv,

dn = p 4v.
The quantities Ei, Qci in equation 7.5 are the direction cosines
of the lines concerned. Wp can then be expressed without

approximation using equations 3.26 as

1

_ n
wp = k nZO T JJ( r_ p, (cos ¥) av ...(7.6),

where ocp = .

The geopotential Wp can also be expressed by the spherical

harmonic series

o n
1
= i in M\
Wp ¥ — 1 N P, (sin ¢ [ a .cos M + b sin ]
n=0 Y m=0
e (7.7
as discussed in section 7.1. If equations 7.6 and 7.7 are

identical, the contributions of low degree harmonics for the same
value of n must be equal. The following results are obtained on

equating the appropriate setsof terms in the two series.

When n =20

1t
e

Py (cos ¥) Hence

It

340 k J[Jp dv = kM ...(7.8),

where M is the mass of the earth and called the inertia tensor of

zero order.

When n =1

3
plo(cos V) = cos Y = Z L, 2
The appropriate term from equation 7.6 is
3
k ffjp Rccos Ppav = k izl L fjf Xci p av

3
=k ] 2, MX = 0 e (7.9)
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ii being the co-ordinates of the centre of mass of the earth.

The last equality in 7.9 holds as the origin of the co-ordinate system
has been defined as coinciding with the earth's centre of mass.

If 2; # 0, the origin will no longer be situated at the centre of
mass of the earth. The appropriate terms from equation 7.7

are obtained from table 3.1 as

a,,5in ¢ + a,,cos ¢ cos A+ bllcos ¢ sin A

= a 2 + a,. 2 +b 2

10 3 11 1 11 72"
Thus
a, = Ij3= k ”J Xo3 POV
a;; = Ill = k fff Xcl p av ... (7.10) .
by;, = I= kK ”J Xop POV

Ili are the first order inertia tensors of the earth (e.g., Hotine
1969,p.156). The computation of the disturbing potential Vd

using an ellipsoid containing the same mass as the earth, symmetrically
distributed with respect to both the rotation axis and the equatorial
plane, and the same first order inertia tensors as the earth would
result in the elimination of both zero and first degree harmonics in
Vd.

When n»n = 2.

The kernel of the second degree term in
equation 7.6 is

3

2 _p? (3 a2y o N g2 2.
R p, (cos §) = R: (5 cos®¥ 5} =% RC(3i(=1 2.8 0) 1
3 3
=% ¥V YV e.e.3X X -6 R '
is1 §=1 i7j ci’cj ij ¢
where Si. is the Kronecker delta. As lilj is independent of the

volume integration, the resulting second degree term from equation 7.6

can therefore be written as

[ o KV

2.8, ”f [3X X ., -6,, R ]pav

3
vk J X
591 1 13 el cj ij ¢

3

N W

3 3 3 3
= -k 0. R - X X .]pav +k 2.2.[[6‘.R2 av
iZl jZlQlQJfJJ[Gl] c ci CJ]D izl jzl i Jf ijc p

.. {(7.11) .

The second integral on the right is the scalar form of the

second order inertia tensor I,, given by (e.g., ibid, p.165)



3
3
X - I
I {”Z L Pav =y E Ji e (7.12),

where I2ii are the moments of inertia of the earth about the Xi
axes, given by

I = 2 2

2ii ”j( Xep X, )0 av ,ss L(7.13),

The following equation is obtained on equating second degree
terms between equations 7.6 and 7.7 on expressing equation 7.11

in matrix notation.
¢ 3, (T
Z p. (sin ®[a, cos M + b_ sin m] = - 3k {| "L ¥+ k1.,
=0 2m 2m .2m 2 2

where

W xgo e = ffepg e ]
I - "”fxczxcl b av [” [R- X2,] 0 av 'f”xczxcﬂ av
‘J”wacl o av "”J RofopP & ”J[ch - Xg v

... (7.14)
and
21 cos ¢ cos A
L = RZ = cos ¢ sin A ... (7.15),
R3 sin ¢

the elements of being the components of the unit vector in the
. . T . . . .
direttion CP. L IL is the moment of inertia about the axis CP.
If the non-diagonal elements of the array I were zero,
[ = 1,
as the elements along the diagonal are the moments of inertia 12..

ii
defined in equation 7.12. As the array I is symmetrical,

Ty _ 2 2 2 a2 so24
L'IL = I, c08 ¢ cos“\ + I,45C08 ¢ sin“A + I1,4,8in ol

2T cos®psin A cos A - 21213sin ¢ cos ¢ cos A -

212

2122351n $ cos ¢ cos A,

where
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12.. = JJ{ X X  pav, i#3.
i3 ci cj
Thus
¢ 3 1
. . - 2 2 _ 5
mZo sz(51n ¢)[a2mcos m o+ b2m51n m\] = k(1211(§c°5 ¢ cos“A 2) +
3. .2 L2y L 3.2, 1, _ 2 : _
1222(§Cos $ sin“A 3 +I233(551n ¢ 5 31212cos $ sin A cos A

31 . _sin ¢ cos ¢ cos A - 312 sin ¢ cos ¢ sin A ]

213 23

1]

—k@%lile—sin2¢)(l+cos 2A) - %J+ I222(%41—51n2¢)(1—cos 20 - %-)+

1233 p20(sin ®) - 2p22(sin $)sin A cos A -2p21(sin ¢)(Izl3cos A+
1223sin k) }

= k( pzo(sin ¢)[%(1211+I222)-1233] + p21(sin ¢)[21213cos X+
21223sin 2]+ p22(sin ¢)[121231n 22+ %(1222—1211)cos 2%]1 ,

where the values of le(sin ¢) and p22(sin ¢) are obtained from

table 3.1 and equation 3.38.

Thus,
a0 = K (AT, + Tyt - I3
a21 = 2k 1213 b21 = 2k 523 ..(7.15)
3y, = WKL, -Toy,! by =k oy

A study of equations 7.13 and 7.15 shows that LTIL can, in effect,

be diagonalised if

$ = hm
when the directiom CP coincides with the X3 axis. Such an axis is
called a principal axis of inertia. It can be shown(e.g., Hotine 1969,
p.166) that products of inertia, using any pair of mutually
perpendicularaxes which are also orthogonal to a principal axis,

are zero. Thus

1213 = 1223 =0 L (7.1

if the X3 axis is a principal axis of inertia.

Nntes
(i) Any spherical harmonic series used for the
representation of the disturbing potential will have the coefficients

500 {00 a5 bll’ asqs b21 equal to zero.
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if the mass of the reference system, assumed to be an ellipsoid of

revolution, equals that of the earth.

a = a =0

10 1 = Py
if the centre of mass of the reference system is coinecident

with that of the earth.

if the minor axis of the reference ellipsoid coincides with the

axis of rotation of the earth.

(i1) If the gravitatineg system defined by equations
7.6 and 7.7 was a rotation ellipsoid with a symmetrical mass

distribution,

I S
Wp - nZO r2n+l Ft’n)ﬁ) q2n)0 !

when the use of equations 7.8, 7.11 angd T.12 gives

_ kM k T 1
Woo= T apm (Tt It Tog3 - 3LUIL 3)+ ofd
... (7.18).
This equation is known as MacCullagh's formula.
(iii) The coefficients a_,b in the case where
nm’ ~ nnm

is the potential due to a reference sphere, are related to the

coefficients Cnnﬂ Snm in equation 7.2 by the expressions

a

Cnm = gm
kM a
e
with a similar relation for snm' The relation of greatest
importance is that obtained when (n = 2, m = 0) and (n =2, m= 2).

The use of equation T7.15 gives

1 -
2100 * Ipp,) Ioas

C = ---(7-19)
20 M a?
and
- ] SR S
Cop = 222 211 oo (T.20).
M a’

If the earth were an ellipsoid of revolution with a symmetrical

nass distribution, 1211 = 1222 and
I -1 (6,20)
_ 211 233 _{ ' _2_ 3 ' 1.2
Co0 = M 22 - R il
a
(7.21)
and C,, = 0.

22
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Hence C22 is a measure of any ellipticity of the earth's
equator. A study of table 8.3 shows that the magnitude of C22,
while large in comparison to most of the other coefficients,
nevertheless is of the same order of magnitude and no significant
improvement is achieved by introducing the concept of a tri-axial

ellipsoid as the reference model.

7.3 The combination of data obtained from satellite orbits
and surface gravimetry

The earth's gravitational field can be completely defined
by gravity measurements at the surface of the earth. This is not
a practical possibility at the present time (1970). The gravity
data available at present consists of measurements at discrete points
which are irregularly spaced on the surface of the earth. The
major concentration of readings occur in the continental regions of the
earth while the oceans are inadeguately surveyed. Thus no
gravimetric solutions for the geoid will be possible unless some
method is available for the prediction of values of gravity for
the representation of unsurveyed areas.,

The simplest technique is to use the low degree harmonics
of the earth's gravitational field as obtained from the analysis of
the orbital perturbations of artificial earth satellites for this
purpose. This technique was initially used by Kaulay1966a) . All
available surface gravity data is assembled in the form of area means
for some standard block (e.g., 59% 5° or 300 n.mi. squares) . It
is preferable to sub-divide each of these basic squares into a
smaller unit, attempt to represent each of these by a single reading,

and then compute the area mean for the basic square.

The gravity anomaly at the surface of the earth Ag

which is commonly called the free air anomaly, is given by
Ag:g-Yo +AY el (7.22),

where g is the value of observed gravity, Yo is the value of
normal gravity on the reference ellipsoid, given by equation

6.38, and Ay the free air reduction given by équation 6.76.

Let the values of the coefficients (EQm'ng) of the series
representing the geopotential, given by equation 4,40, as obtained

by satellite orbital analysis be (Egms,§

)}, where
nmg

c = € +dC ;S = § +aS ... (7.23).

nm nms nm nm nms nm

The disturbing potential can be expressed by an equation of the form
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(4450) kM ® aen n_ —
\Y = —_ - 1 3 i ]
a = z ( T ) E p . (sin ¢)[Cnmcos m\ o+ SnmSln mh [+
n=2 m=0
o{fVa} e (7.24)
at the surface of the earth to the order of the flattening. The

disturbing potential Vdp at a point P, having a difference in
geopotential W with reference to the geoid (WEWO), is given by

v = W - U ... (7.25)

dp p p

where Wp is the potential on the reference system at P, the geoid
and the spheroid being assumed to have the same potential. Let
0 in figure 7.2 be a point on the spherop U= Wp and
on the vertical through P. Let Yq be the value of normal gravity
at Q. If PQ=hd, the use of equations 6.62 and 6.63 gives

U

v -
o ho + hd( Yq)

or

vdp = hy + o{fva} ... (7.26).

The differentiation of equation 7.25 with respect to

elevation h gives

SRS IEE SERTRRTN -3

The use ot equations 6.69 and 7.26 gives

v \Y oV

d d d
T A - 2 B + of f B } L7227,
where R, to the required order of accuracy, is the mean radius of
the earth. The differentiation of equation 7.24 with respect to
h(i.e., r) gives

o a
] -1 ()

n=2

n
kM
T2

¥ 2
%o

n
mgopnm(sin ) [C_cos m\ +

_ BV
S ,sin my] o+ o{fsﬁ—J L. {7.28).

The use of this result in equation 7.27 along with equation 7.24 gives

oo a n
Ag = v z (n-l)(jg-) pnm(sin ¢)[Cnmcos m\ + Snmsin m}olf Ag}

n=2 m=0

i o~

... (7.29),

where Y is the mean value of gravity owver the earth. Equation 7.29
applies at the physical surface of the earth to the order of the

flattening. As this surface is a sphere to this same order,

a n
(;e) =1+ off}
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Observation equations can therefore be set up for every
basic unit of surface area where observed area means are available.

These take the form

«© n
bg_+v=y] m-1 ] P (sin H[C

n +dC m)cos mA +
n=2 m=0 Ms n

(S +dS_)sin mA] .. (7.30).
nms nm

This relation can also be written as
o0

Vi=Ki+Yz
n=

n_

(n-1} Z p__(sin ?)[dC cos M\,+ dS_ sin mA, ]
. nm nm i nm i
2 m=0

... (7.3,

where the terms-Ki are given by

o n
Ki = Agoi— Izz(n—l)mzopnm(sin ¢i)[CnmScos nﬁi+ Snmssin mki]

e {7.32)

the index i referring to the particular element of surface area
on the spherical model of the earth. While table 4.1 indicates
a considerable damping effect of elevation on the coefficients of
higher degree, there is no limit to the maximum value of n to
which the analysis is carried out except limits imposed by the
computer storage available. As it is generally held that the
smallest unit of surface area which does not give rise to area
means which are correlated with position, is the 309 x 30O

square (Hirvonen 1956), it follows that the minimum possible analysis
which is valid is one which included all terms up to and including
degree 6. Practical analyses have been carried out using the

above techniques to (14,14) (Kaula 1966a; Rapp 1968).  Such an
analysis would include 219 coefficients, if the 6 inadmissible
coefficients described in section 7.2 are excluded. The total
number of coefficients g is given by

)2

g =m +1° -6 e (7.33),

where nm is the highest degree to which the analysis is carried

out.

The quantities Vi defined in equation 7.31 would be normally
distributed if no systematic errors existed in the values of Agoi.
This is a not unreasonable assumption under the circumstances.

In the case of squares with no observed values of gravity, Vi can

be estimated as having a magnitude approaching #25 mgal, as can be
seen from a study of table 9.2. Such squares should have as little
influence as possible on any solutions for the values of (anm,dSnm).
This effect is achieved by the introduction of appropriate weight
coefficients and allowing for any systematic effects in the values

ofﬂgoi in order that the Vi's take values which are as small as
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possible, prior to solution.
Equations 7.30 to 7.32 form a set of observation eguations

of the form

Voo AX- K e (7.34)

where
K+ la._a._ .......
1 1 1 12 la “C30
K 1 ra.,a._ ....... a dg
2 2 21 22 2q 20
ac
Ve 8 i K= i A=l e i X = 22
v - a és
p Kp pl p2 pq nono
where ¥ is a (p,1) array, p being given by equation 7.33. Equation

7.34 is a standard block of observation equations which is solved by
minimising the sum of the weighted squares of the residuals Vi'

This condition can be expressed in matrix notation by the equation

¢ = VT‘WV V = minimum ... (7.35)

where Wv is the diagonal matrix of weight coefficients of the elements

forming the array \/ and given by

W.. 0 0 0 ..... 0
11 0 o] 0

6] 22 4] o .. 0
w .. ... (7.36
W = 0 0 13 0o ... 0 ( )

V -
6] 0] 0 0 . w
pp

Wos is the function of the number of readings in the square considered.
It is also a function of the variability of readings within a square
for limited extents (Mather 1967,p.135). This suggests a weight
coefficient of the type

Wii = Cni -..(7.37),
where C is a constant and ni is the number of readings available within
the square. Kaula (1966a,p.5312) suggests an expression of the form
n, + 1
W, . =

1L M{Ag?}

where M{Ag?} is the mean value of Ag®? over the earth. An
expression of the same form was given by Mather(1967,p.135). Rapp
(1968,p.5) uses
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where the factor cos ¢ is used as 5% 5° squares were used in the
analysis with attendant variation in the actual surface area with latitude.
m? is the square of the estimate of error in the value adopted for
Agi.

Values are obtained for the V's by differentiating the
equations at 7.35 with respect to the quantities defined in the
array X. The resulting equations can be expressed in matrix form

by the relation

T T
AW, AX - AW K= o,
T
where A is the transpose of A,

the solution of which is

X = (A" W, AL AT WK .. (7.38).

The use of these results in equation 7.34 gives the corrections
to the adopted means Agi. An additional by-product of this solution
is the set of corrections dSnm,dSnm to the coefficients of the
spherical harmonic series. Hence the technique defines both a complete
set of gravity anomalies at the surface of the earth as well as a
spherical harmonic series for the representation of gravity anomalies
at the surface of the earth. Such a representation is obviously valid
only to the order of the flattening, in view of the departures of the
earth's surface from a sphere when equation 7.29 will no longer hold.
Such a restriction is not an embarassment of significance as it is
unlikely that this order of accuracy can ever be exceeded if prediction

forms part of the necessary processes in physical geodesy.

An alternate method of solution due to Kaula is as follows.

The limiting case of equation 7.29 when r > ae can be written as

o0 fe o] n
q = Z g =Y nzz (n-1) } P_ (sin ¢)[C_cos m + §_sin mA]..(7.39),

n=2 " n=0
where n B ~
9 ° mzo P (sin ) [ 91nm<CS m\ + IoppSin m] ..(7.40).
Thus
g = (-1) C_ =
Inm/g, o nm/S ... (7.41) .

Any single coefficient in the above series when multiplied
by its allied harmonic functions, satisfies surface integrals of the
type

- (4,28) _
Jfglnm D, (sin ¢) cos M p (sin ¢)cos mA do = 47g, ..(7.42)

on using equation 4.29 and the definition of fully normalised
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harmonics. The use of equations 7.41, 7.42 and the orthogonal

property of surface harmonics, given in equation 4.18, therefore
provides the relation
o0
ff nzz I nm pnm(51n ®) cos MA do = 41 Cnm Y(n-1)

or

Mg ﬁgésin d)cos mA do = 4w E;m Y(n-1).

Thus the available surface gravity anomalies in the form of area means

Ag . can be combined with harmonic coefficients {c , S__ lobtained
oi n nm

Mg
from orbital perturbations alone using observation equations of the

form

amy (n-1) { Com, ¥ ac_) = E[Agof v.Jo_(sin ¢) cos mA do..(7.43).

The resulting observation equations can be represented in matrix

notation by the equation

AV A X -K,

whose solution can be effected in one of two ways. If it is assumed

<. (7.44)

1]
(@]

that the corrections {dcnm'dsnm} are normally distributed, a least

squares determination could be obtained from the relation

o= VU,V o+ XWX - LTCA, V+ A X - K)= minimun
... (7.45),

L being a column array of Lagrangian multipliers and Nx is the
weight matrix for the correction to the coefficients.

I1f such a premise is invalid, equation .(7.43) can be solved
using the technigue outlined in equations 7.34 to 7.38. In the
case under consideration, equation 7.44 is solved in the usual
manner by minimising ¢ with respect to the elements of the V and X
arrays. The resulting equations can be conveniently expressed as
two separate sets of eguations. The corrections to the area means

are given by the relation

W, V- AT,L =0 .. .(7.46) .

Similarly, the differentiation of & with respect to the corrections

to the harmonic coefficients gives

W X- ALL <o .. (7.47) .

The substitution of these results in equation 7.44 gives

A, CPATLY + A CWIATLD)-K -0

or
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L - (Avw;lAi 'y w;lAﬂ_lKk e (7.48).

The use of the solution at 7.48 gives, in turn, the elements in
the arrays | and X on substitution in equations 7.46 and 7.47.

The adoption of this technique is complicated by the fact that
harmonic coefficients determined from satellite orbital analysis
are all based on truncated versions of equation 7.2. It may
therefore be preferable to use the elements of the array

without attributing properties to it based on the individual
elements being representative of normally distributed populations.
and free from correlation effects. Such an assumption has greater
validity in the case of observed area means whose departures from
the true value are a function of the available sample and not of
position. This compounded by the fact that most poorly surveyed

regions are oceanic.

7.4 The problems associated with the determination of Tow degree
coefficients from orbital analysis.

A near earth satellite can be considered to be a particle
moving primarily under the influence of the earth's gravitational
field. Such a particle will be shown in the next section to
describe an ellipse if the only force acting on it were the
earth's mass, assumed to be concentrated at a point. Such
gravitational characteristics are also exhibited by a sphere
containing a symmetrical mass distribution. This condition is
not satisfied in practice due to the low altitudes of satellites
above the surface of the earth when the equatorial bulge causes not
only the precession of the orbital plane but also changes in the
position of the orbit with respect to the earth which can be
related to the earth's gravitational field if the satellite's
minimum height is great enough to avoid atmospheric drag. Such
a statement assumes that luni-solar attraction, relativistic and
earth tide effects, electromagnetic effects and radiation pressure
are of negligible magnitude. These topics are discussed at length
by Kaula (1962). His conclusions can be summarised as follows.

1. Iwmi-solar attraction

The luni-solar attraction is generally very small though
it can be allowed for by the adoption of a model similar to that
used for the representation of the earth's gravitational field.

2. Relativistic effects

These arise as a consequence of the departure of gravitation

from the Newtonian model. Its effect is largest on the secular

motion of perigee (i.e., the position in the orbit which is closest

to the earth). The motion itself is of the order of 10™° to 10-6
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times that due to the principal term C20 and is therefore approxi-
mately three orders of magnitude smaller than of the other terms
Cnm,Snm. The effect is fortunately less for satellites of geodetic
interest (i.e., 200 < h(km) < 1000), as its magnitude increases
with elevation h above the earth.

3. Tidal effecte

The gravitational effects of earth tides are of the order
of 107t mgal(Heiskanen & Vening Meinesz 1958,p.119). This figure
is one hundred times smaller than the average gravity anomaly at the
surface of the earth and hence should have effects of similar
comparative magnitude on the orbits of near earth satellites. This
figure is in agreement with that estimated by Kaula who puts the
effect of earth tides as being an order smaller than the luni-solar
effect itself (Kaula 1862,p.230). He also estimates the effect
of oceanic tides at f} or almost three orders of magnitude smaller
than the general coefficients Cnm'snm’

4. Electromagmetic effects and radiation pressure

These are a consequence of the bombardment of the satellites
by electrons causing a transfer of charge and momentum to the
satellite. The circumstances are listed by Kaula as being sig-
nificant at higher altitudes when the satellite leaves the protective
atmosphere of the earth (ibid,p.235).  These effects are not
noticeable at the elevations of satellites of geodetic interest.

Radiation pressure effects are of significance as

most observations are made in the earth's shadow. It is however
reported as being too small to be identified in the case of normal
satellite orbits.

a5, Drag

This is a consequence of the earth's atmosphere and is
of significance at low altitudes when friction lessens apogee
heights, causing the orbit to decay(i.e., the equatorial radius
of the orbital ellipse decreases with time). Air drag cannot
pe satisfactorily allowed for due to departures of the actual
density of the atmosphere from any model that could be adopted
(Kaula 1963,p.533).  Current practice calls for the definition of
some parameters expressing the major perturbations due to drag
from an analysis of the orbital data itself. These are then used
to calculate other second order effects. This procedure enables
satellites which come as close as 200 km from the earth's surface

to be used in analyses of the earth's gravitational field (Kaula

1966b,p.56) .

Tt is in this context that attempts are made to evaluate
the low degree harmonics of the earth's gravitational field from the
orbital perturbations of near earth satellites. The section which

follows develops the theory for the determination of the coefficients



121

Cnm'snm from the tracking of satellites. As these perturbations
are functions of the parameters defining the orbit, it is necessary to

(a) establish the principles of central force motion;

(b) choose an appropriate set of parameters for the definition
of the instantaneous elliptical orbit;

(¢} define a set of relations governing the rate of change
of these parameters, called orbital elements, in relation to the
disturbing potential;

(d) relate equation 7.24 to the orbital elements.

Most of these problems have been considered in celestial
mechanics when developing the theory of the motion of satellites {moons)
around planets. The major portion of the theoretical development
with special relevance to near earth satellites is adapted from a

treatment by Kaula (1961; 1966b).

8. THE USE OF THE ORRITAL PERTURBATIONS OF NEAR EARTH SATELLITES
TO DEFINE THE LOW DEGREE HARMONICS OF THE GRAVITY FIFLD

8.1 The motion of a near earth satellite

i. Central force motion

Consider a particle moving the the gravita&tional field of
a massive body (mass M) in inertial space which does not rotate with

the body and is related to a three dimensional Cartesian co-ordinate

system Xi' If the velocity vector ¥V of the particle is given by
3 3 .
vo= 3 s - § % ...(8.1),
. at . i
i=1 i=1

where 7 has the same definition as in section 2, being unit vectors

along the Xi axes, its acceleration vector is given by
3 -
D= /v = ) X, 1 ... {8.2).

D can also be related to the unit vectors ut, U which are
tangential and normal to the instantaneous motion of the satellite
in its orbital plane, as shown in fiqure 8.1. Such a plane contains
both the centre of mass of the body and the position P of the satellite.

In this case,

D o= Yu + —u ‘ ... (8.3),
n



where
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v - (1%
and i=]
2 2 Y
vl o= ) xi ...(8.49),
i=1

PN

T being the distance CP given by r = ( X Xi) ...(8.5)
i=1

and the position vector r of the

satellite being given by

3
r o= ) X 1 ...(8.6).

Th orbit is governed by Newton's second law of motion
which, in the case of a gravitational field of potential U and

with no other impressed forces, is given by

oU

5% ... (8.7
1

e
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=
i
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i=1
if the particle is assumed to have unit mass. F in equation 8.7

is the gravitational attraction. This motion can also be defined
in terms of U, and Ug which are unit position and normal vectors in

the orbital plane as shown in figure 8.1. By the definition of

central force motion,

F =F u ... (8.8)

The vector product
(8.7&(8.8)
rx?b = r x F u, = 0 ... (8.9,
the second equality holding as it is the product of co-planar
vectors(e.p., see Jeffreys & Jeffreys 1962,p.67). The velocity

vector v is also related to the unit vectors ur and ue by the

relations
(8,1)
¥ . d . d _ .
v = P = EE'(rur) =tu+ fu = fur+ o ug ..(8.10).

The element of vector area A4 is given from basic vector concepts as
A=Y%r x [p+ Ar] =% X Ap ...(8.11).

Differentiation with respect to time t gives

(8,10)
AV, Ar M y = . A
A S kr x A AtSo T XV = %rur x (¢ u + rd ua).
Thus
Lim M . wr? Gu_ x u,. = br?b u ...(8.12),
At r 5] A
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where uA is the unit vector normal to the instantaneous orbital
plane. The quantity (AA/At) is the rate of change of area in the
orbital ellipse which, on further differentiation with respect to t
gives

a . (8,12) (8¢9) (8;10)
T4 - 1;-a-t—:-(rxv)=15[1ﬂ><v + rxb ] = L xov = 0
...(8.13)
in the case of central force motion as ¥ and v are coplanar vectors.
Thus

Lr20 = A = kh (say) ...(8.14),

as uA is the unit vector perpendicular to the plane of motion and A
is the scalar rate of change of orbital area with respect to time

which, from equation 8.13, is a constant, equal to %h (say).

The integration of equation 8.14 with respect to time gives

A = %xht + C ...(8.15), C
being the constant of integration.

Notes
(i)Equation 8.15 is well known as Kepler's second law of

planetary motion. Thus the position vector of a particle moving
under the influence of a central force alone, sweeps out equal areas
in a given interval of time.

(ii)The constant h defined in equation 8.1k is called the
constant of areas.

(iii)As the oribit of a satellite is an ellipse, as will be
shown in the following development, it moves faster as it approaches

the attracting body.

Equation 8.10 expresses the velocity vector in terms of
components which are radial and normal to the position vector.
Differentiation of this equation with respect to t gives

. d .. .- .
D= rur+ra__—ur+r6u +r9“9+r63t_u6

As a direct consideration of figure 8.1 shows that

d 3 _.
at 4o~ 6 Upr
(8,10)., , : . "
= r ur + 6 Ug + 16 Ug + rb ug + I ur
= [r - réz] u, + [2fé + ro] Ug ...(8.16).

The central force controlling the motion is purely
gravitational, being given by
(8¢7)
F=- 2y = D ...(8.17),
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where
u = kM
It has been assumed that the central force is due to a gravitating
mass or set of masses whose distribution is compatible with represen-
tation by a point mass. This would, for example, apply in the case
of a perfectly symmetrical mass distribution within a sphere. The

use of equation 8.17 in equation 8.16 gives the following relations.

Zfé + rb

i
(@]

’ ...(8.18).
¥ - rf? = -

HJI:

The use of equation 8.14 and the introduction of a change of variable

defined by
u = % qives 6 =h u2 ... (8.19).
In addition,
SN U U S O S SRR
=gt WT Tw T T u ae - an
and ) )
_ .ph Y ¢ - h2y?2 &Y
¥ = hdze ~hu§§2—
Thus equation 8.18 becomes
2 2 2d2u 1,24
-—Uu——hUa—e—z—— ahu
which can be written as
2
du _ b
302 +u = 2 ...(8.19),

being the differential equation of central force motion. Its

solution is of the form

u= Xk + kzcos 6
when
. d’u _
_— = —k251n &} ; 392z - kzcos )

or a%u Cx
sz T TR
Comparison with equation 8.19 shows that
- K
ky h?

The final solution is therefore

u = ﬁé + kzcos 5}
or hz/
r = ,__u_k____.__h ...(8.20).

1+ -Ir——cos 8

This can be shown to be the equation of an ellipse.

Consider the general point P on an ellipse in relation to
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its focus C and the centre O with respect to an X X, axis system.

If the equatorial radius is a and the angle SCA is % and called
the true anomaly in figure 8.2, being the angle 9 in the previous
development, it is possible to define position on the ellipse in
relation to the focus using the angle £. Af AS'P is the auxiliary
circle of radius & where S'SH is perpendicular to OCA and if the
angle $'0A equals E, the eccentric anomaly, the latter is related
to £ through the standard relations
(1412)
Y cos £ = a cos E - ae ...(8.21)
(1,14)

¥ sin £ = X3 1 b sin E ...(8.22),

where E can be recognised as being the parametric latitude for an
ellipse and € its eccentricity, the X axis coinciding with the

major axis and the X, axis perpendicular to it. On squaring and

3
adding equations 8.21 and 8.22,

r? = a%cos’E - 2a%e cos E + a’e? + & 1-e%)sin’E

a’[1 - 2e cos E + e?cos’E]

il

Thus
r = all - e cos E] ...(8.23).

The use of equation 8,21 in 8.23 gives

ry =a-elrcos £+ ae] = a(l1-?) -ercos f .

Hence
a(l-e?)

1+ e cos T ... (8.24).

The comparison of equations 8.20 and 8.24 shows that the
motion of a satellite under the influence of a central force is

an ellipse with the centre of mass of the gravitating body at its

focus. In addition, it can be seen that
2
™ L an-e? or h =[pa(l-e?)]" ...(8.25).
The ratio
Area SHA _  Area SCP_ - Triangle SCH
Area S'HA  Area S'OA- Triangle S'OH
(8,15)  wh (¢-T) - wrsin f cos f
= s
5a’E - %a’ sin E cos E

where (t-T) is the interval of time between perigee (equatorial)

passage at time T and the instant considered t. Thus

Area SHA £8§25) [pa(l—ez)]%(tJT) - r?sin f cos f . .(8.26).

1
Area S'HA a’[ E - sin E cos E]

As X =4acoskE ,
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X E
Xdx { b sin E d(a cos E)
Area SHA _ ‘a B 0
Area S'HA X B E
sin E ax fg a sin E d(a cos E)
a

E
f ab sin’E g
0

E
f a? sian aE
0

On defining the mean motion nu’ given by
n = ( J;a) ...(8.28),

the combination of equations 8.26 and 8.27 gives

(8.21),08.22
(l_ez)% g ) az(l_ez)%[ N (t-T) - sin E (cos E - e) ]
a’[E - sin E cos E]
or
na(t—T) = E - e sin E ...(8.29).
Notes
(i) FEquation 8.29 is known as Kepler's equation.
(ii) Consider the quantity M defined by
(8$P9)
M = E-e sinE = na(t-T) ...{8.30)
and called the mean anomaly. It can be seen from equation 8.30

that the position of a satellite in its elliptical orbit can be

uniquely defined by the true anomaly f which, from Kepler's second

law (equation 8.15), has an irregular motion with time. It can

also be defined by the eccentric anomaly E which, again, varies
irregularly with time (equation 8.29). The mean anomaly M, on the
other hand, represents a mean motion along the auxiliary circle
(equation 8.30), na representing an angular velocity or rate at

which the satellite completes a single orbit. This concept is

very useful in studying the characteristics of the earth's pgravitational
field for periods longer than that occupied by a single revolution

in the orbit.

(iii)  For near circular orbits, M-+E as e > 0.

ii.  The orbital plane, the celestial sphere and earth

space Cartesian co-ordinate systems

A three dimensional Cartesian co-ordinate system Xi is
adopted as an earth space reference frame , the X3 axis being

coincident with the earth's rotation axis. The XI axis in fiqure 8.3



-127-

Xs‘
~
G Auxiliary circle
N
N
N\ g
g\
\
\
\
¢ \
\
\
E f \
Y L1 .
o C H A
FIG. 8.2

Satellite in an elliptical orbit

7 Celestial
Equator

First point of Aries
Perigee

2
1}

FIG. 8.3

The orbital plane, the celestial sphere and inertial space



128
is shown to he coincident with the line of intersection of the

meridian at Greenwich and the equator. If the orbital plane is

inclined at an angle 1 to the eguatorial vplane, S'N'E' in triangle
S'N'E' on the celestial sphere is i, where E' is the projection of

the foot of the perpendicular E from the satellite's position S onteo

the equatorial plane, S' being the same relation to S. The angle

ECXl is equal to the longitude A. The line CN in which the‘plane

of the orbit intersects that of the equator, defined by the X1X2

plane, is called the Zine of nodes and NCv is called the right ascension {

of the ascending node, where Y is the first point of Aries.

If P is the closest point in the orbit to the earth which is,
by definition, on the major axis of the orbital ellipse, PCN is
called the argument of perigee w, while scp = £ is the
true anomaly with the same significance as in figure 8.2. The
spherical triangle S'E'N' in figure 8.3 on the celestial sphere is
right angled at E' and the great circle arc lengths comprising its

sides are given by
N's' = w + f ; S'E' = ¢ ; N'E' = A - 0
if the Greenwich Sidereal time 0 is zero. (A,9) are the geographical
co-ordinates of the satellite such that
0 < X <o2m , positive east and -4m< ¢< 4T, positive north.

Let
u o= w o+ f ... (8.31).
The application of Napier's rules of circular parts to triangle

S'N'E' gives

Lm-u
Sin(any part) Lr-i LT-N'S'E"
=H[tan(adjacent partsﬂ
=N[cos(opposite parts)i. A -8 ¢
Hence,
cos U = cos h cos(A-0) ) ..a
cos 1 = cot u tan(A-Q) ..b
sin(A=Q) = tan ¢ cot 1 .c ¥ (8.32).
sin ¢ = sin u sin 1 .d
and sin(A=§)) = sin U cos i ..e

Thus the orbital parameters are related to the earth space

co~ordinate system by the equations

X, = r{cos u cos {! - sin u cos 1 sin Q]
X2 = rlcos U sin § + sin U cos 1 cos ] ... (8.33),
X3 = r sin u sin 1

where ¥ is given by equations 8.23 and 8.24. The true anomalv f
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is related to the eccentric anomaly E through equation 8.21 which

can be transposed as follows.

(8,24) 2
acosE =71 cos £ - ae ¥ (1-e“Ycos f + ae(l+e cos f)
l1+e cos f
Thus
e + cos f
cos E = T3 ecos T ...(8.34).
As
_ (1+e) (1tcos £) 2

1+ cos E = T+ 6 cos £ ° 2 cos® &E ...(8.35)
and

1 - cos E = QM) =2sin235E,

1l + e cos
it follows that

1l - cos E sin?kE _ (l - e) sin®yf

1 + cos B cos?hE 1 + e/ cos’sf
and
tan X = (1—'-9)% tan %f (8.36).
17e ...(8.
Also,
2 aE l1-ev% 2 af
sec’HE — = [i:éa sec%f > -
As
2 e 2
sechf = l+cos £ ‘
the use of equation 8.35 gives
l1-ey% (1+e) (1+cos f) 2 (1-e2)*
& =(1+e) 2(l1+ecos f) l+cos £ “Yrecos f af ---(8.37).
Similarly, the use of equations 8.23 and 8.24 gives
. _(a-e?h
l+ecos £ = Tecos E
Thus
(8,37) 2 2. %
afr ¥ =) ! E =12V & ...(8.39).
l-e cos E 2. % 1-ecos E
(1-e°)

i1 Motion in a perturbed gravitational field

It is no longer possible to consider the motion of a
satellite under a central force alone when a satellite orbits in the -
gravitational field of a body with small departures from symmetry.
The total gravitational force vector F can be considered to be
the resultant of two vectors, one of which is defined in equation
8.17 while the other is the disturbing attraction represented by the

vector . Thus
F=p» = - 1:73r+ R ...(8.39).

If this attraction is obtained from the disturbing potential Va,
it follows that
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¥ + =3 r = VW ... (8.40),

where V is defined by equation 2.6.

Notes

(i) The position vector r can be defined by equation
8.6. It can also be welated through the equations at 8.33 to
the orbital elements ci(i=1,6) defining the Keplerian orbital

ellipse where

c, = {a,e,f(or E or M),Q,w,i} ... (8.41).
These elements are called the Keplerian elements.

{(ii) The existence of the disturbing potential, given by
wo=E + v ... (8.h2),
r

results in ci no longer being independent of time . In contrast,
only fl(or E or M) change with time in the case of pure central
force motion. This is of significance in formulating expressions

for accelerations and their relations to gravitational forces.

(ii1)  The consequence is a set of changes dc, in the
Keplerian elements ci which are functions of the disturbing potential
Vd' The next section develops formulae establishing the required
relations between these quantities.

(iv) The orbital period of an artificial earth satellite
is dependent on its elevation above the earth. An estimate of this
quantity can be cobtained from the mean motion defined in equation
8.28. Thus if the equatorial -radius-a of the orbit is approximately
6700 km, the period of revolution is 90 minutes. Table 8.1 gives

some idea of the relation between orbital period and the equatorial

radius.

Equatorial radius Orbital period
a (km) T (min)
6700 90
7200 100
10600 180
12800 240
16800 360 (6 hr)
26600 720 (12 hr)
42300 1440 (24 hr)
Table 8.1

The period of a single orbit
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The apparent motion of the satellite is mads rors

complex by the rotation of the carth from west t

[®]

east, Consequently

every succeedine pass of g catellite will apnear a further 23 ©

westward if its period is 90 minutes. Thus the rositicr of the
observer with respect to the orbital plane is restored svery 24 hours
if the latter remains fized in inertial spacc. T+ does oot “ollow
that the satellite orbital plane remains fixed in cuch = space with

the passage of time in the case of a gravitatinc- body like the earth.

8.2 The disturbing potential in terms of the Keplerian elements

1.  Lagrange's equations

The problem may be stated as follows. The "disturbed"
gravity field is due to departures of the earth from a sphere
containing the same mass as the earth in a symmetrical distribution.
The resulting potential discrepancies are represented by the
disturbing potential Vd in equation 8,42, The existence of these
deviations results in the orbital motion no longer being the
Keplerian ellipse. The motion can still be conveniently represented
by the concept of an instantaneous orbit defined by the set of
parameters c; whose values are time dependent. Such an orbit is
not the true path of the satellite during a complete revolution
but it has the important promrty that the rate of change of position
with respect to time, in the limit, produces no change in the orbital
elements as it is the essence of the definition of the instantaneous
orbit. This does not apply to the second derivatives which define

the changes between successive instantaneous orbits.
Let the position vector r be given by

r = r*((ci, i=1,6),t} .. (8.43),

where the ci are given by equation 8.41. The velocity 7 of the

satellite in inertial space is

Ap .

. dar
ac. ci
1

T at

Il o~10

i=1

where 9r/dt is its velocity in the instantaneous orbit which is

equal to the velocity in inertial space. Thus

6
] sz & =0 ... (8.44),
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Further differentiation gives

32p 6 3y . ar ..
P = T + izl Ty aciCi + o{sE;Ci} ...(8.45).

As the intention is to effect a change of variables and relate the
changes in the orbital elements to the disturbing potential, the

combination of equations 8.40 and 8.45 gives

32p 6 3. u
57 L e & opre W,
i=1 i

For a non-perturbed field when no changes occur in the orbital

elements with time, equation 8.40 becomes

o+ YLy =0 ... (8.46)
r
which is equation 8.17 Thus
6 .
or .
_Z e & o= Wy ...(8.47).
i=1 i

Equations 8.44 and 8.47 completely define orbital perturbations in
terms of the deviations Va of the total geopotential from that of a
sphere with the same mass and symmetrically distributed. The scalar
multiplication of equation 8.44 by 3?/Scj and of equation 8.47 by

ar/acj and differencing the results gives

6 . .

dr  9r Jr or _ 9r .
1056 56 - 5c, " 56 )& = 5c, - Wa.3=L6 ..(8.49).
i=1 3 1 J

The six first order differential equations comprising the
above set replace the three second order differential equations
implied in equation 8.40. These equations and the subsequent treatment
are due to Lagrange who then proceeded to devise an elegant means
for solving them to obtain expressions of more direct application.
He first defined a system of notation for the expression of

equation 8.48 as

6 3
V., X. _ 3 .

1 [cj,c Jé = ¥ 5 34 = 54 . 3=1,6 .. (8.49),

i=1 i=1 i 3 3

where [cj,ci] are called Lagrange's brackets and given by

, 5
[eyie;] = ¥ J( ik zk ) ...(8.50),
=1 3"

and the Jacobian by the relation



) 5 9%
S22 s 3—?3
= : ...(8.51).
cj,ci ggk 9
C, 3C.
1 1
Notes

These Lagrangian brackets have the following

properties,
(1)
[Ci’ci] =0 ...(8.52)
as )
) <o
i’
(1) (8,51)
(c&,ci] = —[ci,cj] ...(8.53).

(iii) The Lagrangian brackets are independent with time.

This is proved as follows. Consider the variation of
J = J[p,q) with time.
(8.51) . . . .
3 ¢ (azx 3X | X azx) 32X 3K 39X %K
7 ot op o & Op ot &g’ ot g op ~ oq ot Ip

which can be written as

5 _ (98X 3X 93X X 3X 3 ,uy_ X D
it (% m-sap)t pu® gpY
(8,2)
{ X 93wy 8X 3 3W).
Eoo[ B s- B aE)E
[ 8 3w 3x 3 (9w 9X _ (v v
"[3_55(5%’]3_5 ‘?ﬁ(ﬁ';';) _q}" (5535 - % 3 )X
=0
Thus
3 =
§E-[cj,ci] = 0 ...(8.54),

This relation is of importance as it enables the evaluation
of the Lagrangian brackets in that position in the orbit which lends
itself to ease of computation. Thus the Lagrangian brackets which
need evaluation are the following 15:-

[e)ae,1s leghesls lepug s leghel, [eguegls [oy.e5], [ey,0,,
[CQ,CS], [c,.cqls [CB,Ch], [c3,c5], [c3,c6], [ch,c5], (¢, .c] ana
[cs,c6].

11. The evaluation of Lagrange's brackets

The Lagrangian brackets are evaluated by converting
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the reference frame from the three dimensional inertial system
implied in section 8.2(7) to one in two dimensions defining the
orbital plane. Let the inertial axis system Xi be defined as in
figure 8.3 and section 8.1(77¢), the directions along the axes being
specified by the unit vectors ¢ as in section 8.1(7). If Zi are

unit vectors along the Xi axis system, where the X. axis is along

1

the major axis of the instantaneous orbital ellipse, the X2 axis
perpendicular to it in the orbital plane (i.e., £ = %¥7T) and the
X, axis normal to the orbital plane (i.e., Z3 = le 22, with the

origin at the focus, it can be seen that
1., = A, 1, ...{8.55),

where the elements of Aji constitute the array A obtained from

figure 8.4 as

cos W cos & - cos W sin © + cin © sin i
sin W cos 1 sin @2 sin W cos i cos §
A=l - sin W cos 2 - - sin W sin & + cos W sin i
cos W cos 1 sin @ cos W cos 1 cos §
sin i sin @ ~ sin 1 cos cos 1
- |a | ...(8.56) -

The transformation between the Xi and Xi co-ordinate systems
is therefore dependent on only 3 of the Ci's(i.e., w,R,1) which
define the location of the instantaneous orbital ellipse in inertial
space. The three other Ci's (a,e M) define the position of the
satellite in an orbit of specified size and are independent of the
co-ordinate transformation defined by equations 8.55 and 8.56. On

defining these two types of Keplerian elements as

cy; = {a,e M} and C,yy = {w,2,1i} ...(8.57),

there are three types of Lagrangian brackets to be evaluated. These
C . . iti
are [Clj'cli] . [Clj’c2i] and | Zj'c21] The position vector,
lying entirely in the orbital plane, can be represented by the equation
3 2
r= 1 Xi = 1 ox, 1 ...(8.58).
i=1 a=1

The velocity vector can be represented as

3 . (8458) 2
p= ] Xi = I %, 1, ...(8.59).
i=1 a=1

on retaining the instantaneous orbit as the frame of reference. Thus
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(8.50),(8.51) 3 ot é‘é’;i
[Clj,cli = kZl ) o3 .(8.60) .
aclj Bclj
In addition,
2
3 aX,  dx
3—2% = 1 5 &0 . k=L,3 ...(8.61)
1i o=1 o 1i
and : f .
3 3J dx
5%(‘ = =1 5‘)?( d_Ca , k=1,3 ...(8.62),
1i [0} 1i
where :
(8,56) e
§§k i A = ézk ' , k=1,3; 0=1,2
9% ok 9%
o : Q
Thus
2 2 .
L Ay e -
X, Xk a=1 13 a=1 13
J( ) = , k=1,3
C (o] 2 2 .
137714 ax 0%
' ) . N A 50 .. (8.63)
a=1 1i o=1 1li
As f , f
A = 1 and A A 0
k=1 ok kel 1k 2k
...(8.64) ...(8.65),
(8.60),(8.63) 3 (n, ag s 5% 9% 3%
[e. ,c = (551 §§1 A2+ 25 Z Aaa + A A+
. . 8
15" 711 kol Clj cl; 1k clj Bcli 1k 2k Bcljacli 2k 1k
X X .2 Ix. IX X, 9%
2 w2 - 51 =1 A - =1 =2 A__ A
Bcljacli 2k acligclj 1k Bclji)cl.l 1k 2k
X, 9% dx. K. .2 ]
A_A =2 1 - =2 === A
k
2k 1k Bclj Bcli Bcli Sclj 2k
(8.64),(8.65) 2 | o 2. 2 X %
TR ac 3 !
2 13 €13 = 1 ) -see.
o=1 o=1 3771
%, X,
9 9Cy;

Equation 8.66 expresses Lagrange's brackets in the case of

the Keplerian elements C in terms of a plane rectangular Cartesian system

1i
in the orbital plane without attributing any special properties to the
latter. The required expressions are obtained on evaluation near perigee
when
3
sin E=E -~ %— + ofE%) ; cos E= 1 - &E%2 + ofE%} .

Thus
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(8,30) (8,29)
M o= E(1-e) = n(t-1

or
na(t—T)

E = = ...(8.67).

In addition it can be seen from figure 8.2 that

(8¢21)
X, =T cos f = a(cos E-e)
while (8¢22) .
X, = sin £ = a(l-ed ’sin E

The use of equation 8.67, together with the replacement of na by

equation 8.28 gives

L)

_ u(t-T) 2 . fuare) 17
Xl = a(l - m - e] : X2 —v{ —'—'—’—a(l_e) J (t-T) ...(8.68).

Differentiation with respect to t gives

Y
. (-7 . H(l+e)
= - ; = | S ... (8.69).
*1 aZ(l-e)’ %2 (a(l-e) ( )
As
= = =M* = M T =
1 -8 12 = ° S £ *n nyt
aM*
where the form adopted for 013 is of convenience as 3 < na ’

the Lagrangian brackets can be evaluated as follows.

(8,66) . . . .
¥ . dx. oX ax_ oX 9X. 9X X, oX
[a,e] = le( 'g—a-l égl + a—'a-Z gé—Z - a—e-l é—a"-l - 3—52 é—a—2 ]
T
~((-erx0 + ox 5 - (cayxo - ox )
Je da
=0 ...(8.70)

The principles adopted in the evaluation of the Lagrangian
brackets at perigee, when t="7, are as follows. All terms
containing (t-T) will be zero and only those terms which are not

multiplied by the term (t-T) need be considered. Thus

x, Dk Ot | dx, D, 9t _ dx) % Dt Dx, %, Ot
da ot~ OM*  3a“ ot OM*T 3t~ 3a oM* ot” da” oM*

la,M*] = Lim{ —1 =1 2 =1 =—1

k 5
) y u(ve) )T 1 we) )l
- e gty 0 -0 - [22)] nax(a”ﬁ—ﬁ]x -
_ol g _w p(l+e) [ _
- na( T ey | - e 8T
Similarly,
[e,M*] =0

The terms [ ] cannot be conveniently treated in this manner

Cc,..,C,,
237721
and are best defined by the use of equations 8.56, 1.31 and 1.32 in

relation to the inertial reference frame(e.g., Kaula 1966b,p.28).
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Cartesian axes and the orbitai plane.

Satellite
Orbit

FIG. 8.5
The Doppler System
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The remaining non-zero Lagrange's brackets are

(i,0] = naaz(l—ez)l’sin i ; [(R,a] = wn a  cos i (l-ez)l’
[m,a] = Ln a (:L_ez);2 ; [e'Q] =n ae cos 1
o o 2. %
(1-e7)
a’e
[e,w] = N ..(8.72).
(1-e?)
i1i1.  Lagrange's planetary equations in terms of the
orbital parameters
Equation 8.49 can be written as follows on noting that
(8#52) (8&53)
(Ci,Ci] = 0 , [ci,cj] = - [cj'ci]
and choosing
= H = ; = L = i = H =
c1 a,02 e; c3 M*; c4 i, c5 w c6 Q.
When j =1
x .4 dai . . v
[a,ala + [a,e]é + [a,M*IM* + [a&a,i] 3 (a,w]d + [a,2]0 = 139
or _ i 2. L _ . 2.%8 _ oV
%naa M %naa(l—e ) W 5naa cos L(l-e )!‘.“Q = ggd
...(8.73a).
Similarly, when J = 2,
2 2 :
na‘e , naecwsi,
vl — & -
(1-e?) (1-e?)
...(8.73b);
when =3,
n a a A (8.73¢);
o = B_MG . . c):
when J = 4,
n a?(1-e?) %sin i 0= V4. (8.73d):
o a1
when j =5,
2
n _a‘e
%naa(l—ez)%é - i é = g—%d..(s.?.’»d);
(1-e?)
when j =6,
2 . .
in _a cos i(l—ez)% - Dga & cos 1 -n az(l—ez)%sin i a an
o (1-e2)15 a at 99

... (8.736).

-

The changes in the orbital elements with time are obtained

from the above equations on successive evaluations as follows.

(8,73¢c)
da ‘4 2 ¥
aa 4 2 gﬁd ...(8.74a).
o
g (8.73c)(8.742) |_ 2 v, (1-e)” A (8.74b)
= Y n ale M n a?.e 30 .o . .
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. (8.73f) (8,74a) (8.74b) LAy
sy 14 1 cos 1(1-e?) ;7\_4d -
dt n_a’(1-e?) %sin i o

[o']
i AV £\ Y
-—3Ef§-ULe%%p-41e2fﬂ&p ~Tﬂ]
(1-e°)
ot 1 v cosec i v 5
T ataens W L prys A 8T
n a (l-e”) n a“ (1-e)
al o
an (8:¢73d) cosec j 9y ... (8.744) .
dt naa (1_e2) E ai
dy (8-73b),(8.744) (1—e2)1’2 W e cot i W
at = Raze (e S i
B L ot N g ae
- n a ® 2 5%8a T
o na (l-e

and

Mk £ 2 1-e® v cot i 8V cot 1 3V av

3t (aan T 2@ 3t a W 2a Hd'a“éd}

2

1- e v 2 oV
"“nae % T nanad

o o

he e oM
5t 5t Mg
M 1-e?3v 2 AV ,
E = na - R P a—e'd - n““gg’d ... (8.74f) .
o o

Notes

(i)

Bquations B.Tla - e are called Lagranage's planetary equations

and express variations in the orbital elements as a consequence of

the effect of the disturbing potential Vd in respect to the orbital

elements.

(ii)

SVG/SM* in equations 8.7ha and 8.7hb.

This is

The term BVd/BM has been written for what strictly should

in order as the rates

of chanpe of both M and M* with respect to time are equally affected

by chanpes in Vd.

(ii1)

If the changes in the instantaneous orbital parameters

with time can be measured, these can be related through equations

B8.Tha to e to the perturbations of the earth's ecravitational field

from that of a sphere containine a symmetrical mass distribution.

(iv)

spherical harmonic series

The disturbing potential Vd can be expressed by the

o an n
U o= = =
Vi= ¥ ) (jéa ) pnm(sln ¢)[Cnmcos m + S sin m ] ... (8.75)
n=2 =0
from equation 7.24, where
3.38) (L —
( 5 () en-2e) 1sin® ™20,

(n+m) !

-29 (2n+l)(n-m)!(2—6mm}% cos™
,)I'l

oln—m2t) e! (p-t)!
...(8.76),
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where

n-m
k = Integer (—E—J and 6om is the Kronecker delta.

The problem therefore reduces to one which seeks to

establish the relations governing the transformation

Vd(r,cb,M > Vd(a,e,i,M,w,Q) L (80T

it The conversion of surface harmonic terms to expressions

in the Keplerian elements

The development given in this section is due to Kaula (1961).
The position of the satellite can be represented on a spherical co-ordinate
system by the parameters (¥,¢,A) while this same definition can be
achieved by the use of the system afforded by the Keplerian elements
(a,e,i,M,w,). From normal celestial sphere considerations in figure

8.3,
A = Right Ascension - Greenwich Sidereal Time = R - 0
= (R-0) - (8 -6),

where R is the right ascension of the satellite and 6 the Greenwich
sidereal time. Thus the terms cos M\ and sin MA in equation 8.75 can

be replaced by the relations

cos[mM(R-Q) + m(Q-6)]

cos[m(R-QYcos[m(2-6] - sin[m(R-Q)] sin[m(0-6]

and ...(8.78).
sin Mz = sin[mM(R-0)} cos[m(N-0] + cos[MR-Q) Isin[{m(Q-0) ]

cos MA

\f

It

It

In addition,

cos mX =R(eimx) =R([cos X + isin X]m)

m
= R(C } [gw % cos™ °X sin®X ) ...{8.79),
s=0
where \
R(X) = real part of X and 1 = V{-1) 1
...(8.80),
a ( m ) _ mm-1) (m-2) ... (m-s+1) _ m!
an s = s! - Tsi(m-s)!
while

sin mX = -R( ¢ ™)

m
R( Z ( m ]is_l cos™ °X sin®x ) ...(8.81).
s=0

Thus,



cos [m(R-2)

and

sin[m(R-2)

(3

Thus the

m
cos md = R( X

$=0
and

m
sinmi = R( Y

5=0

4

.S ( m

R(

s

- S (

n-s .. S S.
)cos U sin 1 cos 1

m
cos ¢

equations at 8.78 become

m
cos ¢

m-s . S S
m )COS U sin U cos 1

S

J

m
cos ¢

sin{m(Q-8] - Zcos[m(R-6] )

m-s .S S.
) ;8 cos u sin U cos 1 )
m-s s
cos ¢ cos ¢
m-s .. S S.
)is cos U sin"U cos i )
~ .
cos ¢
m-s . S S.
) {s—l cos U sin U cos 1 )

..(8.82)

. (8.83).

cos[m(Q-6] + Zsin[m(R-6) )

...(8.84).

The use of equations 8.84 and 8.32 transform equation 8.75 to give

the expression for the disturbing potential as

L}
r

where

As

sin?X cosz

K
nm

a

)ei(a—c)x

GTeX

d

| o~

0

(

b
d

)ez(b—d)x e—ldX

) ( g ]ez(a+b—2c—2d)x

nn K k t
e nm (-1) (2n-2t)! . _n-m-2t, n-m-2t
""J mzo ;E_-tzo M-m-2t) ! £f (m-t) " sin 1 sin u X
m )fssinsu cos" Su cos®i ( [C - i8S Jcosim(n-o)} +
S nm nm
[§ +C ] sin{m(@-6)}) )
nm nm
(8$76) (2n+1) (n-m) ! (2-8 m) L
A4 ( ‘ 9 ] ....{8.85).
(n+m) !

a b [ cos (a+b~2c-24d) X+Zsin (a+b-2c-24d) X]
c d

...(8.86),

the earlier equation, on the combination of all indices of sin u and

the application of equation 8,86, becomes
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© a n K x t ‘
u e \n nm (-1) (2n-2t) ! . n-m=2t.
v = I(Z) I =1 — , sin iox
d r neo r "0 P oo (n-m-2t)! t! (n-t)!
m .. n-m-2t+s n-m-2t+s n-s
m-y.s s. (-7) c n-m=-2t+sy m-s
RO T (g)tPcos™i ~mmg— n° I OO
s=0 2 =0 =0
(IC_ -i § Jeos{m-6} + [§_ + T ] sin{m(@-8)} ) x
nm nm nm nm
(cos (n-2t-2c-2d)u + <sin(n-2t-2c-2d)u ) ) ...(8.87.

The function whose real part has to be ascertained in equation 8.87,
consists of a series of terms, one of whose constituents is a set of
trigonometrical functions which are made up of products of the
arguments  M(-0) and (n-2t-2¢-2d) . The real texms are

those which have terms with 7 raised to an even power as coefficients.
The combination of these terms with terms which are powers of (-1)

gives

(_l)%(n—m)—t+s if (n-m) even

n-m-2t+s+t,, in—m-2t+s+s (_1)n—m—t+s

(-1) = (- 2n DS e (hom) oad
; (-1 [3{nmm)/2-2t42s] (-1) "2 (n-m) if (n-m) even
(i) (-1)B (nom=1) /2-2¢+2s] () (-1 2 e (om) oaa
( (--l)—k if (n-m) even
= ¥ x ...(8.88)
(L) (~1) if (n-m) odd
as (—l)“ZtI(-‘l)zs,(--1)4(“—m)/2 and (_1)4(n-m—1)/2 are always equal
to +1.

In addition, on defining the index p by the relation

p = t +¢c +4da ...(8.89)

and as

1t

cos X cos Y cos X+Y) + cos{X-y)] i

[
[cos(X-Y) - cos(x+¥) ]
[
[

sin X sin Y

sin X cos Y sin(X+Y) + sin(X-y)]

5
5
5
cos X sin Y = % [sin(X+Y) - sin(X-y}

it follows that

( [Egm— ig;m] cos{m(-0)} +[§hm + E;m]Sin{nﬂQ'e)} ) X
[costn-2p)u  + Zsinn-2p)u]

can be expressed as
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nm+iagm])cosi(n-Zp)u+m(Q-6)} +

[S_+iC_ 1) cos{(n-2p)u-m(2-6)} +
nm nm

[C

nm—iggm]]sin{(n-2p)u+m(9—8)} +

[Enm-i's' ) sin{ (n-2p) wm(0-6) }

nm

(Enm—igm)[ cos{ (n-2p) w+m(Q-6)J+ (§nm+i5ml[sin{ (n-2p)u+m(Q-H} .. (8.90).

Thus eguation 8.87 beconmes

(e e]

z ( ?%n ? g (2n-2t) ! n-m-2t
E_ . , K 1 : ' sin - i <
vd T nea r meo P 4o (n-m-2t)! t! (n-t)!
? ( m )cossi rl-m\):?‘tJrS(_Dc—k mgs( n-m-2t+s y( s ) «
5=0 S -22n-2t =0 d=0 c p-t-c
Egm n—m)eveé g; (n-m) even
_ cos{ (n-2p)u+m(§-0) }+ __m sin{ (n-2p) u+m(2-6) }
-Snm C
n-m) odd P (h-m) odd
... (8.91).
Notes
(i) Bguation B.91 is simplified further by using D,

defined in cquation 8.99 as the sixth index instead of d. The

maximum value P can take (D ] ) in riven Trom equation 8.80 as
max :
o . h-m (nom — n-m ml o+ (mam) = n+m
“max : oD o ’
which is a maximum when m =n Thus p =n
max
(i) The: 1imte of C are obtained as follows.

As 0 < p-t-c 7 m-s ,
c > (p-t) - (m-s), i.e., (p-t) > (m-s) > O.
as {m-s) is always greater than O. It also follows, for this same
reason that (p-t) > c. Thus
n o>t ,
the equality holding when m= 0.

At
BHIUN

n
0

addit i

< ¢ < (n-m-"t+s).

c<t

Thus the range of C i3 siven by

}

(p-t)<(m-s) 0 n-m-2t+s  if n-m-2t+s < (p-t)

(p-t)>(m-s)

<

if n-m-2t+s > (p-t)
...{8.92).

p-t -m +s p-t

The ranse of € in each case ‘commencezs at the greater of

the lower indices and terminated at the gmaller of the upper values,
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being the shortest ranpge of values in each case.
(ii1) The maximum value of t on using d as the sixth

- t .
index was max B1Ven by

n-m

t =k = =1 .

nax Integer| 5 ]
In addition, it is also shown in note {ii) above that t <p.
This means that non-zero terms occur when the series in t is swmed
so that

n-
k = Integer[—Em]

= s, Whicherever is less
max p

...(8.93).

Kaula (1966b,p.34) expresses the disturbing potential by

the equation

© n
v, = 7} ¥ \Y%
d n=2 m=0 dnm
where an n ol n-m)even
- H (e 1| nm - -
Vo =T (=) k _ 1 anp(l([_s cos{ (n-2p)usm(2-6)} +
p=0 n (n-m) odd
g (n-m) even
‘ Eﬁm sin{ (n-2p)u +m(Q-0)} J ...(8.94),
M h-m)odd
where
t
F_ (i) = Zmax {2n-2t) : sin"TRT2Yy
nmp t=0  22772% £1(n-t) ! (n-m-2t) !
m
m S c-k ¢ n-m=-2t+s m-s
z ( S ) cos 1 2 (—l) [ c ) (p—t—c)
s=0 c
...(8.95).
Notes

(i) Direct evaluation of the function anp(i) shows that
the possible values of m, p and the expression for anp(i) are as

follows for n = 2.

(1)
m P 3 Fomp
0 [o] -5 sInZj
0 1 3 in?y - L
I 31 2
0 2 -5 sin?§
1 0 %sin 1(1+cos i)
1 1 - Zsin i cos i
1 2 - f sin i{l-cos i)
2 0 %—(1+cos i)?
3 .o
2 1 — 1
S sin
2 2

% (1-cos 1)2
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ynressions up to and including n = U4 are ~iver in

by ¥aula (ibid,p.3u).

The second stage in the development is the replacement
of ¥ and f in equation 8.94 by a, € and M, The mean anomaly M is
introduced as the analysis seeks to study long period variations.
It has the facility of affording a simple means for the averaging of

the effect of a single orbit using a relation of the form

T
M{x} =LJ X ax
2T
The use of equations 8.24, 8.30 and 8.37 gives
(8,37) 2.5
- b _1-e7)
aM = dE(l-ecos E) = (l-ecosE) T+ 6o £ af
(8.23)¢(8.24) 2
M 3 £ (8.96)
= m d L) . -
In addition,
I (L*ac_o;_f)“'l N N o DIV T
ot ati-=e® a"L1e?)" L plo B
(8,56) n-1 b b
P T (MM S T (5) costbzarf L.(som.
a" Tt (1-eH" b=0 2° a=0
Thus the long period effect (i.e., M > 27) of the relevant

terms is given by expressions of the form

1 sin
M{X} = M{—— [ (n-2p) (w+6) + m(Q~0)] }
rn+l cos
1 2”[ 1| S [ m-2p) () + m(Q-oﬂ] am
27 0 rn+1 cos
(8,97) om n 1l b b
¥ 1 1 1 n-1 e b
5 Ef [_——-—-M ) 8 T (B cosm2are
a (1= b=0 27 =0
SINIT (no2p) (wif) + m(Q—G)]]df .
COoSs
As R
sin
Y = cos|(b-2d) f] cos [ (n-2p) (w+f) + m(N2-0) ]
sin
= L [(n-2p)w + (n-2p+b-2)f + m(Q-6) ] +
cos
sin
[(n-2p)w + (n-2p-b+2d) £ + m(9-0) ...(8.98),
[ole]5]

and as long period effects are not contributed to by terms in flor M),
the coefficient of f in equation 8.98 should be zero. This occurs
when

n-20t (b-2d = 0.

Thus
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LP'=P when P < %n
b = 2d+ (n-2p) = 2d+n - 2p' , where
p'=n-p when p>3i¥n

...(8.99).
Thus only two terms in the inner d series satisfy the

condition for long period variation, being symmetrically placed
n-1

coefficients in the binomial expansion of {(1+€ cos f) for
each value of b. M{X} can be written as
, 1 sin
= R e In~- -
M{x} 1 anQp—nfe) cos [(n-2p)w + m(Q-0) ]
.. (8.100),
where -1 2d+n-2p"
G @) = 1 p 2 ( n-1 )(2d+n-2p') Fa p
np@p-n) (1-e )n—% =0 2d+n-2p' d 2
..(8.101).

The solution for the disturbing potential in the general
case can therefore be written as (ibid,p.37)

®© n

v, } 1 Vv
d n=2 m=0 dnm
where
y a . n ©
= = —— i M
Vdnm a (rﬁ nm ZOanp(l) Z_manq(e) Snmpq(w' £,6)
’ P q ...(8.102)
and S (w,M,2,8) is given by
nmpg
(8.94)(8.98)| C__ (n-m) even
Snmpq(w,M,Q,e) = ‘_§' cos[ (n-2p)w +M(n-2p+q) +m(Q-0)] +
M (hem) odd
g {n-m)even
E“‘“ sin[ (n-2p) w+ (n-2p+q) M+M(2-6) ] ...(8.103).
o h-m) odd
Notes

(1)
The condition for long period effects is given by

the equation
n-2p +g = 0.

(ii) The long term contributions from the term anq(e)
come from the quantities G fe). The values of these long
nPp-n

term contributions for values of n < b are given in table 8.2.
A more complete table is give by Kaula (ibid,p.38) after Cayley.
A study of table 8.2 shows that the major contributions occur when
g =0 and n is even. Contributions an order of magnitude smaller
ocecur when q = 0 and n is odd.

Thus the infinite summation in equation 8.102 is not
necessary in the case of practical solutions when only a few terms
(usually two for every value of n) make significant contributions as

the function is a power series in the eccentricity which is a very
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" § 2pq—‘n P’ anQp—n§e)
o 0 -2 0
o1 0 1 (1-e2)™3/2
o 2 2 0 0
3 0 -3 0 0
3 1 -1 1 (1-e2)77/°
3 0 1 1 (1-e2)"/7
3 3 3 0 0
L 0 -k 0 0
I 1 -2 1 > 1e2)7 177
o2 0 o [1+ 3e2/2](1-e2)7 17"
o3 2 ie;__(l_ez )=1/2
Iy i Iy 0 0
Table 8.2
The function an(2p—n)(e)

small guantity. I't. should also be noted that the resultins terms

are symmetric about the zero value of the index g.

8.3 The evaluation of the coefficients of the harmonic series

Techniques for the observation of near earth satellites
are beyond the scope of the present development. Details are given
in (Mueller 1964,pp.235 ot seq.; Gaposchkin 1966,pp.77 et seq.).
Such observations give the instantaneous co-ordinates of the satellite
on the celestial sphere which can then be converted to the appropriate
set of Keplerian elements. A practical solution of this problem is
afforded by the Differential Orbit Improvement (DOI) program developed
by the Smithsonian Astrophvsical Observatory (Gaposchkin 1967,pp.87
et Seq). Lagrange 'sequations are based on the assumption that the
second derivatives of the variations of the orbital elements with time
are negligible quantities. The time interval between successive
observations on the same satellite could be as long as several days.
Hence these equations can onlv be applied successfully for the analysis
of those effects which satisfyv the conditions governing their formation.
Variations in the magnitude of the orbital elements are the consequence
of a number of effects, some of short period (e.g., 24 hours or less),
others of long period (e.a., 100 days) as well as secular variations

which are linear with time.
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These long periodand secular variations are related to
the disturbing potential Vd as expressed in equation 8.102 in

the following manner.

Linear perturbations

These variations satisfy the conditions under which Lagrange's
equations, given at 8.74, were derived. If the disturbing potential

is given by equation 8.102 and if

ar e .
o = anp(l) ... (8.104)
and
as _ ar
g "mea = Snmpq(ﬂ,w,M,e) ,..{(8.105),
where
o = ((n-2p)w + (n-2p+IM + m(Q-6) ...(8.106)
and
aG _ '
3"Pa = Gnmp(e) ...(8.107).

The equations at B8.74 can be written as

n
aa 2 & \ _
e = 5y ( = ) K m Fomp anq snmpq(n 2p+q) ..(8.108a).
an
de _ 3] e 1 2 -2p+q) -
qermed = nua3 e( a ) Kom anpanq Sru'npq((:l'me ) (n )
(1-e2)*(n-2p)) .. (8.108b) .
dai u %7
B % . . _ .
EnmPg = s . ( 2 ) cosec 1 Knm anp anq Snmpq((n 2p)cos 1
n.a (1-e°)

m) ...(8.108c)
& i3
Snmpq = M _cosec - y (£ F' G _ S ...(8.108Q) .

naa%lqsz) nm  nmp pPq npq
a n 2.k
dw _ u e (1-e™) 1 -
ared = nua3 ( a ) Knm nmpq( e anp anq
993—-1-;2 t G ]...(8.108e).
(1-e?)® e npd
an 2
aM - u_ (e - 1ea
EnmPa = Ny ¥ n a’ ( a )Knm anp snmpq (2(n+l)anq e anq]
o
...(8.108f).
Notes

(i) Equations 8.108a - f give the contributions for
single terms in the total expressions for the changes in the orbital
elements with time.

(ii) As the condition for long period variations is

n-.2x +g = 0,
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it can be seen that no long period variations occur in a. Similarly

the term (N-2p+q) in equation 8.108b) does not contribute tgo
de /dt.
nmpgq
Equations 8.108 a-f can be integrated with respect to time

when only S and S' can be considered to require integration.
nmpg nmpq

Let
1{s }
J{s dat =f s 4t 4o - —DmR
nmpq nmpg 4o a
where
i{ s } = Js da ...(8.109)
nmpq nmpg
and
& = (n-2p)& + (n—2p+q)M + (-9 ...(8.110).
Similarly
s
f s! do I 11 4 ... (8.111).
nmpgq &

Thus integration of the equations at 8.108 gives the following

expressions for the variations in the orbital elements.

a
a = —gET G—?)n K an Gn Snm (n-2p+q)
nmpq n.a a nm b Pg Pd ..(8.112a).
a n
Ae = —JLT (—53) K anp anq Snmpqr 2
nmpg n.a a nm - { (1-e%) (n-2p+q) -
(1—e2)]"(n-2p)] ..(8.112b) .
a n F G S
i = b . (—éﬁ K cosec i—2fR PRA MPAN (h_p)cos i - m]
nmpq naa3(1492) nm &
...(8.112¢)
U cosec i & Knm ;mp npq ﬂ{snmpq
A = b cggeec o, (B2 L ... (8.112d).
nmpq naa (l-e )!\2 ( a ) o ( )
a i{s } .
po = (-] nmpg ((l-ez)%l?‘ G -l g oG
nmpg n.a a nm a e nmp npq (1432)% nmp npq
...(8.112e).
a nk F IS 2
oM - o (8) hmonm MY rmenG - oG]
© nmpqgq naa3 a o npq e npq
... (8.1121) .
Notes

(i) The total lincar perturbation of any orbital element

l\ci is given by an equation of the form

o n I o

e, = 17 1T a

n=2 m=0 D=O Q=0 1r1mpq

(ii) It can be seen that the largest perturbations occur

when O is smallest, i.e., when
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(n-2p)& + (n-2p+q)M + m(2-6) > o,
The condition
n-2p+g=290

has already been specified as the relation governing long period effects.

(iii) 8 = 1 cycle per day,
being the angular velocity of rotation of the earth. The quantities
é,& which are the rates of rotation of the line of nodes (a regressive
motion) and the argument of perigee, are both observed to be of the
order of 102 cycles per day.

Consequently, if only those variations over periods in excess
of a single orbit of the satellite is considered, the dominant variation
is that due to the term m(é—é), which cancels itself out m times
a day. Thus harmonics which cause

m(@-6) > 0
give rise to comparatively large variations in the orbital elements
when the satellite has an integral number of revolutions per day. This
effect is known as resonance.
(iv) As pointed out earlier, a study of table 8.3 shows that
C20 is three orders larger than all other coefficients Cnm’ Snm' It
is therefore necessary to consider the perturbation of second order due

to the term [C ]2 which has the same order of magnitude as the .general

20
coefficients. For a treatment, see (Kaula 1966b,pp.4l et seq).

The evaluation of zonal harmonics

These harmonics are obtained when m = 0.
and can give rise to

(a) short period variations, i.e., with periods less than
a single revolution of the satellite which is of the order of 90 for
the usual case;

(b) long period variations, i.e., periods governed by the

case when
n-2p +qgq =0,

which could be as long as 100 days:
and (c) secular variations, i.e., changes which are linear with

time and hence should be independent of trigonometrical terms.

On the adoption of the condition for long period variation

q=2p -n in the case where m = 0, equation 8.102 becomes
v _ (—i?)nK 5 F )G o cos(n-2p)w , n even

dno a ‘a nm no nop np (2p-n) sin(n-2p)w noodd ,
as §;o = 0.

The variations of longer period are obtained as n - 2p - O.
It can be seen from table 8.2 that two different results can be obtained
depending on whether n is even {(when n-2p) = 0) or odd when n~2p) = #1

giving two terms, when the contributions of longest period and greatest
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magnitude are given by

%3 n _ L 1 , n  even
(i;.) Knm Cno Fnop(l) an(&)-m(e) ... (8.113).
t 2 sin w , n odd

AV =

o

=

As the variations in a, 1 and € are relatively small
over small periods, their values can be treated as constants when
evaluating equation 8.113. Hence secular variations are due entirely
to even degree zonal harmonics while the dominant long period
effects are due to odd degree zonal harmonics. This can be studied with
cmmparative ease bv putting n -2p = 3 when it can be seen from
eguation 8.113 and table 8.2 that j is even when N is even and odd when
n is odd.
The most interesting zonal harmonics are obtained when N takes

the values 2, 3. When n = 2, the secular variation is given by

j=0 or Pp=1 and g=2p -n =0, when the equations at
8.108 take the form

A = C e .114a),
Aazolo 0 (8 a)
= ...(8.114b),
AeZOlO 0 (8.114b)
\i = ce 1 B
ﬁlZOlO 0 (8.114c¢)
.oa 2

U cosec 1/ e oF =

Y] = ——————————f—- ) V5 =201 G_._ C_ _At,

2010 nuailaez)% a o1 210 20

which, on using equations 8.28, 8.95 and table 8.2, gives

30, a, 2 _
( = - i L. .. - -
M0 10 — (55 )5 cosiT, At (8.114d)
2(1-e")
Similarly,
a 2 2. % :
_ e (1-e7) .. 9G cot 1 OF, y
A(02010 - nagg') /5( e F201(l) fe2t0 (1—e2)% SiZOl(%lo
CZOAt
n, a 2 3 3 _
s —— }/ﬁé{—sin?i - %}~ = gin 1 cos 1 cot i]C At
2.2 - a 4 2 20
(1-e°)
Iin, a 2 _
= —— (%) /5(1 - s5c0os’i) C, At ...(8.1l4e)
2,2 a 20
4{1-e")
and a 2 2
. e 1-e° 3G =
Myo10 —(nu sn, Ty (FT) s (66, - 01 CzoJAt
a 2 >
3 5. : ¢ 6 1-e 3 e =y
=n At(l + {Zsin“i —%}(——‘) - ) C ]
o 4 a (1-?) 32 e (1-a?) /2 720
[ az —
T ———£ (3 cos’i - 1) V5 CZO]...(8.114f).
R a(1-e®) 7

— -3
As C20 is seen from table 8.3 to be = 4.84 x 10 7,
and as normal near earth satellite orbits which are of geodetic use

. . -2 .
have rations (ae/a) = 1.1, e being of order 10 ~, it can be seen that
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dw

Fry 2010 = 3.5(5 cos?i - 1) degrees per day;

al . ,

aE-ZOlO = =6.7 cos 1 degrees per day;

a . -3 24 .

3E2010 = 14.4 + 9%10 " (3cos“1 - 1) revolutions per day.

Thus the line of nodes can be seen to regress, while perigee
advances if 1 < 63°26' or regresses if this is not so. Graphical

representation of these equations is given by Mueller(1964 ,pp.201-2).

When n = 3,
two significant terms occur, as can be seen from table 8.2. These are
n=23m=0; (n-2p) ==2l, i.e., P=2o0r 1l andg =(2p-N)= 1 or -1.
The resulting perturbation which is no longer secular , has a wavelength

27 in w for the above subscripts. In such a case

Bazgyy = Bazgyayy T MA30p1 T B¥ppeny 7O
Table 8.2 shows that only G31(_l)and G321 are non-zero.
Hence
a 3 F._. (1) G () sin w
e = 301 31(-1)
= =n [— =
besy = 2e301(-1) %3021 o (31775 { o 8
F (1) G,..(e) sin{-w)
(_(l_ez)%)+ 302 321 (1e2)" ]
-w
15 . 3. 3 . . 3 . (S5 . 2.
= == - = = == 1 1 -
As F301 ¢ sin 1 7 sin 1 7 sin (Zs1n l)
and Fi02 =~ Fzo1r
while
_ _ 2,~5/2
G31(-1) = G321 = e(l-e”)
from table 8.2,
3 = S Lin24
mn, a V7 Cyp(1 - 7 sin i) sin
heyy = 2 ® :
2(1-e?)
Similar expressions can be obtained for the other orbital
elements. It should be noted that higher degree zonal harmonics have,

in addition to the term of wavelength 2T, those of shorter period.

For example,the harmonic of degree 6 will give rise to secular variations
(p=3) as well as periodic variations of wavelength %(2m) when P=2

and %(27) when p =1. Similarly, the zonal of degree 9 will have
harmonics of wavelength 27m (p=4), %-XZW (p=3)., %¥2ﬂ (p=2) and

% x2m  (p=1).

The long period terms in the tracking of the perturbations of
satellite orbits are therefore analysed by a series of terms which
are harmonic in the argument of perigee . For.detailed formulae see

(Mueller 1964,pp.191 et seq.; Gaposchkin 1966,p.129 et seq.).
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The evaluation of tesseral harmonics

Tesseral harmonics are relatively more difficult to determine
than zonals as the effect of such terms is cancelled M times per day.

A special case does arise however in the case of those orbits where

a = (n—2p)& + (n-2p+q)M + m(é-é) > 0

when the tesseral harmonic could, under the right conditions, make
significant contributions to long period perturbations due to
resonance effects which are due to both the inteéraction between the
slower changing elements §! and w, together with that between the more
rapidly changing guantities M and é. Thus the conditions for the
existence of resonance could be expressed as

(n-2p)& > T and  (n-2prM -m8 > C .

The latter effect is the dominant one and the major

contributions are made by the terms obtained when g = 0, as can be

seen from table 8.2. Thus resonance occurs when
m ) .
= 7 + = Number of revolutions per day.
n-2p M

Integral terms are obtained when
m=n -2p or p= — ...(8.115)

and hence when (n-mM) is even. Further, since the effect of all
harmonics is scaled by the temm (a_/a)n, the terms which dominate

e
would be those with small values of n. For example, in the case of

a satellite with an orbital period of 90 minutes (i.e., 14 orbits per

day), the principal resonance effect is obtained when
p= T = 0, 1or2 ... (8.116)
. n-m
with secondary effects when = 1, 2 or 3.

The effect of tesseral harmonics on long period effects can

therefore be considered to be negligible except in instances where

resonance oCcurs. In the case of a 24 hour satellite, the dominant
resonant terms are C22, 822 with lesser contributions from C42, 842
and C44, 544.

Resonant terms cannot be evaluated through equation 8.111 as
a = 0. Their effect is most easily obtained from the Lagrangian
equations expressed in terms of the general series for Vd in terms of
the Keplerian elements <, through equation 8.108. The differentiation

of these equations with respect to tall give expressions of the form

& = of T _ al + olC 1} ...(8.117),
1 nm nm
nmpq

except that for M which is the only Keplerian element to exhibit a



154

significant acceleration, given by

]

1
N
mgﬂ

o]

M c o Con
o - o{Cnm al + o{Cnm } ...(8.118).

The use of equation 8.108a gives

m'mm

n
JF_() G (&) S'  (Quw,8,M
nmp npgq nmpg
...(8.119).

g = = S0,

Douglas(1967,figure 10) gives examples of M for different values of
n,m,p,9 in the cases of 24 hour orbits (€=0.8) and a 2.4 hour orbit
(e=0.2) and shows that the resulting along track variations for the
former is about the same as the latter, in angular units, though due
to different harmonics. The largest angular accelerations are of the
order of 4><10—9 radians per 180 minutes which, if held constant over

a significant period, can accumulate to approximately 7° in 100 days.
In comparison, secular variations are of the order of 360° in 100
days. The magnitude of the resonance effect is however, a detectable
quantity, though the separation of the various constituent resonant
effects is a complex problem. It is doubtful whether any but the

dominant resonant terms can be obtained for any particular period.

A harmonic of geophysical significance is C22 which can
be seen from equation 7.15 to be related to the difference between
the moments of inertia with respect to two mutually perpendicular

axes in the equatorial plane. The resonant effect is due to

n =2, m=2, p=0,qg =0
and can be obtained from the study of orbital perturbations of 24 hour

satellites. The longitude of such a satellite is given by

A=w+M+Q -0 ... (8.120)
as the orbit is equatorial. The acceleration of the satellite in

longitude %:is computed according to the relation

v (8.117%‘8.118)
A =M = 3n ) m (
c o
n-m
even

o

n
=) Fopp@ 6@

(€ sin{m(QMrw-0)}- S cos{m(@M+w-0)}) ..(8.121),
nm nm

where p=%n-m).

This computed value ic of the acceleration is compared
with the observed acceleration ko which is obtained from the variation
in the Keplerian elements computed over the period and the coefficients
deduced from the resulting observation equations. For a detailed
treatment see (Kaula 1966 ,pp.49 et seq; Wagner 1967,pp.161 et seq;
Douglas 1967,pp.189 et seq).
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Tesseral harmonics from ranging to satellites

This method for the determination of the tesseral harmonics
calls for the ranging to be performed over periods which are short
enough to enable an accurate sample of the longitude dependant
variations of the earth's gravitational field to be obtained.

Various systems are available for ranging to satellites. The earlier
interferometric and Secor methods are described in (Mueller 1964,
D.269 et seq). The results obtained have been of dubious value

in studying the earth's gravitational field {(e.g., Kaula 1965,p.3)
when compared with the results obtained by the use of Doppler
techniques which are at present used on a world wide basis in the US
Navy Satellite Doppler system known as Tranet which provides a global

navigation system (Yionoulis 1967).

The Doppler principle is based on a continuous unmodulated
transmission of mixed frequency fo from a satellite which, on being

received at a ground station, exhibits a frequency change df due to

the velocity of the satellite relative to the latter. The received
frequency f is given by
fo ft
af = f-f = .
o c

where rt is the station-to-satellite distance, ft the radial velocity
and ¢ the velocity of electromagnetic waves. Thus

. c af

r = ... (8. .

N f (8.122)

o

ft =0 when the satellite is at its closest point, as shown in figure

8.5, when the orbital velocity is perpendicular to the topocentric
distance vector. The distance ro corresponding to this case is the
required range to the satellite, being related to the value rt of the
satellite~to-station distance at any other instant, an interval of time

t later, by the relation
r, = [ré bt ) ... (8.123) ,
where v is the along-track velocity of the satellite. Differentiation

with respect to time gives

r = vt
21£ + 2

On squaring and replacing I£ from equation 8.123,

r2 {r?2 + vPt?l = vht?
t o

or 2 2,2
oy + vt' 1
v’-*tz .5
Tt
which can be written as
2 (8,122)
2 2
ih L t
v 2 (cdf)z
£
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being an eguation of the form

2

tz_ c? rO c? 2
(’d_f) = TL—‘OZ F ot ;—*Cz)—\;z't ...(8.123).

This represents a straight line on treating the observed quantities
2 2 . . . .
(t/af) and t° as the variables when the intercept gives the required

minimum distance ro.

These distances r0 are usually obtained from about 200
readings of df and t (ibid,p.128) and grouped into 24 - 48 hour time
spans. A "best fit" orbit is determined by adjusting the values of ro
as determined at a number of observing stations onto a model provided
by tracking station co-ordinates based on previous solutions, together
with an adequate representation of all other forces acting on the
satellite. The result is a mean Keplerian ellipse representative
of a 24 hour span. The tesseral harmonics are studied by the analysis

of data available within this period.

A local three dimensional Cartesian co-ordinate system X,
is chosen at each observing station associated with the determination

of the mean orbit, the x, axis being coincident with the geocentric

3
radius to the satellite at its position of minimum topocentric distance,

the x axis defining the direction of motion of the satellite at right

1

angles to X3, the x2

system. The departures of individual observations from the mean orbit

axis completing a right-handed mutually perpendicular

are used to study the short period orbital perturbations. The general
principles are outlined in (Guier & Newton 1965; Yiocnoulis 1967). The
solution can be summarised as follows.
The discrepancies between observations and the model of

the mean orbit are due to

(i) errors in the model ;

(ii) errors in the measurement of the Doppler effect df;

(iii) the perturbations in the gravity field;

and (iv) the variable effect of errors in the model used to
represent the earth's atmosphere.

The satellite's differential position components (i.e.,
between two adjacent positions in orbit) can be expressed by three

displacements &r, 6%, 82 radially, tangentially and perpendicular

to the plane of the orbit. These coincide with the unit vectors un,
Uy and Ug in figure 8.1. Consequently equation 8.39 can be
expressed in the form

§r - 3n_or - 2n_ 6% = F_+ off ér}

. a a r

6% + 2n  Or =F, + off 8r}...(8.124),

Sz + n_ &8z = F_+ off ér}

o z

where Fr' Fgand Fz are the respective forces acting on the satellite.

Significant perturbations occur due to those harmonics which have
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wavelengths corresponding to the orbital frequency of the satellite
as the station position was based on a mean orbit and the station-to-
satellite vectors at the time of closest approach.

The errors arising from the departure of the mean orbit
from the instantaneous orbit are eliminated by the adoption of a model

relative to some arbitrary epoch to of the form

§r = AL+ Az[na(t—to)] + A, cos[na(t-to)] + A4sin[na(t—t0)]

...(8.125),
with similar expressions for 6£, 82, noting that one or more of the
gquantities A which define the model, may be zero. Normally Al and A2
are put equal to zero for studies of a single pass. This procedure
enables the positional perturbations of the satellite to be expressed
in terms of the topocentric Cartesian co-ordinate system Xi. The
slant range vector TS in figure 8.5 can also be expressed in this
co-ordinate system. Once these have been allowed for, the residuals
are next separated into components which are either symmetrical or
asymmetrical with respect to the minimum range ro'

The principle contribution to the symmetric terms are
errors in the station co-ordinates and the parameters defining the
orbit. The minimisation of symmetrical contributions will therefore
provide one relationship for improving station positions and satellite
orbital parameters. A second set of relations is provided by the
asymmetric terms as they are dependent on slant range only. The model
so defined is related to the representation of the disturbing potential

given by equation 7.24 by adopting a relation of the form

v, = ¢C Ry )+ 8 I( o)
nm

where I(X) refers to the non-real part of the function X, wnm

being given by the relations

o= U+ 1V
nm nm nm ,
Unm = ) pnm(51n ®) cos mi
i
and _
vnm = rn+l pnm(SLn P sin m

The solution which is obtained from the expanded forms of
the above relations follows lines similar to those given in detail
in section 8.2(777). The final expressions obtained relate the
parameters defining the earth's gravitational field to the displacements
Sr, 8%, 82 and hence the model adopted for the definition of the
station-satellite system. The minimisation of the data residuals
gives '

(1) improved station co-ordinates;
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(ii) the harmonic coefficients C .S
nm’ nm
and {iii) six orbital parameters associated with each span

of data.

It is necessary to have observations from as many tracking
stations as possible in order that the harmonic coefficients may be
reliably determined. It should be noted that the Doppler system can
operate 24 hours a day and hence affords a means for the determination
of tesseral harmonics without recourse to the study of resonance

effects.

Notes

(i)  Table 8.3 gives values of normalised harmonic coefficients
to (8,8) in the representation of Va through equation 7.24.  The
two solutions given are those by Kaula(1966a,p.5311) and Rapp (1968,p.11),
obtained by the combination of satellite data and surface gravimetry
as described in section 7.3. Kaula's data is referred to the International
Gravity Formula which eliminates the major contribution due to the Eéo
term

(ii) Tt has been indicated by Kaula (1966c,p.4379) that
a good rule of thumb for fixing the magnitude of the normalised

coefficients upto degree 15 is

T .5 = 107
nm®> “nm - ne
(iii) In practice, it is only those harmonics of long

wavelength which are of interest in geometrical solutions from gravity

at the surface of the earth. The accuracy of these terms is an important
factor in deciding whether gravity data can be successfully used for

earth space studies (Mather 1970b,p.117). It is fortunate that these
critical harmonics are the ones most easily determined from satellite
orbital analysis as the dominant resonant effects occur as a result of
the appropriate low degree term in view of the fact that the strength

of the contribution declines as the inverse power of n.

(iv) The resonant orbit of greatest interest is the
synchronous one having a period of 24 hours, the dominant effect

being obtained when

and
. 1

ae
G &=

It is therefore resonable to conclude that if satellites
with suitable periods and a variety of orbital inclinations were available,
it would be possible to obtain those long wave-length harmoniecs which
are of use in the extension of the surface gravity field to unsurveyed

areas using the techniques outlined in section 7.3,from the perturbations
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observed in the orbits.

9, VARIATIONS IN GRAVITY AT THE SURFACE OF THE EARTH

9.1 Long wave variations

The most comprehensive studies of the earth's gravity field
on a global scale are those by Kaula‘(l959; 19633 1966a). Other
investigations of significance were made earlier by de Graaff
Hunter (1935) and Hirvonen (1956). The primary interest in
studying the characteristics of the earth's gravity field is for
the purpose of predicting values for the representation of those
regions which have not been surveyed. There are numerous statistical
functions which are available for the assessment of the variability
of the field. The initial studies were due to de Graaff-Hunter
who introduced the concept of the error of representation for a
region.

I1f the values of the gravity anomaly Agi are known at
n points in a region, the error of representation Es was defined

by the relation (de Graaff-Hunter 1935,p.407)
e = M{Agi - M{Agi} } ...(9.1),

where

M{X} = the mean value of X.

He also obtained a rule of thumb formula for the error of

representation from a study of the data available to him, as

£ = *11.3 Vs mgal e (9.2)

. o
for a square whose side was of length s .

Hirvonen (1956)suggested the alternate formula for

ES given by )
 Mi(ag,-Miag;)) )

€ = .. (9.3).
s n

The guantity M{Agi} in equations 9.1 to 9.3 is the mean value
of the observed gravity anomalies Agi within a specified region

while the outer mean is taken over all such available regions.

The error of representation can be interpreted as follows.
A single observed gravity anomaly is likely to represent the mean
value for a specified region with a standard deviation equal to

the error of representation ES. Table 9.1 gives Hirvonen's values
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Square Error of representation (€ )+ mgal
size Furasia South
(s) Australia

0.1°x 0.1° 2.8 3.0

0.5°% 0.5° 2.0 10.1

10%x 1° 12.7 13.5

POx pO© 17.6 17.7

5% 50 23.1 -

10°x 10° 2h.9 -

30°% 30° 26.6 -

World wide 28.0 -
Table 9.1

The error of representation €,

<

for g based on a sample of data obtained principally from
Eurasia (ibid,p.3) while the values for South Australia were
obtained by Mather (1967,p.131). The square size S is the basic
unit of area at the surface of the earth, bounded by meridians and
parallels.

Kaula's first study of significance dealt with the analysis
of the free air anomaly field for the harmonic coefficients upto
(8,8). One of the functions he used in the analysis was similar
to the function GS , called the root mean square(rms) anomaly
by Hirvonen and defined for a set of squares of a given size by

the relation

G, =M (Ming 1) o (9.4)

GS is obtained by determining the mean anomaly of all gravity
readings in each of a series of regions of a given square size

s® on the surface of the earth and computing the mean square of

these values. Go is the rms of individual gravity anomalies,
while GO l'G%' G1 etc. represent the variability between the area
means of O.lo, %O and 1° squares as the rms value. The comparison

between figures obtained by Hirvonen (1956,p.3) and Kaula (1959,

pPp.59-65) is given in table 9.2.

The following conclusions can be drawn in the light of
the information contained in tables 9.1 and 9.2, bearing in mind
that continuous gravity coverage at the surface of the earth is
unlikely to be a practical possibility.
(1) The larm-r the area a single reading has to represent,
the greater the valuc of £ and consequently the weaker the

representation. As errors in the measurement of gravity are of
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Square
gize Root Mean Square anomaly (GS) + mgal
(s) Hirvonen Kaula
Qe 78.0 3h.7
1° 25.0 27.8
20 21.8 2.7
50 15.8 18.7
10° 12.8 15.7
30° 8.7 9.2
Table 9.2

The mean value of the rms anomaly for squares of different sizes

the order of 0.1 - 0.2 mpal on land, using gravimeters and as the
average gravity station elevation is seldom as accurate as one would
wish, a desirable value of CS would therefore be *1 mrzl, on

the basis that the pravity station elevation is correct to *3 m.
The use of equation 9.2 indicates that this would call for a
representation of the gravity field at the corners of a 0.01° square
grid. The limited amount of data available at present indicate
that a 0.1° grid is a practical possibility , this being equivalent
to an €£_ value of +3 meal. Such a system could be used in an
approprlate manner such that errors which arise in the computation

of the separation vector can be kept down to less than 5 con

(Mather 1968c, Mather 1969,p.501).

(ii) The area means of larger regions have a smaller
variability than those of smaller sub-divisions.

(iii) The rms anomalies obtained by Kaula are systematically
larper than Hirvonen's values. This is due to Kaula havine access
to a much larger data set covering both continental and oceanic

repions while Hirvonen's data was essentially continental.

Another interesting quantity computed by Kaula in the
course of his studies of surface gravity was the degree variance
of free air anomalies (Kaula 1859,pp.62891) given by equation 4.39.
It can be shown from equations 4.37 and 4.39, on writing
S=4dyp sin Yy,
where P is the angular distance over which the covariance of gravity

anomalies is to be estimated, that

il i
2 .
fooi [p, (cos ¥ 1”7 siny ay = oncup) P (cos y) sin A ..(9.5).
=

On evaluation of the integral on the left of equation 9.5 using

equation 4.8, it can be seen that
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k 2

. _ 2 9n
izl C() pno(cos P) sin W AY = STl ... {9.6),
where k = mw/Ay and
Y= (i- 5 AP and sin[(i- %AP) JAY = cos[(i- 1)AU]- cos[idy]

... (9.7 .
Equation 9.6 affords a practical means for the evaluation of
2 . o
O - The values obtained by Kaula (ibid,p.62) are given in

column 2 of table 9.3.

Degree o? (mgalz)
n from covariance after harmonic from sate- from combined
analysis lites alone data sets

2 7.3 1.1 7 7.1
h3.6 11.1 31 30.4
9.8 13.9 17 16.2

5 10.5 6.6 16 12.3

6 oLo 10.k 27 1k.s
2.8 b2 L8 9.k

8 e 5.6 32 6.7

Table 9.3

Degree variances of surface gravity momalies

Column three gives values obtained direct from equation 4.39,

while column four gives results obtained from satellites (Kaula 1965,
table 2), the latter values being a composite sct obtained from
different solutions. Thus covariance analysis provides reasonable
assessments of degree variances. The same cannot be said for the
values obtained from the coefficients defined after spherical
harmonic analysis of surface gravity data (column 3) following the
use of Markov analysis for the prediction of values used in the
representation of unsurveyed areas, when the degree variances are
found to be ftoo amall. This indicates over-smoothing in the field
extension process and is borne out by the fact that all geoids
produced by the spherical harmonic analysis of surface gravity data

alone are over-smoothened{e.c., Kaula 1959,p.108).

The fifth column in table 9.3 gives the degree variances
for a combined data set obtained by the use of the principles
outlined in section 7.3 and obtained by Rapp in the course of a
(14,14) analysis (Rapp 1968,p.30). A comparison of tables 9.2
and 9.3 indicates that an analysis to (8,8) is approximately
equivalent to representation by 30% 30° area means. This could
also have been inferred from section 4.7 as such units of surface

area correspond to (6,6) analysis, if it is assumed that adjacent
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307X 30 area means are uncorrelated. This is thought to be the

case (e.g., Hirvonen 1956,p.1).

It must therefore be concluded that any combined data set
referred to above, even if obtained from a spherical harmonic analysis
to (14,14) where the total of the degree variances approach 150,
have a variability equivalent to that of a set of 10°x 10° square
means. It therefore follows that the values of smaller area means
(e.g., 5% 5° squares) obtained from such a data set have position
dependent deviations from true surface values as a conseguence of
oversmoothing. This correlation of error with position is restricted
to extents less than the basic area (a ten degree square in the case
of a 14,14 analysis). Such effects are not of consequence in the
representation of distant zones but can cause significant error
when the data set is used to define the earth's gravity field in
the close vicinity of any point whose gravitational characteristics

are being investigated.

Such a procedure was used for a series of calculations of
the geoid for Australia and the results proved to be of adeduate
accuracy when the combined data set was used to represent regions
which wewr more than 20° away from the point of computation(Mather
1969; Mather 1970c).

9.2 Local variations in the gravity field

The gravity field over limited regions cannot be satisfactorily
studied by the use of spherical harmonic functions alone due to the
excessive number of higher degree terms required to provide an
adequate representation. If this is not achieved (i.e.,n too low),
the errors in adjacent values will be correlated to the extent that
any quantity computed from this data set will be significantly
incorrect. No local variations can ever be adequately mapped unless
sufficient observational data is available. Thus local fields cannot
be defined satisfactorily by prediction methods alone , as the
free air anomaly field is affected not only by variations in the
topography but also by anomalies beneath the earth's surface,
especially at very small depths, as frequently occurs in Australia,

thus making prediction a very complex task.

, It is well known that gravity values in mountainous regions
undergo a two-fold variation. The first is the decrease in observed
gravity with elevation as a consequence of the increased distance
from the centre of mass, being given by equation 6.75. The second

is an increase due to the occurrence of the mass of the mountain
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directly below it. This can be very crudely represented by the

Bouguer reduction c, (e.g., Heiskanen & Moritz 1967,p.130) which
represents the topography as an infinite slab of thickness equal
to that of the elevation of the station. Its magnitude, on
assuming a density of 2.67 gm cm_3 for the material of the slab,

1s given by
(m)

c, = 2mkph = 0.1118 h mgal
This model is improved in practice by allowing for the
departure of the earth's topography from an infinite slab. The
resulting correction c, is called the terrain correction and has
the effect of always reducing the magnitude of Cb' Ct is, for

all practical purposes, zero if the surrounding topography within

150 km of the point considered, is planar. Its magnitude is

dependent entirely on the variability of topographical elevations

in the vicinity of the point, the local regions making larger contribu-
tions, all other factors being equal. ct can be calculated by

formulae of the type given by Mather (1368b,p.521). These effects

can be as large as 50 mgal (Heiskanen & Vening Meinesz 1958,p.154).

(note :- Cb > 300 meal for h = 3 km).

Observed gravity is also influenced by the gravitational
effect of the mass deficiency due to the existence of isostatic
compensation beneath elevated continental regions (ibid,pp.124 et seq)
which is generally held to satisfy the model postulated initially
by Airy.

Gravity anomalies at the surface of the earth(i.e., the so called
"free air" anomalies) are thus correlated with topography as the
decreases in observed gravity with increase of elevation do not
equal the reverse effect due to the close topography. Consequently
the correlation is a positive one, the general variations over

very limited regions being expected to be of the form (lJotila 1960)

Ag = Ago + 0.1118m™ mgal

where Ah is the difference in elevation between the point at which
the gravity anomaly Aqo is known and that at which Ag is observed.
This positive correlation between surface gravitv anomalies and
elevation is clearly illustrated by Kaula in his studv of surface
gravity (Kaula 1959,p.5), the results being reproduced in table 9.4.
He confined his analvsis to 190 1° square means and classified them
according to elevation. The only serious departures from correlated
behaviour occur at continental margins where not only do large topo-
graphical mass changes occur but observed gravity is also affected by

the rapid changes in the depth of the crust-mantle boundary.

Kaula also established a transition count of the rate of change

o o
of the 1" X1~ mean surface gravity anomaly with height as
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n(x1077) * o of tean 0
ft earth's surface a?}?ggig obggrved
< =12 6 - .2 i
. 5 - 146
- 1 - 12.5 10
p , - 9.8 T
-8,-T 1 - ‘
-6,-5 T -3 .
3 - e .
o Y 12.1 =3
) 0, 3.7 30
; . 0.9 o1
. 1o b1 .
. , 16.9 &
t ) k0.2 0
*h 0.624,
where d=depths Table 9.4

Correlation between one degree area means of the free air anomaly

and elevation (after Kaula)

SA -1 -
M{ (S‘hﬂ] J} = +0.00851 mgal ££7 = + 0.028 mgal met 1
1
Such correlation should be recognised as providing broad
indications of overall trends. Kaula also shows sufficient figures
to illustrate the existence of a variety of gravity anomaly values

at any given elevation and/or depth.

Thus predicted values of the gravity anomaly field can only
be used, with any degree of confidence, for the representation of
regions distant from the area in which space vectors are to be defined.
The near carth satellite should therefore be considered to be a
measuring instrument which affords a means for the definition of the
long wavelength variations of the earth's gravity anomaly field. These
harmonic terms, on combination with all available surface gravity data,
provide a representation of the gravity anomaly field which is
equivalent to large area means (approximately ten degree squares) .

The resulting data set can be used successfully for the representation
of the effect of distant regions in geodetic computations till such
time as an adequate surface gravity coverage becomes available. This
cannot be done in the case of regions within 20° of any point of
computation as the application of this data to smaller intervals gives
rise to systematic errors which seriously affect any space vector

determinations.
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Gravimetric computations cannot be considered to be
free from large scale systematic error unless the field within
20° of the point of computation is either completely represented
by surface gravimetry or alternately, the gaps exist by design
and not chance (Mather 1967,p.133). This calls for a planned
gravity survey where stations are sited after a study of the
topography of the region. Under such circumstances it is

possible to keep systematic errors to within acceptable limits.

9.3 Some probable sources of density anomalies and geoidal
undulations

The factors which cause the gravity field of the
earth to deviate from that of a reference ellipsoid containing a
symmetrical distribution of matter are many, some of which are well
known while others are the subject of speculation. The nature
of the geoid itself can be illustrated clearly by Mather's study
of the free air geoid for Australia (Mather 1970c) which shows the
geoid referred to a geocentric reference ellipsoid (figure 7) and
also to the local astro-geodetic datum (figure 9 in reference)
after allowing for the translation of axes. In the latter case,
the datum is approximately parallel to the mean geoid slope across
the region. Consequently, the near uniform grade of approximately
5 arc sec exhibited by the geoid across the continent in figure 7
is converted to a chart of highs and lows in the latter figure.
Some of these maxima and minima are correlated with topography to
the extent of a few metres while others are not. It should be noted
that Australia is a relatively flat region with mountainous regions
confined to the south-east. In these latter regions, the geoid does
appear to rise by about 5 metres due to the effect of the mountains
alone whereas other maxima of similar magnitude occur in other

regions which exhibit no correlation with topography.

It can therefore be concluded that mass anomalies do
occur in the earth's crust, very close to the surface, having
magnitudes as great as the total gravitational effect of topography
and its isostatic compensation. The Australian investigation referred
to above showed that mass anomalies of sufficient extent to influence
the gravity field over lOO of the earth's surface are by no means
rare. These results appear to be in agreement with the observations
of others who conclude from correlation studies between seismic and
gravity data that compensation is not’complete in the upper mantle

and that the crust and upper mantle are regions of strong density
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anomalies and stresses (Toksoz,Arkani-Hamed & Knight 1969,p.3768).

The long wave effects of surface gravity anomalies due
to harmonics less than or equal to 6, as computed from satellite
orbital analysis have no correlation with topography. It may
therefore be concluded that some form of isostasy prevails with a
compensation which may not be complete, in view of the numerous
deviations which occur from the isostatic model (Heiskanen & Vening
Meinesz 1958,pp.311 et seq). These long wave effects due to harmonics
of degree less than six, have been attributed by Hide and Malin
to possible undulations of the liquid core-solid mantle interface
(Hide & Malin 1970,p.605). The existence of such undulations
of the order of 4 km is a distinct possibility on the basis of recent
seismic studies of the lower mantle which indicate lateral density

2 gm cm-3. These are reported to

variations of the order of 4X10
be an order of magnitude larger than anomalies detected by the orbital
perturbations of artificial earth satellites. It is estimated

that a 1 km undulation in the core mantle boundary is equivalent to
O.45><106 gm cm_3 (Tcksoz ,Arkani-Hamed & Knight 1969,p.3765) and

hence can completely account for mass anomalies in the lower mantle

if the undulation were of the order of 4 km.

Hide and Malin also produce evidence for such undulations.
They note that the removal of the secular westward drift of the geo-
magnetic field by 0.23° longitude per year gives a residual field
which is significantly correlated with the low degree harmonics of
the earth's gravitational field if the former is rotated eastward
through 160°(Hide & Malin 1970,p.606). They further arque that if
this secular drift is due to strong magneto-hydrodynamic interactions
between motions in the liquid core and the undulations of the
core-mantle boundary, such an occurrence should have taken place

(160°/0.23° ) 600 years ago.

The second theory advanced for the long wavelength harmonics
in the earth's gravitational field is the existence of convection
currents in the mantle (e.g., Vening Meinesz 1364,p.57).  The
possibility of such currents existing is indicated by the phenomenon
described as sea floor spreading (e.g.,Heirtzler 1968) together with
some indication of the non-permanence of earth space co-ordinates.

Munk and MacDonald (1960 ,p.250) have examined the possibilities from

the viewpoint of position of the earth's pole in relation to earth space
and reach the conclusion that the position of the pole would

adjust to the location indicated by the principal axis of greatest
moment of inertia, defined by the mass inhomogeneities in the mantle

at the time. Evidence for the position of the pole in the past is
based on paleomagnetism and therefore assumes some degree of coincidence

between the magnetic and rotational poles.

The convection currents, if they exist, are as a
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consequence of convection cells which are not necessarily
symmetrical about the rotation axis (Goldeich & Toomre 1969,p.2556),
will result in the earth's gravitational field exhibiting characteristics
which are possibly random. Consequently, low degree harmonics
need not be confined to the zonal terms, etc. It has been observed
that the residual in Eéo after the removal of the effect of the

flattening based on the best fitting ellipsoid of revolution(C

-484.2x107%) igr

20

dC20 = - 4.7

which is of the same order of magnitude as

(7220) § 1222— 1211 tabie 9.3

M a?

C.

29 2.4,

This leads to the possibility that some form of convection
can be the mechanism for the occurrence of non-zero low degree
harmonics which cannot be due to the topography and its isostatic
compensation. One would expect such convection to be correlated
with heat flow at the surface. Such is not the case as there is
no doubt surface heat flow measurements exhibit no significant low
degree harmonics, indicating that whatever flow occurs is due to
either near surface crustal or upper mantle effects. In addition,
researchers have been unable to establish any correlation between
surface gravity anomalies and heat flow data (Toksoz et al 1969,
pp.3765-8).

Thus the main conclusions to be drawn are as follows.

Low degree harmonics in the representation of the gravity
anomaly field are due to mass anomalies in the mantle. Such
anomalies may extend down to the liquid core-mantle interface
which could have undulations as great as b4 km. It is also
likely that partial compensation occurs and the long wave harmonics
are merely the resul~tant anomaly. Any evidence for such harmonics
being due to convection currents in the upper mantle is principally
based on the observational evidence of sea floor spreading and

not on heat flow data analysis.

Higher degree harmonics are a consequence of local and
regional variations which are either crustal or due to the topography
The magnitude of the effect of underground density anomalies sare as
great as those due to mountains on observed gravity, with similar
extents of regionality. Such harmonics cannot be picked up by
satellite orbital analysis as their magnitude is damped by the

effect of whatever isostatic compensation may occur.

School of Surveying
Iniversity of New South Wales
Kensington, N.S.W. 2033
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