- SURVEY COMPUTATIONS

M. Maughan

MONOGRAP;—I No. 5
THE SCHOOL OF SURVEYING

UNIVERSITY OF NEW  SOUTH  WALES
KENSINGTON, N.S.W. 2033 AUSTRALIA

ot
il

, ¥
e ¥
e I
k] ¥, }
PR



PUBLISHED BY
THE SCHOOL OF SURVEYING
THE UNIVERSITY OF NEW SOUTH WALES

SYDNEY, AUSTRALIA

COPYRIGHT
THE UNIVERSITY OF NEW SOUTH WALES

NATIONAL LIBRARY OF AUSTRALIA
CARD NUMBER and ISBN
O 85839019 1

PRINTED BY KINGSFORD DUPLICATING SERVICE, KINGSFORD.



MONOGRAPH NO. 5

SURVEY COMPUTATIONS

M. Maughan

Received January 1975

School of Surveying,

The University of New South Wales,

P.0. Box 1,

Kensington, N.S.W. 2033. Australia



Published by
The School of Surveying
The University of New South Wales

Sydney, Australia. 2031

National Library of Australia
Card Number and ISBN

0 85839 019 1



Table of Contents

Introduction

Elementary Formulae

Co-ordinate Systems and Bearings
Areas

Road Intersection Calculations
Curve Setting Out Computations

Intersections and Resections;
Satellite Stations

Transformations
Spherical Trigonometry
Bibliography

Appendix

Page

22
29
31

42
62
70
91
92






SURVEY COMPUTATIONS

1. Introduction

These lecture notes have been prepared for the use of
students taking the degree course in Surveying at the University of New South
Wales, with the aim of showing them the best methods of carryinq out survey
computations using tables of natural trigonometrical functions and hand
operated or non-programmable calculating machines. Whilst logarithms may
occasionally enter into the calculations, this method of calculation is
today almost entirely superseded and it will not in consequence be dealt with.
The programming of calculations for electronic computers may involve different
problems and procedures, and whilst this is probably the method of calculation
which will be most used in the future, it also will not be dealt with in these

notes.

1.1. Accuracy of Calculation

It is useless to carry out a calculation unless this is done
to the accuracy required by the problem or as limited by the accuracy of the
original data. A sufficient number of significant figures must be used to
ensure this accuracy and in general, in order to reduce the effect of rounding
0ff errors, one more significant figure is usually employed in the main body
of the calculation than is required for the final result. On the other hand it
is inefficient to carry too many figures in the calculation and here common
sense must prevail. For instance, if as part of a problem, the area is
required of a rectangular plot, the sides of which have been measured as 120.63
and 275.91, a straightforward multiplication would give the area as 33283.0233
square units. This however would give a false idea of the accuracy of the
areas as all we know is that the length of one side lies between 120.625 and
120.635 and that of the other between 275.905 and 275.915, which gives limits of
33281 and 33285 approximately for the area. The decimal part of the area is
thus of little significance and in this case an answer to the nearest whole

number would suffice.

1.2 Checking of Calculations

As accuracy is of paramount importance and since everyone is
liable to make mistakes, it is essential that the calculation should be

checked. 1In checking, the checker should not take the original calculation



and check it step by step as there is always a great danger of accepting as
correct a figure already written down even when it is wrong, and checks should
be carried out as far as possible in two ways:

(a) an independent calculation by a second computer, the results of the
calculations being subsequently compared, any discrepancies being investigated
and rectified.

(b) a second calculation by the same computer but using a different

mathematical pfocess so that the tendency to repeat an error in the original

calculation is eliminated.

The best methods of calculation are thus those with the
most built-in checks but it is not always easy to devise these in a way which
does not involve a lot of extra calculation. When only a partial checking
system is used, it is essential for the computer to realise which parts of
the computation are unchecked, so that he can treat these parts with special

care.

No checking system will deal with inaccurate data and so the
computer must ensure that his data has been extracted correctly. Whilst this
may seem obvious, experience has shown that in a fair percentage of student
calculations the data has been incorrectly transferred and the subsequent effort

has been completely wasted.

1.3 Setting-out of the Calculations

Opinions will probably differ on this question. Whilst the
use of standard forms may be suitable for computations by technicians, their
use in a University course is to be deplored as they give the students a type
of calculation which does not involve any thought or understanding. When left
to their own devices, however, students generally cover masses of paper with

computations, set down in an untidy fashion and difficult for others to follow.

Calculations should in general be set-out in tabular form
in a neat and logical way, with the minimum of explanatory matter. It is
open to question how much of the calculation should be committed to paper and

how much carried on the machine. Some people consider that as much as possible



should be carried on the machine owing to the possibility of transferring
figures incorrectly to paper but whilst this is probably true in the case of
expert computers, it is felt that with students learning to carry out
calculations, as much as possible of the calculation should be written down,

in order that any errors may be easily traced.

In the examples to be given later in these notes the
calculations will be set out in tabular form. These are given merely as
examples of neat and 1ogicél methods of setting out the calculations and it is
not suggested that they are the only methods or ﬁhat they are necessarily the

best ones.

2. Elementary Formulae

Most survey computations involve a knowledge of plane
trigonometry, which students will already have acquired at school, but a list

of the more important formulae is given below for reference‘purposes.

2.1 General Trigonometrical Relationships
cos2 A + sih2 A = 1 2.1.1
sec2 A = 1 + tan A 2.1.2
cosec2 A = 1 + cot2 A 2.1.3
+ . :
sin (A ¥ B) = sin A cos B - cos A sin B 2.1.4
+ -
cos (A - B) = c¢os A cos B+ sin A sin B 2.1.5
+ tan A T tan B
tan (A - B) = ~
1+ tan A tan B 2.1.6
sin 224 = 2 sin A cos A 2.1.7
2 . 2 2 ., 2
cos 2A = cos A -sin A =2cos A -1=1-2 sin A 2.1.8
1 - tan” A Tt
. + Y X - Y
sin X 4+ sin Y = 2 sin —iz—-————l- cos —i————————L 2.1.10

2 2



sin X - sin ¥ = 2 co

cos X + cos Y

cos X - cos Y

s X + Y) sin (X - Y)
2 2
+ -
2 cos jz&————lil cos iz;————liL
2 2
. + . -

Formulae Relating Elements of the Triangle

A
g2 <
C & B8
a2 = b2 + c2 - 2 bc cos A
a = b = C
sin A sin B sin C
(A - B) a - b [o)
tan > = 2 * b cot >
sin é. =¢//}s - bils - 9 where 2s = a + b + c
2
bc
cos A _ s(s - a)
2 bc
Area of Triangle = % bc sin A
2 ., .
= 1 a sin B sin C
2 sin A

"/ s(s -a (s - b) (s - o

2.1.11

2.1.12

2.1.13



3. Co-ordinate Systems and Bearings

Most of the subsequent calculations will involve co-ordinates
and these co-ordinates will be denoted by N (northings positive) and E
(eastings positive) whilst bearings will be measured by the clockwise angle
from the North direction from 0° to 3600. The quadrantal form of expressing
bearings has become increasingly obsolete, and N and E will be employed for
the co-ordinates as it is quite obvious what they stand for, unlike X and Y
which have different meanings in different parts of the world. The use of N
and E also does away with any confusion with the school mathematical system of
x and y with angles measured anti-clockwise from the x (or East) direction.
When co-ordinates are quoted in these notes, the Easting co-ordinate will be
given first and the Northing co-ordinate second. This is inconsistent with the
general method of quoting Latitude before Longitude but it is the method adopted

in New South Wales where the majority of our students will eventually be operating.

3.1 Calculations Involving a Line of Given Length and Bearing

When dealing with computations involving a surveyed line PQ,
the triangle used in the calculation is the right angled triangle which the line
makes with the northing line through P and the easting line through Q. The
treatment will differ slightly according to the quadrant in which the bearing of
the line PQ lies. The length of the line is always taken as positive but the

trigonometrical functions of the bearing may be either positive or negative.

Let the length of the line be d and the bearing A N
o lo!
(a) lst quadrant 0~ <A <90
Difference in Northings AN = NQ - N, )
)
= d cos A ) 3.1.1la
)
Difference in Eastings AE = EQ - EP)
) - z
= d sin A )

From the diagram it is obvious that the AN and AE are
both positive and hence in the first quadrant cos A and sin A are also both

positive.



(b) 2nd quadrant ~ 90° < A <180°

Here we will have

AN

d cos A = -d cos (180-a)= -4 sin (A-90) ) 3.1.1b
)

d sin A = d sin (180-A)= 4 cos (A-90) )

AE

In this quadrant cos A will be negative

and sin A positive.

(c) 3rd guadrant 180° <a <270°

AN = d cos A = -d cos (A-180) ) 3.1.1c
)

AE = 4 sin A = -4 sin (A-180) )

In this quadrant sin A and cos A will be both Q

negative.

() 4th gquadrant  270° <A <360°
AN

d cos A d cos (360-A) = 4 sin (A-270) ) 3.1.14
)
AE d sin A )

~d sin (360-A)= -4 cos (A-270)

In this guadrant, cos A will be positive

and sin A will be negative.

It will be noticed that in the second and fourth quadrants,
two expressions, besides d cos A and d sin A were given for AN and AE.
This is done to facilitate the loocking up of the trigonometrical functions in
the tables as it is easier to subtract 90° or 270° from an angle than to
subtract the angle from 180O or 3600. It should be stressed however that
this facility is sometimes a source of error as students are liable to forget
to look up the sine instead of the cosine or v.v. with the result that the

numerical values of AN and AE are reversed.

Drawing a simple diagram showing the
line in its approximate bearing would
safeguard against this error as it

would show whether AN or AE was

™

numerically the greater.




3.2 Basic Calculations

There are three basic computations in problems involving
co-ordinate systems in surveying. They are

(a) Given the co-ordinates (EP, NP) of a point P and the bearing A

and distance d of a line PQ to find the co-ordinates of " Q

From section 3.1 the co-ordinates of Q are obviously

given by
B = E + d sin A )
P
0 ) 3.2.1
NQ = N, + d cos A )

)

(b) The reverse problem - Given the co—ordinates(EP, NP) and (E

o’ No

of two points P & Q to find the bearing and distance of the line between them.

As before

d sin A=E_ - E

Q P
d cos A = NQ - NP
tan A = EQ—:—E— or A = tan -1 EQ;:jiE 3.2.2
NQ - NP NQ - NP J
=nd - EQ " EP - NQ " NP (angle A having 3.2.3
sin A cos A been found)

It should be noted that as tan X = tan (180 + X)
equation (3.2.2) will give two values for A, i.e. it will give the bearing PQ

and the bearing QP. A simple diagram will show which is which,

The length d could also be calculated from the formula

2 2 .
d = /(E, - E)) + (NJ - N,)7 but this is a more complicated procedure and

Q P Q

does not provide the check given by formula (3.2.3)



(c) Given the length of one side of a triangle and two angles of the

triangle to find the lengths of the other two sides.

Let PQ be the known side and P and Q p
be the known angles. ——"‘>7 R
Then R = 180 - P - Q I

and formula (2.2.2) gives

PQ = PR = OR
sin (P + Q) sin Q sin P

Q

These three calculations can all be illustrated by the

calculation of the co-ordinates of an intersected point.

Example 1.
At two known stations P & Q, the co-ordinates of which
are (37928.3, 42398.7) and (43527.5, 37814.3) respectively, the angles
QPR and |POR have been measured to a point R which is east of the line PQ.
These angles are 45043' 19" and 67°19' 28" respectively. Find the co-ordinates

of R

(1) See section 3.2 (b)

Station E N
43527.5 37814.3
p 37928.3 42398.7
5599.2 -4584.4
Bearing PQ = tan” T 2°92:2 _ an”l (C1.221359) = 120° 18' 33"
-7584.4
. -4584.4 -4584.4 _
Distance PQ= ————o5®rgisaw = _.g33506 | /23032
= 5529.2 = 5599.2 23656
sin 120°18'33" . 773738

Note that here in the calculation of the distance we are
carrying one more decimal than is justified by the data. The two values for
the distance should be the same but may differ by 1 or 2 in the last place of
decimals in which case the value worked from whichever is the larger of the

sine or cosine is accepted i.e. in this case 7236.56 as sin A >cos A



(2) See section 3.2(c)

Station Angle Sine Side Length Side
P 45° 43' 19" .715961 5630.47 OR
0 67 19 28  .922702 7256.33 RP
R 66 57 13  .920188 7236.56 PO

180 OO0 0O

Angles P & Q are known and angle R is obtained by
making the three angles add up to 180° PQ is the known side and is shown

on the same line as angle R which is opposite to it in the triangle. Then

QR and PR are calculated from PQ sin P and PQ sin Q

sin R sin R
(3) See section 3.2(a)
. o, ., " o

Bearing PQ 129718" 33 QP 309 18' 33"

-lp _45 43 19 +0 67 19 28
Bearing PR 83 35 14 dist. 7256.33 OR 16 38 01 5630.47

sin + .993743 cos +.111691 + .286251 + .958155
Co-ords P 37928.3 42398.7 0] 43527.5 37814.3
AE and AN +7210.9 + 810.5 +1611.7 + 5394.9

R 45139.2 43209.2 45139.2 . 43209.2

Note that in the final calculation the figures have been
cut down to one decimal again as the co-ordinates of R cannot be quoted to

a greater accuracy than those of P & Q

The first part of this section consists of finding the
bearings of PR and QR from those of PQ and QP and the known angles.

The bearings PQ and QP will ocbviously differ by 180°.
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3.3 Methods of Checking these Computations

In the numerical example given in the last section the
agreement of the co-ordinates of R, when finally computed from P and from
Q , checks that all three parts of the calculation have been carried out
correctly but the situation is rather different when each part is considered

separately.

In part (1) the agreement of the two values for the length
PQ, checks the calculation provided that the distances AN and AE have been

correctly obtained. There has been no automatic check on the values for AN

and AE, so these must be checked or the whole part checked by a different
method of calculation. One possible method of checking would be to do the

subtraction first in your head and then check on the machine.

Part (2) is completely unchecked except for making sure that
all the angles add up to 18Oo exactly, but as this calculation is seldom
made except as a preliminary to a subsequent calculation of co-ordinates, check

calculations are not normally carried out.

Part (3) is checked only because the calculations of the
co-ordinates of R have been carried out from two separate points. If they
had been calculated from one point P only, then the results would be

unchecked and a checking method would have to be devised.

For parts (1) and (3) of the calculation, an independent
checking method, called the "45o check" has been devised, based on the facts

that sin'45O = cos 45o =/% and tan 45o =1

As regard calculations of the type shown in part (1) it is
only necessary to check the calculation of the bearing as the subsequent
calculation of the distance is checked by the double calculation in equations
(3.2.3). The bearing is checked by considering two auxiliary points P' and

0' such that NP' = NP - EP and EP' = NP + EP and similarly for Q.



11
Then if the bearing of the line P'Q' is A'

AE
- AE! + +
tan A' = 22 _ AN+ AR ] AN~ 14 tana = tan (45° +A) 3.3.1
AN AN - AE AE —
1 - = 1] - tan A
AN
a' = 45° + 2
Example 2 - same data as Example 1
Station E N E'=N+E N'=N-E
0 43527.5 37814.3 81341.8 - 5713.2
P 37928.3 42398.7 80327.0 + 4470.6
5599.2 -4584.4 1014.8 -10183.6
. -1 1014.8 _ -1 _ _ o \ "
A' = tan _Toi83.6 - tan (-.099650) = 174" 18' 33

[

A + 45 (from example 1) - thus checking the calculation. Note that
AN' and AE' should first be obtained from the N' and E ' for P' and
Q' and then checked from AN and AE.

There are two forms of the check for the calculations of
the co-ordinates of Q from the known co-ordinates of P and the known
bearing and distance between them. In both of these checks an auxiliary
bearing of (A + 450) is used, in the first case with an auxiliary distance

of &/2 and in the second case with an auxiliary distance of d//f

Case 1 A' = A + 45° a' = a2
d' sin A' = 4/27 sin (A + 45) = d4/2 {1 cos A + 1 sin A
V2
= d cos A+ 4 sin A
= AN + AE 3.3.2
Example 3 same data as example 1 for line PR
1.414214 4 A + 45 d' sin A' AN + AE (from example 1)

10262.0 128° 35' 14" 8021.4 8021.4
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''= A+ '=
Case 11 A 45 d a/ 5
Then C=4d' cos A' =4 cos (A + 450) =d (cos A - sin A)
V2 2
S=4a'sinA' =4 sin (A + 45°) =4 (cos A + sin A)
ve) 2
AN=d cosA =C+S and AE = sin A =8 - C 3.3.3

Example 4 same data as example 1 for line QR

.707107 d A + 45 C S C+ S - S =-C

3981.3 61° 38' o1" 1891.5 3503.3 5394.8 1611.8

When the values of (C + S) and (S - C) are
compared with AN and AE from example 1, it will be seen that there is a
discrepancy in each case of 1 in the last figure. This is due to rounding

off errors and is gquite acceptable.

Of these two methods the first will obviously appeal
to many computers as it involves less work but it should be pointed out that
its use is not without danger as the computer could have transposed his AN and
AE and the check would a?parently show the calculation to be right when in
fact it is wrong. This type of mistake is quite likely to occur when A is
in the secohd or‘fourth quadrants and the angles (A - 90) and (A - 270) are
used without transposing the trigonometrical functions (see section 3.1)
Theoretically the check should still work under these conditipns but
experience shows that the student often tends to concentrate on the numerical
value of (AN + AE) and to ignore its sign. The second method is therefore
preferable. OQuite small errors can be detected by this check as the maximum
discrepaycy due to rounding off should not exceed 2 in the last place of

decimals.
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3.4 Traverse Calculations

Trayerse calculations consist of a series of
calculations of the type 3.2(a) together with adjustments designed to
eliminate as far as possible the errors in the angular and linear observations.
There are a number of different methods of adjustment but the only one which
will be dealt with here is the normal form of the Bowditch adjustment. The

method is best explained by a numerical example.

Examgle 5

Consider a traverse run between two control stations,

R.T.S. 10 and R.T.S. 52 for which the following data is given.

Station E N Datum Bearing to Trig
R.T.S. 10 8916.37 7854,72 279° 43" 29"
R.T.S. 52 10406.73 9424.95 53 30 46

and for which the following reduced angular and linear observations have

1

been obtained.

At Station Clockwise Angle From Di§tance To
Point Above to Point Below Point Below
R.T.S. 9
R.T.S. 10 95° 12' 13" 579.82
STN 1 164 58 42 284.48
STN. 2 207 15 40 400.45
STN. 3 250 19 33 292.54
STN. 4 145 30 06 438.03
STN. 5 183 26 41 521,73
R.T.S. 52 167 05 02

R.T.S. 51




R.T.5.51
14 To 5.5

To R.T.5.9

The first calculation to be carried out is the
adjustment of the angular observations and this caﬁ be done by making
corrections either to the bearings direct or initially to the observed angles.
The latter method gives an additional check on the work and has been adopted in
the specimen computation. 1In this computation the station names are entered in
the first column, the observed angles in the second and the datum opening and
closing bearings are entered on the appropriate lines of the éourth column.

It should be noted that these bearings are from the point above to the point

below and hence the opening datum bearing differs by by 180° from that given in

data. The traverse is now changed for angular purposes only into a loop traverse

by adding underneath the observed angles an additional angle which will be found
by subtracting the last datum bearing from the first datum bearing. This

angle will differ from the external angle at point K in the diagram by 180°.
The sum of all the external (or internal) angles of a polyon is some integral
multiplecof 180o and hence so must be the sum of the angles now written in the
second coluﬁn, but on summing these angles a total of 1260° 00' 40" is obtained,
indicating an angular misclosure of 40". 1In order to make the angles total
1260° i.e. 7 x 180° exactly, a correction of -40" must be made, in total, to

the observed angles and since we are not dealing with decimals of a second,

5 angles will receive a correction of -6" and 2 a correction of -5", these

two being spaced evenly through the traverse. It should be noted that no

correction is made to the additional angle as this is not an observed angle

but is fixed by the data.

The corrections are entered in column 3 and after
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correction of the angles in column 2, the bearings in column 4 are completed
by adding the adjusted angle to the bearing on the line above and adding or

subtracting 180°. As a final important check, the last observed angle should be

added to the previous bearing, altered by 1800, to see whether the closing
bearing is obtained. If it is, this will check that all the adjustments and the
bearing calculations have been carried out correctly. This check is not

obtained if the bearings are calculated from the unadjusted angles and then
adjusted by an accumulative process i.e., the first bearing would have a
correction of -6", the second a correction of -11" and so on. If properly
carried out, both methods will give the same result but in the bearing adjustment,
a small error of 1' say in one of the calculations could change a small positive
misclosure to a small negative one or v.v. and could pass unnoticed. In the

angle correction method, this error would be shown up by the final check.

The observed distances are now entered and, if thought
necessary, the sines and cosines of the adjusted bearings, and the difference
Northings and Eastings are then calculated and entered in the appropriate
columns. At this stage, the 45o check computations should be made as shown
in the lower part of the worked example as it is a waste of time to proceed
to calculate final co-ordinates if the differences Northings or Eastings are
incorrect. When they have been checked, the total difference Northings and
Eastings should be compared with the differences between the corresponding
co-ordinates of the opening and closing stations to give the misclosures in

Northings and Eastings.

In the Bowditch correction method, these misclosures are
adjusted on each traverse line in proportion to the ratic of the length of
that line to the total distance traversed, e.g. the correction to the Northing

difference for the first line would be - .238 x 579.82 = -.055
2517.05
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The misclosures are most easily calculated by dividing
the total Northing or Easting misclosure by the total distance and then
multiplying this figure in turn by the length of each traverse line. The
differences in Northings and Eastings and the corrections have been
calculated to one extra placg of decimals to avoid rounding off errors. After
correction the differences should be added to the appropriate co-ordinates
to give the co-ordinates of the new stations but these, though calculated to
3 places of decimals (in this example) should only be recorded to two places
in conformity with the data co-ordinates. A check should be obtained on

the final datum co-ordinates.

The adjustments could have been applied on an
accumulative principle direct to the co-ordinates but for a reason similar
to that given for the angle adjustment, it has been considered preferable

to apply them to the difference Northings and Eastings.

For all traverses the angular and linear misclosures
should be shown to ensure that these conform to local regulations or to the
requirements of a particular contract. They are normally shown both in total
and as a ratio. The total linear misclosure is of course the hypotenuse of

the triangle formed by the northings and eastings misclosures.

It should be noted that the bearings and distances will
not be consistent with the final co-ordinates but this is not of great
importance as, for the type of work for which a Bowditch adjustment is
appropriate, the co-ordinates are only required for plotting purposes. The
adjusted bearings shown in the calculation will probably be more accurate than
those computed from co-ordinates, as they are unaffected by errors in the

distances and in the co-ordinates of the control points.



! ~
! L D S N T
M | L —
 bi9 3074 7 s0T §ih | ghilHei - «.Uw,mshjmﬂ-...ﬁrm\r.wﬂw i bl gy § e s
! ; N | 9.5%¢b.
¥ i 4 [ U . . S TP VN
; bwb sbi v 7 tHT obe J+g Sb - 9bs.wbz+ Hel hoe L H by Lo
; oxr 8¢ - iy 9wo.obrs 1 £30 g - | £ ST+ [37997 T# bt THI
;) S8Y 9ces iy s1sozsse | SvL98 41 ok b9rs (97887 | ¥ bo L
J OSH -MIY i/ JL¥. - ! bow 24+ 100 .y Hi+ §51-19C | €1 HS H¥
; . i N R | 1y ; L
/ SST 996+ i/ 158 ba+ SH Soz+ | §08 HEgt | $91103 3 Sbhbon | 9f 55 bF | weflh —~ 1 e
: B - : ” “ | T T3Ei595 0 : SLh3 by
u NV =0+ ¢ F Q u.\ -m.. N 7 S : _uxzvt,:lnoﬁo\. 5% + 9N13YIg $o-L1 ST~ Lbz- (stmn
b [ SO i — L
* PV LG iow ,Aum.v_u w?é‘_%% | m
“ - - T - Ty St T W oH Py Y
gsre - 81 + SRR SUON I S w.
| fEr s ?% Ly L e — W a0 99 09T
. . . e et e e e i i
] Mf?om S0 w 9¢ TEETF S .w T 9w [IS SLY
o §9#0lel v1 T GbH/+ T T S0-L1SE | 9# 0f g = , s
zss1A St TH Cel-90Hor |,y ! : 9- S0 L9/ iTSSU
. d ) ! . Lo~ mM\l\w .50F + N2+ w..m\w SRR AT 0¢ ST 99 95 Ho
s\ S oTEb T hE aT e | |oks) T L iwm J S-\#H 9T ed S NS
R i L R »\ﬁwv Y :o*www,owm + ;im.ml*i\ J 0 85¥H | # bs 79 a2t
NS H.L10b it Tr-8eSh = © IR S , S obg -7 L ] , - OF SHItHh NIS
B £ 3 _ ) 370.- ml\w 3¢ - |IToH 9H0 0bY + | m,omo?.i HS b 41 br Lb ! \M% J M
£-nLs| Ty Ssob Sr8wTh | e 899 FIFTbh T r. -1 8¢ b/ ost £ NIS
e 1 ] $0-ISHy- 96 + (310K S4BT 81 F | ISR +] SH-00# | [+ b0 Lt Lz i
T nus| LE-bD9S o¢-s90b | _jkrT T ek | Ry . | 9-19# </ Lot |t N3
— a.. | {70~ § ST n ITOH \%m*, —_ N\l +” %*\;‘*AWN ¢ L.\\ﬁ Nw\m.m +¢ . ,
NS Th HIHE 9,-590b | _ BT i |&k :!ﬂﬁ.,\so i . S TH 88 H97 i 1 NIS
R , . Sso-y $87-09 ¢ + 1.0&, + .@L: + 95990 -+ T8 WP\W 9¢  SS  HI Lg Lo
orsyyl TL-¥s8lL i [t-9rbsg 1 %X ptee G TASLset [ L 1987 T Sb [0Sy
m - ! | br ¢n bb Ll L,
| 0 | e | 55Ty
—— ﬂ “. - \m
. , m _ i NS0T L o - F1ONV !
UV . el Lyveat Iy 3307 ay m FNISOT L FoNWL 51T ONtavIE  [¥E0T ’ L NOILYLS
i 4 " - L i , w RIS ! . C3/95580 |




17

3.5 Missing Data Problems

Traverse computations are frequently used in Australia
to solve problems involving missing data. They are generally computed in the
form of a loop traverse, i.e. a traverse opening and closing on the same
point, but the principle is equally applicable to traverses opening on one
co-ordinated point and closing on another. The assumption is made that the
known observations are accurate and that there is no misclosure in the traverse.
There will thus be two equations, one equating the sum of the difference
Northings to the difference between the Northings of the closing and opening
stations (zero for a loop traverse) and the other doing the same thing for the
Eastings. From this it will be seen that, in general, two unknown elements

can be found.

As examples of this type of problem the following cases

will be dealt with:

(1) bearing and distance of one line unknown
(2) two distances unknown
(a) For the first type let us assume that in Example 5, the

bearing and distance for the line from Station 3 to Station 4 was unknown but
all the other observations and data were as given in the example. Then if d

and A are the required distance and bearing

1608.587 + d cos A = 1570.23 4 cos A = -38.357
1200.136 + & sin A = 1490.36 d sin A = 290.224
cot A = -38.357 = -.132163 A = 97° 31' 44"
290.224
a = =-38.357 = 290.224 = 292.75
131024 1991379

If there is a slight discrepancy between the two values of d so obtained,

the value arising from the formula which uses the larger numbers should be

accepted.
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(b) . For/the second type, taking the same Example 5 again with

the same data and observations except that the distances Stn.2 - Stn. 3 and

Stn. 4 - Stn. 5 are unknown, then if these distances are denoted by dl and

d2 respectively

1570.23

.889711 dl + .454189 d2 + 1015.235

1490. 36

. 456524 dl + .890905 d2 + 917.124

and the two equations of this nature can always be solved for d1 and d2

except when the two lines, the distances of which are unknown are parallel

(e.g. opposite sides of a road reserve).

When the traverse is a loop traverse, the solution can be
simplified by a preliminary rotation of the axes so that either dl or d2
takes up a cardinal bearing before calculation of the difference Northings and

Eastings. The side lengths calculated in Example 1(2) could be found by this

procedure as follows:-

Transformed
Line Bearing Distance Bearing AE AN
PQ 129018'33" 7236.56 135o 43' 19" +5052.140 -5181.089
QR 16 38 01 d1 23 02 47 +.391477 dl +.920188 d1
RP 263 35 14 d2 270 00 00 —d2 0

The transformed bearings are obtained by adding 624" 46"

to all the original bearings making the line RP due West.

This gives

-5181.089 + .920188 dl =0 dl = 5630.47

d2 = 5052.140 + .391477 dl = 7256.34

which agree with the values previously obtained.
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3.6 Offset Distance Calculations

A further use of traverse computations is in the
calculation of offset distances to a given line, generally a boundary.
Consider the problem of emplacing points on line between two known points
X and Y, over which it is not possible to set up an instrument. The general
procedure is to set up within a few feet of X, observe to X and then run a
traverse as nearly parallel to the line XY as possible, until a point in the

vicinity of Y 1is reached and at this point observe to Y.

Y

The unclosed traverse is then computed on an assumed
bearing, a slight reduction in calculation being obtained if one line, say
the first long traverse line, AB, is taken on a cardinal bearing. From this
computation the total differences Northing and Easting between X and Y will
be obtained and from these the bearing XY can be calculated. This bearing
should not in general be much different from that of AB and the system should
now be swung so that XY 1lies along the cardinal direction (say West-East)
Recomputation,using the amended bearings,of the Northing differences only will,
by accumulation give the required offset distances. A 45O check need not be
made in this case if a zero offset is obtained at Y on the second

calculation.
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Example 6

Station Observed Angle Distance
X
A 268~ 15' 10" 2.53
B 180 07 40 740.25
C 179 57 40 1263.71
D 268 29 30 1499.95
Y 3.27

The actual final offset distance obtained in this worked

example (-.0l1) is due to the facts that the cosines of angles close to 90°

are changing rapidly and the bearing XY was taken to the nearest second.

Alternative Method

In cases where the main part of the traverse is

practically a straight line and the radiations to the end boundary marks are

almost at right angles to the boundary, an approximate method of calculation

can be carried out which will involve little use of tables and which will give

results almost identical with those obtained from the accurate calculation.

The example previously dealt with provides a suitable case to illustrate this

method.

74028 s 1263-71

/1499 95
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In the diagram given above, the angles have been
exaggerated to make the diagram clearer. AX and DY have been taken as
perpendicular to XY and also equal in length to the measured distances
2.53 and 3.27. BRPS and CQT are perpendiculars to XY cutting AD in P

and Q whilst CR is parallel to DA.

The method depends on the use of the following
approximations for small angles
cos A = 1 sin A = tan A = A (in radians)

Then BAD

(offset distance of D from AB produced)/distance AD

740.25 x O + 1263.71 x 460 + 1499.95 x 320 (working in seconds)
740.25 + 1263.71 + 1499.95

303 seconds = 5' 03"

Now by similar triangles

PS = 2.53 + 740.25 (3.27 - 2.53) = 2.686
3503.91
OT = 2.53 + 2003.96 (3.27 - 2.53)= 2.953
3503.91
and BP = 740.25 x .0014689 (5' 03" in radians) = 1.087
CQ = 1499.95 x .0000824 (17" in radians) = ,124
BR = 1263.71 x .0007612 (2' 37" in radians)= .962

Offset distance at B

PS + BP

3.77

Offset distance at C CQ + QT = 3.08

and a check is given by the fact that BP = QC + BR
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4. Areas

4.1 Plane Figures with straight sides.

Any plane figure with straight sides can be divided up into a series
of triangles and so its area can be computed using the various formulae

for the area of a triangle.

For chain surveys, formula 2.2.8 can be used or the formula
A = % base x height, using measured distances where possible or scaled distances

if measurements are not available.

For theodolite surveys formulae 2.2.6 and 2.2.7 may be used.

4.2 Plots with a curvilinear boundary.
3' c -
A ] ]
12, i, > . F G
k- ! | 'l* 1~y ] i
L L - i L el — AR Sy,
Pl 4, @ 4, R 4, S 4, T d 4y

If a plot has one or more of its boundaries irregular, the irreqular
boundary is usually surveyed by chainage and offset distance, and the
area of the irregular portion of the plot between the boundary and the

traverse line is then calculated by one of two methods.
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(a) Area = % d,(h.+h.) + 4 )

1 thp+hy o (hythy) + 4

(h3+h4) +.... + dn (hn+hn+

3 1

The offset distances are measured at unequal intervals as above when

the irregular boundary can be divided with sufficient accuracy, into sections
which can be regarded as straight lines. When this is not the case the offset

distances are measured at equal distances d along the chainage line and the
a .
la then b = = +2h +2h_+ .... + + 4.
formula en becomes A 5 h1 2h2 3 2hn hn+1
(b) In the other method, offset distances are again measured at egqual
intervals d along the chainage line and the assumption is made that the

irregular boundary going through the ends of three neighbouring offsets can

be represented with sufficient accuracy by a second or third order polynomial

d d

If this assumption is justifiable the area of this section will be given by

a
A_i(h1+4h2+h3)

and combining a number of such sections gives the general formula

d
A = 3 hl+4h2+2h3+4h4+2h5+.... +2h2n—l + 4h2n + h2n+1

This formula is generally accepted to be more accurate than formula (4.1)
which assumes straight line sections for the irregular boundary but it suffers
from a slight disadvantage in that it needs an odd number of offset distances.
This disadvantage can be got over however, if an even number of offsets have
been observed, by calculating the area of one of the end sections by formula

(4.1) and the remainder by formula (4.2)
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It should be noted that these formulae can also be used for the

calculations of volumes, the offset distances hl h2 etc. being replaced

by the areas A, A_ A_ etc. of parallel cross sections at distances d apart.

12 '3 -
4
= = + + ... .
The formulae then are v 5 ( Al+2A2 2A3 +2An+An+l } 4.1a
and vV = g A_+4A +éA +4A +2A_+ +2A +4A_ +A 4.2
3 17 TR TERRT R T ARG T e e 2n-1"""2n" “2n+1 -4
4,2 Areas from Co-ordinates
N

w4

C (EJ)N!)

8(E..N)

Prr-mm = =" A(EHNI) "

[¢)

Consider a plane figure ABCDE where the co-ordinates of the points A,
B, C, D & E are known. A is (El,Nl) etc. as shown on the diagram.
Drop perpendiculars AP, BQ etc. on to the N-S axis. Then
Area ABCD = Area (ABQP + BCRQ + CDSR + DETS - AETP)

=L ((NZ—Nl) (E2+El)+(N3-N2) (E3+E2)+(N4—N3) (E4+E3 )+(N5—N4) (E5+E4)

+(N, - + .
(Nl NS)(El ES) 4. 3a

This is known as the Double Longitude formula. It can be transformed by

rearrangement of the terms into other forms as follows.

Area = % {(El—Ez) (N1+N2)+(E2—E3) (N2+N3)+(E3-E4) (N3+N4)+(E4—E5) (N4+N5)+(E5—El) (N5+Nl) -
4. 3b
=1 (Nl(ES—E2)+N2 (El—E3)+N3(E2—E4)+N4(E3—E5)+N5 (E4—El)] 4.3c

%( E1 (N‘2—N5)+E2 (N3-Nl)+E3(N4—N2)+E4 (N5—N3)+E5 (Nl-N4) ] 4.3d
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For a plot bounded by n sides, equations 4.3a and 4.3c become

. n n
Area = %) (Nj4] - Ni) (Biq1 + Ei) = %) Ni(Ej-p - Ei+1)

where if (i-1)<1 add n and if (i+l)> n subtract n.
Formulae 4.3a and 4.3b are commonly used in Australia as full co-ordinates

are dgenerally not available and only the AN and AE for the various lines

have been calculated.

For a properly co-ordinated system, however, formulae 4.3c and 4.3d are the

most suitable for calculations on a hand operated calculating machine.

4.3 Numerical Examples

4.3.1 Double Latitude and Double Longitude Method.

Line AE AN DLONG DLAT ANXDLONG AEXDLAT
AB +169 -298 +169 -298 - 50362 - 50362
BC +362 -151 +700 -747 -105700 -270414
CD +383 +630 +1445 -268 +910350 -102644
DE -560 +301 +1268 +663 +381668 -371280
EA -354 -482 + 354 +482 -170628 -170628

965328 -965328

Area = % x 965328 = 482664 sqguare units ,{fl'”"”‘f

Yoo

C

The DLONG column is formed by adding to the AE on the same line, twiceriﬁé
sum of the precéding AE's, It is checked by the numerical agreement (but
with the opposite sign) of the last entry with the last entry in the AE column.
The DLAT column is similarly formed and checked from the AN column. The
individual (AN x DLONG) and (AE x DLAT) would not be calculated and entered

in practice, only the total being accumulated on the machine.
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4.3.2 Zigzag Method from Co-ordinates.

In order to keep positive values throughout, let A be given the
co-ordinates (500, 0) Then from the AN and AE given above the co-ordinates

of the whole system will be

Station E N
A (0] 500
B 169 202
C 531 51
D 914 681
E 354 - 982

It should be obvious that a change of origin will not affectvthe area
of the plot and so any constant can be added to or subtrécted’from the
N co-ordinate (or the E co-ordinate) in order to make the numbers smallexr
and easier to handle. The stations are then written down in cyclic order on
successive lines, twice, and the first two stations are then repeated a third

time as shown below.

Station N E
A 500
B 169
C 51
D 914
E 982
A O
B 202
c 531
D 681
E 354
A 500

B 169
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The Northinglco—ordinate is entered on the first line, the Easting on
the second, the Northing on the third and so on alternately. The calculation
is then carried out as an accumulative process as follows. Zero is put on
the Setting Register and multiplied by 500 giving a total zero in the Produce
Register. Without clearing the Multiplying or Produce Registers, 169 is put
on the Setting Register and the 500 at present on the Multiplying Register
is changed to 51. This gives a total of 169(51-500) in the Product Register.
914 is now put on the Setting Register and the 51 on the Multiplying Register
changed to 982, This gives a total of {169(51-500) + 914(982-51)} on the
Product Register and the process is continued until the list has been
finished when the final total will be twice the area, giving Area = % x 965328

= 482664 as before.

The calculation is checked by carrying out the same process from the
bottom up i.e. O on the Setting Register multiplied by 169, then 500 on

the Setting Register and the 169 changed to 354 etc.

It will be seen from the above that ignoring the repetition of the first
two lines, the Northing co-ordinate and the Easting co-ordinate of each
station appears once. This would not be the case if there were an even
number of stations in the plot and in this case an amended procedure has
to be adopted, by repeating the last station each time it appears in order
to ensure that each co-ordinate is listed at least once. For instance if
we required the area of the plot ABCDA, then the co-ordinates would be set

out as follows.
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Station N E
A 500
B | 169
C 51
D 914
D 681
A 0O
B 202
C 531
D 681
D 914
A 500
B 169

The area ABCDA would then be computed as

5 {169(51-500) +914 (681-51) +0 (202-681) +531 (681-200) +914 (500-681) }
Formula 4.3d for four stations
- - - - } :
L {El(N2 N )+E, (NN, ) +E (N -N) +E , (N, N ) gives
% {0(202-681) +169(51-500) + 531(681-202) + 914(500-51) }
and the formula used in practice gives the same result since

Nl-—N3 = 500-51 = (500-681) + (681-51) = (Nl—N4) + (N4—N3)
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5. Road Intersection Calculations

These are the calculations required for the setting out of a road
through one or more lots and the subsequent calculations of the areas

to be resumed. They involve only elementary trigonometry.

Examgle.

One side of a road reserve ABC through a lot has been set out and the
distances and bearings of the lines AB & BC have been measured as d1 & 61

and d2 & 92 respectively. The bearingé of the lot boundaries are ¢l & ¢2
as shown on the diagram, all bearings being those in the directions of the

arrows. The width of the road at A is Wy and that of the road at C is Qz,
these widths remaining constant, i.e. FE is parallel to AB and ED is parallel

to BC.

The problem is to set out the points F, E & D and to calculate the area

resumed.

Produce FE to cut BC in R. AP & BQ are perpendicular to FR and BU, RS & CT

are perpendicular to ED. Then

w,cosec (91—¢l) FP

N
3
1l
b
il

wlcot(61—¢l)

I

S~
g
il
s
N
1
@
N
]
v}
I

w_,cosec (¢2-62) TD

5 w2cot(¢2—92)

N
@
o
i
B
n
i
@
\]
!
D
'_IV
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ER

w_cosec (52-91) QR

2 w, cot (62—61)

1

ES

w2cot (92—61) US = BR = wléosec (62—61)

If the setting out of E is to be done from B, then

/ABE = tan—l(wl/EQ) = tan ! W,

D -0 ) _
wzcosec( 5 91) wlcot(92 91)

and distance BE = wlcosec /BABE or can be computed by Pythagoras

FE = FP + PQ + QR - ER
= 6 - 6 -6 - 6 -6
wlcot( 1 ¢l) + dl+ wlcot( 5 l) w2cosec( 5 1)
ED = DT + TU + ES-US

-0
w cot(¢2 2) + 4

5 + w2cot(92—el) —wlcosec(ez—el)

2

Area to be resumed = Yi'(AB+FE) + ¥ (BC+ED)
2 Vi

+w2cot(¢2—92)+w2cot(62—91)—

2

w W,
= "1 8 6 -6 ) g -6 2
5 2dl+w1cot( l_¢l)+wlcot( 5 1) w2cosec( 5 l)+2 24

-9
wlcosec(e2 1)
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6. Curve Setting Out Computations.

6.1 The curves used in setting out road or railway alignments are
of two main types:
(i) curves of constant radius, i.e. circles, and straight
sections can be regarded as circles of infinite radius
(ii) curves of gradually changing radius - generally referred

to as transition curves.

Any particular alignment can be made up of a combination of
different curves and the curvature of any particular section may be
in the same or opposite direction to that of the neighbouring sections,
the only restraints being that two neighbouring sections must have a
common tangent at their junction point, and that a transition curve must

have the same radius at its ends as the curve to which it is joined.

6.2 Circular Curves T%/

Circular curves are commonly defined by the radius R, though
in British practice it has been defined by the degree D which is the
angle (in degrees) subtended at the centre by a chord 100 ft. long.
This method of defining a curve is now becoming obsolete but, if used,

. . \ D
the radius can be found from the relationship R = 50/sin /2



32

In the diagram two straight sections XA and BY are to be connected
by a circular curve of radius R which will be tangential to the straight
sections at A & B respectively. XA & YB produced meet at T, and I is the

angle at T between the forward directions of the two straights.
It follows that /AOT = /BOT = I/2

Tangent ILengths AT = BT = R tan I/2

TO = R sec I/2

Arc length AB = R.I (in radian measure)
and problems involving combinations of c¢ircular curves can be dealt with
using the above relationships, by a number of techniques of which perhaps

the most commonly employed is the "Traverse with Missing Data" method dealt

with in Section 3.5

ExamEle

1%

~
S

B Y
Two straight sections XA on a bearing of 67°15' and BY on a

|
]
[
|
|
{
l
(
l ~
1
[4

bearing of 960 are to be connected by a circular curve AE of radius 600
followed by a straight ED of length 200 and a reverse circular curve

DC of radius 1000, C being an unknown point on YB (produced if necessary).
The points A & B have been connected by survey and the bearing of AB

is 116°14' and the distance 2156.6

To find the bearing of the straight section ED, the length CB and

the arc lengths AE and DC
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Let the bearing of ED be A. Then the bearings of OlE and

Do, will be (2-90°)

Consider the traverse AOlEDO2CB and let the distance of CB = d
Then . 600(sin 157°15'+sin (A-90°))+200 sin A + 1000 sin(A-90) + d
. @]
= 2156.6 sin 116 14'

600 (cos 157°15'+cos (A=90) )+ 200 cos A + 1000 cos (A-90) = 1000

= 2156.6 cos 116°14°

Equation (2) reduces to

200 cosA + 1600 sinA = -953.28 + 1000 + 553.32 = 600.04

This type of equation can be solved in a number of ways but all of them
introduce ambiguities which can generally be resolved by looking at

the diagram.

2

Iet K = /2002 + 1600° and cos B = 200/K, sin B = 1600/K. Then

on dividing equation (3) by K

cos (A-B) = .37212891 = cos 68°09'11"

+ -
¥ 68%09'11n + cos T(.124035)

I
1+
I

Therefore A 68°09'11" + B

1+

68°09'11" + 82°52'30"

The ambiguity in this case arises because cos X = cos(-X) but
inspection of the diagram shows that the positive sign must be accepted

and A = 151°%1' 41",

Note that if we had put sin B = 200/K, an ambiguity would still arise

owing to the fact that sin X = sin (180-X)
Equation (1) now gives

BC = d = 1934.47 - 232.03 + 1600 cos A - 200 sin A = 205.8

1l

Arc length AE 600 x 1.462203 = 877.3

Arc length DC 1000 x 1.065141= 1065.1

(1)

(2)

(3)



34

The chainages along the curve can then be determined and also
the positions of the tangent intersection points Il & 12 if these

are required.

6.3 Setting out Circular Curves

T . L

Setting out can be done in several ways
(i) by distances along the tangent at any point and offset
distances from it. This involves calculation of the

distances x and y in the diagram.

(1ii) by chord distances from some point and deflection angles from
the tangent at that point to the chords. For this method the

distance ¢ and the deflection angle D have to be calculated

(iii) when two points on the curve have been established by either of
the methods given above, intermediary points if required can be

fixed by traverse along the chord and offset distances from it.

The process can always be restarted from any point which has already
been fixed on the curve if the offset distances become too long for practical
purposes or if the line of sight determined by the deflection angle is

obscured.
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If 2 is the length of the arc TlT2 2 = 2RD
X = Rsin2D y = R(1 - cos2D) ¢ = 2RsinD
or x _ sin2D =7 - 22? + gg% _ 6.1
L 2D 3 15
Yy _ 1 - cos2D _ D - EP + 22? 6.2
2 2D - 3 45 :
. 2 4
¢ _simd _ , _D° D _
L D 6 120 6.3

Tables of these functions, a specimen of which is shown overleaf,
can easily be prepared and these may be of use when only hand operated
calculating machines are available but if electronic machines with
trigonometric functions are being used it is easier to work from the
original formulae and of course the results will not be subject to the
slight errors of linear interpolation. It should be noted that the
column x/% is not necessary as the factors in this column are the
same as those in the c¢/% column for twice the angle and interpolation
from this column would give a better result because of the smaller
differences. In both cases the Deflection Angle D in radian measure has
first to be calculated from the known radius R of the curve and the

distance £, along the curve, at which it is intended to emplace a mark.
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Numerical Example

Two straights, making a deflection angle of 75° intersect at I
(chainage 2853.24)& are to be joined by a circular curve of radius 800
to be set out at intervals of 50 units of chainage.

Tangent distance = 800 tan 37°30' = 613.86

Chainage of first tangent point Tl = 2853.24 - 613.86 = 2239.38

Arc length = 800 x 1.30900 = 1047.20

Chainage of second tangent point T2 = 3286.58

Setting out data

'3 D b4 3% c Deflection Angle
10.62 . 0066375 10.62 .07 10.62 o° 22' 49"
60.62 .0378875 60.56 2.30 60.61 2° 10" 315"

Y

The same formulae or tables can be used if it is required to survey
in additional points by traverse along a chord and offset from it. Suppose
it is required to emplace 3 extra marks X, Y & Z at equal intervals along the
curve between A & B, the two points which have been fixed by the survey data

given above.
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Then U the mid point of AB can be easily fixed

/AOB = 2(.0378875 - .0066375) = .0625 radians

offset distance of A (or B) from the tangent at Y

Offset distance YU

800 (1 - cos .03125) = .39

Offset distance ZV 800 (1 - cos .03125) - 800 (1 - cos .015625) .29

I
1]

and distance UV 800 sin .015625 = 12.50

6.4 Transition Curves

Transition curves in road and rail alignments are placed between
straights and circular curves or between circular curves of different radii in
order to cushion the effect of what would otherwise be a sudden change of
direction. The most suitable transition curve is the clothoid which has a
constant rate of change of curvature with respect to arc. A number of other
mathematical curves have been used in the past as transition curves, mainly
due to the complicated formulae for computation of the clothoid but in these
days of electronic computation there is little justification for the use of

such curves.



38

In the diagram B is any point on a -clothoid AX joining a straight
to a circular curve XY of radius R. The tangent at B makes an angle ¢

with the tangent at A and x, y, £, ¢ & D have the same meanings as in

2 .
Section 6.3 The equation of the clothoid is given by 53% = K (a constant)
2
. L .
and so by integration g%'= K¢ and ¢ = %—K since both are zero when

£ =0

At X, the junction with the circular curve, if L and dare the arc
lengths and tangential angle at that point

2 2
1 _do _ _lx L _ L
R - a - KE ¢ = 2 T2 ¢

Now x

li
Q
0]
0
©-
o
=
Il
—
Q
O
n
———
N
=
Pe)
Qs
b

- | l_i(&f.>2+ 1 (&3)4 ] "
2\2LR 24 \2LR
_Q(l_£<&i)2+l<&2_)4_ ]
B 10 \2LR 216 \2LR
5 4
- _ 9 ¢ - 6.4
% (l o T 216

Similarly it can be shown that

3 5
= & fﬁ - + o “e J

=
]

3 42 1320 6.3
2 4
2 2 1 - 2% 29 }
_ _ 2¢ 2¢ _ 6.6
c x" +y L ( 45 2835
L 6 216 (6 V> 7776 (4> 6.7
D= tan “(y/x) = 3 -5 (5') _467775<§J
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6.5 Setting out transition curves A

k.
7

Consider the case of two straights TlA & sz meeting at A with
an intersection angle I, which are to be connected by a circular curve
of radius R and two identical transition curves of length L. The
circular curve will have to be offset from the straights as shown in the
diagram and if OM, the perpendicular from the centre of the circle on to
TlA cuts the circular curve (produced) at J, then MJ, which will be
denoted by s, is known as the shift. The distance TlM will be denoted by k
The data will be the radius R, the length L of the transition.curve,

both of which will be determined from practical mechanical considerations

and the observed intersection angle I between the two straights.

If the tangential angle at the point K where the transition curve joins
the circular curve is & then & = L/2R and X & Y the distances along the
tangent TlA and perpendicular to it are obtained by substituting L and ¢

in equations 6.4 and 6.5
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R+ s =R cosd + Y

X - R sind

th of the circular curve KL = R(I - 20) = RT - L

length of the combined curves TlKLT2 = RI + L

se formulae and those of Section 6.4 all the setting out

details can be computed. 1In this case since the formulae are more

complicated the use of prepared tables is of great advantage and a

specimen of these tables is given.

Numerical Example

The data will be the same as that of the example in Section 6.3

except that e

by a transiti

ach of the straights will be joined to the circular curve

on curve of length 300.

Tangential angle at junction of transition and circular curves

Entering

S

k

Distance

Chainage

Length o

Chainage

%%%b = ,1875 radians
the tables with this value for D gives
300 x .015605 = 4.68
300 x .499414 = 149.82

k + (R + s) tan 37030' = 149.82 + 804.68 x .767327

=]
>
il

767.27

i

of tangent point T1 = 2853.24 - 767.27 = 2085.97

f combined curve RT + L = 800 x 1.308997 + 300

il

1347.20

of tangent point T2 = 3433.17
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Setting out data.

41

X v c Deflection Angle
14.03 .008769  14.03 .04 14.03  o%10'03"
64.03 .040019 64.02 .85 64.03  0°45'51"
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7. Intersections and Resectiqns ; Satellite Stations.

7.1 Fixation by Angular Observations

7.1(a)Intersections - C

A & B are two established trig stations whose co-ordinates (EA’NA)

and (EB,NB) and also the distance and bearing AB are known from the

trig data sheets.

7.1(a)l. To fix a third point C a minimum of two observations is required
"and in this case the two observations are the angles at A & B between the
other known station and the new station C, and to overcome the ambiguity of
on which side of the line AB, C lies ,the measured angles will be taken as
the clockwise angle from the known station to the new station as shown in

the diagram.

Then angle C = 180-B-(360-~A) = A-B~180
and Ec = EA + b sin (¢ +a)

in B . .
=E_ + EL&————-( sin ¢ cos A + cos ¢ sin A)
A sin C

_ sin B
A sin(A-B)

{(EB—EA) cos A + (N -N,) sin al

E, - {(EB—EA) sin Bcos A+ (NB—NA) sin B sin A }

sin A cos B-cos A sin B

Gy L2 g‘? Frondd 8o LT s
= EAcot B - EBcot A - (NB - NA)
cot B - cot A 7.1.1
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and by a similar derivation

N =N - + -
c Acot B NB cot A (EB EA) 7.1.2

cot B - Cot A

These formulae give an alternative method of calculating the co-ordinates
of an intersected point to that given in Example 1 of Section 3.2 and the
data of that example can be used for a numerical illustration of the present
method

Data P (37928.3, 42398.7) Q (43527.5, 37814.3)

Angle P = 314° 16' 41" Angle 0 = 67° 19' 28"

EPcotQ 15846.71 EP 37928.3 cot Q9 .417807 NP 42398.7 NPcotQ 17714.47

EQcotP -42444.14 EQ 43527.5 cot P -.975111 NQ 37814.3 N_cotP-36873.14

- Q
58290.85 EQ-EP5599.2 1.392918 NQ-NP—4584.4 54587.61
+ 4584.40 +5599.20
62875.25 Ec 45139.2 NC 43209.2 60186.81

This method of calculation however does not contain any built in checks.

7. 1(a)2. Semigraphic Method of dealing with redundant data

It is good survey practice however to take more than the minimum number of
observations in order to provide a check on the final results and it will be
assumed that these additional observations have taken the form of more

angular observations at established trig stations.
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In this example angular observations have been taken at four
established trig stations A,’B; C & D to fix a new station E. These
four rays can be combined ih pairs to give 6 separate values for 'the
co-ordinates of E, if calculated by the method given above, and the
problem is to decide on the best values for the co-ordinates, without
going through the full calculations. This is done by a combinetion of

calculation and graphical techniques and is best illustrated by an example.

Data Station E N Bearing to E
a 2589.399 11717.848 72° 26' 58"
B 9307.040 8423.634  338° 09' 25"
c 14697.340 17233.067  241° 20' 16"
D 4949.507 14603.003  119° 25' 06"

The bearing from A to E given above is obtained by adding the observed
angle /DAE to the known bearing AD and by subtracting the observed angle
/EAB from the known bearing AB and taking the mean. Similarly for the

other bearings.

The procedure is as follows
(a) by graphical means or by accepting the observations from two of the
stations and computing, approximate co-ordinates are obtained for E. It

will be assumed that this has been done and that the trial co-ordinates for

E are
(7379.000, 13233.000)

(b) The positions of the incoming rays in the vicinity of this trial point
are then investigated by computing the cuts on either the N-S line or the E-W
line through the trial point. In order to deal with the smaller of the two
cuts and so to be able to draw the subsequent diagram at the largest scale, it
is normal, if the ray is mainly N-S to work from the difference Northings to a
cut on the E-W line and if the ray is mainly E-W to work from the difference

Eastings to a cut on the N-S line. At the same time approximate distances
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from the trigs to the new station are found. The calculations could be

set out as follows.

Station A Station B Station C Station D
Bearing to E 72° 26" 58" 338° 09' 25" 241° 20' 16" 119° 25' o6"
Trial Pt N/E 7379.000 13233.000 7379.000 7379.000
Trig N/E 2589. 399 8423.634 14697. 340 4949.507
AN/AE + 4789.601  + 4809.366 - 7318.340  + 2429.493
tan/cot Bg + .316269 - .400843 + .546627 - .563893
AE/AN + 1514.802 - 1927.801 - 4000.402 - 1369.974
Trig E/N 11717.848 9307.040 17233.067 14603.003
cut E/N 13232.650 7379.239 13232.665 13233.029
cut S .350 E .239 s .335 N .029
Distance 5020 5180 8340 2790

(c) These cuts on the axes through the trial point are then plotted on

as large a scalé as is convenient and rays are drawn fh;ough them on the
appropriate bearings. The final point is then determined by inspection of
the error figure with the aim of making the corrections to the observations
as small as’possible. The observations in this problem are angular‘ones and
since in general there will be no indication that one bearing is more in
error than another, the angular corrections will be treated as as nearly
equal as possible which means that the distances of the selected point from
the individual rays should be proportional to the distance from the trial
point to the trigs. For any group of 3 rays a unigue point can be found by
this method but if there are more than 3 rays it is most unlikely that the
condition can be satisfied for all rays. In this case most weight should
be given to the rays from the 3 nearest trigs as the same offset distance

means a larger angular correction to the observations at a near trig than to
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those at more distant ones. The diagram and selected point for this

particular example are shown below

0

D \
. Trial
Potrt

The selected point has co-ordinate (+.355 - .200) relative to the trial point

and hence the co-ordinates of Station E will be taken as (7379.355, 13232.800)

(d) This method of determining the co-ordinates of an intersected point

has the advantage that a large error in any observation will immediately be
seen in the diagram. Before rejecting any observations however checks should
be placed on that part of the computation to ensure that the plotted ray has

not been put in the wrong position owing to a computing error.

7.1(b) Resections

Resection consists of the determining of the co-ordinates of a new

station from the observation of angles at it, between a number of
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previously established stations.

If the angle is observed at a new station P between two old trig
stations A & B all that we know from this observation is that P lies
somewhere on the arc BAXB of a circle centre O such that /RAOB = twice
the measured angle. If however the angle between Stations B & C is also measured
then P must lie on the arc BYC of another circle and where these two arcs
cut will be the position of Station P. For resections thérefore a minimum
of three rays must be observed as agéinst t&b fér intersections. This is
because there is one other unknown to be determined, the orienting factor to

convert the observed directions into bearings.

The trig stations to be observed from P should be carefully selected as
if A, B, C & P all lie on the same circle there would only be one circle and
not two, whilst if they were nearly on the same circle, the cut would be a

poor one and the fixation of P would be relatively inaccurate.

7.1(b).1 Calculation of a 3 ray Resection.

There are a large number of methods of calculating a three ray resection
but probably the simplest to understand and the one with the most built in

checks is the Collins Point Resection Method which will now be described.

A, B & C are the three 0ld trig stations whose co-ordinates are known and
theodolite observations at P have produced an angle o between A & B and B

between B & C
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A circle through A, B & P is drawn and CP is joined to cut this circle

again at H. Then by ordinary geometry /AHB =a & / HAB = B
The steps in the calculation are as follows.

1. From the co-ordinates (EANA) of A & (EBNB) of B calculate the

. N .
bearing ¢AB and distance dAB of AB

2. From this information and the known angles of AABH, calculate

the bearings AH & BH and also by use of the sin rule, their

distances.
3. Calculate the co-ordinates of H from A and from B as a check
4. Calculate the bearing of the line HPC from the co-ordinates of

H&C -
5. Using the bearing PC and the observed angles find the bearings PA

and PB and hence the angles of the triangle PAB

6. Calculate the distances PA & PB

7. Calculate the co-ordinates of P from A and from B as a check

Numerical Example

Station Eastings Northings Theodolite Reading at P
A 13761.69 23056.19 313° 07' 30"
B 15022.76 21116.83 5o 52' 53"
C 17099.81 20388.26 64O 59' 30"

B

>
1. sStation B 15022.76 21116.83 Bg AB = 146° 57' 58"
Station A 13761.69 23056.19 Distance AB = 2313.313

+1261.07 -1939.36
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2 Al 59 06 37 ’ .858157 | 2493.736 | 35 146° 57° 58" 2a 326° 57° sav
68 08 00 | .928053 | 2696.848 59 06 37 68 08 00
H | 52 45 23 ' .796069 | 2313.313 | aH 206° 04' 35" By 258° 49' sg"
180 00 00
3 aH 206° 04' 35" 2696.848 BH 258° 49' 58"  2493.736
A 13761.690  23056.190 B 15022.760 21116.830
- 1185.451  -2422.333 -2446.520 - 482.970
H 12576.239  20633.857 H 12576.240 20633. 860
4. C 17099.810 20388.260
Bearing PC 93° 06' 28" C - E +4523.570 - 245.600
5. Bearing PB 33O 59' 51"
Bearing PA 341° 14' 28"
6. Al 14° 16" 30" .246576 716.530
B |112° s58' 07" .920719 2675.536
p | 52° 45" 23" 796069 | 2313.313
180 00 00
7. ap 161° 14' 28" 2675.536 Bp 213° 59' 51" 716.530
A 13761.690 23056.190 B 15022.760 21116.830
860.416 -2533.412 -~ 400.653 - 594.048
P 14622.106 20522.778 P 14622.107 20522.782
Accept . P (14622.11  20522.78)

It should be noted that the only part of this calculation which is not

checked is stage 4 and this could easily be done by a 45O check.

If the

stage 4 calculation is incorrect the bearings at P and its final co-ordinates

will be wrong.

There are a number<§% other methods of calculating a three ray resection

but details of these will not be given as this type of computation is becoming

obsolete since it contains no check on observational errors.
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7.1(b) 2. Semigraphic treatment of Resections with redundant data.

In order to provide a check on the accuracy of the field observations
it is normal to observe directions to at least 4 established trig stations.
The semigraphic treatment of these observations is very similar in parts to
that of intersection observations but there are important differences between

the two cases.

(i) Co-ordinates of a trial point are first found either by computing

using the directions to three known stations, or more simply by a tracing

paper resection.

(ii) Using these trial co-ordinates the angular observations are oriented

by computing a bearing from the trial point to the most distant trig station

and using the observations to compute the other bearings. The trial co-ordinates,
if obtained by a tracing paper resection, may be in error by a considerakble
amount and the bearings obtained from them will be inaccurate. The rays to

the trigs will not now all pass through the same point for two reasons

(a) the assumed bearings are inaccurate and

(b) there are observational errors in the recorded directions.

If the trial point is significantly inaccurate the first source of error

will swamp the second and the error due to bad orientation must be removed first.
(iii) Cuts are computed and rays blotted in the vicinity of the trial point

as in the semigraphic intersection example but the diagram is then treated
slightly differently. The directions of the distant trigs must be shown on

the diagram and rays are then drawn parallel to the plotted rays at distances
from them which are proportional to the distance to the appropriate trig station.
These parallel rays must all lie on the same side (either right or left) of the
original ray when looking towards the distant trigs. For every pair of stations
a line is drawn joining the intersection of the two rays to the intersection of

their two parallel rays, giving a series of points through which pass three of
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these last group of lines. These points willvbe the positions obtained
by computing from the obsef&aﬁisgs to any group of 3 stations and if the
mean position is acqepted it can be assumed that the orientation error
has been eliminated;

(iv) Using this“second trial point the procédﬁre is repeated as for a
semigraphic inte;section. If the original trial point had been obtained
by computation the semigraphic intersection method could have been used

straight away.

Numerical Example

Observed Station Eastings Ndrthinqs Theodolite Reading at E
A 12589.399  31717.848 10° 39' 10"
B : 16140.580  28012.682 839 08' 11"
c 19.962 6511.864 209° 18' 12"
D 10060.660  29232.227 315° 09' 05"

A moderately poor trial point E 11795 N 27489 has purposely been

- chosen for this calculation.

The most distant station is obviously C and the bearing to C calculated
from its co-ordinates and those of the trial point is 209° 18' 24". an

adjustment of + 12" has therefore to be made to all the theodolite readings.

The calculation of the cuts is then made using these approximate bearings.

Station A Station B Station C Station D

Approx.Bg from E 10 39 22 83 08 23 209 18 24 315 09 17
Trial Pt. N/E 27489.000 11795.000 27489.000 27489.000
Trig. N/E 31717.848 16140.580 6511.864 29232.227
AN/AE -4228.848 -4345.,580 20977.136 -1743.227
tan/cot Bg .188159 .120310 .561327 -.994614



AE/AN
Trig E/N
Cut E/N
Cut

Approx.Dist.

Station A

-795.696

12589.399

11793.703

w 1.297

4300

52

Station B

Station C

-522.817 11775.033

28012.682 19.962

27489. 865 11794.995

N . .865 W .005
4380 24060

Station D

+1733.838

10060..660

11794.498
W .502

2460
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Co-ordinates relative to the Trial Point of the 4 points through which

3 rays pass are

E - 1.100 N  + .660
- .975 + .640
- .915 + .565
- .995 + .545
Mean - .996 + .603

For second trial point take 11794.0 27489.6

With this second trial point, the orientation error should have been

eliminated and only the observational errors remain to be dealt with.

New bearing to Station C 209°18'14" Bearing adjustment - 10"

,Station‘A Station B Station C Station D
Bearing from E 10 39 12 83 08 13 209 ’18 14 315 09 07
Trial Pt N/E 27489.600 11794.000 27489.600 27489.600
Trig N/E 31717.848 16140.580 6511.864 29232,227
AN/AE -4228,248 -4346.580 20977.736 -1742.627
Tan/cot Bg .188109 .120359 .561263 -.994710
AE/AN - 795.372 - 523.150 11774.027 1733.409
Trig E/N 12589.399 28012.682 19.962 10060.660
Cut E/N 11794.027 27489.532 11793.989 11794.069
Cut E .027 S .068 W .011 E .069
Approx.Dist. 4300 v4380 24060 2460




@
Final Pant

Acceptéd Co-ordinates for Reéected Point -E 11794.055 27489.581

Computed Bearings to the Trig Stations and corrections

e}

Station A 10~ 39' 10" -2"
Station B 83 08 15 +2"
Station C 209 18 14 ’ 0
Station D 315 09 09 +2"

7.2 Fixation by Observation of Distances

7.2.1 In this case there is no difference between resection and intersection
as it is immaterial from which end of the line the distance is measured and to

fix a third point from two known stations, two distance observations are needed

Given The co-ordinates (EA’NA) R (EB, NB) of the known points A and B,
the corresponding distance ¢ and bearing ¢ of the line AR and the two

measured distances a & b
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Then EC = E_ + b sin (¢AB - 3)

=E_+ b (sind cos A - cos} sin A)

A
=f +2 (E_, - E ) cos A~ (N, - N ) sin A
a’ ¢ B~ “a © g~ a’ Si%
7.2.1a
. 2 2 2
and the angle A can be obtained from cos A =b + ¢ - a
2bc
This can be checked by computing from B which gives
a .
= - = - + - .2,
EC EB . ((EB EA) cos B (NB NA) sin B] 7.2.1b

If tables or electronic calculators giving trig functions are not

available these formulae can be amended by using the relationships

cos A = 20032 %-— 1 =2s(s-a) -1

bc

sin A 2cos %-sin A _ 2V s(s-a) (s~b) (s-c)

2 bc

Making these substitutions in the two previous formulae and taking the mean

gives a nearly symmetrical formula

3]
Il
N

2.2, 2 2.2, 2
c2 (EA(a ~b"+c7) + EB (—a " +b"+c7) 4 (NB—NA s (s-c) (s-b) (s-c) 7.2.1c

These formulae assume that the angle at A from B to C is anticlockwise. If

the reverse is the case, the sign of the (NB—NA) coefficient must be changed to +

The corresponding formulae for the northing co-ordinate are

b
= = - + - 1 7.2.2
Ne=Na* 3 ((NB NA) cos A (EB EA) sin A ?
a .
=Ny - < ((NB— N,) cos B - (E-E,) sin B] 7.2.2b
1 2.2, 2 2.2, 2
= b+ + -a“+b 4+ + - - - - 7.2.2
V2 (NA (a®-b"+c%) + Ny (-a"+b"+c?) 4 (E;-E,) v s(s-a) (s-b) (s-c) 2.2¢

with the same proviso for the sign of the (EB-EA) term.
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It should be noted that in the last of the three fprmulae the
coefficients of the three terms are numerically the same for both Ec and
Nc and that the coefficient of the second te;m = (1 - the coefficiént of the
first term). This latter fact can be used either for checking purposes or
to effect a slight reduction of the computational work by putting the

formulae in the form

2 2 2
(b"+c -a )(EB—EA) - 4 (NB—NA) /é(sfa)(s—b)(s—c)

202

_ 2, 22 _ o — ————
Ny =N, + (b"+c"-a") (N-N,) + 4 (Eg-E,) v s(s-a) (s-b) (s=c)

2¢%

Numerical Example

Given E, = 6788.67 N, = 8328.27 a = 5191.05 s-a = 4522.735
E, = 1240.22 N, = 2628.80 b = 6282.32 s-b = 3431.465
E,- B, = 5548.45 N -N, = 5699.47 c = 7954.20 s-c = 1759.585
2s = 19427.57 Sum = 9713.785
s = 9713.785
b2+c2—a2
o = .5989464 (p) 2V/s(s-a) (s=b) (s-c) = .5148452  (q)
CQ
EA = 1240.220 - NA = 2628.800
p(E,-E,) = 3323.224 p(N,-N,) = 3413.677
~q (N -N,) = -2934.345 q(E,-E,) = 2856.593
E,= 1629.10 No = 8899.07
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7.2.2 Semi-Graphic Methods

(a) With only the minimum number of distance observations

The procedure is as follows

(i) On as large a scale as possible plot the positions of A & B
and find an approximate position of C by the intersection of arcs equal
to the lengths a & b

(ii) With these approximate co-ordinates for C calculate the distances
CA & CB and find the adjustments required to give the observed distances.,

(iii)On any convenient scale plot these adjustments in the directions
CA & CB, turn off lines at right angles and where these lines intersect will
give a second trial point.

(iv) Read off the AE & AN between the trial points and repeat the procedure
with the new co-ordinates if necessary.

Using the same data as in the previous example the diagrams and

calculations will be as follows
qoo0 + + e

oB

A\

gooo

Tooo [

Gooo |

s000 |-

4ooo I

1000 2000 3000 kaoo Soo0 6000 7004
3soo ' t ) ' N
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Point Easting Northing Length Point Easting Northing Length
A 1240.22 2628.80 6282, 32 B 6788.67 8328.27 5191.05
c' 1620.00 8890.00 c* 1620.00 8890.00
Al +379.78 +6261.20 6272.71 A -5168.67 +561.73 5199.10
+ 9,10 + 9.07 + 9.61 + 9.10 + 9.07 - 8.05
+388.88 +6270.27 6282.318 -5159.57 +570.80‘ 5191.048
+ .002 + .002

In this case further plotting and calculation is unnecessary

C 1629.10 8899.07 1629.10 8899.07

(b) With redundant Observations

When there are redundant observations, two lines giving a good
intersection angle are selected and trial co-ordinates are computed
from these two observations by either of the methods previously depailed.
Using these trial co—brdinates shifts are computed for each of the other
- rays and tangents for each measured length are then plotted on the
diagram and the final point is selected by inspection of the error figure.

Numerical Example

Suppose that in the previous example in addition to the lines CA & CB,

distances were also measured from C to known stations D and E

14752.70 Distance 6064. 34

12778.96

44.25
Easting 6442.71

Station D Easting Northing

Station E Northing Distance 6182.65

Take as trial co-ordinates 1629.10 8899.07 as obtained from A & B

Station A Station B Station D Station E
Trig E/N | 1240.22 2628.80 6788.67 8328.27 44.25 14752,7016442.71 12778.96
T.P. E/N| 1629.10 8899.07 1629.10 8899.07|1629.10 8899.07|1629.10 8899.07
A -388.88 -6270.27 5159.57 —570.80-1584.85, 5853.63}4813.61 3879.89
Dist & 6282, 32 .00 5191.05 .00} 6064.38 - .04]16182.59 + .06
Shift :
A/s - .062 .998 | + .994 - ,110|- .26 + 965+ .779 + .628
" The last line gives the direction of the trig from the trial point.
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Final Position

-.03 -.01

Final Co-ordinates of C

1629.07 8899.06

In selecting the final position it should be remembered that the
variances of electromagnetic distance measurements are partly proportional

to the distances.
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7.3 Satellite Stations

There are occasions when observations are required at a trig
station which is marked by a beacon suppor;ed by a large qairn of stones
and it is not convenient to dismantle the cairn in order to set up the
theodolite over.the trig station. 4The procedure in this case is to set
up the theodolite a short distance from tﬁe trig station and observe to
the required points and to the neighbouring trig in addition. As this
will be a very close sight it need only be recprded to the nearest
minute of arc, but the distance must also be measured whilst the distances
to the other points observed must be ascertainable approximately by scaling

from a map or other means.

D Q‘:§

7
7y

In the diagram T is the trig station, S the satellite station,
A, B, C & D the other four points to which observations are required.
The distance TS is d and si (i = 1,4) are the approximate distances from

T to A, B, C&D

The required correction to the observed direction from S to A to give

the direction T to A
Bearing TA - Bearing SA

1]

Bearing AT - Bearing AS = / SAT
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The required correction is then given by the sine formula

sin / SAT = % sin / AST
1 .

It should be noted that this formula automatically giveé the correct
sign to the correction. The clockwise angle at the satellite station S,
from the trig station T to the distant stations is, for A & B, in the
first two quadrants for which the sine is positive whilst for C & D it
is in the last two quadrants for which the sine is negative. Inspection
of the diagram demonstrates that the corrections to the directions must

have the corresponding sign.

Numerical Example

Observations taken at a satellite station near Gap Trig

Station Theodolite Distance Clockwise Sin Correction

Observed Reading Angle from - to Reading
Trig

Gap 36 34 00,0 2.68

Bluff 102 04 11.5 18690 .0 65 30 11.5 +.909984 +26.9"

Corona 162 15 08.5 29120 .0 125 41 08.5 +.812229 +15.4"

Witeroc 249 00 47.2 8820 .0 212 26 47.2 -.536511 -33.6"

F.G.6 265 43 56.7 7560 .0 229 09 56.7 =-.756603 -55.3"

-
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8. Transformations

8.1 In this course only linear transformations will be considered
although later, in photogrammetry you will deal with transformations

which are non-linear.

Linear transformations are those in which the connection befwéen
the o0ld co-ordinate system and the new one is expressed in a linear

form,'e.g.

El

b}
Iy
=
+
[\
2z
+
o

or E'

N'

i
[+
t
+
1+
z
+
o

21 22 2 N 431 %2 P2

where (E', N') are the co-ordinates in the new system corresponding to

co-ordinates (E, N) in the o0ld system.

The general form of the linear transformation is called an affine
transformation but there is a special form, in which the scale change is

the same in all directions, called a similarity transformation, which will

be dealt with first.

8.2 Similarity Transformation.

A similarity transformation is made up of three separate operations
(a) a rotation of the axes
(b) a uniform scale change in all directions, and

(c) a change of origin
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In the diagram OlE and OlN are the old co-ordinate axes.

02E' and 02N' the new co-ordinate axes and OlE" and OlN" axes parallel

to the new ones but through the old origin.
Consider a point D at a distance d from the origin and such that the
bearing of Oii?in the old system is 6 Dealing first with the rotation of

the axes through a clockwise angle w, the new bearing of O

1€will be (6-~w)

and the new co-ordinates will be

E' = 4 sin (6-w) d(sin 6 cos w - cos O sin w) E cosw - N sin w

N' d cos (6-w) d(cos 6cos w + sin 6 sin w) = E sin w + N cos w

Next applying a uniform change of scale by a factor A in all

directions gives E' A(E cos w - N sin w)

N' AME sin w + N cos w)
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and finally the change of origin from Ol to O2 gives

E'= X(E cos w - N sin w) + E'o

N' = A(E sin w + N cos w) + N'o
where (E'o, N'o) are the co-ordinates, in the new system, of the o0ld origin.

These relationships between the two sets of co-ordinates can be

expressed in a slightly shorter form as

- - +
E akE bN cl
N'=bE+aN+c2
. 2 2 -1
where a = Acos w and b = Asin w; A = a + Db and w = tan ~ (b/a)

For each point for which the co-ordinates in both systems are known, -
there will thus be two equations and since there are four constants

a, b, cl and c2 to be found, there must be two common points for which

the co-ordinates in both systems are known before the transformation can

be effected. 1In practice the constants 1 and c, are eliminated by dealing

with differences in co-ordinates, rather than with the co-ordinates

themselves.
E' - [] = - - 1 -
y " B'y=aE, - E) - b, NXA)
] - ] = - + -
N v N X b(EY EX) a(NY NX)

Before these formulae can be applied the constants a and b must

be calculated from the co-ordinates in the two systems of the two common
points P and Q.
Iet the bearing and distance PQ in the 01d system be o and d and in

the new system be o' and 4'
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Then A = g- and w= a =-.o'"

d , . . .
a= Mlcosw=— (cos a cos a' + sino sin o')= dd'(cosa cos a'+ sina sin a')

d 32
= N - L - ] + —_ 1 - 1
(AQ, No) (N 9 N'D) (EQ, EP)(E 0 E'S)
d2
and similarly b = X sin w
= - ' - [] - ] - ] -
(EQ EP) (N 0 N P) (E 0 E P) (NQ— NP)
d2
Numerical Example
01d System Co-ordinates New System Co-ordinates
Data Station E N E' Nt
A 21.13 22.25 17.21 64.71
B 31.02 77.71 18.11 8.34
C 13.06 36.93
D 14.81 52.31

To find the co-ordinates in the new system of C & D and the scale change

gg;culation d2 = (55.46)2 + (9.89)2 = 3173.6237
: 2
a = {(55.46) (-56.37) + (9.89) (.90)} /4" = -.982278
b = {-(.90) (55.46) + (9.89)(—56.37)}/d2 = -.191394
2 2
Scale change = A = a~ + b = 1.000751
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014 System Station New System
E, N, .
i i i E' N'
i i
E.- E N. - N .- . = N,
3 i 3 a(E E.) a(N Nl)
—b(Nj - N.) b(E, - E.)
E N, j E'. N'
3 3 J J 3
21.13 22.25 A 17.21 64.71
i S
-8.07 +14.68 4+7.927 -14.420
+2.810 + 1.545
13.06 36.93 C 27.947 51.835
+1.75 +15.38 - 1.719 -15.107
+ 2.944 - .335
14.81 52.31 D 29.172 36.393
+16.21 +25.40 -15.923 -24.950
+ 4.861 - 3.102
31.02 77.71 B 18.110 8.341

The calculation is carried out by working with differences of

co-ordinates, starting from one common point and finishing on the other

as a check on the whole of the calculation.

One extra place of decimals

is carried throughout the calculation and the new co-ordinates are

subsequently rounded off to conform to the data.

8.3

Affine Transformation

CcO-0r

In this general case the formulae connecting the two sets of

dinates

+ +
a_E b.N Cl

aE + b N + C2
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c, & c, and hence the co-ordinates

involve six constants a_, a2, bl' b2, 1 5

1
in both systems for three common points must be known. If these common

points are P, Q and R then dealing with differences of co-ordinates

E'Q - E'P = al(EQ - EP) + bl(NQ - NP)

(E'R -E')=a (E,6 -E) + bl(Nﬁ - N))

Q 1R Q Q
giving
a1 = (E'Q - E'P)(NR - NQ) - (E'R - E'Q)(NQAT NP)
(EQ - EP )(NR - NQ) - (ER - EQ )(NQ - NP)
bl = (E'R - E'Q)(EQ - EP) - (E'Q - E'P)(ER - EQ)
(EQ - EP) (NR - NQ) - (ER - EQ )(NQ - NP)
and similarly from
N'Q - N'P = a2(EQ - EP) + b2(NQ - NP)
N'R - N'Q = a2(ER - EQ) + bZ(NR - NQ)
we get a, = (N'Q - N'P)(NR - NQ) - (N'R - N'Q)(NQ - NP)
(EQ - EP )(NR - NQ) - (ER - EQ)(NQ - NP)
b2 = (N'R - Ngf(EQ - EP) - (N'Q - N'P)(ER - EQ)
(EQ - EP )(NR - NQ) - (ER - EQ )(NQ - NP)

Note that for all four constants the denominator is the same.



68

8.4 Other Uses of Transformations.

Transformations can also be used to derive formulae in other
branches of mathematics. Consider a spherical triangle ABC on a sphere
of unit radius (see Section 9 for definitions of the sides and angles of

a spherical triangle)

A A
A
4 A
i | _
Q 0 B
A A
‘Aﬁﬂllll ééiij Q B
? R 2 =
P
R\,
o™ N

)
Q

PV N
v N
/
\\l

P is the foot of the perpendicular from A on to the BOC plane, PQ is
perpendicular to OB and PR is perpendicular to OC. Then consider co-ordinate
axes through O the centre of the sphere such that 0x lies along OB and the
x0y plane coincides with the BOC plane. The co-ordinates of A will then be
(0Q, QP, PA) or (cos ¢, sin ¢ cos B, sin c sin B) since by definition

/AOB = c and /AQP = B.

Now rotate these axes through an angle a about the 0Z axis so that

the new axis Ox' lies along OC.

Relative to this system the co-ordinates of A will be (OR, RP, PA)

or (cos b, -sin b cos C, sin b sin C) and the two systems will be connected



69

by the transformation

cos b cos a sin a 0 cos ¢
-sin b cos C = -sin a cos a 0] X sin ¢ cos B
sin b sin C 0] 0 1 sin ¢ sin B
giving
cos b = cos a cos ¢ + sin a sin ¢ cos B
- sin b cos C = - sin a cos ¢ + cos a sin ¢ cos B

Il

sin b sin C sin ¢ sin B

The first of these formulae is a variant of formula 9.1, the

second is a variant of 9.5 whilst the last is part of 9.3
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T T

Spherical Trigonometry

9.1 1Introduction

Spherical Trigonometry is a very important branch of Mathematics
in survey work. Its most important application is in astronohical
surveying but it can also be used to solve a number of three dimensional
problems. In geodesy it is used to derive-the formulae for the
calculation of differences of Latitude and Longitude for short and medium
length geodetic lines whilst in photogrammetry,it can be used to find the
magnitude of the errors involved in assuming that the angle between twb
lines on the ground is equal to the angle between the corresponding lines

on the photograph.

Numerical Examples of some of the uses of spherical trigonometry will

be given at the end of this section.
9.2 Definitions

Great Circle is a circle formed by the intersection of the sphere and

any plane passing through the centre of the sphere. It will of course

have the same centre and same radius as the sphere itself.

Small Circle is a circle formed by the intersection of the sphere

and a plane which does not pass through the centre of the sphere. Its

centre will be the foot of the perpendicular from the centre of the sphere

to the plane and if this distance is p and the radius of the sphere is r,
2 2

the radius of the small circle will be r -p

Side of a Spherical Triangle is an arc of a Great Circle. Its length

will be quoted in circular measure by the angle it subtends at the centre

of the sphere. The circular measure will be used in all subsequent formulae.
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Angle of a Spherical Triangle is the angle between the tangents

to the two great circles .at the point of intersection. It is also
the angle between the planes of the great circles of which the sides are

arcs.

Spherical Excess denoted by E, is the amount by which the sum of the

three angles of a spherical triangle exceedsl80O

Pole. The poles of a great circle are the ends of the diameter of the

sphere which is at right angles to the plane of the gfeat circle.

Polar Triangle. The Polar Triangle A'B'C' of a spherical triangle ABC

is formed by the great circles connecting A', B' & C' which are the poles

of sides BC, CA & AB respectively.

Right Angled Triangle. A Spherical Triangle with at least one of its

angles a right angle. (Note that two or all three angles can be right

angles)

9.3 Formulae

Figure 9.1

Al
There is only one basic formula in spherical trigonometry and all

the other formulae can be derived from it by mathematical operations.
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Let ABC be a spherical triangle on a sphere centre O and let the
radii OB, OC (produced) cut the tangent plang'to the sphere at A in

B' & C' respectively.
Then by definition
Spherical angle /BAC = Plane angle /B'AC' = A

/B'OC' = a /C'OA = b /RAOB' = ¢
Iet the sphere have unit radius

tan c OB'

Then AB' = = sec ¢
AC' = tan b OC' = sec b
- [T vAry 2 2 . 2 ’ :
giving from the AAB'C (B'C')” = tan ¢ + tan'b - 2tanc tanb cosA
1~ ll2 2 2 ‘
and from the AOB'C (B'C')” = sec’c + sec’™b ~ 2secc secb cosa

Equating these two values and remembering that-secz/e = 1 + tan2 6

seéb secc cosa = 1 + tanb tanc cosA

or cosa = cosb cosc + sinb sinc cosA 9.1

This is the basic formula of spherical trigonometry and there are

of course, two other exactly similar formulae for cosb and cosc.

This proof, or demonstration rather, of the formula suffers from
the defect that in order that OB and OC should cut the tangent plane at A,
the sides b and ¢ of the spherical triangle ﬁust both be less than 90°.
The size of the side a is immaterial. However this is not an overriding
difficulty as if two (or three) sides of the triangle are >90° we then
consider the triangle formed by the other part of.the lune - A'BC in the

diagram given above. Then A''= A

b' = A'C =7m-D) c' =A'B= T~ C and a is common.
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If b and ¢ are both > g-b' & ¢'" will both be < %

and hence from equation (8.1)

cos a cos b' cos c¢' + sin b' sin ¢' cos A

cos (m-b) cos (m-c) + sin (m-b) sin {(m-c) cos A

cos b cos ¢ + sin b sin ¢ cos A

Hence the equation is generally true irrespective of the size of

the sides of the triangle.

From equation

. 2 . .
sin A =1 - coszA = 31n2b 51n2c—(cos a - cos bcosc)2
sin“a sin2a sinza sin2b sin2c
2 2 2
= (l-cos”b) (1-cos"c) - (cos a - cos b cos ¢)

sin‘ a sin‘ b sin? c

= 1 - coszb—coszc + coszb coszc -(cosza +coszb coszc—2cos acosb
cosc)

. 2 . 2 , 2
sin a sin b sin ¢

2 2 2
l - cos a - cosb - cos ¢+ 2cos a cosb cos''c

. 2 . 2 , 2
sin a sin b sin c
and since this last expression is symmetrical in a, b & c the same result

would have been obtained if we had started from sin2B or from sin"C

. 2 ., 2
sin b sin ¢
sin A = sin B = sin C (9.3)
sin a sin b sin ¢
o
Again from equation (§.1)
. . 2 2
sin b cos A = cos a-cos b cos ¢ = cos a(sin"c + cos ¢) - cos b cos ¢
sin c sin ¢

cos a sin ¢ - cos ¢ (cos b - cos a cos c)
sin ¢

cos a sin ¢ - cos ¢ sin a cos B (9.5)
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These three formulae can all be proved by another construction as

follows:

Figure 9.2

Cut out a sector of circle OBCAB'O after having marked off arc lengths
BC, CA & AB' corresponding to the three sides a, b, c of a spherical
triangle. Drop perpendiculars BL & B'N on OC & OA respectively and
continue them to meet in M. Draw NQ perpendicular to OC and MP
perpendicular to NQ

Now crease the cardboard along OA & OC and bend the two end
sectors up until B and B' meet. Fasten in this position and join B to
M by a peice of thread. We now have a representation of a spherical

triangle and the planes joining it to the centre of the sphere.

B

Figure 9.3
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Now originally line BNM was perpendicular to OA and so after
creasing and bending about OA, the plane BNM will be perpendicular to OA
and /BNM = angle between planes BOA & CQA = A

Similarly plane BIM will be perpendicular to OC and /BIM = C
Since planes BNM and BLM are perpendicular to OA and OC respectively,
BM, the line in which these two planes cut, will be perpendicular to plane

OAC and hence As BMN and BML are right angled at M

Take the radius of the circle as unity and then in terms of the
sides and angles of the spherical triangle
(a} in Figure 9.2 obtain expressions for B'N, ON, BL, OL, NQ, 0OQ and

finally QL = OL - 0OQ

(b) in Figure 9.3 obtain expressions for IM and NM. Also obtain expressions

for BM from both ABLM and ABNM - this will give one of the formulae

(c) in Figure 9.2 from ANMP (note /PNM = b) obtain expressions for NP and PM

(d) Equate ML PQ = NQ - NP to give another formula

(e) Equate PM

oL to give a third formula

Answers: (a) B'N = sin c ON = cos ¢ BL = sin a OL = cos a
NQ = cos c sin b 0Q = cos c cos b OL = cos a - cos bcos c¢
(b) IM = gsin a cos C NM = sin ¢ Cos A

BM = sin ¢ sin A = sin a sin C giving formula (9.3)
(c) NP = sin ¢ cos A cos b PM = sin ¢ cos A sin b
(d) sina cos C = cos ¢ sin b - sin ¢ cos b cos A - Formula (9.5)

(e) sin ¢ sin b cos A = cos a - ¢cos b cos ¢ Formula (9.1)
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Half Angle Formulae

cos a —cos bcos ¢
1 - sin b sin c¢ = /cos b cos ¢ + sin b sinc-cos a

sin i 1 - cos A
2 Y 2 ' 2 ) 2 sin b sin ¢
| .. b-c+ _ +c-
//éos(b—c)—cos a =//é sin ( ; a) sin ( E—gwgﬁ

2 sin b sin c 2 sin b sin ¢

Il
]

//Ein(s—b)sin(s—c) where 2s = a + b + ¢ (9.7)
sin b sin c

_ ﬁ + cos A =//§in s sin(s-a) ‘ (9.8)
2 : sin b sin c¢
;//sin(s-b)sin(s—c)
sin s sin(s-a)

Also tan (B + C)_ tan =+ tan & /30 (s'a)(/smrs":) +/Sln(s—b) ]

o

Similarly cos

tan

N

5 2 2_ sin s sin (s=b) sin (s-c)
1 - tanE-tan < 1l - §iE4E:EL
2 2 sin S

//Sin s sin(s-a) [ sin(s-c) + sin(s—b)]

sin(s-b)sin(s-c) sin s - sin(s-a)

il

A 2 sin(—zig;q) cos (_b_—_c_)

= cot 2
2
2 cos (2S_a)sin 2
2 2
= cos (9520 cot é
2 : (9.11)
cos (Qifq
2
Similarl tan (B - C) = sin (=5
imilarly an = 2 cot A (9.12)
2 b+c 2

sin (—5—0
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Napiers Rules for Formulae for Right Angled Triangles

For Right Angled Triangles, Napier devised an easy memory aid

ABC is a spherical triangle right angled at C

(a) Divide a circle iﬁto 5 segments and in‘theée segments enter in
cyclic order round the circle and triangle, the 5 elements of the
triangle excluding the right angle C. The sides bordering on the
right angle are enfered in their normal forms and the other 3

elements by their complements.

(b) Any segment of the circle can be called the "Middle Part" The two
segments adjacent to it are the "Adjacent Parts" and the remaining

two are called the "Opposite Parts"

(c) Sine (Middle Part) = Product of Tangents of Adjacent Parts (9.15)

Product of Cosines of Opposite Parts (9.16)
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9.4 Relation between sides and angles of Polar & Primitive Triangles
8/

’

C
Let A' B' & C' be the poles of the sides BC, CA & AB. Then A'B 'C'

is the Polar triangle corresponding to the Primitive triangle ABC
Let the great circle arc BC, produced if necessary, cut the arcs

A'B' and A'C' at M and N respectively

It

(a) Then since A' is the pole of BC arc A'B m/2

since C' is the pole of AB arc C'B m/2

B is the pole of the great circle arc A'C' and similarly it can be

shown that C and A are the poles of A'B' and B'C' respectively.

Hence if A'B'C' is the Polar triangle of ABC, ABC is also the polar

triangle of A'B'C'

{(b) As B is the pole of A'C' arc BN = 1 /2

Since C is the pole of A'B' arc CM = 1 /2

Also since A' is the pole of BC arc MN = A'

But MN = BN + CM - BC 1i.e. A' = 7-a

Similarly B' = 7-b (9.17)
Cc' = n1-c
A = q-a'
B = 71-b'
c = m=c'
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When these relationships are applied to formulae involving the

elements of the spherical triangle, additional formulae will be obtained.

Consider for example formula (9.8)

A /sin s sin(s-a) = / sin &Yy gin (BECSHR
coSs 5— = 2 2

sin b sin ¢ sin b sin c

Substituting from (8.17) gives

o o . 3m-A'-B'-C'_ ., T+A'-B'-C'
cos ( m=a') = sin (————5—————-)Sln (_—~——7;———%

sin (T-B') sin (T-C')

! , // -cos- S cos (S-A")
sin B' sin C'

or sin where 2S = A'+B'+(C'

N
1

This formula will refer to any triangle and so the dashes can be

dropped and the formula written

sin — = //;cos S cos (S-A) where 2S5 = A + B + C
sin B sin C

Formulae involving the determination of an angle by calculation of
its sine should be avoided as far as possible since there will be an
ambiguity as both A and (180-A) are solutions of sin A = x

There will be no ambiguity if sin A/2 1is calculated.

A summary of the formulae most used in survey work follows.
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Spherical Trigonometrical Formulae

Name Form Formulae No.of
Variants
Cosine Primitive cosa = cosb cosc + sinb sinc cosA 3 9.1
Polar cosA = -cosB cosC + sinB sinC cosa 3 9.2
Sine Primitive sinA_ sin B _ sin C
& Polar sina sin b sin ¢ 1 9.3
Four Part Primitive sinB cotA = cota sinc - cosc cosB 6 9.4
& Polar
Five Part Primitive sinb cosA = cosa sinc - sina cosc cosB 6 9.5
Polar sinB cosa = cosA sinC + sinA cosC cosb 6 9.6
. . A i -b)si -
Half Primitive sin — = //51n(s. )s ?(S c) 3 9.7
2 sinb sinc
Angle
A sins sin(s-a) 3 9.8
cos — = - - .
2 sinb sinc
a cos (S-B) cos (S-C) 3 9.9
Polar cos — = - -
2 sinB sinC
.. a //;cosS cos (S-3) 3 9.10
sin — = . -
2 sinB sinC
. e b-c) A
Napier's Primitive tan (B+C) _ cos (—5— cot > 3 9.11
analogies 2 ore
cos (—)
2
. b- A
tan (B-C) = sin (—EEO cot >
2 3 9.12
sin (PiEg
2
B-C
+ — a
Polar tan (252) = ©0° ( 2 ) tan 5
B+C 3 9.13
cos (—)
2
. B- a
{b-c) _ sin (—59) tan >
tan —=' = 3 9.14
i B+C
sin (—)
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9.5 Spherical Excess

VY

\
m:

. 2
The surface area of a sphere is 47R  and the surface area of a lune
enclosed between two planes through a common diameter and making an angle 8

g . 4TrR2 = 26R2

w ith each other will by symmetry be
Consider a spherical triangle ABC and let the great circle arcs
formed by the sides be continued right round the sphere to meet again

in A{, B' and C'

Il

. 2
Then the area of lune ABA'CA is 2AR hatched

2
the area of lune BAB'CB is 2BR hatched

I

This last lune can by symmetry be taken as AABC + area CA'B'C and

as such has been hatched\§§§§\

From the diagram it will be seen that the triangle ABC has been

2
the area of lune CBC'AC is 2CR

included three times and hence
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Sum of areas of the three lunes = Area of hemisphere + 2 x area ABC

i.e. 2R2(A + B + C) = 27rR2 + 2AABC

ERZ (2.18)

]

Area of AABC = R?(A + B + C -m)

where E = A + B+ C - 7 is the Spherical Excess

The spherical excess is very important in geodesy when a geodetic
triangulation network has to be adjusted as the observed angles of a
triangle have to be adjusted to sum to (180O + E) and not to 1800. Its
value is determined by calculating the area of the triangle as if it were

. . . 2 . . .
a plane triangle and dividing this by R to obtain E in radian measure.

9.6 Legendre's Theorem

If the sides of a spherical triangle are small compared with the
radius of the sphere, then each angle of the spherical triangle exceeds
by (1/3rd spherical excess) the corresponding angles of a plane triangle,

the sides of which are of the same length as those of the spherical triangle.

Consider a spherical triangle ABC with side lengths a, b, ¢ in radian
measure and a corresponding plane AA'B'C' with sides o, B &7ywhere a = ar etc.

_ cosa - cosb cosc
sinb sinc

=)
5
D
3
Q
o]
n
h=
|

2 4 2 4 2 4
r -0

2r 24r 2r 24r 2y 24r

ol
l
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2 2 2 4 4 -2 2
B+ y - ¢ + o - B - y - BBY
2r2 24r ignoring terms of
2 2 . 1
By (1 - B+ Y _ order 4 in (7
2 2
r 6r

1 B2 + Y2 _ a2 + a4 _ 64 _ Y4 N 6B2Y2 14'82 + Y2 + O(L)
28y 12r2 6r2 r
82 + y2 - az - 2B2Y2 + 2Y2u2 + 2a262 - u4 - 84 ‘Y4 + 0O (L)
4
28y 24 Byr? x

cos A' - sinzA' By
6r

if A= A" + 6 where 8 is small

cos A = cos (A' + 8) = cos A' - 6sin A'

in this case 8 = B8ysin A' = AA'B'C' = AABC = E

A

2
6r2 3r2 3r 3

= A' + %- and similarly for B and C (9.19)



9.7 Numerical Examples

9.7.1 Navigational Example

A plane flies along a great circle route between Moscow
o 1 o 1 o ) o )
(55745'N, 37 43'E) and New York (40°43 N, 73759'W). cCalculate
(a) the starting bearings at each end of the route
(b)  the most northerly latitude reached

and (c) the length of the route assuming the earth's radius is 6378 Km

In the diagram N is the North Pole, M Moscow and Y New York. X is
the most northerly point on the route i.e. the nearest point to N and hence

the great circle NX will be at right angles to YXM at X.
NM = 90° - 55%45¢  wy = 90° - 40°43' swwy = 37°43' + 739590 = 111%40

Consider the two right angled triangles NMX and NYX

A NMX
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ANMX ' . ANYX
(i)
sin (/¥NX - 21°42') = tan NX tan 55°45' cos /YNX = tan NX tan 40°43"

Dividing these two expressions gives

tan 55°45"

. o : o 1.468697
[INX = | ' e et .
tan JYNX tan 400437 Sin 21 42 cos 21742 86064 3697471 /.929133
= 2.234622
o " O "
/MNX = 45748'31 /YNX = 65 °53'29
o o
tan NX = cos 45 48'31" = cos 65 53'29"
1.468697 ‘ ’ . 860642
= .474609 = .474608
NX = 25°23'22"
The most northerly latitude reached on the route is N64°36 38"
(ii)

, o o . o O " .
sin 55745' = cot 45748'31" cot /NMX sin 40 43' = cot 65 53'29" cot /YNX
tan /NMX = ;972165 = 1.176116 tan /YNX = .447502 = ,686017

7‘.826590_ .652319
X o . : o "
/NMX = 49°37'37" /NYX = 34727'03
Initial Bearing at Moscow 310022'23" at New York 34027'03“
(1i11)
sin MX = tan NX cot /NMX sin XY = tan NX cot /NYX
= .474609 x .850256 = .474609 x 1.457687
= .403539 ‘ = .691832
MX = 23%7'59" XY = 43%6' 31"

m

3 _ o '| 1] __I_T__ . = o t " ———
Distance MX = 6378 x (23747'59") x 180 Distance XY 6378 x (43 46'31") x 150

4872.94 Km

2649.32 Km

Total Distance = 7522.26 Km
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Since these three calculations are interrelated the complete calculation

can be checked by computing the total distance from the formula

cos YM = sin 55°45' sin 40°43' + cos 55°45' cos 40°43' cos 111°42°

.539200 - .157725 = 381475

™ = 67°34' 30"
Distance YM = 6378 x (67°34'30") x 120 = 7522.25 km
9.7.2 Astronomical Example. - Sun Azimuth

It will be assumed that the student has no knowledge of astronomical
surveying and the problem is dealt with purely as an exercise in the use

of Spherical Trigonometry.

At a survey station( the latitude of which is approximately
S32033'20", observatioﬂé é?eifakeﬁ éf the aﬁélé between a fixed reference
station (R.0O) and the sun and the times of the observations are also noted.
The position of the\sun at any tihe is determined by its Declination and
Right Ascension which ¢9rrespond to Latitude and Longitude in Geographical
Co-ordinates. The zero péints for Right Ascension and Longitude are however
not the same and so for the purposes of the calculation, Right Ascension is
replaced by the Hour Angle which is the angle, expressed in units of time,
measured westward from the meridian through the observing sfation to the
sun's position. The Declination is tabulated in the Star Almanac¢ for Land
Surveyors and the Hour Anéie can be obtained from the gquantity E which is
also tabulated. In this problem the Declination is N 0047'54", the Hour
Angle 20 hrs.1l2 m 56.0s and the clockwise angle from the R.O to the sun

is 50°14'26"



In the diagram OS is the Observing Station on the earth, Z the
Zenith, i.e. the point vertically above it on the celestial sphere, N

the North Pole and S the sun's position on the same sphere.

The latitude of Z will be the same as that of the observing station
O il o "
and hence NZ = 90 - (-32733'20 ) = 122733'20

NS = 90 - ( 0%47' 54") = g89°1210g"

The hour angle converted into angular measure (multiply by 15 since
24 hours = 3600) is 303014'00" but the angle of a spherical triangle cannot
exceed 180° and hence we must deal with the angle (360 - 303014'00") i.e.
56046'. This is the angle at N and it should be noted that it places the
sun to the east of the observing station and so the azimuth of the sun i.e.

the angle at Z must lie between O and 180°.

The calculation is made using the Four Parts formula
sin N cot Z = cot NS sin NZ - cos NZ cos N

or tan Z = sin 56046'
cot 89712'06"sin 122°33'20"-cos 122733'20"cos 56°46"

. 836446
-013934 x .842870 + .538117 x .548050

= 2836446 = 2.727599

. 306660

69951157

i
N
Il

Azimuth of the sun

6905ll57ll — 50014'26" - 19037l3l"

Azimuth of the R.O.



It should be noted that Z is the internal angle of the spherical
triangle and that if the sun is to the west of the observing station,

the external angle is required for the Azimuth. The following table

enables the Azimuth to be placed in the correct guadrant.

Hour Angle <12 hrs. Hour Angle >12 hrs

Tan Z + ve 4th guadrant 1st guadrant
Tan Z - ve 3rd quadrant 2nd quadrant
9.7.3 Three Dimensional Problem

This type of problem is dealt with by taking the centre of the sphere
as the point to which the relevant observations relate and the plane of

the equator as the horizontal plane through this point.

Problem: To determine the dip and strike of an area of ground

(assumed plane), two cross sections OA and OB were run out from

O on bearings of 10° and 75° respectively. OA and OB were found to

rise at 1 in 7.11 and 1 in 21.2 respectively. Find the bearing of

the line of greatest slope and the magnitude of the slope.
N

In the diagram ON is the North Direction at O, 2 is the Zenith and

OX is the line of greatest slope in the plane OA'B'

o

AA' = tan 1(1/7.11)  BB' = tan 1(1/21.2)  /A'ZB' = /AOB = 75-10 = 65




A5y

This problem is analagous to section (b) of the Navigational

problem and can be treated in the same way.

Consider the two right angled triangles A'ZX and B'ZX

A'ZX B'ZX
cos /A'ZX = tan 2ZX/7.11 sin (25-/A'2ZX = tan ZX/21.2

Dividing the second equation by the first gives

sin 25° - cos 25° tan /A'ZX = 7.11/21.2 = .335377
tan /A'ZX = sin 25° - .335377 = .422618 - .335377 = .096260
cos 25° .906308
/A'zX = 5°29'54" Bearing OX = 4°30'06" - 7. A'2%
o] . 0]
ZX = 7.11 cos 5°29'54" = 21.2 sin 19°30'06"
= 7.077 = 7.077

. the magnitude of the greatest slope is 1 in 7.08 and it lies on a

bearing of 4030'

9.7.4 Geodetic Problem

From two known stations A & B,a third station C to the east of them
has been fixed by observation of all the directions and the following

information is available.



Spheroidal Distance AB = 28866.149 metres

Mean radius of curvature in the area = 6,369,750 metres

Observed angles a 59° 34 l6.14"

B 52° 13' 22.06"

c 68° 12' 25.04"

180° 00' 03.24"

Calculate the Spherical Excess and the triangular misclosure.

2 . .
¢ sin A sin B

Area of plane triangle = ;
P g sin C

N[

sin A sin B

- radians
sin C

. 1 C
S = — _
pherical Excess 3 (R

103132.4" { 28866.149 ) ° sin 59°34'16.14" sin 52°13'22.06"
6369750 sin 68°12'25.04"

1.55"

Triangular misclosure = 180°00'03.24" - 180°00'01.55"

= 1,69"
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Appendix - Least Square Adjustment in other Survey Disciplines

Least square adjustment can be appiied in any situation in
which more observations have been made.than are necessary to determine
the required unknowns and in photogrammetry its main use is in the
derivation of ground co-ordinates from machine co-ordinates by a
similarity transformation, but it can also be used in minor computations

such as parallax bar heighting.

Both these operations come under the'general heading of curve
fitting in which it is desired to represent a series of observations
by a particular mathematical formula, the unknowns being the constants
in the formula. As an example consider parallax bar heighting using

the formula

Ground Height/- Parallax Bar Height)= aj + a,x + a,y + a,xy + a,x é?

where X & y are the photo co-ordinates and information is available

for 7 control points

Control Point Photo Co-~ordinates | Parallax Bar Ht | Ground Ht

X Y
mm mm

A 10 85 237.1 237.1

B 71 83 198.6 180.7

C 42 7 174.7 200.7

D 65 -80 250.0 271.8

E 12 -77 246 .4 230.0

F 32 41 240.0 265.0

G 50 -17 270.0 292.3

It is obvious that, using these figures, the coefficients of

ay and a, in the observation equations will be very much larger than

those of a, and this effect will be squared in the normal equations
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resulting in a very unbalanced normal equation matrix. For this
reason it is desirable to use different units in order to make all
coefficients of approximately the same order and in this case we

will work in decimetre units. The observation equations will then be

aO al a2 a3 » a4 Constant
.10 .85 .0850 .0100 6]
1 71 .83 .5893 .5041 +17.9
1 .42 .07 .0294 .1764 -26.0
1 .65 -.80 -.5200 .4225 -21.8
1 .12 -.77 -.0924 .0144 +16.4
1 .32 .41 .1312 .1024 -25.0
1 .50 -.17 -.0850 . 2500 -22.3

giving the normal equations

ao al a2 a3 a4 Constant
7.000 2.8200 .4200 .1375 1.4798 -60.8000
2.8200 | 1.4798 .1375 .0896 .8671 -29.5630
.4200 .1375 2.8462 1.1188 .0896 +11.3900
.1375 .0896 1.1188 .6587 .0743 +18.2202
1.4798 .8671 .0896 .0743 .5370 -12.6723

The solution of these equations is
a, = -37.2821 a, = 297.0451 a, = 19.1957 a, = -53.5520 a, = -349.0953

and these constants are applicable if the photo co-ordinates are

measured in decimetres. For working in millimetres, the ay and

a., values should be multiplied by lO_2 and the a3 and a, values should

2 4

be multiplied by 10_4.



94

Least Square Adjustment is not often used in astronomical
work but a simple example would be the determination of the clock
correction at any moment in a timed se;ies of astronomical
observations. This is a further example of curve fitting, the
curve in this case being a straight liﬁe and tte fcrrmula to be
uved reing Ci == CO + R(Ti—TO)
where Ci is the clock correction at time Ti' Co is the clock
correction at some datum time TO and R is the amount by which the
clock correction changes per unit of time. R and Co are the

unknown quantities which we have to find.
The observation equations will then be
v, = C_ + R(T.-T ) -~ C. i=1+¢ton
i o i o i

and these give the normal equations

n n
nCo + Rl:Ti—TO] - [Cl] = 0
1 1

n 5 n -1n
CO i:Ti—To ] + R [(Ti—TO) j] - [Ci (Tj —TO)J = 0
1 1 ’ 1

For hand calculations the arithmetic can be simplified by

choosing To as the mean value of the observed Ti and if this is
n
done then {Ti—To} = 0 and the normal equations reduce to

1
n

nC - [C.] = 0
o) i 1
5 n n
R[(T.—T ) ] - [C‘(T.-—T )] = 0
i 0o 1 i i o 1

giving CO and R directly.
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As a numerical example consider the following set of

observations
Eastern Standard Time Observed Clock Time Clock Correction

h m s h m s secs

17 50  28.0 17 49  45.0 +43.0
18 59 31.0 18 58 59.7 +31.3
19 14 08.5 19 13 39.7 +28.8
19 16 08.5 19 15 40.1 +28.4
19 47 31.6 19 47 08.3 +23.3
19 56 30.4 19 56 08.6 +21.8

The calculation is carried out as follows

T3 5 Tt | G T (Ti'To)2
17.829 -| +43.0 | -1.339 | =57.5770 | 1.7929
18.967 131.3 | - .201 | - 6.2913 .0404
19.228 +28.8 | + .060 1.7280 .0036
19.261 +28.4 | + .093 2.6412 .0086
19.786 +23.3 | + .e18 14.3994 .3819
19.936 +21.8 | + .768 16.7424 .5898

115.007 176.6 ~28.3573 | 2.8172

To = 115.007 + 6 = 19.168
Co = 176.6 + 6 = 29.43 seconds
R = -28.3573 + 2.8172 = -10.066 second per clock hour

N.B. The simplification of the arithmetic by transferring the origin
to the centres of gravity of the systems of known values can be used
in all cases of curxve fitting bﬁt its value is most apparent when the
.curve is linear as in the above example or in similarity and affine

transformations.
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