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The Adjustment of Observations by the Method of Least Squares

1. Introduction

In any practical problem, if more observations have been taken
than are necessary for the calculation of the required quantities,
then from these observations different sets of the minimum number needed
could be selected and, for each set, different values of the final
parameters would be obtained. A method has to be devised of making
adjustments to all observations in order to obtain the best possible

estimates of the quantities we are trying to find.
B

To take a very simple example, consider a level traverse run
from a point A of known height to fix the heights of two other points
B & C and let the height difference observations be as shown in the

diagram.

Only two out of these three observed differences in height are
necessary for the fixation of the heights of B & C and the inclusion of
the third observation results in two alternative heights for the two points.
et vy v, & vy be the corrections to be made to the difference in heights
for the lines AB, BC & CA respgctively then since on returning to A we
must have zero difference in height

(26.52 + Vl) + (-37.23 + v2) + (10.89 + V3) =0

or vl + v, + Vs + .18 =0

This single equation in three unknowns has an infinite number
of solutions and our choice of the method of solution can be quite
arbitrary. We could make equal corrections of -.06 to each of the
observed differences in height, or we could assume that the error in

each height difference was proportional to the length of the line



traversed (4, 3 and 2 km respectively) which would give corrections of
-.08, -.06 and -.04. It should be stressed here that whatever

corrections we make, the probability that those corrections cancel out
the true errors is very small, even for a simple figure of this nature

and with more complicated networks the probability will be minute.

In applying the Principle of least Squares, we do not aspire to
obtain the correct values, which are unfortunately always unknown, of the
required quantities but only to obtain answers which it is hoped will be,
on average, closer to the true values than those obtained by other methods.
It also has the advantage that a unique answer is obtained from the
calculations, unlike the semi-graphic method where the finally accepted

result is dependent on the judgement of the computer.

2. The Principle of Least Squares is based on the assumption that if

a number of measurements of a quantity are taken, the most probable value
of that quantity is the mean of the individual measurements. Suppose n

individual measurements Xyr Ry KgeeenoX of a quantity have been made

3

then if the mean value is denoted by x
nx = u
- ["i] 2.1
Let vi be the difference between any particular xi and the mean x
2 n - 2 ]n 2 — -2 n
vy (xi- X ) = | % - 2xxi + x
1 1 1
n - n -
[xz:l "ZX[X.} + nx2
i i
1 1

[ 2 'J“ -2 2.2
Xi - nx
1

#

Now let W, be the difference between X, and some number X + X

n n n n
[wi] [(x.— X)z:l =[xi] -2X[xi] +nx2
1 t 1 1 1

n
= l: v?:| + 0% - 2nXx + nX° from 2.1 & 2.2
Th
n
— 2.3
=[v?i| +n(x—X)2
T

— 2 2" 2"
As (x - X)~ is always positive [wi] > I:vi:l i.e. the sum of
1 1
the squares of the residuals from the mean is less than the sum of the

squares of the residuals from any other value.
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Conversely if we are told that [wi 1“ , the sum of the squares of
the residuals from some value X is a minimu; for any set of observations,
then by equation 2.3 we can say that (% - X) = 0 i.e. X is the mean value.
Hence assuming that the mean is the best value and applying the principle
of Least Squares constitute one and the same operation. It will later be
demonstrated that all the Method of Least Squares does is to obtain, by a
simpler method, the means of the corrections which would have been applied

to the individual observations, if all possible sets of minimum data were

separately considered.

If in the series of measurements, the measurement X, does not occur

once only but occurs ny times then the formulae given above become

%[n] - [nixi] 2.1a

and the number n, can be called the weight of the measurement x,

In the above it has been assumed that the weight is a whole
number but this is not a necessary condition as if all the weights
were multiplied by some arbitrary constant C equation 2.la would

be come

x = Cn.x.} = [n.x.] as before
i1 i7i
Cn, n
[ ] [r:]
and hence, for the purpose of obtaining the mean, it is the relative

values of the weights and not their absolute values that matter.

If n measurements x_, x

1 Ry eeeeX of a quantity have been

2" 73

made the standard deviation of a single observation is given by

2 21" 2 1"
a = Vi or nivi
1 1
n [n. ]n 2.4
th

and if 00 is the standard deviation of the mean of these observations
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Both the weights and the standard deviations are measures of
the reliability of the measurements, good cbservations corresponding
to high weights or small standard deviations and v.v. It is thus evident
that the weight must be inversely proportional to the standard deviation or
to some power of it. If an observation, of standard deviation oy has a
weight ny. where ny is a whole number, we can regard this observation as

the mean of n, standard observations (of some standard deviation o) and

2
hence ¢” = nlcl

Similarly for another observation of weight n, and standard

. 2 _ 2
deviation g 5 g = n202
n = 2
)
n 2
2 9

or the weights of the two observations are inversely proportional to

the squares of their standard deviations.

Thus from 2.2a, the function which we want to minimise is

ci, the square of the standard deviation, is called the variance.

3. Extension to more than one variable.

This is most easily explained by consideration of the Normal

Curve of Error 2

ov 27w 3.1
where y is the probability of the occurence of an error of magnitude

lying between v and (v + dv) from the mean.

If measurements have been taken of n independent variables, the

probability of a given set of errors occurring simultaneously will be

}j; p; where p; are the individual probabilities.

R
v,
o
-
probability of the set occurring = 1

1 e
n
2nZ o,
i=1
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To obtain the set with the highest probability of occurring,

this expression must be made a maximum and since the only factors that
n
we can change are the v's, this means that vi must be made a
T2
Zoi
1

minimum, the same condition as was obtained for a single variable.

4. Methods of carrying out a ILeast Square Adjustment

For a least square adjustment to be carried out, it must be
possible to derive a set of linear equations connecting the parameters,
which it is required to find, with the observed quantities (after
adjustment). In some cases this is a straightforward process as,for
instance,when a level net has been observed,but planimetric co-ordinates
are not linear functions of the observations of directions and distances
from which they are obtained and in this case the relationship has to be
linearised by calculating approximate values of the parameters and using

a Taylor's Series expansion as far as the first order terms.

The general form of the equations contains more than one parameter
and more than one observation but this form can always be reduced to two
simpler forms which are more easily dealt with. They are (a) Observation

or Parametric Equations which are equations connecting one or more unknowns

with a single observation. There will thus be one equation for every
direction, distance etc. observed. If it is required to fix n variables then
we must have a minimum of n observations and for redundant observations there
will be m observations, and hence m equations in n unknowns where m > n

(b) Condition Equations which express the geometric conditions which must

be satisfied by the adjusted values of the observations. If, as before, m

observations have been taken to fix n variables, then there will ke (m-n)

conditions which the adjusted values of the observations must satisfy.
In this case there will be fewer equations than observations, i.e. (m-n)
equations in m corrections to the observations and hence the two types of

equation will need different methods of treatment.

The two methods are connected however and give the same final
results and it will be shown later that the condition equations are the
equations remaining after the parameters have all been eliminated from the

parametric equations.



&
In the following sections the theory will be dealt with in both

the classical and Matrix notations, as the subsequent error analysis is
very easily dealt with by Matrix methods but would be very cumbersome to
derive by classical algebra. Appendix A gives a short resume of all the
Matrix Algebra theory which is needed to follow the derivations and
Appendix B gives details of the methods generally adopted for the solution

of the sets of linear equations.

5. Observation or Parametric Equation Method.

Suppose that a series of observations pT = [plpzp3 e .pm:l have

been taken to fix a set of variables XT = l:xlxzx3 ....xn] where m > n,

: T ; ; : .
then if V° = [v v,V ....vm] are the corrections required to give estimates

1°2°3
of the true (but unknown) va.lues‘PT = [P1P2P3 ....Pm:l which should have
been obtained for the observations.

P. = p, + v, i=1tom P=p+V

1 1

and we shall have m equations of the form

even + - =
1%t A%t T S TS Tl
. - = + - P =0 5.1
azlxl + a22x2 + + a2nxn + K2 P2 o} AX K
e + + -P,_=0
By%) * A%yt @3n%n T X3 7 F3
ceee + + -P =0
amlxl + am2x2 * amnxn l(m m
i = - p. i=1¢tom C=K-p
or if we put < Ki Py i
e + + =v
3% * A%t %t TN
+ + = AX + C=V 5.2
8% * 3%y * Bon¥n T €2 = V2
ceee + + =
amlxl + am2x2 + amnxn “m “m

where A is an (m,n) coefficient matrix
X is an (n,l) vector of parameters
p is an (m,1) vector of unadjusted observations
V is an (m,1l) vector of corrections
P is an (m,1l) vector of adjusted observations

K & C are (m,1l) vectors of constants



In general the observations will be of different standards of
accuracy and to allow for this the i'th equation will be given a
weight l/gii where 955 is proportional to ci. The Least Square

condition that 5 m -1
F =| v, = VGV is a minimum must

now be applied, G being an {(m,m) diagonal matrix, the diagonal elements

of which are g,
ii

m

F= | (a,,x, + Ko+ it B Xt a, x + )l = (ax + 0T tax + o
$1%1 % 3%y T o BygRyee T A% T G
945 1
The conditions for F to be a minimum are a&F =0
X,
J
which gives n equations for j = 1 to j = n
m
. : s caen + s + a0 s =
334 (3% + a5 * 3i3%k %in%n T %) °
93 1
Rearranging the terms this equation becomes
m m m m
X a,.a,. + x a,.a.. + veee. +t X a. a,. + | a,.c, =0
1 i17ij 2 12713 n in i ij~i
g, . qg.. g, g..
ii 1 ii 1 ii 4 iily

This is a series of n equations, in n unknowns, which can be solved

to give a unigque set of values for the parameters Xy Ky eeee X

These equations are called the Normal Equations and if they were all
written out for j = 1 to j = n, it would be seen that the coefficient
matrix of the equations is symmetrical. This fact enables us to adopt

special methods for the solution of the équations.

Using Matrix Notation

F=(x+0%G ax+ 0 = AT + cHetax + o

1 1 1

= 2% ax + *a% e+ cTe7tax + cfeic

Since G is a diagonal matrix, G—1 and (ATG_lA) will both be

symmetrical and hence by Appendix A7
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aF = 2a7c 'ax + a6t + aT6Tlc = 2aT6  ax + ©)
dax T -1 T ~1
giving the Normal Equations A"G "AX + A°G "C = O 5.3a
. T -1, - -
and the solution X=- (a6 lA) 1ATG 1C 5.4
Numerical Example [4 2463,
(d

+i07-82
v
20+
D > = A .

Point A is a point of known height (1125.92) and the results
of a levelling net to fix the heights of three other points B, C & D
and the distances of the lines levelled are shown on the diagram. In -
levelling adjustments it is often assumed that the accuracy of a given
difference in height is inversely proportional to the distance levelled
and this weighting system will be used in this example, the corrections
Vy VyeeeaVe to the observed differences in height being as shown on the

diagram.

If the heights of the unknown points are HB, Hc and HD, then for

the observation of the lines AB and BC the observation equations and

their weights would be

H weight 1/15

1125.92 + (107.82 + vl) B

= L
Hc + (124.63 + v4) HB 1/8

It will be noted that the relationship between the observations
(the differences in height) and the variables (the heights) is linear
and hence there is no necessity to obtain approximate values of the
variables. In practice however it will be convenient to do so as this

will reduce the size of the numbers involved in the calculations and

some of the calculations will be simplified owing to some of the

constant terms of the equations being zero.

Let HB = 1125.92 + 107.82 + xl = 1233.74 + %

o
]

c 1125.92 - 16.80 + X, = 1109.12 + X,

D 1125.92 -~ 144.21 + e 981.71 + X3

o
]
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The unknown variables are now x. x

i £
1 Xy X3 instead o HB’ H, & H

C D

and the observation equations become

Line Equation Weight
AB 1125.92 + (107.82 + vl) = 1233.74 + xl 1/15
AC 1125.92 - (16.80 + v, ) = 1109.12 + %, 1/12
AD 1125.92 - (144.21 + v3) = 981.71 + X, 1/10
BC 1233.74 + xl-(l24.63 + v4) = 1109.12 + %, 1/8
BD 1233.74 + xl-(251.89 + VS) = 981.71 + Xy 1/16
CcD 1109.12 + x2-(127.32 + v6) = 981.71 + Xy 1/16

These equations are usually shown in tabular form as V = AX + C
but without the v's being actually specified. Since when error analysis
is not being carried out only the relative values of the weights are
important, they will all be multiplied by 12 to make them on average

close to unity. The observation equations would then be tabulated as follows.

Weight X X x o} S

1 2 3
.8 1 o] o] (o] 1.0
1.0 0] -1 0 0 (-1.0
1.2 (o] o] -1 0 |~-1.0
1.5 1 -1 0 {-.01]-0.01

.75 1 0 -1 |+.14}+0.14

.75 0 1 -1 {+.09|+0.09

xl x2 & x3 can be

The zero co-efficients for the variables
omitted, if so desired, but not the zeros in the constant term column C.
The S column, which is added to provide a check on the subsequent

computations, is formed by adding all the figures, excluding the weight,

in the same row.

Carrying out the process detailed in equation 5.3 gives the

normal equations.

x1 x2 x3 C S
+3.05 -1.50 - .75 +.0900 + .8900
-1.50 +3.25 --.75 +.0825 +1.0825

- .75 - .75 +2.70 -.1725 +1.0275
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The way the figures in the first row are obtained is as follows.
+ 3.05 = .8xlxl + 1.0x0 + 1.2x0 + 1.5x1x1 + .75x1xl + ,75x0
=1.50 = .8x1x0 + 1.0x0x(~-1) + 1.2x0x0 + 1.5x1x(-1) + .75x1x0 + .75x0xl
- .75 = .8x1x0 + 1.0x0x0 + 1.2x0x(~1)+1.5x1x0 + .75x1x(-1)+.75%0x(-1)
+.0900 = .8x1x0 + 1.0x0x0+ 1.2x0x0 + 1.5x1x(-~01)+.75x1x,.14 + .75x0x.09
+.8900 = .8x1x1.0 + 1.0x0x(-1.0) +1.2x0x(-1.0)+ 1.5x1x(-.01)+ ,75xlx.14+.75x0%.09
and all these calculations are checked by the fact that

+3.05 - 1.50 - .75 + .0900 = +.8900

Each row should be checked and if necessary recomputed before going on

to the next one.

The equations tabulated above are those used in the example
of a solution by the Cholesky method (Appendix B2) and on reference to this
it will be found that the solutions are
% = -.0327 x, = -.0298 Xy = +.0465
the required heights are B 1233.71, C 1109.06 and D 981.76

6. The Condition Equation Method or Method of Correlatives

The equations in this case express the geometric conditions
that the adjusted observations Pi’ and hence the corrections Vi must
satisfy. If as before m observations have been taken to fix n variables
(co-ordinates, heights etc.) then there will be k = (m-n) independent
conditions to be satisfied. After combination of constants these conditions

will be of the form

bllvl + b12v2 + e + blmvm + d1 =0
b21vl + b22v2 + eenn + meVm + d2 =0 BV+ D=0 6.1
bklvl + bk2V2 + ... + bkmvm + dm =0

and for the Least Square adjustment there is the additional condition that

F = v2 + v2 + oveens + v2 = VTG—lv is a minimum 6.1la
1 2 o
911 922 I

In the above B is a (k,m) matrix of coefficients
D is a (k,1) vector of constants

and the other matrices and vectors are the same as those in Section 5.
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Differentiating equations 6.1 and 6.la gives

bydv) + Bidv, + .o+ by dy =0
b21dv1 + b22dv2 + tieae + b2mdvm =0 B(dv) = O
bkldvl + bkzdv2 L P +bkmdvm =0
B T -1
vldvl + v2dv2 Foeeene + vmdvm = 0 (dV) G v =0
11 922 I
Now if we put v, =b. . & +b_ % + +b .2, ¢ v=38TL 6.3
© Put vi =571 T Paita oot T Pk = .
934

where ll 22 23 ...Lk are constants (at present unknown), the
satisfaction of equations 6.1 and 6.2 will automatically satisfy

equation 6.2a and hence condition 6.la

Substituting 6.3 in 6.1 gives the normal equations

2 m m m

lLl [giibli :'1 + 2,2 [giiblibzi] Ny +oaaen ”’k[ iiblibki ]1 + dl =0
nm 2 T m

! I:giiblibzi]]_ *h [giini]l et Qk[ iib2ibki:ll *d4=0

BGBT L + D=0

m

m m
2 =
gt [giiblibki ]1 * LZ[giib2ibki]l Foee +’Lk[giibki‘:]l t %O

This is a system of k equations in k unknowns, 11 12 ...Zk,

which can be solved to give L = —(BGBT)_lD

and on substitution of these values of L in equations 6.3, the
required corrections are obtained.

v = 8L = - 6B (sae") 1p

T
The constants L~ = ll 22 13 .....Zk are known as the
Lagrangian Multipliers or Correlatives and the equations 6.3 are

called the Correlate Equations.

These results can be derived by an alternative method

which is given below in Matrix Notation only. Since the equations
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6.1 are all equal to zero any multiple of them can be added to or
subtracted from F without altering its value. Hence instead of

minimising F, the same result can be obtained by minimising

F' = vie v - 217 (av + )
where L is a (k,1) vector of constants

JF' = 2G_1V - ZBTL = 0 giving equation 6.3 and hence the
v

subsequent results.

Numerical Example

The same numerical example will be used as in Section 5.
Since 6 observations have been taken to fix 3 new heights there will
be (6 - 3) = 3 independent conditions. Going round any closed circuit,
the total difference in height must be zero and of the possible circuits

the most obvious ones and the conditions which arise from them are

Circuit Condition

ABCDA vl + v3 - V4 -V6 + .08 =0
ABCA vy + v, - Yy - .01l =0
ACDA -V, + v3 Ve + .09 =0
ABDA vy + v3 - v5 + .14 =0
BCDB =y + Vg Vg - .06 = O

Of these five conditions it will be seen that only 3 are
independent as the first condition is equivalent to the sum of the
second and third conditions and also to the sum of the fourth and

fifth conditions. Any three may be selected for our condition

equations provided they are independent e.g. the first three cannot

be selected.

We will select the second, third and fourth conditions, changing the
sign of the last condition in order to cut down some of the subsequent
work. The equations will again be shown in tabular form and it should
be noted that this tabulation serves two purposes as the rows give all
the details of the condition equations whilst the columns give the

details of the correlate equations.
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vy v, Vs Vs Ve Ve d
Weight 1.5 1.2 1.0 .8 1.6 1.6
zl +1 +1 0 -1 o] o -.01
2,2 o] -1 +1 (e} o -1 +.09
23 -1 o] -1 ¢} +1 l¢] -.14
s o} ¢] 0 -1 +1 -1

In this tabulation the first row under the headings gives
the weights which are now proportional to 91 and not to 1/gii as in
the parametric method and in this case gii has been put equal to
(di/lo). It should be stressed that this is not an alteration of the
weighting system for the original observations; it merely adapts the
same weighting system to give effect to a different method of calculation.
The final row S is again a checking row for use in the subsequent
calculations and it is formed by the sum of the other figures ({(excluding
the weights) in the same column. It was in order to make as many of the
elements of § zero as possible that the sign of the fourth condition

was changed.

Applying the process of equations 6.4 gives the Normal.

Equations
N % 2, a )
+ 3.5 - 1.2 - 1.5 - .01 + .79
- 1.2 + 3.8 - 1.0 + .09 + 1.69
- 1.5 - 1.0 + 4.1 - .14 + 1.46

The constant terms in these equations will be the same as
those in the condition equations and the other elements in the first

row are obtained as follows

+ 3.5 = 1.5x1x1l + 1.2x1x) + 1.0x0x0 + .8x(-1)x(~1) + 1.6x0x0 + 1.6x0x0
- 1.2 = 1.5x1x0 + 1.2xlx(-1) + 1.0x0x1l + .8x(-1)x0 + 1.6x0x0 + 1.6x0x(-1)
- 1.5 = 1.5x1x(-1) + 1.2x1x0 + 1.0x0x(-1) + .8x(-1)x0 + 1.6x0xl + 1.6x0x0

4+ .79 = -,01 +1.5x1x0+ 1.2x1x0+ 1.0x0x0 + .8x(-1)x(-1) + 1.6x0xl + 1l.6x0x1

Note that for the z column, as well as multiplying the first
row of the condition equations by the S row and by the weight, the constant

d, must also be added in to give the check.
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+ 3.5 -1.2~-1.5- .01 =+ .79

It is essential that the constant d, should be added in when
obtaining Z as otherwise the constants in the subsequent solution of

the equations would be unchecked

The Normal Equations shown above are those used in
Appendix B3 as an example of the Gauss-Doolittle method of solution
and the values of the Lagrangian multipliers, obtained there, are

El = +.,0162 22 = -.0086 and % = .0380

The corrections vl Vo, eeens v, are now obtained from the

Correlate equations e.g.

v, = 1.5(+.0162 - ,0380) = -,0327
v, = 1.2(+.0162 + .0086) = +.0298
vy = 1.0(-.0086 - .0380) = -.0466
v, = .8(-.0162) = -.0130
Vg = 1.6( .0380) = +.0608
Vg = 1.6( .0086) = +,0138

and it will be found that these corrections give the same values for

the heights of B, C & D as were obtained by the parametric method.

7. Demonstration of the meaning effect of the Least Square Procedure

The same numerical example will again be used. In order to fix
the heights of B, C & D from the known height of A, only three
observations of differences of height are necessary, but six observations
have actually been made. From these 6, 20 sets of 3 can be selected but
not all will be suitable as if the 3 lines selected form a triangle, the
height of at least one point will be unfixed. There are 4 triangles and
hence the total number of possible sets which will give the required results

is 16.

If any set of 3 observations are accepted as correct, this means
that the corrections to the observed differences in height along these
3 lines are zero and the remaining corrections can then be obtained

from the condition equations.
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+ - - =

v v, v4 .01 o]
- + - =

v2 v3 v6 + .09 0]

-V - v3 +v5 - .14 =0

For instance if the observations along lines AB, AD & DC are

accepted v, = vy = Ve T 0 and from the above equations

= +, = +. = 4,
v2 09 v4 +.08 and v5 +.14

The weight of this set of corrections will be proportional to

the product of the weights of the 3 selected observations, i.e.

1 1 1

15 To- 16 and in the following tabulation this has been multiplied

3. . . ;
by 12° in order to give figures near unity.

Data Accepted vi v2 vy Yy v5 v6 123 X Wejm
AB AC AD o} o} o] -.01 +.14 +.09 . 9600
AB AC BD [¢] o |-.14 |-.01 o -.05 .6000
AB AC CD o o |-.09 -.01 +.05 [¢] .6000
AB AD BC 0 +.01 ¢} o |+.14 +.08 1.4400
AB AD DC o} +.09 (o} +.08 +.14 &) .7200
AB BC BD o |+.01 -.14 [¢] [0] -.06 .9000
AB BC CD o} +.01 -.08 o] +.06 o} .9000
AB BD DC o }-.05 ]-.14 |-.06 o] 0] .4500
AC AD CB +.01 o 0] o} +.15 +.09 1.8000
AC AD DB -.14 o o -.15 o +.09 .9000
AC CD CB +.01 o -.09 O |+.06 0] 1.1250
AC CD DB -.05 o {-.09 -.06 (o] o] .5625
AC CB BD +.01 o [-.15 0 ¢} -.06 1.1250
AC DC DB -.14 +.09 o} -.06 (o] e} .6750
AD DC CB -.08 +.09 o] o} +.06 o} 1.3500
AD DB BC -.14 +.15 [¢] 0 o -.06 1.3500
Weighted Means | -.0327[+.0297 |-.0466 -.0130|+.0608 | +.0137 } 15.4575

It will be seen that the weighted means are identical with
the corrections obtained in Sections 6 & 5 except for minor rounding

off errors.
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8. Relationship between the Parametric and Condition Equation Methods

As has been previously stated the Condition Equations are
merely those equations which are left after the parameters have been

eliminated by some process from the Parametric Equations.

The Parametric Equations are AX +C=V

and the Condition Eguations are BV + D =0
BAX + BC + D = B(AX + C) + D = BV + D = O must be independent of X

BA = O and BC + D =0 8.1

In our numerical example

1 o o =~ [o |

o -1 -1 o 1 1 0 -1 o 0o -.ol
a=|o o -1 c=|o B=|o -1 1 o0 o -1 b= |+.00

1 -1 o -.o1 -1 0o -1 o0 1 o0 -.14

1 o -1 +.14

lo 1 -1 1 +.09

o o O +.01
BA=lo o0 o]sBC=|-.00] =-D
(o] (o] OJ +.14J

It should be noted that the A matrix is unique but the B matrix

can take several different forms e.g. we could have had

1 o 1 -1 o -1 +.08
B=|[0 1 -1 o] o] 1] and D = -.09
(o] (o] o} 1 -1 1 +.06

and the relationships BA = O and BC + D = O would still have

been satisfied.

9. Procedure when the relationship between the required parameters

and the observed quantities is not linear.

In the condition equation method, the geometric conditions which
the adjusted observations have to satisfy can, as regards survey
adjustments, often be expressed in simple form and they will not be
affected by the fact that the relationship between the parameters and

the adjusted obgervations is non linear.
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This is not the case however with the Parametric Method of
adjustment and, for this method, approximate values of the parameters
must first be found and the relationship linearised by use of Taylor's
Series expansions as far as the first order terms.

This assumes that the approximate values are such that the neglect
of the second and higher order terms has no significant effect on the
final results. For planimetric adjustment this method has been named

the Variation of Co-ordinates Method.
A Novth

p
Consider the observation firstly of the direction and secondly

of the distance of a line PQ

Let the approximate co-ordinates of P be (EP,NP) and the exact ones
(E + AE ,N_ + AN )
p P P P

Let the approximate co-ordinates of Q be (E_,N_ ) and the exact ones

Q' Q

(EQ + AEQ,NQ + ANQ)

Let the approximate bearing of the line PQ be © and the exact bearing
(0 + A0 )
Let the approximate distance of the line PQ be £ and the exact distance
(2 + AR)
The approximate bearing and distance will be computed from the

approximate co-ordinates.

Finally let the measured direction be D, its correction Vi the

measured distance be 4, its correction vd and let Op and (OP + AOP)

be approximate and exact orienting factors for the observing station P,

which are required to convert the measured direction into a true

bearing.

Then considering first the direction observation

True Bearing = © + A® = D+v_+0 + AO 9.1
D p p

but log tan (0 + AQ) = log (E. + AE_ - E_ - AE )-log (N _+ AN_-N - AN )
9 9 T T Mg T Ep T BT gt B T T M
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2
or log tan © + AQ sec”™® * log (E -E )+ (AE ~AE )=-1
sec g o p) ( 0 )=log (N

-N )- (AN -AN )
tan 0 = 2 QP 9 p
- N_
0" % 0™ M
but log tan ® = log (E. - E ) - log (N. - N
Q P g(Q p)
and hence if AQ is measured not in radians but in seconds
AB"™ = 206265 sin 20 [AE - AE - AN_ - AN
— Q p P
E - E N -~ N
2" % o |

The parametric equation for a direction observation thus becomes

0
[EQ'Ep NQ'NpJ

For a distance observation we have

v = 103132.5 sin 20 %E - AE_ ~ AN_ - AN ~AO_+ (@ - D - 0) 9.2
D Q P P P P

True distance = L + AL = 4 + va 9.3

P 2
but 2 + A% = 7 (B +AE ~E -AE )2 + (N_+AN -N_-AN )
U gHAE ARy 00 P P

2 2
L + AR =\/(—E—E) + (N-N)° + (AE -AE )(E -E ) + (AN -AN ) (N _-N )

Qp QP Q p_Q p Q p_Q P

[3 3
which reduces to AL = sin O(AE_-AE ) + cos O(AN_-AN )
Q p Q P

and the parametric equation for a distance observation is
v. = sin O(AE ~AE ) + cos O{AN -AN )} + ( £-d) 9.4
a Q p Q P

In this method there will be 2 co-ordinate parameters AE and AN

for each new point to be fixed and one orienting parameter 40 for

every station (new or old) at which directions have been observed.

As an example let us derive in symbol form the parametric
equations for a braced quadrilateral ABCD, fully observed by directions,

for the fixation of two new stations C & D from two known stations A & B

D
[4

A 3

In this example there will be 12 direction observations and 8

parameters, made up of 2 co-ordinate parameters for each of the two

new stations C & D and 1 orientation parameter for each of the four
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stations. In order to cut down the amount of writing in the

tabulation below of the parametric equations let

aPQ = 103132.5 sinsZOPQ bPQ = 103125 sin ZOPQ CPQ = OPQ - DPQ -
Eg - E, NQ - N,

Line AEC ANC AED AND AOA AOB AOC AOD Constant
AD o} 0 aAD —bAD -1 0 [¢] o] CAD

AC aAC —bAC o} o} -1 o) (o] (0] CAC
AB (o] e} 0 [¢] -1 o} o} o CAB

BA 0] o] o] o ¢} -1 (o] o] CBA
BD o} O aBD _bBD 0 -1 0] o] BD

BC Ape -bBC o] [¢] (o] -1 o] o) Cae

CB maop bCB [¢] [o] [¢] (0] -1 [¢] CcB
CA M3 bCA o [¢] 0] [¢] -1 o] €ca
CcD racp bCD acp -bCD ] 0] -1 0 Cep

DC aDC —ch -aDC bDC o] o] o] -1 e
DB [¢] o} -aDB bDB [¢) o} o -1 CDB
DA o] . o] —aDA bDA [¢] o] o} -1 CDA

It should be noted that if a line has been observed for
direction at both ends, the coefficients of the co-ordinate parameters
will be identical for both observations but the coefficients of the
orientation parameters and the constant terms will be different.

This can easily be seen to be the case as

aPQ = 103132.5 sin ZOPQ = ~103132.5 sin 2OQP = —aQP
EQ - EP EP - EQ
since sin ZOQP = gin 2(@PQ + 180) = sin ZOPQ
and similarly pr = —bQP

If the figure had been observed by trilateration instead of
triangulation i.e. all the distances except AB had been measured
then there would have been no orientation parameters and the

parametric equations would have been
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Line AEC ANC AED AND Constant
AC sinOAC cosOAc o] o] QAC- dAC
iaD l¢] [e] sinOAD cos@AD QAD_ dAD
BC sinOBC cosG)Bc [0) o] Be dBC
BD 0 o sinOBD cosOBD BD” dBD
CD —sinOCD -cos@CD sin@CD cosOCD lCD_ dCD

A combination of direction and distance observations

can be

dealt with similarly, the individual observations being weighted

inversely to their variances.

The simplest example to illustrate the Variation of Co—-ordinates

method is the adjustment of the observations for a resected point, as

irrespective of the number of rays observed there will be only 3

parameters, two for the co-ordinates of the resected point and one

for the orientation at that point.

Numerical Example

co-ordinates (64908, 56627) given the following data

Consider the fixation of a resected point with approximate

Station Observed Easting Northing Theodolite Reading
Quartz 60060.660 | 59232.227 296° 28" 21.8"
Koppie 62589.399 | 61717.848 333 43 47.6
Corona 50019.962 | 36511.864 214 43 41.9
F.G.3 67379.350 | 63232.800 18 43 50.4
Knob 66140.580 | 58012.682 39 52 07.8




21

The first step is to calculate the approximate bearings

Quartz Koppie Corona F.G.3 Knob
E-Trig | 60060.660 |62589.399 | 50019.962 67379.350 | 66140.580
RP | 64908.000 |64908.000 | 64908.000 64908.000 | 64908.000
AE -4847.340 |-2318.601 |-14888.038 +2471.350 | +1232.580
N-Trig | 59232.227 |{61717.848 | 36511.864 63232.800 | 58012.682
RP | 56627.000 |56627.000 | 56627.000 56627.000 | 56627.000
AN +2605.227 | +5090.848 20115.136 +6605.800 | +1385.682
0 298°15121.7| 335°30'48.9 216°30°24.0 | 20°30'42.3"| 41%39'12.5"
D 296 28 21.8|333 43 47.6 214 43 41.9 | 18 43 50.4 | 39 52 07.8
0-p +1 46 59.9| +1 47 00.4] +1 46 42.1 | +1 46 51.9 | +1 47 04.7
o 146 42.1
0-D-0 +18.3 0 +9.8 +22.6
sin 20 | -.83400194 |-.75440415.| +.95637277 | +.65636852 | +.99318478

The approximate value O of the orientation correction can

be chosen quite arbitrarily and in this case the value for the most

distant station, Corona, has been accepted.

From the calculations given above and equations 9.2 the

following tabulation of the Parametric Equations is obtained.

All observations will be taken as of weight unity and in order to

make the coefficients for AE and AN close to 1, the calculation

will be carried out in units of centimetres and not of metres as

shown above.

AE AN AO Constant Check
~.17744 -.33015 -1 +17.8 +16,29241
-.33556 -.15283 -1 +18.3 +16.81161
+.O6§25 -.04903 -1 [} - 0.98278
-.27391 +.10247 -1 + 9.8 + 8.62856
-.83102 +.73920 -1 +22.6 +21.50818

From these Parametric equations we get the following Normal

Equations.
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AE AN AO Constant Check
+.91410 ~.53574 | +1.55168| -30.76455| -28.83451
-.53574 +.69168 | - .30966| + 9.03667 | + 8.88294

+1.55168 -.30966 5.00000| -68.50000 | ~62.25798

These Noxrmal Equations are those used in the example in
Appendix B4 of the method of solving a set of equations by forming
the inverse matrix and on reference to this example it will be found
that the solution is

AE = +43.9 cms AN = +21.6 cms AO = +1.4"
and the adjusted co-ordinates of the Resected Point will be

(64908.439, 56627.216)

10 Relative Merits of the Two Methods

For use on a programmable computer the Parametric Method
is the more suitable as there is an easily formed parametric equation
for each observation whereas in the Condition Equation Method a choice
of conditions is possible and to programme the computer to ensure
that the correct number of condition equations has been formed and
that they are all independent is a matter of some complexity. 1In
a planimetric survey network condition equations are of two types
(a) angle equations which (for a plane co-ordinate system) specify
that the adjusted angles of a closed polygon of n sides must
add up to (2n-4) right angles
(b) side equations which specify that the length of a side must be

the same by whatever route it is computed

B

The figure above shows that since angle 9 = angle 7 + angle 8, all

the triangular angle conditions could be satisfied but since the side
equation is not satisfied there will be 3 different sets of co-ordinates

for the point D
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For a free net observed by triangulation only, Rainsford
& Richardus (see bibliography) both give formulae for the number
of angle equations and for the number of side equations, for both
adjustment by directions and by angles, but the matter becomes more
complicated if certain elements of the network are held fixed or if

distances have been observed as well as directions.

If in addition to carrying out the adjustment, it is required
to obtain estimates of the accuracies of the derived co-ordinates
then, as will be shown later, the Parametric Method must be adopted
as the condition equation method produces as its end result the

corrections to the observations and not the final co-ordinates.

For small networks to be adjusted on a non-programmable machine,
and without error analysis, the Condition Equation method may in some
instances be the more suitable as it may entail a smaller amount of
calculation. A certain amount of calculation is common to both
systems and it is mainly the order of the normal equations which
have to be solved which determines which method is preferable. The
case of a braced quadrilateral, fully observed by directions, is a
good example of an adjustment for which the condition equation method
should be used. As shown in Section 9, by the Parametric Method there are
twelve parametric equations in eight parameters and so a normal equation
matrix of order 8. The number of condition equations is (12 - 8) = 4
and by this method there will be 4 normal equations only and hence much
less calculation to be carried out. It will be shown moreover that by
proper selection of the conditions the amount of calculation can be even

further reduced.

Numerical Example




RuE;
Direction No. Observed Plane Direction Angle No. Plane Angle
v 25 390 02.73% 1 29% 57 57.70"
2 55 37 00.43 2 44 32 19.83
3 100 09 20.206 3 32 39 28.48
1 280 09 19.37 4 28 09 18.38
5 312 48 47.85 5 74 38 59.56
o 340 58 06.23 6 34 08 17.29
7 o0 58 03.51 7 43 03 25.82
3 235 37 03.07 8 72 50 13.18 ‘
2 209 45 20.7%
10 89 45 21.02
11 132 48 46.84 -
12 205 39 00.02

1f A is the required correction to Direction No. i and W, is
the correction to Angle No. i, then with the numbering system shown in

the diagram

Yai-1 T Vi1 T Vaiep & Wy T Vg T V3 P=ltod

A number of angular conditions are immediately obvious, for
the whole quadrilateral and for the individual four triangles,

These give the following conditions for the corrections

ABCD w+w2+w,+w +w. +w,. +w, +t w_ + 0.24=0

1 3 4 5 6 7 8
ABC w2 + w3+w4+w5 + 6.25 =0
ABD w1+w2+w3 +w8—0.81=0
BCD w4+w5+w6+w7 + 1.05 =0
ACD wl + Ve + w7 + Wo T 6.01 = 0

Of these 5 conditions however only 3 are independent as
ABCD = ABC + ACD = ABD + BCD
and we can select any three of them provided they are independent.
In this particular fiqure however a much better selectinn is made up
of the three conditions
ABCD, (ABD - ARC) and (ABC - RCD)
as it will be seen later that these three conditions form an orthogonal
system and so produce a purely diagonal section of the relevant part

3

of the normal equation matrix.
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We now have 3 angle conditions but a fourth condition is necessary
and this will be a side equation. If O is the point of intersection of

the diagonals of the gquadrilateral, then

1 = OA.OB.OC.OD = sin(3+w3)sin(5+w5)sin(7+w7)sin(l+wl)

OB OC OD OA sin(2+w,)sin(4+w ) sin(6+w ) sin (Btw)

This is a non-linear relationship in the w's and it must be
linearised before it can be used as a condition equation and the

linearisation can be done in two ways

(a) by a Taylors seriecs expansion

1 = sinlsin3sin5sin7|l+w. cotl4+w_cot3+w_cot5+w_cot7-w, cot2

- : : n 1 3 5 7 2
sin2sindsin6sin8
—w4cot4—w6cot6—w8cot8

- - - + -
or wlcotl w2cot2+w3cot3 w4cot4+w5cot5 w600t6 w7cot7 w8c0t8

-206265 {sin2sindsin6sin8 - 1

ginlsin3sin5sin? =0

if the w's (and the v's) are measured in seconds of arc.

(b) by taking logarithms

+logsin7+w_D

\ . {5
logsinl+w. D +10951n3+w3D3+log31n5 WSD 7P

171 5

+logsind+w ,D +logsin6+w _D_+logsin8+w_D

= logsin2+w 4Pa &Ps sPs

222
where Di is the difference in the value of logsini for a change of

1", and the condition is then written as

- - - + ~ inl- in2+ in3- ind+
wlDl w2D2+w3D3 w4D4+w5D5 w6D6 w7D7 w8D8f(10951n1 logsin2+logsin3~logsin

logsinb-logsin6+logsin7-logsin8) = 0

The two equations express the same condition and it will be found
that the coefficients and constant terms in the one equation are a

constant multiple of those in the other.

It should be remarked that O need not be taken as the pole for
deriving the side equation as any of the points of the quadrilateral

could be taken instead e.g. for point A the condition would be

1 = AB.AC.AD = sin5 .8in(7+8) . sin 3

C
AC AD AB sin (3+4) siné sin8
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In the following figures, the Taylors series expansion method
for pole O will be used together with the recommended angle conditions
but instead of the w's we will work in terms of the v's as the
original observations were directions. The condition equations and
normal equations have been tabulated vertically merely because it was
not possible to get in across the page all the figures required for

the condition equations.

Condition and Correlate Equations
L1 L2 L3 L4 S
v, |-t -1 -1.734| -3.734 !
V2 +1 -1 +2.750 | +2,750
vy +1 +1 -1.016{ +0.984 Normal Equations
v4 -1 -1 ~1.560| -~3.560 Ll +8 o o] - 0.030 "
A +1 +1 +3.429 | +5.429 L2 0 8 o] + 6.069
Ve +1 -1 -1.869| -1.869 L3 o] o] 8 + 1.999
v, -1 +1 ~0.275} -0.275 L4 -0.030(+6.069+ 1.999 | +37.742
V8 -1 +1 +1.750{ +1.750{{C {+0.240(-7.060|+ 5.200 | - 7.653
vy (41 -1 [-1.475| -1.475[|} |+8.210[+7.009|+15.199 | +38.127
Y10 -1 +1 -1.070| -1.070
vll -1 -1 +1.379| -0.621
v12 +1 +1 -0.309{ +1.691
C +0.24(-7.06|+5.20|-7.653

The solution of this set of normal equations is

Ll = -,0296 L2 = +.7989 L3 = ~-,6775 & L4 = .1102

and substituting these values in the correlate equations gives the

values of the corrections

V1 = -.959 vy = +1.776 V3 -.817 Vo T +.537 vy = +.496

v -1.033 v, = +.800 v -1.287 v_ = +.487 V.= —.764

6 7 8 9 10

v11= +.027 v12= +,737

On rounding off these figures to two decimal places and
substituting in the angle condition equations it will be found that
the first equation is satisfied exactly but that the second and third

will total +.01 and ~.0l respectively instead of zero. This suggests
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an alteration to either v, or v which occur with opposite signs in

the two equations and all three equations will be satisfied if v, is

rounded off to +1.77 instead of to +1.78

From these corrections the corrections to the angles can be
calculated, the angles adjusted and finally the co-ordinates of the new

stations found.

Error Analysis

11 vVariances of Derived Quantities

When a survey adjustment has been carried out, we sometimes
need to obtain an estimate of the precision of the final
parameters, e.g. co-ordinates, heights etc. and these will of

course be dependent on the precision of the original observations.

If M is a linear function of observed quantities x, y & 2z
such that M=ax + by + cz +d 11.1

where a, b, ¢ & d are constants, then the variance of M is

given by
02 = a202 + b202 + c202 + 2bco + 2cag + 2abo 11.2
M X y z vz ZX Xy

This last expression introduces, in addition to the variances

2 2 2 . .
g, O & 0, three other functions, called co-variances, o __, O

x v 2 vz 2X
and cx . These co-variances constitute a measure of the

correlation between the values of the quantities. If the

measure of y is independent of that of x, then x & y are said to be
uncorrelated and ny = 0, but if the two measures are to a certain
extent interdependent, as for instance the heights and weights of
a group of individuals, then they are correlated and ny will have

a value.

Another measure of correlation is the coefficient of

correlation p which is given by p = cxy 11.3
0.0
Xy

A
-

and from statistics we know that - 1 £ p £
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Other functions are now introduced.
. 2 . : X R ,
The Variance Factor o which is a dimensionless quantity

The Weight Coefficients 9y qu etc which are connected with

the variances and co-variances by the relationships

02 = 02 and © = 02
X = Xy qu
The Weight Coefficients will thus have the same dimensions
as the Variances and Covariances.

The Variance Operators qx qy etc which are merely mathematical

operators, with no numerical values, which afford a simple method

of deriving the weight coefficients from the relationships.

%Gex T % and qu = qx'qy

Equation 11.2 can now be written in the form

2 2 2
GM =0 (aqx + bqy + cqz)

and the method of derivation from equation 11.1 is obvious,

the constant d having no variance.

If N is another linear function of x, y & z such that
N =1rx+ sy + tz +u

= +
then Ay rqx + sqy tqz

and ©

2
. o (aqx + bqy + cqz)(rqx + sqy + tqz)

2 2
aro_+ bso + ct02+ o __(bt+cs)+o__ (cr+at)+o_  (as+br)
x v z yz zx xy

Functions derived from observations, some of which are
common to both functions, e.g. Northings and Eastings co-ordinates

of a point, will thus be correlated.

The Law of Propagation of Variances, given above, is
only valid if there is a linear relationship between the
derived and observed quantities, and, if the relationship is not
linear, it must first be linearised by a Taylor's series

expansion.

M f£(x, vy, 2)

f(x ,y ,2 ) + x3f + yof + z3f + second order terms
o'“o0"%o — = —
Ix dy 9z

\

= 1.4
nd gy =3t +30q +a, 1
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op =(ag) 2+ (a£) %02+ (ar %o2+2(ag) (ag) o, +2(21) [2£]o, +2(25) (af)o,
axJ vy Y Laz ByJ az) Y% |az) o ax) [ay)
11.5

As a very simple example of the use of these formulae,

consider the following problem.

The sides of a rectangle have been measured as 150 and 100
units, both with a standard deviation of .0l. It is assumed
that opposite sides are exactly equal and that all angles are
right angles. Calculate the variances of the Perimeter and of

the Area and their co-variance.

Let the sides be x & y, the perimeter P and the area A
Then P = 2(x + y) is a linear function of x & y and hence
= +
qp = 2{q, qy)
A = xy is not a linear function of x & y

q, = 8A q + 9A =yq, + xq
A % X v qy X Y

. . 2 ,
From this we obtain 0; = 4(0x + c;) since x & y are uncorrelated

= 4(.0001+.0001) = .0008
02 = y202 + x202 = 1502(.01)2 +1002(.Ol)2 = 3.25
A X y
o = 2{ 02 + x02)— 2 (150 + 100) ( Ol)2 = 05
ap~ Y% vy ) -

A further example will illustrate the importance of

recognising when various functions are correlated

Consider a traverse run from A through B to C, the orienting
ray at A having a bearing ¢ and the measured angles and distances

being el, 6 d, & d2 as shown in the figure. To find the

2! 1

variance of the Easting co-ordinate of C in terms of that of A

and of the observed quantities.
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It will be assumed that the co-ordinates of A and the bearing
¢ are uncorrelated and the derivation will be carried out by two

different methods

= + i i -
(a) Ec EA d151n(¢+91) + d251n(¢+el +62 180)
= EA + dlsln(¢+61) - d251n(¢+61 +62)
= + si + -si
qEC qEA sin (¢ Gl)qdl 51n(¢+61+92)qd2+d1cos(¢+61)(q¢+qel)

- d2cos (9+0 l+62) (qq)+qe l+qe 2)

Now it is obvious by common sense that none of the measures of

el 92 dl &(E can be dependent on any of the others or on EA and

hence all the covariances will be zero and we need only consider the

terms involving the variances

Squaring the last equation and multiplying by 02 gives

2 2 .2 2 L2 2 2 2 2
GEC = UEA+ sin (¢+el)0dl + sin (¢+61+62)Gd2+ d2cos (¢+Gl+62)092

2,2 2
cos(¢>+el+62)) (0¢ +og )

+ (dlcos(¢+el) -d L

2

(b} Instead of going direct from A to C we could first find
the variance of EB and then use that to find the variance of

E_, and this method will bring in co-variances

3
]

B EA + d151n(¢+61)

[te]
7]
[

= qEA+ sm(¢+el)qdl+ 4, cos (¢+6) (q¢+qel)

Again the functions on the R.H.S. of the equation are uncorrelated

and
ol = o2 + sin’(4+6,)02 + alcos® (4+0)) (07 407 )
B A 1 ¢ 1
EC = EB - d251n(¢+61+62)
q. = q_ - sin(¢+6.+6_)q ~ d,cos{¢+6.+0 ) (q,+q, +q, )
E, By 1727, T T2 17727 e, e,

Now EB will be correlated with 6. & ¢ and the remainder are uncorrelated

1

02 = 62 + sin(6+0.40_)0. +d2cos(6+6.40_) (52 +0° 402 )
EC EB 1 "2 d2 2 1 "2 ¢ el 92

- 2d2cos(¢+el+92)(0 )

+0
Egé Egfy

but from the expression for q, we obtain
B

2 2
o = d_cos(¢+6_)o, and o = d. cos(¢+6.)0
Eg 1 1'% E 8, 1 1%
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: . . 2 .
Substituting these values and also the expression for GE gives

2 2 .2 2 2 2 .2 2 2
GE = UE + sin (¢+®l)cd + sin (¢+®1+02)0d +d2cos (¢+®l+02)o®
c Fa 1 2 2
+(d, cos ($+0. ) =d_cos ($+0.40.)) % (a2 +3° )
1 174, 179 ¢ o,

which is the same formula as was obtained by the previous method.

12 Extension to a large network

It is obvious that to proceed in this way to obtain extimates
of the precision of the co-ordinates of points in a large network
would entail a vast amount of calculation and so some simpler method
of obtaining the required variances must be found. Using classical
notation this is a cumbersome matter but it is relatively simple if

matrix notation is used and this method will consequently be adopted.

In addition to the matrices and vectors used in Section 5 on the
Parametric Method of adjustment, the following will now be needed.
Let Qp be the vector of Variance Operators of the unadjusted observations(m,1)
Let QP be the vector of Variance Operators of the adjusted observations (m,1)
Let QX be the vector of Variance Operators of the parameters (n,1)

Let Qpp be the matrix of Weight Coefficients of the unadjusted

observations (m,m)
Let QPP be the matrix of Weight Coefficients of the adjusted observations (m,m)

Let QXX be the matrix of Weight Coefficients of the parameters (n,n)
and let the normal equation coefficient matrix (ATG_lA) be denoted

by N

The relationship between the matrices of Weight Coefficients and

the vectors of Variance Operators is

T T
Qux = % %p = %%
T
and = = G the diagonal matrix of Section 5
Qpp QP QP g
From equation 5.4,X = T e = 7 1aTe 7t (K-p)

The only variable on the R.H.S. of this expression is p and hence

Q, =N

< AGTo,
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and since both G and N are symmetrical matrices

~ T -lT-l T-1_-1
Oux = 0% = N A6 007G AN
= v 1aTe leetan ! = w AT layt
= vt -yt 12.1

The matrix of Weight Coefficients of the Parameters is thus
the inverse of the Normal Equation coefficient matrix and the
variance-covariance matrix of the parameters PBJ is given by

[cx]= onXX = UZN_l
where if M is the minimum value of VTG-lV an estimate of the
variance factor 02 =M (see Appendix 11 of a paper by V. Ashkenazi
m-n
entitled "Adjustment of a control network for precise engineering
surveys"” in the Chartered Surveyor of January 1970 for a proof of
this formula)
M= vely = (axee) Te Haxsc)

T - -_ —_
2T Y axtcy + cTe v = Tty 12.2

since ATG-l(AX+C) = 0 from the normal equations

. T -1 T ~1

. M can be calculated from V'G "V and checked from C' G V.
02 the Variance Factor is a measure of how closely the variances
of the observations correspond to those assumed in the G matrix
used in the adjustment. A value of 02> 1 indicates that the

observations were less accurate than had been assumed and vice versa

13. Error Ellipses

The normal distribution of a single variable has a frequency

- (x=u)
distribution given by 20
f(x) = 1 e =
o_varn
x

where u is the mean value of x and cx the standard deviation.
For a multivariable distribution the joint frequency distribution

function is, in matrix notation

- x-07 [cx] 1 (x-u)
)

x ) = 1 e 13.1
R S

n 1

(2m) 2 (det [ox])’z

f(xl,xz, e
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{ 2 .“ r - ~ ]

o c e o4 x u
Xy xlx2 xlxn 1 1

2

where[0]= 3] o3 eren g X =|x U =iu

x ¥ % *2%*n 2 2
2
[ c S g X u
XX X% x n n

uj being again the mean value of the xj distribution.

For the two dimensional case of planimetric co-ordinates

with which we are dealing

[} ] = |g a = o po_ Ox%
[ X *1 *1%2 1 1 2
2
UX X oX oOX O'X Gx
172 2 172 2

o being the coefficient of correlation.

Determinant of [GX] = Uicz —p2oi Ui = (1 - 02)62 02
1%2 1 %2 *1 %
-.l P
%X] = 1 l/crx - p/ox ox,
2 1 1
1-9
-p/o_ o 1/0
¥1 %2 2

and a series of values xl %, will have the same probability

of occurring if (X—U)T [OX]_l(X—U) is constant i.e.
2

if [xl—ul, xz-uz] .1 1/0x —p/cx Gx - (%xTug | = constant
(1-0%) 12
—p/ox cx l/cxz %,-u,
172 2

or (x.-u )2 - 2p(x,~u.) (x.-u,) + (x.-u )2 = constant 13.2

171 1 71 2 "2 2 "2

2 2
%% % %% %
1 172 2

and this is the equation of an ellipse. If the constant = 1 the

ellipse is called the standard error ellipse.

Thus corresponding to the standard deviation in one dimension

we have an error ellipse in two dimensions and iox & icx will
1 2

give its limits in the directions of the co-ordinate axes but the

shape of the ellipse within these limits is not immediately known.



In order to find the size of the ellipse and its orientation
it will be necessary to carry out a transformation to a new set
of co-ordinate axes parallel to the major and minor axes of the
ellipse. If co-ordinates relative to the new axes Are v, and vy then

the equation of the ellipse will be of the form

2
Yl + Y2 = 1
02 02
Y1 L5
i.e. with these axes p and cy will be zero and the lengths of
12

the semi major and minor axes will be Uy and o
1 2

13.1 Derivation by the classical method of the lengths of the

semi axes and the orientation of the major axis of the error

ellipse

Let the X axis be in the Easting direction in conformity
with the practice of quoting Eastings before Northings, the ¥y
axis be parallel to the major axis of the ellipse and let a be its

bearing relative to the original axes.

The two sets of co-ordinates will be connected by the equations

Yl = x.sina + xX_cosa

1 2
¥, = ~x cosa + x,sina
B = sinaq_ + cosagq and = -cosog_ + sinag
%y *1 *2 qyz *1 *2
and the variances will be given by
2 L2 2 . 2 2
qy = sin acx + 2slnacosacx + cos”ac 13.1.1
1 1 1%2 *2
2 2 2 . 2 2
oy = cos ucx - 2cosasinoo + sin“ao 13.1.2
2 1 *1%2 *2
. 2 2
= cosasina (o -0 ) - (cosza - sinzu)o 13.1.3
be x x

Y17, 2 1 1%2
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Now if a is such that the Y, & y, axes are parallel to the

axes of the ellipse cy will be a maximum and this value of o will

1
be given by

d(U2 ) =2 sinacosa(02 - ci ) + 2(cosza - sinza)cx
¥ *1 2 1%2
do
and it will be seen that this entails ¢ =0
Y15,

The orientation a of the major axis is thus given by

tan 2a = 20
X

This will give two values for 2a, differing by 180° and hence will

give the orientation of the major and minor axes but the angle 20 can

be put in its proper quadrant by the rule, obtained from a consid-

eration of the second differential, that sin 2a and ox
1
the same sign.

The lengths of the semi-axes are obtained by use of the

fact that certain expressions are invariant on rotation of the

co-ordinate axes. Adding 13.1.1 and 13.1.2 gives

02+0'2 =O'2+U2
. ¥ ¥ %

2 2 2 2 2 . 2 2 2 2
o o =(o Y7 = (sin g, +251nacosaox +cos oo ) (cos agl
¥y ¥y  Yy¥, 1 1%2 *2
: L2 2 . 2 2
2s1nacosaox 5 tsin oo, )-(cosgsinalo. -0 )
1%2 2 ¥2 0%
2 s
-(cos a—51n2m)cx )2
1%2
= (o )2(-4coszasin2a—(cosza—sinza)z)
*1%2

2 2
+c7x [+ (cos40t+sin4 oa+2cos2 OLsin2 o)

but ify =& ¥, are axes parallel to those of the ellipse ¢
’

1

1

2

must have
2

13.1.4

13.1.5

le]
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2 2 2 2 ( 2
=aq - ag
Y1 ¥y XX *1%,
2
and (g_ +¢o )2—0 +cz + 2%
1 Y2 Y1 Y, 1¥2
=g i + 02 + 2///62 02 - (o )2
1 2 *1 % *1%,
o =—;— (/ci +oi +2/ 0% &% —(o )24/02 102 2V 2 62 _(o =)
Yy 1 %2 1 ¥ X *1 % *1 %2 KX

For calculation purposes it is better to work out the

varianres from the formilae

2
a =

b4 1

N

(2(ci +c2 + 2 /(ox 4o )2— 4(0}2( D’i -(o 1))
73 1 %2 1 *2 1%2

(ai ol + /(cx so )P+ 4o, )7 13.1.6
1 %2 1 %2 1*2

o=

2 13.1.7

N

and similarly o° = % (o2 +02 -/ (¢ -0, Y2+ a(o. )
¥y X% * % *1¥2

Numerical Example

Consider the example of the adjustment of the observations for
a Resected Point in Section 9, for which the inverse matrix was

calculated in Appendix B4. This gives

q. 6.88990 4.50420

EE Ef

. 4.50420 4.43157

9en

and on substituting the values of the parameters in the parametric
equations, the following values are obtained for the corrections

Vl = +1.477 V2 = ~-1.140 v3 = +.439 V4 = -1.426 & V5 = +,650

", minimum value of VTG-lv = sz = 6.12983

and it is checked against gross error by ch = 6.14380

A perfect check between these two values will not be obtained
owing to the different number of decimal figures in c and in v and

the effect of rounding off errors.
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Variance Factor = 6.12983 = 3.065
5~3
and the variance-covariance matrix cé Ot = +21.118 +13,805
a 02 +13.805 +13.583
EN N - )
tan 20 = 2 x 13.805 = -3.66423

13.583-21.118

20 = 105°16' since sinZais +ve Joa = 52938
0§ = %(21.118+l3.583 +/ 7.5352 + 4(13.805)%) = %(34.7o1+28.620)
1
= 31.660
2 1
0% = 32(34.701 - 28.620) = 3.041
Y, 2

the semi major axis of the ellipse has a bearing of 52°38' and

a length of V/31.660 = 5.6 cms and the semi minor axis is 1.7 cms

13.2 Matrix Method of obtaining the lengths of the semi axes and

the orientation of the major axis

The equation of the error ellipse is

x-ut [cXJ lx-w. = 1
where E}] is the variance-covariance matrix o2 o
x X, X
1 172
2
9w Oy
172 2

The procedure of the previous section is equivalent to a

transformation to new axes through the centre of the ellipse as

origin and such that the off diagonal terms of the new variance-

covariance matrix become zero. This is done by putting 2 = X - U

and Y = MZ where M is an orthogonal matrix (Mm1 = MT)

]
W

7 QX and QY = MQ

(o)~ [ = [od] = = "o

Z
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The equation of the error ellipse now becomes

T -1 _
Z [cx] z = 1
m T [cx] Twly =2
o [c]_lMT)Y =1
X
T -1
' [UY] Yy =1
. 2
and M is chosen such that [OY] = cy 0
1
n (12
)

The characteristic equation of the matrix Oy

(o2

1

and its roots will

But a

_— AL

is

“M@: -1 = 0

¥

thus be the squares of the semi-axes

| mog, u -2t |
| M( o, 2D M|

T
ful] oy -2 o). jm]
| op - Ax]

i.e. the characteristic equation of a matrix is invariant on

transformation by an orthogonal matrix

. the roots of the characteristic equation of [UX] will also

give the squares of the semi axes of the ellipse.

Let >‘1 and )\2 be the roots of the characteristic equation

of [GX] . Then corresponding to )‘i (i = 1,2) will be a vector
X, =[x, such that AX, = A,X,
i il i i7i
*i2

i,e. fori=1 (02 - A)x. o+ 0O x = 0

xll 1711 xllxl2 12

Iy ]t (05 = Apx, = O

11%12 12
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and the direction of the vector will be given by

2
tana = x11 = a % = Al - Gx
*11%12 12
x A, = o2 a
12 1 X xllx12

11

Using the same numerical example as in the last section, the

characteristic equation of the matrix [UX] = |21.118 13.805 is
13.805 13,583

2
(21.118 - 2)(13.583 - }) - 13.805° = O

Az - 34.701x + 96.268 = O

3 = %(34.7011 /34.701%-4x96.268) = 31.6605 or 3.0405

and the semi axes will be 5.6 cms and 1.7 cms as before.

The orientation of the major axis will be given by
tana = 13,805 = 1,309
31.6605-21.118

and o = 52%3g"

14, Relative Error Ellipses and Standard Deviation of the

adjusted lengths and directions.

In some cases it may be more important to obtain estimates
of the precision of the relative positions of two points rather
than of their absolute positions. These estimates can also be
found from the inverse of the Normal Equation matrix.
Consider two points A and B fixed in the adjustment of a triangulation
network ahd for which the relative section of the variance

co-variance matrix is

r .
9. 9 q q [+8.9l -2.74 + 0.52 +0.72
EAEA EANA EAEB EANB

0N T =g q = +5.26 -0.68 +0.98

q q
NaNa NaEp NNy

q +2.95 +1.97

q +3.28
Mgy | L |
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For the relative error ellipse

AE = E_ - E AN =N_-N

B~ “aA B~ A
9 o= 9.~ q q,.= q. -
AR CEp CE, an- Ty qNA
02 = 02q2 = 02 20 + 2
AE T 9 Qe T g T g
B EgEa  Ea
= 2.95 - 2(0.52) + 8.91 = 10.82
gzN - u; - 20 o+ o; = 3.28 - 2(0.98) + 5.26 = +6.58
B B A A
g = + O - 0 - 0,
sean. ngEs T e, T OngE, T ONE
= 1.97 - 2.74 - 0.72 + 0.68 = -.81

and the lengths of the semi axes and the orientation of the
major axis can then be obtained by consideration of the

characteristic equation of the matrix 10.82 -.81
-.81 6.58

The standard deviations of the distance and direction of AR
can also be found by rotation of the co-ordinate axes so that
they lie along AB and perpendicular to it. Assume that the
adjusted length AB = 325000 and the bearing 160°27'00". Then

by substituting in equation 13.1.1 and 13.1.2 with

o = 160°27'00", oy = 10.82 etc. we obtain
1

Variance of distance = 02 = 7.5656
1

and 3250002 (variance of direction) = 9,8345

]
Q
|

Yy
Standard deviation of distance = v7.5656 = 2.75
Standard deviation of direction (in seconds of arc)

= 206265 v9.8345 = 2"
325000
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Appendix A Matrix Theory Revision

Al. This appendix deals only with those aspects of Matrix
Theory, a knowledge of which is essential for the understanding

of the development by matrix methods of the theory of Least Squares.

an arrangement of symbols or numbers in rows and columns
to form rectangles is called an array. If it has m rows and'n columns
it is said to be of order (m x n), the number of rows always being

stated first.

A matrix is an array which obeys certain rules of combination
with other matrices. It will be shown in full by putting square brackets
round the individual elements of the matrix e.g. Xy1 xl2 Xy, and can

21 %22 Y23
also be denoted by a single letter, in this case X. It should be noted

that the elements of the matrix given above are xij where i is the number

of the row and j is the number of the column in which the element occurs.

A2, Rules that matrices must obey

(i) Addition. This is defined only for matrices of the same
order. If X & Y are two matrices both of order (m x n) then the elements
of another (m x n) matrix Z which equals X + Y are given by zij = xij + yij

It is easy to see that matrix addition is commutative, i.e.

X+Y¥Y=Y+ X

Matrix addition is also associative

(X +Y) +2=X+ (Y+2) =X+Y+ 2

(ii) Multiplication by a scalar

A scalar is a single number (or symbol representing a constant
number). The multiplication of a matrix X by a scalar *» is formed by

multiplying each element xij of X by the constant *

X + )
1% 2%

It follows that (Al +K2)X

1

and M (X + Y) AX + AY
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(111) Subtraction of Matrices

By putting *= -1 and using the results given above the

differences of two matrices of the same corder can be defined.

bl
Vel
ol
i
<
+
'
s
e
i
>
|

Y where z., = x. ., ~ vy,.
i3 i3 ij

{iv) Multiplication of Matrices

Two matrices can only be multiplied together if the left
hand matrix has the same number of columns as the right hand matrix
has rows. The product will be a matrix with the same number of rows as
the left hand matrix and the same number of columns as the right hand

matrix.

Z = X Y
mxp mxn nxp

and the elements of the product matrix Z are obtained by multiplying
all the elements of one row of X by the corresponding elements of one

column of ¥ and summing the results.

o~

L. = . . . A P .= . .
21] Xllylj * x12y23 xlnynj k_lxlkyk]

It is evident from this definition that matrix multiplication
is in general not commutative as in the instance given above ¥ . X
nxp mxn
would have no meaning since p + m. If p = m the same statement holds

good since X . Y would give as a product an (m x m) matrix whilst
mxn nxm

Y . X would give an (n x pn) matrix.
nxm mxn

Even if n = m, matrix multiplication of two matrices X & ¥
of order {m x m) will still in general not be commutative though there

will be special cases when XY will equal YX

A3, Special Types of Matrices

Vectors are matrices with either a single row (row vector) or a
single column {(column vector)
Scalars can ke regarded as (1 x 1) ma*rices

Square Matrix 13 a matrix which has the sane number of rows and

columns. For a sguare matrix the diagonal from the top left hand
cornsr to the hottom right hand oorner, i.2. that containing the elements

a X 13 called the main diagenal
N -



43
Diagonal Matrix is one in which all the elements except those on
the main diagonal are zero. »
Unit Matrix is a diagonal matrix in which all the diagonal eiements are
egual to 1.

Upper Triangular Matrix is a matrix in which all the elements below the

main diagonal are zero.

Lower Triangular Matrix is a matrix in which all the elements above

the main diagonal are zero

ad. Other Definitions

The Transpose of a matrix X, denoted bvaT, is obtained
by interchanging the rows and columns of the original matrix X

T
V55 = %54

It will be seen that ‘if X is an (m x n) matrix, XT will be an {n x m)
matrix.

The Inverse of a matrix X will be defined only for square matrices
and will be denoted by X-1 such that

xwl= xlx=1 24.1

where I is the unit matrix of the same order as X. The inverse

will only exist if the determinant of the matrix X, denoted by IX[

is not zero. If ]X| = O the matrix X is said to be SINGULAR. A matrix
and its inverse are one of the exceptions for which multiplication is

commutative.

An Orthogonal Matrix is one for which

(a) the sum of the squares of the elements in any row or column = 1

% a?, = E al, = 1
i=1 *J 3=1

and (b) the sum of the corresponding mixed products of any two rows or

any two columns = O

1

a
i=1

n
5%k jZlaijakj =0

or alternatively it can be defined by the relationship that its inverse

and transpose are identical Awl = AT 24,2

The determinant of an orthogonal matrix is b 1
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The Rules for the Transpose or Inverse of products of matrices

are as follows

T T
(asc) T = cTrTaT

-1 -1 -1 -
(ABC) "= C "B lA 1
i.e. the transpose or inverse of a product of matrices is equal to

the product of the individual transposed or inverted matrices but taken

in the reverse order.

a5 Latent Roots and Vectors

Given a square matrix A, there is at least one vector X
and a corresponding scalar A such that
A.X = XX AS5.1
A is called the latent root or eigenvalue of the matrix A

X is called the latent vector or eigenvector of the matrix A

The equation A5.1 can be written as AX = AIX
or as (A - AI)X =0 AS5.2
This is a set of homogeneous linear equations for which a non-
trivial solution will only exist if the determinant

A-AIl =0 A5.3

This relationship is called the Characteristic Equation of
the matrix A and gives the values of A and hence of X. The results of
the solution of the characteristic equation can be expressed as
AY = YD A5.4
where Y is a matrix, the columns of which are the eigenvectors
D is a diagonal matrix, the elements of which are the corresponding

eigenvalues

Let A= (5 2| then |A-AI|=|[5-1 2]|=0
2 2 2 2-X
or (5-A)(2-3) -4 =0
2 st
AT - TA+ 6 =0givingi= 1 or 6
If A =1 5xl + 2x2 = x, giving X = -1
=
2%+ 2x, = X 2

1 2 2
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If A =6 5xl + 2x2 = 6x1 giving X = 2

2xl + 2x2 = 6x2 1

and it can easily be verified that 5 2|x]|-1 2]=|-1 2|x|1 o
2 2 2 1 2 1 o 6

A6 Similarity Transformations

. . . . . -1
Pre- and post-multiplication of a matrix A by matrices H and
H respectively, produces a new matrix B, the latent roots of which are

the same as those of A and whose latent vectors are H_lx

If AX = AX
B ) = @ lam wTix) = B 'ax
=ahx =A@
a7 Bilinear and Quadratic Forms and their first derivative
allxlyl + alley2 + it rreenns + alnxlyn
+ a21x2yl + a22x2y2 F i iieieee. + a2nx2yn
T
Alx,y) = . . . .. = X AY A7.1
+ fereeen ..
+ *m1¥mY1 %2y 2 + M Son*mYn

where A is an (m x n) matrix, X an (m x 1) vector and Y an (n x 1)

vector,is a scalar and is called the Bilinear Form

If X = Y then A(x,x) is called a Quadratic Form and in this case

A must be a square matrix.

The bilinear form can be written as

® 2 T T T
F = A(x,y) =} Ioxe.y. F=XAY = YAX A7.2
i=1 j=1 3
Then differentiating with respect to y
m n
ar = ) x,a,. ) ay. ar = x'a(ay) = (av)Ta'x A7.3
. 1719, 3
i=1 j=1
and differentiating with respect to x
m n
ar = Jdx, J a..y. aF = (aX) Ay = Y'AT (dx) a7.4
i=1 b g=1

Using the forms that express the differential as a column vector

T T
these results give ngTAY) = AY and 3 (XAY) = A'X A7.5
X Y
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If Y = X and A is a square matrix then for the guadratic form
XTAX

a (x"ax) = ax + a'x A 7.6
ax

and if A is a symmetrical matrix (AT = A)

a (ax) = 2a% 7.7
dx
A8 Positive Definite Matrices

If the gquadratic form XTAX of a real and symmetrical square
matrix A is always positive for any real and non-zero vector X then the
matrix A is said to be POSITIVE DEFINITE

Positive Definite Matrices have a number of properties of which
the most important for the purpose of their use in the theory of Least

Squares is that all the eigenvalues are real and positive.
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Appendix B Methods of Solving Sets of Linear Equations

Bl In the Theory of Least Squares it has been found that the
Normal Equations formed in both the Parametric Equation method and the
Condition Equation method are symmetrical and because of this special

methods of solution, which are not of general application, can be adopted.

The most efficient methods of solution of linear equations,
in terms of the number of numerical processes to be carried out, are the
elimination methods in which the various parameters are eliminated one at
a time. There are a number of different elimination methods of solution
but the two most frequently used in survey adjustments are the Cholesky
Method and the Gauss-Doolittle method.

These will now be described.

B2 The Cholesky Method

Let the normal equations be NX + C = O B2.1
The Cholesky method replaces this set of equations by another set
BX + K=20 B2.2

which have the same roots and for which B is an upper triangular matrix

chosen in such a way that BTB =N B2.3
#H™t ax+o) =0 from B2.1
eH ™ 8" + H ke =0
Bx + (81) lc =0 kK = ()7

Hence the new constant terms K are obtained from the old ones C by
the same processes which give the new coefficient matrix B from the

old one N

The procedure is worked out, in full, below for a (3 x 3) matrix,
a column for the constant terms and a column for checking purposes being

added to N and to B (but not to BT)

11 %12 M3 S 5 11 11 P12 Pz ¥ Sy
Moy Map Pa3 Gy Sy [S[Pry Py O [X| O by, By kS,
M3 Paz M33 3 Sy | [Pyg Pay Pyl |0 O byy kg S,
s b, b b, b b, .k b, s
11 11°12 11P13 11*1 1152
2 2
=lb. . b +b
11P12 1222 Py oP13tPa0P03  P1K tRook, b)5517P225;
2 .2 .2
b +
1°11°13 P12P137PaoPa3 PratRaatPyy  PrgkytPogkthygky PygS thy3S,th,58,
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Equating the corresponding elements of the two matrices

b = v¥n b

1”7 P2 T Py thyy K=o 175
b1y b1 by 11
/ 2
Py2™ "Pap7Pry Pp3T PpaPiPyy k= epmbioky S= s -b) sy
P52 P2 oY)
b..= Vo .- b%.- b> k.= ¢~ b._k.-b._k s b, .S.- b..S
33 "M337 P137 Pas 37 €37 P13%17%23% 37 537 P13%17 Pa3S,
P33 Pi3
5 1i1
or in general b,, = n [b ,] B2.4
11 11 mi
m=1
i-1
b1 = n1 - [ i m'] J >i B2.5
j j 3 e
ii
i-1
k. = ¢, - |b .k
i i mi m 1 B2.6
b, .
11
i-1
Sl = sl - [bmi m]
m=1 B2.7
b, .
11

Numexical Example

As an example let us take the normal equations from the

Parametric Method example in Section 5

3.05 -1.5 -~ .75 +.03%00 +.8900 Xy
N={-1.5 3.25 - .75 C = +.0825 S=|+1.0825| X = x,
- .75 - .75 +2.70 -.1725 +1.0275 Xq
)
xl x2 x3 k S
1.7464 - .8589 - .4295 +.0515 + .5096
+1.5850 - .7059 +.0800 + .9591
+1.4203 -.0661 +1.3542
- .0327 - .0298 + ,0465
-1.0327 -1.0298 - .9535

The figures in the top part of this schedule are obtained by

application of formulae B2.4 to B2.7. For example the entries in the
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second row are found as follows

1.5850 = /3.25 - (~.8589)°

-.7059 (-.75 - (-.8589(-.4295))/1.5850
+.0800 = (+.0825 - (-.8589) (+.0515))/1.5850

+.9591

((1.0825)~(-.8589) (+.5096))/1.5850

Each row should be checked by S, = k. +b,, + b + ....b.
i i ii in

i3+l
before proceeding to the calculation of the next row and any discrepancies

greater than 1 or 2 in the last place of decimals ( which might be due to

rounding off errors) should be investigated and the errors rectified.

The top line in the bottom part of the tabulation gives the

values of x x2 and x3 as found by back substitution and the bottom
IS

line gives a checking value obtained by considering the S' column as

the constants of the equation instead of the k column.

If xl, x2, X

and Xl, X2, X

4 are the solutions using the correct constants k

4 are the solutions using the auxiliary constants S, then

the top line of the tabulation gives two equations

bllxl + b12x2 + bl3x3 + kl =0

blle + b12X2 + bl3X3 + Sl =0

but Sl = bll + b12 + b13 + kl and hence the second equation can

be written as
bll(xl + 1) + blz(x2 + 1) + b13(X3 + 1) + kl =0

This is true of the other lines in the tabulation and hence

thus providing a check on the back substitution. The figures for
x, and X2 are obtained as follows
-.0298 = - (.0800 + (~,7059) (.0465))/1.5850

-1.0298 =-(.9591 + (-.7059)(-.9535))/1.5850

Starting with the last equation the values of x, and Xi are
calculated as above and each set must be made to check by the
relationship xi =x - 1 before passing on to the calculation

of the next value.
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B.3 The Gauss-Doolittle Method

In this method also the original normal equations NX + C = O
are replaced by a triangular system BX + K = O but in this case B
is selected so that N = BTDB where B as before, is an upper
triangular matrix and D is a diagonal matrix, the elements of which

are the inverses of the diagonal elements of B

Again taking a (3 x 3) matrix to illustrate the procedure

My Ppp M3 Sy P @ © /b, © ° b1y P1a Py k
Nyp Mgp Bp3 € So|TP1p Byn O x| O /Py, O 410 by, byg ky
P13 Pp3 Paz O3 S3| (Pi3 Paz Pyl | © 0 1/byy |0 O by k
1 0 o] [by; b by ¥ S
b
= 12/b 1 olxlo b,.b.. x s

b b
l3/bll 23/b22 1 o] O b k S

1 Sl

3 S3

by P P13 ky 5
. 2
= +
by, by #byy Bygbiy t by by, ¥y P15 + 5
by P11 11 11
b b..b. 4b__ b2.+Db’+b b, k. + b _k.+ k b, .S.+ b..S.+ S
13 12°13723 P13 Pa3™ P33 P13 232" K3 13°17 P23°%2
b1y P11 P2 b1 Py bip Pa
Again equating corresponding elements of the two matrices
Py =1y Ppp =My Pz sy Ky S 5,75
2 - s -
Dyp = Pyy™Pyy Py = mpamhy Ry Ky = cpmbiky Sy = 5,75
11 b1 b1y P11
b.. =n,,-b>.-b>. k. = c.-b..k.-b..k S, = s,-b, S.~b__S
33 7 M337°137P23 K3 T ©37P13%17P23% 3 T S37P13%17723%
b11 Paa b1 Py b1y Po
, i1
. _ - B3.1
or in general bii = nii bml
bmm
=1
b.. =n.. - p 7 i1 B3.2
ij ij mi mj
b
mm

3




k. =c¢ -Ib .k B3.3
i 1 ml m
b
b J m=1
s; s, - 1+1 B3.4
1 1 ml m
bmm
L 4 m=1

This time we will take for our numerical example the Normal

Equations of the example of the Condition Equation method in Section 6

3.5 =-1.2 -1.5 - .01 + .79
N =|- 1.2 3.8 ~-1.0lCc= {+ .09 S = + 1.69
- 1.5 =~ 1.0 4.1 - .14 L+ 1.46
The solution is tabulated as follows
B k s
]
ml JL2 23
3.5 - 1.2 - 1.5 - .01 + .79
-1 +  .3429 + .4286 + .0029 - .2257
. +_3.;88g -— 1.5;43- ) +‘ioé%6_A —+-l:;659-
-1 + .4469 - .0256 - .5787
|7 Talsos | ose | 2.6748 |
-1 + .0380 - .9620
+ .0162 - .0086 + .0380
- .9838 - 1.,0086 - .9620

The first row in the solution is the same as the first row
in the normal equations and the second row is obtained by dividing
throughout by the left hand term and changing the sign. Thus
+ . = - - R . i

3429 blz/bll and +.0029 kl/bll Again the check of
the S' column against the sum of the other entries in the same row

must be applied before proceeding to the calculation of the next row.
The figures in the third row are obtained as follows

3.3886 = 3.8 + (= 1.2).(+ .3429)
- 1.5143 = -1.0 + (-1.2) (+ .4286) = - 1.0 + (.3429) (-~ 1.5)

+ .0866

+ .09 + (- 1.2)(+ .0029) = + .09 + (.3429) (- .ol)

+1.9609 = + 1.69 + (- 1.2) (- .2257) = + 1.69 + (.3429)(+ .79)
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It should be noted that except for the left hand entry, each
additive term can be calculated in two ways as for instance
b.b. = b [-b.]= b )

mi mj mi| “mj]| m3j mi
b bJ b
mm mm mm

and the use of the expression which involves the two numbers closest

together in magnitude will reduce rounding off errors.

The odd numbered rows are thus obtained by substituting in
formulae B3.1 to B3.4 whilst the even numbered rows are obtained by
dividing each element of the row immediately above by its left hand

member and changing the sign.

In the back substitution only the even numbered rows are used

and again a check is made by using the S' column as an auxiliary set of

constants
e.g. Kz = (.4469) (.0380) - .0256 = - ,0086
L2 = (.4469) (-.9620)~ .5787 = -1.0086

B.4 Solution by calculating the Inverse Matrix

This is not an elimination method and it involves more
mathematical operations than the previous methods do. If error
analysis of the final results of a survey adjustment is to be
carried out then the. inverse of the normal eguation matrix has
to be calculated. Whilst, as will be shown later, the elimination
methods can be adapted to give the inverse of the normal equation
matrix, this involves many more calculations and so the methods lose

much of their advantage.

With the same normal equations NX + C = O, premultiplication
by N_l will change N into I the unit matrix, I into N_l and C into
-X where X is the solution, or adding a checking term S

N_l[N:I:C:S]=[I:N_l:—x:s']
i.e. if by some process we can change N into I, the same process
applied to I will give the required inverse N_l and applied to C

will give the solution (with signs reversed) of the equations.

The process operates on the combined matrix [N : I : C : S]

as follows
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(a) reduce a diagonal element of N to 1 by dividing the whole row in
which it occurs by its original value

(b) reducing the other elements of N in the same column as this
diagonal element to zero by subtracting from all the elements
of a row! an appropriate multiple of the corresponding elements
of the row dealt with in (a)

(c) repeating the process of (a) and (b) until the unit matrix is

obtained instead of N

The procedure is best illustrated by a numerical example and for

this the Normal Equations dealt with in Section 9 will be used

+ .91410 -.53574  +1.55168 | 1 O O | -30.76455 | -27.83451
- .53574 +.69168  ~ .30966 | O 1 O | + 9.03667 | + 9.88294

+1.55168 -.30966  +5.00000 | O O 1 | -68.50000 | -61.25798

+.43255 -.43964 O|1 0 -.31034 | - 9.50626 | - 8.82371 W R1-.31034 R3

¥

-.43964 +.67250 Ol O 1 +.06193 |+ 4.79447 l+ 6.08923 R2+.06193 R3

[+.3103¢ -.06193 1|0 0 +.20000 | -13.70000 | -12.25160 | R3: 5

r !
+.14514 0 O] 1 + .65374 ~-.26985| - 6.37192 | - 4.84294| R1+.65374 R2

-.65374 1.0|0 +1.48699 +.09209 | + 7.12032 | + 9.05462 | R2¢.67250

¥

+.26985 O 1 |O + .09209 +.20570| ~13.25848 I—ll.69084 R3+.09209 R2

1 0 o] +6.88990 +4.50420 -1.85924 |-43.90189 | -33.36737| R1 + .14514

¥

o 1 O’ +4.50420 +4.43157 ~1.12337 l-21.57108 l—12.75895 R2+4.50420 R1

O 0 1|-1.85924 -1.12337 + .70742 |- 1.41155 |- 2.68665| R3-1.85924 R1

It should be noted that the elements of the checking column
in the original matrix are 1 more than those in the example of Section 9.
This is due to the fact that the unit matrix I has been included in the
composite matrix as well as N and C. At the side of each row of the
subsequent matrices is a statement showing how the figures were obtained,
the letters R 1, R 2,and R 3 referring to the elements of the first,
second and third rows respectively of the matrix immediately above that

for which the calculations are being made.

Here again the calculations should be made a row at a time and

each row should be checked by the checking term as compared with the
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sum of the remaining elements of the row, any significant

discrepancy being investigated. It should also be noted that the
symmetry of the original Normal Equation coefficient matrix is
partly maintained at each stage of the procedure if we consider a
matrix formed by superimposing the equivalent of the I section over
that of the N section, ignoring in both cases the columns involving
only O's and 1. For the third matrix this would result in

+.14514 (o) d_ 1+ .65374 -.,26985

-.65374 1 O &|O + 1.48699 +.09209 combining to give

+,26985 0 1 O + .09209 +.20570

[+.14514 + .65374 -.26985

-.65374 +1.48699  +.09209

_f.26985 + .09209 +.20570

and in this last matrix it will be seen that aij = aji if both
elements come from the same matrix and that aij = _aji if they
come from different matrices. These facts can be used either

as additional checks or alternatively to save a certain amount of

computation.

The final matrix gives the inverse matrix

+ 6.88990 + 4.50420 - 1.85924
+ 4.50420 + 4.43157 - 1.12337
- 1.85924 - 1.12337 + .70742
and also the solution
+43.90189
+21.57108
+ 1.41155

Some authorities recommend dealing at each stage with the
largest element of what remains of the N matrix, interchanging the
rows or columns if necessary in order to bring this element on to
the main diagonal, the idea being to avoid the rapid accumulation
of errors which might occur if a row had to be divided by a small
num ber. In survey adjustments this interchanging of rows is not

necessary as the diagonal terms are, except in rare cases, dominant.
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B5. Adaptation of the Cholesky Method to give the Inverse Matrix

This is done by inverting B, the Cholesky upper triangular
matrix and then finding the inverse of the normal equation matrix

from -1 _ B-l -1 B5.1

T
N (B")
B-l will be an'upper triangular matrix just as B is and if its elements
are tii on the main diagonal and tij above it, then from BB—1 = B-lB =1
the following relationships are obtained
b t,. =1 and {b. t . 3
ii Tii ik k3 . =0 B5.2(a) &
k=i
(b)
and the values of tii and tij gan be oaloulated from these formulac.
Subsequently if mij are the elements of the inverse matrix N_l (a
symmetrical matrix of order n), then equation B5.1 gives the formulae
5 n n
m,, = t] andm,, =m,, = [F. t, ] > i B5.3(a) &
ii ik k=i ji ij ik “jk k=3 b)

The example of Section 5.2 will be re-worked in order to illustrate

the calculation processes.

. . -1 T - ;
The mathematical operations B "B = I and BB = N are similar in
general procedure and in practice, when the inverse matrix is required

it is usual to carry both processes out simultaneously, the top right

hand portion of the tabulation below giving the calculations for B
from N and the bottom left hand portion giving those for (B_l)T from I.

A checking term for this second portion is included on the left hand side.

I and (B—l)T N and B
I » -
1 1 3.05 ~1.5 - .75 +.0900 +.8900
.5726 .5726 1.7464 - .8589 - .4295 +.0515 +.5096
1 o] 1 3.25 -.75 +.0825 +1.0825
L9412 .3103 .6309 1.5850 -.7059 +.0800 + .9591
1 o] o} 1 2.70 -.1725 +1.0275
1.3451 .3274 .3136 .7041 1.4203 -.0661 +1.3542

The method of calculation of the left hand portion of this
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tabulation is shown below for the elements of the last row

.7041 = 1/1.4203
.3136 = (O ~ .6309 x (-.7059))/1.4203
.3274 = (O - .5726(-.4295) - .3103(-.7059))/1.4203

1.3451 = (1 - .5726(-.4295) - .9412(-.7059))/1.4203

Having obtained the elements of B-1 by this method, the required
inverse matrix N_l is obtained by use of equations B5.3(a) and (b) e.q.

.63092 + .31362 = .4963

2

m, = .3103 x .6309 + .3274 x .3136 = ,2984

and the complete inverse matrix will be found to be

.5313 .2984 .2304
.2984 .4963 .2207
.2304 .2207 .4957

B.6 Formation of the Inverse Matrix in the Gauss-Doolittle Method

: . T
In this method N is put equal to B DB and hence

-1

LT B6.1

N
where B is the Gauss-Doolittle coefficient matrix and D is a diagonal
matrix, the elements of which are the inverses of the diagonal elements

of B and the diagonal elements of D * will thus be b,

The inverse B—l will be obtained from the Gauss-Doolittle matrix
B by exactly the same process as in Section B.5, that is by use of the
equation B5.2(a) & (b). The normal equation inverse will however be
obtained in a different way since equation B6.1 is now being used and

the appropriate relationships in this case are
[ 2 n n
m,, =|b  tf ] andm,, =m,, = [b t,, t. ] j>1i B6.2(a) &
ii kk "ik kesi ji ij kk "ik jk k=3 o)
Starting with the same set of Normal Equations as were used in
the last section, the calculation of the upper triangular matrix and

its inverse, by this method will be
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Iana 37H7 B K st
)
1 1 3.05 -1.5 - .75 +.0900 + .8900
.3279 L3279 -1 + .4918 + .2459 -.0295 - .2918
1 0 1 2.5123 -1.1189 +.1268 +1.5202
.5938 .1958 .3980 -1 + .4454 -.0505 - .6051
1 o] o) 1 2.0172 -.0939 1.9234
.9470 .2305 .2208 .4957 =1 +.0465 - .9535
the calculation processes for the elements of the last row of
(B_l)T and the checking term being
.4957 = 1/2.0172
.2208 = (O - .3980(-1.1189))/2.0172
.2305 = (0 - .3279(~.75)-.1958(-1.1189))/2.0172
L9470 = (1 - .3279(-.75) - .5938(-~1.1189))/2.0172
The inverse of the normal equation matrix is now found by
equations B6.2(a) & (b) e.g.
m,, = .39802 x 2.5123 + .22082 x 2,0172 = .4963
m ., = .1958 x .3980 x 2.5123 + .2305 x .2208 x 2.0172 = .2984
before.

and the complete inverse matrix will be found to be the same as
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APPENDIX €

LEAST SQUARE ADJUSTMENT IN OTHER SURVEY DISCIPLINES

Least square adjustment can be applied in any situation in which more
observations have been made than are necessary to determine the required
unknowns and in photogrammetry its main use is in the derivation of

ground co-ordinates from machine co-ordinates by a similarity transformation,
but it can also be used in minor computations such as parallax bar

heighting.

Both these operations come under the general heading of curve fitting,
in which it is desired to represent a series of observations by a
particular mathematical formula, the unknowns being the constants in
the formula. As an example consider parallax bar heighting using the

formula
Ground Height - Parallax Bar Height = a; + ay x + azy + azxy + a,x?

where x &y are the photo co-ordinates and information is available

for 7 control points.

Control Point Photo Co-ordinates Paratlax Bar Ground
Xmm Ymm Height Height

A 10 85 237.1 237.1

B 71 83 198.6 180.7

c L2 7 174.7 200.7

D 65 -80 250.0 271.8

E 12 -77 246 .4 230.0

F 32 41 240.0 265.0

G 50 -17 270.0 292.3

f

It is obvious that, using these figures, the coefficients of az and
ay in the observation equation will be very much larger than those of
agp and this effect will be squared in the normal equations resulting
in a very unbalanced normal equation matrix. For this reason it is
desirable to use different units in order to make all coefficients of
approximately the same order and in this case we will work in decimetre

units. The observation equations will then be -
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ag a) ap aj ay Constant
1 .10 .85 .0850 .0100 0

1 71 .83 .5893 L5041 +17.9

1 b2 .07 .0294 L1764 - 26.0

1 .65 -.80 -.5200 b225 - 21.8

1 .12 -.77 -.0924 L0144 + 16.4

1 .32 . L1312 L1024 - 25.0

1 .50 -.17 -.0850 .2500 ] - 22.3

giving the normal equations

} ag a ar as ay c
!

| 7.0000 | 2.8200| .4200| .1375 | 1.4798|-60.8000
1 2.8200 | 1.4798| .1375| .0896 | .8671|-29.5630
- 4200 | .1375|2.8462[1.1188 | .0896|+11.3900

L1375 .089611.1188| .6587 | .0743|+18.2202
1.4798 | .8671] .0896) .0743 | .5370|-12.6723

The solution of these equations is

ap = -37.2821  a; = 297.0451  a, = 19.1957 ag = -53.5520
a, = -349.0953

and these constants are applicable if the photo co-ordinates are
measured in decimetres. For working in millimetres, the a; and
ap values should be multiplied by 1072 and the az and a4
values should be multiplied by 107",

Least Square Adjustment is not often used in astronomical work

but a simple example would be the determination of the clock correction
at any moment in a timed series of astronomical observations. This

is a further example of curve fitting, the curve in this case being

a straight line and the formula to be used being

Ci = Co + R(TI - To)

where C.

i s the clock correction at time T; , Cy is the clock
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correction at some datum time Ty and R is the amount by which
the clock correction changes per unit of time. R and €y are

the unknown quantities which we have to find.
The observation equations will then be

Vi=C°+R(Ti-T°)-Ci i=1¢ton

and these give the normal equations

n
nCo + R[T, - To], - [c. ] =0

n

n n
ColT, - T0]1 + RI(T, - TO)Z]1 - [e, (1, - 1)) , =0

For hand calculations the arithmetic can be simplified by choosing

Ty as the mean value of the observed Ti and if this is done then

fTi - TO]T = 0 and the normal equations reduce to
nco - [c;1] = o
5N n
ROM, -7)] - [e, (T -T)] =0

giving Cp and R directly.

As a numerical example consider the following set of observations

Eastern Std Time Observed Clock Time Clock Correction
h m S h m S secs.
17 50 28.0 17 49 45.0 + 43.0
18 59 31.0 18 58 59.7 + 31.3
19 14 08.5 19 13 39.7 + 28.8
19 16 08.5 19 15 40.1 + 28.4
19 L7 31.6 19 Ly 08.3 + 23.3
19 56 . 30.4 19 56 08.6 + 21.8
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carried out as follows

T, C; T, = To ci(Ti - Tg) (Ti - Tg)?
17.829 + 43,0 - 1.339 - 57.5770 1.7929
{ 18.967 + 31.3 - .201 - 6.2913 .0L04
i 19.228 + 28.8 + .060 1.7280 .0036
19.261 + 28.4 + .093 2.6412 .0086
19.786 + 23.3 + .618 14.3994 .3819
19.936 + 21.8 + .768 16.7424 .5898
115.007 176.6 - 28.3573 2.8172
i : :
To = 115.007 ¢+ 6 = 19.168
Cop = 176.6 + 6 = 29.43 seconds
R = =-28.3573 + 2.8172 = - 10.066 seconds per clock hour

N.B. The simplification of the arithmetic by transferring the

origin to the centres of gravity of the systems of known values

can be used in all cases of curve fitting but its value is most

apparent when the curve is linear as in the above example or in

similarity and affine transformations.
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Australia', Unisurv Rep. S 9, 264 pp.

A.J. Robinson, "Study of Zero Error & Ground Swing of the Model
MRA101 Tellurometer", Unisurv Rep. S 10, 200 pp.

Papers by J.S. Allman, R.C. Lister, J.C. Trinder & R.S. Mather
on the following topics:-  Network Adjustments, Photogrammetry
and 4-Dimensional Geodesy, Unisurv G 20, 133 pp.



31.

32.

33.

34.

35.

36.

37.

38.

39.

40,

41.

G.J.F. Holden, "An Evaluation of Orthophotography in an
integrated Mapping System'", ‘Unisurv Rep. S 12, 232 pp. .

G.J. lloar, '""The Analysis Precision and Optimization of Control
Surveys', Unisurv Rep. S 13, 200 pp.

Papers by E. Grafarend, R.S. Mather & P.V. Angus-Leppan on the
following topics:- Mathematical Geodesy, Coastal Geodesy and

Refraction, Unisurv G 21, 100 pp.

Papers by R.S. Mather, J.R. ‘Gilliland, F.K. Brunner, J.C. Trinder
K. Bretreger § G. Halsey on the following topics:-  Gravity,
Levelling, Refraction, ERTS Imagery, Tidal Effects on Satellite
Orbits § Photogrammetry, Unisurv G 22, 96 pp.

Papers by R.S. Mather, E.G. Anderson, C. Rizos, K. Bretreger,
K. Leppert, B.V. Hamon & P.V. Angus-Leppan on the following
topics:-  Earth Tides, Sea Surface Topography, Atmospheric
effects in physical geodesy, Mean sea level, Systematic errors
in levelling, Unisurv G 23, 96 pp.

Papers by R.C. Patterson, R.S. Mather, R. Coleman, 0.L. Colombo,
J.C. Trinder, S.U. Nasca, T.L. Duyet § K. Bretreger on the
following topics:- Adjustment theory, Sea surface topography
determinations, Applications of Landsat imagery, Ocean loading

of Earth tides, Physical geodesy, Photogrammetry and Oceanographic
applications of satellites, Unisurv G 24.

E.G. Anderson, "The Effect of Topography on Solutions of Stokes'
Problem', Unisurv Rep. S 14, 252 pp.

A.H.W. Kearsley, "The Computation of Deflections of the Vertical
from Gravity Anomalies", Unisurv Rep. S 15, 181 pp.

Papers by S.M. Nakiboglu, B. Ducarme, P. Melchior, R.S. Mather,
B.C. Barlow, C. Rizos, B. Hirsch, K. Bretreger, F.K, Brunner §&
P.V. Angus-Leppan’on the following topics:- Hydrostatic
Equilibrium Figures of the Earth, Earth Tides, Gravity Anomaly
Data Banks for Australia, Recovery of Tidal Signals from Satellite
Altimetry, Meteorological Parameters for Modelling Terrestrial
Refraction, Crustal Motion Studies in Australia, Unisurv G 25.

Papers by R.S. Mather, E.G. Masters, R, Coleman, C, Rizos,

B. Hirsch, C.S. Fraser, F.K. Brunner, P.V. Angus-Leppan,

A.J. McCarthy § C. Wardrop on the following topics:-  Four
Dimensional Geodesy, GEO0S-3 Altimetry bData Analysis, Analysis

of Meteorological Mecasurements for Microwave LDM, MeteorQIOgical
Data Logging System for Geodetic Refraction Research,

Unisurv G 26, 113 pp.

Papers by F.K. Brunner, C.S. Fraser, S.U. Nasca, J.C. Trinder,
L. Berlin, R.S. Mather, O.L. Colombo & P.V. Angus-Leppan on the
following topics:>  Micrometeorology in Geodetic Refraction,
Landsat Imagery in Topographic Mapping;'Adjustment of Large
Systems, GEOS-3 Data Analyses, Kernel Functions, EDM Reductions
over Sea, Unisurv G 27, 101 pp. .



42.

43.

44.

45,

46.

47.

K. Bretreger; "Earth Tide Effects on Geodetic Observations',
Unisurv S 16, 173 pp.

Papers by S.M. Nakiboglu, l.L. Mitchell, K. Bretreger, T.A. llerring,
J.M. Rueger, K. Bullock, R.S. Mather, B.C. Forster, I.P. Williamson §
T.S. Morrison on the following topics:-  Variations in Gravity,
Oceanographic and Geodetic Levelling, Ocean Loading Effects on

Earth Tides, Deflections of the Vertical, Frequencies of EDM
Instruments, Land Information System, Sea Surface Topography,
Accuracy of Aerial Triangulation, Questionnaire to Surveyors,

Unisurv G 28, 124 pp.

Papers- by F.L. Clarke, R.S. Mather, D.R. Larden § J.R. Gilliland
on the following topics:- Three Dimensional network adjustment
incorporating £, n and N, Geoid Determinations with Satellite
Altimetry, Geodynamic Information from Secular Gravity Changes,
Height and Free-Air Anomaly Correlation, Unisurv G 29, 87 pp.

Papers by K. Bretreger, J.C. Trinder, C. Smith, S.M. Nakiboglu,
T.S. Lim, T.A. Herring, P.V. Angus-Leppan, P.C. Covell § S.U. Nasca
on the following topics:- Ocean Tide Models from Altimetry,
Rectification of LANDSAT Data, Numerical Tests of the Initial

Value Method, Accuracy of £, n from Horizontal Gravity Gradients,
Radiation Effects on Metal Bands, Errors in Short Range EDM,
Contour Lines in Engineering, Bust.J. Geod. Photo. Surv. No.30,
127 pages.

Contributions to the XVII General Assembly of The IUGG, 2-15 December,
1979, Canberra, Australia; Aust. J. Geod. Photo. Surv. No. 31,
177 pp.

C. Rizos, "The Role of the Gravity Field in Sea Surface Topography
Studies'", Unisurv S 17, 299 pp.



Proceedings

P.V. Angus-Leppan (Editor), "Proceedings of conference on

refraction effects in geodesy § electronic distance measurement',

264 pp. Price: $10.00

R.S. Mather & P.V. Angus-Leppan (Eds.), "Australian Academy of

Science/International Association of Geodesy Symposium on

Earth's Gravitational Field § Secular Variations in Position",

740 pp. Price:  $20.00
Monographs

R.S. Mather, "The theory and geodetic use of some common

projections'", (2nd edition), 125 pp. Price: § 5.00

R.S. Mather, "The Analysis of the earth's gravity field",

172 pp. Price: § 5.00

G.G. Bennett, "Tables for Prediction of Daylight Stars',

24 pp. Price: § 2.50

G.G. Bennett, J.G. Freislich § M. Maughan, '"Star Prediction

Tables for the fixing of position', 200 pp. Price: § 8.00

M. Maughan,"Survey Computations', 98 pp. Price: § 5.00

M. Maughan, "Adjustment of Observations by Least Squares",

61 pp. Price: §$ 4.00

J.M. Rueger, "Introduction to Electronic Distance Measurement'',

(2nd edition), 140 pp. Price: §$ 7.00

OTHER PRICES (Surface Mail Postage Inclusive)

Aust. J. Geod. Photo. Surv. (formerly Unisurv G)

2 issues annually of approximately 100 pages each issue
Subscription for 1980

To Libraries $16
To Individuals $11

Special Series (Unisurv S)

Research reports of 200 to 300 pages, published annually on average.

Post 1979 Post 1979 Pre-1980
To Libraries $25 per copy $17 per copy

To Individuals $18 per copy $12 per copy
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