

Reference to Districts.

A Northern Boundaries
B Liberty Plains
C Banks Town
D Parramatta
EEEE Ground reserved for Govt. purposes
F Concord
G Petersham
H Bulanaming
I Sydney
K Hunters Hills
L Eastern Farms
M Field of Mars
N Ponds
O Toongabbey
P Prospect
Q
R Richmond Hill
S Green Hills
T Phillip
U Nelson
V Castle Hill
W Evan
The cover map is a reproduction in part of a map noted as follows:
London: Published by John Booth, Duke Street, Portland Place, July 20th, 1810

THE UNIVERSITY OF NEW SOUTH WALES

DECLARATION RELATING TO DISPOSITION OF REPORT

In the light of the provisions of the Copyright Act (1912-1950) I declare that I wish to retain my full privileges of copyright in this report and request that neither the whole nor any portion of the report may be published and I further declare that this preservation of my copyright privileges in the report shall lapse from the list day of January, 1978, unless it shall previously have been extended or revoked in writing over my hand.

OF BAROMETRIC ELEVATIONS
by
J.S. ALLMAN

CONTENTS

Introduction 1

1. History of Barometric Surveying 5
2. Examination of the Surveying Aneroid 16
2.1 Askania Microbarometer 18
2.2 Wallace and Tiernan Surveying Aneroid 20
2.3 The American Paulin System 20
2.4 The Baromec Barometer. 22
3. 5 The Barometric Comparator 26
2.6 Test Results 47
2.6.1 Reading Tests 47
2.6.2 Graduation Errors 48
2.6.3 Drift of the Index Values 54
2.6.4 Hysteresis 57
2.6.5 Error due to Temperature 57
2.7 Conclusions 58
4. Investigation of the Pressure/Height Relationship in a Vertical Column 59
3.1 Equipment 59
3.2 Results 72
5. Field Techniques and the Isobaric Surface 77
4.1 Diurnal Curve Method 78
4.2 Single Base Method 80
4.3 The Leap-frog Method 80
4.4 The Two Base Method 81
4.5 The Multiple Base Method 83
4.6 The Isobaric Surface Investigation 84
4.7 Conclusions. 89
6. Field Traverses 100
5.1 Multiple Base Method 103
5.2 Leap-frog Method 104
5.3 Two Base Method 106
5.4 Conclusions 107
7. The Methods of Computation of the Results 123
6.1 Standard Atmosphere Tables 123
6.2 Single Base Reductions 123
6.3 Multiple Base Reductions 125
6.4 Nomogram for the Determination of Tilt 129
6.5 Computer Programmes 131
6.5.1 Temperature Correction 134
6.5.2 Humidity Correction 134
6.5.3 Tilt of the Isobaric Surface 138
6.5.4 Standard Atmosphere Programme SVY 12. 142
6.5.5 Isobaric Surface Investigation Programme SVY 14. 143
6.5.6 Barometer Traverse Reduction Programme SVY 19. 145
6.5.7 Tower Reading Reduction Programme SVY 24 147
6.5.8 Automatic Graphing Programme SVY 16 149
6.5.9 Analysis of Summaries Programme SVY 26 151
6.5.10 Two Base Barometer Reduction Programme SVY 42 151
6.5.11 Leap-frog Reduction Programme SVY 53 154
6.5.12 Analysis of Summaries Programme SVY 46 154
8. Conclusions 159
Bibliography 162
Appendices
I Assumed Standard Atmosphere (ASA) 169
II Isobaric Surface Reductions 177
III Barometer Traverse Reductions 228
IV Leap-frog Reductions 268
V Two Base Reductions 272
VI Computer Programmes 287
VII Analysis of Summaries 319.

INTRODUCTION

The problem of obtaining accurate elevations using barometric methods has vexed many investigators since Pascal and Perrier experimented in France in 1648. ${ }^{12}$ Methods have been suggested from time to time with exaggerated claims as to their efficiency. Each method generally gives acceptable results provided that the technique is restricted to the particular limitations of the basic assumptions. However there may be occasional pressure readings which result in errors of fifty or more feet. The occurrence of these errors can only be detected by repeating the field measurements or by the determination of the elevation by some other means. Some of these errors may be attributed to reading errors (i.e. mistakes) but the remainder must be due to some weakness in the fundamental hypothesis. The reading error may be readily detected by using a battery of two or more barometers for each field reading and comparing the resultant readings. The remaining sources of error are more difficult to isolate and are the subject of the present investigation.

The investigation falls naturally into a number of discrete sections which were each examined in turn. These sections are:

1. Historical and Theoretical Review.
2. Examination of the Surveying Aneroid.
3. Investigation of the Pressure/Height relationship in a vertical column.
4. The Isobaric Surface.
5. Field Traverses.
6. Methods of computation of the results.
7. Analysis of the experimental results.

The examination of the Surveying Aneroid led the writer to the development of a laboratory standard barometer which was operated impersonally and had a precision of 1×10^{-4} inches of mercury. This instrument was used to test a number of types of Aneroid Barometer.

It was shown that the better class of modern barometer in fact reads atmospheric pressure more accurately than the various mathematical models fit the known data. The errors then must significantly be due to irregularities in the atmosphere. These irregularities form the limiting condition and so improvements in the instruments will not have any significant effect on the results.

The next section was the testing of the accepted formulae for the pressure/height relationship. Barometers were positioned at various levels on a free standing television tower and simultaneous readings of pressure taken on a number of occasions.

The standard atmospheres were shown to be unsatisfactory in the vicinity of the ground. This led to the development of new standard atmosphere which was designated as ASA (Assumed Standard Atmosphere).

This atmosphere and the standard I.C.A.N. atmosphere were tested against field readings and the resuits compared.

The precision of the elevation of a field station was shown to be a complex function of the tilt of the apparent isobaric plane and the distances between the base stations.

This led naturally into an investigation of the limits between which it is feasible to assume that the isobaric surface approximates a plane surface. Pressure readings were taken at five points of known position and elevation. From these readings the degree of tilting of the surface and the deviation from a plane were deduced.

A number of field traverses were then calculated on the basis of the conclusions formed in the foregoing. This completed the experiments and allowed a statistical study of the results to be made.

There are a number of standard conventions used in measuring atmospheric pressure. This led to some confusion when reducing the readings. Accordingly, the conventions specified by British Standard No. 2520; 1954 have been used throughout. ${ }^{4}$ This standard states (page 8):
"2. Apart from the basic unit of pressure viz. the dyne per square centimeter (dyne/cm ${ }^{2}$), the following pressure units only shall be recognized for barometric purposes. They are given in order of preference, the millibar being strongly recommended:-
a. The millibar, equal to 1000 dyne $/ \mathrm{cm}^{2}$.
b. The millimeter of mercury at $0^{\circ} \mathrm{C}$ and standard gravity $980.665 \mathrm{~cm} / \mathrm{s}^{2}$.
c. The inch of mercury at $0^{\circ} \mathrm{C}$ and standard gravity $980.665 \mathrm{~cm} / \mathrm{s}^{2}$.

By 'mercury at $0^{\circ} \mathrm{C}^{\prime}$ is meant a hypothetical fluid having an invariable density of exactly $13.5951 \mathrm{~g} / \mathrm{cm}^{3}$."

Further it is stated on the same page that the three basic units may be denoted by the abbreviations $\mathrm{mb}, \mathrm{mmHg}$ and inHg .

Since the instruments used for this project were graduated in either inches or millimetres, the appropriate units as defined above have been adopted throughout. The Askania instruments which were calibrated in Torr. have been converted to inches of Mercury.

Finally, I would like to acknowledge the assistance of my supervisor, Professor P. Angus-Leppan for his helpful suggestions, T.C.N. Channel 9 for the use of their Television Tower, Mr. R. Degotardi of Technicomps for the use of his electronic computor and also the many people who generously came to my assistance.

CHAPTER 1

HISTORY OF BAROMETRIC SURVEYING

The concept that air has weight was theorised by Anaxagoras and Empedocles some 2400 years ago to explain the lifting power of pumps. Aristotle dismissed this idea and it remained to Galileo to show that air has mass.

This was vertified by his pupil Torricelli who in 1643 discovered that when a tube filled with mercury was inverted with the open end in a bowl of mercury, the difference in height between the two mercury surfaces was independent of the length or inclination of the tube (see Figure 1.1).

When this was repeated with fluids of different density the same effect was observed, the height of column being inversely proportional to the specific gravity of each fluid. From this he deduced that the weight of the column of fluid was supported by the weight of the atmosphere.

The first demonstration that the weight of the atmosphere could be used to determine elevations was carried out by Pascal and Perrier on 19th September, 1648 near Clermon-Ferrand, Auvergne, France. Readings of the height of the mercury column were taken at the base and summit of Puy de Dome. ${ }^{12}$ From the readings it was seen that there was a relationship between pressure and height. Pascall proposed that the atmosphere was compressible and therefore that the relationship would not

FIG. 1.1. PRiNCIPLE OF THE MERCURY BAROMETER.
be linear.
In 1686, Halley put forward the relationship

$$
\Delta \mathrm{H}=\mathrm{k} \cdot \log \frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{P}_{1}}
$$

where
ΔH is the difference in height
P_{o}, P_{1} are atmosphere pressures
k is a constant.
Numerous experiments were undertaken to find the value of the constant k but as a number of variables such as temperature,humidity and gravity were ignored, the results were disappointing. In 1771 , Deluc published in the Philosophical Transactions a method which introduced a temperature correction. This was followed in 1777 by a similar approach proposed by Shuckburg.

Laplace then put forward his theoretical approach to the problem which integrated the hydrostatic equation. ${ }^{5}$ He took a column of air of unit cross-sectional area and showed that the pressure change $d P$ for a change in elevation $d H$ is given by:
$\mathrm{d} P=-\mathrm{g} \cdot \boldsymbol{P} \cdot \mathrm{dH} \quad \ldots . . .(1)$
where g is the acceleration due to gravity
 and absolute temperature T .

But if some standard atmosphere is taken which is denoted by a suffix s, then from the Universal Gas Law:

$$
\begin{aligned}
\frac{P \cdot V}{T} & =\frac{P_{S \cdot} V_{S}}{T_{S}} \\
\text { or } \quad & V \quad \\
& =\frac{P_{S} \cdot T \cdot V_{S}}{P \cdot T_{S}} .
\end{aligned}
$$

Now for the same mass of gas

$$
\mathrm{V} \cdot \rho=\mathrm{V}_{\mathrm{s}} \cdot \rho_{\mathrm{s}}
$$

whence $\quad \rho=\frac{\mathrm{V}_{\mathrm{s}} \cdot \rho_{\mathrm{s}}}{\mathrm{V}}$

$$
=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{S}}} \cdot \rho_{\mathrm{s}} \cdot \frac{\mathrm{~T}_{\mathrm{S}}}{\mathrm{~T}}
$$

Substituting in (1)

$$
\begin{aligned}
\mathrm{dP} & =-g \mathrm{P} \cdot \stackrel{\rho}{\mathrm{~S}}^{P_{S}} \cdot \frac{\mathrm{~T}_{\mathrm{S}}}{\mathrm{~T}} \cdot \mathrm{dH} \\
\mathrm{dH} & =-\frac{P_{S}}{g \cdot \rho_{S}} \cdot \frac{\mathrm{~T}}{\mathrm{~T}_{\mathrm{S}}} \cdot \frac{\mathrm{dP}}{\mathrm{P}} .
\end{aligned}
$$

If the temperature T is constant throughout the vertical column, then

$$
\Delta H=-\int \frac{P_{s} \cdot T \cdot d P}{g \cdot{ }_{s} \cdot T_{s} \cdot P}
$$

between the upper and lower pressures.

$$
\text { Thus } \Delta \mathrm{H}=-\frac{\mathrm{P}_{\mathrm{s}} \cdot \mathrm{~T}}{\mathrm{~g} \cdot \rho_{\mathrm{s}} \cdot \mathrm{~T}_{\mathrm{s}}} \quad\left\{\operatorname{Ln} \mathrm{P}_{1}-\operatorname{Ln} \mathrm{P}_{2}\right\}
$$

and substituting standard values for $\frac{\mathrm{P}_{\mathrm{S}}}{\mathrm{g} \cdot \rho_{\mathrm{S}}}$

$$
\Delta H=60370\left(\log P_{1}-\log P_{2}\right) \quad(1+0.002695 \cos 2 \varphi) \cdot \frac{T}{T_{S}}
$$

where φ is the latitude.
The factor $\frac{T}{T}$ when the temperature t is expressed in degrees Fahrenheit and T_{S} is taken as the freezing point in degree absolute becomes

$$
\begin{aligned}
\frac{T}{T_{s}} & =\frac{t-32+T_{s}}{T_{S}} \\
& =1+\frac{t-32}{T_{S}}
\end{aligned}
$$

$$
\begin{aligned}
& =1+\frac{t_{1}+t_{2}-64}{2 T_{S}} \\
& =1+\frac{t_{1}+t_{2}-64}{982}
\end{aligned}
$$

where t_{1} and t_{2} are the two measured Field temperatures in degrees Fahrenheit.
The value 982 is generally reduced to 900 to make an approximate correction for average humidity (see section 6.5.2). ${ }^{2}$ The final formula thus becomes 2.5

$$
\Delta H=60370\left(\log P_{1}-\log P_{2}\right) .(1+0.002695 \operatorname{Cos} 2 \varphi) \cdot\left(1+\frac{{ }_{1}+t_{2}-64}{900}\right)
$$

Sir G. B. Airy ${ }^{5}$ derived his constants for an atmospheric temperature of $50^{\circ} \mathrm{F}$ with average humidity which modified the formula to

$$
\Delta H=62579\left(\log P_{1}-\log P_{2}\right)(1+0.002695 \cos 2 \varphi)\left(1+\frac{t_{1}+t_{2}-100}{1000}\right)
$$

Average humidity is defined as $50^{\circ} / 0$ relative humidity at $50^{\circ} \mathrm{F} .{ }^{8}$
The effect of the gravity term varies from $0.27^{\circ} \%$ at the equator to zero at latitude $45^{\circ} .^{14}$ Since other errors have a much larger effect it may safely be neglected.

In the foregoing, it was assumed that the atmosphere is at a constant temperature. This has been shown to be incorrect for there is a general fall in temperature with an increase in elevation. ${ }^{3}$, 9, 15, 27 This is
called the Lapse Rate and has been found empirically to be $6.5^{\circ} \mathrm{C}$ per kilometer ($3.56^{\circ} \mathrm{F}$ per 1000 ft). Incorporation of this Lapse Rate into the derivation gives rise to the Lapse Rate Formula proposed by the International Commission for Aerial Navigation in $1924 .{ }^{9}$

Denoting the Lapse Rate as γ, the sea level temperature as T_{o}, and the elevation as H
then $\quad T=T_{o}-\gamma . H$
and the Hydrostatic equation ${ }^{3}$

$$
\rho=\frac{\mathrm{P}}{\mathrm{RT}}
$$

may be expressed as

$$
\mathrm{dP}=-\frac{\mathrm{P} \cdot \mathrm{~g} \cdot}{R \cdot \mathrm{~T}} \cdot \mathrm{dH}
$$

where R is the Gas constant.

Integrating this relationship gives:

$$
\int_{P_{o}}^{P} \frac{d P}{P}=\int_{0}^{H} \frac{g}{R \cdot\left(T_{o}-\gamma . H\right)} \cdot d H
$$

$$
\begin{aligned}
\ln \frac{P}{P_{o}} & =\frac{g}{R \cdot \gamma} \cdot \ln \left(\frac{T_{o}-}{T_{o}}\right) \\
\frac{P}{P_{o}} & =\left(\frac{T_{o}-\gamma \cdot H}{T_{o}}\right) \frac{g}{R \cdot H} \\
\text { whence } \quad H & =\frac{T_{o}}{\gamma}\left(1-\left(\frac{P}{P_{o}}\right) \frac{R \gamma}{g}\right)
\end{aligned}
$$

This may be expressed as:

$$
H=C_{1} \cdot\left(1-\left(\frac{P}{P_{o}}\right)^{C 2}\right)
$$

where $\quad C_{1}=\frac{T_{o}}{\gamma}$
and

$$
C_{2}=\frac{R \cdot \gamma}{g}
$$

With the advent of the aneroid barometer, it became feasible to graduate the instruments in both pressure readings and the corresponding elevation according to some standard atmosphere. A number of these standard atmospheres have been adopted in various countries. The most common are listed below.

INTERNATIONAL STANDARD ATMOSPHERE - I.C.A.N. 3, 9, 14, 15.

1. The air is dry and its chemical composition is the same at all altitudes.
2. The value of gravity is uniform and equal to 980.62 cm per sec per sec.
3. The Temperature and pressure at M.S.L. (Mean Sea Level) are $15^{\circ} \mathrm{C}$ and 1013.2 mb .
4. At any altitude z (metres) measured above M.S.L. and between 0 and $11,000 \mathrm{~m}$. the temperature of the air is given by

$$
\mathrm{T}=15-0.0065 \mathrm{z} 0^{\circ} \mathrm{C} .
$$

5. For altitudes above $11,000 \mathrm{~m}$, the temperature of the air is constant and equal to $-56.5^{\circ} \mathrm{C}$.
(Hence $C_{1}=145367.59$ and $C_{2}=0.19023$)
U.S. STANDARD ATMOSPHERE (or N.A.C.A. Standard Atmosphere). ${ }^{3,14 .}$

This atmosphere is similar to the I.C.A.N. but uses slightly different constants.

1. Gravity $=980.665 \mathrm{~cm}$ per sec per sec .
2. M.S.L. pressure $=760 \mathrm{mmHg}=1013.25 \mathrm{mb}$.
3. M.S.L. Temperature $=15^{\circ} \mathrm{C}$.
4. The lapse rate $0.0065^{\circ} \mathrm{C}$ per metre applies to elevations up to $10,769 \mathrm{~m}$.
5. Altitudes above 10.769 m , the temperature of the air is constant and equal to $-55^{\circ} \mathrm{C}$.
(Hence $C_{1}=145367.59$ and $C_{2}=0.190284$)

I.C.A.O. STANDARD ATMOSPHERE $11,14$.

This atmosphere is identical to the I.C.A.N. Standard
Atmosphere except that the M.S.L. pressure is $1013.250 \mathrm{mb}(=760 \mathrm{~mm} \mathrm{Hg}$.$) .$ (Hence $\mathrm{C}_{1}=145367.59$ and $\mathrm{C}_{2}=0.19023$)

LAPLACE STANDARD ATMOSPHERE ${ }^{5}$

1. The air is dry, isothermal and homogeneous.
2. The value of gravity at latitude 45° is 980.665 cm per sec per sec.
3. The Mean Sea Level (M.S.L.) pressure is 760. mm Hg.
4. The Mean Sea Level temperature is $32^{\circ} \mathrm{F}$.
5. The constant $\frac{P_{S}}{g \cdot P_{S}}$ is 60370 .

AIRY'S STANDARD ATMOSPHERE ${ }^{5}$

1. The air is isothermal and homogeneous.
2. The humidity is "average".
3. The value of gravity at latitude 45° is 980.665 cm per sec. per sec.
4. The M.S.L. Pressure is 31.00 in Hg.
5. The M.S.L. Temperature is $50^{\circ} \mathrm{F}$.
6. The constant including the humidity correction is 62759 .

AIRY'S MODIFIED STANDARD ATMOSPHERE ${ }^{5}$
This atmosphere is similar to the usual Airy's Atmosphere but is taken with dry air.

The constant then becomes 62580 .

ASSUMED STANDARD ATMOSPHERE (See Chapter 3)

1. The air is dry and its chemical composition is the same at a.ll altitudes.
2. The M.S.L. pressure is $760 \mathrm{mmHg}=1013.25 \mathrm{mb}$.
3. The M.S.L. Temperature is $15^{\circ} \mathrm{C}$.
4. The constant C_{1} is 143831.87.
5. The constant C_{2} is 0.18910 .

The use of a Standard Atmosphere to graduate the barometer scale greatly simplifies the reduction of the readings as the more tedious part of the calculation has already been carried out. The difference in height is obtained by subtracting the two readings and then applying the appropriate temperature correction.

In practice, the choice of standard atmosphere is largely a personal choice as the variation in the computed difference in elevation using the values as indicated is insignificant.

However, in Chapter 3 it has been shown, at least for the coastal region in the vicinity of Sydney, Australia that the adoption of any of the above Standard Atmospheres will lead to somewhat larger errors than would be the case if the new standard atmosphere designated as the Assumed Standard Atmosphere (A.S.A.) had been used.

CHAPTER 2

EXAMINATION OF THE SURVEYING ANEROID

The mercury barometer although simple in concept and use is not sufficiently robust or sufficiently compact for general use in the field. This led to the development of the "Mountain Barometer" which can be used in the field but is somewhat inconvenient. In this instrument the glass tube has been encased in a metal sleeve in an attempt to overcome the inherent fragility of the instrument. ${ }^{35}$ In a parallel development, the principle that a partially evacuated chamber, with the sides forced apart by a spring, would tend to dilate or contract according to the atmospheric pressure, was utilised to construct the aneroid barometer. Since the movement of the chamber is small the linkage by which the movement is translated into a pressure reading must incorporate a high degree of magnification. ${ }^{5}$ As the forces are small, this magnification linkage must be of minimum gize and low inertia. It must use jewelled bearings and rely on precision workmanship comparable with that used in small watches (see figure 2. 1). Even so the earlier instruments require a light vibration before reading to ensure that the linkage has completed its movement. ${ }^{21}$ This vibration may be generated by tapping the instrument lightly on the glase face with a finger or pencil.

When the instrument is not vibrated the readings may be

FIG. 2.1. ANEROID BAROMETER MECHANISM.
unreliable and have errors up to 50 feet or more. ${ }^{5}$
More recently the so called micro-barometers have entered the field with radically new approaches to the problem of translating the movement of the pressure chamber to the reading scale. Since these instruments have been described in a number of places, $2,5,12,44,50,53$ they will not be described in detail here. It will suffice to mention only the principle by which in the better instruments the movement is translated. 2.1 ASKANIA MICROBAROMETER ${ }^{44,50}$

A Bourdon tube (A) in the form of an evacuated helical spring is utilized as the pressure-sensing element. The upper end of the tube is firmly clamped and the lower end is attached to a fine wire torsion bar (B). A mirror (C) is fixed to the torsion bar (see figure 2.2). Pressure changes cause a rotational movement of the Bourdon tube which is in turn transferred to the torsion bar. This causes the mirror to rotate slightly. The mirror is viewed through an autocollimating telescope (D). The image of one of a series of index lines engraved on the mirror appears on an eyepiece scale. The reading is made by recording the scale reading of the index line on the eyepiece. The instrument is extremely sensitive and a small pressure change (approximately 9.5 mm . Hg.) will cause an index line to move across the entire scale. For this reason four index lines are provided extending the range to approximately $38 \mathrm{~mm} . \mathrm{Hg}$. Pressure variations beyond this range may be measured by rotating the top of the Bourdon tube to another one of number of predetermined positions. This causes the image of the index lines to be brought back into the field of view.

FIG. 2.2 SCHEMATIC SECTION OF THE ASKANIA MICROBAROMETER.

The instrument is extremely sensitive to temperature. For this reason a "built in" thermometer is provided and the instrument is surrounded wi th a leather case filled insulating material for thermal insulation.

While the instrument is extremely sensitive for small relative changes of pressure, the lack of sensitivity in setting the upper clamp to the predetermined position makes difficult an effective use of this instrument for field barometer traverses due to the possibility that vibrations during transport may cause a slight shift in the setting which would be difficult to detect.

2.2 WALLACE AND TIERNAN SURVEYING ANEROID ${ }^{5}$, 50, 53

This barometer consists essentially of a precision aneroid mechanism shock mounted in its case. The mechanism includes a lowinertia movement (A), a balances pointer (B), flexure pivots (C), a backlash eliminator and jewelled bearings to ensure sensitivity (see figure 2.3). Before reading it is advisable to lightly vibrate the movement.

The reading scale is graduated to 10 foot intervals according to the Smithsonian Meteorological Table No. 51 Standard Atmosphere (identical to the U.S. Standard Atmosphere). This scale may be interpolated to one foot.
2.3 THE AMERICAN PAULIN SYSTEM ${ }^{5}, 50$

The basic principle of this instrument is the use of a null reading as an indication of matching tensions in the evacuated chamber and the balance spring.

FIGURE 2.3 THE WALLACE AND TIERNAN BAROMETER.

A change of air pressure will cause contraction or expansion of the diaphrams (H) (see figure 2.4). This causes a change in the sensitive bands (J) in such a manner that the balance indicator pointer (C) will move from its zero point. Rotation of the control knob (A) will turn the precision-ground micrometer screw (E). This will directly change the tension of the balance spring (F) across the diaphrams (H). This will also cause the bands to return the balance indicator pointer (C) to its zero point.

The pressure may then be read directly on the graduated scale by means of the pointer which is integral with the control knob (A).

2.4 THE BAROMEC BAROMETER (see Figure 2.5) ${ }^{5}$

In this instrument the pressure chamber is not required to actuate a complex mechanical linkage. Instead movements of the pressure chamber (A) are followed by a simple lever (B) which is held against the pressure chamber by a hair spring (see figure 2.6). The position of this lever is then measured by a micrometer (D) utilizing an electronic contact. The circuit for the electronic contact indicator is given in figure 2.7. The valve (DM70) displays two different configurations depending on the potential across the valve grid. When the potential is negative the display takes the form illustrated in figure 2.8 (a). When the potential is positive, the display is changed to the form illustrated in figure $2.8(\mathrm{~b})$. From the circuit diagram (Figure 2.7), it will be seen that when the contricts are open the potential on the grid will be negative. When the contacts close the potential becomes positive. Tests have shown that this method

FIGURE 2.4 CONSTRUCTION OF THE PAULIN BAROMETER.

FIGURE 2.5 THE BAROMEC BAROMETER.

FIG. 2.6 BAROMEC BAROMETER
of indicating contact is capable of a precision of 1×10^{-5} inch.
To read the instrument, the micrometer knob is rotated until the position is reached where the contacts just close. The micrometer which may have conventional scales or take the form of a digital read-out is then ready for reading.

Tests have shown this instrument to be extremely robust and not subject to a significant hysteresis or drift.
2.5 THE BAROMETRIC COMPARATOR ${ }^{18}$

For this report, the main concern was to establish the reliability of the barometric instruments. Before this could be investigated, it was necessary to construct a reliable standard instrument against which the individual instruments could be tested in the laboratory for errors from a variety of sources. These errors were loosely grouped together as systematic and random errors, viz.

1. Random Errors in the linkage and in reading.
2. SystematicErrors (a) Graduation Errors.
(b) Drift with respect to time.
(c) Hysteresis.
(d) Error due to Temperature.

Thus the standard instrument had to be capable of giving reliable readings which were more accurate than the instruments under investigation (. 01 mm of mercury pressure) and incorporate a pressure chamber to allow the pressure to be varied at will. Obviously, although

FIG. 2.7 CONTACT INDICATOR CIRCUIT

(a) Contact not made-Decrease Reading

(b) Contact made - Increase Reading

FIG. 2.8 CONTACT INDICATOR FOR BAROMEC BAROMETER.
it would have been ideal if the standard barometer had given absolute measurements, this was not necessary since a small index error would not have any significant effects. The manipulation is actually in relative readings or reading difference.

Accordingly, the barometric comparator was designed and constructed. This instrument although fundamentally a normal mercury barometer of the Fortin type ${ }^{1}$ has a number of novel features (see figures $2.9,2.10$). ${ }^{18}$ In the first place, it would have been extremely difficult if not impossible to achieve the required precision of the reading by relying on optical settings of the reading scales within a small pressure chamber. This led to the use of electronic contact indicators 38, 47 Since it is impossible to move a contact within the Torricellian Vacuum, the fixed contacts were placed in the top of the tube. Readings were obtained by raising the piston and hence both mercury levels until contact was made at the fixed contact and then reading the level of the lower surface by means of a moveable contact (see figure 2.9).

Since electronic circuits had already been installed, it was then a simple matter to use these circuits to control the two servo motors required to operate both the piston for setting the upper contact and the moveable contact. Inclusion of a latching relay made the readings impersonal and extremely simple.

In practice, to obtain a reading it was only necessary to press one button-switch.

FIG. 2.9 SCHEMATIC DIAGRAM SHOWIIG BASIC DESIGN.

1. Upper contacts.
2. Pressure chamber.
3. Shell Epicote Resin casting.
4. Independant micrometer mounting.
5. Thermometer.
6. Micrometer.
7. Fine adjustment piston
8. Coarse adjustment piston.
9. Micrometer control.

1O. Piston control.
II. Pressure inlet.
12. Sludge trap.
13. Choke.
14. Wall mounting bracket.

Figure. 2.10 SCHEMATIC DESIGN OF THE BAROMETRIC COMPARATOR .

When this switch (G) was pressed the latching relay (C) was closed (see figure 2.11). At the same time the main relay (A) for the piston servo motor closed causing the motor to turn in the direction required to lower the piston. This in turn caused the upper and lower mercury surfaces to be lowered.

The motor continued turning in this direction until the upper fixed contact left the mercury. Due to capillary action the mercury tended to cling to the sharpened contact and hence when the circuit was broken, the mercury surface was approximately 1 mm below the contact. The main relay then opened causing the latching relay (C) to open and the motor to turn in the opposite direction. The motor continued to turn until contact was made. The main relay then closed but since the latching relay (C) was open, the piston servo motor did not turn.

Simultaneously, the serve motor for the moveable contact followed a similar procedure except that the latching relay (D) remained closed until the piston servo motor had ceased to operate. The moveable contact thus hunted about the mercury surface until the fixed contact had been set. When the latching switch (D) opened, the servo motor for the moveable piston stopped immediately on making conta.

A reset button switch was provided, so that the moveable contact could be reset without actuating the piston servo motor.

The drive motors were mounted externally to prevent any possibility of the heat generated disturbing the stability of the instrument. The pressure chamber, which was constructed of a one piece Pyrex glass tube

FIG. 2.11 CIRCUIT DIAGRAM OF SERVO CONTROL.

FIGURE 2.12 THE BAROMETRIC COMPARATOR.
with $1 / 4$ inch wall thickness, was placed over the barometer but left the lower side of the reservoir piston exposed (see Figure 2. 10).

As there was not sufficient room within the pressure chamber for the instruments which were to be tested, these were placed in auxilliary chambers connected to the main chamber by pressure hoses. The inclusion of a pump to vary the pressure and a number of valve cocks to shut off the various sections completed the equipment (see Figure 2. 13).

Some difficulty was experienced in cleaning the mercury before installation but this was overcome by passing the mercury through a purifying tube filled with 0.05 N Nitric Acid. ${ }^{7}$ The mercury was then washed and dried. To prevent any possible effect on the readings due to oxides floating on the lower mercury surface a sludge trap was incorporated in the reservoir and the surface was periodically lowered beneath the trap and then raised, leaving oxides beneath the trap (see Figure 2.14).

The level of water vapour in the system was controlled by placing a reservoir of Silica $G \in l$ in the pressure hose adjacent to the pump.

To extend the range of the instrument twelve fixed contacts were placed in the upper tube. These contacts were spaced at approximately 0.9 inch apart to allow for calibration within the range of the moveable contact (linch). This gave a total range of approximately 11 inches.

The contacts were formed by L shaped pieces of platinum wire firmly fixed into the wall of the soda glass tube. The pressure difference on the wall of the tube caused leakage past the platinum wire.

CALibRATION CF ANEROID BAROMETERS BY THE BAROMETRIC - COMPARATOR.

FIG. 2.13

FIG. 2.14 DETAILS OF SLUDGE TRAP AND ChOKE

To overcome this a thin layer of Shell Epicote Resin was run down the inside of the tube to seal the joints. This appeared to give a satisfactory bond but on final setting some shrinkage occurred in the Resin. This set up high stresses in the glass and finally caused a longitudinal crack in the tube. This was overcome by casting a solid block of the Resin around the outside of the tube. This block completely covered the portion of the tubing containing the contacts.

The possibility of arcing between the contacts and the mercury surfaces was most unlikely since the voltage across the contacts was 1.5 volts and the current $1 \times 10^{-6} \mathrm{amp}$.

Initially, the mercury showed signs of surging while the levels were being changed and so a choke was placed in the lower end of the Torricellian Tube (see Figure 2.14). The choice of diameter of the choke was extremely critical. If too large, then surging took place. If too small, then the excessive damping caused hysteresis when the pressure in the chamber was varied.

While endeavouring to obtain the optimium choke diameter the bottom of the glass tube was cracked. This was repaired by cutting off the bottom two inches of the tube and inserting a two inch long perspex rod drilled out to match the glass tube and incorporating the choke. This rod was cemented in place with an acrylic cement. It was decided to leave the choke diameter at the previous value ($0.075^{\prime \prime}$ diameter) and to design the experimental procedures to overcome the resultant hysterisis.

Since atmospheric pressure is measured in terms of the height of a mercury column at standard density, a thermometer was incorporated within the reservoir. The connection between the fixed and moveable contacts was manufactured from a mild steel rod and the expansion of this rod taken into account when applying the temperature correction (see figure 2.15). Further the position of the contact within the glass tube in relation to the support had to be considered.

The temperature correction was thus determined as a function of the mercury column height which must be reduced to standard temperature $\left(32^{\circ} \mathrm{F}\right)$ and the length of the mild steel rod and glass reduced to the standard operating temperature (68°) (see figure 2.16).

Denoting:
C_{0} as the length of mild steel rod from the support to the zero of the micrometer at $68^{\circ} \mathrm{F}$,
C_{1} as the length of the column between a particular contact and the micrometer zero at 68°,
C_{2} as the length of the glass tube from the support to the same contact at $68^{\circ} \mathrm{F}$,
$\mu_{1} \quad$ as the coefficient of volume expansion of mercury $\left(1.010 \times 10^{-4}\right.$ cubic units $/{ }^{\circ} \mathrm{F}$),
μ_{2} as the coefficient of linear expansion of mild steel $\left(0.65 \times 10^{-5}\right.$ units $/{ }^{\circ} \mathrm{F}$),
$\mu_{3} \quad$ as the coefficient of linear expansion of glass $\left(0.47 \times 10^{-5}\right.$ units/ ${ }^{\circ} \mathrm{F}$),

R the micrometer reading (inches),
T the temperature (degrees Fahrenheit), then the corrected reading in terms of the height to which a mercury column at $68^{\circ} \mathrm{F}$ would rise is given by:

$$
\mathrm{H}_{68}=(\mathrm{T}-68) .\left\{\left(\mathrm{C}_{\mathrm{o}}-\mathrm{R}\right) \cdot \mu_{2}+\mathrm{C}_{2} \cdot \mu_{3}\right\}+\left(\mathrm{C}_{1}-\mathrm{R}\right) .
$$

When this formula is reduced to give the height at $32^{\circ} \mathrm{F}$:

$$
H_{32}=\left(1-\mu_{1} \cdot(T-32)\right) \cdot\left\{(T-68) \cdot\left[\left(C_{o}-R\right) \cdot \mu_{2}+C_{2} \cdot \mu_{3}\right]+\left(C_{1}-R\right)\right\}
$$

The correction C_{T} to a reading is given by:

$$
\begin{aligned}
C_{T}= & H_{32}-C_{1}+R \\
= & \left(1-\mu_{1} \cdot(T-32)\right) \cdot\left\{(T-68) \cdot\left[\left(C_{o}-R\right) \cdot \mu_{2}+C_{2} \cdot \mu_{3}\right]+\left(C_{1}-R\right)\right\} \\
& \quad \times\left\{\left(1-\mu_{1}\right)(T-32)-1\right\}
\end{aligned}
$$

which reduces to

$$
C_{T}=K_{2}-K_{1}-R \cdot K_{3}
$$

where

$$
\begin{aligned}
& \mathrm{K}_{1}=\mathrm{C}_{1} \cdot \mu_{1} \cdot(\mathrm{~T}-32) \\
& \mathrm{K}_{2}=\left(1-\mu_{1} \cdot(\mathrm{~T}-32)\right) \cdot(\mathrm{T}-68) \cdot\left(\mathrm{C}_{\mathrm{o}} \cdot \mu_{2}+\mathrm{C}_{2} \cdot \mu_{3}\right) \\
& \mathrm{K}_{3}=\left(1-\mu_{1} \cdot(\mathrm{~T}-32)\right) \cdot\left\{(\mathrm{T}-68) \cdot \mu_{2}-\mu_{1} \cdot(\mathrm{~T}-32)\right\}
\end{aligned}
$$

In this form the three variates " K " were found to be functions of one variable only, i.e., T. This made it feasible to construct a nomogram for each contact. For convenience the nomogram was divided into two parts $\left(K_{2}-K_{1}\right)$ and K_{3}. The micrometer reading could then be used as an argument for the second nomogram giving the value RK_{3} directly. As an example the nomograms for contact No. 3 are given herein (see figure 2.16).

Capillary effects within the glass tube were constant for a given contact as ${ }^{10}$

$$
H=-\frac{2 \cdot \nu \cdot \cos \theta}{a \cdot \rho \cdot g}
$$

where h is the height of the capillary,
a is the radius of the tube,
and $\quad \theta=145^{\circ}$ for mercury.

Since differential pressures only were required this correction could be taken as included in the values of the constants "C ${ }_{1}$ ". The

FIG. 2.15 INDEPENDENT SUSPENSION SYSTEM

correction amounted to +0.2 mm for a tube with a diameter of 1 cm . and would have to be applied when absolute values were required. For relative Readings this systematic error is cancelled due to the method of calibration.

The effect of Vapour Pressure in the Torricellian Vacuum depressed the height of the mercury column by an insignificant amount for the experimental range. For example at $15^{\circ} \mathrm{C}$ the depression was 0.7×10^{-3} mm and at $25^{\circ} \mathrm{C}$ only $1.7 \times 10^{-3} \mathrm{~mm}$.

The effect of a variation of gravity from standard gravity at latitude 45° upon the density of the mercury (and thus upon the height of the column) was a systematic error which was disregarded as the pressures were differential.

To calibrate the instrument, the distance between contact No. 3 and the zero of the micrometer was measured as accurately as possible. This distance was adopted as the standard column height at $68^{\circ} \mathrm{F}$ to which all subsequent readings were referred. The adopted value was 30.2440 inches. Using a "bootstrap" technique, the other contacts were then calibrated using overlapping readings. The results were as given in Table 2.1.

The instrument was then ready for the testing of the aneroid barometers.

In practice, the instrument proved very satisiactory and readings had a repeatability of 1×10^{-4} inches of mercury pressure (.. 002 mmHg). A typical set of readings at a constant pressure is given in Table 2.2.

TABLE 2.1

CONTACT CALIBRATION CONSTANTS

Contact No.	Pressure	Estimated Standard Deviation in Hg
1	32.3457	0.0003
2	31.1910	0.0002
3	30.2440	0.0002
4	29.3228	0.0003
5	28.4654	0.0003
7	27.5550	0.0004
9	26.6003	0.0004
10	25.6620	0.0005
11	24.7299	0.0005
12	NOT USED.	

TABLE 2.2

COMPARATOR READINGS AT A CONSTANT PRESSURE

```
Contact No. 3
Date: 11/12/63
```

Temperature
$16.7^{\circ} \mathrm{C}$
16.7
16.7
16.7
16.7
16.7
16.7
16. 7
16.7
16.7
16.7

Reading
0.2907 inch
0.2907
0.2908
0.2908
0.2908
0.2905
0.2908
0.2908
0.2906
0.2906
0.2907
0.2907

Standard Deviation 1×10^{-4} inch.

2.6 TEST RESULTS

The comparator was then used to test the Baromec, Wallace and Tiernan and Askania barometers. The tests were designed to give the magnitude of random and systematic errors in the instruments. The errors were given as reading differences and were confined to those likely to be of significance to the surveyor.

2.6.1 Reading Tests

The first test was designed to find the magnitude of the random errors in the mechanical linkages and in the readings of the barometers. The instruments were placed in pressure chambers and the chambers were partially evacuated (equivalent to a rise in elevation of 6000 ft). The pressure in the chambers was then allowed to return to atmospheric pressure. After five to ten minutes to allow any hysteresis to be taken up, the instruments were lightly vibrated and read. At the same time, a reading was taken on the barometric comparator. A comparison of the readings gave an index value.

This sequence was repeated a number of times to allow a statistical study to be made of the index. Typical results of this test are given in Tables 2.3 to 2.5.

For the Askania Barometer it was necessary to also test the accuracy of resetting the scale index. The result of this test is given in Table 2.6. This standard deviation was combined with that found in Table 2.5 to give the composite standard deviation for a single reading.

The Wallace and Tiernan instrument gave large residuals on two readings (see Nos. land 4, Table 2.4). These would seem to be due to friction in the mechanical linkage. In practice, this could be minimised by using a battery of three barometers and repeating or rejecting any doubtful readings. The accuracy of the instrument quoted below assumes that this will be the case. These doubtful readings occurred in all tests on the Wallace and Tiernan barometers.

From the results of this test, the standard deviations for readings of the various instruments were converted to feet of elevation in a standard atmosphere to allow a comparison to be made. The converted values of the standard deviations are:

Baromec Barometer	1.6 feet.
Askania Barometer	3.4 feet.
Wallace and Tiernan	5.5 feet.

2.6.2 Graduation Errors

To test the various types of barometer for errors in graduation, an extended series of readings was taken throughout the working pressure range (600 to 800 mmHg). These readings were then compared with those of the barometric comparator.

The difference between the barometer reading and the comparator reading was taken as an index and the variation of this index throughout

TABLE 2.3

READING TEST BAROMEC BAROMETER 657/65

Comparator Pressure mmHg	Baromec Reading mmHg	Index mmHg
757.02	757.13	-0.11
756.53	756.50	+0.03
756.67	756.63	+0.04
756.06	756.06	0.0
756.89	756.92	-0.03
757.57	757.63	-0.06
757.08	757.13	-0.05
757.56	757.62	-0.06
757.54	757.60	-0.06
757.44	757.48	-0.04

Standard Deviation 0.045 mmHg .
TABLE 2.4
READING TEST WALLACE AND TIERNAN
BAROMETER 55423

No.Comparator Feet	Wallace and Tiernan Feet	Index	
	108	938	Feet
1	126	980	-830
2	122	975	-854
3	144	1020	-853
4	113	960	-876
5	89	929	-847
6	106	958	-840
7	90	940	-852
8	90	948	-850
9	94	942	-858
10			-848

Standard Deviation 11.6 feet.
Deleting readings 1 and 4 Standard Deviation 5.5 feet.

TABLE 2.5
READING TEST ASKANIA BAROMETER 530530

Comparator Pressure inHg	Askania			Index inHg
29.8037			inHg	
29.7846	15	276.0	30.061	-0.257
29.7900	15	269.0	30.034	-0.249
29.7660	15	270.5	30.039	-0.249
29.7993	15	265.8	30.021	-0.255
29.8257	15	274.9	30.057	-0.258
29.8065	15	280.8	30.080	-0.254
29.8254	15	276.2	30.062	-0.256
29.8243	15	280.2	30.077	-0.252
29.8205	15	280.2	30.077	-0.253
	15	279.4	30.074	-0.254

Standard Deviation 0.003 inHg .

TABLE 2.6

TEST FOR INDEX RESET ASKANIA BAROMETER 530530
Constant Pressure.
Index No.
Reading
Units \quad Temperature

15
15
15
15
15
15
15
15
15
15
280.2
280.1
280.5
280.6
281.3
281.0
280.2
280.8
281.0
281. 0
$16.1^{\circ} \mathrm{C}$
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1

Standard Deviation 0.41 Units ($=0.002$ inHg) .
the pressure range was plotted for the various instruments.
The graph for the Baromec Barometer is given in Figure 2.17 and is significantlyconsistant with the curve obtained three years before. The stability of the curve meant that corrections for the graduation error could be applied. When the reduction is by means of an electronic computer, this correction could be incorporated within the programme.

The testing of the Askania barometer had to be divided into two sections. The first of these consisted of a set of readinge taken throughout the range of one particular scale setting. This was then repeated on a number of other scales. These readings when compared with the comparator readings gave index values. The index values for each scale were then individually plotted. The results showed that the calibration constant had changed by approximately 1% in 3 years (see Figure 2.18). The relevant values were for instrument number 530530.
$19640.003913 \mathrm{inHg} /$ unit reading.
$1967 \quad 0.003875$.

The second test for the Askania barometer consisted of a series of readings for each scale setting to determine the appropriato scale constants. These also had varied in the 3 year period. The results for instrument number 530530 are given in Table 2.7.

1. 302/62

With the revised constants, the readings of the instrument were linear and did not require a correction for graduation error.

TABLE 2.7

SCALE CONSTANTS ASKANIA NO. 530530

Scale	Constant (inHg)		
	1964	1967	Difference
15	28.979	29.935	+0.956
14	28.168	29.115	+0.947
13	27.357	28.292	+0.935
12	26.544	27.473	+0.929
11	25.731	26.655	+0.924
10	24.919	25.846	+0.927
9	24.107	25.040	+0.933
8	23.294	24.228	+0.934

The Wallace and Tiernan Barometers gave a polynomial curve (see Figure 2.19). The variation within the readings themselves however indicates that application of a correction to the readings would not significantly improve readings in the middle range. Some improvement however could be expected with readings towards the edges of the scale.

2.6.3 Drift of the Index Values

Drift of the index values may be subdivided into short and long term variations. All the instruments tested exhibited some

FIG. 2. 19 GRADUATION TEST WALLACE AND TIERNAN BAROMETER N ${ }^{\circ} 55423$
long term variation. The effect with the Wallace and Tiernan and the Askania barometers was to vary the differential pressures. The Baromec barometer however retained significantly the same differential reading.

The surveyor when determining elevations by barometer uses differential pressure over a short period of time. Accordingly, when using Wallace ánd Tiernan or Askania barometers, the instruments should be recalibrated at frequent intervals (say every 3 months). The Baromec should, of course, also be tested but it is not likely that any serious change will be found.

The short term drift is caused by handling the instruments. To test the magnitude of this variation, the comparison readings of the barometers were inspected for a number of field traverses. In addition the barometers were examined before and after student exercises. The apparent differences in all cases were quite small and certainly a large part of the difference could be attributed to random errors of reading. However, there still remained a portion due to drift, and the whole difference was applied as an index correction. The magnitude of the apparent diurnal drift was similar for the three types of instrument and had an average value of 0.010 inHg . The maximum value found was 0.027 inHg .

2.6.4 Hysteresis

To test the parameters for hysteresis, the barometers were placed in the pressure chambers and the pressure lowered to approximately 600 mmHg . The pressure was then suddenly allowed to return to atmospheric. The barometers and the comparator were then read at frequent intervals and the readings compared. The minimum time to take a reading on the comparator was 20 seconds. It was found that all barometers had settled to the point where no significant hysteresis remained after the 20 seconds.

2.6.5 Error due to Temperature

The Askania barometer is extremely sensitive to temperature and is covered by a thick layer of thermal insulating material. In addition a thermometer is built into the instrument to allow the temperature of the instrument to be measured. A temperature correction may then be applied when reducing the readings.

The Wallace and Tiernan barometer whilst not as sensitive as the Askania, is supplied with a temperature correction nomogram. As there is not a thermometer within the instrument, the ambient temperature of the air must be used as the argument for the nomogram.

The Baromec barometer has a high degree of temperature compensation and corrections are not applied for instrumental temperature. This is only valid for temperature changes of $u p$ to
$5^{\circ} \mathrm{C}$ within the duration of the traverse.

The experimental facilities did not permit a complete test of temperature effects on the barometers. However, readings under extreme temperature conditions $\left(35^{\circ} \mathrm{F}\right.$ to $\left.95^{\circ} \mathrm{F}\right)$ were inspected to see whether any systematic effect could be detected. No error was found which could be attributed to temperature. However it is recommended that when using barometers in the field the instruments should be shielded from direct sunlight and should be well ventilated.

2.7 CONCLUSIONS

Of the barometers tested, the Baromec barometer proved the most reliable. The instrument was more robust and well suited to the type of handling encountered in barometer traversing. The consistancy of readings of this type of barometer (standard deviation 0.045 mmHg) is much better than the mathematical model for the atmosphere.

CHAPTER 3

INVESTIGATION OF THE PRESSURE/HEIGHT

RELATIONSHIP IN A VERTICAL COLUMN

The Pressure/Height relationship between atmospheric pressure and elevation has been examined many times (see Chapter 1). 3, 50, 21 The isothermal approach was used in the derivations of Laplace and Airy. More recently, the Lapse-Rate derivation has been used. Both methods yield significantly the same results and these have been empirically verified using rockets and balloons over large elevation differences. These relationships may be valid for a free standing column of air, but as the surveyor is interested in the layers of atmosphere adjacent to the ground, it was felt that a study should be carried out with a static column close to the ground.

A television tower which gave a vertical column of 677 ft . was chosen and pressure units were placed at various levels to determine the pressure profile (seeFigure 3.1). Readings were then taken on a_{o} number of occasions to see whether the profile varied.

3.1 EQUIPMENT

The Baromec Barometer having proved to be the most reliable of the aneroids tested, was selected as the basic unit (see Figure 3.2). This made it possible to undertake the design and fitting of a servo

FIG. 3.1. TCN 9 TELEVISION TOWER SHOWING THE BAROMETER POSITIONS.

FIGURE 3.2 A REMOTE UNIT WITH THE COVER REMOVED.
control for'remote reading on the ground.
Since the Baromec Barometer relies on an electronic contact to indicate the atmospheric pressure, it was possible to use this circuit as the control for the servo motors. To obtain a reading it was thus necessary to complete the electronic circuit and then switch off the motor. This was achieved by placing a latching relay in the control circuit which, when closed, allowed the motor to drive the equipment until the contact was broken, thus releasing the latching relay and reversing the direction of motor drive. The motor then continued to operate until contact was established, at which stage, as the relay was open, the drive came to rest. The readings of the instrument were thus quite impersonal and proved in laboratory tests to be more consistant than hand readings.

A typical laboratory test with the instruments on a bench and hence subject to atmospheric pressure changes is given in Table 3.1. The pressures recorded in the table are the actual readings to which the following index corrections must be applied.

```
Unit A +0.31 mm Hg.
    B +0.45
    C -0.60
    D +3.11
    E -0.02
    F -0.06
    G +0.45
```


These readings show a standard deviation of 0.06 mm Hg which corresponds to approximately 2 feet of elevation. It should be noted that if the mean of several readings was taken, then the results is significantly improved. Accordingly, in the tower tests, multiple readings were taken to increase the accuracy.

Relaying the readings to the ground proved to be a problem when seven units were employed. A number of possible solutions were tried but generally interference with the remote readings of adjacent units was detected. The final solution isolated each unit and proved quite satisfactory in the laboratory and in the field. The method employed a segmented wheel in the primary drive of each unit with carbon brushes picking up signed pulses and relaying these to the Control Unit by a single-wire signalling technique.

Each remote unit included a thermister circuit to measure the temperature. By balancing the lengths of the leads, the temperature could be read directly from the scale of a micro-ampmeter. The basic circuit is given in Figure 3.3.

The readings of the barometers were deduced from the differences of the two counters for each unit - one measuring the increases in the micrometer readings and the other the decreases.

The Control Unit contained the necessary circuits to control the seven Remote Units and to record the change in readings (see Figures 3.4to 3.6).

FIG. 3.3 BASIC CIRCUIT DIAGRAM FOR THERMISTER CIRCUITS.

FIG. 3.4 CIRCUIT DIAGRAMS FOR THE REMOTE BAROMETER UNITS, THERMISTERS AND CONTROL UNITS.

FIGURE 3.5 THE CONTROL UNIT.

FIGURE 3.6 POWER SUPPLY FOR THE TOWER PROJECT

Due to the meccano gearing and chain drive incorporated in the gear box, there was a small amount of slackness within the system. This was overcome by taking the final motion before reading always in the same direftion. The gear ratio could not be directly calculated and so each unit was calibrated to obtain the constant multiplier required to convert the differences of counter readings into differences of pressures. This was carried out by reading the barometer and the counters at different pressures. The pressures were changed between readings until the counters had varied by approximately 60,000 units. The constants were then deduced by a least squares method.

Denoting the difference in Barometer reading as $\Delta \mathrm{P}_{\mathrm{i}}$ the difference in counter readings as ΔR_{i} and the constant as C.

Then the parametric equations are:

$$
\begin{aligned}
& \Delta R_{1} \cdot C-\Delta P_{1}=0 \\
& \Delta R_{2} \cdot C-\Delta P_{2}=0 \\
& \Delta R_{n} \cdot C-\Delta P_{n}=0
\end{aligned}
$$

which give the normal equation as:

$$
\left[\Delta R^{2}\right] \cdot C-[\Delta R \cdot \Delta P]=0
$$

or

$$
\mathrm{C}=\frac{[\Delta \mathrm{R} \cdot \Delta \mathrm{P}]}{\left[\Delta \mathrm{R}^{2}\right]}
$$

and the variance of the constant as

$$
\sigma^{2}=\frac{[\mathrm{vv}]}{\left[\Delta \mathrm{R}^{2}\right](\mathrm{n}-2)} .
$$

A typical set of readings for the evaluation of the constant is given in Table 3.2 for which the constant was evaluated as 0.0063994 with a standard deviation of 0.0000003 . This was repeated using each of the seven instruments and gave a final value of the constant as 0.0063995 with a standard deviation of 0.0000003 .

This constant was used throughout the field tests and proved to be extremely reliable.

Although quite satisfactory for the three months of field service, it is felt that some minor modifications would give a longer and more reliable experimental life. The main improvement would be to replace the segmented wheel by a wheel incorporating a number of small bar magnets which when revolved would actuate a proximity reed switch.

3.2 RESULTS

Readings were obtained on seven different occasions thus providing sufficient data for a statistical analysis. The actual pressures obtained are given in Table 3.3. To facilitate the reductions a computor programme (SVY 24) was written and the field readings were then processed.

The basis of reduction was to adopt the highest point G as a fixed base and deduce the resultant errors in the other positions by 3 different formulae, viz

1. ICAN
2. Laplace
3. Airy

As the field temperatures were read on the ground (i.e. at station A), these were reduced by $2.41^{\circ} \mathrm{F}$ which according to the Lapse Rate of $3.56^{\circ} \mathrm{F} / 1000 \mathrm{ft}$. should give the temperatures at Station G. This was verified using the thermister circuits which were incorporated in each of the tower units.

The resultant height values indicated that the ICAN, Laplace and Airy Formulae all gave consistent results, but these did not agree with the known height differences. This seemed improbable and so a check was made on the height differences.

A point was chosen from which all the tower stations were visible and the distance from this point to the tower was measured using a Tellurometer. The vertical angles to the tower stations were then measured and the height differences calculated (see Table 3.4).

TABLE 3.4

Station	Vertical Angle	Height Difference From G	
A	-0°	16^{\prime}	$09^{\prime \prime} .5$
B	-0	03	03
C	+0	26	53.5
D	+1	11	50
E	+2	04	12
F	+3	52	47
G	07	08.5	-675.6 Ft.

These heights agreed with those scaled off the construction plans for the tower and were adopted.

The differences of height calculated from the barometer readings were then inspected. They showed a general tendency in spite of the scatter but the tendency was reversed in the 100 feet closest to the ground. This reversal is due to the presence of non-uniform conditions in this region viz. rapidly changing temperature and humidity profiles. 49 Accordingly the readings at A and B were not used for the subsequent redetermination of the constants for the Standard Atmosphere. In
practice, since the field readings must be within this band of atmosphere within 100 ft . of the ground, the assumption must be made that similar temperature and humidity profiles are applicable to all field readings at a given instant. This will give an equal systematic error in the elevations of all points at that instant and hence a reasonable height difference.

Returning to the readings of stations C to G, the tendency to deviate from the known values when the height differences were determined from the ICAN Standard Atmosphere appeared to follow a curved line. Since the ICAN Formula is basically:

$$
h=C_{1}\left(\frac{P_{1}}{P_{o}}\right)^{C_{2}} \quad(1+\text { Temperature Correction })
$$

where

$$
\begin{aligned}
& C_{1}=145367.59 \\
& C_{2}=0.19023
\end{aligned}
$$

it was realized that the results could be improved by varying the values of the two constants. This was carried out by modifying the computer programme SVY 24 to allow for the variation of the constants. The mean pressures for day D were then used to establish the line of best fit which was then tested against the mean pressure for day E. This
line of best fit gave the new constants as:

$$
\begin{aligned}
& C_{1}=143831.87 \\
& C_{2}=0.18910
\end{aligned}
$$

Once the values of the constants had been determined these were used to recalculate the errors in the heights for all pressure readings. These are calculated for the ICAN Standard Atmosphere in Table 3.5. The new constants which determine the New Standard Atmosphere (to avoid confusion this has been called the Assumed Standard Atmosphere (ASA) were used to give the results in Table 3.6.

The ICAN results have a standard deviation of 8.0 Ft . while the ASA results have a standard deviation of 4.7 Ft . This reduction was significant enough to warrant the recalculation of all the field readings in the latter Chapters using the Assumed Standard Atmosphere.
table 3.5 tower results using the ican atmosphere

table 3.6 TOWER RESULTS USing the assumed standard atmosphere
NO CALCULATED ELEVATION ERRORS

CHAPTER 4

FIELD TECHNIQUES AND ISOBARIC SURFACE

So far, the application of the pressure/height relationship has been restricted to a vertical column. When the two points have a lateral separation, a most important assumption must be made and this is that the surface of equal pressure or Isobaric Surface is a plane parallel to the datum plane. In practice this surface is neither plane nor parallel to datum. ${ }^{5,31}$

The surface is in fact similar to any other equipotential surîace in that when the surface lies close to horizontal it will approximate a plane. When tilted the surface tends to buckle and finally becomes very irregular. This is analogous to the surface of a lake and a swiftly flowing mountain stream. The extent of the buckling depends on the tilt of the surface and the determination of the apparent tilt is most important when more precise results are required. $50,41,17,34$

The tilt may be determined if pressure readings are obtained simultaneously at three points of known elevation.

The elevation for the pressure reading at each point may then be calculated using a standerd atmosphere. The known differences in elevation together with the known lateral displacements allows the
apparent tilt of the surface to be calculated. For convenience, this is generally expressed in feet of tilt/mile. The actual calculations are described in Chapter 6. The two dimensional case is shown in Figure 4.l in which the elevations of two points A and B are known. From the pressure readings the elevation of the Isobaric Surface which passes through A is determined for the vicinity of point B. In Figure 4.1 (a) the surface has equal elevations near A and B and so the surface closely approximates a plane, parallel to the datum plane. In Figure 4.1 (b) the surface is much higher at the vicinity of B and thus the Isobaric Surface departs from the plane.

A number of field techniques have been devised which attempt to obtain elevations for laterally displaced points and it is advisable that the limitations of each technique to be examined in order that misleading results can be avoided. The techniques may be summarized into groups.
4.1. DIURNAL CURVE METHOD. 5,50,56

This method is frequently used in the tropics or well inland for large continents. Repeat readings at one station show that the variation of pressure throughout the day follows a predictable pattern called the Diurnal Curve. Once the Diurnal Curve has been established, a single barometer may be read at a point of known elevation or base station and then taken to a number of field stations. The pressure reading for the particular instant of time is then inferred for the base station and the

DATUM
(a)

DATUM
(b)

FIG. 4.1 ISOBARIC SURFACES
difference in elevation calculated. This method suffers from two major defects.
a) The Isobaric Surface uncertainties,
b) There is no way of detecting the passage across the area of an atmospheric disturbance.
4.2 SINGLE BASE METHOD $5,28,42,43,44,50,56$.

This method is probably the most frequently used in practice. Two barometers are used, one of which remains at the base while the other is moved around the field stations. Inspection of the base readings will disclose any major atmosphere disturbance (and hence the rejection of field readings near that time) but small disturbances may be masked by the Diurnal Curve and hence be difficult to detect. The method assumes that the Isobaric Surface will be plane and parallel to Mean Sea Level. It has been shown that tilts of the surface of up to $3 \mathrm{ft} . / \mathrm{mile}$ are fairly common and this should be remembered in assessing the reliability of the computed elevations for distant field stations. To make the method more economic a number of field barometers may use the same base barometer.
4. 3 THE LEAP-FROG METHOD ${ }^{5}, 23,29,43,44,50,56$

In this method two barometers are used with one remaining stationary whilst the other "leap-frogs" over it. Thus the stationary barometer may be used as a local single base during the calculation of the elevation of the forward station. The traverse should start at a point of
known elevation, and pass through other known points as often as possible. The misclose in elevation at each of these points is adjusted by a straight forward linear interpolation.

By keeping the distance between barometers to a minimum, the possibility of a differential effect from a pressure disturbance is reduced but the effect of the tilt of the Isobaric Surface remains. It has been shown that this tilt although varying in magnitude may lie in a particular direction for several days. ${ }^{17}$ This will cause a systematic drift in the calculated elevations. Further, should there be a differential effect from a pressure disturbance or a simple reading error at one field station, this error will be carried into all subsequent elevations.

Since the method is slow in the field in that one barometer is always stationary and in view of the above remarks, this method is not recommended (see Chapter 5).
4.4 THE TWO BASE METHOD ${ }^{5,29,39,42,44,50,52,53,56}$

In an attempt to compensate for the tilt of the isobaric surface, two base stations are chosen such that one is above and the other below the heights of the required field stations. Only the pressure and time is recorded at the base and field stations and the calculation is carried out by simple proportions. This is illustrated in figure 4.2. The proportions may be expressed mathematically by the formula:

$$
\Delta \mathrm{E}_{2}=\frac{\Delta \mathrm{P}_{2}}{\Delta \mathrm{P}_{1}} \cdot \Delta \mathrm{E}_{1} .
$$

FIG. 4. 2. THE TWO BASE METHOD

The method has the advantages of simplicity of field readings and calculation and does not rely on a Standard Atmosphere. The disadvantages are that there is no attempt to remove the effects of tilt of the Isobaric Surface since the formula does not take into account the horizontal position of the points. Even when the field station lies directly between the base stations the systematic error will not be removed since points of equal elevation along the line joining the base stations will have different pressure readings dependant on position.

4.5 THE MULTIPLE BASE METHOD ${ }^{\text {37, 41, 44, 45, 50, } 55}$

For this method, a barometer is placed at each of three points of known elevation and co-ordinates. Simultaneous readings of the barometers will then allow the tilt of the apparant Isobaric Surface to be determined. Corrections for this tilt may then be applied to the calculated elevations of field stations which rely on pressures recorded at that time.

The tilt of the lsobaric Surface may be determined by increasing the base readings by an amount dependent on their differences in elevation from sea level or a selected pivot station. Comparison of these "reduced level" readings will indicate the magnitude and direction of the tilt. ${ }^{45}$ The corrections for field readings may then be interpolated.

A simplier approach is to use one of the three bases as the main base and reduce all readings including the field reading by the Single Base Method using this base. The differences between the known and
calculated elevations of the bases give the necessary data to deduce the tilt magnitude and its direction.

Since this technique was used as the basis of the study of the isobaric surface, further description will be deferred (see Section 4.6).

4.6 ISOBARIC SURFACE INVESTIGATION

Since any assessment of possible accuracy must be dependent on the fluctuations of the Isobaric Surface, it was decided to position five barometers on points of known elevation and to take a series of readings to determine the nature of these fluctuations. This was carried out on four different days in two different locations namely Sydney and Cootamundra.

In the Sydney Test, which was called the City Traverse Area, the stations St. Paul's, Centennial, Liverpool, Ryde and Beverly Hills were placed to encompass an area slightly in excess of 100 square miles (see Figure 4.3). For the Cootmunundra tests two different patterns were used. On the 28th February, 1966, the stations Harefield, Qandialla, Pettits and Yeo Yeo encompassed 1,000 square miles whilst on lst March, 1966, the stations Batlow, Wagga, Monteagle, Yeo Yeo and Quandialla were choser to enclose some 3,000 square miles (see Flgure 4.4).

A number of methods for the analysis of the readings were considered before deciding on the method finally adopted in this thesis. The method has the advantage that it may be used for this investigation and also for the reduction of normal field traverses. Basically, the method

CENTENNIAL ©

 215^{\prime}
\triangle LIVERPOOL

 $60^{\prime}$$\triangle \underset{110^{\prime}}{ }$ BEVERLY HILLS

FIG. 4.3 CITY TEST AREA

\triangle QUANDIALLA \qquad

MONTEAGLE © 1627^{\prime}

\triangle YEO YEO
 1124^{\prime}

\triangle HAREFIELD
© PETTITS
797

\triangle wagga

609^{\prime}
2544^{\prime}
FIG.4.4 COOTAMUNDRA TEST STATIONS.
takes one station as Base A and then calculates the single base elevation for the remaining stations. Comparison of these values with the known elevations gives the Single Base Errors. When two of these stations are selected as base B and base C, the tilt of the apparent Isobaric Surface and the direction of this tilt may be calculated. From these values, corrections to the calculated elevations of the remaining points may be deduced. The final elevation is then compared with the known elevation to give the Multiple Base Error. A statistical study of these Multiple Base Errors gives the resultant error due to both instrumental errors and the divergence of the Isobaric Surface from the apparent Isobaric Plane. Since this error must be directly related to the errors obtained during a field traverse, its magnitude is of prime importance.

The number of results involved necessitated the use of some mechanical method of processing. To this end a computer programme SVY 16 was prepared which automatically plotted the Single Base Errors and the Multiple Base Errors.

Each graph was obtained by joining the appropriate number by lines. It should be noted that the smaller numbers may be overwritten by a higher number. The plot also gives the time of the reading together with the tilt direction in degrees and the tilt in feet per mile.

The computation of the field readings using the Assumed Standard Atmosphere has been tabulated in Appendix II and the graphical summaries are shown in Tables 4.2 to 4.4 . For comparison the results using the ICAN Standard Atmosphere are given in Tables 4.5 to 4.8 .

Tables 4.1, 4.2, 4.5 and 4.6 give the results for the City Area for the 26th and 28th May, 1959. Graphs 1, 2, 3 and 4 are the Single Base Errors at Liverpool, Centennial, Beverly Hills and Ryde respectively with the base at St. Paul's. Graphs 5 and 6 are the Multiple Base Errors at Beverly Hills and Ryde.

Tables 4.3 and 4.7 show the results obtained for the 1,000 square mile area at Cootmunundra. Graphs 1, 2 and 3 give the Single Base Errors at Quandialla, Pettits and Yeo Yeo based on Harefield. Graph 4 gives the Multiple Base Error at Yeo Yeo.

Tables 4.4 and 4.8 show the results for the 3000 square mile area at Cootamundra. Graphs 1, 2, 3 and 4 give the Single Base Errors at Wagga, Monteagle, Yeo Yeo and Quandialla respectively based at Batlow. Graphs 5 and 6 give the Multiple Base Errors at Yeo Yeo and Quandialla.

The graphs clearly illustrate the fact that for small tilts the Multiple Base Errors will tend to be small. For large tilts, the errors will tend to be large and when the tilt is changing, the errors will tend to be large and when the tilt is changing, the errors will tend to fluctuate. It will also be seen that the atmosphere is somewhat unstable at two periods of the day. These periods (at approximately $10 \mathrm{a} . \mathrm{m}$. and $4 \mathrm{p} . \mathrm{m}$.) correspond to the periods at which temperature inversions will be applicable and indicate a general instability of the atmospheric structure. Accordingly, it is recommended that field readings should not be taken at these times.

Further, the correlation between the two Multiple Base Errors, indicates that in fact at least four bases should be employed in order to obtain an accurate determination of the Isobaric Surface for the reduction of field traverses.

It is also quite instructive to contrast the results of Table 4.1 to 4.4 with Tables 4.5 to 4.8 which is the same data computed with the ICAN Standard Atmosphere. It will be seen that such comparison completely justifies the adoption of the new Standard Atmosphere. This has been the case whenever the comparison has been made.

4.7 CONCLUSIONS

Pressure readings taken with a stationary barometer will tend to be more reliable than those taken with a barometer subjected to the vibrations and shocks of normal field transport. Conclusions based on the foregoing results will thus give an estimate of the results of field traverses. The computer programme SVY 26 was used to obtain the first, second and third moments of the results. The results for these calculations are given in Appendix VII. Obviously the results on any given day are subject to systematic errors and this was borne out by the large values of the third moments. The significant reduction in the third moments for graphs 5 and 6 however, indicates that the systematic errors have been greatly reduced by the Multiple Base method.

The presence of these systematic errors made doubtful the use of a normal statistical approach. Instead, the average and the maximum error were estimated for each class interval of tilt using
the computer programme SVY 46. These values are also given in Appendix VII.

The mean errors for the Multiple Base Method for the days of 26th and 28th May, 1959 give an indication of a trend related to the tilt of the Isobaric Surface. This trend shows that the minimum value of the mean error occurs with tilts of the Isobaric Surface less than 1 foot/mile. Once the tilt exceeds this value, the mean error increases. The results of the 28th February and lst March, 1966 show the same tendency. Further the distance of the field stations from the base stations has a definite correlation with the magnitude of the mean error.

When these errors were analysed the mean error for the Multiple Base Method was found to conform to the formula:

$$
\text { Mean Error }=C_{1}+.3 \times D_{1}+.2 \times \mathrm{T}^{2} \times D_{1}
$$

where $\quad C_{1}$ is the standard deviation of reading for the
particular make of barometer (ft.),
D_{1} is the distance of the field station from the
nearest base station (miles),
and T is the tilt of the Isobaric Surface (ft/mile).

The values of C_{1} for several types of barometer are given in Chapter 2.

The maximum error for the Multiple Base method due to fluctuations of the Isobaric surface cannot be determined. However, an estimate of the value can be made for days on which pressure abnormalities are not apparent. This estimate is twice the calculated mean error.

$$
\begin{aligned}
& e^{*} \\
& +
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{N} \\
\mathrm{~N}+\mathrm{N} \\
+
\end{gathered}
$$

$$
+\infty
$$

$$
\frac{1}{2}
$$

$$
\begin{gathered}
\text { BASE ERRORS USING } \\
\text { CITY AREA } \\
28 \text { MAY }
\end{gathered}
$$

$$
\begin{gathered}
* \\
+10
\end{gathered}
$$

$$
N_{m}
$$

SINGLE AND MULTIPLE bASE ERRORS USING THE ICAN ATMOSPHERE
-30
$*$

$-$

$\underset{+}{\underset{\sim}{N}}$
N

v

$$
\begin{aligned}
& \mathrm{O}^{*} \\
& +
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{O} \\
& + \\
& +
\end{aligned}
$$

VN

$$
\frac{0}{4}
$$

$$
N_{N}{ }_{N}^{+}
$$

$$
N^{N} N
$$

$$
+\cdots
$$

$$
\div \frac{0}{+}
$$

$$
\frac{0}{1}
$$

$$
\begin{array}{ll}
\infty \\
+ & \cdots \\
\cdots
\end{array}
$$

$$
\text { TABLE } 4 \text { ST STNGLE AND MULTTPLE BASE ERRORS USING THE IGAN ATMOSPHERE }
$$

m*NN N

 Himm

CHAPTER 5

FIELD TRAVERSES

Four traverses were made in the Sydney Area in order to assess the accuracy to be expected in a barometer traverse. Three base stations and a number of field stations of known elevation were utiiized for the traverses. The field stations were permanent marks placed by the Survey Co-ordination Branch of the New South Wales Department of Lands as part of the First Order Levelling around the city of Sydney. The marks are at one to two mile intervals and generally follow main arterial roads. This made them ideal stations for the traverses as it greatly simplified the problems of transport. For barometric heighting, however, they were not always ideal as the local topography and buildings in the immediate vicinity could have caused significant local turbulences. This effect was not apparent in the results as the errors from other causes were far more significant.

The area of the traverses was approximetely 100 square miles and the positions of the field stations were as indicated in Figure 5.1.

FIG. 5.1 BAROMETER TRAVERSE STATIONS - CITY AREA

For some twenty years, many authors have advocated the use of either the Two Base or the Leap-frog method. $5,23,29,39,42,43,44,50,52$, 53, 56 .

Accordingly the field work was designed to allow a comparison to be made between these methods and the Multiple Base Method. Thus on the 6th and 7th of December, 1955, two field barometers were used in the Leap-frog manner. At the same time, three base stations were also occupied. This allowed the barometer reading to be reduced by each of the three methods.

In addition the Multiple Base traverse of the 22 nd and 23 rd of May, 1956 was reduced by both the Multiple Base and Two Base methods.

The field procedure adopted was to compare all barometers simultaneously to obtain index corrections. One barometer was then sent to each of the base stations (St. Paul's, Liverpool and Centennial) and read at quarterwhourly intervals. The remaining barometers were then traversed around the field stations with index checks against a base instrument when in the vicinity of that base. At the end of the day's traverse, the barometers were again compared to give new indices. Any drift in the index was apportioned linearly throughout the readings.

The reading of the base instrument at the instant of a field reading was then deduced by linear interpolation between the relevant base readings.

The reduced readings thus had been corrected for index and drift prior to entry into the computation.

The reduced readings of pressure, together with the time, station name, co-ordinates, known elevation and temperatures were then punched into computer cards for input into the appropriate programme. The basis of computation and a description of the computer programmes are given in Chapter 6.
5.1 MULTIPLE BASE TRAVERSE

The traverses of the 22 nd and 23 rd May, 1956 and 6 th and 7 th of December, 1955 were calculated using the Multiple Base Method (Computer Programme SVY 19). Both the ICAN and ASA Standard Atmospheres were used to allow a further comparison to be drawn between them. The results for the ASA Standard Atmosphere are given in Appendix III and summaries for both atmospheres are given in graphical form in the following Tables.

Tables 5.1 and 5.2 give the results for the traverses of the 22nd and 23rd May respectively using the ASA Atmosphere. Tables 5.5 and 5.6 give the results from the same data using the ICAN atmosphere. The base stations were St. Paul' $£$, Liverpool and Centennial. Graphs 1, 2 and 3 give the errors resulting from Single Base Computations based on St. Paul's for Liverpool, Centennial and the field station respectively. Graph 4 shows the error for the field station when the Multiple Base method is applied.

Tables 5.3, 5.4, 5.7 and 5.8 show the results for the traverses of the 6th and 7th December using both Standard Atmospheres. The base stations were again St. Paul's, Liverpool and Centennial. Graphs 1, 2, 3 and 4 give the Single Base errors based on St. Paul's for Liverpool, Centennial and the two field stations. Graphs 5 and 6 give the resulting errors for the field stations when the Multiple Base method is applied.

5.2 LEAP-FROG METHOD

The readings for the 6th and 7 th of December, 1955, were then reduced using the Leap-frog method (computer programme SVY 43) and the ASA atmosphere. The results for this calculation are given in Appendix IV and are summarised in graphical form in Tables 5.9 and 5.10 .

In practice, the only check on the reliability of the calculated field elevations is given by the difference between the known elevation and the calculated elevation of any fixed station included in the traverse. This difference is called the misclose and if it is sufficiently small the traverse is assumed to be reliable and the misclose is then applied in a linear manner to the intermediate field elevations. The output from SVY 43, consists of the known station, the number of stations and the misclose. This is then followed by the field results in the form:
time, station, error in adjusted field elevation,
On the 7th of December, the two miscloses (0.9 and -7.5 feet) were quite small and indicated that the field elevations should be quite precise. This conclusion was borne out by an analysis of the errors
which gave the following results:

Average error	3.3 feet.
Maximum error	7.8 feet.

These figures are of the same magnitude as those found by other investigators.

On the 6th December, the misclose was -0.4 and it thus appeared that the results would be of the same precision as the 7 th December results. This however, was not the case as indicated by the results:

Average error	9.6 feet.
Maximum error	26.0 feet.

Within the field readings themselves there is no indication that the results are not reliable. The only conclusion that may be drawn therefore is that the Leap-frog method may only be used when an average error of up to 10 feet with a maximum error of up to 30 feet may be tolerated.

It is most instructive to contrast these results with those obtained by the Multiple Base method. In the latter the high degree of tilt and its variability immediately indicate that the results will be unreliable.

Since small atmospheric disturbances which are not readily detected in the field readings are quite common, it was felt that the method should not be recommended. Further, the field procedure is quite slow as one field barometer must always remain stationary.

5.3 TWO BASE METHOD

The readings for the 22nd and 23 rd May, 1956 and the 6 th and 7th of December, 1955 were also reduced by the Two Base method (computer programme SVY 42). The results of this calculation are given in Appendix V and are summarised in graphical form in the Tables 5.11 to 5.14 respectively. In each Table graph 1 gives the result of the calculation using St. Paul's and Liverpool as the two bases. Graphs 2 and 3 give the results using Liverpool/Centennial and Centennial/St. Paul's respectively as the two bases.

As with the Leap-frog method the average errors and the maximum errors are generally within acceptable limits. However on one day, 6th December, a number of errors are in excess of 100 feet. As before, from the readings there is no indication in the method of calculation of the unreliability of the results. Admittedly, the stations at which these larger errors occurred were some fifteen miles from the direct line joining the two base stations and also at elevations some 400 feet in excess of the higher base giving a field to base difference in elevation of 3 to 1 . However, since these conditions are frequently encountered in practice, it was felt that the method suffered from serious limitations and could not be recommended for general use.

5.4 CONCLUSIONS

The Multiple Base errors were examined to see whether they conformed to the hypothesis suggested in Section 4.7. As the field barometers were moved from station to station between readings, it follows that the distances from the field station to the nearest base station varied. This made the analysis difficult and so a random sampling of the results was made. The errors examined in this way conformed to the hypothesis.

The expected error (or mean error) for a typical field station may thus be determined by the application of the formula in Section 4.7.

To determine the reliability of a series of elevations for field stations surrounding the base stations, the errors were again examined by the programme SVY 46. The mean error for the Multiple Base method was found to conform to the formula:

$$
\begin{aligned}
& \text { Mean Error }=C_{1}+.3 \times D_{2}+.2 \times \mathrm{T}^{2} \times \mathrm{D}_{2} \\
& \text { where } \quad C_{1} \text { is the standard deviation of reading for } \\
& \text { the particular make of barometer, }
\end{aligned}
$$

The maximum error for the Multiple Base method is estimated as double the calculated mean error.

The Leap-frog method is not recommended and the Two Base method should be restricted to special cases in which the topography has a uniform slope from one base station to the other. When a more reliable result is required, temperatures may be recorded and the Multiple Base method of reduction modified by assuming that base B and C are the same station.

0%
+
+

$$
m_{m=-1}^{m-1} m_{m}^{m-1} m^{m-1}+
$$

$$
N
$$

$$
0 * N \sim
$$

N

$$
\because \frac{0}{1}
$$

-30
$*$

$0 \infty \rightarrow$ HO

manovoriomtNoooinoinotatanoroinomatrmannowt

114.

m^{*}
+
49
$\underset{+}{+}$
O
+
$\stackrel{-}{+}+$
n
$+\frac{0}{4}$

N
TABLE 5.11 2 BASE ERRORS

manovoromyNooonolnotatamoronomotrman-bovi raの

\cdots			
$\underline{0}$	0	0	\bigcirc
0	N*		\cdots
2	1		N
α			1
\pm		N	
U		n	
\cdots		\bigcirc	
\square		$N N$	
∞		\cdots	
		$m 0$	0
N	m**	000	\cdots

$\because O$
+
O
\times
+
$\because \frac{0}{4}$
$\operatorname{HN}_{\mathrm{N}} \mathrm{n}_{\mathrm{n}} \mathrm{mt}$
0
0

 ONmJINONM thOOLOHNMTOWNMTHONMJIONJONNONM

CHAPTER 6

THE METHODS OF COMPUTATION OF RESULTS

To facilitate the computation of results from the field readings a number of methods were used. These range from specially prepared tables to nomograms and electronic computer programmes. Each method has its limitations and these must be appreciated before the choice of reduction method for a particular case is made.

6.1 STANDARD ATMOSPHERE TABLES

Various people and organisations have at different times proposed relationships for the decrease of pressure with elevation. However it has been shown (see Chapter 3) that these do not give satisfactory results in the region of importance to surveyors. Instead the new atmosphere (Assumed Standard Atmosphere) has been used throughout. A computer programme was developed to give a table of standard elevations for the range of 600 mm to 800 mm of mercury by 0.1 mm steps (see Appendix 1).

6.2 SINGLE BASE REDUCTIONS

The field readings are reduced for any index drift and instrumental correction and the elevation in the Standard Atmosphere interpolated from the above tables. The difference in elevations from this Standard Atmosphere between the traverse station and the base
station gives the approximate difference in elevation between the two stations. A temperature correction (calculated using a slide rule) is then applied to this difference to give the calculated difference in elevation.

$$
\Delta H_{\text {calc }}=\Delta H_{\text {approx. }}\left(1+\frac{T_{F}+T_{B}-2 T_{S A}}{1000}\right)
$$

where
T_{F} is the Temperature in Fahrenheit at the Traverse Station T_{B} is the Temperature in Fahrenheit at the Base Station $T_{S A}$ is the Temperature at the mean elevation in the Standard Atmosphere.

This formula, although not rigorous, gives a sufficiently close approximation for small differences in height (say up to 1000 ft .).

A better approximation was used as the formula for the computer programme but it was felt that for the differences in elevation usually involved, the simplicity of the above formula should be utilised for hand calculations.

The resultant difference in elevation is then applied to the known elevation of the base station giving the calculated elevation of the traverse station and is the result for the Single Base Computation. Comparison of this value with the known elevation gives the Single Base Error.

A typical example of this type of calculation is given in Tables 6.1 and 6.2. It is recommended that the field readings should be entered directly onto a proforma such as those in the tables. This eliminates the chance of a transciption error and saves a lot of time at the calculation stage. The example given shows the field barometer stationary as these readings were part of an isobaric gradient determination and hence the elevations of both stations were known. The same proformas may be used for a normal field traverse. When the traverse reaches a point of known elevation the calculation proceeds as before giving an error at that station. The error is then apportioned linearly as a correction back to the last known elevation.

6.3 MULTIPLE BASE REDUCTIONS

One of the three bases is designated as the main base and the other bases together with the field readings are reduced by the Single Base Method as outlined above. The resulting errors of the bases thus calculated allows the tilt of the isobaric plane and its direction at a given time to be determined. ${ }^{16}$ This can be established visually, with an interpolating frame ${ }^{50}$ or by means of the nomogram (vide next Section). The correction to the field station is then deduced and applied to give the final Reduced Levels in Table 6.3. The determination of the tilt in feet/mile is of prime importance as this gives an indication of the reliability of the final Reduced Levels (vide Chapter 7).

TABLE 6.1

BASE READINGS

Instrument	Mechanisms		$307 / 62$ Observer	
Date	B. Humphries.			
Time	0900	0910	0920	0930
Station	Base A	Base A	Base A	Base A
Temp. Dry	67.9	67.4	67.5	69.0
Reading	753.52	753.41	753.43	753.34
Index	+0.28	+0.28	+0.28	+0.28
Corr. Read.	753.80	753.69	753.71	753.62
Elev. St. Atmos.	222.7	226.7	225.9	229.2

TABLE 6.2

FIELD TRAVERSE READINGS

Instrument Date	Mechanisms $12.10 .64$	$\text { is } 308 /$	Obse Weat	A. Spe Mild
Time	0900	0910	0920	0930
Station	STN 1	STN 1	STN 1	STN 1
Temp. Dry	64.5	63.0	63.0	67.0
Reading	735.31	735.33	735.22	735.24
Index	+0.66	+0.65	+0.65	+0.64
Corr. Read.	735.97	735.98	735.87	735.88
Elev.St. Atmos.	871.3	870.9	874.9	874.5
Base Elev.S.A.	222.6	226.6	225.8	229.1
Δ^{\prime} Elev.	+648. 7	+644.3	+649.1	+645. 4
Base Temp.	67.9	67.4	67.5	69.0
Temp.St. Atmos,	57.2	57.2	57.2	57.2
Temp. Corr.	+11.7	+10.4	+10.5	+14.0
\triangle Elev.	660.4	654.7	659.6	659.4
Base R.L.	76.0	76.0	76.0	76.0
Field R.L.	736.4	730.7	735.6	735.4
Corrn.	-	-	-	-
Final R.L.	-	-	-	-
Known R.L.	741	741	741	741
Error	-4.6	-10.3	-5.4	-5.6

TABLE 6.3
MULTIPLE BASE REDUCTION

Time	1445	1500	1505	1510
Field Stn.	Beverly Hills	Bev. Hills	Bev. Hills	Bev. Hills
Field Stn. Elev.	106	111	112	109
Base B. Error	-6	-1	-1	-2
Base C. Error	-9	-4	0	-2
		0.8	250°	N.A.
Tilt Ft/Mile	340°		180°	
Direction	+10	116	0.0	+2
Correction			112	111
Final Elevation	116			

6.4 NOMOGRAM FOR THE DETERMINATION OF TILT

Since the same field stations were used on a number of occasions, a nomogram was designed to facilitate the calculation of the Tilt of the Isobaric Surface in feet/mile and the bearing of the tilt. The nomogram is quite simple to construct and is recommended for larger areas where visual interpolation is rendered extremely difficult by the numerically larger errors involved.

The principle of the nomogram is the graphical determination of the intersection of the horizontal plane with the isobaric plane. This may be found by graphically (Figure 6.1) determining the point on the line from Base B to Base C at which there will be no correction. This point when joined to Base A gives the intersection of the two planes. The bearing of the line $+90^{\circ}$ gives the bearing of the tilt. It is then a simple matter to measure the perpendicular distance from the line of intersection to either Base B or C and knowing the error at that point, to deduce the rate of tilting. This may also be carried out on the nomogram by constructing two circles each with a diameter of Base A to the other Bases. Since the angle in a semicricle must be a right angle, the intersection of the strike or line of intersection of the two planes with either circle gives the foot of the perpendicular from the relevant base. The circles are then graduated with distances from the bases and the tilt distance directly read off.

FIG. 6.1 TILT OF THE ISOBARIC SURFACE

To construct the nomogram, the base stations are plotted according to their co-ordinates and the lines joining the three stations drawn (see Figure 6.2). At right angles to the line joining Base B and Base C suitably graduated lines are drawn through each point to represent the errors. Circles are then drawn with $A B$ and $A C$ as diameters and the distances marked in miles from each station to points on their circumferences. Lines are then drawn from A through each of these marks to line BC where the appropriate distance graduation is noted.

A 360° Protractor is then placed over station A with its zero east. The 10° Divisions are then projected onto the line BC giving the tilt bearing. An auxiliary scale is then drawn to divide the error by the tilt distance to give the tilt in feet per mile.

To use the nomogram, it is simply a matter of placing a straight edge on the error graduations at B and C and reading off the tilt bearing and distance. The straight edge is then moved to the auxiliary scale to give the tilt/mile.

When the field barometers are stationary, it is a simple matter to construct an additional scale on the main nomogram to give the correction to be applied at that particular station.

6.5 COMPUTER PROGRAMMES

The vast amount of repetitive calculation required for the reduction of the field readings necessitated the use of some computing device. The availability of electronic digital computers solved the

problem and so extensive use has been made of these machines. Programmes were written for the following calculations.
a) A Standard Atmosphere.

SVY 12
b) Isobaric Surface Investigation.

SVY 14
c) Barometer Traverse Reduction.
d) Tower Readings Reduction.

SVY 19 SVY 42 SVY 43
e) Automatic Graphing.
f) Analysis of Summaries.

SVY 24
SVY 16
SVY 26, SVY 44

In each of these programmes, corrections were applied for temperature and humidity as indicated in Sections 6.5.1 and 6.5.2.

Each programme was written in FORTRAN for one or more of the following computers.

1. The Institute of Highway and Traffic Computer. This is an I B M 1620 Computer with 20 K digits memory, card input and disc storage.
2. The D.U.C.H.E.S.S. Computer. This is an I B M 1620 computer with 40 K digits memory, card input, a fast line printer and disc storage.
3. Technicomps Computer. An I B M 1130 computer with paper tape input and disc storage.
4. The Computations Laboratory, U.N.S.W. An I B M 360-50 computer with all the appropriate ancillaries.

The coded programmes are listed in Appendix VI.

6.5.1 TEMPERATURE CORRECTION ${ }^{5}$

When using the Lapse-Rate Formulae, the temperature correction takes the form of a series expansion. Until recently only the first term of the expansion was applied. ${ }^{24,51}$ Colonel D. R. Crone has shown that the second term cannot be neglected for precise work as its effect is significant. The formula for temperature correction, as given by Crone, ${ }^{24}$ is:

$$
H-H_{s}=\frac{H_{s}\left(T_{u}-T_{s u}\right.}{518.4}\left\{1+3.44 \times 10^{-6} \cdot H+1.6 \times 10^{-11} \cdot H^{2}+\ldots\right\}
$$

where
H is the Standard Elevation corrected for Temperature
H_{S} is the uncorrected Standard Elevation
T_{u} is the virtual temperature at the station (see Humidity Correction 6.5.2).
T_{su} is the standard temperature at elevation H_{s}.

This formula has been incorporated into the computer programmes by applying a temperature correction to each standard elevation as deduced from the Lapse Rate Formula.

6.5.2 HUMIDITY CORRECTION ${ }^{3,5,32}$

It was shown in Chapter 1 that the constants for the pressure/ height relationship were evaluated for dry air. The density of moist air is less than dry air and so the constants must be re-evaluated or a suitable correction applied. The simplest approach is to apply a
correction by replacing the measured temperatures with virtual temperatures. ${ }^{3,56}$ These virtual temperatures are deduced by relating the difference in density to the apparent reduction in the height of the air column. This may then be corrected by increasing the temperature correction using an increase in the measured temperature.

The derivation of the virtual temperature follows.
For a mixture of dry air and water vapour the Equation of State is:

$$
P V=R T
$$

where the gas constant R for the mixture is given by:

$$
\begin{aligned}
R & =\frac{M_{a} R_{a}+M_{w v} R_{w v}}{M_{a}+M_{w v}} \\
& =\frac{R_{a}+R_{w v} \cdot \omega}{1+\omega}
\end{aligned}
$$

in which M_{a} and $M_{w v}$ are the masses of dry air and water vapour respectively, R_{a} and $R_{w v}$ are the gas constants and

$$
\omega \text { is the mixing ratio } \frac{\mathrm{M}_{\mathrm{wv}}}{\mathrm{M}_{\mathrm{a}}} .
$$

The Equation of State may also be written as:

$$
\begin{aligned}
& P V=R_{a} T_{v} \\
& \text { where } T_{v} \text { is the virtual temperature. }
\end{aligned}
$$

Thus

$$
\begin{align*}
& R_{a} T_{v}=T \frac{\left(R_{a}+\omega \cdot R_{w v}\right)}{l+\omega} \\
& \text { or } \quad T_{v}=T \frac{\left(1 .+\omega \frac{R_{w v}}{R_{a}}\right)}{l+\omega} \\
& \text { but } \quad \frac{R_{w v}}{R_{a}}=\frac{M_{w v}}{M_{a}}=\frac{28.97}{18.02}
\end{align*}
$$

whence

$$
\begin{aligned}
T_{v} & =T \frac{(1+1.61 . \omega)}{1+\omega} \\
& \div T(t+0.61, \text { since } \omega<0.03
\end{aligned}
$$

but $\quad \omega=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{m}}}$
where P is the mean pressure of aqueous vapour at temperature T_{m} and P_{m} is the mean pressure of the air between the two stations.
whence

$$
T_{v}=T\left(1+0.61 \cdot \frac{\mathrm{P}}{\mathrm{P}_{\mathrm{m}}}\right)
$$

If the increase in temperature is denoted as ΔT such that

$$
\Delta T=T_{v}-T
$$

then $\Delta T=0.61 \frac{T P}{P_{m}}$
in which $P=P_{w}-0.000367 P_{m}\left(T_{d}-T_{w}\right)$
where $\quad T_{d}$ is the dry temperature T_{w} is the wet bulb temperature
and $\quad P_{w}$ is the saturation vapour pressure.
J. A. Goff and S. Gratch have shown ${ }^{32}$ that the saturation vapour pressure in millibars may be calculated using the formula.

$$
\begin{aligned}
\log P_{W}= & -7.90298\left(\frac{T_{S}}{T}-1\right)+5.02808 \log \frac{T_{S}}{T} \\
& -1.3816 \times 10^{-7}\left(10^{\left.11.344\left(1-T / T_{S}\right)-1\right)}\right. \\
& +8.1328 \times 10^{-3}\left(10^{-3.49149\left(^{T} / T-1\right)}\right. \\
& +\log 1013.246 .
\end{aligned}
$$

6.5.3 TILT OF THE ISOBARIC SURFACE

To simplify the calculation of the tilt and Bearing of the Apparent Isobaric Surface, the geometric properties used in Section 6.4 are expressed in terms of co-ordinates.

The origin is translated to Station 1 and hence the following equations give the necessary relationships (see Figure 6.3):

$$
\frac{X_{8}-X_{3}}{X_{3}-X_{2}}=\frac{Y_{8}-Y_{3}}{Y_{3}-Y_{2}}=\frac{\text { Error } 3}{\text { Error } 2-\text { Error } 3} \text { (by similar } \text { triangles) }
$$

denoting

$$
\text { E32 = Error } 2-\text { Error } 3
$$

then

$$
\begin{equation*}
X_{8}=\frac{X_{3} \text { Error } 2-X_{2} \text { Error } 3}{E 32} \tag{1}
\end{equation*}
$$

and $\quad Y_{8}=\frac{Y_{3} \text { Error 2- } Y_{2} \text { Error 3 }}{\mathrm{E} 32}$

The co-ordinates of Point 6 are given by the interaction of the lines 2, 3 and 1, 4.

FIG. 6. 3 GEOMETRIC RELATIONSHIP OF APPARENT ISOBARIC PLANE TO HORIZONTAL PLANE.
i.e. $\frac{Y-Y_{2}}{Y_{3}-Y_{2}}=\frac{X-X_{2}}{X_{3}-X_{2}}$ and $\frac{Y}{Y_{4}}=\frac{X}{X_{4}}$.
whence

$$
\begin{equation*}
X_{6}=\frac{B X_{2}-Y_{2}}{B-A} \tag{2}
\end{equation*}
$$

and $\quad Y_{6}=A X_{6}$
in which
$A=\frac{Y_{4}}{X_{4}}$
$B=\frac{Y_{3}-Y_{2}}{X_{3}-X_{2}}$

The Error at Point 6 is found by similar triangles
$\frac{\text { Error } 6-\text { Error } 2}{\text { Error } 3-\text { Error } 2}=\sqrt{\frac{\left(X_{2}-X_{6}\right)^{2}+\left(Y_{2}-Y_{6}\right)^{2}}{\left(X_{2}-X_{3}\right)^{2}+\left(Y_{2}-Y_{3}\right)^{2}}}$
denoting the RHS as E, then
Error $6=$ Error 2-E32.E.
In a similar manner the value of Error 4 may be found:
$\frac{\text { Error } 4}{\text { Error } 6}=\sqrt{\frac{\mathrm{X}_{4}^{2}+\mathrm{Y}_{4}{ }^{2}}{\mathrm{X}_{6}{ }^{2}+\mathrm{Y}_{6}^{2}}}$
denoting the RHS as D
then Error 4 = D. Error 6
which leads directly to the correction to be applicd to a calculated elevation at 4 for the apparent tilt of the isobaric surface $1,2,3$.

Corr $4=\mathrm{D}(\mathrm{E} . \mathrm{E} 32-$ Error 2)
The bearing of the Dip of the Isobaric Surface is given by:

$$
\begin{equation*}
\text { Bearing }=90^{\circ}+\tan ^{-1} \frac{Y_{8}}{X_{8}} \tag{4}
\end{equation*}
$$

The co-ordinates of Point 9 are given by the intersection of the line 1,8 and the line through 3 with the above bearing.
i.e. $\quad Y=\frac{Y_{8}}{X_{8}} . X$ and $Y-Y_{3}=-\frac{X_{8}}{Y_{8}} \quad\left(X-X_{3}\right)$
whence

$$
X_{9}=\frac{\left(X_{8} X_{3}+Y_{3} Y_{8}\right)}{Y_{8}^{2}+X_{8}^{2}} \quad X_{8}
$$

and

$$
Y_{9}=\frac{\left(X_{8} X_{3}+Y_{3} Y_{8}\right)}{Y_{8}^{2}+X_{8}^{2}} \quad Y_{8}
$$

From the co-ordinates of 9 and 3, the dip distance to point 3 may be found.

Dip Distance $=\frac{\mathrm{X}_{3} \frac{\mathrm{Y}_{8}}{\mathrm{X}_{8}}-\mathrm{Y}_{3}}{\sqrt{1+\left(\frac{\mathrm{Y}_{8}}{X_{8}}\right)^{2}}}$

$$
\begin{equation*}
=\frac{\omega X_{3}-Y_{3}}{1+\omega^{2}} \tag{5}
\end{equation*}
$$

where
$\omega=\frac{\mathrm{Y}_{8}}{\mathrm{X}_{8}}=$ tangent of strike bearing.

The tilt per mile is then given by:

$$
\begin{equation*}
\text { Tilt }=\frac{\text { Error } 3}{\text { Distance }} \tag{6}
\end{equation*}
$$

The numbered formulae above are used in the Computer Programmes SVY 14 and SVY 19.

6.5.4 STANDARD ATMOSPHERE PROGRAMME SVY 12

This programme calculates the elevation in a Standard atmosphere for pressures from 600 to 800 mm Hg by selected increments.

The basic formula is:
$H=C_{1}\left(\frac{P}{760}\right)^{C_{2}}$
in which the constants C_{1} and C_{2} are read into the computer.
The flow chart for the programme is given in $\mathbb{F i g u r e} 6.4$.
The output is a tabulated pressure/height relationship.

6.5.5 ISOBARIC SURFACE INVESTIGATION PROGRAMME SVY 14

This programme was written to reduce the simultaneous pressure readings taken throughout the day at five fixed points.

The basic formula is:
$H_{S}=C_{1}\left(\frac{P}{760}\right)^{C_{2}}$
corrected for temperature and humidity.
The results are reduced as a Single Base calculation using Station 1 as the base. The tilt of the apparent Isobaric Surface is then determined using stations 2 and 3 . The Multiple Base corrections are deduced for Stations 4 and 5 .

The input for the programme is divided into two sections.

1. Basic information,
(a) The constants C_{1} and C_{2},

FIG. 6.4 FLOW CHART FOR SVY 12 STANDARD ATMOSPHERE PROGRAMME.
(b) The units for pressures, temperatures, co-ordinates,
(c) The co-ordinates and known elevations of the fixed stations.
2. Readings,
(a) Identifying time,
(b) Pressure, dry temperature, wet-bulb temperature at each of the five stations.

The output tabulates the identifying time, pressures and temperatures, together with the resultant Single Base and Multiple Base Errors. The direction and tilt/mile of the apparent Isobaric Surface is also given. A card is punched giving a summary of the results.

The flow chart for the programme is given in Figure 6.5.
6.5.6 BAROMETER TRAVERSE REDUCTION PROGRAMME SVY 19

This programme is similar to SVY 14 but the barometers No. 4 and 5 are moved to new field stations between each observation.

The input for the programme is divided into two sections:

1. Basic information,
a) The constants C_{1} and C_{2},
b) The units for pressures, temperatures and co-ordinates,
c) The co-ordinates and elevations of Stations 1, 2 and 3 .

FIG. 6.5 FLOW CHART FOR SVY 14 -ISOBARIC SURFACE INVESTIGATION PROGRAMME.
2. Readings,
a) Identifying time,
b) The co-ordinates and elevations of Stations 4 and 5,
c) Pressure, dry and wet bulb temperature at each of the five stations.

The output tabulates the identifying time, Stations 4 and 5, the pressures and temperatures together with the resultant Single and Multiple Base Errors. The direction and Tilt/Mile of the apparent isobaric surface is also given. A card is punched giving a summary of the results.

The flow chart for the programme is given in Figure 6.6
This programme reduces the field readings for a barometer traverse in which the elevations of all stations are known. This, of course, was required in this project where the precision of various methods was under investigation. A simple modification however will make this programme suitable for the reduction of normal field traverses in which the elevations of Stations 4 and 5 are unknown.

6.5.7 TOWER READING REDUCTION PROGRAMME SVY 24

This programme takes the pressures measured at the different levels in the tower and calculates the error for each level in the assumed pressure/height relationship. This assumed relationship takes the form of the Lapse Rate formula

$$
H=C_{1}\left(\frac{P}{760}\right)^{C 2}
$$

where the parameters C_{1} and C_{2} are part of the input.

[^0]The third parameter indicates the tower position to which a new value of C_{1} is to be calculated. The heights are then recalculated and then resulting errors are printed out.

By running the programme with different values of C_{2} the optimium set of values for C_{1} and C_{2} may be selected.

The flow chart for the programme is given in Figure 6.7.

6.5.8 AUTOMATIC GRAPHING PROGRAMME SVY 16

This programme prepares a series of graphs from the summary of the output from SVY 14 and SVY 19. Six symbols are read in and are placed in the appropriate position for each of the six different errors to be plotted. It should be noted that the lower order errors are overwritten by a higher order error of the same magnitude. The range of error that may be plotted is from - 30 ft . to +30 ft . by 1 foot steps, with errors outside this range being set to the appropriate limit. The sequence of input is as follows:
a) A card containing the six symbols (e.g. 1, 2, 3, 4, 5 and 6).
b) A description of the particular summary set.
c) A series of summary cards.
d) A blank card.
when the blank card is reached the programme re-writes the heading and loops back to read a new description and a series of summary cards.

The output is six graphs superimposed on the one plot.
The flow chart for the programme is given in Figure 6.8.

6.5.9 ANALYSIS OF SUMMARIES PROGRAMME SVY 26

This programme takes the Summary cards from SVY 14 and SVY 19 and separates the errors into class intervals of tilt of the Isobaric Surface. The first, second and third moment is then calculated for each class interval. ${ }^{6}$

The input is as follows:
a) A description of the particular summary set.
b) A series of summary cards.

When the programme reaches a blank summary card the moments are printed and the programme returns to read a new description card.

The output is the print out of the tilt intervals with the mean, second moment, third moment and the number of readings for the errors at each station in turn.

The flow chart for the programme is given in Figure 6.9.

6.5.10 TWO BASE BAROMETER REDUCTION PROGRAMME SVY 42

Data punched for the Barometer Traverse programme SVY 19 is recalculated as a Two Base calculation (see Section 4.4) using each pair of the three base stations as the fixed bases. The output is a tabulation of the time of observation together with the three calculated errors in elevation. Where two field barometers were employed, each is

FIG. 6.9 FLOW CHART FOR SVY 26 ANALYSIS OF SUMMARIES PROGRAMME.
calculated in turn.

The flow chart for the programme is given in Figure 6.10.

6.5.11 LEAP-FROG REDUCTION PROGRAMME SVY 43

Data punched for the Barometer Traverse programme which had been observed using the Leap-frog method, is recalculated using the latter method. The programme automatically closes the results onto the three fixed bases and proportions the misclose linearly back to the previous fixed point.

The output is a tabulation of the identifying time, the name of the station and the error in elevation.

The flow chart for the programme is given in Figure 6.11.
This, and the previous programme, were written to confirm previous hand calculations. These calculations had indicated that the methods were inferior to the multiple base approach. Accordingly, when writing these programmes, use has been made of existing programmes and a number of refinements which could have been made, have been omitted.

6.5.12 ANALYSIS OF SUMMARIES PROGRAMME 2, SVY 46

This programme takes the summary cards punched using the previous programmes and separates the errors into class intervals of the tilt of the Isobaric Surface. The errors are made absolute and

FIG. 6.11 FLOW CHART FOR SVY 43 LEAP FROG REDUCTION PROGRAMME
then the average and maximum errors are calculated for each class interval.

The input is as follows:
a) A description of the particular summary set,
b) A series of summary cards.

When the programme reaches a blank summary card the results are printed out and the programme returns to the start.

The output is the print out of the tilt intervals, the average error, the maximum error and the number of results for the errors at each station in turn.

The flow chart for the programme is given in Figure 6. 12.

FIG. 6.12 ANALYSIS OF SUMMARIES PROGRAMME 2, SVY 46

CHAPTER 7

CONCLUSIONS

From the results achieved it would appear that barometric methods of determining elevations may certainly be used for lower order height control. For large scale engineering and similar projects the speed of obtaining the results make the methods invaluable at the reconnaissance stage. The instability of the mathematical model for the atmosphere however, precludes any attempt to obtain a higher order of accuracy. Some improvement in the model is obtained by using the Assumed Standard Atmosphere (ASA) in preference to the accepted atmospheres. This atmosphere is defined on page 15. The limitations of the barometric elevations then depend on the method used.

When the best results are not required a Single Base Method may be adopted provided that the possibility of a systematic error of up to approximately 3 feet per mile may be tolerated. The maximum error in a Single Base Elevation that occurred in this investigation was 32.2 feet which occurred at 1530 on the traverse for the 6th December, 1955. A larger error (34.0 feet) occurred at 0915 on the 26th May, 1959 but since the base pressures at that time were fluctuating excessively, the readings should be rejected. The Isobaric Surface around 1530 on the 6th December was fluctuating.
quite rapidly and indicated that a pressure front was travelling through the area. This front was masked by the diurnal variation and other local fluctuations and was impossible to detect by using the readings on just one base.

On the other hand, the elevation determined using the Multiple Base technique shows a distinct improvement. Even more significant, the fluctuation of the Isobaric Surface enables the surveyor to reject any readings taken about this period. This criterion of rejection is perhaps the most significant contribution that this thesis makes to this subject. Previously, readings could only be rejected if the fluctuation of the surface caused a significant jump in the readings at one of the base stations. It has been shown however that small jumps will tend to be masked and hence unreliable readings are carried into the results.

When the criterion is applied, all readings taken at times when the tilt exceeds 1 ft . per mile should be regarded as doubtful and only adopted if the Isobaric Surface tends to retain a constant tilt. The mean error and the maximum error for the elevations of the traverse stations may then be estimated by the formulae:

$$
\text { Mean Error }=C_{1}+.3 \times D_{2}+.2 \times \mathrm{T}^{3} \times \mathrm{D}_{2}
$$

and
Maximum Error $=2 \times$ Mean Error,
where
and
C_{1} is the standard deviation of reading the particular type of barometer (ft.), D_{2} is the mean distance of the field stations from the nearest base station (miles), T is the tilt of the Isobaric Surface (ft/mile).

The Leap-frog method should not be used as it will not give results as reliable as the Multiple Base method. Further the method is slower in the field.

The Two Base method should be restricted to special cases in Which the topography has a more or less uniform slope from one base to the other. When this is not the case, the simplicity of the reduction and the slight saving in field work (temperatures are not recorded) do not warrant the risk of unreliable results.

BIBLIOGRAPHY

TEXTBOOKS

1. Australian Meteorological Observers' Handbook. Bureau of Meteorology, Australia. 1954.
2. Bannister and Raymond. Surveying. Pitman, London, 1959.
3.

Berry, Wallace and Beers. Handbook of Meteorology. McGraw-Hill, New York, 1945.
4.

British Standard 2520 Barometer Conventions and Tables. British Standards Institution, London, 1954.
5.

Clark. Plane and Geodetic Surveying, Volume 2. 5th Edition. Constable and Co. London, 1963.
6. Croxton and Cowden. Applied General Statistics. Pitman, London, 1950.
7. Harrison, G.A. Chemical Methods in Clinical Medicine. J. and A Churchill Ltd., London, 1957.
8.
9.

Higgins, A.L. Higher Surveying. MacMillan, London, 1944.

International Commission for Air Navigation. Official Bulletin No. 26. Resolution No. 1053, December, 1938.
10. Martin and Connor. Basic Physics, Part 1. Whitcombe and Tombs, 1945.
11. National Advisory Committee for Aeronautics. Standard Atmosphere - Tables and Date for Altitudes to 65,800 feet. Report No. 1235, 1955.
12. O^{\prime} Connor, D.C. Improved Methods of Ground Control for Photogrammetric Work in Australia. M.E. Thesis, U.N.S.W. 1959.
13.
R.A.A.F. Manual of Meteorology. R.A.A.F.No. 153 Air Force Headquarters, Australia, 1943.
14. Saucier, W.J. Principles of Meteorological Analysis. University of Chicago Press, Chicago, 1955.
15.

Smithsonian Meteorological Tables, Sixth Revised Edition. Smithsonian Institution, Washington, 1958.

PERIODICALS

16. Allman, J.S. Elevation by Microbarometer Cartography, Vol. 2, No. 3, 1958, p. 101-104.
17.

Allman, J.S. The Adjustment of Barometric Level Networks. Cartography, Vol. 4, No. 4, Sept., 1962, p. 139-142.
18.
19.
20.
21. Brombacher. Altitude by Measurement of Air Pressures and Temperatures. Washington Academy of Sciences, Vol. 34, No. 9, Sept. 1944, p. 277-299.
22. Buckmaster, J.L. and A.H. Mears. Instrumental Improvements in Altimetry. Geological Survey Circular 405, Washington, 1958.
23. Cravat, H.R. Leap-frog Barometric Levelling. Photogrammetric Engineering, Vol. 23, No. 2, 1957, p. 328-330.
24.
25.

Allman, J.S. A Comparator for the accurate measurement of differential Barometric Pressure. U.N.I.C.I.V. Report No. D3, October, 1963, University of N.S.W.

Bellamy, J.C. The Use of Pressure Altitude and Altimeter Corrections. Journal of Meteorology 11, 1945. 179.

Bowker, O.W. New Surveying Altimeter Announced. Surveying and Mapping, 1951, p. 164-165.

Crone, Col. D. R. Reduction of Aneroid Readings. ESR. J. 14, No. 105, July, 1957, p. 141-143.

Crone, Col. D. R. Heights by Aneroid Barometer. ESR. Vol. 9, No. 69, July, 1948.
26. Crone, Col. D.R. Notes on Terrestrial Altimetry. ESR. Vol. 16, No. 122, Oct. 1961.
27. Crone, Col. D. R. Aneroid Heights - A Correction for The Exponential Lapse rate.

ESR. Vol. 14, No. 110, Oct. 1958, p. 377-380.
28. Crone, Col. D.R. The Height of Lake Tana, Ethiopia. ESR. Vol. 13, No. 99, Jan. 1956, p. 220-228.
29. Demler, L.E. Altimetry - Its present day Techniques. Surveying and Mapping, 1951, p. 254-260.
30.

Diehl, W.S. Standard Atmosphere - Tables and Data. N.A.C.A. Report No. 218, 1925.

Green, A. The Adjustment of Miscloses in Networks with special reference to Microbarograph Surveys. Cartography Vol. 4, No. 1, March, 1961, p. 36-40.
35. Fowler, T.W. The Determination of Heights by Barometric Methods. Australian Assoc. Adv. Sc. Vol. II, 1898.
36. Hamilton, R.A., Biddle, C.A. and Sparks, B.W.

Surveying Aneroids - Their uses and Limitations. Geographical Journal, Vol. 123, Pt. 4, Oct. 1957.
37. Haring, W.F. Improving the Accuracy of Altimetry. Surveying and Mapping, Vol. XV, No. 3, July, 1955, p. 359-364.
38. Harrison, E.R. A Mercury Surface Height Indicator Australian Journal of Applied Science, 1960, Vol. 2, No. 1, p. 198.

Kissam, Prof. P. Precision Altimetry. Photogrammetric Engineering, Jan. - March, 1944.
43. Koeman, C. Analyse Van een Bartometrische hootemetin. Kadaster and Landmeetkunde, Vol. 74, No. 2, 1958, p. 58-70.
44. Koeman, C. Welke Nauwkeurigheid geeft de Barometrische Hooglemeting. K. and L., Vol. 74, No. 1, Feb, 1958.

O'Connor, D.C. Microclimatology and its Effects on The Accuracy of Surveying Aneroids. ESR. Vol. 15, No. 118, Oct. 1960, p. 364.
51.

Rangen, J. Reduction of Aneroid Readings, ESR. Vol. 14, No. 103, Jan. 1957, p. 20-23.
52. Robertson, Col. R.R. Altimeters as used by the 30th Engineers for Mapping.
Photogrammetric Engineering, Dec, 1952, p. 839-845.
53.

Sharp, H.O. and Palmer, R.K. Faster and Cheaper Surveys. Engineering News Record, Sept. 1948, Wallace and Tiernan Products, U.S.A.

Sparks, B.W. Effects of Weather on the Determination of Heights by Aneroid Barometer in Great Britain. Geographical Journal, 1953, Pt. 1, p. 73-80.
55.

Wilson, G.U. Barometric Determinations of Elevation. ESR. Vol 15, No. 118, Oct. 1960, p. 350-364.

PAMPHLETS

56. Biddle, Lt.Col. C.A. Heights by Aneroid Barometer. Tellurometer (U.K.) Ltd., London.

APPENDIX I

Pressure/Height relationship in the Assumed Standard Atmosphere from 600 to 800 mm of mercury pressure by 0.1 mm intervals.

635	4805.34801 .2	4797	47	4788.8	4784		4776.4		
636	$4764 \cdot 04759.8$	4755	4751	$4747 \cdot 4$	4743	4739.2	$\begin{aligned} & 4110.4 \\ & 4735.0 \end{aligned}$	$\begin{aligned} & 4112 \cdot 2 \\ & 4730: 9 \end{aligned}$	$\begin{aligned} & 468 \cdot 1 \\ & 4726.8 \end{aligned}$
637	4722.64718 .5	4714.4	4710.3	4706.1	4702	4697.9	4693.8	4689.6	$\begin{aligned} & 46<6 \cdot 8 \\ & 4685.5 \end{aligned}$
638.	$4681 \cdot 44677 \cdot 3$	4673.1	4669.0	$4664 \cdot 9$	4660.	4656.6	4652.5	4648.4	$4644 \cdot 3$
639.	4640.24636 .1	4631.	4627.8	4623.7	4619 ．	4615.5	4611.3	46407 4607	4644 4603

$\infty \rightarrow-1+1$ い
n＋tm
mmmon
ナナナざ
ODNに
onco
$\infty+0$
mmmno

Ormm So
mmn
muncmo
mmmin
ボさざナ

LON
$+1+50$
+0606
$+5 寸 な$
0.060

－	$\begin{aligned} & \text { tmmm } \\ & 0000 \\ & 00000 \\ & \text { N-Nocon } \\ & \text { mmmmm } \end{aligned}$					viniman nonoto NNVNN
$\dot{4}$		oromo n－n－mo ninmum		andarm nincto mmmmm	mivninn ㄴํํํํํ $0 \times \infty+0$ 2000000 vNNivN	M＋000 －$-\infty \circ 0^{\circ}$ ONoonn NNNNN
	tmmms $0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}{ }^{\circ}$ nin mo mmminm	INOONLO からがのが ninmざ mmmmm	amomon MMNNV minninm	unmot oNoto Mm mol mmmmm		
	tmmmt NVNNNO onsoto mmmmm	$\Omega N O M L$ Nかの oNoNTO Minかけ mmmmm	amoomo muํㅗ웅 ONoyO mmNiN mmmmm		$\rightarrow 0000$ －ninni romainn NOCODOD NNNNN	owmen กi̊iono －moin－ Nreno NNNNN
in		LnTMNLS 00000 onooto にinけさよ mmmmm	mmiNo －vonto minmin	torotry －1～NM Pmoins mincoo mmmm	＊00のの ＋ininor moin －のかっかっ vanviv	On－muto 00 － $\rightarrow \infty \mathrm{ON}$ $n-\infty=0$ ranvina
$>$						$x 0, \min$ 0000 $\infty+000$ 200000 $1=1000$ NuNNN
山m	tmmms ポポポ romin－1 mmmmm	いのonv ポチャ゚ロำ monne mmmmm	onomo Liob Mo monn mmNnN mmmem	かooํㅇ․․ nmorn nलmo mmmmm	$000 \mathrm{OH} \mathrm{N}=1 \mathrm{l}$ $\infty \rightarrow \infty$ ののロの00 Nivnos	$t=0<O N+$ $00_{0}^{0} 00$ ∞＋Otm vinver
N	tmmmt $0^{3} 0^{\circ} 0^{\circ} \times 0^{\circ}$ かのにに लnimm	1no 0 －$\frac{t}{4}$ 0000 000000 かMonna int mmm		nounco Nuํํํํ m4OON moxno mmmmm	∞ nw $01 \Omega, 0$ ＊${ }^{\circ} 0^{+}=\infty 0$ $\infty \rightarrow \infty$ 	$\begin{aligned} & \text { orgom } \\ & \text { Briver } \\ & \text { Rin-iom } \\ & \text { NNNNN } \end{aligned}$
$\stackrel{\rightharpoonup}{\circ}$	tvmmat NงNNNNㅜ ovoln manoo mmmmm	$+\infty 00 \mathrm{~m}$ ヘำงำกํ myON innunty mmmmm	$N_{n}-1 \leq C \leq$ $\begin{array}{cc}0 & 0 \\ m+10\end{array}$ ontoun mimmun		rooninin mintim NNODN	
\bigcirc	t．tmmm $00^{\circ} 0^{\circ} 0^{\circ}$ かさ○○～ mimmo	toxom －000～： myOMN べグかざ mmmmm	ooingin －000000 mionn Mmminm		bintmm Mงレnํ． ぶのーが心 anNNN	N0000 かの்ロ்ージ のにNo＋ NivNive
E				$\begin{aligned} & \text { noroo } \\ & \text { nerot } \\ & \text { 600000 } \end{aligned}$		

	－nmat	O？	O－NVT？	$0-H \leq \infty$	－Nnmos	Ns
	のベポ	mosivi	か－${ }^{\text {¢ }}$	miomic	$\dot{\bigcirc+0 \sim}$	
$\dot{\square}$			LnNovざ	momin	bounin	CRvmos
$\dot{\dot{s}}$	Noomar	0×0	－	กnorino	nomo	
	mi					
		toNma	－Noon	Fotion	がNivos	
		NVージー	Ooのかの	moonir		けけすm
	の0mom	へんささ	tno	Nino	OnOn－1	metwor
	－ơnini		10ำ．	\cdots	$\cdots \cdots$	
	movovo	N－Nmo	－	m，onm	anovin	
	－mmmy		－oonのa	momer	－0．ons	
	－ 0000	TN－THA	－inmy	の－Tism	omonjo	＋－1000m
	Omosor	＋rom	のペーが－	$\dot{+0}$	－${ }^{\circ}$	
	foona		－monñ		OONain	－
			－oかのに		roonen	さけさm
	v－munm	－00000	moorm	incolino	nomm	0
z	＋－0̇n	¢－Mmo	Nก®oำ			
	omo	SNOTO	－mavo		ooman	－
		－－－－	000		Nouns	バサさm
	N	mornonn	\bigcirc	Ninco		0
	$0^{\circ} \mathrm{OM}$ ¢	－＋゚が	மo	Ninc	\cdots	
		－N00n－1	－mos	$\sim_{0} \times 1+\infty$	orno	
			－OORの	coomin	Foonn	いけさせ
\lrcorner	annor	Lntmnn	Noutis	anunco	－-1	
	\cdots	คํ．ㅇ	\because	－		
		onost	Ovo	GinNoot	Nemoo	maño
	$\underset{\rightarrow-1 \rightarrow \rightarrow \rightarrow-1}{\text { JTMm }}$		OOOMO	cococorr	Foobi	いさずへ
V	omo	NHOO	のnon	0×10	nrontm	のem00
		ON：	moomo	－	$\dot{\square}$	mi－
	－$-\infty$	aman	my－nm	ouncon	mingor	masNo
	$\pm \pm \rightarrow-1+\cdots=1$		OOOの日	20000ra	－oboin	
\rightarrow	tonts	000100	ourao	NOCOMS	のwous	Naru
	のペ＋゚○	mincoris	「－mo	moonmo	かimos	\cdots
		NMOMN	conncor	8ononin	modon	motyon
	－rathelt	\rightarrow－－1－TM	\rightarrow－ra			intum
\bigcirc	\cdots－ 0	rufmm	mm	arincon	¢OnO\％	
	Minc	poninos	\rightarrow－イフom	¢omos	miors	－40nio
	¢vmmm	NMON	－innoy	GHMONO	Nonn	tooma
	－－－－－		\rightarrow－		Nound	こんちけm
元						
	0－ivis	normo	－inmi	inorios	－rivis	siorcos
	NNNNN	NiNNN	minmin	nnminn	さささささ	さささささ

1000000		－ommam	amons	moryins	coonv
	－${ }^{\text {a }}$	onvorio	－¢ ¢ ${ }^{\text {a }}$	N－Mino	mo№o
1 mN	－゙すonotio	minnan	Ninmm	moomio	Om－0，
			ハ－1－1	いいいー！	
－NmNNO	m nnno	－Namos	\bigcirc	mognd	
$\pm \infty$	onoina	ナ0mon	－r90in	－${ }^{\circ} \mathrm{N} \times{ }^{\circ}$	－ $90 \times$
Nicos	－゙げosor	conlem	NiNmmm	N	
1111		－1－1－1	$\rightarrow+1$	1111	
$\infty \times \infty$	tmomis	さ Nomón	oingmi		
－	－へ－	－ペல்の	$\dot{\text { ¢ M }}$	$\dot{\sim} \dot{\circ} \dot{+} \times$	－ヘioom
mioomiom			－	NogNo	anyomm
11111			\cdots	ハーッド1	－Tーデ1
ntinno	ONinNo	－Vont	Soincor		
àoju	＋mmon	へ No．${ }^{\text {N }}$		No－ino	
Nへ－	9maios		NNMMm		GNoon
1111				11111	
00000	tmamín	vanco	Oinomo	－ $4+0 \times 0$	Nmdy
$\operatorname{nơ}^{\circ}$	－ペ○ナo	＋00m ${ }^{\text {a }}$	「－00\％	－mioro	\bigcirc
Norimo	¢ヵñon	－OサN－	NTMMnmm	ずすべい	ancian
11111	1171	いいいで	ハーバい	いいがい	
NTMNN	Omintr	myHon	oningm	vorvin	mooon
irnico	－	¢inojo	ற®®ำ．	－	－－ino
NinNo	－moom	ROfN	＋	\rightarrow	\％－NH20\％
Mrom	monoco	O－H－HN	NNMmm	ナJtinin	nowor
00000	tmmá		Nbtif	Nincon	thon
	mosmin	へ－900	－joimi	N0゚Ono	
$\stackrel{\text { Hincosin }}{\sim}$	ancom	－OMis	NNOTNM		nowhome
11111	11117				
numna	Ooor J	mincor	mán	¢ ${ }^{1}+6{ }^{1}$	－ $\mathrm{Hmmm}^{\text {¢ }}$
	－ポが	moon			
－innon	aninan	¢omm	mioft	Oソた	$\infty \rightarrow+\infty$
－N－mom	magro	OOHFN	NVmmm		Sovor
$\infty \times 0 \times \infty$	oumor		mónó	mogny	¢1！${ }^{\text {¢ }}$
\cdots		－•．．．	－•••	．．．．	
－10－6－1		Onatio	MrNot	nammon	0049N
「下－	oonao	－	NNMmm	さすざい发	nowor
1－1			11111	M111	
MNMNN	000ry	ainnoom	amosio．	aninosa	－mすさす。
comano	－				
－さべす	mincon	in－Non	Noomo	－minom	morno
Tr｜il	mango	0	Nmm	さvざinin	nowor
		11111	1111	1111	1111
a		\bigcirc	10	O－rimy	
べャット		へirar	Mrara	0000000	00000000

APPENDIX II

Isobaric Surface Reductions.
26th May, 1959 178.
28th May, 1959 190.
28th February, 1966 203.
1st March, 1966 216.
CITY TRAVERSE REDUCTION 26 MAY 1959 ASA

PRESSURES IN INCHES TEMPERATURES IN FARENHEIT COORDINATES IN YARDS							
$\begin{array}{lrr}\text { CONSTANT } & 1 & 143831.81 \\ \text { CONSTANT } & 2 & 0.18910\end{array}$							
STATION	${ }^{\text {X }}$	Y	HEIGHT				
ST PAULS	833900.	411100	0. 663.00				
CIVERPOOL	809100.	39260	- 60.00				
BEVERLY HILL	LL 805500.	40830	- 110.00				
RYDE	822200 。	41020	0. 183.00				
TIME 915							
PRESSURE	29.884	30.53360.0	30.34062.0	30.472	30.400		
TEMP DRY	E 57.0			70.0	30.400		
SINGLE ${ }_{15}{ }^{\text {BASE }}$	E ERRORS 34.0	20.2	$\begin{array}{ll} \text { TILTMILE } & 2.44 \end{array}$		E. BASE	ERRORS	
DIP BEARING	G 147.7 DEG			FEET			
TIME 930							
PRESSURE	29.881	30.53860.0	30.35260.0	30.47978.0	$\begin{aligned} & 30.394 \\ & 0.0 \end{aligned}$		
TEMP DRY	E ERROR $5^{\circ} 0$						
dip bearing	G $142.0^{19}{ }^{\text {D }}$ EG	9.6	TILT/MİLE ${ }^{13} 1.39$		- 6.7	ERRORS 6.4	
PRESSURE	29.884	30.54264.0	30.356	$\begin{array}{r} 30.485 \\ 76.0 \end{array}$	30.391		
TEMP DRY	E ERRORS ${ }^{57}$		60.0		MULTIPLE BASE		
DIP BEARING	G 139. ${ }^{\frac{1}{3}}{ }^{\text {D }}$ EG	6.4	18.3				12.1

CITY TRAVERSE REDUCTION 26 MAY 1959 ASA
LIVERPOOL CENTENNIAL

ERROR S

$n 0$
$\frac{\gamma}{\gamma}$
$\frac{\gamma}{\omega}$

$\begin{array}{rrr}30.365 & 30.489 & 30.403 \\ 61.0 & 70.0 & 0.0 \\ 13.5 & & \text { MULTIPLE BASE } \\ \text { TILT/MILE } 1.13 & \text { FEET } & -5.2\end{array}$

ST PAULS	LIVERPOOL		NTENNIAL	BEV	RRLY HILL	RYDE	
TIME 1000							
PRESSURE	29.883	30.549	30.362		30.487	30.399	
TEMP DRY	ERROR ${ }^{60}$	62.0	60.0		72.0	0.0	
SINGLE BASE	ERRORS 12.3	4.5			MULT	LE BASE	ERRORS
DIP BEARING	122.2 DEG		TILT/MILE	0.99	FEET		
TIME 1005							
PRESSURE	29.883	30. 548	30.364		30.488		
TEMP DRY	60.0	63.0	60.0		72.0		
SINGLE BASE	ERRORS				MULT	LE BȦE	ERR
DIP BEARING	123.9 ${ }^{\text {DEGG }}$	$3 \cdot 3$	TILT/MILE	0.81	FEET		4
TIME 1010							
PRESSURE	29.888	30.548	30.364		30.488	30.404	
TEMP DRY	60.0	64.0	61.0		70.0	30.404 0.0	
SINGLE BASE	ERRORS				MULT	LE BASE	RRORS
DIP BEARING	138.5 DEG		TILT/MILE	1.08	FEET		
TIME 1015							
PRESSURE	29.890	30.547	30.365		30.489	30.403	
TEMP DRY	60.0	64.0	61.0		70.0	0.0	
SINGLE BASE	ERRORS				MULT	PLE BASE	ERRORS
DIP BEARING	$146.0{ }^{15}$ EGG	8.9	TILT/MILE	1.13	FEET	-5.2	7.6

ST PAULS	LIVERPOOL	CENTENNIAL		BEVERLY HILL	RYDE
TIME 1030		$\begin{array}{r} 30.548 \\ 65.0 \end{array}$	$\begin{array}{r} 30.368 \\ 60.0 \end{array}$	$\begin{array}{r} 30.486 \\ 66 \end{array}$	30.4010.0
PRESSURE	29.890				
TEMP DRY	62.0				
SINGLE BASE	ERRORS 13.5	12.0		MULTIPLE BASE	
DIP BEARING	148.4 DEG		/MILE	0.97 FEET	

30.551	30.364	30.484	30.397	
66.0	60.0	68.0	MULTIPLE BASE	
12.1	17.7	ERRORS		
		1.0	13.0	

$\begin{array}{lll}\text { CITY TRAVERSE REDUCTION } 26 \text { MAY } 1959 \text { ASA } \\ \text { ST PAULS } & \text { LIVERPOOL } & \text { CENTENNIAL }\end{array}$

CITY TRAVERSE REDUCTION 26 MAY 1959 ASA

CENTENNIAL		BEVERLY HILL	RYDE
$\begin{array}{r} 30.538 \\ 68.0 \end{array}$	$\begin{array}{r} 30.357 \\ 63.0 \end{array}$	$\begin{gathered} 30.475 \\ 72 . \\ \text { MULT } \end{gathered}$	$\begin{array}{r} 30.388 \\ 0.00 \\ \text { LE BASE } \end{array}$
3.2	$\text { TILT/MILE }{ }^{9}$	0.55 FEET	2.0
30.536 68.0	$\begin{array}{r} 30.357 \\ 63.0 \end{array}$	$\begin{array}{r} 30.475 \\ 72.0 \end{array}$	$\begin{aligned} & 30 \cdot 386 \\ & 0.0 \end{aligned}$

 ST PAULS LIVERPOOL

103．3 DEG
 82．8 DEG
TIME 1205
PRESSURE
TEMP DRY
SINGLE BASE
DIP BEARING
TEMP DRY

9NIY甘ヨg d
＊8 ${ }^{\text {¢ }}$
yns
002t ヨW

$E R R O R S$
8.6

ERRORS
11.0
CITY TRAVERSE REDUCTION 26 MAY 1959 ASA
CENTENNIAL

$\begin{array}{rrr}30.459 & 30.376 \\ 75 \text { MOLTIPLE BASE } & \\ \text { MULTIPRORS } \\ & 0.2 & 8.7\end{array}$
0.35 FEET $9.2 \quad 8.7$
$\begin{array}{rcccc}30.525 & 30.351 & 30.457 & 30.376 \\ 67.0 & 63.0 & 76.0 & \text { MULTIPLE BASE ERRORS } \\ 4.0 & 4.5 & \text { FILT/MILE } 0.47 & \text { FEET } & 11.6\end{array}$
ST PAULS LIVERPOOL

TIME 1300
PRESSURE
TEMP DRY
SINGLE BASE
DIP BEARING
TIME 1305
PRESSURE
TEMP DRY
SINGLE BASE
DIP BEARING
CITY TRAVERSE REDUCTION 26 MAY 1959 ASA
ST PAULS LIVERPOOL CENTENNIAL

CITY TRAVERSE REDUCTION 26 MAY 1959 ASA

CITY TRAVERSE REDUCTION 26 MAY 1959 ASA

CITY TRAVERSE REDUCTION 26 MAY 1959 ASA

CITY TRAVERSE REDUCTION 26 MAY 1959 ASA
ST PAULS

CITY TRAVERSE REDUCTION 26 MAY 1959 ASA ST PAULS

CITY TRAVERSE REDUCTION 28 MAY 1959 ASA
PRESSURES IN INCHES
TEMPERATURES IN FARENHEIT
CODRD INATES IN YARDS
CITY TRAVERSE REDUCTION 28 MAY 1959 ASA
ST PAULS LIVERPOOL

$\begin{array}{rr}30.387 & 30.308 \\ 62.0 & 0.0 \\ \text { MULT IPLE BASE } \\ -6.3\end{array}$
~ 0
$\underset{\sim}{\alpha}$
$\underset{\sim}{\alpha}$
$\underset{\sim}{u}$

ERRORS 2.7

CITY TRAVERSE REDUCTION 28 MAY 1959 ASA
CENTENNIAL
ERROR S
9.7

ERRORS
9.0

$\begin{array}{r} 30.443 \\ 62.0 \\ 3.0 \end{array}$	$\begin{gathered} 30.264 \\ 58.0 \\ \text { TILT/MILE } 0.83 \end{gathered}$	$\begin{array}{r} 30.390 \\ 66.0 \\ \text { MU } \\ \text { FEET } \end{array}$	$\begin{array}{r} 30.298 \\ 0.0 \\ L E B A S E \\ -7.6 \end{array}$	ERRORS 8.4
$\begin{array}{r} 30.439 \\ 63.0 \end{array}$	$\begin{array}{r} 30.260 \\ 59.0 \end{array}$	$\begin{array}{r} 30.379 \\ 68.0 \end{array}$	$\begin{array}{r} 30.296 \\ 0.0 \end{array}$	
6.9	TILT/MILE 0.69	FEET	$\begin{aligned} & \text { E BASE } \\ & =0.9 \end{aligned}$	$\begin{array}{r} \text { ERRORS } \\ 5.7 \end{array}$

D
162.9 DEG
$\begin{array}{lc}\text { TIME } 1010 & \\ \text { PRESSURE } & 29.787 \\ \text { TEMP DRY } & 0.0 \\ \text { SINGLEASE BRRORS } & \\ \text { DIP BEARING } & 162.74 .2 \\ \end{array}$

$$
\begin{array}{lc}
\text { TIME } 1030 & \\
\text { PRESSURE } & 29.779 \\
\text { TEMP DRY } & 0.0 \\
\text { SINGLE BASE } & \text { ERRORS } \\
\text { DIP BEARING } & 139.6^{\circ} \text { DEG }
\end{array}
$$

CITY TRAVERSE REDUCTION 28 MAY 1959 ASA
ST PAULS

CITY TRAVERSE REDUCTION 28 MAY 1959 ASA
LIVERPOOL CENTENNIAL
ERRORS
2.1

ERRORS
2.1
TILTMILE 0.50 FEET $\quad-4.1$ 2.1
nin
z.
र.
x
w

CITY TRAVERSE REDUCTION 28 MAY 1959 asA
STPAULS LIVERPOOL CENTENNIAL
ERRORS
6.8
$w-i$
$\underset{\sim}{q}$
$\underset{\sim}{\alpha}$
$\underset{\sim}{u}$
ERRORS
8.2
ERRORS
7.1

CITY TRAVERSE REDUCTION 28 MAY 1959 ASA
CENTENNIAL
ERRORS
8.3
$2 m$
$\underset{\sim}{\alpha}$
$\frac{\alpha}{\gamma}$
$\frac{\gamma}{u}$

ST PAULS	LIVERPOOL	CENTENNIAL		BEVERLY HILL		RYDE			
TIME 1245									
PRESSURE	29.702	30.3660.0-2.9	30.200		30.308	30.220			
TEMP DRY	$0 \cdot 0$		65.0		67.0	-0.0			
SINGLE BASE	ERRORS				MUL	E BASE	ERRORS		
DIP BEARING	154.4 DEG	TILT/MILE 0.68			FEET				
TIME 1300									
PRESSURE	29.699	$\begin{array}{r} 30.360 \\ 0.0 \end{array}$	$\begin{array}{r} 30.193 \\ 64.0 \end{array}$		$\begin{array}{rr} 30.303 & 30.214 \\ 68.0 \\ \text { MULTIPLE BASE } \end{array}$				
TEMP DRY	$0_{0}^{0.0}$								
SINGLE BASE	ERRORS				ERRORS				
DIP BEARING	150.2^{-5} DEG	-1.1	TILT/MILE 0.42				FEET		9.3
TIME 1305									
PRESSURE	29.695	$\begin{array}{r} 30.355 \\ 0.0 \end{array}$	$\begin{array}{r} 30.191 \\ 64.0 \end{array}$		30.302	30.212			
TEMP DRY	0.0				68.2	0.0			
SINGLE BASE	ERRORS				MULT	E BASE	ERRORS		
DIP BEARING	139.4 DEG	-4.1	$\text { TILT/MILE }{ }^{4} 0.57$		FEET				
TIME 1310					30.302				
PRESSURE	29.694	$\begin{array}{r} 30.355 \\ 0.0 \end{array}$	$\begin{array}{r} 30.186 \\ 64.0 \end{array}$			30.209			
TEMP DRY	0.0				68.0	0.0			
SINGLE BASE	ERRORS	-4.9	TILT/MILE		MULT	LE BASE	ERRORS		
DIP BEARING	161.1 $1^{-4 .}$ DEG			0.31	FEET	0.4	8.7		

$$
\begin{aligned}
& \text { un } \\
& \underset{\sim}{0} \\
& \frac{\underset{\sim}{x}}{u} \\
& \frac{1}{u}
\end{aligned}
$$

CITY TRAVERSE REDUCTION 28 MAY 1959 ASA
CENTENNIAL
$\begin{array}{ll}\sim n & \sim \infty \\ \underset{\sim}{\gamma} 0 & \underset{\sim}{\gamma} \\ \underset{\sim}{\sim} & \underset{\sim}{\sim} \\ \underset{\sim}{\sim} & \underset{\sim}{\sim}\end{array}$
ERRORS
10.3

$30.285 \quad 30.190$
MULTIPLE BASE FEET 1.0 FEET

9.5

30.337	30.171	30.285	30.190
0.0	65.0	67.0	0
-7.9	TILT/MILE	0.65	FEET

CITY TRAVERSE REDUCTION 28 MAY 1959 ASA
ST PAULS LIVERPOOL
CENTENNTAL
ERRORS
11.6

\sim
$\underset{\sim}{\alpha}$
$\underset{\gamma}{\gamma}$
$\underset{\sim}{u}$
$\underset{\sim}{u}$

~om

0.35 FEET

ST PAULS	LIVERPOOL	CEN	NTENNIAL	BEVER	RLY HLLL	RYDE	
TIME 1405							
PRESSURE	29.676	30.336	30.169		30.285	30.188	
TEMP DRY	0.0	0.0	64.0		67.0		
SINGLE BASE	ERRORS				MUL	Le base	ERRORS
DIP BEARING	$145.3{ }^{-4 \cdot 9} \mathrm{DEG}$	-5.5	TILT/MILE	0.35	FEET	1.2	11.6
TIME 1410							
PRESSURE	29.676	30.332	30.169		30.283	30.189	
TEMP DRY	0.0	0.0	63.0		66.0	0.	
SINGLE BASE	ERRORS				MULT	LE BASE	ERRORS
DIP BEARING	$103.2^{-4.0} \mathrm{DEG}$	-2.7	TILT/MİLE	0.41	FEET	-1.8	10.3
TIME 1415							
PRESSURE	29.673	30.332	30.168		30.280	30.187	
TEMP DRY	0:0	67.0	62.0		65.0	0.0	
SINGLE BASE	ERRORS				MUL	PLE BASE	ERRORS
DIP BEARING	126.2 DEG		TILT/MILE	0.46	FEET		
TIME 1430							
PRESSURE	29.674	30.330	30.166		30.278	30.185	
TEMP DRY	0.0	68.0	62.0		64.8	0.0	
SINGLE BASE	ERRORS	-0.3			MUL	IPLE BASE	ERRORS
DIP BEARING	102.9 DEG		TILT/MİE	0.35	FEET		

CITY TRAVERSE REDUCTION 28 MAY 1959 ASA
St PAULS

St Pauls	LIVERPOOL	CENTENNIAL		BEVERLY HILL	RYDE	
TIME 1445						
PRESSURE	29.674	30.333	30.167	30.281	30.185	
SINGLE BASE	ERRORS ${ }^{0}$		61.0	67.0	E BAS ${ }^{0}$	
DIP BEARING	$133.5{ }^{4}$ DEG	-3.5		FEET		12.4
TIME 1500						
PRESSURE	29.678	30.335	30.165	30.28	30.192	
TEMP DRY	ERRORS ${ }^{6} 0$	66.0	61.0	66.8	- 0.0	
DIP BEARING	$\begin{aligned} & \text { ERRORS } \\ & 2.5 \text { DEG } \end{aligned}$	-2.7	ILE 0.07		E BASE	$\begin{array}{r} \text { ERRORS } \\ 7.7 \end{array}$
TIMESURE 1505						
PRESSURE	29.680	30.335	30.165	30.284	30.192	
TEMP DRY	ERRORS ${ }^{66}$	0.0	61.0	67.0	0.0	
DIP BEARING	$176 \cdot 3^{2} D_{D}^{7}$	-0.8	TILT/Mİ일 0.22	FEET	-4.3	$\begin{array}{r} \text { ERROR S } \\ 8.6 \end{array}$
TIMESSURE 1510						
TEMP DRY	29.681 64.0	30.334 0.0	30.165 61.0	30.283 66.0	30.193 0.0	
SINGLE BASE	ERRORS			MULT	E BASE	ERRORS
DIP BEARING	4.1 ${ }^{4.5}$ DEG		TILT/MİE9 0.40	FEET	. 2	8.3

CITY TRAVERSE REDUCTION 28 MAY 1959 ASA

ST PAULS	LI VERPOOL	CEN	NTENNIAL	BEVER	ERLY HILL	RYDE	
TIME 1515							
PRESSURE	29.681	30.335	30.165		30.281	30.193	
TEMP DRY	64.0	0.0	61.0		65.8	0.0	
SINGLE BASE	ERRORS				MULT	LE BASE	ERRORS
DIP BEARING	$177.7^{4.6}$ EG	4.1		0.37	FEET	1.9	8.5
TIME 1530							
PRESSURE	29.681	30.332	30.166		30.281	30.194	
TEMP DRY	60.0	63.0	63.5		65.8	0.0	
SINGLE BASE	ERRORS				MULT	PLE BASE	ERRORS
DIP BEARING	22.4 DEG		TILT/MILE	0.51	FEET		
TIME 1545							
PRESSURE	29.686	30.333	30.167		30.281	30.196	
TEMP DRY	ERROR ${ }^{61} 0$	64.0	60.0		0.0	0.0	
SINGLE BASE	ERRORS 8.9	10.7	14.6		MULT	$\begin{aligned} & \text { PLE BASE } \\ & -3.3 \end{aligned}$	ERROR S 8.9
DIP BEARING	11.3 DEG		TILT/MILE	0.87	FEET		
TIME 1600							
PRESSURE	29.685	30.332	30.165		30.288	30.199	
TEMP DRY	60.0	61.0	60.0		0.0	0.0	
SINGLE BASE	ERRORS	4.9	12		MULT	LE BASE	ERRORS
DIP BEARING	$6.8{ }^{1}$ DEG	4.9	TILT/MILE	1.01	FEET		

CITY TRAVERSE REDUCTION 28 MAY 1959 ASA
ERROR S
3.6
ERRORS
4.5
ERRORS
3.8

[^1] 30.331
60.0
6.9
CITY TRAVERSE REDUCTION 28 MAY 1959 ASA

REDUSTIUN OF FIELD READINGS COOTAMUNDRA $28 / 2 / 66$ ASA
\[

$$
\begin{aligned}
& \text { PRESSURES IN MILGBGRS } \\
& \text { UEMPEATURES IN CENTIGRADE } \\
& \text { COORDINATES IN YARUS }
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { CONSTANT } \begin{array}{l}
143831.81 \\
\text { CONSTANT } \\
\hline
\end{array} \mathbf{0 . 1 8 9 1 0}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { STATION } & \\
\text { HAREF } \\
\text { QUANDIALU } & 682000 . \\
\text { PETTITS } & 798000 . \\
\text { YEO YEO } & 681500: \\
& 738000
\end{array}
$$

$$
\begin{array}{r}
\text { HEIGHT } \\
833.00 \\
817.00 \\
797.00 \\
1124.00 \\
0.0
\end{array}
$$

-12 BASE ERRORS

REDUCTION OF FIELD READINGS COOTAMUNDRA 28/2/66 ASA
HAREFIELD
1045
IIMESURE
$\sum_{\square \rightarrow \infty}^{\infty} \sum_{\square}^{2}$

T

TIME 1100	
PRESSURE	982.45
TEMP DRY	28.3
TEMP WET	18.8
SINGLE BASE	ERRORS
DIP BEARING	118.63 .2

TIME	
PRESSURE	
TEMP DRY	982.28
TEMP WET	$27 \cdot 7$
SINGLE BASE ERRORS	
DIP BEARING	114.26 .4
DIP	

TIME 1110	
PRESSURE	982.35
TEMP DRY	28.4
TEMP WET	18.5
SINGLE BASE	ERRORS
OIP BEARING	-22.7
	119.5 DEG

REDUCTION OF FIELD READINGS COOTAMUNDRA 28/2/66 ASA
HAREFIELD

$\begin{aligned} & \text { TIME } 1115 \\ & \text { PRESSURE } \end{aligned}$	982.19				
TEMP DRY	982.19	982.41	984.30	972.94	
TEMP WET	27.6	28.0	28.9	27.2	
SINGLE BASE	ERRORS	22.5	23.1	MULTIPLE BASE	ERRORS
DIP BEARING	$115.15{ }^{-25}$ DG	-20.0	TILT/MILE 0.77	FEET -12.5	
TIME 1130					
PRESSURE	982.34	982.49	984.30	972.94	
TEMP DRY	29.3	27.9	29.5	27.8	
TEMP WET	19.1	22.2	22.8	0.0	
SINGLE BASE	ERRORS			Multiple base	ERRORS
	$119.4{ }^{-21}{ }^{\text {D }}$ EG	-14.7	TILT/MILE 0.66	-10.3	

TIME 1200				
PRESSURE	982.15	982.45	984.23	972.89
TEMP DRY	31.5	31.0	29.0	27.8
SINGLE BASE	RROR ${ }^{3}$	24.	19.6	0.0
DIP BEARING	$112.7{ }^{2} \mathrm{DEG}$	-17.8	/MILE 0	$\begin{aligned} & \operatorname{LE} . B 6 \\ & -9.4 \end{aligned}$

REDUCTION OF FIELD READINGS COOTAMUNDRA 28/2/66 ASA
YEO YEO

TIME 1210					
PRESSURE	982.12	982.30	984.17	972.89	
TEMP DRY	30.8	30.2	29.5	28.4	
TEMP WET	$19 \cdot 7$	23.5	19.8	0.0	
	ERRORS -24	8.8		NULTIPLE BASE	ERRORS
DIP BEARING	116.8 DEG	.	/MILE	FEET -12.6	

REDUCTION OF FIELD READINGS COOTAMUNDRA 28/2/66 ASA
HAREFIELD

REDUCTION OF FIELD READINGS COOTAMUNDRA 28/2/66 ASA
HAREFIELD

$\begin{aligned} & \text { TIME } \\ & \text { PRESURE } \\ & 1430 \end{aligned}$	980.35	980.59	982.14	971.07
TEMP DRY	32.9	33.1	32.2	30.6
TEMP WET	19.8	25.9	19.9	0.0
SINGLE BASE	ERRORS -17.1	-14.4		MULTIPLE BASE
DIP BEARING	118.8 DEG	-14.4	/MILE 0	FEET -10.7

REDUCTION OF FIELD READINGS COOTAMUNDRA 28/2/66 ASA
HAREFIELD

TIME 1500
PRESSURE
TEMP DRY
TEMP WET
SINGLE BASE
DIP BEARIT
DING
TIME 1505
PRESSURE
TEMP DRY
TEMP WET
SINGLE BASE
DIP BEARING
TIME 1510
PRESSURE
TEMP DRY
TEMP WET
SINGLE BASE
DIP BEARING
980.21
33.6
21.2
-17.8
QUANDIALLA
PETTITS
MULTIPLE BASE ERRORS

MULTIPLE BASE ERRORS
TILT/MILE 0.52 FEET
970.89

 -15.5
REDUCTION OF FIELD READINGS COOTAMUNDRA 28/2/66 ASA harefield
TIME 1515
PRESSURE
TEMP DRY
TEMP WET
SINGLE BASE
DIP BEARING
TIME 1530
PRESSURE
TEMP DRY
TEMP WET
SINGLE BASE
DIP BEARİNG
TIME 1545
PRESSURE
TEMP DRY
TEMP WET
SINGLE BASE
DIP BEARING
TIME 1600
PRESSURE
TEMP DRY
TEMP WET
SINGLE BASE
DIP BEARING
REDUCTION OF FIELD READINGS COOTAMUNDRA 28/2/66 ASA
HAREFIELD
TIME 1605
PRESSURE
TEMP DRY
TEMP WET
SINGLE BASE
DIP BEARING
PETTITS YEO YEO
$\begin{array}{ccc} & & \text { MULTIPLE BASE ERRORS } \\ \text { /MILE } & 0.53 \text { FEET } & \\ & \\ 9819.1 \\ 30.47 & 970.70 \\ 18.7 & 31.1 \\ & 0.0 & \\ & \text { MULTIPLE BASE ERRORS }\end{array}$
TILT/MILE $0.50 \mathrm{FEET} \quad$ MULTIPLE BASE ERRORS

MULTIPLE BASE ERRORS
FEET
ERRORS -17.2

REDUCTION OF FIELD READINGS CODTAMUNDRA 28/2/66 ASA
harefield
QUANDIALLA
PETTITS YEO YEO

TIME 1700				
PRESSURE TEMP DRY	979.91	980.01	981.55	970.79
TEMP WET	19:9	19.9	18.7	31.1 0.0
SINGLE BASE	ERRORS			
DIP BEARING	$130 \cdot 12{ }^{-12}{ }^{\text {d }}$ EG	-20.0	T/MILE	FEET

TIMESSURE 1705	979.93			
TEMP DRY	979.93 32.6	979.99 31.9	$98 \frac{1}{31} .58$	970.70 30.6
TEMP WET	19.6	19.9	19.6	+0.0
		-16.7		MU

PIMESURE 1710	979.89	980.08		
TEMP DRY	32.3	31.9	981.5	97.0 .66
TEMP WET	ERROR ${ }^{\circ}{ }^{6}$	0.0	18:8	- 0
DIP BEARING	ERR-14.3	-16.8		

HAREFIELD	QUANDIA	PETTITS		YEO	YEO
TIME 1715					
PRESSURE	979.79	980.05	981.60		970.67
TEMP WET	32.3 19.6	31.9 0.0	30.8 19.7		30.6 0.0
SINGLE BASE	ERRORS	-20.1			MU

REDUCTION OF FIELD READINGS COOTAMUNDRA $1 / 3 / 66$ ASA
PRESSURES IN MILLIBARS
TEMPERATURES IN CENTIGRADE
COORDINATES IN YARDS
CONSTANT 1.143831 .81
CONSTANT 2 0.18910

STATION	
BATLOW	613000.
WAGGA	663000.
MONTEAGLE	771500
YEO YEG	738000
QUANDIALLA	798000.

TIME SURE 845	
PRESSURE	927.30
TEMP DRY	22.3
TEMP WET	15.5
SINGLE BASE ERRORS	
OIP BEARING	123.86 .2
	DEG

$$
\begin{array}{lc}
\text { TIME } 900 & \\
\text { PRESSURE } & 927.39 \\
\text { TEMP DRY } & 22.7 \\
\text { TEMP WET } & 16.0 \\
\text { SINGLE BASE ERRORS } \\
\text { DIP BEARING } & 148.7 .2 \\
\hline 0.2
\end{array}
$$

$$
\begin{array}{r}
\text { ERRORS } \\
13.6
\end{array}
$$

$$
\begin{gathered}
\text { ERRORS } \\
16.3
\end{gathered}
$$

$\stackrel{\llcorner }{+}$
REDUCTION OF FIELD READINGS COOTAMUNDRA 1／3／66 ASA

5				
区				
－	900山	¢	$\stackrel{\text { noou }}{+}$	inoum
－	－001	．004	－ $00 \pm$	． 006
\geq	in mo		ก ¢	เก
¢	∞	∞	∞	∞
	の шо	の 山m	σ	\bigcirc
0				
	0	－	－	
	\square	に	$\stackrel{+}{+}$	$\underset{\sim}{1}$
	\vdash	－	－	－
	0002	0002	$\infty 00$	9003
	9.0°			$9.0{ }^{\circ}$
\bigcirc	¢ 山	成	的	
山	～ш	N 山	N 山	N
$>$	の	の	の แ	σ
\bigcirc	の	N	m	
Ш	\bigcirc	\square	$-$	
$>$	－			
	－ 0	\bigcirc	∞	
	0ins	NON	$\infty 00$	inme
	\cdots Nit	\cdots Mr	$\rightarrow \mathrm{mr}$	－mio
	¢NH NH	－NHT M－1	かべいい	mNT
$山$	in NE	1）vi	in Nइ	
$\frac{1}{0}$	の	の	$の$－	σ
－	\cdots	－		
山	汇	\square	\square	
${ }^{-}$	－	－	－	
¢	minn in	nor m	mino	$m \infty m \sim$
	$\cdots \cdot{ }^{\circ}$	$\cdots \cdot \bullet$	$\cdots \cdot \dot{\circ}$	$\rightarrow+\infty$
	minco	mint m	¢min	
	${ }^{m} N-1$	$\mathrm{m}^{\text {m }}$	$\mathrm{m}^{\mathrm{NaH-H}}$	m^{Na}
	σ	σ	σ	の
	－	N－1	0	
－	Dins－o	000 V：0	mon 0	Ono
0	¢－•ns	し几．Mn	in •un	¢00n
0	omox m	－mor in	－mox	－mira
\leq	NNHO	NNH0	NNHO．	へN－O
3	$\cdots \sim \infty$	$\cdots \sim 0$	$\sim \sim \infty$	$\sim \sim$
	の $<$ ¢		の \times－	の
	$\square \rightarrow$	山－	山－	
	$\cdots \quad \sim \infty z$	－1 जnz	m जoz	＋
	の \downarrow ・に	の	の＜－	
	山入トロナな	u＞トロ $0 \times$	山入トの0x	山＞－
	¢띠	とロ山	¢ ¢ 山	¢ \times ¢
3	つ刀ミ山 山	つロ3山 世	$\bigcirc \bigcirc$ แu	フロ3山
$\xrightarrow{\square}$	யベ刀口号 0		以NO－ 0	~ 3
\vdash	ミ山ら玉z 0	$\sum \omega \sum \sum \geq 0$	ミ山込	ミuミ氵己
¢		－¢ W山゙い -	いのய山い	ゆロ山いい
∞	トロトトへ 0	トロトトの0	トロトトの 0	トロートの

REDUCTION OF FIELD READINGS COOTAMUNDRA $1 / 3 / 66$ ASA
 TILT/MILE 0.11 FEET

BATLOW	WAGGA
TIME 1000	
PRESSURE	927.52
TEMP DRY	23.5
TEMP WET	17.0
SINGLE BASE	ERRORS
DIP BEARING	122.0^{-3} DEG

TIME 1005	
PRESSURE	927.46
TEMP DRY	24.0
TEMP WET	17.0
SINGLE BASE	ERRORS
DIP BEARING	129.6 DEG

DIP BEARING 129.6 DEG

TIME 1015	
PRESSURE	927.52
TEMP DRY	23.5
TEMP WET	$17: 0$
SINGLESASE	ERRORS
DIP BEARING	133.0 O. 6
DEG	

REDUCTION OF FIELD READINGS COOTAMUNDRA 1/3/66 ASA

REDUCTION OF FIELD READINGS COOTAMUNDRA $1 / 3 / 66$ ASA

$$
\begin{array}{r}
\text { ERRORS } \\
17.8
\end{array}
$$

$$
\begin{array}{rrrrr}
992.50 & 957.56 & 974.38 & 984.75 \\
28.0 & 26.8 & 31.4 & 0.0 & \\
18.9 & 17.7 & 0.0 & \text { MULTIPLE BASE ERRORS } \\
0.9 & 3.8 & & 8.9 & 16.7 \\
& \text { TILT/MILE } & 0.27 & \text { FEET } & \\
& & & & \\
992.35 & 957.38 & 974.18 & 984.55 \\
28.6 & 27.2 & 33.5 & 0.0 \\
18.9 & 17.7 & 0.0 & 0.0 & \\
1.1 & 2.9 & \text { MULTIPLE BASE ERRORS } \\
& & \text { TILT/MILE } & 0.35 & \text { FEET }
\end{array}
$$

REDUCTION OF FIELD READINGS COOTAMUNDRA 1/3/66 ASA

REDUCTION OF FIELD READINGS COOTAMUNDRA 1/3/66 ASA

REDUCTIUN OF FIELD READINGS COOTAMUNORA $1 / 3 / 66$ ASA

MONTEAGLE	YEO YEO	QUANDIALLA	
991.38	956.65	973.53	984.18
30.0	29.0	32.1	0.0
19.0	18.0	0.0	0.0
-5.9	-13.3	MULTIPLE BASE	
			4.2

ERRORS
2.8

991.40	956.72	973.59	984.10
31.0	29.5	32.5	0.0
19.8	17.8	0.0	0.0
-3.9	-6.1	MULTIPLE BASE ERRORS	
			4.1

991.00	956.28	973.26	983.80	
30.1	30.5	32.8	0.0	
19.1	18.1	0.0	0.0	
-9.1	-14.0		MULTIPLE BASE	
	TILT/MILERRURS	0.35	FEET	0.8

$$
07 \cdot 956
$$

TILT/MILE
56.28
30.5
18.1
9.1 -14.0 1.21
30.8
19.1
-12.0
991.00
30.1
19.1
$=1.3$ 0.8
REDUCTION OF FIELD READINGS COOTAMUNDRA $1 / 3 / 66$ ASA
MONTEAGLE YEO YEO
 $\begin{array}{rrrr}990.64 & 955.96 & 973.06 & 983.56 \\ 32.0 & 29.3 & 0.0 \\ 19.2 & 17.5 & 0.0 & 0.0 \\ & & \text { MULTIPLE BASE ERRORS }\end{array}$ nin
0
x
x $\begin{array}{rrrrr}990.64 & 955.89 & 973.13 & 983.54 \\ 31.8 & 30.8 & 32.8 & 0.0 \\ 18.8 & 18.0 & 0.0 & 0.0 \\ -9.8 & -11.5 & \text { MULTIPLE BASE ERRORS } & \\ & & & -7.4 & -6.7\end{array}$ TILT/MILE 0.29 FEET $\quad-7.4 \quad-6.7$ $\begin{array}{rrrrr}990.57 & 955.95 & 973.09 & 983.42 \\ 31.8 & 30.4 & 32.5 & 0.0 \\ 18.8 & 17.7 & 0.00 & 0.0 \\ -9.1 & -8.3 & \text { MULTIPLE BASE ERRORS } \\ & \text { TILT/MILE } & 0.23 & \text { FEET } & -5.8\end{array}$

BATLOW	WAGGA		LE	YEO	YEO	QUANDIALLA		
TIME 1400								
PRESSURE	926.14	990.72	956.05		972.98	983.61		
TEMP DRY	27.5	31.8	29.2		33.0	0.0		
SEMP WET	ERR ${ }^{16} \mathrm{~S}^{8}$	19.0	17.8		0.0	0.0		
SINGLE BASE	ERRORS 2.5	-1	-9			E BASE ERR		
DIP BEARING	92.3 DEG	1.7	/MILE	. 23	FEET		92.3 DEG	926.12
:---:								
27.8								
17.0								
ERRORS								
87.14 .3								
DEG								

-5.3 TILT/MILE TILT/MILE 0.22 FEET

REDUCTION OF FIELD READINGS COOTAMUNDRA 1/3/66 ASA

$\begin{array}{lr}\text { TIME } 1515 & \\ \text { PRESSURE } & 925.61 \\ \text { TEMP DRY } & 28.0 \\ \text { TEMP WET } & 17.0 \\ \text { SINGLE BASE ERRORS } \\ \text { DIP BEARING } & 91.83 .8 \\ \text { DEEG }\end{array}$
$\begin{array}{lr}\text { TIME SURE } 1530 & \\ \text { PRESSUE } & 925.66 \\ \text { TEMP DRY } & 27.5 \\ \text { TEMP WET } & 16.5 \\ \text { SINGLE BASE ERRORS } \\ \text { DIP BEARING } & 81.25 .5 \\ \text { DEG }\end{array}$

989.85
33.0
18.8
-0.1
TILT/MILE 0.18 FEET

TIME				
PRESSURE		925.61	990.07	955.36
TEMP DRY	28.0	32.3	972.40	
TEMP WET	17.0	19.4	31.3	33.8
SINGLE BASE ERRORS	18.0	0.0		
DIP BEARISG	91.8 .8	-5.8		
MULTIPLE BASE ERRORS				

TILt/mile 0.32 FEET

MULTIPLE BASE ERRORS

REDUCTION OF FIELO READINGS COOTAMUNDRA $1 / 3 / 66$ ASA
BATLOW
$W A G G A$
MONTEAGLE YEQ YEO

	MONTEAGLE YEO YEO		
989.77	955.29	972.24	
32.5	29.7	33.2	
19.5	1.2 .2	0.0	MULTIPLE BASE ERRORS

LE BASE ERRORS
-2.3
$\begin{array}{rrr}989.73 & 955.22 & 972.29 \\ 32.0 & 30.6 & 32.8 \\ 19.5 & 17.8 & 0.0 \\ -0.9 & \text { MULTIPLE BASE ERRORS }\end{array}$
TILT/MILE O 12 FEET -5.6

955.22	972.14
29.8	32.9
18.0	0.0

FEET
N
N
N
N
MULTTPLE BASE ERRORS
FEET

APPENDIX III

Barometer Traverse Reductions.

22nd May, 1956 229.
23rd May, 1956 239.
6th December, 1955 251.
7th December, 1955 258,
CITY TRAVERSE REDUCTION 22 MAY 1956 ASA
 SqYV人 NI SヨIVNI IYOOS
LI
 1AL $\begin{array}{ll}\text { TIME } & 923 \\ \text { FIELD STN }\end{array}$ PRESSURE $\begin{array}{lc}\text { PRESSURE } & 29.390 \\ \text { TEMP DRY } & 0.0 \\ \text { SINGLE BASE } & \text { ERRORS }\end{array}$

DIP BEARING DIP BEARING 100. 2 DEG

TILT/MILEO.33
397350
290871

813150
29.979

SyOyy $\exists 5 \forall g$ ЭdIITnin FEET
CITY TRAVERSE REDUCTION 22 MAY 1956 ASA
LIVERPOOL CENTENNIAL

$$
\begin{array}{ccc}
815900 & 398750 & 119.13 \\
30.030 & 29.870 & 29.971 \\
68.6 & 0.0 & 0.0 \\
1.8 & & \text { MULTIPLE BASE ERRORS } \\
& \text { TILT/MILE } 0.42 & \text { FEET }
\end{array}
$$

-

 $\begin{array}{ccc}819400 & 399900 & 61.40 \\ 30.027 & 29.869 & 30.032 \\ 67.9 & 0.0 & 0.0 \\ 4.1 & & \\ & & \text { TILTHMLLE THLE BASE ERRORS }\end{array}$ LIVERPOOL

$$
\begin{array}{lc}
\text { PRESSURE } & 29.389 \\
\text { TEMP DRY } & 0.0 \\
\text { SINGLE BASE } & \text { ERRORS } \\
\text { DIP BEARING } & 53.6 .7 \\
\hline \text { DEG }
\end{array}
$$

TIME 1001	
FIELD STN	638
PRESSURE	29.389
TEMP DKY	0.0
SINGLE BASE ERRORS	
DIP BEARING	52.50 .9

$$
\begin{array}{cccc}
815000 & 397800 & 46.39 \\
30.030 & 29.871 & 30.052 \\
68.9 & 0.0 & 0.0 \\
-0.5 & & \text { MULTIPLE BASE ERRORS } \\
& \text { TILT/MILE } 0.45 & \text { FEET } & -5.0
\end{array}
$$

CITY TRAVERSE REDUCTION 22 MAY 1956 ASA
ST PAULS LIVERPOOL CENTENNIAL

820800	400500	35.84
30.027	29.866	30.057
67.7	0.0	0.0
6.9		MULTIPLE BASE ERRORS
TILT/MILE 0.59	FEET	

$\begin{array}{cccc}822900 & 400500 & 30.61 \\ 30.026 & 29.863 & 30.061 \\ 67.7 & 0.0 & 0.0 \\ 8.3 & & & \text { MULTIPLE } \\ & \text { TILT/MILE } & 0.68 & \text { FEET }\end{array}$

\sim
$\frac{\sim}{8}$
$\frac{8}{q}$
$\underset{\sim}{u}$
CITY TRAVERSE REDUCTION 22 MAY 1956 ASA
LIVERPOOL CENTENNIAL

833100	412100	631.79	
30.018	29.851	29.416	
69.5	0.0	0.0	
0.2			MULTIPLE BASE ERRORS

830600	414500	460.81	
30.014	29.850	29.591	
70.0	0.0	0.0	
6.0		MULTIPLE	
TILT/MILE	0.89	FEET	4.4

829300	415500	422.16	
30.014	29.849	29.630	
70.3	0.0	0.0	
5.2		MILTMLLE MIPLE BASE ERRORS	
	0.69	FEET	3.4

ST PAULS
TIME 1050
FIELD STN

DIP BEARING 174. 0^{10} DEG
$\begin{array}{lc}\text { TIME } 1056 & \\ \text { FIELD STN } & 295 \\ \text { PRESSURE } & 29.382 \\ \text { TEMP DRY } & 0.0 \\ \text { SINGLE BASE } & \text { ERRORS } \\ \text { DIP BEARIA } \\ \text { DING } & 1.19 .4 \\ \end{array}$

0
0
0
m

FIME SINO STN PRESSURE
TEMP DRY
SINGLE BASE
10.0
DIP BEARING

City traverse reduction 22 May 1956 asa
LIVERPOOL CENTENNIAL

822300.	417900.	325.39
30.003	29.839	29.719
74.2	0.0	0.0
7.8		,

29.370
0.0
ERRORS
$3.60^{5} E_{G}$

178.4 GEG
$\begin{array}{ll}\text { TIME } & 1139 \\ \text { FIELD STN } & 286 \\ \text { PRESSURE } & 29.363 \\ \text { TEMP DRY } & 0.0 \\ \text { SINGLE BASE ERRORS } \\ \text { DIP BEARING } & 175.0 \\ \text { 4. } \\ \text { DEG }\end{array}$
$\begin{array}{ll}\text { TIME }{ }^{114} 48 & \\ \text { FIELD STN } & 285 \\ \text { PRESSURE } & 29.357 \\ \text { TEMP DRY } & 0.0 \\ \text { SINGLE BASE ERRORS } \\ \text { DIP BEARING } & 24.88^{3} \text { DEG }\end{array}$
235.

$\begin{array}{lcccc}\text { CITY TRAVERSE REDUCTION } 22 & \text { MAY } 1956 \text { ASA } \\ \text { ST PAULS } & \text { LIVERPOOL } & \text { CENTENNIAL } \\ & & & & \\ \text { TIME } 1340 & & 819400 . & 399900 . \\ \text { FIELD STN } & 638 & 29.937 & 29.787 \\ \text { PRESSURE } & 29.315 & 69.0 & 0.0 \\ \text { TEMP DRY } & 0.0 & 14.2 & \\ \text { SINGLE BASE ERRORS } & \text { TILT/MILE } 1.25\end{array}$
$\begin{array}{lcccc}\text { CITY TRAVERSE REDUCTION } 22 & \text { MAY } 1956 \text { ASA } \\ \text { ST PAULS } & \text { LIVERPOOL } & \text { CENTENNIAL } \\ & & & & \\ \text { TIME } 1340 & & 819400 . & 399900 . \\ \text { FIELD STN } & 638 & 29.937 & 29.787 \\ \text { PRESSURE } & 29.315 & 69.0 & 0.0 \\ \text { TEMP DRY } & 0.0 & 14.2 & \\ \text { SINGLE BASE ERRORS } & \text { TILT/MILE } 1.25\end{array}$

FEET
MULTIPLE BASE ERRORS

$$
\text { FIME } \operatorname{SINL}^{1348} 640
$$

$$
\begin{array}{lc}
\text { PRESSURE } & 29.313 \\
\text { TEMP DRY } & 0.0 \\
\text { SINGLE BASE } & \text { ERRORS } \\
\text { DIP BEARING } & 26.98 .7 \\
\text { DIEG }
\end{array}
$$

$$
395800
$$

| TIME | ${ }^{1409}$ |
| :--- | :--- | :--- |
| FELD | |
| STN | |

PRESSURE	29.310
TEMP DRY	0
SINGLE BASE	ERRORS
DIP BEARING	16.08 .8
DISG	

TIMED STN	644
PRESSURE	29.310
TEMP DRY	0.0
SINGLE BASE	ERRORS
IP BEARIN	

[^2]\[

$$
\begin{aligned}
& \text { OMULTIPLE BASE ERRORS } \\
& \text { FEET } \\
& \begin{array}{cc}
815900 & 398750 \\
29.939 & 29.784 \\
67.2 & 0.0 \\
13.8 & \text { TILTMILE } 1.17
\end{array}
\end{aligned}
$$
\]

CITY TRAVERSE REDUCTION 22 MAY 1956 ASA
CENTENNIAL

808400	395450	9.47					
29.935	29.779	29.899					
65.1	0.0	0.0					
16.4		MULTIPLE BASE ERRORS					

[^3]STPAULS LIVERPOOL
\[

$$
\begin{array}{lc}
\text { TIME } & 1447 \\
\text { FIELD STN } & 647 \\
\text { PRESSURE } & 29.306 \\
\text { TEMP DRY } & 0.0 \\
\text { SINGLE BASE } & \text { ERRORS } \\
\text { DIP BEARING } & 35.4 .6 \\
\end{array}
$$
\]

$$
\begin{gathered}
9 \\
+8 \\
0+4 \\
-8 \\
0 \\
0
\end{gathered}
$$

SI PAULS
TIME 1447

$$
\begin{array}{lc}
\text { TIME } & 1453 \\
\text { FIELD STN } & \\
\text { PR } & \\
\text { PRESSURE } & 29.306 \\
\text { TEMP DRY } & 09.0 \\
\text { SINGLE BASE } & \text { ERRORS } \\
\text { DIP BEARING } & 26.6^{8} .5 \\
\text { DEG }
\end{array}
$$

FIME $\quad 1459$
PRESSURE
SINGLE BASE
DIP BEARING
TIME 1505
PRESSURE
TEMP DRY
SINGLE BASE

CITY TRAVERSE REDUCTION 22 MAY 1956 ASA
LIVERPOOL CENTENNIAL

807700	400750	42.08
29.937	29.776	29.955
64.8	0.0	0.0
19.7		MULTIPLE BASE ERRORS
	TILT/MILE 1.14	FEET

807300.	402000.	97.75
29.935	29.776	29.896
64.7	0.0	
18.3		-1.3

807750.	403700.	22.01
29.932	29.775	29.977
64.6	0.0	0.00
17.9		MULTIPL

| 808050. | 406150 | 100.98 |
| :---: | :---: | :---: | :---: |
| 29.930 | 29.774 | 29.892 |
| 64.6 | 0.0 | 0.0 |
| 16.0 | | MULTIPLE BASE ERRORS |

CITY TRAVERSE REDUCTION 23 MAY 1956 ASA

CITY TRAVERSE REDUCTION 23 MAY 1956

$$
\begin{aligned}
& \text { PRESSURE } \\
& \text { TEMP DRY } \\
& \text { SINGLE, BAS }
\end{aligned}
$$

DIP BEARING

$$
\begin{aligned}
& \text { TIME } 954 \\
& \text { FIELD STN } \\
& \text { PRESSURE } \\
& \text { TEMP DRY } \\
& \text { SINGLE BASE } \\
& \text { DIP BEARING }
\end{aligned}
$$

$$
\text { TIME } \operatorname{FIELD} \text { STN }{ }^{959}
$$

$$
\begin{array}{lc}
\text { PRESSURE } & 29.314 \\
\text { TEMP DRY } & 0.00 \\
\text { SINGLE BASE } & \text { ERRORS } \\
\text { DIP BEARING } & 163.0 \text { DO } \\
\text { DEG }
\end{array}
$$

$$
\begin{aligned}
& \text { TIME } \\
& \text { FIELD STN } \\
& 1004 \\
& 653
\end{aligned}
$$

$$
\begin{array}{lc}
\text { PRESSURE } & 29.313 \\
\text { TEMP DRY } & 0.0 \\
\text { SINGLE BASE } & \text { ERRORS } \\
\text { DIP BEARING } & 170.00^{\circ} \text { DEG }
\end{array}
$$

$$
\begin{aligned}
& \text { TIME } \\
& \text { FIELD STN }
\end{aligned}
$$

CITY TRAVERSE REDUCTION 23 MAY 1956 ASA
LIVERPOOL CENTENNIAL

CITY TRAVERSE REDUCTION 23 MAY 1956 ASA
LIVERPOOL CENTENNIAL
ST PAULS LIVERPOOL

PRRESSURE 29.306 $\begin{array}{cc}\text { TEMP DRY } & 0.0 \\ \text { SINGLE BASE ERRORS } \\ -3.3 & 4.8\end{array}$ 9ヨロ でゥOT 9NI YVヨg dIO $\begin{array}{lc}\text { TIME } 1049 \\ \text { FIELD STN } & 661 \\ \text { PRESSURE } & 29.302 \\ \text { TEMP DRY } & 0.0 \\ \text { SINGLE BASE } & \text { ERRORS } \\ \text { DIP BEARING } & 100.9{ }^{3} \text { DEG }\end{array}$
CITY TRAVERSE REDUCTION 23 MAY 1956
ST PAULS LIVERPOOL CENTENNIAL 804600
29.944
70.3
2.5
TILT/MILE 0.24 FEET MULTIPLE BASE ERRORS

$$
\text { TILT/MILE } 0.37 \text { FEET }
$$

$$
\begin{array}{cccc}
806600 . & 418100 . & 8.11 \\
29.925 & 29.759 & 29.976 \\
71.6 & 0.0 & 0.0 \\
14.9 & & \text { MULTIPLE BASE ERRORS } \\
& \text { TILT/MILE } 0.82 & \text { FEET } & 2.0
\end{array}
$$

$$
807350
$$

$$
418750
$$

$$
\begin{gathered}
29.754 \\
0.0
\end{gathered}
$$

$$
29.960
$$

$$
\text { TILT/MILE } 1.03 \text { FEET }
$$

MULT IPLE BASE ERRORS

$$
-0.0
$$

$\varepsilon 2 \cdot 9 力$
MULTIPLE BASE ERRORS
FEET

$$
08^{\bullet} \text { をย }
$$

$\widetilde{\sim}$
$\stackrel{\sim}{㐅}$
$\underset{\sim}{\widetilde{\alpha}}$
$\underset{\sim}{\sim}$
\square
0.8

818000.	421650.	39.70
29.892	29.729	29.920
3.6		MULTIPL

$$
\begin{aligned}
& \text { TIME } \quad 1137 \\
& \text { FIELD STN } 280
\end{aligned}
$$

PRESSURE
SINGLE BASE
dip bearing

$$
\begin{aligned}
& 29.281 \\
& \text { ERROR } .0 \\
& 9.1^{5} \cdot{ }^{4} \mathrm{DEG}
\end{aligned}
$$

$$
\begin{array}{lc}
\text { TIME } 1210 \\
\text { FIELD STN } & 178 \\
\text { PRESSURE } & 29.270 \\
\text { TEMP DRY } & 0.0 \\
\text { SINGLE BASE } & \text { ERRORS } \\
\text { DIP BEARIS } & 176.71 .5 \\
\text { DING } & 176.7{ }^{2}
\end{array}
$$

$$
420250
$$

$\begin{array}{rr}29.895 & 29.731 \\ 74.3 & 0.0\end{array}$
11.6
TILT／MILE 0.93 FEET
TILT／MILE 0.67 FEET

$$
\text { CITY TRAVERSE REDUCTION } 23 \text { MAY } 1956 \text { ASA }
$$

LIVERPOOL CENTENNIAL

809300.	420000 ．	36.86
29.913	29.752	29.938
72.4	0.0	${ }^{0}$ MUL ${ }^{\text {M }}$

FEET

St pauls	LIVERPOOL
TIME SIN 1128	279
PRESSURE TEMP DRY	29.285 0.0
SINGLE BASE	ERRORS

CITY TRAVERSE REDUCTION 23 MAY 1956 ASA
LIVERPOOL CENTENNIAL

818000.	421650	39.70	
29.883	29.721	29.916	
75.8	0.0	0.0	
-0.1		MULTIPLE BASE ERRORS	
	TILTILE	0.72	FEET

FEET MULTIPLE BASE ERRORS

$$
\begin{array}{cccc}
822300 & 417900 & 325.39 \\
29.874 & 29.715 & 29.601 \\
76.2 & 0.0 & 0.0 & \\
-0.5 & & \text { MULTIPLE BASE ERRORS }
\end{array}
$$

419200.

ST PAULS

FIME
FIELD STN

$9.0^{5.1} \mathrm{DEG}$

29.246
0.0
ERRORS $37.9^{2 \cdot 0}$ DEG

$\begin{array}{ll}\text { TIME } & 1309 \\ \text { FIELD STN }\end{array}$
FRESSUR
TIME 1303
FIELD STN

TIME 1315
TEMP DRY
SINGLE BASE
DIP BEARING
CITY TRAVERSE REDUCTION 23 MAY 1956 ASA
LIVERPOOL CENTENNIAL

TILT/MILE 0.45 FEET
ERRORS

$$
\begin{array}{cccc}
824900 & 418250 & 352.26 \\
29.870 & 29.712 & 29.567 \\
76.4 & 0.0 & 0.0 \\
2.8 & & \text { MULTIPLE BASE ERRORS } \\
& \text { TILT/MILE } & 0.50 & \text { FEET }
\end{array}
$$

$$
\begin{array}{cccc}
827700 & 416250 & 398.66 \\
29.866 & 29.709 & 29.516 \\
76.6 & 0.0 & 0.0 \\
0.9 & & \text { MULTIPLE BASE ERRORS } \\
& \text { TILTMILE } & 0.49 & \text { FEET }
\end{array}
$$

CITY TRAVERSE REDUCTION 23 MAY 1956 ASA

ST PAULS	LIVERPOOL
TIME 1339	
FIELD STN	293
PRESSURE	29.238
TEMP DRY	0.0
SINGLE BASE	ERRORS
DIP BEARING	$53.7^{\circ}{ }^{\circ}$ DEG

FIME $\begin{array}{lll}\text { FIELD } & \text { STN } & 295\end{array}$ $\begin{array}{lc}\text { PRESSURE } & 29.234 \\ \text { TEMP DRY } & 0.0 \\ \text { SINGLE BASE } & \text { ERRORS } \\ \text { DIP BEARING } & 64.4 .0 .5 \\ \end{array}$

0
$\underset{\sim}{n}$

\sim
$\underset{\sim}{\alpha}$
$\underset{\sim}{\alpha}$
$\underset{\sim}{\alpha}$ $\frac{B A}{5}$
CITY TRAVERSE REDUCTION 23 MAY 1956
ST PAULS LIVERPOOL CENTENNIAL
$\begin{array}{ll}\text { ST PAULS } & \\ \text { TIVERPOOL } \\ \text { FIME } & \\ \text { FIELD } \\ & \\ \text { STN }\end{array}$

$$
\begin{array}{ll}
\text { TIME } \\
\text { FIELD STN } & 1424 \\
223
\end{array}
$$

PRESSURE	29.219
TEMP DRY	0.0
SINGLE BASE	ERRORS
DIP BEARING	$78 . \overline{0}^{-3} .1$

CITY TRAVERSE REDUCTION 23 MAY 1956
ITY TRAVERSE REDUCTION 23 MAY 1956 ASA
LIVERPOOL CENTENNIAL

CITY TRAVER	SE REDUCTIO	23 MAY 1956			
ST PAULS	LIVERPO	CENTEN	NIAL		
$\begin{aligned} & \text { TIME } 1452 \\ & \text { FIELD STN } \end{aligned}$	638	819400.	399900.	61.40	
PRESSURE TEMP DRY	29.219	$\begin{gathered} 29.841 \\ 73.5 \end{gathered}$	$\begin{gathered} 29.693 \\ 0.0 \end{gathered}$	$\begin{array}{r} 29.847 \\ 0.0 \end{array}$	
DIP BEARING	$62.5^{-0} .8$	$8.2 \text { TILT }$	/MILE 0.96	$\begin{aligned} & \text { MULTIPLE BASE } \\ & \text { FEET }-0.5 \end{aligned}$	ERRORS
$\begin{aligned} & \text { TIME } 1459 \\ & \text { FIELD STN } \end{aligned}$	639	817300.	399500.	123.83	
PRESSURE TEMP DRY	29.220 0.0	$\begin{gathered} 29.841 \\ 73.0 \end{gathered}$	$\begin{array}{r} 29.691 \\ 0.0 \end{array}$	$\begin{gathered} 29.795 \\ 0.0 \end{gathered}$	
$\begin{aligned} & \text { SINGLE BASE } \\ & \text { DIP BEARING } \end{aligned}$	ERRORS $48.6^{2}{ }^{\text {DEG }}$	$-4.0 \text { TILT }$	/MILE 0.97	$\begin{gathered} \text { MULTIPLE BASE } \\ -14.9 \end{gathered}$	ERRORS
$\begin{aligned} & \text { TIME STE } 1503 \\ & \text { FIELD } \end{aligned}$	640	815900.	398750.	119.13	
PRESSURE TEMP DRY	29.220 0.0	$\begin{array}{r} 29.841 \\ 72.8 \end{array}$	$\begin{gathered} 29.692 \\ 0.0 \end{gathered}$	29.790 0.0	
SINGLE BASE	ERRORS 521.6	5.5	MTE 1	MULTIPLE BASE -6.3	ERRORS
DIP BEARING	52.1 DEG	TILT	MILE 1.00	FEET	
$\begin{aligned} & \text { TIME } 1509 \\ & \text { FIELD STN } \end{aligned}$	642	813150.	397350.	115.12	
PRESSURE	29.220	29.841	29.694	29.787	
SINGLE BASE		72.4	0.0	0 MULTIPLE BA	ERRORS
DIP BEARING	58.5 $5^{\text {O. }}$ DEG	12.8 TILT	MILE 1.06	FEET -0.9	

CITY TRAVER	SE REDUCTIO	23 MAY 1956			
ST PAULS	LIVERPO	CENTEN	NIAL		
$\begin{array}{ll} \text { TIME } & 1452 \\ \text { FIELD STN } \end{array}$	638	819400.	399900.	61.40	
PRESSURE TEMP DRY	29.219	$\begin{gathered} 29.841 \\ 73.5 \end{gathered}$	$\begin{gathered} 29.693 \\ 0.0 \end{gathered}$	$\begin{array}{r} 29.847 \\ 0.0 \end{array}$	
DIP BEARING	$62.5^{-0} \text { DEG }$	$8.2 \text { TILT }$	/MILE 0.96	FEET MULTIPLE BASE	ERRORS
$\begin{aligned} & \text { TIME } 1459 \\ & \text { FIELD STN } \end{aligned}$	639	817300.	399500.	123.83	
PRESSURE TEMP DRY	29.220 0.0	$\begin{gathered} 29.841 \\ 73.0 \end{gathered}$	$\begin{array}{r} 29.691 \\ 0.0 \end{array}$	$\begin{gathered} 29.795 \\ 0.0 \end{gathered}$	
$\begin{aligned} & \text { SINGLE BASE } \\ & \text { DIP BEARING } \end{aligned}$	ERRORS $48.6^{2} \cdot \stackrel{4}{\text { DEG }}$	$-4.0 \text { TILT }$	$\text { /MILE } 0.97$	FEET MULTIPLE BASE	ERRORS
$\begin{aligned} & \text { TIME STE } 1503 \\ & \text { FIELD STN } \end{aligned}$	640	815900.	398750.	119.13	
PRESSURE TEMP DRY	29.220 0.0	$\begin{gathered} 29.841 \\ 72.8 \end{gathered}$	$\begin{gathered} 29.692 \\ 0.0 \end{gathered}$	29.790 0.0	
SINGLE BASE	ERRORS $52 \cdot 1 \cdot 6$	5.5	MILE 1.00	MULTIPLE BASE -6.3	ERRORS
DIP BEARING	52.1 DEG	TILT	MILE 1.00	FEET	
$\begin{aligned} & \text { TIME } 1509 \\ & \text { FIELD STN } \end{aligned}$	642	813150.	397350.	115.12	
PRESSURE	29.220	29.841	29.694	29.787	
SINGLE BASE		72.4	0.0	0 MULTIPLE BASE	ERRORS
DIP BEARING	58.5 $5^{\text {D. }}$ DEG	12.8 TILT	MILE 1.06	FEET -0.9	

$\begin{array}{ccc}29.841 & 29.694 & 29.787 \\ 72.4 & 0.0 & 0.0 \\ 12.8 & & 0.0 \\ & \text { TILT/MILE } 1.06 & \text { FEET }\end{array}$
CITY TRAVERSE REDUCTION 23 MAY 1956 ASA
LIVERPOOL CENTENNIAL

812700.	395800.	22.00
29.841	29.694	29.885
72.1	0.0	${ }^{0}$ MULTIPLE BASE
		3

ERRORS
34.80
29.870
0.0
MULTIPLE BASE
Tilt／mile 1.05 FEET
3.93300 ．
$\begin{array}{cc}29.841 & 29.690 \\ 71.5 & 0.0\end{array}$
16.5

970 5．0ヶ
ST PAULS
TIME 1513
FIELD STN
PRESSURE
TEMP DRY
SINGLE BASE
DIP BEARING
6 NLS $07 \exists \mathrm{II}$
PRESSURE
TEMP DRY
㤩
9NIYVヨg dio
FIME 1523
PRESSURE
TEMP DRY
SINGLE BASE
DIP BEARING
CITY TRAVERSE REDUCTION 6 DECEMBER 1955 ASA

$H E I G H T$
663.00
60.00
215.00

833900
833900
30.283
69.1
60.7
O.O TILT/MILE
ERRORS
0.0

ñ
$\dot{0}$
$\stackrel{\rightharpoonup}{r} i$
$\underset{\sim}{u}$

ño
noou
.004

SA
City traverse repuction
$\begin{array}{lc}\text { STATION } & x \\ \text { STPAULS } & 833900 . \\ \text { LIVERPOOL } & 8091000 \\ \text { CENTENNIAL } & 812900 .\end{array}$
FIMELD STN ${ }^{924}$ ST PAULS
DIP BEARING 100.0 DEG
FIMELD STN ${ }^{936}$ ST PAULS
$\begin{array}{cc}\text { PRESSURE } & 296.614 \\ \text { TEMP DRY } & 09.0 \\ \text { TEMP WET } & 0.0 \\ \text { SINGLE BASE } & \text { ERRORS } \\ \text { DIP BEAR } \\ \text { DING } & 90.57 .8 \\ & \end{array}$

City traverse reduction
ST PAULS LIVERPOOL
ST P

$\begin{aligned} & 826250 \circ \\ & 8277000 \end{aligned}$	417250. 416250.	$\begin{aligned} & 359.53 \\ & 398: 66 \end{aligned}$	
30.281	30,076	29.934	29.897
69.9 61.3	0.8	0.0	0.0
	.	MULTIP	BASE

CENTENNIAL liverpool

TIME 1000	
FIELD STN	295
PRESSURE	294
TEMP DRY	29.613
TEMP WET	0.0
SINGLE BASE	ERRORS
DIP BEARING	94.20 .0
DIP	

TIME 1010	
FIELD STN	293
PRESSURE	294
TEMP DRY	29.612
TEMP WET	0.0
SINGLE BASE	ERRORS
DIP BEARING	89.66 .2
DISE	

FIME STO 1020	29
PRESSURE	292
TEMP DRY	0.0
TEMP WET	
- 24.9	

TIME 1029	
FIELD STN	291
PRESSURE	292
TEMP DRY	29.610
TEMP WET	0.0
SINGLESASE	ERRORS 0
DIP BEARING	$86 . \frac{1}{3} 206$

$$
\begin{gathered}
6 \text { DECEMBER } 1955 \\
\text { CENTENNIAL } \\
\\
822300 . \\
821000 . \\
30.257 \\
69.6 \\
61.6 \\
11.2 \\
\text { TILT/MILE }
\end{gathered}
$$

$$
\begin{array}{r}
\text { ERRORS } \\
-8.5 \\
\\
\text { ERRORS } \\
-8.8
\end{array}
$$

$$
\begin{aligned}
& 7 \\
& \text { ERRORS } \\
& -13.8
\end{aligned}
$$

$$
\begin{aligned}
& 6 \\
& \text { ERRORS } \\
& -12.4
\end{aligned}
$$

CITY TRAVERSE REDUCTION
ST PAULS LIVERPOOL

$$
6 \text { DECEMBER } 1955
$$

CENTENNIAL

TIME	1420	
FIELD STN	178	
PRESSURE	220	
TEMP DRY	29.615	
TEMP WET	0.0	
SINGLE BASE	0.0	
ERRORS		
DIP BEARING	171.48 .3	

emans
cupes
ST PAULS LIVERPOOL

TILT/MILE I.36FEET
CENTENNIAL

6 DECEMBER 1955 ASA
CITY TRAVERSE REDUCTION
LIVERPOOL

6.5 DEG

ST PAULS
224

0
0.0
0
0
0
0
0
0
-1

$\begin{array}{cc}833900: & 4111100 \\ 833900: & 411100 \\ 30.248 & 30.084 \\ 68.0 & 0.0 \\ 64.5 & 0.0\end{array}$
ERRORS
0.0
CITY TRAVERSE REDUCTION 7 DECEMBER 1955 ASA
SA
TEMPERATURES IN FARENHEIT
CONSTANT 143831.81
$\begin{array}{lc}\text { STATION } & \times \\ \text { ST PAULS } & 833900 . \\ \text { LIVERPOOL } & 809100: \\ \text { CENTENNIAL } & 812900 .\end{array}$

TIME 905	
FIELD STN	637
	637
TEMP DRY	29.70^{2}
TEMP WET	0.0
SINGLE BASE	ERRORS
DIP BEARING	$150.0^{6} \stackrel{9}{\text { DEG }}$

TIME	920
FIELD STN	637
PRESSURE	638
TEMP DRY	29.772
TEMP WET	0.0
SINGLE BASE ERRORS	
DIP BEARING	0.0
DIO	6.7

[^4]\[

$$
\begin{aligned}
& \infty \\
& \stackrel{\infty}{4} \\
& \stackrel{\circ}{\circ} \\
& \stackrel{\sim}{2}
\end{aligned}
$$
\]

CITY TRAVERSE REDUCTION 7 DECEMBER 1955 ASA

CENTENNIAL

$$
100
$$

TILT/Mİ를 0.79
vinnur
vmNun
N
O
응
LIVERPOOL

 عLL. 62

 •1. Syoyy$0: 0$
0.0 99. 3^{1} DEG FIME STN ${ }^{955} 641$

86.7 DEG

TIME	
FIELD STN	641
PRESSURE	642
PEMP DRY	29.770
TEMP WET	0.0
SINGLE BASE	ERRORS
DIP BEARING	93.4^{7} DEG

TIME S 1020	
PRESSURE	0
TEMP D	$0 \cdot 0$
SINGLE BAS	ORS
IP BEARING	D

$$
\begin{array}{cc}
815000 & 397800 \\
813150: & 397350 \\
30.426 & 30.241 \\
72.7 & 0.00 \\
65.9 & 0.0 \\
7.3 & \text { TILT/MILE } 0.95
\end{array}
$$

FEET

$$
\begin{aligned}
& L E B A \\
& 12.6
\end{aligned}
$$

$$
\begin{array}{r}
\text { ERRORS } \\
11.9
\end{array}
$$

$$
\begin{gathered}
\text { ERRORS } \\
11.1
\end{gathered}
$$

$$
\begin{array}{r}
7 \mathrm{~T} I 17 n \mathrm{w} \\
000 \\
0 \bullet 0 \\
21 . \varepsilon 5 \times 0 \cdot 0 \\
00.5 T I
\end{array}
$$

CITY TRAVERSE REDUCTION 7 DECEMBER 1955 ASA LIVERPOOL
LIVERPOOL

$$
\begin{array}{lc}
\text { TIME } 1042 & \\
\text { FIELD STN } & 645 \\
\text { PRESSURE } & 644 \\
\text { TEMP DRY } & 0.766 \\
\text { TEMP WET } & 0.0 \\
\text { SINGLE BASE } & 0 \text { ERRORS } \\
\text { DIP BEARING } & 130.7{ }^{\circ} \text { DE }
\end{array}
$$

$$
\begin{array}{lc}
\text { TIME SIO } 1053 \\
\text { FIELD STN } & 645 \\
\text { PRESSURE } & 646 \\
\text { TEMP DRY } & 29.766 \\
\text { TEMP WET } & 0.0 \\
\text { SINGLE BASE } & \text { ERRORS } \\
\text { DIP BEARING } & 163.9 \\
7.1 \\
\text { DEG }
\end{array}
$$

FIELD STN LIVERPOOL

$$
\begin{aligned}
& \text { TIME } 1102 \\
& \text { FIELD STN }
\end{aligned}
$$

$$
\begin{aligned}
& \text { TEMP WET } \\
& \text { SINGLE } \frac{0}{7.7} \text { EASE ERRORS } \\
& 7.3
\end{aligned}
$$

CENTENNIAL

$$
\begin{array}{cc}
810300 & 393300 \\
8111600: & 394200: \\
30.412 & 30.236 \\
72.11 & 0.00 \\
65.4 & 0.0 \\
8.5 & \text { TILT/MILE } 0.7 \\
& 0.67
\end{array}
$$

DIP BEARING 175.1 DEG

ERRORS
11.5
$09: 02$
00.21
ERRORS
7 DECEMBER 1955
ASA
CENTENNIAL

-6.3

0.8

CITY TRAVERSE REDUCTION 7 DECEMBER 1955 ASA
ST PAULS LIVERPOOL CENTENNIAL
LIVERPOOL

$\begin{array}{ll} \text { TIME } & 1227 \\ \text { FIELD } & \text { STN } \end{array}$	650 649
PRESSURE	29.765
TEMP DRY	
TEMP WETASE	
P BEARING	

TIME 1300	
FIELD STN	652
PRESSURE	653
TEMP DRY	29.764
TEMP WET	0.0
SINGLE BASE	ERRORS
24.	
DIP BEARING	174.83 .4

CITY TRAVERSE REDUCTION 7 DECEMBER 1955 ASA
LIVERPOOL CENTENNIAL
ST PAULS LIVERPOOL
ST

FEET
ERRORS
-6.2
 1

$$
\begin{array}{cc}
807000 & 407750 \\
808350 & 407400 \\
30.379 & 30.216 \\
63.9 & 0.0 \\
14.9 & 0.0 \\
& T I L T / M I L E \\
& 1.56
\end{array}
$$

moou $m O O u$
$m 0001$
$m 00$
CEET $168 \cdot 23$
112.12
0275
0.0
0
MULTIPLE
-13 FEET

TILT/MILE

$$
\begin{array}{r}
\text { ERRORS } \\
-12.0
\end{array}
$$

$$
\begin{array}{r}
E R R O R S \\
-15.7
\end{array}
$$

$\stackrel{\leftarrow}{\underset{\sim}{山}}$
7 DECEMBER 1955
ASA

CITY TRAVER ST PAULS	REDUCTION LIVERPOOL	7 DECEMBER 1955 ASACENTENNIAL			
TIME 1357					
FIELD STN	$\begin{aligned} & 658 \\ & 657 \end{aligned}$	805800	410000	158.72	
PRESSURE	6529.756	30.374	$\begin{aligned} & 408500 \\ & 30.221 \end{aligned}$	$30.283 .12 \quad 30.336$	
TEMP DRY	0.0	71.6	30.221 0.0	$\begin{array}{cc}30.283 & 30.336 \\ 0.0 & 0.0\end{array}$	
TEMP WET	0.0	62.7	0.0	0.0 O $0 \cdot 0$	
$\begin{aligned} & \text { BASE } \\ & 27.3 \end{aligned}$ DIP BEARING	$\begin{aligned} & \text { ERRORS } \\ & 13.9 \\ & 20.6 \text { DEG } \end{aligned}$	$12.8 \mathrm{TIL}$	$\frac{10.3}{\text { MILE }} 1.62$	MULT IPLE BASE	$\begin{array}{r} \text { ERRORS } \\ -14.9 \end{array}$
$\begin{array}{lll} \text { TIME } & 1406 \\ \text { FIELD } & \\ \text { STN } & \\ \hline \end{array}$					
	$\begin{aligned} & 658 \\ & 659 \end{aligned}$	805800 806000	410000	$158 \cdot 72$	
PRESSURE TEMP DRY	29.756 0.0	30.372	30.221.	30.282 .30 .320	
TEMP WET	0.0	62.8		0.0 0.0	
$\begin{array}{r} \text { SINGLE BASE } \\ 29.2 \end{array}$	ERRORS 14.0	62.8 13.7		MULTIPLE BASE	ERRORS
DIP BEARING	22.9 DEG	13.7 TIL	MILE 1.71	FEET -11.9	
TIME 1421					
FIELD STN	$\begin{aligned} & 660 \\ & 659 \end{aligned}$	806000 806000	413000.	154.27	
PRESSURE	29.756	30.369	30.221.	$30.289 .38 \quad 30.318$	
TEMP DRY	0.0	71.4	0.0	0.00000	
TEMP WET	ORPO^{0}	63.0	$0 \cdot 0$	0.00	
$\begin{aligned} & \text { SINGLE BASE } \\ & \text { DIP BEARING } \end{aligned}$	ERRORS $26.0^{14}{ }^{1}{ }^{1}$	11.7 TILT	1598 ${ }_{\text {MILE }} 1.86$	FEET MULTIPLE BASE -13.9	$\begin{array}{r} \text { ERRORS } \\ -10.6 \end{array}$
FIELD STN	$\begin{aligned} & 660 \\ & 660 \end{aligned}$	$\begin{aligned} & 806000 \\ & 806000 \end{aligned}$	$\begin{aligned} & 413000 . \\ & 413000 . \end{aligned}$	$\begin{aligned} & 154 \cdot 27 \\ & 154: 27 \end{aligned}$	
PRESSURE	29.755	30.367	30.222	30.286 30.286	
TEMP DRY	0.0	71.2	0.0	$\begin{array}{rr}30.0 & 0.280 \\ 0.0 & 0.0\end{array}$	
SINGLE BASE	ERRORS ${ }^{\circ}$	63.2	0.0	O.O MULTIPLE BASE	
DIP BEARING	$30 . \frac{12}{8} \text { DEG }$	13.8 TILT	$\begin{aligned} & 13.8 \\ & \text { /MLLE } 1.90 \end{aligned}$	FEET -11.0	-11.0

 ERRORS
-11.0

$\begin{array}{rl}\text { CENTENNIAL } \\ & \\ 806000 & \\ 805450 . & \\ 30.362 & 30.21 \\ 71.0 & 0 . \\ 63.4 & 0.0 \\ 14.8 & \\ & \text { TILT/MILE }\end{array}$ FEET
LIVERPOOL
$\begin{array}{cc}806000 & 413000 \\ 805450 & 414300 \\ 30.362 & 30.217 \\ 71.0 & 0.0 \\ 63.4 & 0.0\end{array}$
ERRORS
-12.6

EEET
20.36
24.00

RRORS
-11.8
ERRORS
-10.2
ST PAULS LIVERPOOL CENTENNIAL

ヶ・0－ syoyy		て－ ヨาdII7nW $\begin{gathered} 0^{\circ} 0 \\ 00^{\circ} \\ 00^{\circ} 0 \varepsilon \\ 5 \varepsilon \cdot 02 \\ 98 \cdot 9 \varepsilon \end{gathered}$	$S カ^{\circ} T$ － $05 \angle 8$ － 0000	$\begin{aligned} & \exists 7 I W / \\ & 8 \circ \varepsilon I \\ & 0^{\circ} 0 \\ & 0^{\circ} 0 \\ & 02^{\circ} 0 \varepsilon \\ & I H \\ & Z^{4} \end{aligned}$	1711 － 05 － 00	$\begin{array}{r} 1 \cdot 0 \\ G \cdot 2 \\ 5 \cdot 6 \\ 85 \varepsilon \\ \varepsilon 608 \end{array}$		
0＊9－		1ヨヨコ	$59^{\circ} \mathrm{T}$	$\underset{\forall}{\exists}\urcorner \frac{1}{I}$	71		$9 \exists 0^{\circ} 8{ }^{\circ} \mathrm{T} \mathrm{\varepsilon}$	9NIY甘ヨg dIo
Syoyy	ヨSVG	ヨ7dIL7กW					Syoyy	
	${ }^{0}{ }^{\circ} 0$	0.0 0.0		$0^{\circ} 0$		$6^{\circ} \mathrm{Z}$	$0 \cdot 0$ $0^{\circ} \mathrm{O}$	$1 \exists \mathrm{M}$ dWヨ1
	O乙ャ＊＊＊	を乙ウ ${ }^{\circ} 0 \varepsilon$		$1^{\circ}{ }^{\circ} 0 \varepsilon$		8G ${ }^{\circ}$	$0 \rightarrow 2 \cdot 6 乙$	قynss ${ }^{\text {ayd }}$
		$5 \varepsilon^{\circ} 0 \underset{T}{ }$	0528	Tヶ		208	－599	
		$0<\cdot 61$	0018	［7		908	J	

CITY TRAVERSE REDUCTION 7 DECEMBER 1955 ASA

$$
\begin{aligned}
& \text { PRESSURE } \\
& \text { TEMP DRY } \\
& \text { TEMP WET } \\
& \text { SINGLE BASt } \\
& \hline
\end{aligned}
$$

DIP BEARING
(

CENTENNIAL | 810350, | 421600 |
| :---: | :---: |
| $810800:$ | $422500:$ |
| 30.340 | 30.207 |
| 69.0 | 0.00 |
| 61.7 | 0.0 |
| -9.6 | TILT/MILELE |

$\begin{array}{rr}812900 & \\ 812900 & 423800 . \\ 30.340 & 423800 \\ 68.5 & 30.212 \\ 61.2 & 0.0 \\ & 0.0\end{array}$
-4.1 TILT/MILE 2.17 FEET
LIVERPOOL

$$
{ }^{\text {TIME }} \text { FIELD }^{1700}{ }^{181}
$$

$$
\begin{array}{r}
x \\
29.7 \\
0 \\
0 \\
\text { FRROR }
\end{array}
$$

$$
{ }^{x} 29.719
$$

C ENTENNIAL
FIME 1728
 TIME 1734
TIME $\sin 134$

ELd STN ${ }^{\text {d }}$	CENTENNIAL
pressure	29.725
TEMP DRY	0.0
TEMP WET	$0 \cdot 0$
dip bearing	$66.7^{-4}{ }^{\text {D }}$ EG

APPENDIX IV

Leap-frog Reductions.

6th December, 1955 269.
7th December, 1955 270.
-0.4

MISCLOSE

Noninorotvtominnomatoto

IT
00
00
00ERRORST PAULS
station以ップラムーートの路にち～ロロームそるのルトには
○号にい」 u

Ontminorm ninomo rnmt のनのनのनのか0000000NN MNNN NNNNNNNNNNNNTHNEONNN

0000096mininnoininoooninnin myO－HNMMNNYOMtonominit のの000000－1－NNNMMEninntoo

55 CONTINUED

 111111111111

APPENDIX V

Two Base Reductions

22nd May, 1956.
23rd May, 1956.
6th December, 1955.
7th December, 1955.

TO 0		962	OSOT
$8^{\circ} \mathrm{T}$		\rightarrow 「て	乙عOT
$+{ }^{\circ} \cdot 2-$		とこて	サフOT
$L \cdot \varepsilon$－		ここて	$\varepsilon T O T$
2・ャー		$L \varepsilon 9$	9001
T＊9－		$8 \varepsilon 9$	TOOT
$\varepsilon \cdot 9-$		$6 \varepsilon 9$	956
$9^{*} \varepsilon-$		079	296
T＊L^{-}		Iヶ9	976
L・カー		てサ9	$6 \varepsilon 6$
く＊ー		カサ9	626
$6 * カ ー$		579	$\varepsilon 26$
$00^{\circ} \mathrm{GTZ}$	－008をてわ	－ 006	
$00 \cdot 09$	－ 009268	－ 00 L	
$\begin{aligned} & 00 . \varepsilon 99 \\ & \text { 1HSI } \exists \mathrm{H} \end{aligned}$	$\stackrel{\bullet 00 T I T}{\lambda}$	$\cdot 00$	

$$
\begin{array}{llllllllllllll}
m & \infty & n & 0 & \dot{t} & \underset{\sim}{n} & m & -1 & 0 & 0 & 0 & n & m & \infty \\
\dot{-} & \dot{\sim} & \dot{N} & \dot{1} & \dot{1} & \dot{-} & \dot{\sim} & \dot{n} & \dot{0} & \dot{-} & \dot{0} & \dot{i} & \dot{m} & \dot{1}
\end{array}
$$

TWO BASE METHOD CITY TRAVERSE REDUCTION 23 MAY 1956						
STTATION		$3900 .$	$41 Y_{1100 .}$	HEIGHT 663.00		
LIVERPOOL		100	392600.	60.00		
CENTENNIAL		900.	423800 .	215.00		
	933	647		-0.9	-0.2	-5.3
	938	648		-0.7	-2.0	-8.5
	944	649		-0.7	1.8	-12.4
	948	650		1.8	4.7	-13.5
	954	651		2.0	2.9	-10.1
	959	652		4.3	2.8	-2.8
	1004	653		3.3	4.3	-2.7
	1011	654		6.7	4.7	-1.8
	1016	655		6.2	0.5	-5.6
	1021	656		1.2	-2.2	-4.3
	1027	657		4.8	3.5	0.3
	1032	658		6.6	3.7	1.7

$$
\begin{aligned}
& \text { TWO BASE METHOD } \\
& \text { CITY TRAVERSE REDUCTION } 23 \text { MAY } 1956
\end{aligned}
$$

7vinnginヨ
LIVERPOOL

会 $\stackrel{\infty}{\infty} \stackrel{\infty}{\sim} \stackrel{\infty}{-}$
$\stackrel{\sim}{\sim} \stackrel{\sim}{\sim} \stackrel{\sim}{\sim} \stackrel{\sim}{\sim}$

$$
\begin{array}{llllllllllllll}
n & M & i & 0 & i & 0 & n & m & 0 & 0 & \sim & 0 & 0 & -1 \\
\hdashline i & \dot{1} & \dot{-} & \dot{-} & \dot{0} & \dot{0} & \dot{-} & \dot{-} & \dot{\sim} & \dot{\sim} & \dot{0} & \dot{0} & \dot{\sim} & \dot{\infty}
\end{array}
$$

$$
\text { CITY TRAVERSE REDUCIION } 23 \text { MAY } 1956
$$

ST PAULS
LIVERPOOL
CENTENNIAL

$\begin{aligned} & \infty \\ & \infty \\ & \sim \end{aligned}$	$$	우N	$\stackrel{\rightharpoonup}{\underset{\sim}{c}}$	$\stackrel{\underset{\sim}{\sim}}{\underset{\sim}{*}}$	$\stackrel{m}{N}$	$\begin{gathered} \stackrel{+}{\alpha} \\ \stackrel{y}{2} \end{gathered}$	$\stackrel{i n}{\underset{\sim}{2}}$	$\stackrel{\circ}{\stackrel{\circ}{v}}$	$\stackrel{\stackrel{\rightharpoonup}{N}}{N}$	$\underset{\sim}{N}$	$\underset{\sim}{N}$	$\underset{\sim}{\sim}$	$\stackrel{\infty}{0}$
\vec{m}	$\underset{\sim}{\underset{\sim}{\sim}}$	$\underset{\sim}{\underset{\sim}{N}}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{gathered} \stackrel{n}{m} \\ \underset{\sim}{m} \end{gathered}$	$\begin{aligned} & \stackrel{\sim}{m} \\ & \underset{\sim}{m} \end{aligned}$	$\stackrel{\text { N }}{\substack{\text { n }}}$	$\begin{aligned} & \text { in } \\ & \text { m } \end{aligned}$	in	$\underset{\sim}{\underset{\sim}{*}}$	$\underset{\sim}{\underset{\sim}{\star}}$	$\begin{aligned} & \stackrel{\circ}{\underset{\sim}{4}} \end{aligned}$	$\begin{aligned} & \text { n } \\ & f \\ & f \end{aligned}$	$\stackrel{\sim}{4}$

$\begin{array}{llllll}\infty & \infty & 0 & n & \underset{\sim}{n} & 0 \\ \dot{\sim} & \dot{\sim} & \dot{\sim} & \dot{\sim} & \infty\end{array}$

\cdots	-	0	+	0	0
$\dot{0}$	$\dot{0}$	$\dot{-}$	\dot{p}	$\dot{0}$	$\dot{+}$
1	1		1	1	1

\cdots	$\rightarrow 0$	N	のง	∞	ON	Nm	00	の
$\stackrel{+}{+}$	$\pm{ }^{\circ}$	- ${ }^{\text {+ }}$	$\infty \times$	மٌอ	$\dot{0}$	$\therefore{ }_{-\infty}$	$\bigcirc{ }^{\circ}$	$\stackrel{\circ}{\circ}$
,	-0	O-r	ar	int	Ln	mf	mm	mo
1	$\stackrel{+1-1}{ }$	-r-1	11	11	11	11	1 1	11

「U	00	$\infty 0$	0∞	00	-1∞	ao	! ! ?	+t	NN	On_{0}
No	0	On	へナ	mra	＋100	ナ－1	$N \sim$	－ $\mathrm{HeH}^{\text {che }}$	ナー－	00
mm	$m \times$	NN	N	$\mathrm{N}-1$	11			11	，	Hel
11	11	11	1	I						

0	an	min	00	－	N＋	－rin	เก⿺𠃊	ナナ	Lno	10）
－	－	－			－	－	－	－	－	－ 0
m	ก1）	00	$\rightarrow 0$	Nt	∞	Hal	00	mm	Lon	∞
		\rightarrow		1－1	$1{ }_{1}$	1	11	11	1	－1

CITY TRAVERSASE METHOD
LIVERPOOL
CENTENNIAL
6 DEC 1955
LIVERP
0∞
$\infty \infty$
No
1125
$1132 \quad 288$
$1145 \quad 288$
on
－ ST PAULS
－
$1132 \quad 288$
11452

$\stackrel{\infty}{\infty}$
O
on
$0 \infty \quad \infty \infty$

$1420 \quad 178$
O
N
205
205
230
230
245
1245
1245
1305
1305

1320
1320

1356
1356
1420
1420
1500
1500
1500
1500

DEC 1955
0
m
40

00	LSN	L)	のo
mm	thin	-hn	NN
คกา	Lin	00	00
H-1	Him		-Tm

1711	$S T P P A U L S$
1711	224
1722	$S T$ PAULS
1722	$S T P P A U S$

ST PAULS

CITY TRAVE	$\begin{aligned} & 3 A S E M \\ & S E R E D \end{aligned}$	$\begin{aligned} & \text { THOD } \\ & \text { CTION } \end{aligned}$	DEC 195			
STPAULS STATIUN		900	$41 \stackrel{Y}{1100}$	$\begin{aligned} & \text { HEIGHT } \\ & 663.00 \end{aligned}$		
LIVERPOOL		100	392600.	60.00		
CENTENNIAL		900.	423800 .	215.00		
	$\begin{aligned} & 905 \\ & 905 \end{aligned}$	$\begin{aligned} & 637 \\ & 637 \end{aligned}$		$\begin{aligned} & -0.2 \\ & -0.2 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.6 \end{aligned}$	$\begin{aligned} & -7.8 \\ & -7.8 \end{aligned}$
	920 920	$\begin{aligned} & 637 \\ & 638 \end{aligned}$		$\begin{aligned} & 8.4 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & -7.8 \\ & -9: 7 \end{aligned}$
	$\begin{aligned} & 932 \\ & 932 \end{aligned}$	$\begin{aligned} & 639 \\ & 638 \end{aligned}$		15.2 11.5	$\begin{array}{r} 7.8 \\ 10.3 \end{array}$	$\begin{array}{r} -4 \cdot 2 \\ -10.3 \end{array}$
	942 942	$\begin{aligned} & 639 \\ & 640 \end{aligned}$		16.0 12.5	$7 \cdot 1$	-11.6
	$\begin{aligned} & 955 \\ & 955 \end{aligned}$	$\begin{aligned} & 641 \\ & 640 \end{aligned}$		18.2	17.8 10.9	-3.2 -0.9
	1006 1006	$\begin{aligned} & 641 \\ & 642 \end{aligned}$		16.4 13.8	16.1 7	-4.5 -4.7
	1020 1020	$\begin{aligned} & B \\ & 642 \end{aligned}$		13.4 12.5	15.6 7.4	-5.0 -3.1
	$\begin{aligned} & 1032 \\ & 1032 \end{aligned}$	$\begin{aligned} & B \\ & 644 \end{aligned}$		$\begin{array}{r} 7.6 \\ 11.4 \end{array}$	$\begin{array}{r} 9.5 \\ 13.0 \end{array}$	$\begin{aligned} & -5.6 \\ & -1.6 \end{aligned}$
	$\begin{aligned} & 1042 \\ & 1042 \end{aligned}$	$\begin{aligned} & 645 \\ & 644 \end{aligned}$		$7 \times \frac{5}{7}$	8.5 9.4	$\begin{aligned} & -5.7 \\ & -5.8 \end{aligned}$

ST PAULS

1109 LIVERPOOL
1109 LIVERPOOL
$\begin{array}{ll}1151 & \text { LIVERPOOL }\end{array}$
1209
1209
1216
1216
1227
1236
1236
1246
1300
1300
1312
ST PAULS

LIVERPOOL	
$\begin{aligned} & 1323 \\ & 1323 \end{aligned}$	$\begin{aligned} & 654 \\ & 655 \end{aligned}$
$\begin{aligned} & 1337 \\ & 1337 \end{aligned}$	$\begin{aligned} & 656 \\ & 655 \end{aligned}$
$\begin{array}{r} 1345 \\ 1345 \end{array}$	$\begin{aligned} & 656 \\ & 657 \end{aligned}$
$\begin{aligned} & 1357 \\ & 1357 \end{aligned}$	$\begin{aligned} & 658 \\ & 657 \end{aligned}$
$\begin{aligned} & 1406 \\ & 1406 \end{aligned}$	$\begin{aligned} & 658 \\ & 659 \end{aligned}$
1421 1421	$\begin{aligned} & 660 \\ & 659 \end{aligned}$
1430 1430	$\begin{aligned} & 660 \\ & 660 \end{aligned}$
1445 1445	$\begin{aligned} & 660 \\ & 661 \end{aligned}$
$\begin{aligned} & 1457 \\ & 1457 \end{aligned}$	$\begin{aligned} & 662 \\ & 661 \end{aligned}$
$\begin{aligned} & 1508 \\ & 1508 \end{aligned}$	$\begin{aligned} & 662 \\ & 663 \end{aligned}$
$\begin{array}{r} 1525 \\ 1525 \end{array}$	C_{6}

1421
1430
143014454571525

 DEC 1955

 CITY TRAVERSE REDUCTION

 ST PAULS
 PAULS
ST

CENTENNIAL
base method
LIVERPUOL
-

$\stackrel{N}{N}$

$\frac{181}{x}$
$\begin{array}{ll}1728 & \text { CENTENNIAL } \\ 1728 & X \\ 1734 & \text { CENTENNIAL } \\ 1734 & \text { CENTENNIAL }\end{array}$
ST PAULS

APPENDIX VI

Computer Programmes.

Standard Atmosphere	SVY 12	288.
Isobaric Surface Investigation	SVY 14	290.
Barometer Traverse Reduction	SVY 19	296.
Tower Readings Reduction	SVY 24	303.
Automatic Graphing	SVY 16	305.
Analysis of Summaries I	SVY 26	307.
Two Base Barometer Reduction	SVY 42	310.
Leap-frog Reduction	SVY 43	312.
Analysis of Summaries II	SVY 46	317.

THIS PROGRAMME IS UNSW SURVEY NO. $14.36 O$ VERSION
PREPARED BY J.S.ALLNAN. APRIL. 1966 MODIFIED JANUARY 1967

PRESSURE IN MILLIBARS\& 2 MILLIMETERS\& 3 INCHES

RENHEIT $=2$ CENTIGRADE $=2$ FEET 3 HEGT $1 \propto 0$ | T |
| :--- |

, = negative read new parameters
 $\begin{array}{ll} & \text { READ PARAMETERS } \\ 2 O O & R E A D(1.1 O O I C O N 1, C O N 2 . M \\ I O O ~ F D R M A T ~ F G .2 .2 X . F 6.5 . I 3) ~\end{array}$

UNITS ID1, 102, ID3, DESC
 $101,11,5 X, 18 A 4)$
 \qquad
 ${ }^{+} \mathrm{O}$

 111, ,
 T(8X.22HPRESSURES IN MILLIBARS)
 $\mathrm{OH}^{-1} \mathrm{O} \underset{\mathrm{NH}}{\mathrm{NH}}$

, 12) 24 HPRESSURES IN MILLIMETERS)

8, ${ }^{3}$, 19 HPRESSURES IN INCHES)

5,261,102

Mmさ』N
SURVEY NO 14 CONTINUED

$$
\begin{aligned}
& \text { READ NAMES, COORDINATES AND ELEVVATIONS OF FIXED STATIONS } \\
& \text { READ }(1,2)(A(1, j), j=1,6), I=1 ; 5) \\
& \text { FORMAT } 3 A 4,1 x, F 8.2)
\end{aligned}
$$

m

> 1,F10.2/7X,10HCONSTANT 2,F10.5) 6), $1=1=0,51, F 8.21$

SURVEY NO 14 CONTINUED

C CALCULATE HEIGHT IN A STANDARD ELEVATION $\begin{array}{ll}0 \infty & -\infty \\ 00 & 00\end{array}$

$0-11$
II L L 1 L
$1 *(1-(R E(181) / 1013.25) \div C O N 2)$

 $\begin{array}{ll}10 \\ 0 & 0 \\ 0\end{array}$
$\stackrel{-}{\sim}$
N oo
さに

SURVEY NO 14 CONTINUED
$C B=\left(10^{-T / T S}\right) *$ $C C=-\frac{1}{3}-4948+1+1$

EMPERATURE AND HUMIDITY CORRECTIONS
20
$20+1$
20
\cdots
ω
0
es

> n n

HSA(1$)-H S A(1)$

ERRORS)
CONF + CALHT $(5)-A(5,6)$
$S, 32 X, 2 O H M U L T I P L E ~ B A S$
RORS 7)
11 ax ax
$1 \rightarrow \sum r \sum 10 \sum$

$-\geq 01-51 \leq \square \square$

$\frac{1 x}{3} \max \square 0 \frac{\alpha}{3}$

$$
\infty \quad 0 \quad-\quad 0
$$

SURVEY NO 14 CONTINUED

$\begin{aligned} & 40 \\ & 41 \end{aligned}$	CALCULATE TILT AND TILT DIRECTION
	IF (ABS (E32)-0.1)41,41,42
	$\begin{aligned} & W=(A(3 ; 5)-A(2,5)) /(A(3 ; 4)-A(2,4)) \\ & G Q(D Y 9 \end{aligned}$
42	$X 8=(E R R O R(2) * A(3,4)-E R R O R(3) * A(2$,
	$Y 8=(E R R O R(2) * A(3,5)-E R R O R(3) * A(2)$
	$W=Y 8 / \times 8$
49	$B N G=90+57.295780 * A T A N(W)$
	IF (ABS (ERROR(2))-ABS (ERROR (3)
43	$J=2$
	GO TO 52
51	$J=3$
52	DIPDIS $=A B S(A(J, 4) * W-A(J, 5)) / S Q$
	TILT $=4 B S$ (ERROR(J)/DIPDIS)
	IF (M-3) $101,83,83$
101	IF (N-4) 39839,44

以u

SURVEY NO 19 CONTINUED

SURVEY NO 19 CONTINUED
0

000
TS
SURVEY NO 19 CONTINUED

SVY 24 TOWER REDUGTIUN PRUGRAVIE, IBM 1130 VERSION

K INUTCATES SECUNUARY CUNTRUL POINT

$$
\operatorname{mon}_{\rightarrow-1} \operatorname{son}_{n}^{-1} \quad \text { N }
$$

programme svy 24 colvt inued

C SWITCH 1 off PRINT．．．ON Calculate minimium
SW，（1，M1）

5）ARAME，（ERROR（I），I＝1，7）

のーロ
∞^{-1} THIS IS PROGRAMME SVY 16 , 360 VERSION

[^5]If data followed by a blank card heading repeated
$K=1,61$

number
NUMBER OF STATIONS IS 4
ERROR $(4)=E R R O R(5)$
$M M=4$
$G O$ TO 5

[^6]PROGRAMME SVY 16 CONTINUED
$N O \quad O F$ GRAPHS IS SIX

$29,45,45$
\[

$$
\begin{aligned}
& H(K)=J \\
& J=1,6 I \\
& G R A P A(J) \\
& H(J)=I I
\end{aligned}
$$
\]

$$
)=I I
$$

$$
\left.H_{I}(J)\right) 17,18,17
$$

$$
J)=I N D E X(K)
$$

$6 X, 14,9 X, 61$ Al $)$ (IGRAPH $(J), J=1,611$ Ha O-1ロロ

> $-7) 21,22,22$

$$
\overrightarrow{11} \pm 110 \text { zá }
$$

on noman
novinn

NN

$\mathrm{N} \rightarrow$

m

0u0

	DIMENS $M M M=2$
$\begin{array}{r} 1 \\ 100 \\ 5 \end{array}$	$\begin{aligned} & \text { SET TILT GROUP INTERVALS } \\ & \text { DO } 1=1,2 \\ & \text { DO } 1=1 ; 6 \\ & \text { B(I } J=0,5 *(J-I+1)+0.01 *(I-2) \\ & \text { CONTINUE } \\ & \text { READ }(1,5) \text { DESC } \\ & \text { FORMAT }(7 X, 18 A 4) \end{aligned}$
200 10	
20	IF TIME IS ZERO, RESULTS PRINTED AND NEW DATA READ IF (ITIME)20,300,20 DO 30 IA=1,5
$\begin{aligned} & 40 \\ & 30 \end{aligned}$	```SELECT TILT GROUP I=IA IF (TILT-B(1,IA))50,50,40 CONTINUE I=6 CONTINUE```
50	CONTINUE IF ONLY FOUR GRAPHS, SHIFT 4 TO 5

PROGRAMME SVY 26 CONTINUED
u

요
u

MOMENTS $1,2,3$
E
$=1$
$=1$
$=1$

ULA
15
15
16
3
3
AN I

（1）105，105，110

PRINT RESULTS
$N=3+(M M-1) * 3 \quad 119$
GRAPH，4X，6HSUM V，5X，
GRAPH，6X，4HMEAN，6X，
I

18 M
1

4 $\underset{\rightarrow-\infty}{\infty}$ $\infty \times$ $\operatorname{mmanch}_{\rightarrow-1}$
 MN
M
$-1)$
$1)$
MM
VV
25
MM
1
EV

 －－+m にとい

C^{-1}

$$
\begin{aligned}
& , J,(V(I, K, J), K=M, N), A N(I, J) \\
& 4,2 X, F 10.2,2 X, F 10 \cdot 2 ; 2 X, F 10 \cdot 2,4 X, F 5.0)
\end{aligned}
$$

-imb
nen

$$
\text { N }+\cdots
$$

$$
0-100 n
$$

$$
50 \infty-10
$$

$$
0.0 \ln 0
$$

$$
\text { H } \|>\sum-\sum
$$

$$
002 \sum_{1}^{2}, 2-2
$$

-

$$
\begin{array}{llll}
n & 0 & n o \infty & 00 \\
N & m & + \pm! & H \\
H & H & H H
\end{array}
$$

PROGRAMME SVY 42 CONT INUED
$I=1,3$

Orm	00	\square	$-1 \bigcirc 0$	N	\checkmark	U
$\rightarrow-1$	NH	N	U! N-4	N	N	N

PROGRAMME SVY 43 LALEAP FROG REDUCTION OF BAROMETER READINGS
PREPARED BY J.
IBM 360 VERSION
DIMENS ION $A(2,4), C(25,3), \operatorname{CLHT}(25), \operatorname{ERROR}(25), \operatorname{BASE}(3,4), \operatorname{RE}(5,3)$,

	$\begin{aligned} & \text { IDI }=1 \text { PRESSURE IN MILLIBARS, = } 2 \text { MILLIMETERS, }=3 \text { INCHES } \\ & \text { ID2 }=1 \text { TEMPERATURES IN FARENHE IT }=2 \text { CENTIGRADE } \\ & \text { ID } 3=1 \text { COORDINATES IN YARDS }=2 \text { FEET } \\ & M=2 * \text { PUNCH, M=3 PRINT } \\ & \text { ITIME=0 READ NEW BASES, = NEGATIVE READ NEW CONSTANTS } \end{aligned}$
	DIMENS ION A $(2,4), C(25,3), \operatorname{CLHT}(25), \operatorname{ERROR}(25), \operatorname{BASE}(3,4), \operatorname{RE}(5,3)$, HSA (5), TEMPS (5), ITME (25), DESC(18)
	READ (1, 350) CON1, CON2,M
	FORMAT (F9.2, 2X, F6.5, I3)
	READ (1,1)ID1,1D2,ID3, DESC
	FORMAT(I1, I1, I1,5X,18A4)
	WRITE(M,20) DESC
	FORMAT (1H1, /////7X, 16HLEAP FROG METHOD/7X,18A4)
	WRITE (M, 400) CON1, CON?
	FORMAT ($/ 7 \times, 10 H C O N S T A N T ~ 1, F 10.2 / 7 X, 1 O H C O N S T A N T ~ 2, F 10.5) ~$
	GO TO ($21,22,23$), IDI
	WRITE (M, 11)
	FORMAT ($8 \mathrm{X}, 22 \mathrm{HPRESSURES}$ IN MILLIBARS) GO TO 24
	WRITE(M,12)
	FORMAT (8x,24HPRESSURES IN MILLIMETERS)
	GO TO 24
	WRITE(M, 13)
13	FORMAT ($8 X, 19 H P R E S S U R E S$ IN INCHES)
24	GO TO $(25,26)$, ID2
14	FORMAT ($8 \times, 25$ HTEMPERATURES IN FARENHEIT)
	GO TO 27 (
	WRITE (M, 15)
15	FORMAT ($8 \mathrm{X}, 26 \mathrm{HTEMPERATURES} \mathrm{IN} \mathrm{CENTIGRADE)}$
27	CONTINUE
30	$\operatorname{READ}(1,2)((\operatorname{BASE}(J, I), I=1,4), \mathrm{J}=1,3)$
2	FORMAT (3A4, $23 \mathrm{X}, \mathrm{F8} .2$)
	WRITE $(M, 3)((B A S E(d, I), I=1,4), J=1,3)$
3	FORMAT ($8 \mathrm{X}, 3 \mathrm{4}, 5 \mathrm{SX,F8.2)}$

vunuuvunu
PROGRAMME SVY 43 CONT INUED

(RE(5,1))10,10,44

$45-2$

 $\cdots \operatorname{mon}$ min ons 11 II 110 $\rightarrow \cdots \rightarrow-m$ 1 + 1100 いの

UOT innw Nmt

$E(1, J) / 10$. $61,62), I D 1$

-

$C D=1013.25 / 29.921$
$D Q 64 J=1$
$R E(J .1)=R E(J .11 * C$
E(J, $1=\operatorname{RE}(J, 1) * C D$
$D 2=1 \quad T E M P E R A T U R E S$
C ID2=1 TEMPERATURES IN FARENHE IT

טu
v

C IF TIME IS ZERO, RESULTS PRINTED AND NEW DATA READ
ω

00
$\stackrel{\sim}{5}$
强

トペロストミスマ

2上둔

$\xrightarrow[\sim]{\infty} \underset{\sim}{\infty}$
u

APPENDIX VII

Analysis of Summaries.

Average and Maximum Errors 320.
First, Second and Third Moments 328.

26th May, 1959.
28th May, 1959.
28th February, 1966.
lst March, 1966.
22nd May, 1956.
23rd May, 1956.
6th December, 1955.
7th December, 1955.

ER
$\stackrel{\square}{\text { 山 }}$
孚
SUMMARY COOTAMUNDRA AR

TILT	GRAPH	AVERAGE
0.0	1	11.51
0.50	1	9.33
0.0	2	12.74
0.50	2	22.65
0.0	3	16.07
0.50	3	18.69
0.0	5	15.65
0.50	5	12.31

```
ASA
1966
MARCH
RORS
MAIMIUM
22.30
26.70
9.90
\(10: 30\)
14.20
14.90
24.90
9.50
14.10
3.30
22.10
19.40
\(\stackrel{\leftarrow}{4}\)
《~
\begin{tabular}{lcc}
\multicolumn{4}{c}{ SUMMARE AND MULTIPLE BA } \\
SILT & GRAPH & AVERAGE \\
TIL \\
0.0 & 1 & 11.12 \\
0.50 & 1 & 26.70 \\
0.0 & 2 & 4.98 \\
0.50 & 2 & 10.30 \\
0.0 & 3 & 4.75 \\
0.50 & 3 & 14.90 \\
0.0 & 4 & 10.19 \\
0.50 & 4 & 9.50 \\
0.0 & 5 & 5.66 \\
0.50 & 5 & 3.30 \\
0.0 & 6 & 11.97 \\
0.50 & 6 & 19.40
\end{tabular}
```


SUMMARY SINGLE A		$\begin{aligned} & \text { TRAVERSE } \\ & \text { TIPLE B } \end{aligned}$	$\begin{aligned} & \text { MAY } 1956 \\ & \text { ERRORS } \end{aligned}$	ASA
TILT	GRAPH	AVERAGE	MAXIMIUM	NO
0.0	1	4.87	8.40	15.
0.50	1	9.43	16.70	20.
1.00	1	15.39	18.40	11.
0.0	2	3.09	5. 10	15.
0.50	2	6.17	11.50	20.
1.00	2	9.15	19.20	11.
0.0	3	3.30	7.70	15.
0.50	3	7.19	14.90	20.
1.00	3	13.75	18.20	11.
0.0	5	1.60	5.30	
0.50	5	$\frac{1}{3.04}$	5.30 14.90	20.
1.00	5	1.31	14.30	11.

$\frac{1}{6}$	2	$\underset{\sim}{\bullet \infty}$	$\underset{\rightarrow}{\bullet \infty}$	$\stackrel{-\infty}{\bullet \infty} \underset{r-1}{*}$	$\dot{-\infty} \dot{\infty}$	$\dot{-\infty} \underset{\sim}{\circ} \times \dot{\sim}$	$\rightarrow-\infty \times \underset{\sim}{\circ}$
	\sum						
Nun	$\stackrel{3}{2}$	$\begin{aligned} & \text { 90000 } \\ & \text { t-100 } \end{aligned}$		ONOOO	09000	POOOO	00090
	Σ						
$\xrightarrow{-1}$	－	m－hinmin	－onny	mの－゙かさ	maost नinat	－innme	\rightarrow noinn
u®	区						
山IU	$\underline{\Sigma}$						
－							
山							
－							
แヵ	山						
\sim	0	Oono	ONOV！	OHONS	orron	orano	Oonoso
¢	d	けvハ00．－	のinnor	onvit	かサのon	NOMON	N－ram
¢	尔	misioy	が心iso	miotio	miがす。	\cdots－	－－＋iが
＜	＞	Hivm	－				
	＜						
1							
＞－							
0							
	I						
O	－	－T－1－1－4	NNNNN	mmmmm	ナナナナ」		00000
$>$	$\stackrel{\square}{\square}$						
ه山	0						
¢－							
之之	\vdash	0000	0000	0000	0000	0000	8
づ	\cdots	Onomo	onolno	onono	onomo	oinoino	onomo
へu	$\stackrel{-}{\square}$	$\bigcirc \cdot{ }^{\circ}$	－＊＊				－
	1	00mmin	OOHTN	OOHN	OOH－HN	oonne	OOH－H

| SUMMARY COOTAMUNDRA AREA | 28 FEBRUARY | 1966 ASA |
| :--- | :---: | ---: | ---: | ---: | ---: |
| SINGLE AND MULTIPLE BASE ERRORS | | |

SUMMARY CITY AREA 22 MAY 1956 SINGLE AND multiple base errors				A SA	
TILT	GRAPH	MEAN	ST DEV	3RD MOM	NO
$0 \cdot 0$	1	5.62	5.98	245.95	12.
0.50 1.00	1	10.54 20.05	10.85 20.13	1369.18 8243.01	16.
0.0	2	2.49	3.57		
0.50	2	5.50	3.57 6.86	382.17	12.
1.00	2	9.73	9.94	1034.51	11.
0.0	3	3.52	4.44	122.94	12.
0.50 1.00	3	4.79	7.04 17.85	649.29 5805.91	16.
0.0	5	0.82	3.27	13.61	
0.50	5	0.44	3.50	19.02	16.
1.00	5	-0.06	1.99	-0.70	11.

3 nor Mon nory nor

Σ	－rmin	Nmo	かけさ	－
0	Otsm	Nod	Novis	$\cdots+00$
3		－－	－${ }^{+}$	－－
	Ninm	ONN	aOo	\checkmark
\bigcirc	000	Lncor	OOL	Mn
\bigcirc	－rao	ナ－1	\cdots－	$\rightarrow 1$
\cdots	$\rightarrow \mathrm{m}$	N	N	

[^7]

DEPARTMENT OF SURVEYING - UNIVERSITY OF NEW SOUTH WALES

Kensington, N.S.W. 2033.
Reports from the Department of Surveying, School of Civil Engineering.

1. The discri mination of radio time signals in Australia. G.G. BENNETT
(UNICIV Report No. D-1)
2. A comparator for the accurate measurement of differential barometric pressure.
J.S. ALLMAN
(UNICIV Report No. D-3)
3. The establishment of geodetic gravity networks in South Australia. R.S. MATHER
(UNICIV Report No. R-17)
4. The extension of the gravity field in South Australia.
R.S. MATHER
(UNICIV Report No. R-19)

UNISURV REPORTS.

5. An analysis of the reliability of Barometric elevations. J.S. ALLMAN (UNISURV Report No. 5)
6. The free air geoid in South Australia and its relation to the equipotential surfaces of the earth's gravitational field.
R.S. MATHER
(UNISURV Report No. 6)
7. Control for Mapping. (Proceedings of Conference, May 1967). P.V. ANGUS-LEPPAN, Editor.
(UNISURV Report No. 7)
8. The teaching of field astronomy.
G.G.BENNETT and J.G.FREISLICH (UNISURV Report No. 8)
9. Photogrammetric pointing accuracy as a function of properties of the visual image.
J.C. TRINDER (UNISURV Report No. 9)
10. An experimental determination of refraction over an Icefield. P.V. ANGUS-LEPPAN
(UNISURV Report No. 10)

[^0]: FB. 56 FLJW CHART FOR SVY 19 BAROMETER TRAVERSE REDUこTION PROGRAM.AE.

[^1]: ERRORS
 3.9

 $\begin{array}{lc}\text { TIME } & \\ \text { PRESSURE } & \\ \text { TEMP DRY } & 29.685 \\ \text { SINGLE BASE } & 57.0 \\ \text { DIP ROR SAR O } \\ \text { DING } & 175.30 .8 \\ & \end{array}$

[^2]: DIP BEARING 23.5 DEG

[^3]: $\begin{array}{cccc}808300 & 399100 & & 12.18 \\ 29.937 & 29.776 & 29.988 \\ 64.9 & 0.0 & 0.0 \\ 19.2 & & & \text { MULTIPLE BASE ERRORS }\end{array}$

[^4]: TIME
 FIELD
 $\begin{array}{lc}\text { PRESSURE } & 29.774 \\ \text { TEMP DRY } & 0.0 \\ \text { TEMP WET } & 0.0 \\ \text { SINGLE BASE } & \text { ERRORS } \\ \text { DIP BEARING } & 96.58 .5 \\ & \end{array}$

[^5]: DIMENSION IGRAPH(61), INDEX(6), ERROR(6), DESC(18) + ESC
 , ○O $\circ \mathrm{m}$

 READ
 FORMA $(6 X, A 1,14, F 6.1, F 5,2 ; 6 F 9.1,3 X, I I)$

[^6]: NUMBER OF STATIONS IS 5

 u

[^7]:

