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SUMMARY

The free air geoid is the surface defined by the use of free
air ancmalies in the Stokes and Vening Meinesz integrals.
The relation between this surface and the equipotential sur-
faces of the earth's gravitational field, with special reference
to the geoid, has been developed from basic vector theorems.
The full set of conditions which apply to the solution are defined.
Expressions are also derived for the complete indirect effect
in the case of the free air geoid.

A complete set of relations is obtained for the
deflections of the vertical at the geoid, for a postulated model
of the topography exterior to the geoid. The relation between
these deflections and the equivalent values at the surface of
the earth is derived and related to astro-geodetic values.

The validity of the principle of evaluating
area means for gravity anomalies from satellite data is dis-
cussed and the relevance of the solution to the determination
in hand assessed. The assembly of gravity data over the
Australian mainland to obtain a network of gravity stations
for geodetic calculations is described and an acceptable met-
hod developed for the extension of the available gravity field
to unsurveyed regions. '

The interpretation of the gravimetric solu-
tion so obtained is investigated for strict geometrical signi-
ficance of the solution. The inconsistencies of the inter-

national gravity formula are studied and a system, based on



SUMMARY (ctd.)
a set of parameters adopted by the International Astronomical
Union, is proposed.
The significance of the zero order term in the geoid
spheroid separation is studied and the results analysed for
a value for the potential of the existent geoid.

The solution is compared for consistency with
astro-geodetic results obtained from horizontal survey met.
hods on the Australian National Spheroid and proposals are
made for effecting the absolute orientation of the latter.

The method of astro-geodetic levelling is evaluated
as a means for eliminating scale errors in control networks.
The implications of the existence of the term Wo - Uo on
the solution of the boundary value problem at the physical
surface of the earth are studied with a view to obtaining so-

lutions which are geometrically exact.



PREFACE

The geoid which has been computed and shown on
pages 339 to 341 is based on a theory which stems from the
assumption that equation (5.21) on page 67 is valid for the
non-regularised earth. The result was the derivation of
an expression for the geoid spheroid separation given by
equation (5.54) on page 76. The resulting indirect effect,
shown on page 333, was quite large. As discussed in section
(14. 3), the total indirect effect for near zones tended to be
zero but that arising from distant zones had a cumulative

effect and contributed to the magnitude of Ni

The geoid-spheroid separation was then computed
on the basis that the I, A,U. spheroid had the same volume as
the geoid when the results shown on pdages 339 - 341 were
obtained. If this were so, the free air geoid is no longer a
good first approximation to the geoid itself as Zs commonly
held. Further, an anomaly did exist in that the solution for
the physical surface of the earth, for which the free air geoid
provided an adequate first approximation, did nat coincide
with the geoid spheroid separation obtained by the use of a mo-
dified form of equation (5.21) on carrying out comparisons
at sea where the two surfaces should be identical. This was
tentatively explained as being due to the fact that the matter
on the reference system exterior to the surface being mapped

had not been taken into account in the derivation of the equations.



Preface (ctd)

In this work, piecemeal attempts have been made at

attempting to improve the solution by
(a) allowing for non-equality of Wo and Uo (sec.
(13.5); 306 - 317);
(b) consideri ng the existent of matter on the

reference system exterior to the surface being mapped
(App. 18).

Subsequent investiagtions show that neither of these
effects have been fully considered in this report and, for a
complete solution of the problem, interested readers are
referred to UNISURV Rep. No 11 titled ' THE NON-
REGULARISED GEOID AND ITS RELATION TO THE
TELLUROID AND REGULARISED GEOIDS." in which
the errors in equation (5.21) are investigated and a complete
solution set out for the non-regularised geoid as well as
for the regularised geoid and the physical surface of the
earth.

This lntter investigation shows that the free air geoid

is, indeed, a good approximation to the non-regularised
geoid and hence figs (14.3) to (14.5) should be taken as being!'
fairly representative of the non-regularised geoid. Figs (14.6)
to (14.11) should be ignored.

In attempting to use this report, the reader is advised
to consider sections (4), (5), (13.6), (14.4) and App. (18)
as superseded by and subsidiary to UNISURV Rep. 11 which

sets out the complete solution free from error.



Preface (conclusion)

The value assigned to the potential of the geoid
on page 338 should be ignored as should the value of N at the
Johnston Origin (page 369). The latter, according to fig
(14.4) is approximately 10 metres. To this value will have
to be added a topographical correction which should not
exceed 2 metres. The conclusions drawn in section (15. 5)
with the exception of those concerning astro- geodétic levelling
are based on incbmplete derivations and should be considered
to be superseded by the conclusibns embodied in section (7)
of UNISURV Rep 11. and this preface.

No attempt has been made to wrrite the now
superseded portions of the report and the related conclusions
out of the text as it illustrates with telling clarity the danger
of accepting conventional assumptions without very careful
invetsigations into the circumstances under which they hold.

My thanks are due to Dr. W.M,Kaula who per-
sisted with his reservations regarding the nature of the in-

direct effect, prompting me to re-investigate the solution.

March 15th, 1968,
Sydney,

Australia



CORRIGENDA

This series of corrections sets out only those amend-
ments which are not obvious in reading the text and does not
include typing errors. I am grateful for the assistance given
by Dr. P.V,Angus-Leppan and Mr. J.G.Fryer in compiling

this list of errors.

Page No. Correction

2 Equation (1.1) :- Precede right hand side by
symbol for volume integration,

2 On line following equation (1), insert ", "
between '"constant' and '"the''.

5 On penultimate line replace ''1966' by "1967".

8 Section should be numbered "1, 4",

8 Insert '"free" between "were' and "from' in

the third line of section (1. 4).

13 Insert a bracket around the term ”-——; " in
penultimate line. r

26 5th line the number should be '"1000" and not
10, 000" .

28 6th last line replace ''202'' by "204",

35 Fig (3.1):- The distance PID should read "hD".

36 Fifth last line :- For "Q'' read “PR,"

38 3rd last line ;- Replace '149" by "148",

46 2nd line :- Replace '"46" by ''52",

54 7th line :- Delete "'a" in the reference.

61 Delete "y" from the term multiplying the surface

integral in equation (5.2),



Corrigenda(Page 2)

Page No
63

76
35
54

58

72
79

87

106
125
126
127

141
142
144

157

159

Correction
Last equation :- Denominator should be "R2".
Equation (5.55) :~ the L,H.S. should be "4 g'"",
In fig (3.2) :- "gi” should read''z i”‘
Equation (4.20):- the quantity" 8 v/8h " should
be unsigned.
Equation (4.30):~ The first sign in the integral

should be "'+",

Equation (5.41);- Insert e
summation and integral signs.

Equation (6.1) :- Last term on R .H.S. should
be multiplied by h.

Equation (6. 29):~ A set of brackets to be

inserted after "{cosec 1y " and terminating
after "A+c. ",

1
In all three e quations insert "o i

Z.
J
The constant introduced in equation (7.15) andg#

subsequent development should be "n(n+1)!', +

w 2ntl between

" after

Equation ('é. 19):~ She last term is
"{{ntl)n sin"0 - m” 1G(e) "

Equation (7. 23):- Insert'u' between ''2" and
HaG/auH'

Line 7:- after 'necessary to' add ' set out".
Line3:- Reference should read "1963a".

Fig(7.5) :- Insert "Y" before " = equinox.
Also arc length NP = w.

In range of values given the magnitude of
numbers overule signs in case of inconsistency.

In (a)(i) :- 5th line :~ The relevant quantity in
two places is "6 ag'.



Corrigenda(Page 3)

Page No.
204

212
217

228

254

285
286
300

338

349

Correction
L reciion

The last word on thig page should be
"differentiation"

Line 13 :- after'As" add "¢ " |
2nd para, 3rd lipe-~- replace'Z' \PZ " by

GG
" Z PZ t
A" TG

Last tine :- after "at" add the words "the geoid
by the relation',

Numerical value of CN := The index of 10 ig

"-1" and not "-2" 8

Insert "give variations" at the commencement

of the page.

6th line:- Replace " g; and''n " by " AE M
1" " 1 1 1

and " An i

12th line :- Replace "three" by "two''.

Insert " " after "N" and, on the second line

after equation (14.5). Also insert '"'n" after
" and" on this same line,

In penultimate line of second para insert
"AEO” after "magnitude of",
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NOTATION

Certain symbols, used repeatedly throughout this thesis,

are, in addition to definition in context, described below for

ease of reference.

=
H

i Lol = S~
)

azimuth, measured from north, through east.
coefficient associated with the general surface
harmonic for potential.

semi-major axis of meridian ellipse.
coefficient associated with the general surface
harmonic for disturbing potential.

a constant,

coefficient of conventional Legendre functions.
a constant,

predicted value of X ,

eccentricity of ellipse,

flattening of the reference spheroid.

the acceleration of gravity due to the existent
earth.

coefficient associated with the general surface
harmonic for the gravity anomaly.

elevation.

height anomaly.

unit vector along the X, axis.

inclination of the orbital plane to the plane of

the earth's equator.



Notation{2)

J

nm

alternate form for the coefficients of conven-
tional Legendre functions,
as above.

o - 3
the gravitational constant = 6.673 x 10 8 cm

gm- 1sec ) 2.

mass of the earth.

the mean value of X,

separation of geoid and spheroid.

unit normal vector,

normalised value of X.

length of side of basic square in degrees.
Legendre function.

associated Legendre function.

n!
G-m)t pnm(u).

distance from centre of mass.

reference surface,

mean radius of the earth,

distance of variable element from computation

point.

radius of inner zone.

existent physical surface.

coefficient of the conventional Legendre function.

= surface harmonic.

gravitational potential due to a reference model

of the earth,

volume.

gravitational potential due to the existent earth.



Notation(3)

z
a
p
Y
)

ik
4

he]

<« ©® W 9 o

variable height.

bearing, measured clockwise from north.

angle of elevation of ground slope.

gravity on the reference system ; normal gravity.
Kronecker delta.

angle between the normal to the reference
surface and that to the existent surface,

+ve N, E,

component of the deflection of the vertical in

in the Prime Vertical.

co-latitude.

Greenwich Sidereal Time (sec. (7) ).

longitude, positive east,

cos 9.

radius of curvature of a spheroid in the Prime
Vertical,

component of the deflection of the vertical in
the meridian.

3.1415626...

density of matter in the earth's crust.

radius of curvature on a spheroid in the meridian.
standard deviation of a sample.

latitude..

a scalar, usually potential (sec (2) ).

angular displacement between the vectors from
the origin of cocrdinates to the computational

element and the computation point.



Notation(4)

AE

An

right ascension of the ascending node.

angular velocity of rotation of the earth.
argument of perigee (sec (7) ).

gravity anomaly.

correction to the geoid spheroid separation on
changing orientation of reference spheroid,

at the origin of computation,

correction to the meridian component of the
deflection for the above reason.

correction to the prime vertical component of
the deflection of the above reason.

element of surface area.

correction to the Potsdam datum.

element of mass,

element of area on the reference surface.
element of surface area.

element of surface area on the existent surface.
correction to normal gravity for changes in the
parameters of the reference spheroid.
element of surface area on a unit sphere.
product over the index i

summation over the index i.

the vector X

the scalar product of the vectors X and Y.

the vector product of the vectors X and Y.

the normalised value of X .

the mean value of X.



Notation(5)

v

Suffixes.

s

Q » O 49

o]

(¢}
O

; 5
- i
o1 S—X—l X
ES:
=1 ax.z
1

refers to spheroid or associated spherop. E, g.,

hS is the elevation with respect to the spheroid.

values at the computation point,

values at the variable general point,

astro-geodetic values.

gravimetric values.

values at the existent geoid; values at

origin of triangulation spheroid.

refer to free air anomalies, e. g., the free air

geoid,

mean value.

refers to the indirect effect.

values obtained from a set of masses internal

to a given surface,

values obtained from a sget of masses external
to a given surface .

the " disturbing ' value, due to the difference

between values on the reference and existent

systems,

correction to free air geoid to obtain values on

the spherop.

differential topographical correction.



1.

1
THE EQUIPOTENTIAL SURFACES OF THE EARTH'S GRAVI-
TATIONAL FIELD AND THE REFERENCE SYSTEM.

1.1 Introduction.

Newtonian gravitation explained precession as being
due to a flattened earth. This was initially verified by the French
Academy of Sciences (Heiskanen and Vening Meinesz, 1958, 227)
which sent out expeditions under Bouguer and la Condamine to
Peru in 1735 and under Maupertius to Lapland in 1736 to measure
the length of meridional arcs. These investigations established
the shape of the earth as being spheroidal in character with a
flattening of 1 part in 310, ‘

The physical surface of the earth has deviations from
the spheroidal shape which are of the order of the flattening f, i.e.
i.e., 3 parts in 103. This is due to the topography of the earth,
which, over the continental areas, departs considerably from a
simple mathematical model. For the purpose of the conven-
tional representation of position, geodesists have introduced the
concept of a regular reference surface which conforms closely
to the earth's surface over the ocean areas. The surface adop-
ted (Bomford, 1962, 83) is the oblate spheroid, commonly called
the reference spheroid. Ideally, the latter is centred at the
earth's centre of mass, with its minor axis coincident with the
earth's rotational axis. So far, the definition of a mathematical
model with reference to physical realities presents no great diffi-
culties. This poses the question "Is there a physical reality
which is spheroidal in shape ?". The extent to which such ag-

reement occurs is also of relevance.
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The only physical reality which approaches a sphe-
roidal shape is an equipotential surface of the earth's gravita-
tional field. Such a surface, as will be shown later, has va-
riations from an oblate spheroidal shape of the order of 12 (1 in
105). The equipotential surface commonly adopted as a refe-
rence surface is that corresponding to mean sea level (M.S.L.),
as this forms the datum for elevations (at least in theory, if not
in practice),

The gravitational potential (VP) at a point P in space

is given by .
k p dv
T e 1.
VP r (1.1
where k is the gravitational constant, the density

of matter situated in the element of volume dv and r is the dis-
tance from dv to P. Thus the shape of the equipotential surface
v=C ... (1.2)

where C is a constant, is extremely susceptible to
changes in shape due to local density anomalies. These ano-
malies could cause either localised effects, with regional cha-
racteristics extending up to 60 miles from a localised centre,
or give rise to regional effects which could extend over continen:
tal areas.

Conventionally, the parameters of the reference sphe-
roid are chosen (Heiskanen and Vening Meinesz, 1958, 42) so
that the latter has the same mass as the existent earth and the
same volume and flattening as the geoid. Hence it appears
predictable that the geoid rises above the spheroid over conti-
nental areas. This, however, is not necessarily so (Veis, 1965)

as seen from a study of provisional '"free air" geoids, determined
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from the analyses of the orbital perturbations of artificial
earth satellites.

These studies seem to indicate that the chief fac-
tors influencing the shape of the geoid arise from deep seated
density anomalies and not from the effect of topography alone.
Thus, it can be concluded that the fluctuations of the geoid
with respect to a réference spheroid are generally unpredic-
table and bear no relation to topographical features alone.

The latter, however, do influence the shape of the geoid through

the higher harmonic terms.

1.2 Mapping the geoid

Geoidal mapping can be carried out using two
different techniques. The first method which has been quite
commonly used , is known as astro-geodetic levelling (e.g.,
Fischer, 1966a). This method uses expressions for the
deflections of the vertical (Bomford, 1962, 89) in comparing
the positional parameters on the reference spheroid, estab-
lished by horizontal methods, with the equivalent quantities
determined astronomically. The quantities evaluated using
this technique are "'surface' deflections of the vertical ( N
in fig.(1.1) ), being the angle between the normal to the surface
equipotential (or geop) and the spheroidal normal. The true
deflection of the vertical( ¢ 0) is that between the normal to the
geoid and the spheroidal normal. The difference ( ¢ A” co)
varies from very small values in relatively flat areas to larger
ones in more rugged topography. The accuracy of astro-geo-

detic levelling is also dependent on the orientation, in space,



0
&

FIG. 1.1

THE REFERENCE SPHEROID AND THE
. EQUIPOTENTIAL SURFACES OF THE -
 EARTH'S GRAVITATIONAL FIELD.
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of the reference spheroid on which the horizontal geodetic net-
work is calculated. Hence, any results obtained by the use of
this method, cannot be considered to be absolute.

The second method is the gravimetric one in which the
problem reduces to one of determining the vector of separation
between equivalent points on the geoid and the spheroid of refe-
rence. The basic appreach is one of vector algebra and the
results are expressed as a combination of changes in the
direction cosines of normals and linear normal displacements.
These results, together with the relevant astronomical obser-
vations, will, in theory, give an absolute solution to the problem.
This method was restricted in scope up to the present decade
due to insufficient coverage of the gravity field over ocean
areas.

Recent developments in the study of the perturbations
of the orbits of artificial earth satellites have enables values
to be establigshed for the low order harmonics of the earth's
gravitational field and these, in turn, have been used to obtain
a representation of the gravity anomalies over ocean areas.
Gravimetric investigations, in the past, have always hinged
on the use of Stokes' theorem (Stokes, 1849, 693-4), which was
derived on the assumption that there was no matter "exterior to
the geoid'. This has resulted in most subsequent researches
into the problem being preoccupied with methods for ''smoothing"
or "removing" the topography of the earth exterior to the geoid.
In fact, the first book, fully devoted to the subject of physical
geodesy (Heiskanen and Moritz, 1966 ), develops the subject from

the point of view of a regularised earth.
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Such treatment of the matter exterior to the geoid
causes changes in the position and the shape of the equipoten-
tisl surfaces of the earth's gravitational field and resulted in a
new bounding equipotential, called a co-geoid (Hunter, 1935,
378) , which was exterior to all matter. The solutions so
obtained were complex and, due to numerous side effects being
neglected, somewhat lacking in accuracy. In general, the use
of Stokes' integral gave the separation between the co- geoid
and the reference spheroid. The contribution of the correction
terms, arising from the ""mass transfers", to this co-geoid

spheroid separation was called the indirect effect.

Molodenskii (1962) was the first geodesist to attempt
the development of a solution unencumbered by such preconcieved
ideas and Russian geodesy in the nineteen thirties and the nine-
teen forties did a lot to spearhead the revision of methods for
solving this problem. This led to other European geodesists
(e.g., Hunter, 1960; Hirvonen, 1960) having fresh ideas about
the method of solution, which, however, in the writer's opinion,
are restricted in scope due to the introduction of certain limiting
concepts. These included "doing away with the geoid". This
solution, however, is not widely acceptable to the geodetic
community as the geoid still is the most clearly understood
datum surface which approximates very closely to the accepted
geodetic reference figure - the spheroid.

In recent years, more careful studies have been made
into the density of the earth's crust (Hunter, 1966) and the clear
analysis of Moritz (1965) has produced the following complete

theoretical development which provides a solution of the
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gravimetric problem, correct to the order of the flattening.
The extension of the solution to the order of the square of the
flattening (1 part in 105) can be effected by the extension of the
spherical considerations to spheroidal ones. The lack of preci~’ .
sion in the gravity data available at present makes this tedious

development a theoretical exercise of no practical significance.

1.3 The '"Free air geoid".

The term "free air" geoid (e.g.,Kaula, 1959,
108 et seq.) is applied by geodesists analysing satellite orbital
perturbations, to the co-geoid they map when using free air
anomalies, calculated from solutions for the low order harmonics
of the earth's gravitational field, in Stokes' integral. The free
air co-geoidal height (Nf) is given (Heiskanen and Vening Meinesz,
1958, 65) by :
B {0’ 4y
N, = / () s g do e (1.3)
Yo

where is the free air anomaly (Heiskanen
gs y

and Vening Meinesz, 1958, 148), f( ¢) is Stokes' function (see
equation (5.53), ¢ is the angular displacement of the compu-
tational element of surface area do on a unit sphere, to the
computation point, Rm is the mean radius of the earth and Y m
is the mean value of gravity over a spheroidal model of the
earth.

The separation (N) between the geoid itself and the

reference spheroid is given by



N=Nf+N[ et e e e ..(1.4)
where l\II is the indirect effect.

1.5 The definition of the geoid in continental areas.

The geoid admits readily to definition over
ocean areas, being the free surface of the ocean itself, if the
latter were from tidal, current and wave motion effects. This
coincidence with a physical reality is not available over continen-
tal areas as the geoid is located below the existent surfece of the
earth. Further, as potential is a scalar quantity given by
equation (1.1), it is extremely susceptible to local mass anomalies.
Hence the shape of the geoid is dependent on the stratification of
matter in the earth's crust. Consequently, an uncertainty will
always exist in any solution for the geoid inless the internal
density gradient is known.

A unique solution is, however, possible for the geoid
if a definite model is adopted for the topography above a certain
depth (to be specified later). Conversely, no geoid can be defined
unless a reasonable model is adopted for the earth's topography.
The search for such a model has, to date, been rather a fruitless
one and, from a geodetic point of view, is a field in which suffi-
cient research has not been done. The analysis of seismograph
records, if carried out systematically, should provide valuable
information. The Mohole project is certainly likely to give good
first approximations, which will, however, prove useful only if the
existence of a definite relation between surface topography and
density gradient is established. Variations in the density of

surface topography can be established 'y the Nettleton technique
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(Nettleton, 1939), which is commonly adopted in geophysical
prospecting to obtain the best possible density for use in com-
puting the Bouguer reduction. The sampling techniques used
in practice, however, cover only limited extents and can only
be considered representative of surface sedimentary rocks. In
Australia, this method gives variations in the value of the
density (; ) determined in the range
1.9 < 0 = 2.7 gm. cm-3
Hunter (1966) suggests certain relationships which
may be of relevance and may very well replace the current
practice of adopting the uniform value of 2.67. The two for-

mulae suggested by him, based on 5000 samples from 47 regions

of the world, are

p= 2.7 - hf18 ......... vee..(1.5)
for -4500 < h (metres) < 1500, and
p= 2.77 - hf2Y ... ... (1.6)

for 100 < h (metres) < 2100.

The value of h used in equations (1.5) and (1. 6) is
the elevation of the area in km. These formulae may very well
overestimate the density of the topography.in coastal regions
where the density of sedimentary rocks is likely to be smaller.
It is estimated that the error in the Bouguer reduction due to the
density uncertainties in these regions is unlikely to exceed 4 per
cent giving errors in the anomaly which should not exceed 1/4
mgal. This effect is much smaller than the uncertainty in the

elevations of many gravity stations. On the other hand, the
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effect on rounding off errors tends to be systematic and may well

give rise to a small systematic error in the final result.

1.5 The South Australian investigation.

Sarth Australia lies between the meridians 129°
E and 141°E and the parallels 26°S and 4—008. Its main feature
of interest is the satellite tracking station complex located at
Woomera. Tentative solutions have been made for the absolute
position of the former (Veis, 1965) based on satellite orbital
apalysis. The relative undulations of surface equipotentials
have also been mapped (Bomford, 1963) in the tracking station
area. It is of considerab le significance to determine the
relation between the free air geoid and the equipotential sur-
faces of the earth's gravitational field in this area as it will
enable a more precise determination of the absolute location
of the tracking stations to be effected. In this manner, the
positions of the tracking stations could be fixed absolutely on a
three dimensional cartesian system of coordinates and thus
not be dependent on the orientation of the triangulation spheroid.

This would, in turn, enable greater precision in satellite tracking.
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2. THE FUNDAMENTAL THEOREM IN PHYSICAL GEDESY,

2.1 Introductory vecior theorems.

All derivations in the theory of gravitational fields

stem from the divergence theorem also known as Green's Lemma,

which states (Jeffreys, 1962b, 193) that

fffvy_.E = Iig FN 4 ..., (2.1)

where F is any vector whose divergence exists every-
where within the volume V, and N is the unit normal vector,
reckoned positive outward. The other quantities in equation

(2.1) are defined by the following equations.

X i=1 axl

3
_E_ = Zl Fi_l .............. (2.3)
1=
3 8
v _E_ = '2 Ly Fl ............... (2.4)
i=1 i

It should be noted that there is no objection to the
volume V being bounded by two surfaces. Thus » a certain volume

which has both an inner and outer surface, both of which are
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designated as the surface S, can be considered as one which
the divergence theorem applies. When evaluating N in such
a case, the outward normal is taken as positive in a direction
away from the enclosed volume.

The divergence theorem is capable of direct

extension to Green's theorem which consgiders 2 scalars

(U i=1, 2) whose Laplace operators ( v 2 U i=1, 2) exist every-
where within a volume V, when
{ "{ { {

r :

!
JL’ ‘v %y - U VZUJde\;“ luv.NU - U v.NU,|as
b -

Vi - 2 2 - ¥S 1 2 2
.......... (2.5)
where
2 3 g 3 5 3 52
T 2 i Z e— = Z —7 ... 2.6
X i=l1 O0x— i=1l 9x, = i=1l 9% ( )

Equation (2. 5) holds when U v U and

U ¥ U exist everywhere within the region v bounded by the
surface S. The quantities U1 ¥.N U, and U, g-N U] must also
exist at every point on the surface S. As in the case of the
divergence theorem, the bounding surface can be a continuous
one or it can be in twe parts, e. g., the volume contained

between two nearly coi.centric spheres.

2.2 Laplace's theorem and its application to gravitational

potential,

Consider the scalar 1/r, where r is the distance

of the variable element Q from a fixed point P. Three possibilities



13
exist.

(i) If P is exterior to the surface S which encloses the
volume V in which all the points Q1 (i=1, n) lie, then 1l/r exists
for all points t% (i=1,n) in V and on the surface §.

(ii) If P lies on S and coincides with one of the Qi’ there
exists one point on the surface at which 1/r is indeterminate
and an infinitesimal region in V adjoining this point at which
1/r is unstable.

(iii) If P lies within the region V, the surface integral of 1/r
is evaluable, but there may exist one point in V at which 1/r is
indeterminate.

In case (i),

1 3 5 1.
A r IEI—B;{_; r'l"
where
3 13
r = = xzs
i=1 1
A
Thus | 3 X,
V- = = - == ... (2.7)
—_—r 3 -
i=1 r
3x
S i s JE N
T 9% r =1l > =l r
_2f 3 =C
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1/r is said to satisy Laplace's theorem (Jeffreys, 1962b, 199)

where § is a scalar.

If Qi (i=1,r) are points with coordinates £ (J 1,3
i=1,n) on a three dimensional system and r, = PG% (1 1 n), where
P is (x j=1,3), then

v Lo 0

—— r

at all points except¢ {1 xJ.

3
where ri = Z(¢ ., - X.) = 0

If a; (i=1, n) are constants associated with the points

Qi (i=1,n), consideration of each of the Qi S , in turn, gives

As each of the Qi s are independent points,

n 2 & 2 n 2
Z 3= =32 L ¢ ... 29
iz} — 1 i=1 T,

Chis relatlon holds at any of the points Q
which do not coincide w1th the origin of length r (i.e., P). Thus,
if equation (2.9) is to represent gravitational potential, it can
only do so at a point not occupied by matter. However, if the
composite term a/r tends to zero as r tends to zero, or to

any finite limit, it is possible to assign a value to the function
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defined in equation (2. 9).

Conclusion:~ Grav’tational potential at any point not

occupied by matter satisfies Laplace's equation.

2.3 Gauss' theorem.

Given a surface S which encloses a volume V (fig

(2.2) ). Consider the vector ¥, given by

R
F = Y where
r
3
R =2 x; 1 Applying divergence
i=1

theorem (e -ation (2.1) ) to F ,

AN A
z’f Ly.R +Ry & |av —“ F.N dS
Wiy 342 7 2L ™3 Tldg ==

r r
Ifr # 0,
My |3 P Em )]V =0 = J[gEN &S
r 1 r
i[ R
Thus JS -—r—3— N d =0 ........... (2.10)

If r=0 ata pbin’c within the surface S, exclude this
point by
(i) a sphere of radius ¢ which tends to 0, if P is

within S ;
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2
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Case (i)
Case (ii)
€
P~
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(ii) a hemisphere of radius ¢ , which tends to 0, if Pis on

the surface S.
In such cases, treat V as being enclosed by two

surfaces S and S', where the latter is the surface of a sphere/

hemisphere of radius ¢, centred on P, which is situated

within / on S.
The application of equation (2.1) gives

”[V UE 4V = ”S F.N & + ”S F.N d'

where N' is the unit outward normal to the surface S'.

From equation (2. 10),

0o = gs F.N dS + ?fJS, F.N ds'.

.

In the case of S' being a sphere, the direction

cosines of the surface normal are the direction cosines of R.

Thus,
1 [ B R e
' | I, - ..§ & 1
s«!.;Sl _P_‘__lidS - "’S' 3 e ds J\.‘S' 34 ds
€
— —.1_. ?'ﬂ 1
- || =
€ JuSl
!ﬂ” I L
Thus “ PN st - 47 when S' is a sphere
JIQT ==t T
S‘ _ - 2y when S' is a hemisphere.

Substitution of the above result in the earlier equation
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gives
R IO if P is outside the surface S
’:L :%- NdS=¢2n if P is on the surface S
\YJ
r

4q if P lies within the surface S

................ cenaa(2.11),
It should be noted that the following results also hold.
- 0 if P is outside S
* a
n 2y n
'( = —-3-_13 N ds =J 2n Z_ a. if the Q.'s are on S
g i=1 3 T O 1 '

. 2 a if the Q's lie within S
i=

cerereean. .(2.12),
where a is a constant associated with r at a point Q within

S, the magnitude of the constant being a function of Q.

2.4 The function ¥ 2  in regions occupied by matter.

Let the gravitational potential (#) at a point P be given
by

where ai is the relcVant constant associated with the
gravitating point Qi(i::l, n) at a distance rs from the point P,

The study of equation (2.7) gives



n a. n 3 X, .a,
vh = ._Y-Z’ X = pa) S - A i
a. R,
n 1_1
= - E 3 .--v.-ng--....q-.on.c-.(2;14).
i=1

This is the general expression for the gravitational
force due to a general distribution of matter, without any
restriction, except tﬁat no matter exists at P, If matter
exists at P, the expression will still hold if the ratio a/r

associated with P tends to zero as r tends to zero.

Consider the integral

n
= .V = -ty & 3 ds......
I S R —'¢ ds u\j S i§l T. dS

The evaluation of this integral using equation

(2.11) gives I-o if P lies outside S

N n
B N.VpdS= -{ 2 = aiiftheQi'slieonS
Js i=1

n
4 5 _Zl a, if the Qi's lie within S
1=

cererenen B VA L0

The second and third conditions apply when P lies
within or on the bounding surface S and coincides with one
of the gravitating points Qi (i=1,n). The bounding surface
S is taken to be exterior to all matter. If the point P does
not coincide with a Qi’ the first condition holds irrespective

of the location of P.
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If, on the other hand, certain of the Qi were situated
external to S, but within another surface S' which was exterior to
all matter. Consider those Qi (i=1, m) situated between S and
S'. If P did not coincide with any of the above Qi’ where

m < n, and all the Qi (i=1, m) are included in the set Qi (i=1, n),

the condition

V@’" m R,
1y = 8, ¥v.— =0
lilveg,s)  i=l Ty

is satisfied. See fig (2.3). When

P coincides with one of the points Qi’ exclude P from the
volume considered between the two surfaces S and S', as before,

and if N' is the unit outward normal to the surface S, the use
of equation (2. 1) gives

re R rr R.

o m R o R
|1 T oav.avs|| = a N .-—rdst
Yeivs, sy T r, list=l r:
1 i
(- o Ry
+ z a N -3 das' ....... (2.16)
-.;lsv i=1l 1 r
i
[ m B {{ m B
= - P2 al_N_ .T-dS‘+t z alN.——; ds'’
\}.‘, S 1=1 ri ;.,Sr 1=1 ri

In the specific case where Plies on S, equation (2. 14)

gives



r [ m R, m
__1\}_'.__\_7_¢ ds = - = aN'—B aS = -2 £ a ,
Jus © vJs dsk T =1 1

where ¢e is the potential of matter external to the
surface S but within the surface S'. If ¢i is the gravitatio-
nal potential due to matter within S, the total weetor inte-
gratian aover the surface Sof both the internal and external

gravitational potential gives

\M‘SH-_YNS =Lrs N. (B +9)cs

= - 29 t Z a + Z a,
i=1 *! i=m+1 1
n

T =20 T A, eeeees v e(2.17),
i=1 1

The use of equation (2,1) on the vector F = v

gives

ijg.g¢dv = ’Jﬂy_.y_(bds.
iV s

The evaluation of the right hand side of the above

equation using equation (2.15) gives

JJ 2pav = | 3, ax 2 ds
= - a. ]
v 7 Js® a3
if P is at a point not occupied by matter

.
= -7’ 2 ¢ 2 if the Qi's lie on the bounding surface
i=1

_ n
~4 5 Z  if the Qi's lie within the bounding surface

1=
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FIG. 23

T= True Surface
R= Reference Surface
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If pis the density of matter in the element of volume

dV, it follows, from the definition, of the ai's, that

[ o

n 3
Lim X2 a. =
n »>o i=1 3 Jé V

where k is the gravitational canstant.
r 0 if there is no matter at P
%8 = ri 2 nkp

Thus

if matter exists at P and Qi's lieon S

4 7kp if Qi's lie within S with matter at P

et ee..(2,18).

There is no necessity for the gravitating masses

ta lie entirely within the usrface S. The last of the

relations in equation (2, 18) is also known as Paisson's
equation,

2.5 Green's third identity,

The application of Green's theorem (equation (2.5) )
with U =9 and U, = =

JTr 1 r

1
JJV[;~V¢ J ?]
g v

Lv.np -

ds .....(2.19),

where the volume V= Vi is interior to the surface S.
21 '
As .Y -

- is zero at all points except P, the origin of the
length
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vector r, from the discussion prior to equation (2.11), it can be
seen that the second term on the left hand side of equation (2.19)

is given by

f 1
¢}ﬂ y L v, =¢”N.Vlds
P JV - r 1 p\_[v - = T
If P, the origin of the length vector, is enclosed by

an infinitesimal sphere (S') of radius ¢ , then
-‘-' n J
) ” r v 2;—~ av
P JJV - r
i ‘
where do is the element of surface area on a unit

sphere. Simplification of the right hand side of the above

equation gives

21 r
¢”: Vo= av.= - ¢ f, do
p\;.‘JVi r i Plig
“O if P lies ouiside S
:{ g if P lies on S
!‘-41r (bp if P lies within S.
TT}&? f0  if P lies outside S
!J 1 2 ! . .
J\; V. = V7 dv, =-6 < 2v if P lieson$S LY
r -— 1 P!

L 47  if P lies within S

dSs ....... (2.20).

| CE—



25

Note :- r is the distance from the variable poiat Q to the
fixed poiat P, which may be located asywhere The Q's,
however, lie o .ly within and on S. #, on the left hand side
of equation (2.20) , refers tc potential at the internal point

If, on the other hand, the volume Ve were
exterior to S, two factors have to be taken into co:.sideration.

(i) The direction of the outward normal reverses
its sign . The new unit normal N' = - N

(ii) If P is external to S, it now lies within a
region of matter, and not without, as before

Thus, on lines similar to the derivation of

equation (2. 20),

; (0 if P is internal to S

g L V2¢dV=¢\ -2r if Pison$S -
J\,‘\)V r - p!

e L =4r if P is external to S

T
Y
J

V.

1

(..

Equations (2,20) and (2, 21) are known as Green's

third identity.

2.6 The fundamental theorem in physical geodesy.

The basic problem in physical geodesy is that of
locating a physical reality of unknown location and locating it
to a known reference system which has no reality, so far as
direct observations go. The reference surface best suited to

solve the geodetic problem is the oblate spheroid.
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The problem, in the case of the physical surface of the
earth, is further complicated by the presence of the topography
exterior to the geoid, which could cause deviations from the
-spheroidal shape. These could be as great as 10, 000 metres
or 2 parts in 10,000. In the geodetic problem as postulated,
consideration of the geoid as the primary physical reality,
could reduce the order of the deviation between the true surface
and the reference surface to 1 part in 105. In this latter case,
the residual discrepancies will be due to the irregular variations
of the equipotential surfaces of the earth's gravitational field
arising from local and regional density anomalies. These
variations in shape are of vital moment in geodesy as every
single geodetic observation is made with reference to the local
vertical. These local verticals cannot be expected to have
simple geometrical relationships to one another, analagous to
spheroidal normals and their relative orientation cannot be

determined without a definition of the earth's gravitational field.

Consider the projection of the sheroidal normal and
the local vertical on the celestial sphere. Fig (2.5) shows that
if N is the celestial pole and ZA and ZG are the zeniths for the
local vertical and spheroidal normal respectively, the resulting
discrepancy (¢ ) in astronomical latitude, called the deflection of
the vertical in the meridian and treated as positive if the outward
vertical is north of the spheroidal normal, is the meridian com-

ponent of the angle (7 ) between the spheroidal normal and the local

vertical.
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The discrepancy ( n ) in the prime vertical is a function
of the difference in geodetic and astronomical longitudes,
being the prime vertical component of ¢ . The difference in
longitude has to be scaled by a factor of cos # . The
discrepancy is considered positive if the outward vertical lies

to the east of the normal.

The effect of these deviations on the measure-
ment of horizontal angles between normal sections is seldom
of consequence. In general, triangulation and other methods
of horizontal survey give relative positions unaffected by the
non-coincidence of the local vertical and spheroidal normal.
The position of any point on the earth's surface is fixed
uniquely in three dimensions by the use of the spheroidal
coordinates and the elevation of the point above the point on
the spheroid whose normal passes through the former.

The elevation of the point will thus be the length of the sphe-
roidal normal intercepted between the spheroid and the point

in question (Mather, 1966a). This quantity cannot be measured
directly in the field. The elevations determined by field
measurements are with respect to "'mean sea level'.
Orthometric elevations (Bomford, 1962, 202) are, at present,
purely arbitrary, being dependent on the model adopted for the
earth's crust exterior to the geoid. Differences in potential
can be determined (Baeschlin, 1960) and these constitute the
only quantity related to displacements along the normal, which

can be determined without ambiguity in the field.
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The spheroidal elevation (hs) is given by (fig (2.6) )

h = h+ N uuuuuuuu $ 0620006800000 (2122),

where h is the orthometric elevation
and N the geoid spheroid separation.

An adequate spheroid of reference is therefore
a pre-requisite for the complete definition of a point on the
earth's surface. This is chosen using the arguments set out
in section (1.1). Given this datum surface, the absolute
location of a point is completely specified by its astronomical
latitude (9 A)’ astronomical longitude (A A)’ geopotential, N
and the components £ and n of the deflections of the vertical
in the meridian and prime vertical. The last three quantities
cannot be determined without a complete study of the earth's

gravitati-nal field.

See fig (2.4). Consider two surfaces R, capable of
mathematical representation and hereafter called the refe-
rence ?surface, and T which is an existent physical surface
of irrégular form. RandT have the same volume and hence
T lies partly within and partly outside R, The form of the
surface T is not known, but its departures from R are slight.
Both surfaces are situated with respect to a system of masses
which, in general, lie partly within and partly outside the
surface T. This would apply, by definition to R, which, how-

ever, has no physical reality.
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As the departure of T from the regular form of R in the
case of the geoid-spheroid system is expected to be of
the order of 1 part in 105 (e.g., Veis, 1965), the gravi-
tational potential of matter exterior to T ( ¢e) and that of
matter within it ( ¢i) are harmonic both internally and
externally with respect to T and the total gravitational

potential ( § ) is given by scalar addition

p = o + 6 ......... (2.23)

i e
where ¢e << @..

i

The application of Green's third identity to

this system in the case where the volume Ve is exterior
to the surface T at a point P on T gives, by the use of

equations (2.14), (2.12) and (2.21),

where the volume A V is a hemisphere
centred at P on S. The first term on the right hand side
is zero. The second term has a value at P only, when

_V_Zﬁ = - 27 kp

Further, at P, -1; dl AV) = f(r) =0,
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Thus, equation (2.21), in the case of ”i' reduces to

1 1
JT[-;Y.-H&-M N1 ]dT

where P is on the surface T,

r 1is the distance of the surface ele-
ment dS from P and
is the potential at P due to masses

within T.

Similar consideration of the masses exterior to T and
their effect as set out in equation (2. 20), over the volume

Vi’ interior to T gives

o
o1 1
0 = -2 +_[ l—v_.gqb -¢_V_.§—]dT
€p \".JT r e e r
...... (2.25)

where ¢e is the potential at P, on the surface

S due to masses <>utsidéP T.

The expressions for potential within the inte-
gral on the right hand side of equations (2.24) and (2. 25)
refer to values at the surface element dS If @« is the
angular velocity of rotation of the earth, the potential (¢r)
due to the rotation of the earth (Heiskanen and Vening Mei-
nesz, 1958, 34) is given by

2
1 2.2
s I TN



32

the X3 axis coinciding with the rotational axis.
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The application of equation (2. 20) to the rotational
potential gives

1 1} 12
f rz.ﬁﬁr-ﬂrl.y_r¥dT-21r¢r- “ —v "6 av
<l P ¥V

=0 ....... (2.27)

The total gravitational potential (VS{)) at P is given by
Wp = #,+ 0 + 0 .ol (2.28)

The subtraction of equations (2. 25) and (2. 27)
from equation (2.24) gives

Further simplification, using equation (2.28) gives
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Equation (2. 28) is the basic e quation in physical
geodesy. It should be noted that

(i) the equation applies to a point P on the actual
surface 7T ;.

(ii) masses are located both internal and external to T;

(iii) W is the total gravitational potential and ’)e is the
potential at P due to masses exterior to T ; P

(iv) ¢r is the rotational potential at P

(v) Vv ig the volume enclosed by the surface T, r refer-

ring to distances from P.

Equation (2. 28) is basic and involves no approximations.
WP is a function related to geopotential (Baeschlin, 1960).
If T were the geoid, WP = W0 is the potential of the equi-
~ potential surface corresponding to mean sea level. If, on
the other hand, T were the physical surface of the earth, WP
would be variable and given (Jeffreys, 1962, 130) by
fP
WP = WO - 0{ gdh ..... (2.29)
where g is the value of gravity over the difference

in height dh.
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3. THE SOLUTION OF THE FUNDAMENTAL BOUNDARY
CONDITION.

3.1 Basic definitions

Two problems arise in attempting to solve equation
(2.28). Firstly, the integrals are non-linear and direct so~ .
lution is not possible. Secondly, the surface T is not a
known surface. A solution can be obtained by linearising
the system. This is effected by introcducing th  concept of
a mathematical model surface R which is spheroidal in nature
and has dimensions approximately equal to those of the exis-
tent system. Astronomical coordinates (¢A, AA) and geo-
potential (W), obtained by a combination of gravimetry and
levelling afford a system of coordinates for every point on
the earth's surface. In the case of such a point P, whose
coordinates will be denoted by the use of the suffix P with
the appropriate symbol, it will be possible to define an

equivalent point Q on the reference system such that

b = #
Q Ap
A = AL .. (3.1)
Q Ap
= W
UQ P

where UQ is the potential of the reference

system at Q (See fig (3.1) ). Let the equipotential surfaces
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of the reference system, which has the same rotational cha-

racteristics as the existent earth, have equations of the form

U = constant ........ (3.2). Such
surfaces were called spherops by Hunter (1960, 4). The
term geop was used to describe the equipotential surfaces
of the existent earth which are represented by equations of
the form

W = constant ....... (3.3).

If the surface R is chosen to represent the surface
T:, the discrepancy in point to point representation can be
fully defined by the vector d, being the line PQ truly orien-
tated in space. As shown in fig (3. 1), equipotential surfaces
of both the true system (W = WP) and the reference system

(U = UP) pass through the point P.

Two possible systems of existent-reference surfaces
are possible. Firstly there is the geoid - spheroid system
where the true and reference surfaces will be referred to by
the symbols T and R respectively. A second possibility is
the system composed of the physical surface of the earth (T')
traced out by the locus of the point P and the reference sur-
face formed by the locus of the associated point Q, called
(Hirvonen, 1960, 40) the telluroid (R'). Also see section
(4.3), 1If PR' is the intersection of the spherop through @
and the normal through P, which intersects the spheroid at

P,, thenP_P_ (= hn) i1s called the normal height.

R’ R™ R'
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If the normal PPR through P intersects the geoid in PO’
then PPO ( = h) is the orthometric height. h is approximately
eq.al to hn’ and it is common practice to assume that the

discrepancies do not exceed 1 to 2 metres. The disturbing

potential (VD) is defined by

‘ Adopting the convention that longitude is positive
east of Greenwich, and azimuth (A) is measured from north

through east, a direct consideration of fig (2.5) and the dis-

cussion in section (2. 6) gives

€= Pp- b (3.6)
ﬂ‘()\A—AG)cosﬁ ..... (3.7)
AA-AG=(AA-— AG)sin(b = n ton P
Alternatively,
n =(AA-AG)cot¢ ..... (3.8). In

equations (3.6) to (3.8), the suffix G refers to geodetic values

on the reference spheroid.
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The vector d is given by
d =Rg 1+ Rp 2 + h. 3 ..., (3.9)

where R is the radius of curvature of R! in azi -
muth A at P, i (i=1, 3) are the direction cosines of a local
3-dimensional cartesian system with the 3-axis orientated
vertically, the 1 and 2-axes being in the horizon plane,

being orientated north and east respectively,

3.2 Brun's theorem

The potential U of the reference system is given

by Taylor's theorem as

U= U ... (3.10)
and UP = U(hn + hD)
' 1.2 _"
= U(hn) + hDU(hn) t sy hj U (hn) +
2
ouU 1 2 38U
- U(hn) + hD ah + 2 2 + -------
n dh
n
......... (3.10)
62U 9 -6 -2
ahz = aﬁ ¥ 3.086 x 10 " sec (Heiskanen and
n

Vening Meinesz, 1958, 148). As hD > 104 cm (Kaula,

1959, 114),

hT, — = 3 x 10% crnzsec-2 =3x107} g.p.u.
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The third term on the right hand side of equation (3.10)
is equivalent to approximately 15 c¢cm in distance. If this
term is ignored, the magnitude of the change in potential
is given by the second term. 8U/8hn ig of the order of y and
is of magnitude 103 cm sec-z, Therefore the difference
UP - UQ is of order 107 cm2 sec_2 which is equal to 100 g.p.u.
Hence

-1
UP = UQ - hD Yp +0{10 "g.p.u)..(3.11),

4

where vy P is the value of normal gravity

at P. The use of equation (3.4) in equation (3.11) gives

. This equation holds if the potential at
Q on the reference system is numerically equal to that at P

due to the existent earth. As a corollary,

P YP
Equations (3.12) and (3.13) represent
Brun's theorem which relates the disturbing potential to the

height anomaly and is correct to 15 em if hD = 100 metres.

3.3 The free air anomaly in terms of the disturbing potential.

Consider equation (3.4). Differentiation of

the potential function with respect to normal height gives

®

oV : ‘
D oW 98U = -g + Y ....(3.14)

N 1.
oh dh oh
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as potential decreases with increase of height.

The application of equation (3. 14) at P gives

oV '
o g+ v P A .. .(3.15)
— o o el W

where 9y /8h increases with increase of hD.

In reality, however, gravity decreases with increase of height.

Thus, 9y /8h is less than 0. Equation (3.15) can thus be re-

written as
aVv :
DP = - N - iy_; h (3.16)
on = gP Q ahl D "o .

AgF = gP'YQ ............

The combination of equations (3.16) and (3.17)
gives the relation between the disturbing potential and the free

air anomaly as

[ ov B
I . ) 1oy 3
dgy, = - + fah’hD 1-&-0{10 }

~ As the magnitude of the free air anomaly
seldom exceeds 150 mgal, equation (3. 18) defines the free air
anomaly to the nearest mgal if the vertical gradient of the dis-
turbing potential, the vertical gradient of gravity and the height

anomaly are known.
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If R is the length of the radius vector from the centre

of mass to P, then Newtonian gravity gives

Y - kKM » where M is the mass of the
P 2
R
earth, and
o . ZkM 2y
oh 3 7 R

Equation (3.18) can be re-written as

" ov 2 Ypbp_
i D P i
A8 = " | 3nm o ... (3.19)
P L R i
Equation (3.19) can be expressed as
'_aVD 2VDP
AgF = - !—ag— + e e e e (3.20)
P L R

It should be noted that equation (3. 20)
holds only if the potential on the reference surface equals the

potential on the surface to be mapped. Both equations are

3
correct to 1 part in 10°. More generally, equation (3.20) can

be written as

M ov 20V, - Wp - UG )y
D P I

ABn = - l 5h + ..(3.208._)
I i 1 R é

3.4 The telluroid

The telluroid was postitlated by Hirvonen (1960)
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as the locus of the points PR' on the normal through the points
P on the earth's surface at which the potential of the reference

system UP was given by

Rl

More precisely, the telluroid is the
locus of the points Q defined in section (3.1). This type of
reference system was suggested by Hunter in a modified form
(1960) for his model earth in which he gave it the name
Terroid. The general situation of the telluroid with respect
to the physical surface of the earth is shown in fig (3.1). An
enlargement of the upper portion of this figure is shown in fig.
(3.2). Consider a localised three dimensional cartesian sys-
tem of coordjnates (‘Xi’ i=1, 3) centred on Q, which is defined
in section (3.1). Assume the X, axis coincident with the local
normal, the 3 and X, axes being orientated north and east
respectively. The non-coincidence of P and PR' is a function
of hD’ while the non-cy'ncidence of P and Q is dependent on
the relative positions of the local vertical and the spheroidal
normal as well as on hD' In addition, the rate of change of
Q with respect to P is dependent both on local mass anomalies
and on the slope of the topography in the direction in which the
change is considered. Under limiting conditions suitable for

the application of differential calculus, the deflections of the

vertical ¢ j(i=1,2; ¢ 5 =N ) are given by
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Equation (3. 21a) is based on the same sign convention as

defined in section (2.6). The equation of the spherop U =W

P
in the limit at Q is

The equation of the telluroid in the neighbour-
hood of Q can be represented by

X, = Ahs(xi,lzl,Z) ........ (3.23),

where A hS is the increment of normal height from

@. The height anomaly hD can be expressed as

hD =hD(Xi’1=1’3) = hD(Xl’XZ’Ahs(Xl’XZ))

The expansion of equation (3.24) by Mac-
Laurin's theorem gives

- ] 3y, o°h
hy = th(Xi’1=1'3) toah 5= 4+ of = >}
i ix. =0 S 8h
3 s
Differentiaition with respect to X i=1, 2,
gives : - 2
. = A
BhD ) r BhD(xi,l 1,3)] . ahs BhD .o 7 -hD ,
ox, | o~ f dx, oh x.0h
i _ i 4 x3=0 i s i s
P e (3.25)
More specifically,
g{BhD} i-ahD ] BhD oh
.i:——.}axl‘: = L_——-axl J U=W + "a""—h ?_‘_;. 60w (3 . 26)
Telluroid P

The first term of the pair which form the
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second expression on the right , is a small quantity, being the
change in the height anomaly with elevation. The second term
of the pair is the topographical gradient which is comparatively

large. From equations (3.13) and (3. 20),

Pp o Yol a1, e, 1 Vb
dh — dhi y |~ Yz D idhi Y oh
2
- l..g ._____VD iil - A - aih\“
Tyl T jan] T8 T Bw Mp|
B &
= - =E (3.27)
-

AgF and v refer to the values of these
quantities at the point considered. Again, this equation holds

where U_ = W_. Equation (3.24a) reduces to

Q P
{i’_h_g‘t
£, = - | ox,
: - P u=w
oh_. P
- _i‘___gé - i—gE 59__11 1_1 2 g =N
‘axi Y Bxi’_”.?.—
“ Telluroid
............ (3.28)

Equation (3. 28) gives the deflections of the
vertical in terms of the variations of the height anomaly with
horizontal position and the topographical gradient. If the refe-
rence surface were a spheroid which is a bounding equipotential,

only the first equality in equation (3.28) would be relevant.
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3.5 Possible reference surfaces.

The basic equation can thus be considered

to be of applicability in two different sets of circumstances :-~

(i) The surface T can be the equipotential surface
with closest correspondence to the earth's true surface,

which, over 70 per cent of the latter, is mean sea level.

(ii) The surface T can be the actual surface of the
earth, which coincides with the earlier definition over 70 per
cent of the earth's surface, but may depart from the equipoten-
tial of reference by amounts as great as 1 part in 104 in cer-
tain instances on land. It should also be borne in mind that

land areas are of prime importance in geodesy.

The gravitational potential of a rotating earth,
which is spheroidal in shape, gives rise to a family of equi-
potential surfaces exterior to it (Heiskanen and Vening Meinesz,
1958, 46), which are spheroids of varying equatorial radii and
flattenings. Thus, in both cases described above, it is con-
venient to consider the difference between the actual system and
a postulated reference system of best fit which satisfies exter-
nal astrophysical ans surface geodetic conditions. This has the
effect of reducing the quantities in the basic integral equation
(2.28) to magnitudes which are of the order of the square of the
flattening and has the resulting effect of linearising the integ -

rals.
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The commonly adopted reference datum is the interna-
tional spheroid (Heiskanen and Vening Meinesz, 1958, 46)
and its associated family of spherops. The validity of this
datum is more fully discussed in section 13. The choice of
such a datum system defines either the reference spheroid
required in case (i) or the telluroid required in case (ii).
Thereafter, the use of equations (3.13) and (3. 28) gives the
displacement of points on the actual system in relation to
equivalent points on the curvilinear reference system, as
detailed in section (3.1). These displacements are of the

second order of magnitude in geodesy i.e., of order fz.

The international spheroid is postulated as
satisfying the apove conditions. Its equatorial radius (a) and
flattening (f) were adopted by the International Association
of Geodesy at the I,U.G.G. Madrid assembly in 1930. The
parameters of the international spheroid are

a = 6,378,388 metres ; f = 1/297.0 =3.367 x
107 . (3.29)
The value of gravity. on the surface of this
spheroid on the then accepted value for kM is given by the

international gravity formula

= 978.0490(1 + 5.2884 x 10 "sin?p -
- 5.9x10 %in%20) ...... (3.30)
The first term was obtained (Heiskanen and
Vening Meinesz, 1958, 1958, 52) from an analysis of gravity

over the surface of the earth. The second was obtained from

the value for f ysing Clairaut's theorem.
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The international spheroid is defined as

(a) having the same mass as the existent earth ;

(b) having a common centre of mass with the latter ;

(c) being bounded with an equipotential surface with the
same potential as the geoid ;

(d) having no masses exterior to this bounding surface ;

(e) having the same rotational potential as the existent
earth.

The full implications of the adoption of the interna-
tional spheroid as the surface of reference and the correct-
ness of the parameters chosen for it are discussed in section
(13). In the following development, it should be borne in
mind that the concept of the reference system is that of a
hypothetical model which is merely impressed on the exis-
tent system to remove the zero order and first order effects

of the existent earth's potential.
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4. MODIFICATION OF THE BASIC EQUATION FOR SOLUTION

4.1 The reference system in the basic equation,

Consider the reference System where the surface
R is exterior to all matter. In equation (2, 28), {De = 0. If
R encloses matter which is rotating at the same ar{:gular velocity
as the true surface T and if the total gravitational potential at a
point on the surface R ig U, then equation (2. 28), in the case

of this reference system becomes

: 3
-2m U, + 4n g - H lv.NU-UV.N—”dR+
rP SIRIL T = - - rJ
+ l?y_sz av. = 0 ....... (4.1)
\J\.V

Equation (4. 1) can apply with equal validity to
either the reference spheroid or the telluroid. Equation (2. 28)
itself, represents the actual system, where the surface area T
differs from surface area R by amounts of the order of 1 part
in 105. Subtracting equation (4. 1) from equation (2.28) on the
basis that integration over the surface R is identical with inte-
gration over the surface T ( thus, the physical surface of the

earth cannot be referred directly to the reference spheroid)

-

B Ny I 1
"2t W - Up-20, )- 1 (Lo N (weuy - wemye .N—]
P P °p J-JR{. re= = Ty

dR =0 .., ...... (4.2)
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integration being taken over the reference surface,

whose mathematical form is known. The use of equation (3. 4)

in equation (4. 2) gives

I 1 17

-2V, -20 )- i | =Y. NV -V .V .NXZarR-0
DP ep ‘”Rg- r D D r

............... (4.3)

or pe ~
1 1 1]

Vp =20, -5l S v NV -V g.N = [dR=0
DP ep 2"4\5,,'R L r D D ro

The complete solution of équation (4.4) res...-
quires a knowledge of the disturbing potential over the surface
R. Further, the latter must be capable of complete mathe-
matical definition as the direction cosines of the normal are
required to evaluate N .

4.2 The evaluation of Y - N Vo

See fig (4.1). The point Q is that on the refe-
rence system, and hence on the telluroid, which represents
the point P on the existent system. Let W = WP be the geop
which passes through P. Then, as described in section, (3.1)
and figs (3.1) and (3. 2), the spherop passing through Q is
ﬁ = WP. The equation of any equipotential surface in the
family of spherops associated with the reference spheroid is of
the form

U(Xi’ i=1,3) =0

More specifically, restricting the investigation
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Telluroid (R)

FIG. 4.1

x3
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to the aeighbourhood of P and Q, noting that these points are
generally held to be of the order of 100 metres apart, if the
X3 axis is orientated along the spherop normal at Q, then
PPR, » for all practical purposes, will have the property of
being parallel to the X3 axis. Any point on the telluroid, in

this region can be represented by the equation

Xy = 6hs(xi, i=1, 2) cetrtiieiiaae.. (4.5),

The equation of the telluroid, in this restricted

vicinity will be of the form

U(x, , i=1,2: &h (x,,1i=1,2) ) =0.., (4.6).
i s i

In equations (4.5) and (4. 6), hS will be the normal
height and ﬁhs » to the relevant order of accuracy, the change
in orthometric elevation. The rate of change of potential with
position on the telluroid is obtained by the differentiation of

equation (4.6), when

"-satxi | = - g}.[(} -aa-}}zl 4 i=1,2 .-140(4.7)
= i~ Telluroid 3 i

In the immediate vicinity of any point on
the telluroid, the relationship between the geop W = WP and
its associated spherop U= WP is, for all practical purposes,
the same as that between the physical surface of the earth
and the telluroid, so far as the relative orientation and

displacement of surface normals are concerned. In fig (4.1),
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if B is the angle between the telluroid normal and the normal to
the spherop U = WP’ and if the direction cosines (li’ i=1, 3) of the
spherop ncrmal are known, those of the telluroid are deflected
through a further angle g. Along any equipotential surface,

ouU _
5s - O ..., ...(4.8),
where s is the element of length. If X is the

vector from the origin to the general point on the spherop,
3
X = Z =xAs)i  ......... (4.9).
- =1 1 ,

The combination of equations (4. 8) and (4.9)

gives O
22 - dx o (4.10)
i=1 axi os — * ds= = U ,...... . s

4

where S X represent the direction cosines
of the tangent to the line of greatest slope on the telluroid at the
point xi(s), i=1,3, s being a parémeter of length. From elemen-
tary differential geometry, the sum of the products of like direc-
tion cosines of mutually perpendicular lines must be zero., By
analogy, V U must be proportional to the direction cosines of the

surface normal. As

|2
T
.
Mo
Pt
])—'
P
N
[y
[y

9U | 89U . 3U d8h _  oh

AR 37 Bx ¢ o3y ! 8x3 = —53{-1. iy 1 ....(4.12).

2
The last equality in equation (4.12) is obtained

from equation (4. 7). Therefore, the direction cosines of the
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normal to the tellvroid are equal to

9 0
_2oh cos B, - oh cos fand cos f respectively,
Bxl axz

as the last equality in equation (4.12) gives the direction cosines

of the normal to the spherop U = WP' Therefore,

3 D . [ an 8h
_1\_T_._\1VD— 1 % i, ;-é—icosﬁ}_--& cos B2 +

i i 1 . 2
+ cos ;3_3_5
)

[V 2 ¥Vp g
= cos B! - 2 - | ..... (4.13),
' L 8x3 i=1 8xi Bxi !

i

where B is the angle beween the normal to the tel-
luroid and the spherop normal. For all computational purposes,
this is the slope of the topography. If pi(izl, 2) are the angles
between the tangent to the telluroid and the xi(izl, 2) axes, and if
the latter were orientated in the north and east directions, respec-
tively, this would represent the siope of the topography in the
north and east directions. Then,

ah

x, = tanB, ,i=l,2 ...l (4.15).

Simple consideration of the direction cosines of the

telluroid normal in fig (4.2) give

2 2 2 ‘
cos B = cos B, + cos By o (4.16)

The substitution of values for 8xD from equation
(3.16), together with the use of equation (4.15) iransforms

equation (4.13) into



- , ov
1 {09 2°'D
\J = ~- A - e e - :
N zVD cos B tf g . lah’ VD izlaxi tan ﬁi}.(zi.l?).
From equation (3. 21),
}’
ahD . 8 ;L}
ox. i 9x. ! v
i 1] |
v AN
.1 _D__D 29y - - a
= - > B i=1, 2; gz- n ..., (4.18)
Y i Y i

The second term on the right hand side of the above
equation is very small, as the horizontal gravity gradient, which
is less than 20 mgal per 100 km (Mather, 1967a, 13), has a mag-
nitude of 2 x 10—7 gal met-l. The term, therefore, has a mag-
nitude of order 2 x 10 g » while the magnitude of the first term
is three orders of magnitude larger, the horizontal height anomaly

gradient being about 1 metre per 15 km. {(Mather, 1G66a, 4).

Thus
ov
D = -Y &, + 0{10"9} ...... ve..(4.19)
0x.
i=1,2; ¢ 2=

Substituting from equation (4. 19) in (4. 17),

X 1 & 7
Y = ! 3% - - =
N .V VD cos ﬂiy (& tan [51 + n tan p2= A gF Y Bh VDf
............... (4.20)

Equation (4. 20) modifies equation (4. 4) to give

the final form of the basic equation as



'w |
1 [P e 1
Vv =2 + f - |2 v . —
DP ¢eP 2~" \';JRLgy hl r - E‘ r .‘f?‘ V.D *
+{Ag - y(lgtan B, + 1 tan B, )lcos ] (4.21)
i Y 1 T ; ... \4.
l

Equation (4. 21) gives the fundamental equation in
terms of the disturbing potential, the free air anomaly , the def-
lections of the vertical, the vertical gradient of gravity and the
slope of the reference surface R with respect to a spherop, as
well as its components in the north and east directions.

A study of the derivation. shows that no restrictions
have been introduced regarding the nature of R. The latter
could be either the telluroid itself or , for that matter, a spherop,
more specifically, the reference spheroid itself. The only res-
triction is that the surface being mapped should not depart from
the reference surface by amounts exceeding the order of the
square of the flattening. Thus, the physical surface of the earth
can only be mapped from the telluroid, while the geoid can only

be mapped from the reference spheroid.

4.3 The outline of the solution for the physical surface of the eartt .

In the case where the reference surface is the telluroid,
there is no matter exterior to the surface being mapped as the

latter is the physical surface of the earth. Thus

The replacement of the disturbing potential in equation
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(4.21) by the height anomaly using Brun's theorem( equation
(3.13) ) gives

+ 4 0gy -y (£tanp + n tan pz)}i"—f—ﬁ ;{dR c...(4.22).
Many attempts have been made b}f geodesists
to solve equation (4.22) with the aid of certain approximations.
The starting point itself, in most such solutions, has never
been the fundamental equation but some approximate model.
The only rigorous attempt to date is that of Molodenskii (1962).
This very elegant method of solution has been set out in full

on pages 81 to 99 of the monograph quoted.

Equation (4.22) can only be solved by the method of
succesive approximations as any solution requires not only a
knowledge of the disturbing potential; which, being related to
the gravity anomaly, as will be shown in section (5), is capable
of evaluation, but also a knowledge of the values of the surface
deflections of the vertical and the slope of the topography. In
the second term on the right hand side.of equation (4. 22), ex-
cept in regions of very steep topography, the expression with
the deflections of the vertical is of order 10-3/r, while that
‘due to the term containing the gravity anomaly is likely to be
of order 2 x I"OLZ/r. Hence, a solution, correct to a reasonable
order of accuracy can be obtained by ignoring the last term within

the surface integral. From this solution, values can be assigned
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for the deflect.ions of the vertical and succesive iterated

solutions should converge rapidly.

Molodenskii effects the solution by introducing
certain functions of a system of three-dimensional curvilinear
coordinates qi(izl, 5) where the q; coordinate is the ortho-

metric height h., If
q = h(qi, i=2,3) ..., e (4.23),

and the element of length (ds) is given by

3
ds2 = Z c'.qu.2 ...................... (4.24),
. i %
i=1
where
2
2 3 !"ax
& = = Fa_l} ,i=1,3 e (4.25),
! j=1 1L°9;)

x.(j=1, 3) being the reference three dimensional car-

tesian coordinate system. Molodenskii defined the operators

5—2_ - ai + g—- gﬁ Ci=1,3 ... (4.26)
q; 9 q °9
and o3 3 . C.cC. 9. -
b, = 1 { > 82 101+1 82 }I..(4.27)
€3] i=2 %9 - G 47|

I
. i

In equation (4.27), if index exceeds 3, subtract

2. He also defined the operator B(F, h) as
_BZF azh

_ 3
DIF,h) = =
i=2 2
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where F is a function given by

The fundamental equation is then derived as

(Molodenskii, 1962, 94)

o~

1 , . 1 119y |sec =, 1
bp * Toy \fR%fi'y‘r - ~le  -Digh)cos B -
) 3
- cos 1 sec i
B hE Ly b+ ggn TS5 [dR..(4.30)

Molodenskii defines the solution obtained
by the use of equation (4.30) as the quasi-geoid, as the height
anomalies obtained do not refer to any regular surface. The
quasi-geoid is the surface traced out by the ordinates of height
hD above the reference spheroid. This quasi-geoid is identical
with the telluroid as defined in section (3.1). However, the
term telluroid was initially used by Hirvonen who defined it as
the surface obtained by the use of free air anomalies in Stokes'
integral. The calculations involved in this method of solution
are no easier than those completely developed in the next
section. Hirvonen's telluroid is in reality the free air geoid.
As will be shown later, this surface is quite useful in that it
is closely related, though only approximately so, to the quan-
tities determined in astro-geodesy. The free air geoid does
not have the same physical meaning as the geoid itself, which
however, is dependent on the definition of the topography

exterior to it for its ccmplete specification.
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In attempting to solve the problem defined in the title of this
investigation, no advantage was apparent in adopting either the
approach of Molodenskii or the solution defined in equation
(4.22) as neither give solutions of direct relevance. Instead,
it is more to the point to revert to the basic equation (4. 21)

and consider its application to the geoid-spheroid system.

The geoid coincides with the physical surface of the
earth over oceans and thus admits simple definition. In con-
tinental areas, the geoid, being a surface of equal potential,
apparently presents problems of definition. The potential §

at any point is given by

r A
g :! JI{ k 2 dv
YOIV
and whenr +~ 0, 1/r » = ., There appears to
be an inconsistency at the point r =0, which could be occupied
by matter. On the other hand, the existence of potential at
the geoid in continental areas is admissible in the case of a
mine shaft driven down to sea level. The geoid, as defined
in the next section will be the locus of points in continental
areas where the potential of the existent earth system would
be equal to the potential of the oceans had there been no matter
"at the point.' As the value of k = 10-7, the radius of the loca-
topn defined by the term ' at the point " can be as small as de-
sired as
Lim v 2.
r+ 0 T

i
2]

As such, it is possible to define the
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potential at points which are occupied by matter by the
conventional mathematical model, there being no error of

practical significance in the value computed using equation

(1.1).



61

5. THE GEOID SPHEROID SYSTEM

5.1 Modifications to the basic system.

Unlike the telluroid - physical surface of the
earth system, both the spheroid and the geoid are equipotential

As such, the angle between the reference surface

surfaces.
and the equipotential surface of reference is zero. Thus,
|31 = [32 = f = 0 ...l (5.1),
and equation (4.21) reduces to
i ”{ !
Vo =B, ¢ [§ Al AR R A
P P 'H'Y ’-J\R“‘LY H ; -
se, |
+—=— 1 dR e, (5.2),
r |

where ¢e is >the potential of all matter exterior

to the geoid as calculatlgd at a point P on the geoid.

All other terms refer to the geoid itself and the
major change of interpretation is that of the gravity anomaly.
The definition of the quantity Y- used in equation (4. 21) is
given in equation {3.17) as the difference between gravity at a
given point on the actual surface due to the existent earth and

that due to the reference system at the associated point. In

equation (5.2), the former value is not the value of gravity as

observed at the surface of the earth, but is the value of gravity

had it been observed at the geoid.
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Bruns' theorem, when applied to the geoid spheroid se-
paration gives the actual separation of the geoid and the spheroid,

provided the potential of the spheroid is equal to that of the

geoid. If N is this separation, equation (5. 2) reduces to

¢e i‘r. - ‘
P 1 (1 1 1
szzY +2Wj; +3.y_;—5va+

+

In practice, the integral set out in equation (5. 3) is
solved by resorting to the adoption of a spherical model for the
surface R. As fis of order 3 x 10-3, the resulting error in-
troduced in the value of NP is about 30 cm if NP is not greater
than 10" metres. On this basis, considering the earth to be a
sphere of radius Rm' where Rm is the radius of a sphere with
with the same volume as the spheroid of reference, given by

(Bomford, 1962, 497)
1
Rm = afl --_;;f) ................... (5.4) ,

where a is the equatorial radius of the reference
spheroid and f is its flattening. From fig (5.1), it can be seen
that the arc distance on such a sphere between a surface ele-
ment dR situated at Q (§ , A ) and the computation point P
(¢P, AP) is given by
-1 . .
¥ = cos ! sin @ sin (bP + cos § cos (I)P cos dA }.(5.5),
where

dx = )\P =X (5.6).
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In computations at any one point, the sphere is orien-
tated at the point P and the evaluation of V . N % is only de-
pendent on the variation of r with the displacement of the radius
vector with respect to the moving point. The true length r in the

general case is given by

P Q J
where R with the appropriate suffix is the length

r =!/R123+Ré ~2R_R_cosV |2 ....... (5.7) ,

from the centre of the reference system.

ox
v - Z H —— 1 —
2N 7 =1 Bx = Z1 on. = T

where differentials with respect to n denote

normal derivatives. In the spherical case, putting RP = RQ =R

L

1 S 1 1
v L =
2N r on r OR r
1 .2 '
F - —3(2Rsm v [2) o, (5.8),
r
and
r = 2Rsinyg /2 .. (5.9)
Equation (5. 8) simplifies to
1 1
_V_._l\lr = "SR e e e, (5.10).

The mean value of gravity over a sphere of radius
R (y m) is given by

ym = —15—22 » where M is the mass of the carth,
r

assumed to be a sphere and k is the gravitational constant. As
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shown in section (3, 3),

| 2
ié!.} z 'm
oh! 7 R
Substitution of these values in equation (5. 3)
gives
2 ¢ nA
e 2
N, = —= + =2 ; ; L Im 1 V. o+
P YP ZTT'YP ““jRj ym R r Z2Rr D
A g 7
+ —2 | ar
|
2 ¢ ~ j
°p 1 [‘ ’/ 3 VD Ago
= t T e T o dR ..(5.11),

-3
as m o{yx 10 7}, The surface ele-

e
n

ment of the mean sphere is given by
dR = R2 do

where do is the element of surface area on a unit sphere.

A slight re-arrangement of terms gives

2 ¢ o=
N = LN MR ‘ IZD .5 ‘}——Q“dc
Ym Y'm v 0 L Ago J r

All quantities in equation (5. 14) refer to the

geoid, Ago being the difference between actual gravity as reduced

to the geoid, without removal of topography and theoretical gravity

obtained from the ccncept of the reference surface.
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5.2 A generalised relationship between the disturbing potential

and the gravity anomaly

The disturbing potential (VD) is given by equation

(3.4) and is due to deviations in the variation of density as spe-

cified by the reference model of the earth. These are due to

structural differences between the existent earth and the refe-

rence model. These deviations would be due to

(i) the effect of the topography, as there are no masses
in the reference system exterior to the reference spheroid ;
(ii) mass anomalies below the spheroidal surface which

cause the existent earth to deviate from the perfectly stratified

model. Let VD be expressed as

------------

VD = ¢e + VDi

where ¢e is the potential at the geoid due to matter

exterior to it and the term VD is due to internal mass anomalies.

The application1 of Green's third identity (equation

(2.20) ) to the potential arising from the internal density anomalies

at points on the geoid gives

~

oo

L I P I
sily ¢ 3 Vp dV = - 2n ¥p fiig vl BVp -
1 1 -1 - 1
1]
- v.N = .
Vp LN g |as (5. 16)

At any point on the bounding surface,
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. N.R
g-N = = -
- r 3
r
The use of this result in equation (2.11)
gives
”1_15_1 6 = =27 . (5.16a)

The term on the left hand side of equation (5.16) can

be simplified as follows by the use of equation (2. 18).

” -11; 2v_ av. = J”{i’l‘ﬂﬁ— av,

. it r
:3V. 1 !, V.
i 1 o 1

H
1
>
e}
<

The quantity do used in the above development is the
density anomaly which gives rise to the disturbing potential.

The s e of these results transform equation (5. 16) into

f1 2
~47 VD. = ! Pl VD. aQs .......... (5.18).
1 J S 1
' A
Alternately, . “ . .8VD'
' T - 1 B 1
VD. 27 || T on ds cevea. (5.19).
1 ol
*S
VD can thus be expressed as
i
1 . .
VDi = Ik Potential at P on a surface S of a coating
of density BVD /on at all points on S  ......... (5.20).

i
The entire disturbing mass internal to the geoid can be

considered as condensed on the geoid itself and hence
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its distribution and stratification internally need not be known.

Similarly, ¢e is a function of

Y

I kph

: r

Vo
h is the elevation of the tcpography exterior to the geoid and

e it B,

ds as shown in section (6), where

at a distance r from the computation point. Thus ¢e is also
capable of the same sort of definition and the total disturbing
potential can be considered as a function of position on the sur-
face S and hence, a function of the form

e

r

\4 i
D \4 S

Equation (5. 21) is structured in a manner which is
similar to equation (2.13). 1/r, from equation (5. 7) can be

expressed as

1
1 1 2°2
— = gll-2tcost +1t9 e (5.22),
h
mhere ot o= El—’- ........................ (5.23)
R

Equation (5. 22) can be expressed (Whittaker and
Watson, 1963, 302) as

1 1
-~ & T:T;Ot P(cosVv ) ..., (5.24) ,
m r
where Pn(costb) = X (-1) (2n-2r)! co n-2r
; r=0 2" r! (n-r)! (n-2r)! v
;n/Z if n is even

M = (n-1)/2 ifn is odd
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For any given point P, the expression for 1/r, given in

in equation (5. 24) can be expanded in the form

A!
LooL o (5.26)
r R -0 rl
Thus, equation (5.21) can be re-written as
1 @ Ai ’
VD = " 12;0 —RT .................. (5.27)

as t > 1 in the case of a spherical approximation
of the earth. If R is measured from the centre of mass, the use

of equations (5.7) and (5. 21) gives

] Ratal
i i

n
il kdm ok Ap 1 .2
= | = - -
VD U = ds “ R (1+tcosy Zt +
s s
+ %—tzcoszw +....)ds
o i 0
' | 1
= ” Boas + | we BSOS 49 4k g 2 i%(cos?y -
Jie« R Ji R a2
S S s
-1)dS+ ... L. (5.28) ,

where dm is the mass anomaly of density 4p conden-
sed on the surface element dS. The first term is equal to zero
if the mass of the reference spheroid is equal to that of the
existent earth. However, the implication of this term in the
geoid - spheroid system where the exterior topography has not
been smoothed is discussed more fully in section (13). The
swecond teﬂrm

i cosy kip

K P 5 ds and will be zero

« S R
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if the earth's centre of mass coincided with the origin of
length (i.e., the centre of the reference spheroid). If these
two conditions are defined in the postulation of the parameters
of the reference figure whose gravitational potential is U, the

disturbing potential V_ can be represented by

@]

VD = iZ=:2 TTIEl e e (5.29),

where Ai - . (5.30),

the quantities a; and Si are defined in section (7.4). From
equation (3. 20), if the potential on the reference spheroid is

equal to that on the geoid,

8VD ZVD ;

= - +
A8, oh R

-

_ -
Differentiation of equation (5.29) with respect to R

gives
oV A
D __ % -
a—h—" - r%::z (n+1) n+2 ............ . . (5 31)
R
Thus 5 g, is given by
(n~1) An
bg, = nEz Rn+2 ......... e (5.32)

From equation (5.27), it can be seen that the
disturbing potential (VD) has the same form as equation (2.13)
and the quantity a in the latter will vary about a mean value of

zero, both positive and negative values being admissible.

The disturbing potential and the related set of
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gravity anomalies could also be represented by a spherical
harmonic series (Jeffreys, 1962b, 635) of the.form
rg,= 8

O nn. - nm

nm

where the associated Legendre function pnm(u) is

iven b
& d {1-mn)! m, 4T 3 n
pnm(u) = = cos ] m(u -1y ... (5.34)
2 (n')

If the disturbing potential were then repre-

sented by equation (5. 29),

(n-1) An
i = gnm nm | e (5.35)
R
or n+2
_ R
An = oo gm nm e (5.36)

As 'An represents the mass deviations of the
existent earth from the adopted model which totals zero over
the whole surface, it can also be expressed as a set of surface

harmonics as shown in equation (5.30), as

1

2 Rn+l

VD=

oM

n i $
Z=0 Py, !8in ) pa cosmi 4

N
+ b sinm}x L ......... (5.37).
nmm R

Combining equations (5.36) and (5.37),



)}g cOs mA +
1
i

+ g sin mA
nm

In equations(5. 33) through (5.38), the quantities

and bnm are harmonic coefficients.

a
gc ! gs " "nm
nm nm

5.3 The evaluation of the basic integral for the geoid spheroid

szstem.

The quantity to be evaluated in equation (5. 14) is

= 3 A
F Vp + 2R g
- An . (n-1) An
=3 nZ___z Rn+1 * 2R riz Rn+2 !

where VD and Ago have been evaluated using

equations (5.29) and (5.32). The use of equation (5.36) gives

r . 2 (2n+1)An i ©  (2nt1)
"~ n=2 gl T oo (1) T 8nmPnm
(5.39)

--------------

The combination of the results obtained in
equations (5.7), (5.24), (5.39) with equation (5. 14) gives, on
evaluation with Rh?s the mean radius of the earth and R as the

geocentric distance in the appropriate expressions,

2 o=
¢e R ! 4 R
P m m @ 2n+1
N = m— 4 — z g S
P Y 4m vy ! R n=2 n-1 “nm nm
m m .
0 "R !
i



e
NP" P + 3 2nt+1 i__mf g .
Y 4wym% n=2 h-1 \RJ nm nm
pn(cosw Ydo ........ (5.40) ,

as (Jeffreys, 1962a, 636) the product of the surface
harmonics of different orders integrated over the surface of a

sphere is zero, I.e.,

i!

g S5p8, 8 =0

if m# n.
Extending this deduction further using equation

(5.33), it can be seen that A g, can replace ~~gr-l,mS in

nm
equation (5. 40) without affecting the result. Thus,
20, R =4r . . ntl
P m 2 R
NP = + y b2 i _m (co )d
Ym 'm n=2 5 'R | M, Pplcosy Jdo

Equation (5.41) holds on the geoid and the gra-

vity anomaly used is the free air anomaly on the geoid, i.e.,
the difference between observed gravity, had it been observed
on the geoid and normal gravity at the spheroid on the reference
system. Thus observed gravity must be correctly reduced to
the geoid prior to its use in the above integral, pn(cosw )is a

zonal harmonic and do is unit element of surface area on a

sphere of unit radius.

Consider the second expression ( Q¥ ) ) on the right

hand side of equation (5.41), given by



= - - 1
R . '«o' A R ; nt
Qy) = =~ Lim > &do j_m
™'m R>R  n=2 n-1 0 i R |
rg, pn(cosq, ) do
R_ "o=dn
:41ry ‘ f(y )a g, do ......... (5.42) ,
m !
od
where . . nt1l
- Zn+1 me
(v ) = Lim 5.32 =1 P (cos ¢ );E—— (5.43)
R+ R - L
m
1
= Lim R [f(q,) + 0y )|, (5. 44).
R-R_ . ™I 1 2 J

The quantities fl( ¥ ) and fZ(‘P ) in equation
(5.44) are given by ’

R"
£(y) 2 ¥ 2o ( ) (5. 45)
Hv) = w2 ot plcosy ).......
and . Rzrrl1
f,(p) = 3 = p _(cosy ) ....(5.453)
2 n=2 (n-l)Rn+1 n

Using equation (5. 24) in equation (5. 45),

R .
1 1 m {
fl( y) = 2,(-;- "R ? cosy IEEEEEE (5.46)

The right hand side of equation (5.45a) can be

re-written as

© n
£,0y) = =2 1 R 3 El;n— (cos y ) dR
2 2 { n+1 Py v

R RJ n:Z R
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_ 3 ( (1 a1 R
fz( v) = 5 R ~ "R - —3 cosy :ng..(5.47).

; ! 2
R ﬁ o R

The right hand side of equation (5. 47) is integrated

(Stokes, 1849) by rationalisation. The first term is given by

~

R = R dR
! T @B = ! 2 2 1/2
R R (R +Rm-2RRmcosw)'
The differentiation of equation (5. 7) gives
R - Rmcos ¥
dr = - dR  ............... (5.48)
Th;;s},{ o R-R_cosy ! R_ cosy
[ m R o+ dR
R’ r R r R\. r
. ‘br+R-Rmcos ¥
= Ip!” [ —
gt Rmcos v ' r{r+R-R cosw)dR
'ﬁ‘oo -~
=lrl_ 4 R cosll’{ = ’ 1+
L IR m J r+R-R_ cos ¢
m -
R
R-R_cos y
+ o } dR .
r s
e
From equation (5. 48), it can be secen that
(F e ® Cdr+R-R__cos ¢ )
B . | m
N J - dR = Lr]R + Rmcoswé r+R-—Rm cos 3 . Thus
f.( -3§v+R In{r+R~-R InR
ol y) = RZ j r mCos¥ In r-i:r: mCos v) 'RmCOSw n.R -
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2

AsR+« , r-R » R(I+Z% _ 2R ‘cos y)}/2_ R
. R m
Thus, r - R = -Rmcos U e e e (5.50).
Further, r+R-R _cosy
Lim 1n ) o = 1ln 2. Thus, the upper
R > =

limit of fz( ¥ ), on evaluation gives Rmcos ¢y (In 2 - 1).Hence,

.
3
fz( p) = ;26 R - Rmcos Y -r Rmcos v 1n

r+R-Rmcos v o7
2R

The use of equations (5.46) and (5.51) in equation
(5.44) gives

R_cosy
f{ y) = Lim le/ziii—-ri{- -—%——-— - —3—2{r+
R-R_ R R
r+R—Rmcosw
+R_cosy In SR +R_cosy - R}] ..(5.52).

When R » R , r= 2R sin i) Thus,
m m 2

( y) = cosec—l‘b ~2-Zcos¢, -6sin—‘-p +3-3cosy -

2 2
-=3cosy In { sin & (1 + sin _111_)}
LT 2 2"
Regrouping of terms gives the final form of
fl ) as ‘
¥ - v
fly) = cc;sec-gi +1-5cosy -6 sin-z - 3 cos wlnf‘z‘sin-z-(l +
U
+ sm-é-)}, et (5.53).

f( y), as determined in equation (5.53) is commonly
known as Stokes' function, as it was first derived by Stokes in

1849, though under certain specific conditions. Egquation (5, 53)

1
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provides the required solution for a spherical approximation
which is introduced in setting the conditions for the limit. The
substitution of this result in equations (5.41) and (5. 42) gives the

complete expression for N

i Pas
e R

where f( ¢), to the order of the flattening, is given by
equation (5.53) and
Ag, is the difference between observed gravity
on the geoid and normal gravity on the reference spheroid. It
is important to note that, for a complet e solution, it is necessary
to consider two terms :-
(i) The Stokesian effect, due to the term on the right, which,

in the specific case of a bounding equipotential is Stokes' integral.

If, on the other hand, the existent earth is considered, the ano-
maly to be used is the free air anomaly at the geoid. This is not
the same quantity as the anomaly commonly referred to as the
free air anomaly and used in compiling the free air geoirl. The

conventional free air anomaly is defined as

where gp is the value of observed gravity at a point P
on the earth's surface and y Q is the value of normal gravity on
the reference system at Q as defined in section (3.1). P¥For the
purpose of determining the magnitude of the free air reduction, it
would suffice to consider the reference system as being spherical

th shape, when Newtonian gravitation is given by



where R is the distance of the point from the centre of mass.

| oy _ 2y . -5 -2
I 3h = R ¥ 00,3086 x10 sec ,.,,..... (5.57)

if mean values for Yy and R. The term ,g—yﬁf h
is called the free air reduction and the terms excluded in for-
mulating equation (5. 55) are over two orders smaller than the
term considered.

(i) The effect of the topography exterior to the geoid.
This contributes in two ways. Firstly, there is the first term
on the right hand side of equation (5. 54), Secondly, A g, in
equation (5. 54) is not the same as A g expressed in equation
(5.55). The observed value of gravity has to be reduced to the
geoid. The value gp has to be reduced to the value g, for
gravity at the geoid before comparson with the value of normal
gravity Y, on the reference spheroid. The true anomaly to be

used in the case of the geoid spheroid system is Ago » given by

sg, = g, - Vg e (5.58).

Let the quantity co be defined by the
equation
©E, = Bp + = S T I (5.59).
From equation (1. 3), it can be seen that the
actual separation .of the geoid and the spheroid (NP) and the se-

paration of the spheroid and the free air geoid (NF ) is given by
P
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=4
2 ¢>eP R /
N_ = + N + fly ) A do ...(5.60).
P Ym Fp 4 LAGWEN; v €co

0

The indirect effect (Ni) defined in equation

(1.4), in the case of the free air geoid is given by

2 ¢ g=4n
O Rm /
N. = + —— fl y) bg do ...(5.61),
lP Ym 4 nYm (‘3’ v co

where 8., would be the differential effect in the
attraction of the topography between the point P on the earth's

surface and its equivalent point Po on the geoid,



79

6. THE INDIRECT EFFECT FOR THE FREE AIR GEOID

6.1 The nature of the correction Agco'

Consider the system of masses that constitute the
the existent earth to be divided into two sections corresponding
to matter within and external to the geoid (S). If the internal mat-
ter along gave rise to values of gravity g, at PO »~Situated on the
geoid at an elevation h below an equivalent point P on the earth's

surface. Let the value of gravity at P due to the internal masses

only be g Then

gl = glo - C'F ......... Gt et (6.1),
where
jsgié 2 g -
c'F = }-8—}‘1-} = R +to{c'x10 "} ......... (6 2)
m

If the topography exterior to the geoid were now

superimposed, an increased (algebraic) attractive effect is intro-

duced at both P ( Age) and Po( Igeo)' The true value of gravity
at the geoid (go) is given by

8, T Byt BE el (6.3)

The value of gravity (g) at P due to the exis-
tent earth is given by

g = gl + A e e e e e e (6.4).

The use of equaticns (6.1), (6.2) and (6. 4)
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ives
g 2 g
g = gio - —ﬁ-;n h + 2 ge .......... (6.5).

The combination of equations (6.3) and (6. 5) gives
2 g;
g T B P R_B ot g - lg
m

... (6.6).

Equation (6. 6) is fundamental and the attractions
are considered vectorially, directed toward the centre of mass.
The term Zgih/Rm is , to three significant figures, the free
air reduction, outlined in equations (5.55) to (5.57). The gravity

anomaly on the geoid is obtained by substituting equation (6.6) in
equation (5. 58),
g8 T & " ¥ o

+ Ag —Age...(6.7).

eo

1
[s°}
+
b=}
<
o]

Comparison of equation (6. 7) with equation (5. 59)
shows that the first three terms constitute the free air anomaly

(A gF) and hence the quantity s eo defined therein is given by
A gco = A geo - A ge ................
Agco is the difference between the attraction

of the topography exterior to the geoid as exerted at a point on

the geoid and that at the point on the earth's surface which lies

on the same normal (see fig (6.1) ). This correction is called

the differential topographical effect and differs from all the

conventional reduction previously used in the solution of the

boundary value problem in physical geodesy.
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6.2 The evaluation of the differential topographical effect Agco

The matter exterior to the geoid can be considered
to consist of a series of columns of matter on an elemental base,
which is the element of surface area dS on the geoid. The
base areas at the variable point Q on the geoid , as shown in

fig (6.2) are given by

ds = Ré dy da siny
= R% ap dr cos P ........ e (6.9),
Q
R, being the distance from the geocentre O to Q.

Q

In equation (6.9), yis the angular displacement at O between
the lines OQ and OP, P being the computation point, « is the
azimuth of Q from P, § and , being the latitude and longitude
of Q. From fig (6.3) it can be seen that the geocentric distance
R is related to the equatorial radius a and the flattening { of the

meridian ellipse by the relation (Bomford, 1962, 496)

_ L2
RRQ) = a(l-fsin ¢P(Q)+ o{fz}).......(6.10),

where RP is the distance from the geocentre to the
point PO on the geoid which represents the point P on the surface
of the earth. The equation (6.10) holds at both P and Q if the
appropriate suffix is used. Using the expression for the radius
of a sphere of volume equal to that of the geoid (Rm) and hereafter
called the mean radius, the combination of equations (5.4) and

(6.10) gives
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[ ds=Ridy ddt siny
=Rg d ¢ d> cos ¢

RQ

FIG. 63
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Ro@) = Bml 1t opq) rrvrrerrrrreien (6.11) ,
where
P(Q) 3 p(Q)) e .

Let the column of matter on a spheroidal base area dS

extending to a height h  above the geoid at Q be composed of a

Q
series of unit areas of thickness dz at a height z above the geoid
and at distances r from P and ro from Iz).

As O _< ¥ < T,

1/2

2
r, = i(R +z) RP —2(R +z)R cosw} .. (6.13).
Defining
VA

e . 14),

c R (6.14)
m

the substitution of values for R, R and z from equations (6. 11),

P TQ
(6.12) and (6. 14) in equation (6. 13) gives

r = Rm[ l+2(cQ+c)+lflch—2(1+cQ+cP+c)cos¢+
N O{fz}‘! ................. (6.15)
P
= 2R i /?.‘,1+1 £ (6.16
= msmq, Q\ 2(cP+cQ+c)+o{ }].. )
Defining
A = cP-cQ-c ........................ (6.17),

the substitution of equation (6.17) in (6. 16) gives

-

r = 2R_sing 1- 2a-2c) + o(th]...(6.18)
o - m51n2 [ > CP )... . .

r is determined on similar lines. Defining c, as
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r = [(RQJrz)2 + (RP+h'P)2 - Z(RQ+z)(RP+hP) cos l’)] ..(6.20).

The use of equations (6.11), (6.12), (6.14) and

(6.19), as before, in equation (6.20) gives

-

5 ’/ 5 11/2
Rm\g—Z(l-COSW)(1+CP+CQ+C+CI)+ o {f }J

"
1]
I

-

ZR sin -'xl)[ %(CP+C +c+cl)+o§_f2}...(6.21)

Q

-

.,

. 1 1 2
ZRmsm w[l-z(A-ZCP-c1)+o{f}J...(6.22).

2

A consideration of fig (6. 2) shows that the angle {30 is

given by + Rp (R + z)

2 rORP

cos ‘30 =

The substitution of expressions for RP’RQ’ z and

r, from equations (6.11), (6.12), (6.14) and (6.18) in equation
(6.23) gives

4sin?‘—1-ﬂ1-(A-2c )+ 14 20, - 1+ 2(cgre) + o£%y

Q

cos =
ﬁO

4 sin > &1 ——l(A 2c )}(l+c ) + 0y f?‘} l

TG N S 1 21 I
= 51n2¢£1 (A 2cP)+2A cosec_?p+ o{f%“\l+

1o 2,1 4
+ 2(A 4cP) +o{f}J ............ (6.24).

It can be seen that, in equation (6.24), the order of the
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third term in the numerator, for values of ¢ < 50, is one greater
than that of the second (10™°). In the case of very small angles,
the order of the neglected term of order fz when multiplied by
cosecz-% Yy , for values of y < 30'is greater than 10-3. As
such, it is necessary to define equation (6.11) more completely.

Consideration of terms of order fz gives

, 3
RP(Q) = Rm(l+°P(Q)+CP(Q) + off )y ........ (6.25)
where
D 22, 52
CP(Q)— £7( 5 + g sin 20 ) e (6.26).

The inclusion of t erms of order fz in the second
factor of equation (6. 24) in those instances where multiplication

21 .
by cosec > ¥ occurs gives

- sind l/ - 1l 21 2
cosﬁo—smzwsl (AZcP)+4_cosec 2¢[1+ZCP+CP+ X
i i
2 3 2 3 21
v o3
+ ZcP l‘l-i- 2(cQ+c)+(cQ+c) + ZcQé}f-o[ f,{ cosec Ecp}l
] -
[l+ -Z-(A-4CP)] .................. (6.27)

The use of equation (6.17) simplifies equation
(6.27) to

-

cos ﬁo = sin-;:gp 1 - -;-A(l - cosec

~

- -4 o
A) + A(A ‘xCP) + Z(CP c

Further simplification of equation (6. 28) gives
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-

- : .l }. - 2‘.1_ l 2.1 1
cos po = sin3 Vil > A(l - cosec > vy + > cosec lP(cP
~ 2 .3 21
- 1 - 5 —.
°Q CPA) + of{f ,f cesec Sy} »
....... (6.28)

On similar lines, B in fig (6.2) is given by

r‘2 + (RP+hP)2 - (R +z)2

Q
| 2r (RP+hP)

o1l
sin 5 w{l - (A-2c

i

cos B

-

1 21
P-cl) + 3 cosec -211:[ 1+ 2(cP+

~

2 ]
+ey)+ (egte))” + 2 - {1+ 2(c

L te) + (e o)+

Q
+ 2 chy ii-—l-(A-Zc -c ﬁl-&-c +c.) -1
QSN 2 P 13 P 1}

= inawlz-l(f% )+-}-(A+c)osecZl +
= 8in g L2 T2 1€ 2V

Q

1 2 1 i
+ 7 cosec 21{»‘{A+ cl)(A - 4cP- 3c1) + (A + cl)(ZC -

P
- 1 - '\ 2 3 2}.‘}
A+cl)+2(cP CQJ + G(f ,f' cosec 2\{!
Thus
1 b1 21 1 21
cos B = smzlp‘ii- 2(A+c1)(1—cosec 2q,)+2cosec > ¥
gto- el - (e + )(A+c)+o{f2f3co 021¢}1
CP CQ CP Cl 1 ) se 2 z
................. ...(6.29)

Equations (6.28) and (6.29), while having more
terms than necessary for any single evaluation of cos § and cos

B adequately do so in every possible case to order fz.
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The differential topographical correction is given by

equation (6. 8)

€o T 48 - Ag e (6.8)
pnp © e o
Hikdmcosﬁ ”kdmcosﬁ
- 11! -
=i 2 i 2
Dl r P r
Uy o g
i i i 7 cos B cos B
k : dm - I and is
; | ey

directed along the downward vertical at P. dm refers to the
mass of the element considered in fig (6. 2) and situated in the
column of matter at Q. Substituting values for ros T, Bo and B

from equations (6.18), (6.22), (6.28) and (6.29) in the above

equation,
‘' dm sin = v o
bg =k } 2 i 1'1--£A(1-cosec2—1-1p)+
e ! f4R2 in®dy | A 2 2
Jddd 1’1’!.13 2‘1’ ~
1 21 1o Al o 17 -
+2cosec 2r‘b(cP CQ Ac)§11+A Zc {1
21 1 21 ¢, .
cosec >y + 5 cosec > xchP CQ (A + cl)(cP + cl)};
3
1 +{A - ZCP - Cl)})
e e 1 -
—k“gdmcoseczw _310 -l-c cosec 2-1-¢ --l.cosec2
]“ 4R2 i 21 271 2 2
deo m “

1
2

1

%:_(A+c1)(A - 3¢ - ch) - A(A - 3cP)} + of f ,cosec -—w f3}

P

ik

.
—
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Thus O~ 1
dm hP cosec > U] 21
g =k ‘ 3+ cosec Sy (2A + 3c_+
co H 8R3 2 P
\.3.;'., m < -
21

+ 2c1) - cosec 3 + of fz,f3cosec2-% Y} f .(6.30).

The integration is carried out by substituting for A

from equation (6.17) and evaluating dm by the relation

dm =pdA’L1+ -—ZR-—\izdz ,
m,
where o is the density of matter. dm could be
evaluated in terms of @, ¥ and z using equation (6.9). It is
more convenient, for purposes of computation on an electronic

computer, to express dm as

dm= o dAl1+2 5 1 dz+ ol £} . .(6.31).
i !

m

The combination of equations (6.30) and (6. 31) gives
&l ey r‘
khy H 1| 2 1 2
B = 3 ‘ dA cosec SV 3 - cosec
8R> | !

1
5 ¥+ cosec > ¥
m v./

H

(e - . 4z Q-1 2 .3 21

Lscp ZcQ R + ch_ﬁ + R + o{ f,f cosec 3 y}J‘dZ
m m i

......... (6.32).
Integration with respect to dz gives
khy ([

8R3 ’
m.:i)

A

P

AE

co

i h
1 Q. 2
thosec >V dA |3(1 R ) - cosec

L m

1
> ¥

2h
21 Q 1 2 3 2
+ cosec zxp{ScP ZCQ ) + 2c1i= +d f,f cosec

<
o
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Replacing dA by a square bounded by meridians and
parallels of latitude of side n° x no, the use of equation (6.11)

gives

2 T 2
= -, n cos¥Y __ ........ .3 .
dA Rm (1+ ZcQ) , I cos Q)Q (6.34)
180
The combination of equations (6. 33) and (6. 34) gives
K “Z hp 2 1 )
Ag = Zn X ph_ cosec=vy cos § I 3(1 -
€© 8RR 180° Q 2 QL
m
h 21 21
- -Rg-_‘; + 6cQ - cosec %y + cosec > (7 (SCP - 4CQ-
m
2h <
2 .3 21 i
- Rm + 2¢,)+of £ ,f cosec > v} § ....(6.35),

where k = 6.673 x 10"8 cm3g-lsec—2

and Rm = 6,371.2 km. For normal computations,

equation (6.35) can be reduced to

Ag(mgal) _

(met) 2 (met) 1
o ChP Zn = o h cosec 3 cos §

Q

I 3 - cosecz-;-xp + o {f, fcosec2 31' vHio.... (6.36),

where C = 3.99 x 10-12 cm-lsec“2 X 103.

H
~

In attempting to estimate the magnitude of this correc-
tion, it must be borne in mind that the topography exterior to
the geoid is the only part of the earth's crust that need be

considered. Thus, ocean areas do not contribute to its

magnitude.

N -

For values of y > m , put n= 5°.  The magnitude
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of

i

A gco} < 10_2 mgal

! 1
- Sy s

and can be ignored. A similar
consideration of the area 10° < Y < 900 shows that
topography in this region is likely to contribute less than
0.1 mgal to the final result. In relatively low lying regions
like Australia, the effect of the region 1.5° <y < 10°

is also unlikely to contribute more than 0.1 mgal to the dif-
ferential topographical effect. In more mountainous regions,
where both hP and hQ are large, the magnitude of the contri-
bution of this zone may be significant and should be considered

where necessary, as the error will be of the same sign and

give rise to a systematic error in the final result.

Both equations (6.35) and (6.36) are indeterminate
at ¢ =0 and the expressions are relatively unstable as ¢ - 0.
This requires calculations of the effect due to the closer zones
to be evaluated using smaller values of n. The innermost
zones are usually of size n = 0, '10, the four innermost squares
being excluded from the calculation and considered separately.
The inner squares can be replaced by a cylinder and the topo-
graphical effect considered to be due to the differential attrac-

tion of a cylinder whose height equals the mean elevation of the

region.
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6.3 Evaluation of the differential topographical effect for the

inner zone.

Let the attractive matter in the inner zone
comprise a cylinder of height hm’ where hm is the mean
elevation of the region about the computation point P, the
elevation of P being hP Consgider an element of mass dm
at an azimuth @ and height z above the point Po on the geoid,
situated at the variable point @, a distance s from the axis
P]?o of the cylinder, whose radius is r, the former being
orientated along the vertical as shown in fig (6.4). If the
lines POQ and PQ make angles [30 and B with PPO, as the attrac~
tions considered are always directed along the downward ver-
tical directed toward the centre of mass, the application of
equation (6. 8) gives the differential topographical attraction

of the inner zone ( A gio) as

il
) f, cos P cos B
- -k"a;.{ S 4 > |dm . .(6.37).
oy P Q PQ°
dod o
As cos ﬁoz Z R R TR (6.38)
” 2 2";‘ -
fz +8 | 2
h -z
and cos B = ——— L (6.39),

P
o 2 2~ 1/2
f(h.P -2z) " +s | /
where the denominators of equations (6.38) and

(6.39) are the lengths PoQ and PQ respectively. The mass

element dm is given by
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dm = p dzsdsda ... i
where de is the increment in azimuth and ¢ the density.

The insertion of equations (6.38), (6.39) and (6.40) in equation
(6.37) together with the appropriate limits of integration gives

t.\h r 27 | zdz s ds da
Ck m

A gci:o - ! ! i el ™7 2. 372 ©
0" ()v5 O,‘ L‘(Z + S )
(h..- z)dz s ds da ™
, _P
-‘{(hP" z)2+ sz} 3/2/

If the density is assumed to be constant over the

volume considered,
i ;"hm !r -~ 7 dz s ds
Ag =-2T k0 | ! ———

co o 0 (z2 + r2)3/2

+

(hP- z)dz s ds

— |
[(hp- ) + 7] /% |

- z dz + dz-

ch
= ~25k, - ”(dz
0 § ZZ + r2 1/2

(hP - z)dz

(hP- z)2 + rz 1/2 J

i

‘ 1
o 2. — ¢ 2
= - p - g -
27T k §2hm+r (I?mi-r ) 2 + {(n hm)
J1/2 2.1/2
3/ )/ l (6.41).

+ I‘?_ i - (hP+ r S

In Australia, hP - hrn is seldom expected to

exceedt 100 metres. The ratioh/r < 0.2asr ¥ 10 km.
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Using these considerations, the expansion of equation (6.41)

including those terms whose magnitudes are of order 10~

or larger gives

“h_ hrzn hfn (hy,- hm)2
Ag = ~-47k P r ‘ — - —_ + +
Cco i T 2 4 2

" 4r lér 4r

2 4

h

- “Ej;_ + hPéj ........ e (6.42)
4r l6r "

In the case of the small order terms, hP can be

assumed to be equal to hm and hence the correction reduces

to 3
. g h h 5

Agl =-4rkoh{l—£+~ﬂ +o{-}—1—}]

co ‘ m| 3 5 !

N 2r 8r r 4

......... (6.43)

As each term in equation (6.43) ic at least
an order smaller than that immediately preceding it, the
major term is - 47 ke hm which (Heiskanen and Vening
Meinesz, 1958, 152) is twice tl ¢ Bouguer reduction and is
hence of magnitude 0.2236 mgal per metre. Thus the
refinement in distinguishing between h.P and hm is necessary
only in areas of rugged topography where the gravity station
elevation may be totally unrepresentative of the region. In
the case of calculations in Australia, where the gradient of
the topography is reasonably smcoth except in certain limited
regions and for normal work, the equation (6.43) can be re-

placed by

3
. - h h j
i | P P
A gco = -4 ‘n'k phP j! 1 ~ 21" + 8'r'3_' | O (6.44)
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Equation (6. 44) is an adequate working formula for

most purposes, provided the gravity station is reasonably

representative of the area.

6.4 The accuracy of the cylindrical assumption for the inner

In practice, the inner zone can deviate conside-
rably from a cylinder due to the slope of the terrain at the

upper end. The configuration producing the maximum dis-

turbance ( A gd) from the cylindrical model is that where the
ground has a steep and constant grade over the surface of the

model. Consider the inner zone to be a cylinder of radius r

and height hm as used in the previous section, but modified as
shown in fig (6.5), with maximum and minimum surface ele-
vations of (th - H) and (H) respectively, where hm is the

mean elevation. The true differential attraction of the

inner zone is

i i :
A = bg, + Agd ............. (6.45) ,
true
where A g4 is given by
A, = AE - A By e (6.46)
d dB dA

In equation (6.46), 4 g4 is the differential attrac-

tion of the area A by which the truégterrain departs from the

cylindrical model below h and the correction Ag is the
m d

differential attraction of the area B which represents the actual

topography which does not lie within the cyl indrical model.
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The volumes A and B are, by definition, identiccl , but the
differential gravitatioual attractions on P and Po are slightly
different depending on the departure of P from the point Pm,

which is at the mean elevation hm on the vertical PPO.

The solid A can be considered to consist of a series
of segments of circular discs of radius r and thickness dz.
Consider the segment XYZT at a height z above the minimum
elevation H. Let the bounding chord XYZ subtend an angle
2 0 at the centre P' of the disc. Consider (fig (6.6) ) a mass
element dm at Q such that P'Q =1. Then

dm = pdeldldz ........... ..., (6.47),
where o is the density of matter and « is the azimuth of
the element recknoned clockwise from the line P'X. The att~

raction at Po due to the mass element at Q is

- k dm cos (30/ POQZ directed along the down-

ward vertical and that at P is

k dm cos B / PQZ in the same direction. The

differential attraction due to the element is

POP' PP! ‘*i
- kdm ( 3 + —, E and A gd
~ POQ PQ - A
is given by
n 2 ~28, T f],(zi) de 1 dl

bg, = -k p T dz = | :
‘A =1 =1 | T a3
0 w 5fj(zi) +177 2
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where
w = (r - Si) sec (Qi ) e e e (6.48a) ,
Z. :
i
s; = TR F e (6.49) ,
m
- s, .
0. = cos-lgl--—}- .................... (6.50) ,
1 r i
fl(zi) = H + S R REER (6.51),
and fz(zi) = hP -H - 2 L R EERPREPRPRPREEE (6.52).

In equation (6.48), n represents the number of

contiguous circular discs. Integration with respect to 1 gives

e £(z.) da
n 2 | i 41
Agd =-k de ) l]él i 1
A i o Mz %+ (r-s)Pseci(0.-a)} 2
) i z, r-s.) se ;ma)
i
1
. 2 =
{t-fj(zi)} P
n 2 [ B 20, 1.(z) |
- 1 ] 1 i
=-k pdz T T | £(0.) Ca - T
i=1  j=1 0 J 1 ) ) Vi
i;ff,(z.)i +r 1
,‘J i .
.............. (6.53),
where
d sin(6, - o)
8.) = -
fj( 1) ) 3 1 ,
$(z) 4 (e - s)) iz
! ) > -s1n(Gi-a) !
L lfj(z )} .
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The integral in equation (6.53), on evaluation (Lamb, 1940,

164) gives )
r2e, sin{8. - @) £.(z.) - a—ZGi
i . Az ‘

.
| Tt(0) e =!- sin 1
e e T - 1
0J L i-{fj(zi)} +(r - si)Z]2 |

a=0
j=1,2
- f.(zi) sin 8,
= 2 sin : 1, j=1,2..(6.55),
" 2 e —
&f.(z.)l +(r - s.)ZJ 2
N t

as sin -1(-9) = - gin -19 .
Substitution of the results of equation. (6.55)

in (6.53) gives

AL = -2 pk dz g % psin“1 o gi fj(Zi) T -
da i=1 j=1 W2 27
Lo e e o s
e (6.56)
2?1/2 ............... .

ﬁfj(zi)} “rr )

It should be noted that in equation (6.56), the gin”?

function takes values between - 7/2 and + 7/2 (Lamb, 1940,
59). TFurther,

<

(1) 0 = 8

< 1

i 2T ;
(ii) fz(zi) can both be greater than 0 as well as less than
0. As such, there is no necessity to consider any further the
effect of the location of P with respect to Pm as the attraction

computed using equation (6.56) is of general application.
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In calculating the attraction due to the matter in area B

(A gdB), z is measured from the plane of Pm' In this case,

i
jup
+

N
-
o
(5]
-3

fl(zi)

h_~-h =~z  ........... v...(6.58).

fo(z;) P "m” %4

Roceeding on lines similar to the derivation of

equation (6.48),

29,
n 2 ;2 i (:r' f.(zi) de1dl
rg, = - kpdz &= % -

d Z | ~ 3
B i=1  j=1 | i 2 2 }7

0’ w’ F‘f.(z.)l +1°

iv] 1~ -

.................. (6.59),
where w is defined by equation (5.48a) and
r-s, = ! r (6.60)
1 - hm-H ® o ¥ 2 @ 2 4 & 2 & B R * » & @ ]

The integration of equation (6.59) will give the

same result as that of equation (6.48). Thus,

where fj(zi) » J=1,2 , are given by equations (6.57) and
(6.58) and s; is given by equation (6. 60) for any given z,- The
tc .al attractive differential effect is then given by equations

(6.45), (6.46), (6.56) and (6.61). Computations made using
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different ground models are shown in table (6. 1).

Topographical] Station | Mean dz Differential
gradient height | height correction
1in hP(met) hm(met) (met) | A gd(mgal)
31 400 300 50 i 0.13
62 250 200 50 { 0.00
125 175 150 50 0.00
31 300 300 50 0.10
62 200 200 50 0.00
125 150 150 50 0.00
31 200 300 50 0.06
62 150 200 50 0.00
125 125 150 50 0.00
31 300 400 50 0.10
62 250 300 50 0.00
125 225 250 50 0.00
12 1000 1100 50 0.84
31 720 800 50 0.23
62 630 700 50 0.00
125 590 650 50 0.00
6 1900 2100 50 0.16
12 1450 1600 50 0.95
31 1150 1300 50 0.34
62 1100 1200 50 0.00
6 2400 2600 50 0.19
12 1900 2100 50 0.94
31 1600 1800 50 0.44
62 1500 1700 50 0.00
125 1500 1650 50 0.00

TABLE (6.1)
Effect of ground topography on the differential topographical

correction
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A general study shows that in the worst possible
case where the gravity station P is situated on the side of
a mountain range, the error introduced into the differential
topographical correction on assuming a cylindrical shape
is less than 0.5 mgal if the ground slope, assumed uniform,
is less than 1 in 50, This assumption is quite acceptable
for Australian conditions and all further consideration of the
topographical correction A gco will assume it to be struc-

tured according to the equation

e i
28, ~ 88, + AZ. o vl (6.62),

where Agio is computed using equation (6.36) with
the four innermost 0.1° x 0. 10 squares excluded and A gclo

is obtained from equation (6.43).

The radius of the cylinder r is chosen so that
the volume of the cylinder equals that of the four innermost
0.1% 0.1° squares which it is to replace. This condition

is achieved if the surface area of both are identical. In
2 -2

equation (6.34), n = 10 ~ and
2
dA = an T 102 cos ¢
180
2 .
= §r , from which
1
(7 cosp )2
= R e i e e .63).
r Rm 800 (6.63)
The use of R = 6,371.2 km. gives
m 1

r = 12.55 cos ° ® km , which is a value
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adequate for normal computational purposes.

29

6.5 The contribution to the indirect effect of the term —Y—? .
m

The principal quantity computed in the
evaluation of this term is °p which is the potential at the
point P, situated on the geoid, of matter which lies exterior
to it. Consider fig (6.7) which is similar to fig (6. 2)
except in that the distance and angle from the variable ele-
ment Q to the surface point P are not considered as the
exterior potential has only to be computed at the point PO
which is the point on the geoid equivalent to P. The exterior
potential ¢eP will thus refer to the potential of matter

exterior to the geoid as computed at Po’

; kdm . (6.64).

b, = ;
P T,

N}

<

Evaluating r  using equations (6.11), (6.12),
(6.14), (6.17) and (6.18) and dm using equations (6.31) and
(6-34),

kRm ! 2
9 = —— Z n  Z p cosec y..cos @ .
°p 2.x 180° it 4 2
h
L Q
1+ 2(c. tc)d
| Q"
0 1 2
l-Z(A- ZCP+o{f }
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= Earth's Surface

o Geocentre

16 6.7



kR T[Z 5 iﬂhQ
¢e = —-—En——-—-z- Z n. X cosec y . cos .. !
P 2x180° i ] g U
0!
}'1+-l(3c -c +—§-%- +o{f2})(,d
27T P R z

which, on integration and generalisation, gives the

contribution to the indirect effect as

2
26, kKR_ n , .
P _ ——— I n Zcosecw..cosﬁ..h..§1+
Y lego i g 1} 1joij ol

1 3hij 2.
+ E(cij—cP+ ZRm+ 0 {f })§ ...(6.65),

-

the suffix Q being replaced by the indexes i and
j for summation. The evaluation of the constant term in

the above expression gives

29
°p 2 (met) [, 1
= C Zni % cosec y.cos ¢i' hi' 1 +—Z-(3ci. -
Ym a j J J J te -]
3hi. 2
- <p + _—LZRm +ogf \‘ cm ........ (6.66),

where C = 3.529x 10-3 for values of the density

. -3
in g.cm

Equation (6. 66) does not converge as rapidly as equa-~
tion (6.36) as the constant coefficient is nine orders larger.
Consequently it is necessary, in any computation, to take

into account the effect of all distant zones uptoy = 5.
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Equation (6. 66) is also indeterminate at ¥ = 0, being
rapidly variable as y ™ 0. This instability in the expression
as derived can be eliminated by adopting the same procedure
as followed in the case of the differential topographical effect.
A cylindrical assumption is adopted for the four innermost

0.1° 0.1° squares. As in sections (6.3) and (6.4), using

1
the same symbols as before, the potential at PO ( ¢eP) due
to the cylinder is given by
¢i - “'{ k dm
°p L PR
K hm *.‘r fz dz s ds do
= ko | ol ! 1
0 0 ngZ + SZ} >
h 1
e A S
=21k p | flz”+r" " -2} dz...(6.67).
0 |

The first term to tie integrated is operated on by parts.

Put u = (ZZ N rZ) 2,.

As
d(uz) = u dz + z du, integration will give
!u dz = uz *-;z%:-l- du. Hence,
“ 1 4 “ 1
2 2.5 2 22 [ %4
{(z+r)2 dz = (z +r) =z -
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In addition,

- 0
[ 2 2.3 | 2%+ 1% d
1 {(z - +r)edz = |
3 Y 2 1/2
v V(z"+ )
o P
_ i 2* dz + % dz
B 1/2 1/2
) (z2 + rz) (z2 + rZ)
............ (6.69).
The addition of equations (6.68) and (6.69)
. 1 1
gives 2 2 2

i(z2+r2) dz=l(zz+r2) z+—1- r dz

i 2 2 1/2
} [r2+ zz]
L 1/2

2 2 1 2 . . -1z
—2(z+r) z + 3w sinh r"(6'70)'

Expansion of the second term in equation (6. 70) gives

4
(Lamb, 1940, 164) , 1/2
-l—rzsinh—1 £ = lrzln ztlz +r) ce. . (6.71).
2 r 2 r
The use of the above results in equation (6.67)
. 1/2
gives . 1 +
p* __an‘3§22u3 +r2)/2+ = kth(hP+r .
e 2 P 2
P ~
12
ZhPi e e (6.72)

As the ratio "P/r converges rapidly in all but very
mountainous regions, it is convenient, from the point of view
of calculations, to expand the relevant series which comprise

(6.72). In Australia, hP/r = 0.1 or less and hence it is
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valid to replace x in the expansion of

hP x3 x5 -7
—I-_—=51nhx=x+—g-+ﬁo+o{10 }
as hP/r- in the smaller terms of the expansion.

As a first approximation,

3 5
=1 hP hP hP hP
sinh - X =TT - - 5
€r 120r
More accurately,
2
hP hP . .
x = — (1l - — ) which gives
r 2
é6r
3 5
h h 3h
P N S SN S (6.73).
6br 40r
The substitution of equation (6. 73) in (6.72) gives
i - hlzD hf? hlz:, 3h§;
¢e= ﬂ{phPr!l+_2-—z+l——-_2 +—-—4—
P L 2r 8r 6r 40r

P
r

=
| A

The contribution of the inner zone to the indirect effect

is 2 4.
X 47 kph_r v h h |

Ni].: P i, 1 - E):g + —1)2- -—}341....(6.74) ’
Y .n " ér 40r -

where r is given by equation (6.63) for the same

reasons as before.

The magnitude of this effect depends both on the
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latitude and elevation of P. While the relation is not a
linear one, for moderate elevations it varies from appro-
ximately 28 cm per 100 metres of elevation at a latitude of
5°t0 8.4 cm per 100 metres at a latitude of 85°%(see table

(6.2).

o = 2.67 o = 2.77 - h/21

Lat romtl 3 ioht | i Hehilﬁtkmi oight |1

o [*€8 N, €18 N g N g N,

(met) | (cm)(met) [{cm] (met)l{(cm) (met) {{cm)
5 | 100 [28.5 | 2000 |526.6| 100 | 29.5/2000{527.5
15 | 100 [28.1 | 2000 |517.8| 100! 29.0/2000/518.8
25 | 100 [27.2 | 2000 |500.2 ! 100| 28.1]2000i501.1
35 | 100 [25.8 | 2000 |473.3| 100] 26.8]2000]474.1
45 | 100 [24.0 | 2000 |436.5| 100} 24.9{2000/437. 2
55 | 100 {21.6 | 2000 [388.5| 100| 22.4{2000/389.3
65 | 100 [18.5 | 2000 [327.0| 100 19.212000/327.6
75 | 100 |14.5 | 2000 |246.0] 170 15.0{2000(246. 4
85 | 100 | 8.4 | 2000 |123.6! 100| 8.7/2000{123.8
| i

TABLE (6.2)

Variation of the indirect effect of the inner zone with

latitude, elevation and density

This, however, is not of intrinsic interest. Of
greater value is the study of the variation in the magnitude
of Nii due to a change in the density from the internationally
accepted uniform crustal density of 2. 67 to the Hunter
formula given in equation (1.6). Table (6.2) shows that

there is a constant difference between the values of N;



111
computed using different elevations at the same latitude for
the value of r as defined in equation (6.63). Consider the
variation of Ni with elevation at latitude 35° for the two dif-
ferent density relations and also consider the differences

i .
between the values of A .o under the same circumstances

as set out in table (6.3).

2.67 p=2,77 h/Zl,hinkm.g
Elevation N} A gl N: Agl

i co i co
met. cm. mgal cm, mgal.
100 25.8 -22.3 26.8 -23.0
500 126.9 -109.5 130.5 -112.6
1000 248.0 -214.0 252.9 ~218.2
1500 363.5 -313.7 367.4 -317.0
2000 473.3 ~-408.4 474.1 ~409.1
2500 577.3 -498.1 573.1 -494.6
3000 675.6 ~583.0 664.7 ~573.6
4000 855.1 ~1737.8 826.1 ~712.8
5000 1052.5 -884.9 998.0 ~-839.2
6000 1215.0 -1013.2 1130.2 ~-942.7

TABLE (+.3)

Variation of the values of N; and A gzo

at latitude 35° with

changes in elevation and density

The graph of differences is shown in fig (6. 8).

study of this graph shows that the Hunter formula is quite

unstable for elevations greater than 27 °0

metres end its use
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in world wide investigations must be carefully controlled.
For the Australian region the Hunter formula is quite ade-
quate but in the consideration of world wide investigations,
it is prudent to use the following set of relations to define
topographical density.

If h = 2500 metres , use p =2.77 - 2131

If h > 2500 metres, use o = 2.67

Test calculations made using world wide
5° x 5° height means show that the resulting variations
in the value of Ni range from 51 metres to 6% metres.
The density relations set out above are used in effecting the

caleulations carried out during the current investigation.
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7. THE AVAILABLE GRAVITY DATA.

7.1 Introduction,

Until ten years ago, there was only one method
available for determining the gravitational field over the
surface of the earth. This consisted of measuring the acce-
leration due to gravity (g) or differences in this same
quantity by a variety of methods, The first category of
measurements, where gravity is determined at a point on
the earth's surface without reference to the value of gravity
at any other point, is called absolute. Absolute determina-

tions fall into two breéad clagsifications :-

(a) Systems which enable g to be determined by
measuring the acceleration of falling bodies, sometimes
coupled with the deceleration of falling ones (e. g., Faller, 1965 ;
Cook, 1965 ; Agaletskii et al., 1959 ; Rose etal., 1959 ).

(b) Pendulous systems which have been developed
to afford portable forms which permit the measurement of
g at field stations (e.g., Jackson, 1959 ; Heiskanen and

Vening Meinesg, 1958, 84 et seq )

While the accuracy of the pendulous systems

is generally accepted to be of the order of 1 -3 mgal, greater
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precision has been claimed in the case of determinations
which use interferometric systems (Faller, 1965a).
However, it has not been clearly established whether the
precision claimed is merely a reflection of internal con-

sistenc, or a measure of the absolute accuracy of the method,

The second category of determinations establj~

S..oG the differences in the value of g between two points on
the earth's surface which, if the value of g is known at one
of the former, enables a value to be established for g at
the other point. These relative determinations have an
accuracy which is at least an order greater than that
obtainable from the use of a pendulous system as the basic
reading unit on most commercial gravimeters is approxi-
mately 0.1 mgal + ith interpolntion possible to 10-2 mgal.
This is an order of accuracy of at least 1 part in 107,
which is approximately four times greater than that afforded
by any other geodetic method. In this manner, it is possible
to establish a framework of first order gravity stations
analagous to a first order level network. In general,
gravity control networks are of three types :-

(a) intercontinental connections made with either
pendulous systems or batteries of gravimeters ;

(b) continental control networ's ;

(¢) local survey networks , the accuracy of
establishment of each type of network decreasing from (a)

to (c).
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7.2 The Australian control network.

The gravity reference network in Australia
has been established entirely by the Commonwealth of Austra-
lia's authority, the Bureau of Mineral Resources, Geology and
Geophysics (B,M.R.). The original reference network was
a network of pendulum stations (Dooley et al, 1961). This has
now been superceded by a more extensive survey called the
Isogal Regional Gravity Survey. The name "Isogal" was used
because of the predominantly east - west gravity traverses
which comprise the survey. The gravity traverses were sur-
veyed using a battery of gravimeters (Dooley, 1965). In this
method of traversing, with one exception, all gravity differences
on a particular traverse were within the small dial range of the
gravimeters used {i.e., 50 - 100 mgal.). All traverses were
connected to the National Gravity Base Station at Melbourne
which was assigned the value 979,979.0 mgal. Thirty Isogal

stations were established in South Australia (Mather, 1966b,

Fig (1) ).

7.3 Existing gravity data.

In addition to the B.M.R.'s control network of
first order accuracy,there exist, on the Australian mainland,
numerous regional gravity surveys carried out for prospection

purposes. Some of these surveys establish gravity values
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using difference methods while others are merely relative
surveys which have both arbitrary datums for both elevation
and gravity. In general, however, there is adequate gravity
data available over the entire continent to make the gravimetric

solution for the geoid a practicable proposition.

A study of the values of the function f( ¢) in
equation (5.54) (Lambert and Darling, 1936) shows that
f( y) is not negligible for large values of ¢ . It is therefore
necessary to consider world wide effects for the evaluation
of N by equation (5.54). This necessitates a complete know-
ledge of the gravity field over the surface of the earth to
effect a solution. It is generally agreed that the breakdown
of the earth's surface area into elements whose sides are
five degree arc length of meridians and parallels is adequate
(Uotila, 1960) for the more distant regions for which ¢ > 20°

from the computation point.

Up to 1960, there was very little hope of effecting
a realistic calculation of NP due to the very poor gravity co-
verage available at sca. In addition, the available gravity
data on land often tended to be concentrated in small regions
whare active mineral prospection has occured. Sea
gravimeters (e.g., Caputo et al (1962) , Hlarrison and Spiers
(1963) ) are making gravity determinations at sea a more
practicable proposition, though with reduced accuracy,
claimed to be of the order of 3 -~ 5 mgal. It is unlikely that

much headway can be expected in this generation in the
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establishment of adequate gravity coverage at sea using
earth based techniques as the oceans cover approximately
70 per cent of the earth's surface area. It ig also estimated
that about 40 per cent of the apnroximately 2600 5% x 5% units
of surface area over the earth have no gravity values deter-
mined in them. Of the balance 60 per cent, it is expected
that a high proportion have only Z or 3 readings in them.
Thus the sample of surface gravity determinations available

are, at best, of marginal sufficiency.

Many attempts have been made to extend the
available field to unrepr-sented areas (e.g., Jeffreys (1941),
Kaula (1959) , Uotila (1962) ) but all have their limitations
due to the inadequacy of the sample available. The launching
of the first artificial earth satellite in 1957 gave a new lease
of life to attempts at solving the boundary value prcblem in

physical geodesy.

7.« The gravitational field from the observation of the

orbital perturbations of artificial earth satellites.

The graovitational potential at a point P exterior to
the earth saticfies Laplace's theorem, set out in equation

(2.18). Thus

It will be shown in section {7.5) that the solu-

tion of Laplace's echation is given completely (Jeffreys,
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1962a, 133) by

1
0 ntl
p

B Mo

-0 Anmsnm(q)(:’ A c) - (7.2),

where P is expressed in geocentiric coordinates

( e (DC, }‘c) and the surface harmonic is given by

n r~
= i i S A+
nmsnm(wc’ )‘c) ;E:o Apnm(sm ¢c) ; anmco m c
“ b _sinm . |,n=0, ...(7.3).
nm C

t
In equation (7.3), pnm(sin (bc) is given by equation
(5.34). 2 c is measured from the principal inertial axis in
the equatorial plane. The entire solution has (2n+1) terms
such that none could be expressed as a linear combination of
the rest. The movement of a particle (satellite) in the earth's
gravitational field is subject to central force motion (McCuskey,
1963, 19 et seq). This problem has been dealt with in detail
by others (e.g., Kaula (1966b) , Mueller (1964) ) and can be
summarised as follows. If the earth were a regularised
sy bere, the orbit of any artificial earth satellite would be
an ellipse, fixed in space in relation to the parent body. The
exact orientation of the orbit with respect to any system of
earth bound coordinates would be determined by the launc-

hing details,

The existent earth is spheroidal to order 3 in

10 ~, with further irregular deviations from the spheroidal

model due to topography and mass anomalies. These cause
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t+~ shape of the exterior equipotential surfaces of the earth's
gravitational field to depart from the exact spheroidal refe-
rence figure by amounts of magnitude 1 part in 105. The
orbital parameters of a given satellite undergo change due
to (Kaula, 1962;
(a2) the earth's oblateness ;
(b) atmospheric drag ;
(c) electromagnetic effects ;
(d) localised large scale mass anomalies and
(e) other short period gravitational effects.
If the non-gravitational influences could be minimised,

the residual perturbation of a satellite's orbit would be due

entirely to gravitational causes. The rates of change of the

orbital parameters ¢ “ild then be related to the gravitational
field enabling a determination of the latter to be effected.
For this purpose, it is relevant to formulate the exterior
gravitational potential using a set of mathematical functions
which are then evaluated in ms of the measured rates of
change of the orbiial parameters. This mathematical rep-
resetation of the exterior gravitational potential is conven-
tionally carried out using the functions set out in equations

(7.1) to (7.3). Section (7.5) shows how equations (7.2) and

(7.3) are solutions of equation (7. 1).
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7.5 The solution of Laplace's equation in terms of spherical

harmonics.

The sclution of Laplace's equation as applied to

gravitational potential is very completely dealt with by

Jeffreys (1962b, 529 et seq). Consider a set of curvilinear

coordinates ( gi, i=1,3) , where (see fig (7.1))

g ; =T
E, T 0 (7.4),
= A
’ 3
where r is the geocentric distance, 6 the geocentric

co-latitude and A the geocentric longitude. The element of

volume (dV) in space is defined by the equation

3
av = T onde (7.5),
i=1 B
where
h1 = 1
hy, =r (7. )
h = r sin ©

The left hand side of equation (7. 1) is expressed in

terms of the curvilinear coordinates by the use of the diver-

gence theorem, stated in equation (2.1), on the elemental

volume set out in equation (7.5). If g WP is constant

over the element of volume dV in space, the application of

the divergence theorem to V WP gives
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3.
L
v P
I Wp oBdey
i=1 (I
The definitive values of Ei on the left hand side are

made up of pairs of the form (g i i d £ i=1,3). On

X

)
iy
L N WLdS ... (7.7)

i
[ S

considering the elemental volumeoonly, the right hand side

of equation (7. 7) will consist of six terms, equivalent to the

six sides of the solid. Thus,

3
V.NW, = X
- — P i=1 h.2 g P

The contribution to the integral by pairs of oppo-

site surfaces is obtained by the application of Taylor's theo-

rem as
Clgi+1d €i+2hi+lhi+2 ’ %—v'—N—-WP! = de d i_VNW
S - F,1=€1 2 1d£1 and P
. O »
- - 1 d | -
1 — i 1] H
H . N Wp| ~de, dg.rv N' Wy K
£ = & 1 .,
i 1 -
(o}
which reduces to
3 ~h, .h g
T d i+l it2 9 P
1lodg, =— | W, | ,i=1,3 ....(7.9).
j=1 1dg L B 08, P

In expression (7.9), if the index exceeds 3, subtract

3. This expression holds as N = - N! Summing up these

results and inserting them in equation (7.7), the expression

in the case of gravitational potential at an external point

becomes



: h h OW_ S

i 3 r . :
v w §3h.d£,= P2 E dg,aa(h‘}ll it+2 5 P
S i T &

=0 , if index > 3,—3.
Substitution for Ei(izl, 3) from equation (7.4) and hi(iz 1, 3)

from equation (7. 6) in the above equation gives

_ oW . oW
2 1 9 i 2. 9 [ P
= < —_— 0 —= i+
I Wp . ’ 5z | T Sin® 3 !+aegsm 50 |
r sin@ | - -~
L
L 81 aWP‘!]
9alsine x|
a2y 1 Ta o, TRl
= T2 orl Y Tor — _ige L°F T3g
T r sin 0 -
) IW_ .
9 §_1 P{] _
+8>\ T 53 _j = 0........(7.10).
Let
WP = WP(r,Q,x ) be a solution of the

above equation and let the form of this solution be

WP(I‘, 8,2) = Rr)S(6,x) .......ove. (7.11),
where S(0, ) ) is a function of the surface coordinates only.

Further simplification of equation (7.10) gives
2

J W oW BWP
r sin 6 > + erme———ar +cos9——-—-89 +
or
02w, R
+8in @ —» + — > =0 ...... (7.12)
1Y) sin 6 9 3

Adopting the functions defined in equation (7.11) in
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equation (7. 12),

2
2 . 0 R . IR 05
r s1nQS(9,A)—-2 +2r31n98(9,x)——ar +cosOR(r)-—ag+
2 2
. 9°S 1 978
+ sin 8 R(r)— + -5 R(I‘);z =0..(7.13)

08
Dividing equation (7.13) by sin @ R(r) S(8, 1) and

re-arranging the terms,

2 BZR oR
r—> 2r 4= o2
_— 0= + .—-._..ﬁ_. = - 1 t 95 +
R(r) R(r) S ) | g2
2
reoto 22 4 L d S\l ..... (7.14).
08 sin“ © sz-wz

The solutions of both sides of the above equation

can hold simultaneously if the constituent differential equations
are both equal to a common value which is a constant. The
commonest form used for this constant is n{n-1). Thus,

in the general case, equation (7.14) generates two differen-

tia] equations, one of which is in the variable r only and the

other is in the variables 6 and A They are
2 BZR oR
ro— +2r — =-n(n-1)R{r) =0..... (7.15)
or
or
and
2 2
)
--%— +cot 032 + ! 2+ 0 (n-1)§(8, 1) = 0
00 sin 6 g
(7.16)

----------------------

In a similar manner, equation (7.16) can be further
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subdivided into two differential equations in each of the

surface coordinates 8 andx . If

S(8,0) = GO)F(A) oo (7.17),

e ppropriate substitution in equation (7. 16) gives

2
dZF

.‘
i‘——g‘- F(A) + cot 8 F(1) 4G + cosecze G(8)—=, +
de de 2
da
+n(n-1)GOB)F( A)=0.
Re-arrangement and separation of variables
gives

sin 8 d°G , sin26 dG
G(0) 42 2G(8) de
2

1 d F

— eeer——

F()) d )\2

+nin-1)sin®0 = -

Both sides of the above equation can hold independently if
they equal some common constant value, say mz. The
resulting differential equations are

2

——zgf S mP ) 20 o (7.18)
and
2 dZG sin 268 d4dG pé 2
gsin@—= 4+ =———— +(n-1lnsin 6~-m G(8)=290
dQZ Lo de

The complete solution of Laplace's equation (7.1)
can be expressed in terms of the product of the solutions of
the three differential equations (7.15), (7.18) and (7. 19).
Putting
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then
dG . 9G
G - -sin® iR R RER RS (7.21),
and 2 2
—‘i—% = - cos © _g_g + sin®0 Q—Gé ...... L (7.22)
de H oM

The su stitution of equations (7.21) and (7. 22) in

equation (7.19) gives

(1-u%) |

] 2. 8%6) 2. 9G
|

oG
- — - ety i - - __._+
Y +(1-u") 2 | pu(l - o) "

i 2 2 -
+ fnm-101-4-m" | Gle) =o0.
= - 2
Division of the above equation by (1 - i) and the
grouping of terms gives
2 9%¢  _8G . |” m®

(1-p)— -2— + n{n~- 1) -
3IJ2 oM L

When m = 0, equation (7.23) reduces to Legendre's

differential equation, whose solution (Whittaker and Watson,
1963, 304) is

G(9) = pn(l.t) .................. .. (7.24),

where n
pn(u) = nl i‘;'l(latz - 1)n ............. (7.25).

2" n! du

If m + 0, the solution of equation (7. 23) is (Whitta-
ker and Watson, 1963, 324)



> 12]2 g™
G(8) = (1 ~u) —0 pn(,u) ........... (7.2
du
Conventiorally, the solution is represented as
G(e) =P (u) , Where
nm
1 m mo, g
an(u) = — sin @ — ™ -1y ..., (7.27).
2 n! du

In most literature, thig solntion, known as the
associated Legendre function /Jeffreys, 1962a, 134), is
represented by the function pnm(u) which is related to

an(u) by the relation

_ (n - m)! >0\
pnm(li) = o' an(u) ........... (7.28},

as in this form, the variability of the mean square values

of the acanrinind T egendre functions increase with m.

Equation (7.15) is known as Euler's e uation, the

solution of which is

Setting the boundary conditions, W., > 0as i + o .
Hence, cl = 0 and
°2
Rir) = ——/— e (7.29).

n+l
T

The solution of equation (7.18) is easil. seen to be

Tl = Cy COS m ) + ¢, sinmi  ....... (7.30).

Thusg the folowing equations are solutions of Laplace's
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equation in the case of gravitational potential

c, .-

2 .
WPn = el c3cosm A+ c sin m) | pnm(u) , n=0, =

As the infinite number of solutions in the previous equation

are of different orders of magnitude, a complete solution is

given by

----------------------

where a and b are constant coefficients. Equation
nm nm

(7.31) can also be expressed as

@ nm
= X —= 8 (8,5) .. 32),
WP néO n+1l Snm(g’k ) (7 )
r
where
n o .-
S (6,r) = = p (u)[ a cosmXi +b sinmt |
nm nm m=0 nm | ;
.................. (7.33)
S is called a surface harmonic, the quantity
nm nm
Wp is called a solid harmonic of order n.

The solution obtained from ecuation (7.33) when
m = 0 is called a zonal harmonic, pno(u) being called a
Legendre function. For m # 0, the solution obtained from
equation (7.33) is called a tesseral harmonic, the quantity
pnm(u) being called an associated Legendre function. The

surface harmonic Annsnn is called a sectorial harmonic.
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7.6 The physical interpretation of surface harmonics,

Surface harmonics are ca, able of physical

interpretation on a regular closed surface, e.g., a sphere.

(i) Zonal harmonics

The zonal harmonic is obtained as the special
case of the surface harmonic when m = 0,

1 at 2 n

p_(u) = (™ -1 ..., (7.34).
n0 Znn'. d,un

There exist n values of 8 at which the function
(uz—l)n will be zero at each of u = 1 and u = -1, Its first
derivative has (n-1) real zeros each at u-= t 1 and one
other zero in between. In general, the n-th derivative
which occurs in pno(u) = pn(u) will have n values of
@ between ¢ and 7 1t which pn(u) = 0.
In the case where 0 is the co-latitude, this
affords the interpretation that zonal harmonics of order n
keep the same sign cver (n+1) belts of latitude, the boun-
dary of each such belt being a parallel of latitude. Fig (7.2}
illustrates the case whenn =7  The polar caps will also
count as belts. The following corollaries hold.
(i) If n = 29, these belts pccur at 60 intervals of
latitude .
(ii) Even order zonal harmonics are symmetrical

about the equalor.



131

(iii) The existence of odd - order zonal harmonics indicates
asymmetry about the equator.

(iv) If a function which varies over a sphere is re presented
by a set of harmonics, then low order zonal harmonics repre-
sent slow changes of the function with changes in u. High
order harmonics represent more rapid changes in the function
for the same change in u.

(v) If a function F has small variations from some value F0
over a sphere, and if these variations were a function of 0
only, F could be adequately represented by a set of zonal

harmonics

F = 112_2:0 Anpn(u) ) where An is the asso-

ciated harmonic coefficient, Ao being equal to FO as po(u) = 1.

The even zonal harmonics pz(u), p4(;.t) etc., will rep-
resent those variations which are symmetrical about the equator,
while the odd order zonal harmonics will represent asymmetries
about the equator. The zonal harmonics pl(u) and p3(u) will

represent those asymmetries which vary very slowly with

6.

(ii) The associated Legendre function,

From equations (7.27) and (7.28), the associated

Legendre function pnm(u) is given by

p (w)= Roml Mg i W’ - 1" (7.35)
nm Zn(n'.)z dMn+m
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In equation (7.35), sin® # Owunlessu = t

range 0 £ ® =1 , Thus, if m> 0, p__(#) has m zeros
g nm

1 in the

less than pno(,u) , i.e., (n - m) zeros in the range -1 = “ = 1,
all of which are real and hence there are (n - m + 1) belts in all,

inclusive of polar caps.

(iii) Tesseral harmonics

The tesseral harmonic Tnm is given by
Tnm = pnm(u) -Lcos mXA + sin mkj ....... (7.36),
where m £ Q. The combination of the associated

Leggndre function and the longitude dependent function gives
rise to a surface harmonic which changes sign along (n - m + 1)
parallels of latitude and also increases the number of meridians
over which the longitude function changes sign from 2 to 2m.
As such, the tesseral harmonic will change sign at m

meridians in a hemisphere .

Fig (7.3) illustrates the tesseral harmonic
sin 4 A p94(u) over a hemisphere. Thus tesseral harmonics
represent variations in both latitude and longitude of any

function they are chosen to represent over a sphere.

(iv) Sectorial harmonics.

Sectorial harmonics are special cases of tesseral
harmonics when n=1m, From the above discussion it
can be seen that sectorial harmonics represent those variations
of a function which are longitude dependent. Fig (7.4) rep-

resents the sectorial harmonic sin 4 ) p44(;.¢) over a hemisphere.
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Tesseral harmonics in the special case of n = m can also
represent variations of the function with latitude, provided

such variations are of the same sign.

Thus, any function which takes values on the
surface of a sphere can be represented by a family of
spherical harmonics, exact representation being ob’ ined
by assigning appropriate values for the coefficients of the
harmonic functions. The higher the order of harmonic
functions used, the more accurately will the set of functions
represent the local fluctuations of the quantity being repre-
sented. The order (n) to which the function being represen-
ted must be analysed depends entirely on the size of the
adjacent blocks over which the function can be expected to
have variations from the zero order value but of opposite
sign.

In the case of the earth, if the size of the smallest
such unit of surface area is a uO p:4 uO square, whose boun-
ding curves are meridians and parallels, the nexus between
n and u is obtained by considering the variation (dF') of the
function F from a mean value over the earth in relation to
the variation of dF over a u® x u° gquare. If the mean
values of dF for the population of u® % u’ squares are
part of a random distribution about a zero mean, then it
would be sufficient to carry out the harmonic analysis to

order n, where n is given by the relation

an = 180° . (7.37),
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where u is expressed in degrees of arc. The
analysis will exclude the zonal harmonic pno(u).

If, for example, it is required to represent a
function over a sphere using values for each 5° x 50 square,
it is not necessary to carry out an analysis to order n = 36
to obtain adequate values. The critical factor in such an
analysis is not the size of the square but the value of u as
defined in equation (7.37). The only requirement to be met
is that the mean values of dF over the squares whose sides
are of angular length u, are ncimally distributed about a

mean value zero over the sphere.

7.7 Normalisation of Legendre functions.

The coefficient of a given harmonic is depen-
dent on the structure of the harmonic and the natufe of the
function it seeks to represent. The conventional form of
the general Legendre function is given in equation (7.27).
The concept of normalising Legendre functions is introduced
with the idea of making the values of certain integrals con-
taining Legendre functions equal to a chosen quantity bet-
ween set limits of integration. The value usually adopted is
unity and the introduction of the correcting factor to satisfy
this condition is called the normalisation of the I.egendre
funetion . This results in the amendment of the values of
the coefficients & m and bnm of the surface harmonic
defined in equation (7.31).

Jeffreys (1962b, 632) uses the expression



() = B g™ 4 (u) (7.38)
pnmo - n{ S d“m pnu ......... . .

In this form, the associated Legendre function has
the property

Y0 ) (7.39).

() = (-1 nm

pn(-—m)
Other researchers (e.g., Kaula, 1959, 39) prefer to
to use the Legendre functions in their normalised form (Enm(u) )

where the latter is constructed to satisfy the relation

cTE 2
1 : , l'—15 ( cos mA q .
47 ol o L nmiu) "\ sin m ?\‘\.-{‘, sin 0 d6 dAx = 1
.J ............ (7.40)
If m # 0, this can be achieved (Jeffreys, 1962b,
638) if
1. N
Bli) = Pl (a0 [l |
L ,,.
_ ;2(2n + 1) (n - m)'.\EP W) (7.41)
i o+ m)! | Pam ) e .
If m = 0, and the function reduces to a simple Legen-
dre function, 1
P ) = (2n+ 1) P o) (7.42).

In general, the fully normalised Legendre function
which satisfies equation (7.40) is given by
T(2 -8

- 0
P (u) = (n+ m)! nm

) {2zn+ 1) (n- m)ts 1/2

=
8
A

-------------
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where an(u) is the conventional Legendre function and

6Om is the Kronecker delta (Jeffreys, 1962b, 59) given by

1 when i =k

y
5. =% e
{0 wheni#¢k "~°°°°7°

ik

7.8 Gravity anomalies expressed in terms of the harmonics

of the earth's gravitational field.

From equation (7.31), the external potential

of the earth at a point P (WP) can be expressed as

® 1 n -
= Z > i +
WP n=0 rr1+1 m:Oan(u) g anmCOS mA
+b sinma i ........ (7.31).
nm

This particular expression uses the conventional Legendre

functiong given by equation (7.27) (Kaula, 1962, 35)
m

P__(u) =sin™0 S— P ()
du
2
-5y ™% % (n-2t) im0t
s 2 Gomozt) ‘itg(-l)...

Zn n'. ,t___O n-m . B o

u(n—m—Zt) ............. (7.45) ,
where k = Bé—'— the value of k being the truncated integer.

In literature on satellite geodesy, the above expression for
potential is expressed in the form (e.g., Kaula, 1962, 35)

ra -

i
o | ) n =~
W= kM b2 %___e . S P (u)s(C cosm) +S  sin mj 1
P I‘P n=0 | rP, m=0 nRm -~ nm nm i
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where a, is the equatorial radius of the earth and M its

mass. An alternative form is

P, n=0 | 7T m" |
+K sinm x%’ ........... (7.47),
_
where A
a = kMa  C = -kMa"J ......... (7.48)
nm e nm
and
n n
b = kMa S = -kMa K ........ (7.49).
nm e nm e nm

As shown in section (3), the free air gravity anomaly
at a point P exterior to the earth is the difference between
observed gravity at P and the value of gravity at the equivalent
point on the associated spherop of the international spheroid or
adopted reference model. If this reference model is chosen
so that its origin is at the centre of mass of the existent earth,
McCullagh's formula (Bomford, 1962, 393) shows that the

following relation is satisfied

a
1 - i
M e z P (u)?(j_cosm A +S sinmli
r r Im ! Im Im
m=0 ~ -
S (7.50)

Jeffreys (1962a, 141) interprets this physically as
follows. A change in the position of the reference axes

does not alter the values of surface gravity.

The international spheroid, being a regular

solid of revolution, takes intc account only those variaiions
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of gravity with latitude. If the rotaticnal potential is exclu-

ded, the potential at an exterior point is given by

fa 12
- _}SM_ ,___e} ,
VpT Poo) Coo * P Poow) CLy
P Ip

4

2l

— 1

* ex P o) Cly oo (7.50)

The odd order zonal harmecenics are excluded from this
theoretical representation as the gravitational field of the
regular reference spheroid is symmetrical about the equator.
The zero order term is chosen to be the same as that for the
existent earth as the term in the case of the international
spheroid is obtained by a least squares fit of the mathemati-
cal model to observed gravity. This is more fully discussed
in sections (13) and (15). It should be noted that CZO and
’.340 are not necessariiy the same as CZO and 040 respective-
ly. Tesseral harmonic terms are not considered as the
reference spheroid is a solid of revolution. The _isturbing

potential at the surface of comparison (VD ) is given by

P
.«a '_n

kM o n B

VD:;Q— z ‘__e_ z P (M)EC cos mA +
P P n=2 !rp’% m=0 nm | Tnm
+S__sinmrl ... (7.51),
= W_-

as VD p VP

P

CZO and Cao given in eguation (7.51) are not the same

as the quantities with identical d-scripiicns in equation (7.45).
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They are, however, related by the following equations

C = Cc,. - C!
20 20 20
A W
........... (7.52)
C = C - !
40
40VD 40,

The combination of equation (7.51) and equation
(3.20) gives

n
a
0 . 5 n
bgn = _ KM z ——gl -+ D)+ 2 T P (u)
rP n=2 I'n+ : v ‘ m=0 nhm
P
tC__cosm* +S  sinmA 7
i nm nm ’{
- .n
o 1 a j
kM i n
== Z (-1 || = P_ ()
r n=2 LrP,x m=0 nm
P
I
{C cos mj + S sinmAJ ... {7.53).
_nm nm

The quantities C and S can be replaced by
nm nm

the equivalent fully normalised coefficients given by equations

S

(7.43) and (7.44). Denoting these coefficients as Enm an
, equation (7.53) becomes
nm

. n
@ { a7
n -
Ag:,szkl,}—/l = (n-l)g—e‘ z P (u)
r; n=2 rpi m=0 D

!'C cosm) + S _sin n. A
L nm

. ....... (7.54)
- where . 1/2
T - | (n+m)!

0
-
)
un
w

nm~ | (2-5 m)(2n+1)(n—m)'.
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From equation (7. 48),

- 1/2

— (rrm)! "

C = - : ' J . {7.53.).
nm ' (d—&or}uzn—!»l)(n-m)‘. ! nm )
Similar exnregsions relate e , S and X .

nm’ T nm rm

Conclusion :- The free alr anomalies on the carth's

surface could be cnleulated it the cocliicients of the Legencre
functions, used in the calculaticn of the potential due to th:

arth's graviiational field at a »oint I¥ exterior to the surface
of the earth, wore known., It would also be necessary to

the international gravity formula exniecrsed in gpherical

harmonics. The latter (Jeffreye. 1961, §) can he expresser
as
(mgal)
~r — i i) e > [~
i = COO + b?{.‘“. 20(”) | R }:‘41(\\, ; PP | J.\),
vihere
'S - 07977
\’E)O 2TI7TC
CL., = 3446.C
FAY
and o= 5L3,
40
T oviting ool equaticn (7. 55), C'( nas not bew.
i
assumed ~qual to C , though thig i the conventional
procedure. It shculd algo be noted that the gravity anomili~
deduced from: the a2hore welaticnz can hardly represent the

gravity aromaly cn cround, in the sease of individual gravi
readings in view of the methods used to determine the
coefficients cf the harmonic functions. However, such de-

. |

terminations <.~ nrovide ods —nie o-timates of area mean :
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7.9 Determination of the zonal and tesseral harmonic

coefficients of the basic equation.

In the following discussion, all the coeffi-
cients C ’ S to be determined are of order 10-6, with the
nm’ _nm
exception of CZO » which (Kaula, 1963, 509) is given by

20 6

Ch,p = - =T~ = 484.2x10°°. ... (~57),

5 2
or C20 (King-Hele and Cook, 1965, 17) by

+
= - = 4
CZO JZ 1082.€4 Z 0.02 ....(7.58) .

All determinations of the other harmonic coefficients
(e.g., King Hele et al, 1963, 119 ; Guier and Newton, 1965,
4619) indicate that the orders of both tesseral and zonal terms
are of order which approaches 10-6. Such determinations
are effected by the analysis of the rates of variation of the
parameters of the instantaneous orbital ellipse. As explained
in section (7. 3), certain variations are primarily due to the
nature of the earth's gravitational potential. The disturbing

potential VDP » given by equation (7.51), can be expressed as

PR n [
= 2 P (W)l C cosmx+
2 1 rpi -0 nm [ nm
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The zonal harmonics are determined by a study of the
perturbations of normally inclined orbits, while the tesseral
harmonic coefficients are b. 3t determined from resonant

ones having periods which approach 24 hours.

The even zonal harmonics are determined (King-
Hele et él, 1963, 120) from secular <ariations while the
odd order zonal coefficients are obtained from a study of the
long period variations of the orbital elements. The Ke ple -

rinn clements of an orbital ellipse are

a = semi-major axis of the orbital ellipse,

e = the eccentricity of the orbital ellipse ,

w = the argument of perigee , '

1 = the inclination of the orbit to the plane of the
equator,

@ = the right ascension of the node, and

M= E-esinE . ......... ... ... (7.60),

which is Kepler's equation. These elements are

completely defined in fig (7.5) and fig (7. 6).

If § and A are the instantaneous latitude and longi-
tude of the satellite with r:ference to the earth's equatorial

plane - Greenwich meridian plane reference system,

sinf = sini sin(w +£)........ (7.61),
where f is called the ‘rue anomaly. E is called the
eccentric anomaly and M, ¢3:fined in equation (7. 60) the

mean anomaly. A is giver by
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_ where © is Greenwich sidereal time. Evaluation and
substitution in equation (7.59) gives the n-th order coefficient

of the disturbing potential (Kaula, 1962, 35) as

kMa;l n -
v = z F (i) zZ G__ (e)
Dnm an+1 p=0 nmp -, nbpq
(w, M,Q,0) ........... (7.63),
nmp
where
. plor k if k< p) (2n- 2t)! . n-m-2t,
F (i) = sin i
nmp t=0 £ (n-t) 2202t
m m} s §~—~n~m-2t+s-~§!~— m-s “ (_l)c-k
z ( cos 1 X 1 [T
s=0 = S-/ c - c sp-t-c¢ | (n-m-2t)'
.................................. (7.64),
n-m . . .
where k = > the value being truncated if non-integral,
and ¢ is summed over all values making the two binomial

coefficients non-zerqg

for q = 2p - n,

1 - ~ n-1 - 2d+n - 2p'. 2d+n-2p'
2,2 p-l Y
G__(e)=(1-e° p> ‘ ! | !’g[
npa d=0 2d+n-2pui- 4 1ok
\n-p ifpi 0.5 "t (7.65),
where p'-= 1 <
" p ifp= 0.5n

Equation (7.65) becomes more complex for

q #2p - n. Inequation (7.63),
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(n-m) even

. ~—;

i nm | _
S (w, M, gq, Q)=‘ cosd (n-2 w+ {n-2p +
nmpq © 1 __S _’ N p) p
-oonm (n-m) odd
g - {(n-m) even
{ “nm|
+q)M+m(9-9)} +§ sin{(n—Zp)w + (n- 2p+
-C
nm(n—m) odd)
+QM +m( g-0) + ... .. (7. 66).

In equations (7.63) to (7. 66), it should be noted that

- o . .

' ; indicates summation over the relevant
i

¢ H

b

terms while ' :

- ¢~ condition

i
!

; v | indicate alternatives

condition

as set by the conditions outside the grouping sign.

The effect of the disturbing potential on the varia-

tions of the Keplerian elements with time are given (Kaula
1962, 9) by

2

oV
a = -2 D (7.67),
n a oM
g 1
. 1__eZ 8VD ) (l_ez) 2 BVD 7. 68)
- 2 aM 2 8 w ------ - »
nae n a e
g g
av
. 1 D
Q = 1/2 81 ........... (7.69),

2
nga (1- ez) sin i
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2
. cos i 8VD (l—ez)"‘ 8VD
W= T 5T + 5 5o - (7.70)
nai(l-e )2gini w na e
. . e?. BVD 5 av
M =n -~ —> 3 - -é-- - (7,71,
€ na% °° n a a
g
and Lii =i - cos i aVD - 1 aVD
dt - 2 2L a3y 2 24 . 8%
na(l-e)2gini nai(l-e )2sini
g g
..... —g_.........(7.72),
where n (: M) =§-IE-%,I 5 ........ ) (7.73),
g i a A
from Kepler's third law.
(ii) Discussion.
v ov ov
- D and — must be sinusoidal in cha-
oM 0w an

racter from the form of Snmpq’ which, if small, could be inter-
preted as allowing a, e and i on the right hand sides of equations
(7.67) to (7.73) to be treated as constants. But this is merely
conjecture as the Keplerian elements are instantaneous as
can be seen from a study of the equations quoted. The entire
problem becomes exceedingly complex due to the non-linear
characteristics inroduced by these constantly varying Keplerian
elements. The most convenient development is the use of the
concept of an intermediate orbit which has an instantaneous
geometrical definition. Once this intermediate model is as-
sumed, different methods are available (Kaula, 1963, 532) for

the solution of the problem.
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(iii) The determination of zonal harmonics.

Zonal harmonics are obtained when m = 0,

and equation (7. 63) reduces to (Kaula, 1962, 37)

az kM ~1 n even
\' = ——— F (i) G (e) C_°
DnO a1r1+1 nOk nk(2k-n) n0 { 2sin® n odd
............ (7.74),

where k = -;—1 and p = k. The factor 2 appears in
the alternative value when n is odd as equation (7. 74) is the sum

of two equal terms obtained when p =k and p=k+ 1.

The determination of the even Cno's is effected by
analysing the secular changes in yand @ as the rates of change
of these quantities are reasonable constant. & is best to work
with as the ascending node can be unambiguously defined as the
point where the satellite orbit, on the celestial sphere, cuts
the equator going north (King-Hele et al, 1963, 123). The
observational data from a variety of satellites with different
inclinations of orbits to the equator is used in effecting the
solution. For the determination of the first n even zonal har-
monics, it is necessary to have adequate observational data

from the tracking of at least n satellites which is then analysed

for the orbital parameters.

In practice, the values of a and e for any satellite lie
within a restricted range and only the values of i have any varia-
tions of considerable magnitude. For example, King-Hele and

Cook (1965, 17) used seven satellites with values of i in the
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@ =i = 96° for the determination of JZ’ J

range 28 =
g 1 4’

J6 and J8. The full formulae for the determination of the
first n velees of the even zonal harmonics are given by King-
Hele (King-Hele et al., 1963, 123 et seq). Kaula (1963, 534)
emphasises the necessity for

(a) accurate evaluation of the constants of integration
and averaging the values of a and e for the elimination of drag
effects ;

(b) accurate determinations of i in the cases where i .
450, as errors in i for near polar orbits, give rise to large
effects on the value of . This is seen from a direct consi-

deration of equation (7.70) as an error e, in i causes an error

e in § given by

Q

(c) avoiding satellites with low perigees, non-spherical
shapes and large area-to-mass ratios as the calculation of drag

and radiation pressure effects in such cases is complicated.

The assignment of weight coefficients to obser-
vation equations in orbital analysis has also been the subject
of query. In fact, some researchers have tended to give such
small weight coefficients to data from polar orbital satellites

that such orbits have almost been weighted out of the solution.

The determination of the odd Cno's is effected by
substituting the partial derivatives from equation (7. 74) in equa-

tions (7.67) to (7.72). TFor odd values of n, variations occur
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ine, i, M, 4y and 9 with frequency w. The use of the con-
cept of an intermediate orbit introduces a complication as the
perturbations of e and i cause an interaction with C20 which, as
the latter is three orders larger than the other harmonic coef-
ficients, have a significant magnitude. Thus all terms of the

form CZOCnO must also be included in the analysis.

It is also of consequence to have the drag correc-
tions mentioned in (a) above to be correctly applied. If the
values of a and e used are not the average values, it is neces-
sary to correct the node and perigee for an average value on the

assumption that the perigee height is constant.

(iv) The determination of the tesseral harmonics.

The C‘22 tesseral harmonic was first pre-
dicted by Jeffreys (1962a, 187) from surface gravity values.
Surface gravity anomalies were expressed by Kaula upto the
eighth order (1959, 51 et seq). The rotation of the earth has
the effect of causing variations in 0 ( 8) which are many orders
of magnitude larger than the variations ( w R Q )in ® and €,
Thus, the tesseral harmonics, which are longitude dependent,
cannot be determined by a study similar to that described in
section (ii) above, as, inevitably, the frequency of observation
is not much greater than the frequency of orbital perturbati ons
caused by the tesseral harmonics. Further, even if numerous
observation stations were available, the result would be heavily
dependent on the absolute accuracy of the positions of the trac-

king stations.



151

The problem is made more complex by drag effects affec-
ting observations. In fact, most of the earlier determinations
were bedevilled by the inability to carry out an adequate statis-
tical analysis of the observational data and eliminate the cova-
riance between observations. The separation of the orbital
perturbations due to tesseral harmonics alone from those due
to drag effects, mutual effects and tracking station positional
errors has been effected by the Transit system where four sa-
tellites of ideal altitude and a good range of i are tracked elec-
tronically. The substitution of equations (7.63) to (7.66) in
equations (7.67) to (7.72) through the equation (7.59) gives

(Kaula, 1965b, 6) i

kMa n 9F (i)
= 1 e = nm
AR om 2 2.1/2 . . nt 1 ~ —————E—ai
nga (1-e7) " “sini a p=0
g Gn (e) L .
q== P4 (5 _2p) 5 + (n-2p+Q)M+m §-8)
~ (n-m) even
~C —
1 nm“]
i_s ’j sinﬁ’ (n-2p)y +(n-2p+q)M +m((a -0 )§_
~ " (n-m) odd
(n-m) even .
-5 -
i nm ' l
- | cos{ (n-2p)s +(n-2p+q)M + m( Q-9 )!
M (n-m) odd B
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For an to permit evaluation from observation,
(a) a must be small ,
(b) the index q must be small and the second nested
series must converge rapidly,
(c) the rate (n-Zp);) +(n-2p+q)M +m(9 - 8)

should be as small as possible. In general,

w o, Q = 10—2 cycles per day,
M =13 cycles per day
0 = 1 cycle per day. Hence, for the

best possible results,
(n-2p+q) - 0.
The major term m( Q ~ é) cancels itself
out m times per day. Assuming C and S to be of order
-6 nm nm
10 in the case of a typical close orbit, in the case of n = 8, the
perturbations range in magnitude from 10 metres to a few hundred

metres. For 24-hour satellites,
A= g +M+ 8 -8 ..., (7.77).

In the case of synchronous orbits, the use of equation
(7.67) together with equations (7.63) to (7.66) and (7. 67) gives

(Kaula, 1965b, 8)
n

F (i)

e
J nmp' ' np0

. .. 2 (
A = M =3n = ; =
c (n-m)event™ 2

(e)

"t

! C sinm(w+M+ Q-0)-S cos m( w+M+Q-9)§
nm nm ;

-

----------------------

, and ) o is the computed acceleration



153
of longitude. The observed acceleration ( °)\'O) is determined
from observational data obtained by the tr... . | 1. .- —all

for many weeks using the second difference of week-to-week

longitudes.

To separate the individual tesseral harmonics, it is
desirable to use orbits of varying i values, such that the rela-
tive magnitude of the inclination function anp(i) is varied.
Variations in a and e are not feasible because of the need to
keep perigce sufficiently high enough to avoid drag effects (i.e.,
above 800 km. ). It is simultaneously necessary to achieve a
balance as the value of a must be kept small enough to avoid

+ .
the 1/aI1 1 having a dampening effect by reducing the magni-

tude of A
o

(v) Limitations to the determination of harmonics from the

_EB *irkntions of artificial earth satellites.

(a) Zonal harmonics.

The methods used by earlier researchers
have been critcised (e.g., Cook, 196%, 181) on the rrouncds
that the assumption of the hypothesis that higher order harmo-
nics have negligible effects on the determination of those of
lower order is invalid. King-Hele and Cook (1965, 17) remark
on the inevitable changes which occur in the values of the zonal
harmonics obtained in the solution when more harmonic coeffi-
cients are used. These fluctuations in the values determined
are of the order off 0.1 x 10-6 and increase with the magni-

tude of the order of the harmonic being determined. Thus, the
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higher the order of the harmonic coefficientg buing considered,
the greater is likely to be the difference in the value obtained
for a specific harmonic in comparison to one determined from

an analysis to a lower order.

The use of spherical harmonics in the analysis of the
disturbing potential has given rise to the following problems
(i) the seriesof harmonic coefficients is not rapidly
convergent;

(ii) the solutions obtained by arbitrarily limiting the
number of harmonics considered may be systematically affected
by higher order harmonics which have been neglected, giving
individual solutions of internally consistent terms but whose

values, in an absolute sense, are inaccurate.

(b) Tesseral harmonics.

From a pragmatic point of view, the best deter-
minations of tesseral harmonics are from resonant orbits
(Kaula, 1963, 532) which have semi-major axes approximately
equal to 42,000 km. Under such conditions, it is unlikely that
any but the lowest order tesseral harmonics are capable of
accurate determination. Drag effects are being reduced to a
minimum on a new drag free satellite (Kaula, 1965b, 12) which
uses a proof mass as a nulling device to control gas jets to can-
cel out drag accelerations.

The pre-requisites for an adequate determination
are
(i) a network of observing stations whose positions are

accurately known on the same datum ;
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(i) a number of artificial earth satellites with orbits
ranging from polar to equatorial, some of which should be

resonant.

Thus would give all zonal harmonics up to order 13.
Those of order higher than 13 are capable of determination
from near-synchronous orbits, as are the low order tesseral
harmonics. The determination of spherical harmonics to date
(Kaula, 1965a, 2) has yielded estimates of the values of lzonal
harmonic coefficients through to 7 and tesseral harmonics
through to 6. The ignoring of higher order harmonics can be
interpreted as smoothing out the gravity field and is equivalent
to the representation of large areas by their mean values (Jeff-

reys, 1962a, 135).

Using the properties of spherical harmonics developed
in section (7.5), it can be seen that the combination of zonal
harmonics t the fifth order with tesseral harmonics through
to 6,6 gives a representation of the gravity field which can be
considered adequate if the mean values of the free air anomalies
of 30° x 30° areas are normally distributed. This would imply
that no covariance exists between the mean values of adjacent
30°x 3" squares. This premise seems to be acceptable
(Hirvonen, 1956}. Kaula (1966a, 26-7) has combined such

means with surface gravimetry o give values for 5° x SOsquare

mean free air anomalies. See scction (12.3)
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8. ADAPTATION OF GRAVITY DATA FOR COMPUTATICN

8.1 Introduction.

Gravity data is used in the calculation of the geoid

" Free

spheroid separation vector only in the evaluation of the
Air'" geoid , given by the term NFP, which by equation (1, 3)
is . o=4 5

i 1.3

| f(q,)Angcr ........ (1.3),

0

where f(y) is given by equation (5.33). NFP is related to
the true geoid-spheroid separation by equation (5.60). Implicit
in the evaluation is the knowledge of the free air anomaly at
every element of surface area do over the surface of the earth.
The integral is usually evaluated by quadratures. Equation

(1.3) can be re-writien, dropping the suffix P, as

R
m
Np =3 - (%) agp doy ..l (8.1),
m i
where ?
, 0, cos ¢)i
do, = T e (8.2)
180

In equation (8. 2), the element of surface area is
considered to be bounded by meridians and parallels of latitude

0 . .
n apart in each case. Using

R = 6,371.2 km and y = 979.77 gal ,
m m
N(Cm) = 1.57()){10"'2 Zn.z = fly. ) Ag(mgal) cos 9.
F I ij Fij ij
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where the size of square represented by the mean anomaly

A g depends on the magnitude of f( rpij) which takes the values

ij

f(y) > 100 for 1.2° 5> ;
10 > f(y) > 100 for 1.2° >y > 139,
2 >f(¥) > 10 for 132 > v > 30%;
j21 > 1(y) for 30° < g -

It is necessary to investigate the error intro-
duced into computations by the use of the mean value located at
the centre of the basic area instead of individual values located
at evenly distributed points over this same area. If this effect
is small, it is in order to represent large areas by their means
located at the centre of the area instead of using smaller sub-
divisions. This is quite vita] as the saving on computer time is
significant.

Consider a basic area within which is available a regularly
spaced network of gravity stations Pi(i= 1,n) at which the gra-
vity anomalies are Agi(i= 1,n), each of which is at an angular

distance y i(i: 1,n) from the computation point. If the mean

anomaly is given by n
| Zy ba,
— i=1 i
g= Miag} = e (8.4),

the true contribution to N (Nt') due to this region is given by

n
Nt: C izzilf(lpi) AB;  eeeeieiann. ..(8.5),
where C is a constant., If (:Sfi and 6 Ag, are the departures

of £( lpi) and Agi from f(y) and Fg, equation (8.5) can also be
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written as
N,=C 2| tF)-6t 1] Tg -68 "
t =1~ ish 1)
rn . . n . n
= C| Z fly' FTg =~-4g = of - f(V) = &b g +
~i=1 i=} 1 i=1 1
z §f, 50 g, (8.6
+ = . T 3
R !

The first term on the right hand side gives
the effect Nrn obtained by the use of area means centred at the
area centre. The second and third terms are, by definition,
zero. It should be noted that, in the case of f{ ¢ ), this supposes
that the function varies linearly over the area considered. Thus,
the error that arises in the calculation due to the use of the

area mean instead of individual values (en) is given by

n
e = 121 B, 608 i (8.7).

Both f( y) and Ag vary systematically over the area
considered, except in the case where the unit of area exceeds
300, when the lat'er can be considered to belong to a population
which exhibits zero covariance. For smaller basic areas, a
systematic correlation between the gravity anomaly gradient
and y could give rise to serious errors in adopting the
adequacy of representation of the mean.  While the former is
dependent on the existent gravity field, the latter is strictly a
function of position from the computation point.

If the square size was assumed to be equal to 50,

the variation of f( y) with increase of ¥ is negligik™ 2, affecting
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the fourth significant figure, for values of ¢ > 65°. Thus, in
the case of any calculation, it is ! c¢wd-x to use the assumption
of adequate representation by the area mean for three-quarters
of the earth, irrespective of the nature of the gravity anomaly
gradient. Thus the covariance term in equation (8.6) can be
taken to be zero for ¥ > 65° if elemental area is the 5° x 5°
square.
This same assumption will hold to
(1) the third significant figure for 59° < ¥ < 65°;

(ii) the second significant figure for 16°< ¥ < 59,

It will be necessary to work with smaller area
means i’ the error due to the covariance term is to remain
negligible and independent of any assumptions regarding the
gravity anomaly gradient. These arguments are based on
the assumption that a fully represented gravity field is availa-
ble, which may not be the case. Summing up,

(a)_if the gravity field is fully represented ,

(i) For ¢ > 650, adequate representation would be
obtained by the use of 5% x 5° square means as {Sfi = 10-3,
and even allowing for the definite improbability of a constant
gravity anomaly gradient of the same sign and of magnitude

mgalcm' The re-

6 g, the resulting error en - 0.7 &

sulting value can justifiably be expected not to exceed 0.1 cm.
(ii) Inthe region 16° <, < 65°, the number of

57 x 5° squares is approximately 650. The number of 19x1°

squares in this same area is approximately 1.6 x 104. As no

. . o} o .
covariance exists between 30 x 30 square means, it can be



160

expected that the gravity anomaly gradient changes sign at
least twice along any particular azimuth in the region and
hence the magnitude of e, arising from covariance effects in
this region is unlikely to exceed 2 cm.

(iii) In 10°< ¢ < 16°, it is quite reasonable to assume
&6 Ag to have the same sign over significant extents over a
smaller unit of area over which means are to be taken. As
the number of 1° x 1° squares in this region is approximately
600 and the value of 6f in this region for 1° x 1° squares is

fhe contribution to e is unlikely to exceed cm.
(iv) In 1.2°< Y < 10°, the quantity &f ranges from
4 as ¥ varies between the limits. The use of a

combination of 0. 19 x 0. 1° squares for the inner area and
0. 5O x G, 5O for the rest will enable computations to be carried
out such that the resulting errors due to the covariance term
are of the same order as in the previous cases.

In general, it can be seen that, in the
case of a fully represented field, the following representation
of areas should give a value for NF which will have errors
which are an order smaller than those inherent in the spheri-

cal assumption.

Range of y Size of basic area
b 207 52x52
10 'gw <20 1 x 1
1.55 ¢y < 107 0.50x0.5;
0.1< y < 1.5 0.1 x0.1
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(b) If the gravity field is inadequately represented

In such cases, n + 0 and some assumptions
have to be made about the distribution of gravity within indivi-
dual units of area. In such a case, the mean gravity anomaly
( E { ag} ) is only an estimate of Ag defined in equation (8.4)
and E{ ag}only represents a point central to the observed g,

(i=1,n). Let E{ pg} be related to the true mean Ag by the

relation

i = E{g} + cAg ............ e (8.8).

Substitution in equation (8., 6) gives

. ~—

n i [
N, = C iﬂ\ E{ag} +c o 6Agijff(¢) - 6fiJ

b1

- ~ o _
= C !\nE{Ag} (Y - E{ag} Eléfi tne, gf( ) -

n

n —
~c D6 + D bag Of | ....... (8.9),
082 j=1 *? i=1 totg

-

n
as X & Agi = 0 by definition.
i=1
In this case, it can be seen that any marked asymmetry

about the centre of the square in the distribution of the readings
introduces two additional terms in the expression for N,. 1If
the readings are symmetrically distributed about the centre of

the square, equation (8.9) reduces to

n
N, = C | I 6ag of, +nf¥) | E{mg) +c

..(8.10 .
t i=1 “ Ag
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Equation (8.10) shows that if the available sample is
evenly distributed over the area to be represented and if
E {Ag} is a reasonable estimate of the sample mean ~2g,
no additional errors will be introduced into the computation
over and above those for a fully r.presented sample. For
distant zones where y > 650, even a bias in the distribution
of individual samples is unlikely to cause systematic effects
in view of the fact that the final result is the summation taken
over a very large number of areal elements. In the critical
zone 16° < P < 65° which is composed of appro-
ximately twenty five 30° x 30° squares whose means are
normally distributed without covariance, the effect of the sum-

mation of the terms which include ¢ A is unlikely to be cumu-

lative,

Conclusion :-
The computation of the free air geoid can be
adequately carried out at any particular point in 4 stages :-
(a) Computations for an outer zone which is made up of

approximately 2500 5° x 5° squares in the region ¢ > 20°,

(b) Computations for a mid zone situated in the region
107 < ¢ < 200, composed of 1200 19 % 1° squares.
(c) Computations using means representing approxima-

o) ..
tely 1600 0. 5O x 0.5 squares comprising a near zone.
o)

*

(d) Computation of an inner region for y < 1.5
in which a closer spacing of gravity data is necessary.

In the case where the field is not fully represented
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and the r zan anomalies are computed from sparsely distri-
buted populations, the computed mean is acceptable if

(a) the sample is evenly distributed about the centre

of the square ;
(b) the computed mean ano~ ly is a reasonable

estimate of the true square mean.
In view of the fact that the means of 30° x 30° squares
form a normally distributed population with no auto-correlation,
the effect of slight biases in the individual means so computed,
provided the sampling is carried out methodically, is unlikely

to produce any cumulative effect on the final result.

8.2 The required form of the gravity data.
The following gravity data is required to

compute NF at any point :-
(i) Free air anomaly means f v 5° x 5° squares over

the ent” ty of the earth's surface (approximately 2600 squares

in all} ;
(i) 1% x1° square means for all areas in the range
10° < v o< 20° ( 1200 quantities in all) ;
(iii) 1600 oO. 5 x 0.5° square means in the range
1.5 < y < 10°,
Iso-anomaly maps showing free air anomaly con-

(iv)
vy = 1. 50,

tours in the region within the circle of radius
centred on the computation point.
All these gravity values have to be tied into a

common control network which must, therefore, have a
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datum of international significance. In general, the data used
can be divided into two broad groups: -

(a) Gravity data on the Australian mainland and
continental shelf regions.

(b) Overseas gravity data. This, in the case of
calculations on the Australian mainland, will almost entirely
fall into category (i) above. The nature of this data is discu-

ssed in section (12, 3).

8.3 _An Australian geodetic gravity network.

An Australian geodetic gravity network is
defined as one which, when fully established, will provide
adequate gravity data to enable geodetic calculations to be made .
at any point on the Australian mainland. Such a network will
provide the fully defined field of n stations required in equation
(8.9) to enable CAg’ defined in equation (8. 8) to be zero. For
this purpose, it is desirable to choose the smallest possible in-
terval in which the choice of a single representative gravity
station will b': adequate to represent, in toto, the variability
of the gravity field. If this minimum interval is chosen as vo,
the criteria which fix the value of v are :-

(a) The extent of gravity data available. For example,
if the gravity data is available in the form of iso-anomaly maps,
v cannot be smaller than the interval between the gravity sta-
tions from which the iso-anomaly maps were drawn if no
other sources of error are to be introduced into the chosen

field.
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(b) The accuracy with which the chosen anomaly can rep-
resent the chosen v x v_ area.

(c) The linearity of the function f(y) over the interval
chosen for the close field. For fields which are not fully
represented, it would suffice if the linearity condition held to
the third significant figure,

These factors are further controlled by the

necessity for the realistic use of the computer to obtain results

which aspire to an accuracy in keeping with that possible from
the available field.

In Australia, the majority of the continental coverage
has been established by the Bureau of Mineral Resources, Geo-
logy and Geophysics (Dooley, 1965) using a series of helicopter
gravity traverses with a station spacing of 8 miles. This app-
roximates well to the corners of a square where v = 0, 10. This
square size adequately satisfies the linearity condition in (c)
even when y < 1° and does not overstrain the resources of a
medium sized computer. The error in representing a 0, 1°
x 0.1° square by a single reading (Hirvonen, 1956, 2) is about
- 3 mgal. The resultant error in the computation of N (equa-
tion (8.3) ) is unlikely to exceed 10 cm, an amount which is

considerably smaller than that introduced by the spherical

assumption.

On this line of reasoning, the basic square size as re-
quired in equation (8.6) was chosen to be

v=0.12 (8.11)

in the case of the Australian gravity field.
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8.4 The Australian Reference System.

The gravity network for geodetic calculations
to be set out at corners of 0.1° x 0. 1° squares , as discussed
above, must be based on a common datum. This datum has
to be established using a measuring accuracy which is substan-
tially greater than that of the network being controlled. Such
a network has already been established in Australia by the
Bureau of Mineral Resources. Originally, the reference sys-
tem was a network of pendulum stations (Dooley et al, 1961).
This has now been superceded by a more extensive survey
called the Isogal Regional Cravity Survey as explained in sec-
tion (7.2). Provisional values known as the " May 1965 Isogal
values were assigned to all such control stations. These va-
iues, though accepted as final for the present, are subject to
change due to

(a) any change in the value at the Potsdam datum ;

(b) any correction to the connection between Potsdam
and Melbourne, estimated to be of magnitude 0.5 mgal.

(c) any international decision which could affect the
value of the Mean Australian Milligal. This change (Mather,

1966b, 8) is expected to be of the : ~der f 1 part in 3 x 10-3.

8.5 The Mean Australian Milligal.

All gravimeters in Australia are calibrated
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against standard gravimeter calibration ranges established in
each of the major cities in Australia (Barlow, 1965). It is
common experience that the instrument calibrations provided
by the makers of American gravimeters are up to 0.4 per cent

higher than the standard provided by the B.M.R, .

The Bureau's standard is based on a "

standard gra-
vity interval'' established between two points in Victoria, the
difference being originally determined by pendulum observat-

ions. This was further amended as a by-product of the Aus-
tralian gravity network adjustment in 1961 (Dooley, 1965),
using gravimeter ties between all pendulum stations in Austra-
lia. The revised value so obtained was used to establish the
nationwide Australian calibration standards. Barlow reports
(1965, sec. 7) that this new set of differences agrees "'fairly
well with both the 'Recent American' and the '1957 European’
systems', described by Morelli (1957). This is also in agree-
ment with values obtained by the United States Air Force,
using a battery of four La Coste and Romberg gravimeters,
when the results obtained were found to agree with the Mean
Australian Milligal to approximately 2 parts in 5000 (Whalen,
1966) .

8.6 1° x1° and 0.5° x 0.5" square means

The discussion in section (8. 1) shows that the
even distribution of readings over a square is vital if the sample
used in the calculation of the area mean is to be a representa-

tive one. Further, the reliability of the estimate E {pg} of
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the square mean obtained from the available sample will vary
from square to square. Superficially, it appears to be in order
to use all available gravity readings to compute sample means,
without any consideration of the reliability of the sample
(e.g., Heiskanen, 1962; Uotila, 1962 ). This is probably due
to the paucity of available gravity data and the futility of trying
assess the accuracy of woefully inadequate data samples. In
the transition period till a complete network is obtained, some
assessment of the accuracy of the results of gravimetric com-
putations must be made. In the case of fields which are not
fully represented, it is necessary to take into account an esti-
mate of the accuracy of E{A g} if any estimate is to be made
of the accuracy of the value of N computed. This matter is

more closely investigated in section (9).

If 2 u° xu° area is to be fully represented by n
gravity readings, each of which represent a v x v with a

representation error ES, in the case of full coverage,
2
N = o (8.12),
v

and the error of representation Eu of the u” xu” square by

the mean of the n readings is given by

T

Ls v <, Eu< mg. Hence the error of
. o o) T
representation of au x u square which is completely c-7craod
by a geodetic gravity network with specifications as laid down

in section (8.3) is a negligible quantity. For example, for a
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o} 0 X o
fully represented 0.5 x 0.5  square, usingv= 0.1,
E = f 3 mgal and Eu - 1 0.6 mgal, On a si-

. . o} o
milar basis, for a fully represented 1~ x 1~ scquare,

-+ .
Eu = I 0.1 mgal.

8.7 The comnpilation of a geodetic gravity network for Australia.

The basic data is available in one of four forms :-

(a) Iso-anomaly maps prepared from close gravity surveys.
These maps are available for surveys carried out by the
B.M.R. as well as various geophysical prospecting groups.
They are printed at scales varying from 1 : 50,0001t0 1
500,000. The anomalies shown are, invariably, Bouguer
anomalies, which are usually established with respect to
the B.M.R's Isogal network, using M.S.L. as the datum for
elevations. In instances where the station spacing is of the
order of miles, the elevations are established (Mather, 1966b,
10 et seq) by altimeterwith frequent checks on bench marks
established by third order levelling. The accuracy of station

elevations in such cases is about T 3 metres.

On certain surveys, both the gravity and ele-
vations were on arbitrary datums. Such surveys were connec-
ted to the Isogal datum for gravity and M.S.L. for elevations
prior to incorporation in the unified scheme. Anomaly values
were then read at the corners of 0.1° x 0,1° squares and these

were loaded onto the University of N.S.W's I.B.M. 360/50
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computer. The elevations of all 0. 1°x0.1° squares were
read off available topographical maps and also stored in the
computer. As the relationship betwe: n Bouguer and free air
anomalies can be assumed to be linear over a 0.1° x 0,1°
square, the mean free air anomaly for the 0. 1°x0.1° square
was obtained from the relation

— (wmcel) . ——

R o h_ ... .
Mg , agp * 0.041870 L (8.14),

where A—g- is the mean Bouguer anomaly
in mgal and hm the mean square elevation in metres. The
quantity p is the density used in the preparation of the iso-

) -3
anoamly map, expressed in g. cm

(b) Gravity traverses run along access routes. Station .

on such traverses do not necessarily fall on the corners of

0. 1O x 0. 1O squares. In such cases, while an accurate value
of station position was required to obtain a value of latitude
for the computation of the free air anomaly, the gravity station
was used to represent that 0. 1° x 0.1° square corner which
was closcst to it. No attempt was made to interpolate the
value of gravity at the location of the square corner, as the
spacing of the traverses made the gain in accuracy quite mar-
ginal. The error in the gravity value of square corners

on the basis o! representation instead of interpolation can be
expected to be random and hence with littl'» or no change in
the estimated value of ES . This conclusion is in agreement

with the findings of Moritz (1964, 14).
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(c) Gravity traverses run specifically to establish geodetic
gravity networks (Mather, 1966b, 12). The gravity stations
on such traverses are located at the corners of 0.1° x 0. 1°
squares. The general accuracy of the established gravity
values was greater than T 0.25 mgal and the station elevations,
established by altim ter had errors not exceeding T3 meters,
provided the differences in elevation, established aitimetrically,
were controlled by more than one base altimeter, paying atten-
tion to the direction of movement of Jocal pressure fronts and
hence obtaining a better estimate of the slope of isobaric
surfaces.
(d) Local gravity surveys with local datums for both
gravity and elevation.
All gravity data so assembled from the records of
the Bureau of Mineral Resources, the South Australian Depart-
ment of Mines and certain geophysical prospecting companies,
were processed on the computer along with the mean elevations
of 0. 17 x 0.1° and the following quantities were computed

. . . o} o}
(a) {free air anomalies representing 0.1 x 0.1

squares ; o o
(b) free air anomaly means for 0,5 x 0,5,

1° X 1° and 5O X 5O squares ;

(c) elevation means for the square units mentioned
in (b) . This data, in the case of 1° bid 1O means , excluding
any resiricted information as on 1.3.67, has been used in
compiling Appendix (1). Appendices (2) and (3) give the sam-

ple standard deviations and sample sizes respectively for the
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Australian mainland.

The actual gra;\rity data available is insufficient in the
above form for calculations using equation (8.3) as the summa-
tion must be taken over every .element of surface area. Fur-
ther, a study of appendix (1) shows the inaccuracy of the assu-
mption that the free air anomaly in unsurveyed areas is zero.
Thus, it is vital to make some estimate of the value of the free
air anomaly in un-surveyed regions on the basis that some

correlation exists between the values of adjacent square means.
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9. THE EXTENSION OF THE GRAVITY ANOMALY FIELD IN
SOUTH AUSTRALIA

9.1 Introduction.

Gravity surveys have been in progress in Austra-
lia for over 20 years (Thyer, 1963). The boundaries of South
Australia have been described in section (1.5). It is (see fig
(9.1) ) a reasonably flat area with a mean elevation of 120
metres, the maximum and minimum lO X 1° square mean ele-
vations being 565 metres and - 275 metres respectively. The
western half of the state is part of the pre-Cambrian granitic
shield, which extends further westward, and is, by and large,
semi-desert in character. The rock formations are essentia-
1lly sedimentary, being generally cainozoic with some protero-

zoic formations in the hilly regions.

In computing the geoid-spheroid separation vector
from incomplete gravity data, it is of importance to make some
assessment of the accuracy of the data from which the calcul-
ations are made. Thus, it is necessary not only to determine
the best possible value for the mean value to represent a given
unit of surface area but it is also of significance to assess the
accuracy of the value adopted. This is dependent on two
factors in addition to the sample variance itself, which gives
a measure of the degree of variation of the gravity field over

the area studied. These arethe size of the sample and its
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distribution over the area considered. As a result of accep-
ting the criteria set out in section (8.1), only about one tenth
of the available gravity data could be included in the sample
used for computation. The distribution of approximately 4000
gravity stations used in an analysis carried out in ~rly 1966
is shown in fig (9..)), being concentrated along the northern
and eastern borders of the state. The area is essentially a
region of negative free air anomalies (fig (9.3) ), the field

being extremely variable in the north west { fig (9.5) ).

9.2 The correlation between mean free air anomalies and

mean square elevations.

BEarlier research (Uotila, 1960} indicated
that the following relation between the free air anomaly and

the station elevation was satisfied over limited regions.

AgF = C +0.1118h ....... ... ... (9.1),
where AgF is in mgal and h in metres. Cis a

cong "ant over the region. The scope of this type of expres-
sion is limited in relatively flat country where the variation,
with position, of free air anomalies is considerably greater
than can be accounted for by the height term. Nevertheless,
it can still be of some use in the establishment of estimates

of values for regional free air anomalies to be used in the low
degree harmonic analysis of gravity material. The results of

a least squares fit of equation (9.1) over 9 areas in South

Australia is shown in fig (9. %), the value of C being obtained
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Longitude (degrees east)
128 132 136 142
L d 26
. e 64 -49 -14
L2 5 (415) (262) (583)
¥ -26 -21 -19l \
u € 34 (86) (40) (175)
a € - 22 2
FIG (9.¢)
Regional free air anomalies from height-anomaly
correlation. Values of C in mgal. Elevations (in parentheses)

in metres.

for 0.5O pe .5O means .

9.3 The spread of a sample.

A criterion already defined for the spread ¢
a sample (Hirvonen, 1956, 1) is the ""error of representation"

ES , given by

2

t
t B = Z
i=

S
where A_Ei is the mean an’ aly in the i-th square,
A gij are the obser -ed anomalies,

nithe number of readings in the i-th square

and t the total number of squares considered.
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In the case of 0.5° x 0.5 squares, as a fully represented
square, on the basis of criteria set out in section (8. 1), has
only 25 readings in it, the denominator used in equation (9. 2)
was (n- 1) instead of n (Spiegel, 1961, 70). Analysis of a
high proportion of the South Australian sample showed good
agreement with the set of values obtained by H:rvonen, except
possibly, in the case of 0. 5° x 0.5° squares. This is due
to the highly variable field in the north west corner of the
state, where the free air anomalies approach -100 mgal and
the standard deviation of free air anomalies within a single

square are as large as I 82 mgal.

The ES values in table (9.1) are compiled from free
air anomalies and would apply, with relatively slight variations
to both Bouguer and isostatic anomalies due to the relatively
small elevation gradient in the region. Thus, while the varia-
tion of gravity is similar in magnitude to that of the European
gravity field over large extents (Hirvonen, 1956, 3), it is

slightly greater over limited ones.

9.4 _Extension of the gravity field to unsurveyed areas.,

The extension of the available gravity field to
provide continuous gravity coverage has been investigated by
Jeffreys (1941), Kaula (1959), Moritz (1964) and Uotila (1962).
The methods of extension used are fully described in the first
three researches. Much less data was available to Jeffreys

than to Kaula who had the added advantage of an electronic
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computer to handle many more unknowns in a truly simul-
taneous solution. Jeffreys sets out his solution explicitly.
He worked on a 10° x 10° square unit, assuming a singl
value to represent each square after allowing for height
correlation. A series of observation equations were then
fitted to each parallel from which harmonic coefficients
were evaluated up to the fourth order.

Kaula, on the other hand, used Markov theory
to interpolate 1° x 1° square me ans using all! available va-
lues. Autocorrelation analysis was then used to assign
values for the mean values for all 10° x 10° squares. A set
of low order spherical harmonics up to the ¢ :hth degree
was fitted to these ten degree means by the simple ortho-
gonal method using fully normalised coefficients (Kaula,
1959, 89). TUotila obtained a solution by fitting harmonic

coefficients vging 2 leaet agnars- analysis.

The application of spherical harrmonics is unsuited
to limited areas and Moritz (1964) used covariance analyvsis
for carrying out the field extensions. Both Markovian
predictions and covariance analysis tenc to yield over-
smoothened fields (Kaula, 19652, 4) unless adecquate samples
arc available over local extents o re-compute the operatio-
nal functions so as to be relevant over local areas. While
the inadequacy of “lie available samples is likely to make this
possibility rather remote, the computer time expe ded in

the process is seldom worth the effort.
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In the analysis of the South Australian data, a two dimen-
sional trigonometrical series was chosen to represent limited
areas in two distinct stages:-
(i) The extension of the gravity anomaly field in a
limited u® x u® area where single readings represent
v” x v° areas. The total number of possible readings (N)

is given by

.. . o} o
(ii) The extension of w x w square means over a

a larger area to unsurveyed portions.

Let the predicted value of the gravity anomaly

E{Ag} be given by an equation of the form

p
Epg(B,a)= = Af(8,2) ......... (9.4),
i=1 11

where Ai (i=1, p) are constant coefficients and
fi({b, A) (i=1, p) are functions of § and A whose form is known.
The values of the p constant coefficients are determined by
setting up the observation equations at each available gravity
station in the area. If the number of available gravity stations

isn ( = N), let the residuals rj( j=1, n) be given by
r. = Ag(f,2) - £ a (0, 2) ..... ..(9.5).
i g ) 2 M )

The values for Ai (i=1, p) are chosen on the assump-
tion that the rj (j=1,n) are normally distributed. In this case,

the most probable values of the residuals satisfy
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F o= % w.r.2 = minimum .......... (9.6),

where Wj (j=1, n) are the weight coefficients, which in

the first case described above will be equal to unity. The

required set of equations for solution are

O 0 KeLD e, (9.7).
8A,

The use of equation (9.5) in equation (9. 6) to satisfy

the contl'tions set out in equation (9.7) gives

b

n
2w,

j:l il £3(¢: )\) - :_5)1 Ai fi(¢’ }\) } fk(w’ A) =0

k=l,p ............ (9.8).

The solution can also be expressed in matrix nota-

tion as
FA-G= R ....ic0ciiviiia. {(9.9),
where
fll flz ........ flp Al Agl
fZl f22 ........ pr A2 Ag2
F = ’ A= ’ G =
f.f 0 ..., \
nl n2 fnp Ap; 08,
T
and R §r1 r, rnt

For a least squares solution,



185

1 RIWR = minimum ......oooon.... ..(9.10),
where
w11 1 0
0 WZZ ............. 0
w o= | > e, (9.11)
| w
nn

The substitution of equation (9.9) in (9. 10) and diffe-

rentiation with respect to Ak (k=1, p) gives

A=Fwe) v Twe . (9.12).

9.5 The extension of fields in uo X uo areas where v = 0. 10.

The choice of a suitable trigonometrical series depends

not only on the available computer storage but, paradoxically,
it is also dependent on the available gravity field. Field ex~
tensions obtained from limited amounts of data using functions
with a high degree of resolution are generally unreliable., In the
analysis of the South Australian data which was carried out on

the C.S.1.R.O's C.D.C. 3200 computer, the available com-

puter stor “ge restricted the maximum value of u to 2°. A

series which gives adequate representation independent of the

value of u is

2q

rgld,r) = b A cos{m (p-0 )i}t + = A,

i=0 * © i=q+t1 '
3q
singn(@-$ Ni-q)} + i=§q+1Ai cos{ = - ) (i-2q)} +
4q
+ = Ai sinl m(x -)\n)(i—3q)} ........ (9.13),

i=3q+1 *~ e
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where p in equation (9. 4) is given by

p = 4g9+1 ............ e (9.14),
¢O, A ° are the coordinates of the south west corner of the
uo X uO area and (#, A) are the coordinates of the 0. 1° x 0. 1°

square which is represented by the gravity anomaly Ag($,2 ).

Repeated application to varying sets of data showed
that the minimum conditions for a non-trivial solution are :-
(i) A minimum of 5 readings should be available
. \ 10 10
in every constituent 5 X 5 square.
(ii) At least one reading should be available in

every row and column of the array.

While lesser amounts of data have provided seemingly
acceptable solutions, the results are subject to fortuitous cir-
cumstances. Thus, in the case of a 2o b 2O area, 80 well
distributed values can give estimates of the balance 320

readings. This, in effect, provides a 1 to 5 extension.

The .2 ree ~f-resclution of the function defined
in equation (9.4) is g-verned by the value of q in equation
(9.13). While the maximum value of q is controlled by the
available computer storage, the actual value used is deter-
mined by the amount of gravity data available, In a pilot in-
vestigation, it was found that increasing the ratio u/v : gq
above 2 : 1, while requiring more computer time, did not ma-
terially improve the accuracy of the extensions. Extensions of

reasonable adequacy were obtained by setting u/v:q = 3 in



187
the case of well represented fields. In regions with inadequate
representation, improved results were obtained by reducing
q in equation (9. 13) in the range of values 7 = q 20
for u=2"asnin equation (9. 8) reduces through the range

80

HA €

< - .
n = 1, the extreme case being one of direct represen-

fation.

These conclusions were used in the prediction of values
of the gravity anomaly at unsurveyed locations. The anomaly
to be used in these extensions must, ideally, be free from cor-
relation with height as the series represented by equations
(9.8) and (9. 14) can only adequately represent variations in
gravity anomaly with position, It is therefore preferable to
used an anomaly such as the Bouguer anomaly in the extension
if equation (9.13) is to be used in the stated form. If, on the
other hand, free air anomalies are to be used directly in the
extension, the series must be enlarged to represent variations
in h. This was felt to be a wastage of effort as 0. 1° x0.1°
square mean heights were available for all squares in the

region analysed.

The Bouguer anomalies so predicted were corrected
for the height term (Heiskanen and Vening Meinesz, 1958, 153)
using the estimated elevation of the tenth degree square. An
attempt was made to check the accuracy of the field extension
made by studying the comparisons made between predicted
values satisfying conditions (i) and (ii) for non-trivial solutions

and gravity data which became available subsequent to the
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computations. 154 comparisons, made from different solu-

tions in a random manner were made in six different 20 X 2o
areas and the differences (predicted value -~ observed value)

vrere found to be normally distributed with a standard deviation

of ¥ 7.2 mgal.
In fitting the two-dimensional series defined in equa-
tion (9.13) to a field with a varieble number (n) of gravity sta-

tions in it, the error of prediction (eP) is given by

ep = E{ag(d,2 )} - agld,n) ........

e, was found to increase with n for a fixed value of q.
Table (9. 2) sets out values of the mean error of prediction {

M {eP} )for = =7, It can be seen that, while the available

storage of tho zomputer used restricts the maximum value of
5 - ossible, the magnitude of the error of prediction in well
representad fields necessitates the ''normalisaticn" of predictcd

values prior to use. This can be effected either manually using

a graphical extension technique ¢.- by the use of Markov theory
(Bartlett, 1960, 24 et seq) as the accuracy of the predicted va~

lue is dependent not only on the error of prediction at the adjn-

Ivr
R Y

cent gravity stations, but also on the average gravity anc.

gradient G, given by

a Ag|
c = ’Efgf .................. {9.16),

where d Ag is the change in gravity anomaly which occurs

over the distance dl.

Following a nrocedure similar to that adnnted by
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Kaula (1959, 9), let the couplet ciu be given by

C. =
iu

P is given
b iu !
v ¢; P, (81)
Efe,} = —&—— ... e (9.1),
P, Y (81)
PJ-V

where pljl‘lr(ﬁl) is the probability of the couplet i occurring

a distance 61 away from the couplet C.vo suppression of an index

denotes summation with respect to that index. The mean value

of G over the area being investigated was 8.9 mgal / 50 km,

with maximum, modal and minimum values of 48, 6 and 0 res~

pectively. The mean comparison error M{ e g » given by

- o 2 1 n | 2
[Meg] = 5 £ Eugt 0y Bep - g9, 1) |

—

........ ceees..(9,19),
was ¥ 3.2 mgal for the 154 comparisons.

Field extensions carried out under the above con-

ditions can be expected to have estimated error of prediction

of 3 mgal, which is of an accuracy comparable with the rep

resentation of a single tenth degree square by a single reading

(Hirvonen, 1956, 2). Relaxation of the criteria at (i) to 3 sta-

tions within each of the constituent half degree squares, while

maintaining those at (ii) gave estimated comparison errors of
+

- 8 mgal, which, on normalisation reduced to i' 6 mgal.

If these minimum conditions are not satisfied, the
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(¢] ¢]

1 1 20 4 2°
5 X 5 squares X squares

Sample size M{ep} Sample size | M {e_}

(n) mgal. (n) mgaleT
0<n S 5 [ty4.y4 0<n £ 20| * 1.8
5<n £ 10 |Te6.0| 20<n = 50| * 2.3
10<n <15 |t¢.4 50<n = 100| * 4.7
15<n 220 |t7.3| 100cn & 200] * 6.7

20 cn £ 25 |t 6.5 2000 n < 300 t 8.3

300<n = 400] ¥ 8.3

Total sample| ¥ ¢.5 Total sample] T 8.3
TABLE (9. 2)

Classification of errors of prediction

the error of field extension becomes much larger and, unless
q in equation (9. 13) is reduced proportionately, the functional

representation becomes erratic.

9.6 The extension of the field in wo X wO areas where v = 0, 50.

A field extension on lines similar to the above can be
performed from -31-0 x %o means, which have already been computed

, . : o_,0
on the lines set out above to establish an estimate of 1~ x 1° areas

2
means in regions where no observed gravity is available. The
field extensions, in this case, will be made from data which does
not have the same reliability as

(i)  the number (n) of readings used to evaluate the
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the mean ;
(b) the standard deviation (o) of each sample

vary from square to square. While
n is dependent on the available gravity field, o is a function
of the variability of the latter and is not dependent on topo-
graphy alone . The appropriate weight coefficient (w) is
thus given by an expression of the form

1
2)'
o

2
late the nature of win, 1/o ), it must be borne in mind that

w = win,

In attempting to formu-

the final weight coefficient must reflect the distribution of
the sample within the area to be represented as a high sample
density in a restricted area may give too small a value of ¢
as it is not truly representative of the area. Further, the

expression should reduce to

w = llE: ............ eev...(9.20)
whenn=1ando =0 and
2
w + N/o (9.21),

where N is the maximum number cof readings possible,

as n->N,

In general, the weight coefficient should be inversely
proportional to the variance of the sample mean. However,
in squares where the sample only covers a small fraction
of the total area, the use of n/o'2 tends to overestimate the
weight coefficient. An expression for the latter which not

only satisfies the limiting conditions but also the general
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requirements is

2 -1

w:-—rlzi’1+——(1§—'2—r92—Eij ceen(9.22)
LN (N-1) ¢

as

E

S L[, ety
~ (N-1) J
The individual weight coefficients for each %o X %O
square were incorporated in equation (9. 8), which was ex-
pressed in the form set out in equation (9. 13) prior to solu-
tion. In this manner, the available field was extended to

unrepresented areas.

The use of the weigh coefficients in the analysis
of a given field with considerable variation locally was found
to give a smoothened field when compared with a similar
extensicn, but with weight coefficients set to unity for all
available values. The values of E {ag($, ) } so obtained
in the weighted solution were normalised as explained ear-
lier using equations (9.15) to (9. 18), and the final extended

value accepted was

rg(d,2) = E {pgd,r )y - E{ePM,x )} .. .(9.24).

The assumption that the Bouguer anomalies
used in the extension were free from height correlation is
a justifiable one as the maximum mean elevation for 1° x 1°

squares in the region considered was 803 metres.

The extended free air anomaly means were
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obtained from the exte nded Bouguer anomaly using the
mean square elevation. These extended values were used

to supplement the observed values in compiling fig (9.3) .

9.7 The accuracy of the field extension.

The precision of any prediction can be checked
in one of two ways. Firstly, the extended values can be com-
pared with actual ones. Alternatively, the extended values
obtained by the use of any particular method could be compa-
red with those obtained by any other acceptable method. Let
the predictions be required in certain positions of am x n
array of /g where certain values of the quantity are available.
Three distinct cases of prediction of the anomaly are pos-
sible :-

(i) Interpolation :-

In this case, the readings ag(h, u), ag(j, u),
A g(i, t) and Ag(i, v) are available ; h<i<j,; t<u<w,

(ii) Interpolation / extrapolation ;-

In this circumstance, one only, of h, t, j
and v is zero, on adopting the convention that
2g(0, u) = agli, 0) = no reading available.
(iii) Extrapolation :-

At least one, each, of (h, j) and (t, v) is zero.
A preliminary study showed that the reliability
of predictions was strongly affected by the variability of the

gravity field and all predictions were normalised in terms
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of the average gravity gradient in the area, using the re-
lation

E{C}
E{ G}

where N{ C} is the normalised prediction, E {G}

N{C}

the predicted gravity anomaly gradient , E{ C} the predicted
value and M{ G} the mean gravity anomaly gradient. The
normalised predictions so obtained were classified accor-
ding to

(i) the minimum interval (Ii)’ (j=h) or (v - t), as the
case may be, for interpolations and interpolation/ extra-
polations ;

(b) the minimum interval (Ie), i-h(orj) or

u - v( or t), in the case of extrapolations.
Four different methods of prediction were

used :~
(a) Graphical,
(b) Markov theory.
(c) Trigonometrical series with weighting.
(d) Trigonometrical series without weighting.

If the standard deviations of the comparisons bet-
ween method (c) and any one of the others were v, (i=1, 3),
reliability limits were set to the values of Ii(e) accépted on

the basis that

o - o 3 K M{Ggl , i=1,3 (ifi>3,- 3)
. C,
i i+l

where K is a comparison factor. For interpolations,

acceptable agreement. was obtained between the o, for
i
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Standard deviations of discrepancies

in field extension (1 mgal )

Numbers in parentheses represent sample size

g 4 :
Ii(e) 1 2 3 5 6

Interpolation |2 (15) {5 (22), | 5(22) | 5(45) |5 (61)} & (71)

Interpolation/ | 6 (2) |5 (7) 11 (20) |18 (37) |10 (41) | 9 (44)
extrapolation

F?arapoknion 10 (29) 12 (46) |14 (36) (15 (61) J15 (63)| -

TABLE (9.3)

: . . . o_,0
Field extension discrepancies for 1~ x 1~ square means.

Case (a) / Case (c).

for each of the methods of extension when Ii = 6. For va-
lues of Ii > 6, the comparisons become more erratic and a
greater K value had to be introduced, usually greater than
0.2, to enable the inequality given in equation (9. 26) to be
satisfied.

In case (ii), no comparison of o, - Uci+1 could be
considered acceptable unless the value of K was increased

to 0.4. This value of K was also accepted as the value of

for comparisons which came under class (iii).

The results in table (9. 3) summarise the accuracy
of comparisons made in one instance, after discarding those
Ii(e) values which were large enough to make the resulting

extensions unreliable by the standards defined in inequality
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(9.26) with K = 0.4.
While the samples are too small to draw definite

conclusions, it would appear that, as a je..ral rule, the

weighting of extensions according to

Interpolations : Interpolaticn/ extrapolations : Extra-
polations
1 1 1
= -5 : — =1 1:0.25 : 0.11
120 % T 5P

is indicated. The factors to be considered

in estimating the error of the predicted value are

(a)

the nature of the extension , i.e., interpolation,

interpolation/ extrapolation or extrapolation ;

(b) the interval from the most reliable value ;

(c) the accuracy of this value.

If the error of representation of the nearest

basic square mean is € ef and the estimated error of exten-

sion is € ot the estimated error of prediction ( E {eP} ) is
given by
i 52 2 2
‘ = e L. *t e . L.iiiiiiiias .27).
-LE{ ‘p Ll ®ref * Cext - (9.27)

The value of € of is also obtained from equation

(9.23) .

In the use of such errors of prediction in the computa-
tion of estimates of error in values of N, £ and n computed
from the extended gravity anomaly field, it will also be nece-

ssary to allow for a certain degree of correlation between the

values of adjacent predictions . This quantity is extremely

difficult to assess as it is dependent on the location of the
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anomalies in the matrix from which the extension is made.

As these are never easily predictable, and as the predictions

are normalised, it is expected that the effect is not large,
except in the case of extrapolation.

This is elaborated on
in section (12).

9.8 Conclusion,

The extension of gravity anomaly fields using mat-

hematical functions, unless carried out under carefully con-

trolled conditions, could produce results of questionable ac-
curacy. The use of the two-dimensional trigonometrical

series described in equation (9. 13) is quite satisfactory for
limited extents, provided that the degree of resolution of the
tunction is adequately reduced when a paucity of data occurs.
In the case where the field extension is eff cted using area

means, which could be of differing reliability, the extension
should be performed after adequate weighting. The accuracy
of the values so predicted is dependent on whether the exten-

sion performed was an interpolation, interpolation/ extrapo
lation or an extrapolation. Field extensions performed over

intervals more than 6 positions from the nearest available

value (i.e., Ii(e) > 6) were found to be unreliable. For I.

i(e)
6, the ratics of the accuracies of interpolation : interpola-~-
tion/ extrapolation : extrapolation = 1 : 2 : 3, Within this

range, the error of the predicted value would not be materia-

1ly larger than the error of representation of the nearest va-

lue used in the extension. Adjacent extended values can be

expected to be correlated, especially in the case of extrapo-
lation.,
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10. DEFLECTIONS OF THE VERTICAL FROM GRAVITY
ANOMALIES,

10.1 Introduction.

In sections (2.6) and (3.1), it was shown
that the discrepancy in position between equivalent points
on the reference surface and the true surface could be rep-

resented in three dimensions by a vector. This vector is

represented in fig (3.1) by d and is fully defined in
equation (3. 9) by three parameters, hD’ the separation bet-
ween the existent surface and the true surface, the compo-
nents £, in the meridian and n in the prime vertical, of
the angle between the normals to the two surfaces in ques-
tion.

These departures of the existent surface from the

mathematical model are of the order of fz(l part in 105).

The adoption of the telluroid as the reference

surface specifies these quantities as
(a) the height anomaly ;

(b) the angle between the surface vertical and the
normal to the associated spherop and its related resolutes

into the meridian and prime vertical planes.

If the reference surface was the spheroid

itself, these quantities become

(a) the separation N between the geoid and the
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reference spheroid ;

(b) the angle between the geoid and spheroid
normals ( t;o) and its related meridian (¢ O) and prime verti-
cal (HO) components.

The vertical at an observation station on the
earth's surface is the normal to the surface geop which
passes through the former. The curvature of the family of
geops of the existent earth can be expected to be irregul ar
as it is subject to vagaries in the density distribution within

the earth's crust and mantle.

10.2 Astro-geodetic deflections of the vertical,

The concept of deflections of the vertical in
classical geodesy stem from origins far removed from th -
that occur in physical geodesy. The origin of the former is
the interpretation required for the definition of a specific
point on the spheroid which is to represent a given point on the
earth's surface. In classical geodesy, a point P on the earth's

surface is defined by that point P_, on the spheroid, such that

G
the spheroidal normal at PG passes through P.
In fig (10.1), P, ZG and ZA are as defined in
fig (2.5). There is no equivalent definition in physical geo-

desy as the existent surface being mapped is always referred
to a reference surface which approximates to it to order fz.
Thus, as shown in section (10.1), the surface vertical is
referred to the normal of the associated spherop while the

geoid normal is referred to the spheroid normal.
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The geodetic zenith is defined by the geodetic co-latitude,
as the latter is the angle between the celestial pole and the
former on the celestial sphere. The geodetic co-latitude
is a quantity computed from either geodetic triangulation or
trarersing. Further, the triangulation spheroid on which
theﬂ triangulation or control geodetic survey is calculated is
not necessarily the reference spheroid in the sense of the
definition in section (3.5), as the orientation of such a refe-
rence spheroid is fixed by virtue of the definitions given in

the section quoted. In the case of a triangulation spheroid,

while its rotation axis is aligned parallel to the axis of rota-
tion of the earth by virtue &f the fact that all position deter-
mination in classical geodesy has to stem from astronomical
determinations of latitude and longitude, its centre cannot,
except by coincidence, be set to agree in location with the
centre of mass of the earth, unless some additional informa-

tion from an independent non-geometrical geodetic process is
available.

Prior to 1950, the normal practice in classical geodesy
was to carry out a comprehensive program of astronomical

observations at a suitable triangulation station from which
To commence cal-

values of ¢A and p Were determined.
This,

culations, these values were put equal to ¢G and Ag
in effect was equivalent to assuming that the deflections of the
vertical and the separation of geoid and spheroid were zero
at the origin of computations, as the motivation for the agssum-

ption was to orientate the reference spheroid correctly in
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space. If the resultant errors in No’ £ 5 and n o at the origin
were eN, eE and en , it is possible to compute the errors
in the astrogeodetic deflections of the vertical in the n-th
station in a chain of triangulation, on the assumption that
en’ eE and e , were of the order of fz, by the use of the
principal term in any of the sets of geodetic formulae for
converting measured lengths and azimuths to differences in
latitude, longitude and convergence. For average length
lines in a network , the length 1l is of order 50 km. The use
of Puissant's formulae (Bomford, 1962, 107) to the approp-

riate order of accuracy gives

1,
pf. = — cos A, + o (10 4t}i:l,n ..... (10.1),
i pfi i
i . -6} .
AN ., = =— sinA.sec®, + 0{ 10 i=l,n .....
i V2. i Zi
i

and

-6, .
= oA, gi L A8, o{10 i=1l,n
Ysi sa, sin ¢mi sec 3 ¢l + of{ } ,

where A is the azimuth, the suffixes ; and , refer
to the two ends of the line, Ys is the convergence on the sphe -

roid and ¢m the mean latitude.

The difference in height anomaly between two
triangulation stations at which astronomical determinations of
latitude and longitude are available is given by a considera-

tion of fig (10.2). If¢ _ andn . are the astro-geodetic def-

G G

lections of the vertical, with suffixes 1 and 2 referring to the

two ends of the line, and if A and 1 are defined as in the previous
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paragraph, the component of the deflection of the vertical

along the line and positive north and east is

e * EGcosA+nGsmA .......... (10.4)
The difference in the height anomaly hD is
. G
given by i.... 5

= - i

hD ; 4 Gdl ............. (10.5),
G .
P1

where P1 and P2 are the two terminal triangulation

stations. If these two stations are less than 50 km apart, it

is valid to consider the difference in height anomaly on the i-th

line of a chain of n triangulation lines as given by

where CG is the mean astro-geodetic deflection

m.
i
of the vertical over the i-th line of a chain of n control stations.

It should be noted that hD and hDG are not the same because

(a) the differences in hp obtained by the use of
equation (10.5) are not the same as differences in hD as there
is a relative change between the orientation of adjacent spheroid
normals which is regular while the change between consecutive
associated sphercp normals is also dependent on the change in

elevation between the adjacent control points. This is deve-

loped in section (11.1).
The error e 0 in the i-th difference in

latitude computed from equation (10. 1} is obtained by partial
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of this equation.

r .
1
e =-pf.|tan A, = e +
a0, il ij=2 Yg

2
3e sin 2(?)i ri-1
+ 2

+ &
2(1 - ezsin29)i ) Vi=1

e . o & s
A¢j o |

ceeeae. (10.7),

where the i-th line is that between the i-th and (i+1) - th points
in the chain of control points and e is the error in the
computed convergence at the i-th pllg%

On a similar consideration of equation (10, 2), the

error e in the i~-th difference in longitude is given by

AX .
| cota, & I o ve )
e = AX . co . e 4 N +
AAi IL, 1 J=2 Ysi "J:l ¢j o}
e sin 2¢i+1 Oy
"tan ¢- - - ;’ OO.(IOOS)O
P it+1 2(1 - 2s1n2¢ ) }
€ i+1

The error in the i-th determined value of s is

r eAA .
¢ ! 12-:1 + +
S, Si+1 L Ax i 1 j=1 A«)i °
itl :
(G § 1
€, 9 ! + 1 tan 3 ¢ieA¢4\l ..{10.9),

These expressions assume that no other sources of error

+

[

affect the calulcated quantities. For the first line, the only

errors that affect the values of e YK e AX and
. 1.
e arise from the adoption of thé astronomical

¥
52
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latitude as the equivalent geodetic quantities at the origin.

3 e'2 sin 2 ¢1
e = - AP £ i, (10.10)
20, 1 2(1-ezsin2¢l) °
2 .
r e sin 20 - -
€ :Axl‘tansz - 5> 2 £ +e‘¢)1§
1 . 2(1-e“sin"g,) LTO APy
P eA)\l ............ (10.11)
and e = yg = +coth_ (g+ie ) +
s ARV S a8y
2
1 1 3
+ ztanzA{bl eA.m1 3 ......... (10.12)
A

If g o is assumed to be less than 10'", then
the order of e ¢ for a standard first order geodetic line
situated in a milél-llatitude region where ¢ = 10-2, is
of order 10—9. The error SV in AX 1 is of order

-7 . .
5x10 as is the error in Y
s

It can therefore be concluded that the
errors introduced into the computed differences in latitude,
longitude and convergence due to errors in the deflections
of the vertical at the origin are negligible, never exceeding
the order of observational accuracy, even though the effect
is cumulative, as the error in azimuth is localised by the
re-establishment of azimuth at every Laplace station. In
geodetic traversing, Laplace stations are much closer to-
gether than in triangulation networks, where they could be
upto 500 km. apart. In either case, however, the accumu-

lated errar in the computed value of the latitude will
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seldom exceed 0".01 due to this cause.

More serious errors are introduced into the
value of the computed geodetic longitude due to errors in the
value of the scaling factor cos ¢ in equation (10.2). Once again,
these will give rise to errors in the computed longitude, which

will be given by

A TN Bee ¢o+ go ? A)\iwn¢i~l~l
......... vereo...{10.13),
where ¢O is the latitude of the crigin. The nature of
equations (10.7) to (10.9) ensure that any very large errors in
the orientation of the reference spheroid at the origin will show
in the latitude and longitude equations in the adjustment of the

control network.

When comparing astro-geodetic deflections oftthe verti-
cal with gravimetric ones, it will be necessary to effect the com-
parison by setting up a series of observation equations for each
Laplace station at which gravimetric deflections of the vertical
have been computed. If the residuals for these observation
equations are not normally distributed and exhibit a definite
correlation between position on the computation chain and
magnitude, it could be inferred that the observed quantities are
subject to a systematic effect.

In the event of the gravity anomaly field being fully
represented and the triangulation spheroid arbitrarily orienta-

ted in space, the residuals in the observation equations could
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be made members of a normally distributed population by
introducing the parameters ¢ o and q o’ which are the cor-
rections to the values of the deflections of the vertical adop-
ted at the origin for the arbitrarily orientated reference sphe-
roid, which was used for the calculation of the control network.
The general observation equations at the comparison points

will be

J
Vﬁ. = EA - EG.+ £°+ iEleAﬁ. +C1. +C2. ,
. % i i j j
FLn ....0.0.0...(10,14)
and ;
V. = mng - ng t nsec ¢0cos ¢j+ cos ¢j iz?-:l e, *+
J C. ] i
J
+ C3J_ + C"‘j R S 1 L)

where e ¢ and e \ are given by equations (10.7)
i s
and (10.8). The suffix A reflers to astro-geodetic values,
computed on the reference spheroid usel to compute the con-

trol network., The suffix refers to quantities computed

G
gravimetrically, The quantities C, and C3 are introduced

are introduced to allow for the fact tiat astro-geodetic deflec~
tions are computed with respect to the spheroid normal, while
gravimetric values are with respect to the normal of the asso-
ciated spherop. ‘The constants C2 and C 4 are corrections for
possible differences in the dimensions of the reference spheroids
used in computingS the two sets of deflections of the vertical,

In addition, it is hecessary to consider equations (13,17)to
(13.19), These 2n observation equations are then solved by

the method of least squares, using equations (9.9) to (9.12) to
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obtain the best possible values for g o and o

In the absence of gravimetric deflections, the fol-
lowing method may be used to obtain the best possible values
of go and . It is assumed that in the event of the spheroid
used in the computation of the control network (triangulation
spheroid) being truly orientated in space, deflections of the
vertical over a large enough area will be part of a normally

distributed population. Equations (10.14) and (10, 15) reduce

to
j .
Vg = EA + £O+ 12316%‘ j=1,n ....(10,16)
j c. i
J
= + N D =1,

v}\j nAC n,sec ¢o cos ¢J Z eMi j=1,n

) ... (10.17)

These 2n observation equations are solved as
before. Upto date, no reliable study has been carried out
to determine whether the hypothesis of a normally distribu-
ted population of deflections of the vertical over a continental

extent is a tenable one.

All solutions for free air geoids from the analysis
of the perturbations of the orbits of artificial earth satellites
show a marked slope of the co-geoid across Australia, indi-
cating that the earlier proposition is a false one. The use
of the equations (10.16) and (10.17) would fit the triangulation
spheroid onto the average slope of the free air co-geoid over

the region in which the equations are used.
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Conclusions :-
Astrogeodetic deflections of the vertical are dependent

on the nature of the triangulation spheroid on which the geodetic

latitude and longitude have been computed. This spheroid may

differ from the spheroid of best fit in one of two ways :-
(i) Its dimensions may be incorrect ;
(ii) Its centre may not coincide with the centre

of the earth. This second effect arises in practice by the ado-
ption of the commonly used assumption that the astronomically
determined astronomical coordinates at the origin of compu-
tation represent the true geodetic coordinates at this point,
Astro-geocdetic deflections of the vertical

are angles between the surface vertical, which is normal to

the surface geop, and the spheroidal normal. These deflections

are not directly comparable with gravimetric deflections in

either the case of the geoid - spheroid system or the physical

surface - telluroid system.

10.3 Deflections of the vertical at the geoid.

The geoid, as explained in section (.. %),

has no definition in continental areas unless a model is pos-

tulated for the topography exterior to it. Once this model has

been defined, the deflections of the vertical for the geoid-

spheroid system have a simple relation to the refc ~ence spheroid,

being the rate of change of the geoid-spheroid separation (N)

with distance along the reference system (Xi’ i=1,2). The con-

ventional directions considered are x1 orientated north and
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X, orientated east. If the components of the deflections of

the vertical in these directions are given by ¢ J.‘(i=1, 2),

- e eseenceensesaens s (10.18)
and

52 = 11 L R RN 00.0.0!!!(10-19).

Adopting the same sign convention as in section
(2.6), a consideration of fig (10.3) gives

g, = = —— i=1,2 ........ .. ... (10, 20),

as N decreases with x, for positive values of ¢ i N is given
by equation (5.54) and can be expressed as
N = N{W) ..., ceeeen (10.21).
It is therefore convenient to convert the differential on the
right hand side of equation (10. 20) as a differential with res-
pect toy . This is a purely geometrical relationship as

decreases with increase of xi for all values of a, < 900. In

this notation,

@, = A e (10.22)
and @, =47 A L., ...{(10, 22a),

where , from fig (10.4), A iz the azimuth of the element

of surface area dS from the point P at which the computation

is being carried out. Thus
R_dv
CoOBa, = =~ = ... .
i dxi

where Rm is the mean radius of the earth. The

use of equation (10.23) in equation (10, 20) gives

....(10,23),

_ _dN e
Ei— Rmdw co8 a; 1-},2 ....... eev...(10,24)
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The complete expression for N_ in terms of y is ob-

P
tained from equations (5.53), (5.54) and equation (6. 65) as
R [T r 3
= ! 1 ._.
Ng T p thosec L L1t 2(3cQ cp + do
0~ '
o =4m
R !
+ o fy) Ag do...(10.25)
dry ; o . . ,
m oJ

0
where c!Q and Cp are given by equation, (6.12).
This equation can be expressed in the following form
which is suitable for evaluation by quadratures when the use
of equation (6.34) gives, on dropping the suffix Q and using

instead the parametric indices i and j,

2
kRmTr 2
N,=—5—— X n, Z T, coseciy, +
P 1802 y i i j 1 ij
m
Rm1r 2
+ - Zn Zf(v,)Aag cos#,. ..(10.26),
MY i o ij o,. ij
4 Ym Y, j ij

where the basic unit of surface area is expressed as

an n® x n° square and T, is given by
H 3h,

- "14 L - 3
Tij =0 4 c08 ¢ij hile + 2(3°ij cp + ZRm)] ..(10.27).

The deflections of the vertical are given by
2

™ -
g (sec) =__kf.gélﬁ = n? ZT..!% cosec %\p]i. cosa  +
» 180° it HE ) ij
m
+2-0—6-2-2—65—W-——- EnZiZAgO -%p- )‘i cos¢
180°.4v_ i ] ij
m
CcOS a k=1,2........... (10, 28),
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where

%p- cosec P = -1cosdy cosec?‘%w ....... (10.29).

Differentiation of equation (5.53) with respect to ¥ gives

-g_‘#- Hy) ==-3cos W cosecZZ‘P -3cos W +5sginy -
cot 2y (1 + 2 sin 1y)
TV T lismivy t
+3 sitb Infsiin 3 (1+sin 30)}........... .. (10.30)

For purposes of economy in the use of computer
time it is convenient to adopt the following working formu-

lae.

. (ls{sec) - E(isec) + g ;sec)
k k

where the components E (k=1, 2) of the deflection

k=1,2,....(10.31),

of the vertical due to the 1nd1recfk effect are given by

(sec)

E, =K T n’z T.. cos 3 w cosecz 3V .. cos a
i 1T 71 ij ij k..
k J 1)
k=1,2 .......... (10.32),
where 2 2
Ki = - k20626g x10° (10.33),
2x180" v
m

which holds when the value of v m is in gal and that

s 3 -1 @ - . i
of kis incm gm 1 sec 2 , Tij being expressed as

(gm cm-3) (met) 3h13
=P - k - - i
Tij i3 cos ¢ij hij [1 P 3c1 R )’

The values of @, (k=1, 2) are given by equation (10, 22).

1j
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The component due to the Stokesian separation is

given by
gl8e0). g )2 n’ z Ag( c08¢ L— £ ) J
5 s i 1 j o..
1)
cos a, Cheese e (10.33),
ij k=1, 2.
where -3
ki)
K = — 202265 x10 (10. 34),
S a4x180° ¥
m
Y m being in gal. Agoij is given by
A8, = A8p + Agco ....... (10,35)
ij ij ij

and -é)- f(y) is given by equation (10.30)., Equation

(10. 33) , if the nature of the anomaly used is ignored,

is commonly known as an integral set named after
Vening Meinesz.,

Equations (10, 31) through (10. 35) combined with

equation (5.54) give a complete solution for the separation
vector of the geoid-Spheroid gystem. The above equations
do not hold in their stated form for very small values of

¢ as functions which include cosec +¥ become indeter-
minate when ¢ = 0. On the other hand, as the functions
always appear as a product with the element of surface

area, evaluation of the function is possible and this is

dealt with under section (12).
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11. THE COMPARISON OF ASTRO-GEODETIC DEFLEC-
TIONS OF THE VERTICAL WITH THOSE AT THE
GEOID FOR A POSTULATED MODEL OF THE
TOPOGRAPHY .

11.1 Introduction,

The nature of astrogeodetic deflections of the
vertical were fully discussed in section (10.2). At a first
glance, it would appear that, provided the triangulation sphe-
roid were correctly orientated in space with its centre at the
earth's centre of mass, astro-geodetic deflections of the ver-
tical would be the same as those obtained from a considera-
tion of equation (4.21) in the case where the reference surface

wasg the telluroid. The height anomaly hD was obtained

from P
1 i 1 19y] cos 1
= — ,i a— ] Vv =% Y
hDP 27y [’1 Y «’5?! r *ION S Yhy ot
U.:;R ) 1 cos l
+%A gp Y ( €tan pl + n tan ﬁz)ﬁf———p dR
............. (4722)

At the earth's surface, the deflections of the
vertical are defined as the angle between the local vertical
and the normal to the associated spherop as resolved into
meridian and prime vertical components. From equation

(3.28) it is seen that this quantity is given by
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A

- — i= ' = 0N
tanﬁi,ll,zw, EZ .

14 pelluroid
(3 28)

hD could be used in equations (10.20)
through (10.24) in the evaluation of Ei(i-:l, 2) with the additio-
nal term given in equation (3. 2¢€) to give the meridian and
prime vertical resolut es of the deflection of the vertical at the
earth's surface . A study of fig (3.2) shows that the quantities

Ei(izl, 2) so defined are not the same as the astrogeodetic def-
lections of the vertical , shown in fig (10.2) as, in the former
case, the angle ©is that between the local vertical and the
normal to the agssociated spherop while in the latter, it is the
angle between the local vertical and the spheroid normal which
passes through the ground point. Thus, the astro-geodetic

deflections of the vertical (£, ,i=1,2) are the components of

A,

A iln fig (11.1) , where the three

points mentioned have the same definition as in fig (2.5)

angle represented by ZGPZ»

The surface deflections of the vertical obtained by
a devlopment of equations (4.22) and (3. 28) refer to the angle

Zé P.’/."-G, where PZG is the normal to the associated spherop.

The non-coincidence of the normals PZG and PZ&; is due to

the convergence of equipotential surfaces with increase of lati-
tude. In fig (11.1), consider the point P' on the spherop

U= WP whose normal passes through the surface point P.

Let Q in fig (11.2) be a consecutive point on the meridian through

P'. As all spherops will be solids of revolution for a spheroid,
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it is obvious that the effect described in fig (11. 1) has no mag-

nitude in the prime vertical as a section in this plane has no
differential curvature. Adoption of the conventions used in

equations (10.18) and (10.19) gives

£ - 4 =0 ... L. .o (11.1)

25 2

The effect in the meridian is considered in fig

(11.2). If the angle between the spheroid normal and the

spherop normal is Ec’

= & - & e e (11.2),
Ec 1S lA
Provided PP' is small in comparison to P'PS, it is

justifiable to assume that
PP = PP + PP
8 s

with sufficient accuracy in f*~ '"*.2) and & c
can be assumed to be the angle between the spheroid and sphe-
rop normals as shown thereon. If Q is a consecutive point on
the spherop U = WP and its equivalent point on the reference
spheroid (U = WO) is Qs’ let the height P'PS = h . Defining
QQ = h + dN and the difference in latitude between P and @ as
ag, S’che linear distance P_Q, (= dx.) is given by

dx, = pdp where p is the
radius of curvature in the meridian. As the reference spheroid
is an equipotential surface, let the mean value of gravity along
the normal PSP' beY and that along the normal QQS be vy - 4y .

The use of equation (2.29) gives

WP -WO= -Yh = -(y -d¥Y}h+dN)....(11.3).
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ydN - hdr = 0+ o {dyaN?} ..... ... ... (11 .4),
and
dN =l’7‘§_Y

Y 1is given as a combination of equations (3. 18) and

(3.30) as
Y=Y, (1+(3sin2¢ +-1l%- + o{fz} ) ....{(11.5),
¢ m—3
where B = 5.2804x 10 for the international

spheroid. dY is obtained by the differentiation of equation

(11.5) which gives
dy = Yeﬁsin2¢d¢ e e .. (11.,6).

The ratio dY /Y can be replaced with adequate accu-

racy by appropriate evalvation using equation (11, 6) giving

dN = h B sin 20 d¢ e e (11. 6a)

The use of equation (11.¢a) gives, on considering

fig (11. 2),

_ dN . hpsin2¢

BT p
This expression is commonly accepted as defining
the 'curvature of the vertical" (Bomford, 1962, 410), having an
approximate magnitude of 0'".17 per km elevation and it is
adequate to express ¢ o as

(sec.)

£ =-0".00017 h'™egin 2
c

nda

Thus the astro-geodetic deflection of the vertical is
related to the surface deflection of the vertical obtained gravi-

metrically by the relation
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(sec) (sec) {met)
£ = g - 0",00017 h sin 2§

1s 1 A
..{11.8)
provided the following conditions are satisfied :-
(i) The dimensions of the triangulation spheroid used
in the calculation of the astro-geodetic values are the same
as thce . [ t! z reference spheroid used in calculating the gra-
vity anomalies used in the evaluation of equation (4.22) .
(ii) The centre of the triangulation spheroid coincides
with the centre of mass of the earth.
These two conditions have been dealt with in
full by Vening Meinesz (1950a; 1950b) and Vincenty (1965)

and will be summarised in section (13).

11.2 The relation between surface deflections of the vertical

and those at geoid level for a postulated model.

Consider a point P on the earth's surface and
the point PO on the geoid which is equivalent to P. If the
height anom: "y at P is hD and the geoid spheroid separation
at P0 is N, the latter has been shown in section (5) to be given

by the relation

N = v
29 R !" 4 C3V, T ag,
N = + = - ! —= + 2R - do
Ym : YIn 0: o Ago |
............ (5. 14),

where ¢e is the potential of matter exterior to the

geoid at PO and Ago is the free air anomaly at the geoid.
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This expression, on cont. wued development using the

spherical approximation, as s own in sections (5.2) and (5. 3)

gave N by the relation sed T
s ] A
. 29 R_ { fy) bg do..(5.54),
Ty gy ]
m m O’J

where f( ¥) is given by equation (5.53). The expression for

is obtained by a slight re-arrangement of terms from equa-

hD
tion (4.22) as
S i A
I N ! l‘?]_! L 1 ¥ 4R -
hD - 2ny | X{Y;Bh, r +Y—'-lg-r.?YhD“'- r JvdR
L[ [T1ay Ery
- e #Ri !.r’ahihD + | versine B +

[ S IS

+ y(& tanf31+ ntan %_s_p 1 dR ..(11.9).

The first integral on the right hand side of equation

(11.9) is identical with that in equation (5. 2) which, on develr; -

ment, gives equations (5.53) and (5.54). The only difference

is that the anomaly used is the free air anomaly at the surface

of the earth while the earlier integral required the free air

anomaly at the geoid. Thus, the first integral, on evaluation,

gives the free air geoid, the quantity determined being NF

as defined in equation (5.60). Let the second integral in equa

tion (11.9), on evaluation, equal a correction term Nc given

by
. (11.10).
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11.3 The evaluation of Nc .

Adopting the spherical approximation as

previously done in section (5. 1),
..];;?.Z \ﬁ_) — : VD (1]_ 11)
7ioml T R T rrreeeren . .
From equations (11.9), (11.10) and (11.11), using the

symbol S for surface area,

Mzv

S R + AgF]r versine § +

+ Y(gtanﬁ1+ ntanﬁz)c—ors—-E} ds

= -3 ﬂly { { [f(a) versine p + f(b) cos [3} das
°S

]
\:“

f(a) is evaluated using equations (5.99) and (5. 32)

as ) __}'_2_ - Ai \ ;: (i-l)Ai ] 1
LR i=2 Ri+1 i=2 Ri+2 ir

The use of equation (5. 36) gives

-+

n+1

2 n-1 gnmsnm

fla) = = o (11.13).
- r
n=
The expression of-I'-} as a spherical harmonic
using equations (5.23) through (5. 25) gives
” Rm »..,n
R Pn(cos‘ll ) P (5.25).

1 s
n=0

§——

4
R
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The combination of equations (5.25) and (11. 13) gives

‘”f(a) versine g dS = J e ntl ¢ S versine 8
S g n=2 n-1 nm nm R
w R 3
z ' 2 | PlcosV ) dS
j=0 LR | j

-

Proceeding on lines similar to that followed

in equations (5.40) and (5.41), the above integral reduces to

o~ falfe]
r f(a) versine $ dS = “
S (&) S

® () Ag.versine f dS

U

................ (11.14).
In this development it has been assumed that the

relation between the disturbing potential and the gravity ano-

maly developed in section (5.2) will also apply to the two fun-

ctions VDversine B and Angersine B which should be capa-

ble of representation by spherical harmonics. This assum-

ption has been considered to be reasonable. ¢ (y) in equation

(11.14) is given by

n
® n+1 m
¢(v) = Lim p> P (cos V)
Rm_)%m n=2 n-1 Rn+1 n
o1 By ’
= LimR (T — |— ] P (cosV )
Rm+ Rm\nzz R \R n
o RILI Pn(cos V) ~
+ 2 =

..(11.15).
n=2 Rn+1 n-1 __g ( )

The two expressions on the right hand side of equa-
tion (11.15) are identical in form to equations (5. 46) and

(5.51) except for differences in the constant terms.
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Evaluation on a similar basis gives

_ R _cos¥y
( !
d(p) = Lim Rm(%-é- __rg_z______> +—§—fg-r-Rmcos v

R —)R ;\“ R o R y

m

r+R - Rmcos 1 )‘]
- &
In R + R Rmcosw{”
Inthe limit, R =R and r=2Rsin ¥ . Thus
2(¥) = jcoseciv-1-cos ¥ -4sind V-
- 2 cos Ylnisin % ¥(1 + sin LV )§+ 2-2cos ¥
= 3$cosec ¥+ 1-3cos ¥ -4sini V-
- 2cos ¥ ln{ sin 2¥ (1 + sin 1 ‘b)} ...(11,16).
Thus Nc can be expressed as
Rm nO=4 T
- Nc = / o (v) lgnversine B do +
mog
Rm fﬁ4ﬂ
—_— i
+ gy J v(& tan [31+ n tan ﬁz)cos B cosec ¥ do

From fig (10. 2) and equation (3. 28), the deflections

of the vertical at the surface are given by

o 8h Ag
E = -% D} i tan B, , i=1,2,
S, Lox, Y i
i i P
where £ = £ and & =N ....., (11.18)
s s s s

1 2
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and 5h e
D . . _ -
!s R By % T T o tenp , 1sh25 0 =4, @, =
i “m P
3m - A ... (11.19).

This can be expressed with the aid of equation
(11.10) as

5 BNC
£ :R_TIP NF cos a; + R 30 cos ai-
1 F m .
P tan ﬁi, i=1,2 ... i, (11.20).

Thus equation (11.20) can be re-written as

Eg = Ep + €C. , i=1,2 ... ..., (11.21),
i i i
where «SF (i=1, 2) are the deflections of the vertical

for the free air geoid. & c (i=1, 2) are given by

i
sec Co=4 T
206265 / : 9 .
Eo = - E%r—yé— / A8y, versine B 39 Q(‘P)COSdidO'
i m
0
-0 = 4 7
2062
+--é-é-1-r-6-§- f/ (ttan (31+ ntan {32)cosﬁcoa aicosec%d)
ov
tgF
cot3vde - — tanp, , i=1,2 ....(11.22) ,
Y 1
P
where
o (= -1 v cot3y+3siny - 2 v+
awqplp- 3 cosec z ¥ cot 3 sinv - 2 cos 3

+ 2 sind Inf{ sin $¥(1 + sin 1¥)] -

cos 2 V(1 +2sini ¥ )
sin 1¥ (8+@int o 9+ ° e (11.23).

- cos ¥
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In the above equations, ¥ has its usual definition. Equation
(11.22) assumes the values of £and " to be given in radians,
61 and [32 are the ground slopes in the directions of the X, (i=1,
2) axes which lie along the north and east directions respective-
ly. B is defined by the use of equation (4.16). The nature of
the distance functions in both surface integrals on the right
hand side of equation (11.22) are more akin to the Vening
Meinesz function defined in equation (10.30) than to the Stokes:
function given in equation (5.53) as the term of controlling
significance is cosecZ —lz—w . Further, the gravity anomalies,
which are of order 102 mgal or less are now multiplied by the
versine or the cosine of the ground slope. The first of the
sivrface integrals on the right hand side can be neglected in all
but very mountainous regions where the near zone effects
could be of significance. The second surface integral is about
an order smaller than the contribution to the deflections of
the vertical of the free air geoid using the Vening Meinesz
integrals. Thus the effect of the distant zones can be assu-
med to be smaller than 0", 1.

Hence it should be possible to obtaih adequate
evaluation of surface deflections of the vertical which can be
compared with astro-geodetic deflections by evaluating
the integral set out in equation (11.22) for the region which
lies within ¢ < 200, noting that ocean regions do not contri-
bute at all to this term. For any such calculations done on
the Australian mainland region, it is only necessary to know
deflections of the vertical over the mainland region to comple-

tely solve the problem with an accuracy equivalent to that
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obtainable from astro-geodesy. Thus any solution for the
evaluation of surface deflections of the vertical from gravity
anomalies has to be an iterative one, the first and major
contribution being that due to the free air geoid. The deflec~
tions of the vertical for the free air geoid would provide ade-
quate values of £ and n for the evaluation of the second
integral on the right hand side of equation (11.22) , which
on combination with the free air geoid terms and the ground
gradient term give the complete solution for surface deflections

of the vertical.

11.4 The comparison of surface deflections with those at
the geoid.

From equations (5.60, , (5.61), (10.26) and

(10.31), the working formulae for deflections of the vertical

at the geoid can be expressed as

£, T Ep toep T, i=1,2 ..(11.24),
i i i
where the normal Stokesian contribution has been separated
into the component dve to the free air geoid and that due to the
reduction of observed gravity for the differential topographical
effect to obtain the equivalent valive on the geoid. The terms
Ep (i=1, 2) are obtained by the use of free air anomalies in
the ét@' . and Vening Meinesz integrals, while gco. (i=1, 2)
are obtained by the use of the differential topographicz}.l reduc-
tion ( Agco) in these same integrals. If the deflections of the

vertical at the surface ( ES , i=1, 2) are related to those at
i




E;compi - &y 7 Es

_ 3 + g - gc i=1,.2 ..... (11, 25),

where 50 (i=1, 2) are defined by equation (11.22).
Working formulae for the three quantities on the right hand

side of equation (11.25) are

(sec) 5 5
g = Kz 2 T{cos%‘b.,cosecl

. COS «..
i j 1ok i ik 1

2wjk ik -
i=1,2 ..... (10.32),
where KI is given by equation (10.33) and Tjk

by equation (10.27).

(sec)

- 2 (mgal) r9_ I
Ecoi = Ky ]Z 7 f{: 8co cos ¢‘%k§._ oy f(w)..l ik
i=1,2 ..... 1. ,
cos ay, o 1 1,2 (11.26)

where Ks is given by equation (10.‘34-) andb o by equations

(6.36), (6.44) and (6.62). The expression for -g—lp f( V) is

given by equation (10.30).

(mgal)

ij

c, versine Bjki_ Y (‘J})J ik

(sec) 2
= ; A
KC %nj % g
2 v (sec)
cos ¢jk cos .., + Kd 2 n, %L Ejk

tan .
7] F3lxk

(sec) Y

\ 1
+ M tan {32.‘;1{ cos ¢jk cos | ’ﬁ!kcosec 2 ‘ijcos @

cosB - 206265—-—1—? tan B. , i=1,2 ..... (11.27),
% YP 1

h JK 206265 10'3
where o - . R (11.28)

C

2y (881) 1802
m
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and

"

K = e~ -.o.oi.oooc.'i.‘-un(llozg)b
d 8){1802

8/0 v ()} is given by equation (11,23). The use of
the constants in the form given by equations (11.28) and
(11, 29) enable the results of equations (10, 32), (11, 26) and
(}1. 27) to be added together directly to give & compih:l’ 2).

11.5 Conclusions.

Given a triangulation spheroid with the same dimen-
sions as the reference spheroid, used in determining the gra-
vity anomalies, with its centre at the centre of mass of the
earth and correctly orientated in space, astro-geodetic deflec-
tions of the vertical, corrected for the divergence of the sphe-
roid and associated spherop normals can be directly compared
with gravimetric deflections of the vertical referred to the
telluroid, If Wo = Uo’ the latter are, to the first order, the
deflections of the vertical obtained by the use of free air ano-
malies in the Vening Meinesz integrals, though consideratkle
error could arise in adopting this approximation in regions
of rugged topography. The relation between deflections of the
vertical for the free air geoid and astro-geodetic values, on
the same spheroid, are given by equations (11.8), (11,21),
(11,22) and (11, 23). The correction factors &£ c. (i=1, 2) are
made up of three constituent terms each, one of w%rhich has a

form similar to the Vening Meinesz integrals.
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The term controlled by the function versine B , on the
basis of ground slopes for 5° x 5° square means being of the
order of 1 part in 100 or less, will contribute an amount which
should be about four orders smaller than that due to the Vening
Meinesz integral and can hence, as pointed out earlier ,
be neglected for all points except those in mountainous regions
when this effect will have to be considered for near zones.
The effect of the second term has already been discussed.
Two possibilities are available for the evaluation of this second
term. Firstly, the problem could be treated as an iterative one,
which would be convenient only if the calculations were regio-
nal in nature. In the case of point to point calculations where
computations are not carried out at regular intervals, it could
be feasible to obtain the values of the deflections of the vertical
necessary for the evaluation of the second term from existing
triangulation networks . The astro-geodetic deflections so
obtained, after correction for dimension of the reference
spheroid and any orientation error that may exist could be used
to provide the interim values required. The latter effects are

dealt with in section (13).
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12. THE CALCULATIONS

12.1 Introduction.

The calculations involved in the mapping of the
geoid are laborious, repetitive and, as such, most easily per-
formed on an electronic computer. The final computations
can be considered to consist of the following stages :-

and n _ for the

(a) The calculation of N_, & F

F°F

free air geoid.

(b) The calculation of the corrections N , &

co co

and n co to the above quantities due to the fact that the anomaly
to be used in that part of the solution due to the Stokes and
Vening Meinesz integrals is not the free air anomaly at the
surface of the earth but the free air anomaly at the geoid.
These calculations are carried out using the same set of
programs as used in gection (a) above but using, instead,
the topographical corrections ( Agco) given by equations
(5.59), (6.36) and (6. 44).

(c) The evaluation of the corrections N EI and

o to the Stokesian effect calculated under (a) ans (b) above
due to the topography exterior to the geoid. These terms
are given by equations (6.66), (6.74), (10.32) and (10. 33).

In carrying out the complete set of calculations
at a given point it is necessary to evaluate two physical para-

meters of the earth at every point on its surface. These are
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(a) elevations and
(b) free air anomalies.

A knowledge of the former enables the evaluation of
both the correction 4 o required in the calculation of the
correction at (b) as well as the correction at (¢). In the
determination of elevations, it should be realised that only
elevations above the geoid are necessary as the surface of
the bounding equipotential coincides with the surface of the
earth over oceans and no attempt is made to differentiate
between different types of matter within this bounding equi-
potential. For continental areas, however, it is necessary
to determine the elevation of the surface of the earth above
the surface being mapped. This quantity is the orthometric
height.

On a similar basis it is also necessary to know the gra-
vity anomaly field at all points on the earth's surface, including
ocean areas, as can be seen from the structure of equations
(5.54) and (10. 26). In practice, as has already been shown
in sections (7.3) and (9), this extent of coverage is not availa-
ble from land based gravity observations, especially in ocean
areas. Under such circumstances any attempt at solution
must be preceded by a field extension where values are predicted
for the gravity anomaly field in unobserved regions. As such.
a solution cannot be expected to be a final solution, some
attempt must be made to assess the accuracy of the final
result obtained.

In assessing the accuracy of extended valves, attention
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must be paid to the fact that the field is continuous and hence,
correlation exists between consecutive values. Numerous
methods are available for predicting values in a continuous
field, the most popular of which are the use of Markov theory
and auto-correlation analysis. These two methods are quite
adequate but have two limitations. Firstly, the accuracy
of any extended value will d epend on the relevance of the sam-
ple to the locality in which the extension is being performed.
Secondly, both methods involve considerable use of computer
time if the first limitation is to be successfully overcome.
A quicker method is the use of the trigonometrical series
described in section (9) where a function is made to fit the
ambient field as best as possible.

The use of the error of prediction to assess the
accuracy of extension was shown to be of limited value under
such circumstances as it was not possible to establish that
there was any definite correlation between the error of pre-
diction and the accuracy of interpolation in the case of the use
of trigonometrical series. Adoption of any one of these ex-
tension techniques will eliminate the inconsistency which
arises from the use of zero anomaly to represent unsurveyed
areas as this could give rise to serious errors in the final
result.

Comment is also necessary about the fact that the exten-
ded values in regions of sparse gravity data will be excessi-
vely biased towards the values of the available sample. This

however, still provides a better value for the extension than
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the acceptance of the value of zero for all unsurveyed areas.
In fact even the direct representation of limited areas by a
a single local reading is a more acceptable alternative so long
as this region is not too close to the computation point.

In addition to the programs listed under (a), (b)
and (c) above, it is necessary to perform the following calcu-
lations :-

(i) The extension of the available gravity anomaly field
to obtain estimates of the values for unsampled regions.

(ii) The assessment of the accuracy of these extensions.

(iii) The computation of the area means for both free air

anomalies and g¢levations.

(iv) The computation of topographical corrections on a

world wide basis.
These calculations have to precede those listed

under (a), (b) and (c) above. FEach of the sets of programs

is dealt with under a separate section so that the link between

the programs is readily seen.

12.2 Programs for sorting gravity data.

Gravity data can be obtained in one of two ways.
(a) The free air gravity anomaly can be .:..culated from
the disturbing potential (VD) by the use of equation (7.54), the
latter being determined from an analysis of the orbital pertur-
bations of artificial earth satellites as described in section(7).

On expressing the disturbing potential in terms of spherical
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harmonics &g =.u wn in equation (7.59), the free air gravity
anomalies can be calculated using equations (5.33), (5.36)
and (5.38). As discussed in section (7.8 (iv) b), the use of
a combination of zonal harmonics through to the fifth order
along with a development of tesseral harmonics through to
order (6, 6) can provide an adequate representation of the
gravity anomaly field provided

() 30° x 30° square means do not exhibit any corre-

lation with adjacent square values

>

(ii) the tesseral harmonics can be adequately assessed.

(b) The free air anomaly field can also be determined from

the results of ground surveys using either systems of pendu-

lums or gravimeters. The computations carried out in the

current investigation were in respect of data covering the
Australian mainland region and the adjacent continental shelf.

The gravity data was avwilable in one of two forms

(3) gravity values based on a variety of datums;
(ii) Bouguer anomaly maps .
The latter were prepared either from close gravity
surveys carried out for prospection purposes or from helicop-

ter gravity reconnaisance surveys carried out by the Bureau

of Mineral Resources. The maps were all converted to the

"may 1965 Isogal" datum, defined in section (8.4) and these

maps were read for values of Bouguer anomalies to represent

the corners of 0.1° x 0,1° squares. The actual gravity readings

were sorted by the program given in appendix (5) and the results
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converted tc free air anomalies. These anomalies were read
into the computer, along with the Bouguer anomaly values and

the entire set of data was processed by the program AN_COMP,

- written in PL/1 and listed in appendix (6).

In this program, the gravity data was in the
form of Bouguer anomalies, with varying densities and com-
puted on the "May 1965 Isogal' datum. In addition, the mean
elevations of 0.1 x v.1° squares were also read in. Data
for a 5O x 5° square was processed at any one time, the pro-
gram being capab.le of indefinite cycling. The Bouguer ano-

malies were converted to free air anomalies prior to storage
by the following sequence of calculations .
(1) Establish the elevations of the corners of o.1° x

0.1° squares using the formula

K 1 gt (12.1
5T D, B By e 1),

where Hi? is the elevation of the location (i, j),
hu;r ig the elevation representing the square

(u,v), which has the location denoted by (u, v) as its south

west corner,
(2) Compute the free air anomaly using the conven-

tional relations (Heiskanen and Vening Meinesz, 1958, 153)

(mgal) _ (megal) o )11 hij(me“ c..(12.2),

Agg B..
1] i

if 5 =2.67 and }Iﬁ > 0, and

A g%ngal:) AgB(mga”Jr 0.4187 ( o - 1.03)h, met)
s i ij

13
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where p is the density used in the calculations and Ei‘i
< 0. A £ is the Bouguer anomaly.

The free air anomalies so computed were cho-
sen to represent the square corners. A general study of
close contour gravity anomaly maps show that the error of
representation of a 0. 1° x 0.1° square by a single reading is
seldom in excess of T3 mgal and is very often much less.
The error in each of the 0.1° x 0.1° mean elevations is un-
likely to exceed 30 metres. Further, the mean clevatior .
of each 0.1° x 0.1° square is independently assessed and the
error in the val: e of h computed can be expected to be less
than ¥ 20 metres.

The free air anomalies computed vsing the techni-
ques adopted in the program AN_COMP are likely to have er
ror. of representation seldom in excess of ¥ 3 mgal which
is as precise as can be expected from any set of data. The
following quantities were computed for each 5° x 5% area over
the Australian mainland :-

) o _,0 .
(i) 17 x 1" free air anomaly means

The program loads the following data in
a single storage for which ten decimal digits are reserved.
If these digits in a single storage are numbered from the
right, a single unit contains the following information :-
Digits 1 to 4 = free air anomaly (unsigned) in tenth
mgal ;
Digits 5 and 6 = number in sample (maximum value

= 25) ;
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Digits 7 and 8 = standard deviation of sample in mgal ;

Digit 9 = sign of the gravity anomaly.

The adoption of this procedure saved considera-
bly on computer storage and enabled factors required in the
weighting of observed ¢  .tities to be loaded on the computer
without any increase in the required storage. The value 0

was stored if there were no readings in the area. All data

. . o o
was punched on card, the values for five consecutive 3 x
squares t...ng a parallel of latitude appearing on a single
card.

(ii) 1°x1° free air anomaly mr ~us.
Y

The ..«lues of 1% x1° square means were
stored in exactly the same manner as %O X %o square means.
The only difference was that the maximum number of readinge
ina1°x1° square, being equal to 100, could not be fitted
into the above format and was therefore represented by the
number 99. The resulting error in calcul ating any weight

coefficient .. ag equation (9. 22) is negligible.

ooy O o .
(iii) 5~ x 5 free air anomaly means.

0

: o .
(iv) 3~ x 1~ elevation means.

All %-O x 1° elevation means were of equal
weight as all 0. 1°x 0.1° sguare means were available for
the evaluation. Thus direct storage was used for each
square mean, the data being arianged as described in section
(i) above. As the estimated error of a single 0. 1°x0.1°

mean elevation was t 30 metres, the estimated error of a
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1% x 1° elevation mean should be of the order of T 5 metres.
This figure would be valid if the contour maps from which the
0.1°x2.1° means were read were free from error. A more
realistic figure for the error of a 1° x 1° elevation mean is
the figure ¥ 10 metres.

o o _
(v) 1 x1 elevation means.

These were prepared in exactly the same
manner as the 1° x 1° means. The estimated error of such
a mean should be of the order of ¥ § metres.

In certain regions in Central Australia, the avai-
lable elevation data is extremely sparse and it is likely that the
estimates of 0.1° x 0.1° means are correlated and in such regions
it is better to use the figure of ¥ 7 metres for the error of a

o) o
1 x1 mean.

12.3 Gravity data for regions beyond the Australian mainland.

The required form of the gravity data has been set
out in section (8.2). Areas exterior to the Australian mainland
region fall within group (i) in that section. The paucity of gravi-
ty data over ocean areas makes it unsatisfactory to look for
gravity data from earth based methods alone. Sections (7.5)
and (7. 6) show how it is possible to obtain values of gravity
anomalies for 5° x 5° areas by solving the equations for the pertur-
bations of the orbital elements of a* "ificial earth satellites for
the harmonics up to order (6, 6) in tesserals and 5 in zonalsg to

obtain adequate representation.
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If the solution is further strengthened by making it fit
the available gravity data on ground, it shoulc Le possible
to obtain an adequate representation of the distant gravity
field. This method of analysis has been fully developed by
Kaula (Kaula et al, 1966, Sec II.D). His basic unit was the
300 nautical mile square. It was assumed that no correlation
existed beyond 15° of each basic square. This is in keeping
with the earlier assumption that 30° x 30° square means are
nOrmally distributed without correlation. Commencing with
all available 1° x 1° square means for gravity anomalies,
the mean gravity anomaly of each 300 n. mi. square was
computed * .ng only such data as lay within the square. The
auto- and cross-covariances of these 300 n. mi. were calcu-
lated and linear regression applied to extend the 300 n. mi.
area ™Means to 1200 n. mi. area means. The estimates
based on the variation of the gravity field with topography
were found to give unstable values and the extension of the
gravity anomaly field was performed without taking the topo-
graphy into account.

This ground gravity data was then combined with the
low order harmonic coefficients of the gravity anomaly field
obtained from the analysis of the orbital perturbations of ar-
tificial earth satellites, as described in section (7), in the
following manner (Kaula, 1966a, 10).

Let the number of harmonic coefficients to

order r available from the latter solution be k, where




Let the gravimetric solution obtained by the method

described previously be represented by a two-dimensional
set of ¢ mean anomalies where % > k. Thus for 5° x 5°

squares, % = 2592. From equation (5.35), the form of th.

k observation equations is

'3
- B 1 -
(n-1) Lsx S 47y 131 Qxi( bg; + d Agi)du-’

where Sx is one of the harmonic coefficients of order

n obtained from the satellite solution and Qxi is the value of the
equivalent spherical harmonic of the same order for the unit
of area i represented by a surface area do on a unit sphere.

The above observation equations are solved by imposing the

least sqii"res condition that

k
¢ w @m)’ o+ S w @s)=MIN...(12.6).
izl 'Agl 1 J=1 Sj J

In equation (12.6), L is the conventional term

1/(standard deviahion)z. Kauﬁa estimates this quantity as the

quartile range of a series of independent solutions from which

the final values of the harmonic coefficients were adopted.

The evaluation of w is slightly more complex. It can be

i
evaluated as set out in equation (9.27). Kaula (Kaula et al.,

1966, II D-13) uses the form
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where n, is the number in the sample used in the evalua-
tion of Agi. Such a solution was obtained by Kaula (1966a)
using the following determinations for the evaluations of the
coefficients of the zonal and tesseral harmonics :-
(a) The Anderle set (Kaula, 1966a) ;
(b) The Gaposhkin set (ibid) .
(c) The Kaula solution (Kaula, 1966c).
(d) The Guier and Newton set (Guier and Newton, 1965),
Kaula meaned these sets arithmetically
and used the mean values in equation (12.5) from which va-
lues were computed to represent the means of 5° x 5° squa-
res comprising a world wide set. This set of values, here-
after called the KAULA SET, was used to compute the dis-
tant zone effects for the terms involving the free air anomaly

in the Stokes and Vening Meinesz integrals.

12.4 The computation of the differential topographical

correction ( Agco).

The structure of equation (5.54) and a study of equa-
tion (5.59) show that Agco must be evaluated on a world wide
basis.  This necessitates the determination of the following
sets of values for this correction :-

(i) A set representing 0. 1°x0.1° squares for regions
within 1.5° of the computation point.

g o_ ;0 .
(ii) A setto represent  x { area means in the range
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1.5° < ¢ < 5° where y has the usual definition.

O .
(iii) A set to represent 1°x 1 means for regions

which lie in the range 5%< y < 20° of the computation

point.

(iv) A set representing 5° x 5° means for all
areas not included in the above groups for regions which

lie in the range vy > 20° of the computation point.

Different techniques are used in each case
for the calculation of Agco'

(1)

The calculation of values to represent 0. 1° x

0. 1° squares within 1, 5O of the computation point

This effect is computed using the program

titled TOPNE (appendix(7) ). From the development in sec-

tion (6.2), it can be seen that it is necessary only to consider
the topography within l-é—o of the point at which the differen-

tial topographical effect is to be computed to obtain the required

correction. The basic equation is

- (met) 2 (met) e
8., = C hP ? n, ]2 apijhij cos (bijcosec —?;ILLS
- cosecz—g v+ o f, fzcoseczélb} T (6.36),
where 0p  is the density correction factor giv-:n
by p{met)
o, ij d T
Bpi]_ 7| 1 21,000 7 | Cq oo (12.7),

-3, .
where p = 2.77 gm.cm ~ in accordance with
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equation (1.6). The quantities ¢ , and ¢'. are given by the

d d
relations
, ¢ =1, ¢,=1if h,. < 2500 metres:
d d ij :
2. 67 : J..(IZ.S).
v 22 =01
cd Pl cd 0 if hiJ? 2500 metres
In equation (6.36), C is given by
2 7
X -
c - KLe 20 = 1.1047x 10712 ((12.9),
8x180" R
m
the: .3 . -8, being given in mgal, for P =2, 77.

Equation (6. 36) breaks down at ¥= 0 and hence
the four 0.1° x 0.1° squares comprising the inner zone are
replaced by a cylinder of height hm equal to the miean ele-
vation of the four squares omitted, the radius of the cylinder
being given by equation (6.63). The topographical correc-

tion due to the inner zone ( Ag(I:O) is given by

_ h(me’c) o ~ -
I (mgal)_ (met) | d
480 © S1"m %t 21000 1 k
3 s PN
h h 5
P P h
“sm t 3t oo 5}] ....... (6.43),
8r r i
where C1 =-41k p x 105 ............. (12.10)
and ca » cqare defined in equation (12. 8). C1 takes the

value -2.323 x 10" ! when o = 2.77. Thus the program TOPNE
gives the quantity

(mgal) :AgI (mgal) + AgE(mgal)

..... (12.11),
CcO cO cO

WhereAgio is given by equations (6.43) and (12. 10).
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A gfo is calculated using a modified form of equation (6. 36)

which takes into account the fact that 3 ¥ does not exceed 1°

and also omits the four inner-most tenth degree squares.

For very small angles it is in order to replace the trigono-
metrical functions by limited series as a final accuracy of

five significant figures would suffice. This effects a consi-

derable saving in computer time. The simplified form of

equation (6. 36) used in the calculations is

E . 2
Agco —(,hPiZ n, ? apijhiicos ¢i1' ft(ll)) ...(12.12),

where ft(tp ), for values of v< 11 is given by

3 2 “

8 [ vy !

£(y) = 39%‘1*-—';‘ -1

¢ 3501 7 28 |
4)2

,.fw

<

|l |k

| - 1+o{w4}\‘! ..... (12.13).

v~
In practice, the value of A g for the Australian

mainland region is very small, seldom exceeding 2 to 3
mgal and usually being about 2 orders smaller than Aggo
which constitutes the major term.

The errors in the computed values of the
differential topographical correction (e

Ag
co
three sources. The first source of error is dependent on the

) arise from

deviation of the adopted model of the topography from the
existent one. At present there is no method available for
assessing the magnitude of this error and hence there is no
alternative but to assume this source of error to be zero

for the adopted model of the topography exterior to the geoid.
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The error (e E ) in the calculation of A gf‘o is one of
the two sources which contribute to the second type of error
due to errors in the elevations of the data used. If the set
of elevations used has an estimated error e, in the tenth

degree square elevations,

r

1D P22 12,2
e - i’ B! - i 8
B.o (/fiza‘ni k JZFS P i cos ¢ij ft(lp) i 11,‘! hy,
A 4 Eco R 27 2
= e | | ....(12.14)
hP P _t

Both terms are very small and the error due to
these sources can be expected to be less than 1 mgal in all
but a few exceptional cases. This estimate is much smaller
than the error of representation.

The second contributor to second source of error
is due to the computations for the inner zone (e AgcIO }. This
error in the calculation of the major contributor to the effect
is highly dependent on the accuracy of the mean elevation used
in the calculation. As this quantity is unlikely to have an er-
ror in excess of ¥ 30 metres, the differential topographical
correction is expected to have an error which approaches
t 2 mgal. In mountainous country, however, the error may
be as large as T 7 mgal. If greater precision is desired,
it is necessary to carry out a closer survey of the topography
in the near neighbourhood of the point investigated. If such
a close contour survey were carried out within a fifteen mile
radius of the computation point, it should be possible to ob-

tain the mean elevation of the inner zone with errors smaller
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than T 5 mutres.
The third source of error is the result of considering
only regions within the range of ¢ = 1. 5°. As discussed in

section (6.2), this effect is unlikely to exceed 0.5 mgal.

(ii) The calculation of the mean topographical correction

10 10
over 3 X 3 squares.

Two methods are available for establishing
1°x 1° square means :-

(a) Adoption of a procedure similar to that used in
the computation of %o X %O free air anomaly means in section
(12.2). This would require the computation of the differen-
tial topographical correction at sufficient points on a regular
grid system prior to the computation of the means. With
point computations costing 5 ¢ per station, the evaluation of
the necessary data for the computation of a single %O X %O
square would cos?!  1.25. As there are approximately
14, 000 half degree squares over the Australian mainland, such
computer time costs in adopting such a method would amount
to approximately $ 18,000,

(b) The second alternative is to use the fact that the
regions outside the inner zone contribute about 1 per cent
of the total magnitude of this correction. The structure of
equation (6.43) shows that the adoption of a cylinder of radius
of order 150 km as a model for the topography exterior to the
geoid instead of the two-part model adopted in the previous

case would give an adequate alternative. If this cylinder
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had the same height as the elevation of the station, the error

in the correction so computed would be given by
o

[eﬁg]% = Ag?o + 27 kphZP% ...... (12.15).
co
These two quantities are of opposite sign .and hence
the error in the computed quantity is not necessarily systema-
tic. It is therefore possible to represent the mean topogra-

phical correction for a 1% x 1° square by a relation of the form

— r Bm b 1
Moy = T 47 k p hm 5‘1 e + -;;3" ..... (12.16),

. . o o
where hm is the mean elevation of the 1~ x 1~ square

and r the radius of the cylinder which has been chosen in this
set of calculations to coincide with the outer limit of the Hay-
ford zone O of radius 166.7 km. The comparison of mean
corrections using this technique with true means is given

for ten randomly chosen half degree squares in table (12.2).

The sample of hald degree squares was chosen at random.

The adoption of this technique enables the differen-
tial topographical correction means for half degree squares
over the entire Australian mainland region to be computed for
only $ 5.00. In a similar manner it was possible to com-
pute the mean topographical corrections for both 19 x 1°
and 5° x 5° squares. These computations were performed
using the program TOPMNS given in appendix (8).

The accuracy of the means so calculated appear
to have errors less than f 5 mgal, the errors arising mainly
in the assumption used in calculating the mean topographical

effect. 1In the case of the computation of the mean topographical
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1°% %O square | Mean Topographical corrn.

Latitude Longitude | Elevation True From mean
o ! o ! metres mgal mgal

- 2945 | 14015 40 - 12 -9

- 28 15 142 15 159 - 33 - 37

- 27 15 140 15 46 - 11 - 10

- 28 15 135 45 92 - 21 - 21

- 26 15 147 45 445 - 105 - 109

- 29 15 1°7 15 164 - 39 - 38

- 2715 142 45 163 - 33 - 38

- 27 45 145 15 252 - 53 - 49

- 26 15 139 15 39 -9 -9

- 2715 135 }5 137 - 32 - 32 !

TABLE (12.1)

. . : o
Comparison of true topographical correction means for 3 x 3

o

squares with those computed from the mean elevation.

corrections for 5° x 5° squares on a world wide basis, the mean
elevations used were those comprising the set known as the UCLA
set (Kaula et al, 1966, I1.A.-17). This set was assembled from
the set of 1° x 1° elevation means provided by W.H.K.Lee of the

Iniversity
iveregny

of California and titled the UCLA 1S set. The compa-
rigson of the UCLA 1S set with the set of 1°x1° square means
prepared using the techniques described in section (12.2 v) gave a
comparison error of T 83 metres, with no significant correlation.

Thus the estimate of accuracy given by Lee (Kaula et al, 1966,



251
II.A. 30)as t 230 metres for this set is a conservative one.

On this basis, the accuracy of the 5° x 59 ele-
vation means in the UCLA set is estimated at T 50 metres.
The consequent error in the differential topographical correc-
tion computed from the mean elevation for 5° x 5° squares
is estimated as ¥ 10 mgal. It is expected that the actual values
have errors smaller than this figure. Thus the use of the app-
roximate relation for the computation of the square means pro-
vides a practical alternative for computing the required qu_nti-

ties with adequate precision to effect the relevant calculations.

12.5 The computation of the free air geoid.

The free air geoid is computed using equation
(1.3) and the second term in the equation (10, 26) with the ano-
maly Ag0 being replaced by AgF. The computation must be
effected by quadratures over the entire surface of the earth.
The discussion in section (8. 1) shows that the computation has
to be carried out in fcur stages, each of which is embodied in
a different program capable of adaptation for use with both

free air anomalies and differential topographical corrections.

(i The computations for regions in the range ¥ >20°

from the computation point.

. . . . o
The anomalies to be used in this region are 5~ x
o . . . . . .
5" means, which in the case of free air anomalies is provided

by the Kaula set (see section (12.3) ). This set was compared
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Sample Size UNSW set - Kaula Set |  Number
n ' Mean | Std. Dev. in set
mgal . t mgal.
n > 1000 - 1.2 18 14
300 <n < 1000 - 1.6 14 16

TABLE ( 12.2)
Comparison of the Kaula set of free air anomaly means with

the UNSW set

with the set of 5O x 5° free air anomaly means prepared on the
lines set out in section (12.2) :d the comparisons are set out

in table (12.2). In attempting to assess Kaula's set from these
comparisons it should be borne in mind that a considerable amount
of land based data would have been included from the Australian
region in evaluating Kaula's means. For the 30 comparisons
almost entirely on land where the UNSW set could be conside-
red to provide an adequate evaluation of the five degree square
mean, the mean difference was - 1.4 mgal, the mean elevations
of the regions considered being less than 1000 metres. In
view of the magnitude of the standard deviation of the compari-
sons, this value could be considered as a negligible quantity.
Comparison of the Kaula set with some poorly represented
samples at sea gave a preponderance of positive comparisons.
This would seem to indicate that the Kaula set underestimated

the free air anomaly over elevated continental regions and
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overestimate it over occan regions. A study of data on the
correlation of gravity anomalies with elevation (Kaula, 1959,
Table 2) indicates a definite correlation between free air ano-
malies and elevations. It was therefore decided to assign the
value of the estimated error of a single value in the Kaula set

according to the relation

1
e = T (a%Ph® ) Thch ool (12.14),

A8
where h is the elevation of the station, negative

if it is a depth and the quantities a, b and ¢ are constants. In
reality, the values of a, b and ¢ should be different for contine-
ntal and ocean areas but in this series of calculations which is
essentially experimental in nature this was not done in view of
the lack of sufficient information. It is likely that the value of
ais T 14 mgal and the magnitudes of b and ¢ are sufficiently
small to make Kaula's data set at least as accurate as a world
wide representation of each five degree square by a single rea-
ding.

In addition to equation (12, 14), the computation of which re-
quires the loading of e levations along with free air anomalies,
the basic equations programmed are derived from egquations

(5.54) and (10. 26).

N = C Zcos P T{f(Y)}.. Ag ..... (12.15),
F5 N5 1 iy ij Fij
where f(y) is given by equation (5.53). In equation (12, 15), the

suffix i denotes summation with respect to latitude and the suffix

j with respect to longitude. The constant CN is given by
5
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R w7x2.5x10
m

N5 4y X 1.802
m

2

where Rm is incm, vy m in gal, the free air ano-

maly in mgal and the answer in cm. Numerically

C = 3.9408 x 10”2,
Ng

The deflections of the vertical are given by

(F = C Zcosp T omily)] (mgal)
= ' . L y) |, cosa,. . AE
5i £ U av jk iik Fik
i=1,2 ....... (12.16),
where -2
c - JX 206265 x 2.5 x 10
s 4y x 1802
= n2tex107t L (12.17),
@, = A and @, = in A ..... (12.18).

The program also excludes those five degree squares
so situated that the ¢ value is less than 200. To provide for
uniformity of computation and to keep track of the areas
exclided in each calculation, the following system was adop-
ted instead when excluding regions from calculations. The
area to be excluded was chosen to be symmetrical about the
gouth west corner of the 5° x 5O square in which the compu-
tation point was located, the five degree square being defined
as a unit of surface area bounded by meridians and parallels

the values of lengitude and.latitude which, on division by 5,
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yield integral answers without truncation. % f(v) is given

by equation (10.30). V¥ is calculated from the following

equation obtained by a consideration of fig ( 5.1).

-1
= i i AX ). . .
¥ i = cos (sin ¢Os1n ¢i + cos ¢Ocos ¢i cos j). (12.19),
where the suffix o refers to the computation point,
As 1V is never zero under the conditions of the computation,
it is adequate to compute Aij by the relations
sin - sin @ cos V.,
i o 11

cos Ai' T —— .
! cos P sinV
o i

(12.20)

if the computation point is not at the pole and

sin A, = sin AA . cosec ¢y .. cos®. ....... (12.21).
1] 1 ij i

The error in the computed value dve to errors
in the adopted values of the free air anomalies is estimated

using the relations

P T SR 27 %
e =TC . T cos' 9, Z{{_f(w)g. e s
5 ik -
.............. (12.22)
and
2y IFD ey
e =1 Cy | Zcos 9. Z)” E—f(w) ! cos @
50 5 L] JokP-9% Ty ij
5.
1
L2003
Lo , i=1,2 ..(12.23).
Age 1
ik

In equations (12.22) and (12. 23), e X is the estimate
F.
ik

A
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of the error in Agng given, in the case of five degree squa-
re means by equation (12.14) . The cost of computation of
this effect per point is § 0. 13 using the program STOKUT
given in appendix (9).

(ii) Computations for regions situated in the - ange 50< P< ZOC.)

The sequence of computation for this region is get out
in the program titled STOKMD given in appendix (10)
The basic equations are essentially the same as those set
set out in gsection (12.5(i) ) with minor modifications in
the nature of the areas excluded in the computations, the
magnitude of the constant terms and the means used to eva-
luate the precision of the values of the free air means
The constants differ due to the change in the square size
used, as discussed in section (8. 1). The square size was
1° x 1° and the amended values of the constants are

Cy = 1.576 x 1072 .. ... ... (12.24)
1
and

c = s5.103x100% (12.25).
1
Computations in this program have to mesh with
those covering areas outside its scope. These lie both
exterior to and within the area covered in the present series
of calculations. Continuing the convention adopted in effec-
ting the exclusions in STOKUT, computations in STOKMD

o} o
commence at the south west corner of the 45 x 45 area ex-

cluded in the relevant calculation made using STOKUT. This
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¢ .2 is symmetrical about the 5° x 5° area, defined in the
previous sub-section, in which the computation point lies.
Within this 450 X 45O area, a 15o X 15‘0 area , also symmet-
rical about the 5° x 5° square in which the computation point
lies, is excluded. Thus, in incrementing the index, it is
necessary to check two conditions for every calculation.

The input data must provide a gravity anomaly
value for every 1°x1° square in the computation zone. Thir
requires that all available data be extended on the lines set
out in section (9) prior to loading. These field extensions are
performed by the all-purpose program WLS, set out in
appendix (11). The extensions so obtained were normalised
manually;s and +he Aata Joaded using the technique described
in section (12.2 (1) ) with two variations in the case of
values obtained by extension. Columns 5,¢,9 and 10 con-
tained data as follows for the different cases of actual rea-
dings, interpolations, interpolation/extrapolations, and
extrapolations, all terms having the same definition as given

in section (9. 7).

Class Values in column no s ,
5-6 9 10 ?
Actual Readings No. in sample 0 (or sign)] O
Interpolations Ii 1 sign
Interpolation/
extrapol-'’- g Ii 2 sign
Extrapolations Ie 3 sign

TABLE (12.3)
Loading of dataon 1~ x 1~ ancmaly data cards
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The regeneration of the relevant data is effected by
using certain properties of fixed point arithmetic on the com-
puter and utilising the natvre of the truncation which occurs.
The values of the standard deviation (c), number in sample
(n) and the interpolation interval (Ii(e)) are used in assessing
an estimate of the error of the value used to represent the

mean square anomaly.

The estimates of the errors are used in calcula-

ting e 4 using the relation

-8

F

1

2 - b - -

e - L2y Mo z2g2y (9.23),
A gF n . "-N - 1 S,,j
1

where N = maximum possible number compri-
sing sample. This relation breaks down when n=0, when the
case which occurs will be one of either interpolation, inter-
polation/extrapolation or extrapolation. The program is
designed to access values of the error of extension (eext)

defined in section (9. 7) which is stored as a (3, 6) array.

In such cases e is given by the equation
A gF
1

2 2

e = E e® (4,1, ) «euein... (12. 26),

A gFl s ext i(e)
where E_ is the error of representaticon of a 19 x
s
o

1 square by a single reading, estimated in table (9.1) as

being T 13.5 mgal for Australia. € ot is obtained in a manner

similar to that used in compiling table (9. 3).

When n = 1, equation (9. 23) reduces to



The values of e, gp obtained by the use of
equations (9.23), (12.26) and (12. 271) are then used to esti-
mate the error in the values of N1 and £ 1 (i=1, 2) using equa-~
tions similar to (12.22) and (12.23) as moldified by the use of
equations (12.24) and (12. 25).

It should be noted that the evaluation of esti-
mates of error by the above method, while being adequate
in the case of squares which have observations in them,
will have a tendency to underestimate the error in the com-
puted value due to a tendency for correlation to occur in the
extended values. This is difficult to assess at present but
it is hoped to study the nature of this effect when fresh data
becomes available in 1968. For the present series of com-
putations it has been assumed that the error of extended values
has a systematic component e A g in addition to the error
which behaves as described above® If this is called e by
the total error in N and & i(i:l, 2) is estimated according t%

the relations

2
2 2 < Z . r -;Z '/ il
ey = CN J‘_ cos {bj %{g’f(q)):.k Le, g - +
a.
ik
[ r - 2.
+ LCN Z cos ¢j z fy) ik © j
J Ik Ag. -
Sjk
............. (12.28)
where e is given by
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)

e =

e (t, I
o ey vl

t being the value given in column 9 as tabu-
lated in table (12.3). This definition of t also holds for equa-

tion (12.26). Similar expressions hold for eg (i=1, 2).
i

(iii) Computations in the region lying in the range 1. 50<1p < 5°

The anomalies used in these computations are
—;—O x 1° area means. The program is titled STOKNE and is
set out in appendix (12). The computational techniques used
are cxactly the same as in STOKMD with the exception of the
nature of the exclusions. In keeping with the pattern of ex-
clusions established in the programs dealt with previously, all
points of commencement and exclusion are referred to the
south west corner of the 5° x 5° and 1° x 1° squares in which
the point lies, the basic area considered being a 15O X 15O
area symmetrical abo.t the 5° x 5” area in whizh the compu-~
tational point lies.

The area excluded is a 3° x 3% block symmetrical
about the 1% x 1° square in which the computation point lies.
If the latter has geographical coordinates which are integral
degrees, the exclusion in such a case would commence at the
next degree south (west) of the computation point, the area
excluded still being a three degree square block. In this man-
ner , the area excluded and hence computed by more detailed
field representations is in excess of the minimum requirement

set down in secticn (8.2). The error in the quantities computed



I

261

is estimated as before.

(iv) The computations for regions lying within the range

Y < 1.50.

Computations in this inner zone are carried
out in at least two stages.  The first stage involves the
calculation of the effect for all regions except theinnermost
regions. The anomalies used in the calculation represent
0.1°x0.1° squares and the program, titled STOKIN and set
out in appendix (13), considers the 3% x 3° area excluded
from the three previous programs, which is s .nmetrical
about the 1° x 1° square in which the computation point lies.
The program excludes four 0. 1°x0.1° squares situated around
the computation point. As the values of ¥ in the range of this
program are limited, a considerable saving of computer time

is effected if ¢ were computed as

- Ko M:_l_
v =% 4 [ cos par’ 2 (12.29)
sin v = v + o{10™% e (12.30)
cos ¢ = 1- %wz Fool10® Y (12.31).

The estimates of the error in 2 gp are given by
equations (12.26) and (12.27) with ES = 13 mgal and the
estimates of error in the final results by equations similar

to (12. 28), with the constants given by

Cy 1.576 x 107 .. ..., .. .. (12, 32)

0.1

it

and -8
5.103 x 10 ~ . ..... ... ..., (12.33).

%0.1
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The second stage of the calculation covers the four
0.1°x0.1° squares excluded in the previous program, called
STOKIN, cen be computed using the formulae due to Sollins
(1947, 282) for the deflections of the vertical. A complete set
of formulae for the separation vector can be derived , using
Solling' technique as follows. If the innermost zone is a circle
of radius r. where r, could be given by equation (6. 63), the

value of V¥ in this region (ro < 15 km) will be small and the fol-

lowing replacements will be valid as ¢ = 2x10-3.
siny = ¢ + 01070y L (12.34)
cos ¥V = 1 + 0{10-6} ............ ..(12.35).
Similar expressions will also hold for 1y .  Under

these limiting conditions consider a unit of surface area do
at a distance s from the computation point and at an azimuth o.
is given by

= (12.36).

In the Stokesian term for N, given in equation (10.
26), the expression can be written as (see fig (12.1) )

R R rO/R . 2T
m i m .
N, = i ag H{y)sin ydy da..
1 f @]
!

0~ o (12.37),

where the use of equation (5.54) gives

f(p)siny = 2cos LV + siny - 6 sind sin g ¥ -

- 3sin Ycos ¥YiIn{ siniv (1 +sin 3 ¥} ...(12.38).
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FiG 12.1
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For small values of V¥ equation (12.38) reduces to

Lim  f(y)siny = 2+ 2 ... ...(12.39).
>0 m
If the gravity anomaly gradients arelinear within

the circle of radius Lo A g, can be expressed as a series of

the form
9 8g 98 g
AE. = aE. +scosa | §+ssma[ i
o °p Lan | 3E
....... (12.40),

where Ag.g ~ is the anomaly at the computation
point P and the N and E?axes are orientited north and east
respectively. The substitution of equations (12.39) and

(12.40) in equation (12.37) gives

R ~2T
i © ]

. T 3A
N.=4Trl / L}iAgo +ssina§’—a-§oj+
t m O o° - P
Y
+ 8 cos “;5_1{1—} J’}\2+§m)ds da

....... (12.41).

As the integration of terms containing sine and cos a bet-

ween the limits 0 and 2r is zero, the above integral reduces

to
Ag . ro -
Ni = rog‘ 14+ — j
Y'm = 4R
m
For computation purposes,
(cm) Ago(mgal) 2 (km) ¥ Foo
NS . P x10° 0% 1y =2 L. (12.42).
i v (gal) o N aR_ -

m
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In a similar manner expressions can be derived for the
deflections of the vertical, given by equation (10.33) and can,

in the case of the inner zone be erqcpressed as
{\’):..._C.) "'ZTT
(sec) 206265 | By |

g . = T |
i 4 'rrym o 0‘}

A gO a v f(‘{))
3azi sinVv d¥ do , i=1,2..(12.43),
where the indexes are defined in equations (10.18), (10.19)

and (10, 22). From equation (10.30),

5—-@ fly) sindy = - cosz—’z— Ycosec 1 V- 3 sinycos Ty +
.2 2,,1+2sini V¥
+ 5 sin” ¥- 3 cosV cos T sin 19
+ 3 gin® Vin sin $9(1 +sin 3V ) ..(12.44).
) 1 ¢ sz 3 I
i m e— Y i Yo o — i — 3 —}
q};mg 37 f(¥) sintv d R L3 +3+ 0o 10 st

............ (12.45).

Evaluation of each of the components of the deflection
of the vertical, in turn, together with the use of equation

(12.40) gives

ro 2T
i 0 Ag'
£ (sec)_ _ 206265 i ( Ag, COs at 3 L s(cos 2a+ 1) (ir
41%‘%?{ '. 0N
m . °p
0° 0
rotgn.. 2R
+%ssm2ai‘—-ﬁ9m 3+ sm stda
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P ° ~8Ago"
(sec) = 206265 , “Tu
£ = ity R L! 3N (3 + ) ds...(12.46),
mm 0
g,\2 T 2m
as | sinnede = 0} cos na da = 0

Further integration and simplification gives

- 3r ., [Oag."

(sec) _ 206265 o | [ 0
£ = --—-———-ZY ro_‘l IR J 5N ...(12.47).

m m
On a similar basis,
3r ~0A g

(sec) _ 206265 ‘ ) L s

n = -——-—-ZYm r, L1+ ——-4R —-E IR ..{12.48).

Equations (12.47) and (12.48) are Sollins'
expressions and on combination with equation (12.42), give a
definition for the contribution for the separation vector in the

immediate vicinity of the computation point.

These three equations are only valid under

conditions which permit the expression of the gravity anomaly

in the inner zone in terms of equation (12.40) and hence impo-
ses a restriction on the maximum size for the latter. Except
in disturbed areas the gravity anomaly gradient seldom exceeds
3 mgal per 10 km. Thus the magnitude of r is critical in the
solution enly if the gravity anomaly gradient is non-linear over
the distance r,or is abnormally large. The contribution of
the above average gra iient to the deflection of the vertical is
of the order of 0".3. For more disturbed regions or regions

where the gravity anomaly gradient is not linear over the
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four innermost tenth degree squares excluded from the previous
prigrams, the following procedure should be adopted.

(i) The innermost zone is replaced by a more ac-
curate subdivision. The most convenient system already
available is that of Rice's circular rings (Rice, 1952, 288).
These are circular templates having a uniform angular aper-
ture of 100, constructed so that the radial deflection effect for
unit anomaly is 0'".001.

(i) Calculations in the immediate vicinity of the
computation point which is a circle of radius r_are effected
using equation (12.42) and Sollins' expressions, set out in
equations (12.47) and (12.48). In certain calculations carried
out by the U.S.Coast and Geodetic Survey, the magnitude of
r, was determinec vy

(a) the extent of gravity data available ;
(b) the irregularities of the anomaly field.

Unless the field was extremely disturbed the usual va-
lue adopted for r, (Rice, 1952, 290) was 4.32 km. In cases
where adequate field coverage was available and the field sho-
wed irregular variations, the value of r_ was reduced to 0.279
km.

The obvious criterion for assessing the minimum value
admissible for ro is the accuracy of the assumption embodied

in equation (12.40). A more complete expression for 4 g, is

given by
_-a_.ﬁ\‘p* 4 8 Ag i 2 5
A = e i ' 3 :
g, Ago + 8 cos ai.aN | + s s1na}v ?E | + 358 cos a
P 2

;0 [‘go“‘: ) 2 -0 Ago“i
e + 1 s"sin"a} ....(12,49).
La N -.'l 3 s sin"a ———1 (12, 49)

-9E~ -
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In the case of the expression for Ni’ the initial integ-
ration will give rise to the following term which is indepen-

dent of sin ne/cos na

2 2
1200 8B 0 Eo

6g + s, > Lot >—| | instead of A g,

P Lan“- - ar° - - P
This revised term becomes
2 2 2 >
A -

g+ = rZ"a fo : Ag°z+ o'a %o Lo,
A By 2 2 2R 4
°p 12 o &y sE® | aN(E)® Bm

in the final expression. Thus equation

(12.42) can be replaced by

(mgal)
’ 2
LR TPTE BULE NP PN S g L
Tk | 12 g BNZ

2 .
O AE r |
o1 i 0 |

+ e T (12.50),

where the rate of change of the gravity anomaly
gradient is expressed in mgal km_z, r and Rm being expressed
in km on the right hand side in the last two terms.

The derivatives of the gravity anomaly gradient
have no effect on the deflections of the vertical as the terms in-
volved in the initial integration are either sin o cosza or sin «
cosza, both of which integrate to zero between the limits 0 and
27 . Thus only odd order differential coefficients affect the
deflections of the vertical. The basic term is

2i-1 . 2i~-1 .
s cos (sin) a sin (cos) «a.
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3 i
When 1i=2, the effective term is f(a) s l % 3£.
- IN(E)-
The numerical coefficient of this term is 7118' . Thus equations

(12.47) and (12.48) are sufficient for most cases even when
r is as large as 10 km if the field variations are orderly in
a mathematical sense. In the case of slightly more variable

fields it would appear prudent to use

(sec) . 3r Ag- r3 f83Agw, .
TRy 'rﬁ-% i3
m oN
......... (12.51),
with a similar expression for n . The possibility of evalua-

ting the second differential coefficient of the gravity anomaly
gradient with any degree of precision is debatable and, in the
case of disturbed fields, there seems to be no alternative to
adopting the procedure described previcusly for evaluating the
effects in ¢ 2h cones.

Rice (1952, 290) suggests sampling the gradient by
the establishmenf of 8 gravity stations in the vicinity of the’
computation point, as shown in fig (12.2). This would give
three estimates in each case of the north-south and east-west
gravity anomaly gradients, one of each of which pass through
the computation point. The weighted mean was then used to
determine the value of the gradients to be used in computations.
Rice suggests unit weight for those gradients passing through
the computation point and half this value for the outer ones.

In the case of the determination of Ni in the
areas with disturbed fields, the same procedure can be applied

using a set of templates constructed by Uotila (1960, 42).
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FiG.12.2

SAMPLING ANOMALY GRADIENT

"IN INNER ZONE.
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12.6 The computation of the indirect effect .

The indirect effect to the Stokesian effect for
the geoid - spheroid system is given in equation (5.61) when
free air anomalies are used. This has two constituent
parts, one of which is dependent on the potential of matter
exterior to the geoid at the computation point . . 1 .e second
is a Stokesian effect, computed using exactly the same for-
mulae as before. The only difference is the use of differen-
tial topographical corrections (A gco) instead of free air ano-
malies ( a gF) in the formulae listed in section (12.5). These
topographical corrections are all negative, unlike the free
air anomalies, which should, by virtue of the nature of the
international gravity formula, be distributed about a zero
mean. This particular proposition is examined in greater

detail in section (13).

Consider the computation of the first of the terms
comp.© sing the indirect effect. Using the s.ifix E to denote
such terms, the basic equations used for the calculation of the
relevant terms are given in equation (6. 66) as modified by

equations (10.26) and (10.33) as

Ngm)= K, = n® % T. cosecd ¥ ......... (12.52),
P EN i 13 ij ij
2
where kRm 2% 102
KE = TR (12.53)
N Y 180
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and

-

(met) ' 3hij 1

- i 1 -

Tij = 3, ijjhij cos ¢ij F1+ 3 3(:ij cot 3 4
..... ...(12.54),

op i being given by equation (12.4), the quantities ,
c.andc' having the same definition as in section (12.4(i) ).

d d
K_ has the value 3.661 x 10-3 and is dimensionless. In

Ex
this series of computations
(a) depth has no meaning & the quantity h is the ele-
vation of topography exterior to the geoid which becomes
Zero over ocean areas ;
(b)the calculation thus covers continental areas only ;
(c) the effect is always positive. The contribution

to the deflections of the vertical are given by

£ E, = KEE]Z n12 g T cos i w_ikcoseczé hgos @y
i=1,2 ..... (12.55),
wher > 2 2 |
Ky = - Wk p IR (12, 66)
e 2 x 180° v __

In the above equations all quantities have the same
definition as in equation (12.52), aijk(izl, 2) being defined by
equation (10.22). In this case, the components of the deflec-
tion of the vertical are dependent on the disposition of the topo-
graphy with respect to the computation point. The constant
Kg evaluated under the same conditions used in the previous
instgance, has the value - 5.927 x 10‘7cm-1, for values of
hi' in metres. The computation of the contribution of the
external potential to the indirect effect was computed in three

series of programs.
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(i) For regions where ¢ > 200.

In this case, n=5 and the total number of quan-
tities involved was approximately 2500. The values of hii
used were 5° x 5° mean elevations prepared by Lee (Kaula;
et al, 1966, IIA, 43 et seq). These elevations, for continen-
tal areas, are probably quite reliable as the set was constru-
cted from 1° x 1° mean elevations. As pointed out earlier,
the comparison errors for the Australian mainland region
were of the order of T 80 metres and hence the error of any
5° x 5° mean elevation for a continental area is unlikely to be
in excess of T 50 metres on the basis of Lee's tests ( ibid,
IIa, 30).

The accuracy of the quantity computed was evaluated

according to the relations

2
. T Ik
{ ] i 12
eN(Cn'zl) + K, x 25' | --%— cosec % ¥ |50
E A h, -
3 ,
e(setz) = tx XZS{Z% - cos 3 WCOSGCZ%‘P--'
. £ p
i V23 3
cos a, ;j 50 , i=1,2 ....... (12.58)
o

The program used to compute the above effect was coded
INOUT and is set out in appendix (14). It was adapted for
generalised computing by reading in all height data on a world
wide basis and excluding a 45° x 45° area symmetrical
about the 5° x 5° square in which the computation point was

located.
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o
(ii) For regions in the range 1,5°< ¥ <20 .

The data used in this region were the set of 1° x 1° - ele-
vation means computed in the program AN_COMP, described in
section (12.2). The accuracy of these elevation means is hardly
likely to exceed T metres. The equations programmed in this
set of computations are embodied in the program INMID, set out
in appendix (15), and are similar in nature to those described in
section (12,6 (i) ). A 450 X 450 area, symmetrical about the
50 X 50 square in which the computation point lies, is considered,
an area of 3o X 30, symmetrical about the 10 X 1° square in which

the computation point was situate d, keing exzcluded.

(iii) For regionsin 0.1%< y <1.5°

The indirect effect for this region was com-
puted using the program titled INNEAR, given in appendix (16).
The input data was in the form of 0.1° x 0.1° elevation means for
the 3° x 3° area symmetrical about the 1° x 1° square in which
the computation point was situated. These elevations had an
estimated error of t 30 metres. The programs, similar in
nature to those described previously, were amended slightly to
take into account the limited range of ¥y . The four innermost
tenth degree squares were excluded and the effect of this zone

was cousidered separately.

(iv) The region 4 < 0.1°
The equations (12.52) to (12.58) fail in this inner-

most region due to the instability of cosec % ¢. The separation




JS—

275
in such a case is given by equation (6. 74).

knphr h

P P
 e——— - — 4
NE_ ; (1 21Q+.....) cere. . (6.74).

i
The contribution of a cylinder,constituting the inner zone,

to the deflections of the vertical is zero, as can be seen from the
consideration of the equations preceding equation (6.67) due to the
integration o

2T
cosada = [ ginadaoe = 0.
o 0.

———

The effect of the departure of the actual to-
pography from the cylindrical model has a negligible effect on the
potential of matter exterior to the geoid at a point on the geoid,
in view of the magnitude of the terms involved and can be ignored.
Equation (6.74) is programmed for computations of the effect
for varying heights and densities and is set out in appendl.x (17), p

titled ININ,
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