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"Perhaps in another world we may gain other insights
into the nature of space which at present are unattainable

to us. Until then we must consider geometry of equal
rank, not with arithmetic which is purely logical,

but with mechanics which is empirical.”

C. F. Gauss, 1817.
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SUMMARY

The problem of terrestrial point co-ordination using the
common geodetic measurements of directions, zenith distances, lengths,
azimuths, latitudes, longitudes, levelled differences in elevation
and gravity readings is analysed. Theoretical solutions are posed
employing the data pertaining specifically to either the earth's gravity
field or the atmosphere. However, because the curvature parameters
defining the gravity field cannot at present be determined to sufficient
accuracy and those defining the atmosphere cannot be measured at alil,

a combined model is formulated. Assuming the gravitational field to

be suitably described by a Newtonian system and that adequate correction
is possible for the measurements which are influenced by refraction, a
Euclidean metric is selected for the complete definition of the solution.
Within the proposed model, relative positions of points are defined by
astronomic observations which refer essentially to the gravity field,
and by the angular and linear data which pertain to the atmosphere.
Absolute positions may be computed using world wide gravity data.

Since the number of observations made in practice always exceeds the
minimum required for a unique determination of the unknowns , adjustment
1s necessary. Formulae are given for a least squares solution, the
variation of co-ordinates method being preferred on account of its

suitability for programmed computation.

The model is applied to a significant portion of the network
stations which were included in the 1966 Australian National Adjustment.
A total of 263 points, covering an area of one million square kilometres,
is considered. The computed Cartesian co-ordinates are compared to
the corresponding ellipsoidal values obtained for the National Adjustment.
The resulting discrepancies, which appear to be of a systematic nature,

are attributed to:

(1) the computational method chosen for the National Adjustment
being an approximation in comparison to a rigorous, one phase

least squares solution;
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(2) the test network being only a small portion of the National
configuration; and
(3) the available data not being used in an identical manner.

Implementation of a full error analysis is estimated to require 100 hours
of computer time. Only a component net comprising 63 stations is

therefore examined.

Approximately 2 000 normal equations require solution and the
coefficient matrix must be inverted to appraise the accuracy of the
unknowns. Suitable algorithms for both of these tasks are presented,
purely iterative techniques being rejected respectively in favour of the
direct and partitioned methods. Nevertheless, for an accurate solution
iterative refinement procedures are especially attractive and a method
for improving the accuracy of the solution in this manner is given.

The Cholesky approach to decomposition, which has all the virtues for
the banded, positive definite and symmetric matrices that occur in
practice, is recommended. Factorization by partitioning is only to

be considered when the coefficient matrix cannot be wholly accommodated
in the core of the available computer. Optimum scaling by
equilibration is studied. The feasibility of evaluating the inverse
using the FORTRAN H compiler on the IBM 360/50 computer is investigated.
It is found that the full or partial inversion of matrices of order
larger than 400 requires extensive amounts of computer time. An
alternative for assessing the accuracy of the computed solution is thus

offered.
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INTRODUCTTI QN.

In the projective method of classical geodesy (Wilcox 1963,
127-138), the problem of point co-ordination on the earth's surface

is solved by:

(1) correcting the observations for curvature;

(2) projecting the 'corrected' measurements to a reference figure
via the geoid and

(3) computing positions using the projected quantities.

Two co-ordinates of each station are computed on the reference ellipsoid
or on a plane conformal transformation of it. The third dimension is
usually provided by a combination of levelling and gravity data. At
present, such a procedure is the most acceptable, in view of the
uncertainty in the knowledge of the influence of refraction on vertical
angle measurement. It is, however, only a practical solution to a

complex physical problem.

Conventional geodetic measurements comprise directions, lengths,
vertical angles, azimuths, latitudes, longitudes, levelled differences
in elevation and gravity readings. Meteorological observations are
also made in conjunction with the electromagnetically determined distances.
It is hoped that these observations will provide sufficient information for
the computation of the absolute spatial positions of points at which the
measurements are made, the term absolute being used in the sense that the
points are, in the ideal circumstance, to be related to known invariants -
that is, the earth's mean centre of mass and mean rotational axis for some

epoch - within the earth, via a reference frame.

The measurements are made through the atmosphere and with the
exception of the distances are subject to the earth's gravitational field.
Accordingly, an important aspect of terrestrial point co-ordination is the
definition of the natural laws which influence the observations. These
laws must in turn be related to an acceptable system of geometry that is

suitable as the basis to co-ordinate computation.



xiii

If the problem of point co-ordination is considered as a
problem in space, then three distinct sub-spaces come to mind:
(1) that of the earth's gravity field or Earth space (Mather 1970a, 5);
(2) that of the atmosphere and
(3) that of the mathematical model.
Both Earth space and the atmosphere are a physical reality, whereas the
mathematical model exists in the mind of the geodesist alone, hopefully

to comply with physical reality.

The geometry of Earth space which may be considered to be
governed by Newtonian gravitation over short intervals of time and after
the appropriate reduction of observations, is three-dimensional Euclidean
since the expression for force and potential require the distance between
the test and massive particle to be finite and in a straight line. The
field itself must extend to infinity and a Euclidean metric must therefore
be chosen to describe it. The nature of the atmosphere is time dependent.
Moreover, a geodesic within it is not, in general, a straight line. Hence,

-

the geometry of the atmosphere dictates a Riemannian metric.

The geometry of the mathematical model must satisfy the
geometry of its component spaces and will thus be non-Euclidean. However,
since non-Euclidean space can always be mapped onto Euclidean space,
Euclidean geometry can always be assumed to be the geometry of the adopted
mathematical model, provided the requisite changes are made in the physical
laws that determine it. It is purely a guestion of convenience whether
it is preferred to have an easily intelligible geometry with compllcated
phy51cal laws or a less intelligible geometry with simple physical laws.
The consensus of opinion appears to be that geometry should be regarded
as part of the physical situation and therefore the obvious system of
geometry should be one in which the rest of the laws governing the
mathematical model can be expressed as simply as possible. It is this

consideration which would ultimately lead to a curved mathematical model.
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The geodesist, who adopts Newtonian gravitation and Euclidean
geometry as the basis to computations is thus handicapped, as he not
only neglects the time dependence of his observations but also the possible
incompatibility of reality and the mathematical model. Furthermore, when
theories are compared with the observations and it is found that there is
not an exact agreement, it is assumed that the results and not the
mathematical model are in error, providing the discrepancy is within certain

prescribed limits.

Euclidean geometry undoubtedly describes with close approximatien
the physical reality of geodetic observations; but whilst the effects of
curvature and of time remain uncertain, any solution to the fundamental

problem of geodetic point location must be considered as an approximation.

A temporary solution to the problem is one in which both the
curvature of the mathematical model and the time dependence of the
observations are neglected. A Euclidean metric is assumed and computations
are effected using Cartesian co-ordinates. The basis of such a technigue
appears to have been first proposed by Bruns (1878). An alternative
approach was suggested by Marussi (1949) and was later formulated by
Hotine (19567, 1959, 1969) who adopts as a foundation of the computations
the three co-ordinate surfaces generated respectively by the astronomic
observations of longitude and latitude, and the geopotential. Hotine
(1957, 7) concludes that this type of solution cannot be put to practice
because the higher derivatives of the parameters ¢, W, N respectively the
astronomic latitude and longitude, and the geopotential, with respect to
the element of arc joining adjacent points, cannot be determined from

the measured quantities.

By excluding the third co-ordinate surface, classical geodesy

has adopted the approach of projecting the observing station onto a
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regular mathematical figure - more precisely an ellipsoid of revolution.
Two co-ordinates of each station are computed on this ellipsoid or on a
plane conformal transformation of it. The third geodetic co-ordinate
of height above ellipsoid of the point in question is usually provided by
levelling. Unfortunately, whereas transformed geodetic co-ordinates
refer to an ellipsoid of revolution, the datum of height measurement is
an equipotential surface of the earth's gravitational field. Thus
within this method the reference surfaces for height and position are not
identical, and even though computations are made in two dimensions, the
method suffers from the additional disadvantage that computational

formulae become more complicated.

Yet another approximate solution and one that is the subject of
this dissertation is the method of astronomic vector systems (Stolz 1970).
The distinction between this technique and that treated by other authors
(Bruns 1878), (Dufour 1968), (Hotine 1969), (Mather 1969), (Molodenskii
et al 1962), and (Wolf 1963b) is that all preliminary computations are

made in the natural reference frame of the observations.

The natural or astronomic reference frame, which comprises the
directions of the astronomic meridian, the zenith and a third vector
completing the triad* orthogonally and in a right-handed system, is defined
under the assumption that the equipotential surface containing the observing
station has no discontinuities at or in the vicinity of the spatial point,
implying that a tangent plane to the equipotential surface exists at the
point being considered. Within this system, the customary linear and
angular measurements completely define the relative positions of points.

Moreover, all observations are made at discrete points and all but the

*The word triad is used throughout this dissertation to describe the
unit vector triple defining the direction of the astronomic meridian,
the astronomic zenith and a third vector completing the set in an
orthogonal right-handed system.
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measured distances are subject to the earth's gravitational field there.
Thus, assuming that the field remains constant over the period of
observations, all measurements are affected equally at a point and the
earth's gravitational field does not affect the relative positions of
points as defined. Orientation of the triads is achieved by astronomic
azimuth observations. Naturally, the method does not give any information
regarding the geocentricity* of the system as the potential is no longer

a parameter of the solution.

The method is marked by simplicity of computation and, providing
care is exercised in defining the direction parameters of the astronomic
zenith, the measured quantities may be directly related to perpendicular
components in the local astronomic triad which may then be rotated to

provide co-ordinate increments between adjacent points.

* The geocentre represents the Earth's centre of mass.
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NOTATTION,

Indices.

The index notation of tensor calculus (McConnell 1957, 1)
offers many advantages and is used extensively throughout this
dissertation. Lower case Roman letters 1, 3, k ... etc. will be
used for indice§, both as subscripts (ai), indicating covariance and
superscripts (a’), indicating contravariance (2bid 20 - 22). Thus
the quantities al, a? and a® will be denoted by the symbol ai
Symbolically this may be written -
ai = (al, a?, a%)

and it must be remembered that a in this relation is a set of three

quantities. No operation such as multiplication or division is

implied. For i and j ranging from 1 to 3 independently, the
i iy . .

symbols aj, aij and alJ represent nine quantities.

According to the summation convention, a summation is implied

when an index is repeated. For example -
b.ci = bect + bc2 + bcd (53 = 1,2, 3)
13 1] 2 3 3 3

A repeated index is called a dummy index, because the value of the term
does not depend on the symbol used. An index which is not repeated is
called a free index; when a suffix occurs unrepeated in a term, it will
be understood that it takes the values from the set (1, 2, 3).

Evaluating a, = bi for the range (1, 2, 3) gives

For quantities pertaining to the origin of survey, the suffix o 1is employed.
It is understood that this is not a free index. The following system of
symbols and abbreviations is adopted throughout this dissertation: Only
those symbols used frequently are given; minor use for some other guantity
in only one context is not listed in the index, but is fully explained in

the text.



xviii

Coefficient matrix of linear system Ax = b.

Norm of matrix A.

General element of matrix A.

First co-ordinate in a general (a, b, C) co-ordinate system.
Cartesian components of a general unit vector.

Second co-ordinate in a general {(a, b, C)co-ordinate system.
Right~hand side vector of Ax = b.

Third co-ordinate in a general (a, b, C) co-ordinate system.
C may be given various meanings in different contexts, for
example, potential or geopotential in Chapter 3.

Velocity of light.

Eccentricity of meridian ellipse.

Force vector.

Matrix of weight coefficients.

Metric tensors in three-dimensions.

Orthometric elevation.

Unit matrix.

Fixed Cartesian axis vectors.

Gaussian curvature.

Refraction coefficient; Gravitational constant.

Covariant vector (three-dimensions).

Cartesian components of a general unit vector in local
astronomic triad (Xr, ur, Vr)

Mass of a particle; Band-width of matrix A.

Geopotential; Normal equation matrix.

Magnitude of the gradient of geopotential; Order of

matrix A.

Orientation constant.

Latitude and Longitude matrix; Variance-covariance matrix

of adjusted quantities.
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|

X,

x| |

Y.

Z

Xix

Diagonal submatrix of variance~covariance matrix.
Matrices of components of Ar, ur,\)r and Ar' Mor V-
Curvature parameters. Normal curvature of N-surface
in prime vertical (Ar) and meridian (ur) directions
respectively.

Optical path length.

Time.

Curvature parameter. Geodesic torsion of N-surface in
prime vertical direction.

Attracting potential.

Accidental (normally distributed) error.

Weight matrix.

Solution vector of Ax = b,

Norm of vector x.

Cartesian co-ordinates in a geocentric eguatorial
right-handed system.

Azimuth.

Zenith distance.

Christoffel symbols.

Curvature parameters. Rate of change of (Zn n) in prime
vertical (A') and meridian (ur) directions, respectively,
in a (w, ¢, N) system.

Laplacian.

Prime vertical component of deflection.

Largest and smallest eigenvalues of matrix A.

Local astronomic vector triad.

Spectral condition number of matrix A with respect to
inversion.

Refractive index.

Principal radii of curvature of an ellipsoid in prime

vertical and meridian directions.
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Vr Unit normal.

£ Meridian component of deflection.

pr, pr Position vector.

o) Variance—covariancé matrix of observed
q; Variance factor.

¢ Latitude of gradient of N.

w Longitude of gradient of N.

w Angular velocity of earth's rotation.
Abbreviations.

AGD Australian Geodetic Datum.

ppm Parts per million.

0-C Observed minus computed.

quantities.



PART A: THE FUNDAMENTALS OF THREE-DIMENSIONAL COMPUTATIONS.

1. Definitions.

1.1 Spatial Co-ordinate Systems.

Several co-ordinate systems are used for the analysis of

observational data within the context of this dissertation. They are
briefly:
(1) a special but quite general co-ordinate system (a, b, C)

(Hotine 1969, 69) generated by a continuously differentiable

scalar function of position C in three-dimensional space;

(2) a global Cartesian System;
(3) a Celestial system for astronomical work and
(4) a local triad in which all the geodetic measurements are made.

These reference systems have to be carefully defined and their precise
relationships established so that the spatial concepts involved may

be fully exploited.

The (a, b, C) co-ordinate system is used in the analysis
of the equipotential surfaces of the earth's gravitational field and
in the formulation of the geometry of the wavefronts that arise when

energy is transmitted through the atmosphere.

Theoretically, the global Cartesian system is defined by
the mean terrestrial pole of a certain date and the mean meridian of
Greenwich, and the Celestial system by the mean equator and ecliptic
of a certain date. In practice however, both these systems are defined
by a set of co-ordinates given to physical points, as the ideal global
Cartesian system is replaced by a geodetic system that is parallel to
the ideal frame and the Celestial system by one that is defined with
reference to the mean places and proper motions given to stars in a
particular catalogue. The two systems can be related when the position
of the instantaneous pole, the sidereal time at Greenwich as determined

by observation, and the precessional and nutational constants are known.
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In addition a system is needed to which the geodetic
observations can be referred. For this purpose Cartesian components
within a curvilinear reference frame will be used in preference to any
other system as such a system has several advantages in analytical

manipulation and can be transformed to any other by matrix algebra.

1.1.1 The (a, b, C) Co-ordinate System.

The (a, b, C) co-ordinate system is generated entirely by
a continuously differentiable scalar function of position C in three-
dimensional space. Points in space having a particular value of C
will lie on a surface C = const. and for different values of this
scalar, a family of surfaces is 6btained. C may be taken as one of
the co-ordinates of the system and if defined throughout some region of
space, then so is the magnitude (n) and direction (Vr) of its gradient

(Cr) as by definition

c = nv ceaen- (1.1
r r

The direction vr in relation to three fixed Cartesian axes in flat space
will define two independent scalars a, b which may be chosen as the other
two co-ordinates of the space, and each generates a family of surfaces
distinct from the C-surfaces and each other. Position in space can

thus be described by the intersection of the three surfaces.

Each co-ordinate line, the line of intersection of two
co-ordinate surfaces along which only the third co-ordinate varies, will
in general be curved both on the C-surface and in space. Moreover, as
well as using the scalars a, b as two of the space co-ordinates, it is

possible to choose them as C-surface co-ordinates.

11.1.1 Sign Convention.

The (a, b, C) system is chosen right-handed in the

same sense that (x, y, z) is conventionally right-handed (Fig. 1.1),.



Looking along the positive direction of the C-co-ordinate line, the
positive direction of the b-line is to the right of the positive direction
of the a-line. A positive rotation about the C~line will be clockwise
when looking along the positive direction of the C-co-ordinate line.

Later on, when the C-co-ordinate is identified with the geopotential N,
the positive direction of C as defined above, will make N negative in
geodetic applications, but accords with the usual mathematical conventions

of an outward drawn normal to a closed surface.

l.1.2 The Global Cartesian System.

The ideal Cartesian reference frame for all spatial points

is an earth centred equatorial right-handed system x, y, z defined as

follows: 'The origin is at the earth's centre of mass and the system
is oriented so that the z-axis is directed towards the mean north pole
as defined by the International Polar Motion Service. The xz-plane

18 parallel to the mean meridian of Greemwich as defined by the Bureau
Internationale de l'Heure, but any other standard meridian is acceptable.'
This terrestrial co-ordinate system is fixed with respect to the earth's
surface and the co-ordinates of any point do not change providing there

is no crustal movement.

Unfortunately, the centre of mass of the earth is not known
precisely and for this reason, the ideal system is replaced in practice
by a rectangular geodetic system in which the axes are respectively
parallel to those of the ideal systemn. Co-ordinates within this system
thus remain relative to the origin of the geodetic system until the
position of the geocentre with respect to a surface point is known.

A translation will then produce geocentric co-ordinates.



| \\ vi(Vertical)
r

A N\
Mean Rotational — l(INorth) (East)
Axis kr

PR \ ‘

ir Equipotential
Geocentre— M\ surface N const.
<

Longitude

FI1G. 12



1.1.3 The Celestial System.

It is necessary to define a Celestial system as within it
the astronomic bbservations of latitude, longitude and azimuth are made.
The precise aspects of this frame, with particular emphasis on permitting
a transformation between the ideal Cartesian and Celestial systems have

been investigated by Veis (1963).

1.1.4 The Local System.

The local system is defined on the assumption that the
equipotential surface containing a particular spatial point has no dis-
continuities at and in the vicinity of that point, which implies that a
tangent plane to the equipotential surface exists at the point under
consideration. A right-handed orthogonal vector triad Kr, ur, vr at any
spatial point is then defined as follows:

(1) Ar is the direction of the prime vertical and lies in the plane
tangent to the equipotential surface containing the spatial
point;

(2) ur is the direction of the astronomic meridian and also lies in
the tangent plane and

(3) V' is the direction of the astronomic zenith and is normal to
the tangent plane.

All geodetic measurements are made within this local system.

In order to establish the precise relationships between
the reference systems previously described as well as those between adjacent

local systems it remains to define:
(1) a vector triad ir, jr, kr;
(2) the astronomic latitude (¢) and longitude (w) of a spatial point

. .Y .r r r r
using the vectors i, j , k and A7, U

r
’ V and
(3) the aximuth o and zenith distance R of a spatial vector
connecting two adjacent terrestrial points.

1.2 The Vector Triad (ir, jr, kr).

The vector triad (ir, jr, kr) (Fig. 1.2) is defined so that the

N o r . . . . . .
i", j7, k= are unit axis vectors in the directions of the corresponding

X, Y, Z axes.



If the Cartesian co-ordinate x is considered to be a scalar

function of position, then its gradient is

X = i
r r

a vector equation which is true in any co-ordinate system. Thus, using

braces notation to denote column matrices

e, vy, 21} = ES B ceeee. (L.2)

In Cartesian co-ordinates the above components become

{xr, Y. s zr} = {ir, 3 kr} = T R (1.3)

where I is the unit matrix.

1.3 The Astronomic Latitude (¢) and Longitude (w).

Astronomic latitude is taken as the angle between the vector
v’ and the xy~plane, positive north. The longitude is the angle between
two planes both containing the mean axis of rotation one of which is parallel
to vr, that is the vertical at the observation point whereas the other is
parallel to the vertical at some defined point such as the site of the
Greenwich transit telescope, or more precisely, as defined by Bomford

(1962, 86-7), positive east.

Longitude and latitude may thus be defined in terms of

direction cosines of the unit normal v© by means of the following scalar

products -~
.r
cos ¢ cos w = v i
. T
cos ¢ sin w = Vrj e (1.4)
. r
sin ¢ = vrk

These definitions accord with international practice and with astronomic
convention for right ascension and local time (but not hour angle which
is reckoned positive west). Longitude is thus made a positive rotation

in the mathematical sense about the northward rotational axis of the earth.



From the previous definitions, it becomes clear that in the
general case, the meridian will fail to pass through the ground point
(Fig. 1.2). However, this is of no consequence as in the method of
spatial point definition to be proposed, astronomic measurements of latitude
and longitude are used only to define the direction of the vertical and
not to define position. The relative positions of points are then
given by the other linear and angular measurements. For the local
astronomic triad this means, providing that an astronomic azimuth has
been observed, that the directions of its unit vectors are uniquely

defined by the astronomically observed values.

1.4 Azimuth (@) and Zenith Distance (B).

. . . . r
Azimuth is defined as a rotation about Vr from ur to A
(Fig. 1.3). A unit vector ¥ which lies in the tangent plane to the

equipotential surface with azimuth 0 is accordingly given by

Lt = Ar sinoc+ur cos O (1.5)

A unit spatial vector in azimuth o and zenith distance R will be given

by the vector equation -

2t AF sin o sin B + ur cos O sin B + v cos B..... (1.6)

2. Physical Space.

The idea of space to which everyone is accustomed, was first imagined
by Descartes. In this system, the properties of space were believed to

be in accord with the geometry of Euclid.

The Greeks investigated very thoroughly and completely the mathematical
properties associated with the experience of space. In the famous text-book
of Euclid, the Elements of Geometry, these are presented as logical deductions
from a set of axioms which are assumed without proof. Euclid's axioms are

not, however, now considered as satisfactory, and it is not to be expected



that a single mathematical system of geometry, such as Euclid's, should
furnish relations covering the whole aspect of reality. Nevertheless,
Euclidean geometry undoubtedly describes with close approximation a large

class of properties of the actual world.

The truth that destroyed truth, was clearly seen by C.F. Gauss.
Before Gauss, the usual technique of investigating a curved surface was
to operate with the three Cartesian co-ordinates x, y, z considering
the curved surface as an entity embedded in the surrounding space of
three dimensions. Gauss realised that Euclidean geometry may miss the
mark and arrived at a new foundation of the geometry of the physical
world which dispensed with the postulates in favour of certain fundamental
measurements, thus making geometry a quantitative science. He discovered
that geometry depended on the quantity K - the curvature. For example,
if K =0 at every point on the surface, the geometry becomes Euclidean,
and therefore the geometry of the plane is contained in a single statement,

that XK =0 at all points.

Riemann, ingenious pupil of Gauss, asked what would correspond to this
quantity in more than two dimensions and, how one could tell from a given
line element whether the geometry established by it was Euclidean or
not (Weber 1953, 272-288). He made the basic discovery that the decisive
quantity is not a single number, but is in fact a tensor of fourth order.
Euclid's flat geometry results if all the components of this tensor vanish.
But even if one component happens to be non-zero, then the geometry is no

longer Euclidean; a certain curvature exists.

The implications of non~Euclidean geometry are drastic. If both
Euclidean and non-Euclidean geometry can represent physical space equally
well, which is the truth about space and figures in space? The fact
gradually forced upon mathematicians was that geometry is not the truth

about physical space but the study about possible spaces.
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2.1 Physical Space and Geometry.

In physics the idea of space and of situation in space, is
derived by first introducing the concept of distance, which leads to the
discovery of the empirical relations between the mutual distances of a
number of particles. This introduces an ideal realm by the postulation
of an exact mathematical form for these relations and the development of
a theory of geometry. Having thus reached the concept of geometrical
space, the geometrical space is finally projected back into the external
world yvielding the concept of physical situation. Accordingly, physical

space is not an intuition, but a system.

It is important that geometrical space should be distinguished
from physical space, as the former is nothing but an imagined substratum
for the mathematical relations that are approximately valid there; it
exists only in the mind of the mathematician. Nevertheless, geometrical
space has played a great part in forming the concept of physical space:
for having been originally derived from the comparison of measurements made
in the actual world, it has been projected back, so to speak, onto nature

and thus has furnished a generally acceptable picture of reality.

2.2 The Nature of Space from Measurements.

It is the characteristic of any branch of mathematics that
the whole of it can be derived from a few definitions and assumptions
specified at the beginning. The question therefore arises: What
are the fundamental data or postulates from which the complete set of
laws of the space that surrounds us can be deduced by pure mathematics?
Moreover, are these data or postulates revealed by observation and
experiment or are they self evident truths revealed and assured by

intuition?

In order to propose a satisfactory answer to these questions,
it is necessary to examine whether it is possible to determine by

observation the system of geometry (Euclidean or non-Euclidean) which
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corresponds to that of actual space. Many different systems may be
chosen, any one of which will serve the purpose. Essentially, this
space is a mere threefold continuity and nothing more. It would

therefore seem to be impossible to tell by observation whether the space

is Euclidean or non-Euclidean.

However, in studying space, one has to deal not only with
threefold continuity but also with the notion of distance, which is
purely physical. As soon as the distance between all pairs of points
is defined there will be a relation between the 10 mutual distances of any
5 points (Whittaker 1949, 7), and on this relation will depend whether
the geometry of the space is Euclidean or not. Thus while there is no
constraint, either observational or logical, which imposes on the pure
mathematician either a Euclidean or non-Euclidean metric for the space
he considers, the matter is not so for the physical scientist. If
geometry is to be of use to him, he must define distance in accordance
with the observationally determined properties of physical distance so
that he has practically no freedom of choice for his quantitative study

"of physical space and therefore no choice whether it is to be Euclidean

or not.

Since non-Euclidean space can always be mapped onto Euclidean
space, however, Euclidean geometry can always be assumed to be the geometry
of actual space, provided the requisite alterations are made in the physical
laws of that space. It is purely a question of convenience whether it
is preferred to have an easily intelligible geometry with complicated '
physical laws, or a less intelligible geometry with simple physical laws.
The consensus of opinion is that geometry should be regarded as a part of
physics, and therefore the obvious system of geometry should be one in
which thg rest of physics can be expressed as simply as possible. It
is this consideration which ultimately leads to the curved space of general

relativity.
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2.3 The Geometry of Physical Space.

In Newtonian physics, space was like a huge empty box into
which matter was placed from the outside. To boot, time existed in
which physical action took place. Thus the three basic entities of
space, time and matter appeared to be completely independent from another.
For Einstein (Lanczos 1965, 8), however, matter was not put from the
outside but formed an integral part of the geometry of space. Contemporary
opinion is therefore, that the geometry of space is four-dimensional
and curved*, time having been absorbed as an added dimension and matter

as a curvature property.

3. Earth Space.

The previous remarks apply to gravity in general. Newtonian
gravitation, however, has received substantial support from observations
on the outer planets of the solar system and, although the inverse square
law has thus only been verified for the case of a few near-spherical bodies
whose dimensions are small when compared with their distances apart, is

adopted for the definition of Earth space.

3.1 Potential and Equipotential Surfaces.

3.1.1 Potential.
3.1.1.1 Potential of a Point Mass.

In a gravitational field set up by a single
particle of mass m, the force of attraction on another particle of unit

mass at a distance £ from the first particle is by Newton's law,
km/22 L. . (3.1

in which %k is the gravitational constant. The direction of the force

* Curvature in the mathematical sense has nothing to do with the shape of
the space, but is defined solely by the metric. What is meant, is that
the relations between the mutual distances are different from those
obtained in Euclidean geometry.
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is toward the massive particle along the line joining the two particles.

The particle of unit mass is usually known as the test particle.

The potential or the amount of work that must
be done against the force of attraction to remove the test particle to an

infinite distance, in a field set up by a single particle of mass m 1is

accordingly
L 2
- km/L° (-dL) = -km/& ..., (3.2)
o«
3.1.1.2 Potential of a Rigid Rotating Body.

The attracting potential V in the field of
a rotating continuous mass distribution is given by (Heiskanen & Moritsz

1967, 47)

' kjjfdm/ﬁ + X02a> . (3.3)

where w is the angular velocity of the body, dm is an element of mass of
the attracting body and d 1is the distance of the test particle from the

rotational axis of the body.

3.1.2 Equipotential Surfaces.

Surfaces upon which the potential is constant are

called equipotential surfaces.

3.1.2.1 The Central Field.

The equipotential surfaces in a central field
set up by a single massive particle are spheres centred on the attracting
particle and the outward unit normal to the equipotential surfaces is
the gradient of ¢, that is, Qs. If N is considered as the potential,

then by covariant differentiation

N = nv = km/222 .. (3.4)
s s s

where n, the distance function of the family of equipotential surfaces,

is seen to be the magnitude of the attracting force whose direction is —vs
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If Fs is the force vector of magnitude km/Q,2

and direction —Ks or Vs then

F = -N = -nv._ e (3.5)
s s s

which implies that the force vector is the gradient of the potential and
for this reason the field is completely defined if the scalar potential N

is known at each point of the field.

3.1.2.2 The Field of a Rigid Rotating Body.

Since the potential in the field of a rigid
and rotating body no longer has the simple form -km/% and the magnitude
n of the resultant force is no longer km/lz, equipotential surfaces in

such a field are no longer spheres.

The forces of attraction in the field formed

by a number of massive particles have direction as well as magnitude and

would have to be added vectorially. However, the vector equation
Fs = —NS = -nvs holds true between the gradient of the total potential
and the vector sum of the individual force vectors. The direction v,

of the gradient of the potential N is no longer the radial direction
from a Cartesian origin but rather, is the unit normal to the equipotential

surface containing the test particle.

3.2 The Earth.

For the earth it is customary to combine the gravitational
effects of the rotational and attracting potential into a single force
called gravity, since the two forces are usually indistinguishable. The
scalar whose gradient is equivalent to the resultant force of gravity

inclusive of the centrifugal force, is known as the geopotential.

Assuming that the earth rotates about a physical axis fixed
in space, with a uniform angular velocity » and that the earth's centre
of mass lies on this physical axis of rotation, then the geopotential N

at a point distant d from the rotational axis is given by Equation (3.3).
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It can therefore be said that the basic gradient eqﬁation
Nr = nvr represents the Newtonian gravitational field of the rotating
earth if N is the geopotential as previously defined, if n is gravity,
and vr is the outward drawn normal to the N-surfaces, that is, the level
surfaces of the combined attraction and rotation. The unit normal

vr is accordingly the direction of the astronomic zenith.

3.3 The Geometry of Earth Space.

3.3.1 The Laplacian.

Newtonian gravitation in a rotating field for a region
of space not occupied by matter is sufficiently expressed by the Laplacian

of N(ibid, 12 & 47)

AN = ¢"°N 202 (3.6)
rs

rs |, . .
where g is the conjugate metric tensor.

3.3.2 The Newtonian System.

It is an essential part of the Newtonian system that
the space to which it applies should be flat and unbounded, because the
expressions of gravitational attraction and potential require £ to be
finite and a distance in a straight line; the field itself must extend
to infinity and satisfy Equation (3.2). Accordingly, simple Euclidean
geometry may be chosen as a basis to computation and Cartesian

co-ordinates may be used.

3.4 Point Co-ordination in Earth Space.

3.4,1 The Co-ordinate System.

The co-ordinate system best suited to the geometry of
the equipotential surfaces of the earth's gravity field is of the (a, b, C)
type, where (a, b) represent (w, ¢) the longitude and latitude - the
direction parameters of the local vertical, or the normal to the
equipotential surface, with respect to three Cartesian axes in Earth Space -

and (C) represents the geopotential (N).
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3.4.2 The Geometry of Equipotential Surfaces.

Now, any family of surfaces, with the exception of its
position and orientation in space, is completely defined by five curvature
parameters, respectively the normal curvatures r1 and r2 in any two
perpendicular surface directions, the geodesic torsion t1 in one of the
previous directions and the curvatures Y, and Yz of the surface normal
in the chosen directions (Eisenhart 1960, 159). In the case of the
equipotential surfaces of the earth's gravitational field, it is convenient
to select the directions of the meridian and prime vertical as the two
surface directions. Accordingly, the previous curvature parameters
become the normal curvatures of the N-surface in the prime vertical and
meridian directions, the geodesic torsion in the direction of the prime
vertical and the curvature of the normal in the direction of the parallel

and meridian.

3.4.3 The R and S Matrices.

Since the vectors Ar and ur are essentially tangents to
N-surface curves, and the vector vr represents the unit normal to the N-surface,
it is possible to express them as functions of rl, rz, tl, Yl and Yz. The
required relationships are (Hotine 1969, 73-75) depending on whether

contravariant or covariant components are desired

(A1 A% a3 r—rlseccp -t 0
R = ul u2 u3 = —tlsec¢ —r2 OF  eeee.. (3.7)
S LERVCIEENE Y sec¢ Y n
\ J \ 1 2
f>\.1 )\2 A; (—rzcosd)/K £ /K sec$dp/duw)
- = - dp/od  |..... .
s o= (w, M, M, t cos/K r /K p/ 9% (3.8)
VoV v o) 0 p

where K is the Gaussian curvature of the N-surface at the point being

considered and p = —.
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3.4.4 Co-ordinate Transformations.

X r .
The vector set A7, ur, vr may be obtained from the

ir, jr, kr system by applying rotations:-
r N X r
(1) LT + w about k bringing i~ parallel to A~ ; and
(2) LT - ¢ about A" bringing . parallel to v'; or expressed in

matrix notation

-sinw cosw O 1 0 0
{Ar, ur, Vr} = |-cosw -sinw O 0 sin¢ cosod {ir, jr, kr}.... (3.9)
0 0 1 0 -cos¢ sing

- Q{ir’ jr, kr}

where
-sinw cosw 0]
Q = -singcosw  -sindsinw cos¢
cosdcosw cos¢sinw sin¢.
Conversely
{i%, 5%, &™) = QTILWT, uf, Wb .. (3.10)

or as Q is orthogonal
1% 5%, & = oTpE, s, vy (3.11)
Alternatively, using the R and S matrices

T
i, 5% = o™= = o% (3.12)

3.4.5 Point Co-ordination.

Since any family of surfaces, with the exception of its
position and orientation in space, can be completely defined by the five
curvature~parameters r , r , t, Yl and Yy, then, once a reference frame is

1 1 2

2
established and the (w, ¢, N) system is related to this frame at one point,
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point co-ordination can be achieved by measuring w, ¢ and the above

curvature parameters.

If
3 = 50 ' 36 ' AN e (3.13)
and
roo_ (w3 A
X = % % et S (3.14)
then by Equations (1.2) and (3.12)
(% 2x 9 P ‘
3w 3¢ ON R
dy 9y 9dy| _ _ T
5% 26 ON| y1 y2 y3 = Qs  iiae.. (3.15)
bz 9z 3z . o o
ow a(b aNJ L1 2 3)
The inverse transformation will be
(3w 3¢ 9N] (1 2 3
9x 9x 0x X X X
dw 3¢9 9N = vyt y? y3 = QTR ...... (3.16)
dy 9y 9y
ow 9 N 1 L2 .3
9z 0z 0z S

It is seen that if rl, r , t1' Yl and Y2 are measurable, the Equations
2

(3.15) and (3.16) become functions of w and ¢ alene and may therefore

be integrated to provide either (x, y, z) or (w, ¢, N). Any subsequent

computations can then be made in either system.

3.5 Measurement of r,, r,, t,, Y, and vy, .

The real problem of point co-ordination using Earth space alone
is seen to be the determination of the five curvature parameters r,, r,, ty

Yy and v,. In theory, a measurement of the vertical gradient of gravity
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with a gravimeter leads to, via the law of gravity, (r1 + r,), whereas
torsion balance readings in several azimuths should provice (r1 - r2),

t, Y, and vy, (ibid, 150-151). However, the direct measurement of the
vertical gradient of gravity so far does not appear to have produced results
which are comparable in accuracy with measurements made by torsion balance.
Moreover, torsion balance measurements are extremely sensitive to the
attraction of masses in the vicinity of measurement and are therefore, at

present, not considered to give sufficiently representative results.

4. The Atmosphere.

4.1 The Nature of thg,Atmosphere.

The atmosphere gas been likened to an onion, in that it is made
up of many layers. A gross dissection shows the main layers to be, from
the inside out:

(n the troposphere, extending to an altitude of about 18 kilometres
at the equator and about 8 kilometres at the poles;
(2) the stratosphere and
(3) the ionosphere.
Terrestrial geodetic observations are usually confined to the lowest part
of the troposphere.

Throughout the troposphere the temperature of the air decreases
with height at a rate, on the average, of about O.l6oC/3O metres. The
actual rate at various levels and places naturely vary considerably from
the average. It can be calculated that, if the atmosphere were well mixed
and in hydrostatic equilibrium, a volume of air pushed upward becomes cooler
(by expansion) at a constant rate of O.3OC/30 metres (Sutton 1964, 63).

This rate of cooling, called the 'dry adiabatic lapse rate' is a theoretical
standard that determines the stability or instability of the atmosphere.
Accordingly, an atmosphere whose actual lapse rate is greater than the dry
adiabatic rate must be stable in terms of vertical motions, because any volume
of air that is displaced upwards will be less cold, less dense and thus lighter
than its surroundings, and will therefore go on rising. The reverée applies

in the case of downward displaced air.
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All these arguments apply to moist air as well as to theoretically
dry air. The moist air introduces a complication into any calculations
made, but the conclusions remain essentially the same: any atmosphere,
moist or dry, will be structurally stable, unstable or in neutral equilibrium
according to whether its actual lapse rate is less than, equal to or greater

than the adiabatic rate.

In these terms thé earth's troposphere tends to be on the stable
side; that is, the decline of temperature with height is on the average
slightly less than the adiabatic lapse rate. Reversals of this situation
are common. However, the significant point is, that in the troposphere
as a whole, there are only isolated departures from the norm, usually
associated with the movements of large air masses, the normal situation

being a slightly subadiabatic lapse rate.

In the realm of micrometeorology - the first one hundred metres
above the ground - the situation is quite different. There, large
departures from the adiabatic lapse rate are a regular daily occurrence,
particularly during periods of clear sunny weather. Consider what happens
in the shallow layer near the ground during the 24 hours of a clear summer
day. After sunrise the sun rapidly heats the surface of the ground to
very high temperatures. From such hot surfaces the temperature decline
in the air immediately above is quite sharp. In fact, the daytime

temperature gradient near the ground frequently amounts to thousands of

times the dry adiabatic lapse rate. Then as the sun sets, the picture
changes rapidly. If there are clouds the ground radiates heat away
freely and at a high rate. Because the air cools more slowly, an inversion

occurs: the ground, having dropped to a lower temperature, takes the heat

from the air immediately above it and thus the air temperature increases

with height (<bid, 64).

Winds, breezes and other factors, such as the nature of the

soil, complicate the situation further.
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4.2 A Model Atmosphere.

The problem of defining a model atmosphere is above all a problem

in the analysis of the processes responsible for air movement in the

atmosphere. Such an analysis points to some deep and difficult questions

of fluid dynamics.

Now, there are two general types of fluid motion: laminar
and turbulent. Nearly all motions of liquids and gases are turbulent.
The detailed study of turbulence began in 1883 with laboratory experiments
by O. Reynolds who found that the change from laminar to turbulent flow

depended on three factors:

(1) the speed of flow;

(2) the diameter of the container and

(3) the viscosity of the fluid.
The product of the speed and the diameter divided by the kinematic
viscosity, constitutes what is known as "Reynold's Number", and
turbulence arises when this number exceeds a cértain value.

However, Reynold's Number applies only to a fluid of uniform
density throughout. The air of the lower atmosphere, of course, is not
of uniform density, and in this case the transition from laminar flow to
turbulence is determined primarily by the Variation in density or, what

amounts to the same thing, the rate of change of temperature with height.

Turbulent motion itself is still something of a mystery, not
yet defined by a mathematical description such as has been developed for
laminar motion. Nevertheless, meteorologists may before long be able
to supply a sufficiently accurate model atmosphere of that existing at
the time and in the locality of the observations performed in geodesy
whence the accurate linearization of the data burdened with refraction will

be possible.

4.3 Atmospheric Refraction.

The earth's atmosphere refracts the line of observation into
a complicated space curve. Geodetic practise is to remove the effects
of refraction by 'correcting' the observations so that the observed line
becomes the straight line joining the two end points, a procedure which
reduces the atmosphere to a space with a Euclidean metric. Any computations

are then more readily performed in the latter space.
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The corrections which are made to the observed ray in order to
facilitate computations, ideally depend on the knowledge of the ray's curvature
and torsion, which will be a function of the first and second covariant

derivatives of the refractive index.

An approximation to a geodetic model atmosphere is one in which
the torsion of the ray is ignored and in which the surfaces of equal refractive
index are assumed gravitational potentials (Hotine 1969, 214); the gradient
of the refractive index is accordingly in the direction of the astronomic nadir.
The geodesist is then left with the problem of measuring the magnitude of
this gradient, which he does by sampling the temperature, pressure and
humidity, but further assumptions are usually made before the magnitude

can be established.

4.3.1 The Laws of Refraction.

The refractive index Y of a refracting medium is related

to the velocity of light v in the medium by the equation
u = < S . (4.1)

where ¢ 1is the constant velocity of light in a vacuum. If ds is

is an element of length along the path and t is the travel time, then
c .
pds = ;-ds = cdt cenes (4.2)

The optical path length or eikonal is defined as (ct) and denoted by

S, so that
S = c¢ct = Juds e (4.3)

According to Fermat's Principle, which states that light, for instance, will
follow that path between two fixed points involving the least travel time,
this integral has to be a minimum along the actual path, as compared with any

other path joining the two fixed terminals.

4.4 Geometrical Wavefronts.

Consider a family of light rays emitted in all directions

from a point source at the same instant. After a given time t, the
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light will arrive at a surface known in physics as a geometrical wavefront
and for different values of t, a family of surfaces S = constant results.
The integral [upds will have the same value over the actual path between

the source and a given S-surface.

If it is assumed that the medium is isotropic so that | 1is
a point function (or scalar) having a definite value at each point of the
space under consideration, then it can be visualised that the rays are
normal to the wave-fronts and because of the minimum principle, the optical
rays become geodesics of the surrounding space. Consequently, it may be

said that the equation

S = ulr e (4.4)

where Zr is the unit tangent to the light ray or the unit normal to the

wavefront, holds true in this space.

The expression of the space in Equation (4.4) by means of a
single scalar S and the direction of its gradient can, as has been seen
in Chapter 3, be made the basis of a general (a, b, C) type co-ordinate

rs

system. Contraction of Equation (4.4) with the expression grSSS = g Qs

gives
S = g SSS = u T e . (4.5)

and represents what is generally known as the Eikonal equation (7bid, 210).

4.5 The Line of Observation.

The path in electronic distance measurement is generally curved
slightly by atmospheric effects, the practise being to 'correct' the
measurements to the direct ray in accordance with the best available
refraction data before performing computations in a model space. Similarly,
a theodolite is necessarily siéhted along the tangent to an optical path
curved by refraction and it again becomes inevitable to correct the
measurement to the chord direction before proceeding further. The final

results will be affected by any imperfections in the data used to correct
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the measurements.

Now, the contravariant equation of a geodesic in three-

dimensional space is given by (ibid, 21)

e = o (4.6)

oxr

o 4+ 1Y 25 = 0 . (4.7)

where 2° 1is the unit tangent to the line and th are the Christoffel
symbols. These three equations can be integrated in any co-ordinate
system for which the Christoffel symbols are given, to provide the three
contravariant components of the unit tangent in the atmosphere, and can

be integrated further to provide co-ordinate changes along the line. In
Cartesian co-ordinates, for example, the Christoffel symbols are zero
(Hawkins 1963, 135) and Equation (4.7) indicates that all the three

Cartesian components of the unit tangent are constant along the line, so

that the changes in co-ordinates are proportional to the length of the line.

The fact that a solution to the problem exists in Cartesian
. . Y . .
co-ordinates for which the Tst are zero, indicates that the former must
. . r . .
be a solution in vacuo. The rst must therefore be detérminable in

terms of physical variables of the earth's atmosphere.

4.6 Point Co-ordination in the Atmosphere.

The geometry of the individual geometric wavefronts and their
gradients is completely analogous to that of the (w, ¢, N) system described
in Chapter 3, it only being necessary to change the notation from
(N, n, Vr) to (S, U, Qr) as required. Ideally, if the curvature parameters
of the S-surfaces were known, that is, the normal curvatures in two
perpendicular surface directions, the geodesic torsion in one of the
former and the curvature of the normal (the line of sight) in the same two

directions, then their geometry would be completely defined (Fig. 4.1).
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Point co-ordination in the atmosphere alone becomes possible
if as well as the five curvature parameters, the direction of the normal
to the S-surface can be established in relation to the Cartesian axis
vectors {ir, jr, kr}. The solution to the problem is then completely
analogous to that of Earth space and can be implemented by the use of

Q, S and R type matrices.

5. The Mathematical Model.

Since the curvature parameters Xy, Y, 1, Y, and yzcannot at
present be measured to sufficient accuracy in the case of Earth gpace
and in the case of the atmosphere cannot be measured at all, terrestrial
point definition is not possible in either of the subspaces and the practice

is to combine the two in order to effect a solution.

The geometry of Earth space is three-dimensional Euclidean, whereas
that of the atmosphere, as evident from the fact that a geodesic within it
is not a straight line, is Riemannian. However, the process of 'correcting'
the ray path for curvature and for torsion will theoretically speaking reduce
the latter to one with a Euclidean metric. The geometry of the combined
space is thus also Euclidean and Cartesian co-ordinates may be chosen for

point definition within it.

5.1 Point Co-ordination.

The azimuth (0) and zenith distance (B) define the direction of
the S-surface normal (l% relative to the vector triad (Ar, ur, vr) (Fig. 5.1)
and thus behave as the direction parameters of the normal to the geometrical
wavefront in the sense (w, ¢) behaved as the direction parameters of the
normal to the N-surface. The fact that the direction of 2r is fixed
relative to the N-surface normal Vr’ the direction of which is fixed relative

to the Cartesian axis vectors {ir, I, kr} , can be used in conjimction with

r
the measured distance s to provide Cartesian co-ordinate increments between

connected points.
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5.1.1 The Co-ordinate System.

The co-ordinate system chosen to define terrestrial

points is that described in 1.12.

5.1.2 Transformation Relationships.

The - transformation formulae from the local (Ar, ur, vr)
system to the geodetic¢ Cartesian reference frame were found to be

(Equation 3.9)

Do vt = ol g, kb
the Celestial system (1.13) being implied within this transformation as the
direction of the lécal vertical, as given by astrbnomic_observations of
latitude and longitude, is defined by it. By inversion, it was found

(Equation 3.11) that

. . _ T -
{i s 3., k) = 9 D v}

If X;, ﬁ;, G; denote the unit vectors of the astronomic system at an adjacent
_point with astronomic co-ordinates. ¢, w then the previous relationships will
be equally true for the new quanﬁities. ' However, the vectors {ir, jr’ kr}
remain unchanged for both points, since their directions are fixed with respect

to the rotating earth, i.e. they are independent of ‘¢ and w.

Thus

= - - . = T .
A, u, vr} = Q{lr, I kr} = 00 {lr, I kr} ...... (5.1)

where the elements of the matrixEQT are given by (Hotine 1959, 8).

q = cos Sw
11
= sin¢sin Sw
-9y, ¢

a, =  cos¢sin Sw
= sin¢sin Sw

a,, ¢

q = coshcosd + sinpsindcos Sw

22



29

(YyrioN),

¢-S9l4

(yhvaz) A



30

q s, - sinpsing - singsingcos Sw
2
q31 =  cos¢sir Sw
a, = cos$sing - sindcosdcos Sw
g, = sin¢sing + cOS¢c0s$E0$ Sw
and
Sw = w-uw

They represent the transformation'formulae between adjacent astronomic

vector systems.

Prev10usly the quantltles {1 I B } were defined as
unit axis vectors of the geodetlc Carte51an reference frame X, ¥, z. In
a similar manner it is possible to con51der the elements (l ’ u ’ v ) as
unit axis vectors of a local Carte51an system. ': If as before lr is any
unit vector fixed in space and (a, b, c) and (2, m, n):are its respective
components in the (x, y; z) and (Ar, ur) vi) systems, then ‘the following

transformation formulae exist between the component groups

{2, m, n} = T{a, b, c} | |
and conversely by inversion

{a, b, ¢} = Q{i; m, n} ' ceeaen

If the unit vector Rr is now considered in the local co-ordinate system

A.r H,r V) then (Equation 1.6)
. . : T
{2, m, n} = {sinasinB, cosasinB, cosB} = o {a, b, ¢} ......
and by inversion and multiplication of matrices
—sinwsinasinB -~ sindcoswcosasinB + cos¢pcoswcosf

{a, b, c} = coswsinasinB - sin¢sinwcososinf + cos¢sinwcosB| ......

cos¢pcosasinB + sindcosB

The equation sets (5.4) and (5.5) are not independent, since from two equations
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in each set the third follows, i.e.

g o= 1 (5.6)

Alternatively if the same vector Qr were to originate at an adjacent point
with astronomical co-ordinates (6} 5} and has there azimuth (&3 and zenith
distance (B) then similar formulae will exist between these quantities.
However, the components {a, b, c} will be the same in the relationships
established for the new quantities as they refer to the same Cartesian

system. Thus for this point
{sin&éinél cos&éin@} cosé} = QT{a, b, c} cecaen (5.7)

and by substitution of Equation (5.5) into Equation (5.7) it is found,

after some manipulation (7Zbid, 9) that
{sinosinB, cosasinB, cosB}
LcosSw + msin¢gsinbw - ncos¢sindw
= |-fsindsinbw + m(cospcosd + sin¢sinpcosuw) + n(sinpcosd - cosdsindcosdw)
Lcospsinbw + m(cospsind - sinpcosPcosSw) + n(sin¢sing + cosdcosPcossw)
...... (5.8)

These three equations are again not independent, as from a pair the third
follows. They give the transformation formulae for azimuth and zenith
distance of any space vector from one local system into an adjacent one.
Equation (5.8) gives the azimuth and zenith distance of the vector Zr at the
barred point as functions of the observed azimuth and zenith distance at the
unbarred point. This is made possible by moving the vector Qr parallel to
itself into the barred system. It is important to note, however, that the
guantities (&3 and (E} so optained refer to the same sense of the (X}, ﬁ;, 3;)
vectors as do the quantities (o) and (B) (Fig. 5.2). Thus, to obtain back
directions (B) must be subtracted from 180° and 180° should be added to (0).

The difference in orientation between adjacent astronomic systems will usually

be small and if

{al al al-@ = {¢+6¢,w+6w,u+60, B""(SB} ceeena (5.9)
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then to the first order Equations (5.8) reduce to

Sa
S8

. . o L . . .
If in addition B ® 90 , a legitimate assumption for terrestrial geodetic

sin ¢ Sw + cot B (sin ad¢ - cos a cos ¢Sw) ceeee (5.10)

-cos ¢ sin adw - cos add e (5.11)

measurements, then Equation (5.10) becomes
Soo. = sin ¢Sw (5.12)

This is the so-called Laplace azimuth equation which is used in the classical

method to orient the reference ellipsoid.

5.1.3 Point Co-ordination.

Point co-ordination within the mathematical model follows from
Equation (5.5), which provides Cartesian components of the unit vector
lr emanating from a point of known position. Co~ordinate increments between
connected points are given by multiplying these components by the measured

distance s. Thus the co~ordinates of the forward point become
{x, v, z} = {xo, yo, zo} + s{a, b, c} e (5.13)

where (xo, Yor zo) are the co-ordinates of the point of known position.

5.2 Origin Conditions.

5.2.1 Co-ordinates of the Datum Point.

As with all geodetic datums, the co-ordinates of the origin
must be defined. Any arbitrary values of (xo, Yo zo) may be chosen;
however, if geocentric co-ordinates are desired, a global gravimetric analysis,
in conjunction with astronomic and levelling data, or an analysis of the results

from the geometrical use of satellites is necessary.

5.2.2 Orientation of the Survey Scheme.

The previous considerations only concern the positioning
of the survey origin with respect to the geocentre. It remains to orient
the scheme of the survey with respect to the Cartesian system. This may be
achieved in two ways by the manipulation of the astronomic triad at the
origin of survey.

In general, a co-ordinate system is said to be properly
oriented in space when any one vector is uniquely defined within it and no

rotation can be effected about this wvector. Thus with respect to the
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Cartesian reference frame and the local astronomic triad at the initial point
of a survey, two aspects must be considered:
(1) the direction of a vector in the astronomic triad must be fixed
with respect to the Cartesian system and
(2) no rotation must be possible about the vector chosen in (1).
These aspects and their implication will be considered in sequence for the

two separate methods that are available.

The natural vector to hold fixed in direction, with respect
to the Cartesian system at the origin of survey would be the local vertical
as its direction cosines are defined by astronomic létitude and longitude
observations. Finally, the system w0ﬁld become completely rigid, when
the direction of another vector within the local éystem is held fixed. The
most convenient method by which to achieve this, is to observe the astronomic
azimuth of a line emanating from the origin - . a procedure which is

customarily adopted.

The principles of an alternative method of orienting the
local astronomic system have already been treated (ibid, 10-12) (Heilbronner

1968, 46-48) and will therefore be only considered briefly.

The parameters (0 = azimuth and B = refraction free zenith
distance) of the unit vector Qr can be used to define the local co-ordinate
system to a rotation about the vector Qr. This degree of freedom may be
eliminated by the fixation of a second direction E; emanating from the same
point. The method is best explained using geometric concepts. Thus when
the astronomic triad is rotated about the vector Qr (parameters o, 8) the local
vertical vr will generate a circular cone with apgx'at the origin. To
spatially fix v Hotine (Zbid) allows this cone to be intersected or touched
by another cone (parameter E). The same effect is achieved when instead of a
second cone, a plane (parameter o) that contains the apex of the previous cone
and the vector V. is chosen. To avoid ambiguity Heilbronner (1968)emphasises
that the difference between the azimuth o and o should not be near or
equal to 900.

Thus in this latter method, it is possible to fix the unit

vectors of the triad (Kr, ur, vr) by means of the parameters &, B( é} or

o, B, o of two independent directions in that triad.
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As both the former methods lead to the same results, field
conditions determine the method that is preferable. The refraction free
zenith distance is not generally known and even if the levelled difference in
elevation between the origin and an adjacent point has been determined,
additional information such as astronomic position observations or gravity
data, is required to calculate it. Overall therefore the initially described

method is preferable.

5.2.3 Free-Net Adjustment.

All measurements are subject to error and statistically,
it is not to be expected that a particular azimuth is better than another.
Thus, since many azimuths are usually observed over a geodetic datum, it may
be of advantage to keep the network free of azimuth constraints which, in a
least squares adjustment procedure implies that the orientation of the survey
scheme relative to the Cartesian system becomes such that the sum of the

weighted squares of the residuals of the observed azimuths is a minimum.

5.3 Errors in Astronomic Data and their Effect Upon Orientation.

It is legitimate to assume that the astronomic measurements at

the origin, even though of the highest precision, will contain errors.

5.3.1 Errors in () and (¢).

In order to visualise the effect of errors in the observed
longitude and latitude at the origin, it is convenient to introduce an
ellipsoid of revolution whose principal axes are parallel to (ir' jr, kr) and
which is tangential, at the origin of survey, to the equipotential surface
containing thé survey origin (Fig. 5.3). It is emphasised that such an

ellipsoid is not in general geocentric.

The rectangular Cartesian co-ordinates of the survey origin

relative to the centre of this ellipsoid are then

{xé, v zé} = v{cos ¢ cos w, cos ¢ sin w, (l-e?) sin ¢} = ...... (5.14)

Thus if

{6, w} = {¢' + 8¢, w' + Sw}

and 8¢, dw are small so that the terms containing the products of these
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elements may be neglected, then to the first order

cos ¢' cos w' -sin ¢' cos w', -sin w' cos ¢'
{xé, yé, zé} = vjcos ¢' sin w' + Vl-sin ¢' sin w', cos w' cos ¢' |{S8d, Sw}
‘1-e 2 sin ¢° 1-e 2 cos ¢', 0

...... (5.15)

Comparing Equations (5.14) and (5.15) it is seen that the ellipsoid centre

is translated by amounts

-sin ¢' cos w', -cos ¢' sin w'

{8x, 8y, 6z} = v |-sin ¢f sin w', cos ¢" cos w'| . {8¢, Sw} e (5.16)
1-e 2 cos‘¢', 0 | | |

The axes of the system and the ideal reference frame will, however, remain

parallel.

5.3.2 'Errors in (o).

The orientation of.the scheme of survey is, as was
previously mentioned, partly achieved by astronomic azimuth observations.
Unfortunately, such observations are often severely influenced by systematic
observational errors (Bomford 1967b). The effect of introducing an erroneous
azimuth at the datum point will be to. rotate the local triad, and thus the
system (x', y', 2z') (Fig. 5.3), about the local vertical at that point. This
means that the system (x', y', z') is totated so‘thaf'its axes are no longer
parallel to those of the (x, y, z) system. Thus, if an approximate azimuth o'

is introduced at the datum point‘so that
o = o' + Sa
then the geocentric co-ordinates of the origin of survey, since it lies on
the axis of rotation, will remain unchanged. However, co-ordinate changes
will result in all other points of the datum by amounts
{8x, S8y, 8z} = R{x - XY =Yooz~ zo} e (5.17)

where R is the rotational matrix resulting from the introduction of an

erroneous azimuth at the datum point. The R matrix is given by
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cos S0 sin So 0

R = QT -sin 8o cos Sa O Q - 1
0 0 1
0 8o sin ¢ ~-8a cos ¢ sin W
= | -8a sin ¢ 0 - 80 cos ¢ cos W ...... (5.18)
Sa cos ¢ sin w - 8o cos ¢ cos w 0

providing &0, is small so that one may write
{cos 8o, sin 8o} = {1, 8o}

It must be remembered that a new rotational matrix R is introduced for
every station where another azimuth is observed, the overall effect of which

would be to produce a series of non-parallel reference frames (x', yv', z').

5.4 Levelling..

In Fig. 5.4, S 1is the physical surface of the earth and P
and ¢ are arbitary points on S. : brvis the position vector joining the
origin 0 of the (x, y, z) system and a Surface point, whereas qC = -dh is the
infinitesimal levelling increment between p énd g and is measured normal
to the equipotential surface N = constant through p. ~ Denoting the
projection of pqg = é onto the surface P, = constant by ds and the
infinitesimal increase _qD in the vector pr as 4dpr gives to the first

order that Cq = qE,'or'
-lao | + an = sa (5.19)

where & is the component of the angle between the vectors pr and —Vr

as measured in the azimuth 0o of the vertical plane containing p and gq.
Thus
Idorl = dh - (§' cos o +n' sina)ds @ ..... (5.20)

where £' and n' are respectively the components of the angle & in the plane

of the meridian and of the prime vertical.

Equation (5.20) establishes the connection between an infinitesimal

levelling increment and the increment in the vector pr. The difference in
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-magnitude of the vectors pr and 5; at p and q respectively, which

are a finite distance apart is expressed by the equation

_ q q
pr - pr = A = f dh - J (§' cos a + n' sin o )ds = ...... (5.21)

p p
and since the integrals depend on the path of levelling, these must be

calculated along the same path.

To determine &' and n' a knowledge isvrequired of the
direction of the vertical and the direction of the vector pr at each point.
The direction of the vertical may be established by astronomic latltude and
longitude observations or may be 1nterpolated by the use of gravity data, and

the relative direction of the vector Apr may be obtalned from Equation (5.5).

The problem of unlfylng the results of geometric levelling and
all other geometric geodetlc measurements thus’ reduces to the determination
of the magnitude and direction of the vector pr' This vector is completely

defined by the equation

_ . . T
pp = o, + sfa, b, ¢} {1 by kr} ...... (5.22)

where the {a, b, ¢} are computed from Equation (5.5) and the results of

levelling have not been included.

All the observations defining the {a, b, c} ére made at discrete
points and all but the measured‘distances are subject to the earth's
gravitational field at that point. However, assuming that the earth's
gravitational field remains constant over the period of observation, all
observations are equally affected at a point. For this reason Egquation

(5.22) completely defines the vector pr.

Considering the results of geometric levelling another vector
5} may be obtained using the direction established by Equation (5.22) and
the magnitude A calculated in Equation (5.21) or 5} = (lpr[ + \)m* where

m" is the unit vector in the direction of B;'and is defined by mr = 5;/!pr|.

The position vector 5} will give rise to another set of
co-ordinate differences s{a', b', c'} where in general
{a', b', ¢'} # {a, b, ¢} and since the direction of the two position

vectors 5} and 5; are identical, this additional set of co-ordinate
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differences s{a', b', c'} gives rise to another zenith distance (refraction-
free) B Dbetween connected points. This new zenith distance is defined
by cos B = VIET where I; is the unit vector in the direction of pg as
. = _ _ A
obtainable from Qr (Dr pr)/(|pr prl)-

The relationship between this computed zenith distance and the
observed zenith distance remains somewhat obscure and the question arises
whether it is possible to do without observed zenith distances when all
or some points of a spatial geodetic network have beén connected by geometric
levelling. Previously it was stated that Equation’(5.22) completely
defined the vector 5; when the results 6f,geometric levelling were not
considered and that an additional refraction-free zenith .distance could
only be calculated using thé direction as established by this equation and
the magnitude |pr| + A as given by levelling. . This gives the impression
that the two are algebraically related. It can be shown however, that in
order to determine the {a, b,'c}k it is not a prerequisite to know the
observed zenith distance when the points .p and g have been connected by
levelling and that therefore thé two quantities.arévdistinct.

Froh Fig. (5.5)'it'¢én be seen fhat thé point g 1is uniquely
defined by the.intersecﬁion of ﬁhé spatiallsegmenfs pg, Og with the
vertical plane containing the line segment pg (parameter «). Two sets of
solutions {a, b, ¢} are obtained ffom the three conditions that are to be

satisfied, i.e.

mm = g & ' e (5.23)
: r

bcos W - asin W
ccos ¢ - asin ¢ cos w - bsinp sin w

tan o

The required solution may then be extracted, as the direction
of the line segment pq . is known and it can be seen that the measured and

calculated zenith distances are independent.

5.5 The Solution.

The ideal theoretical requirements of the method of point

co-ordination presented in this chapter are:

(1) astronomic determinations of latitude and longitude of every station
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as well as the observed azimuth of one line in each local triad and
(2) the connection of adjacent stations by spirit levelling.

Astronomic position determinations are necessary to define the direction
of the local vertical and an azimuth is needed to orient the astronomic
triad. The connection of trigonometric stations by levelling is desirable
because the measured zenith distances are known to be strongly influenced
by uncertainties in refraction for average terrestrial networks and thus
the precision of the vertical angle measurement is not compatible with
that of other geodetically determined quanﬁities.

Apart from giving theoretically. socund results, compliance with
the abovementioned conditions will, in éohjuﬁction with other geodetic
measurements, ensure a high dégree(of ovei—détermination and thué a good
estimate of the precisioh of thé results.

Unfortunately, departures'from'such én ideal system are the
rule rather than the exception. Hdwéver, most modern terrestrial networks,
of which the AGD is an example; comprise a fairly regular pattern of
Laplace stations and trigonometric points where both the latitude and
longitude have been obsér&ed.‘ Levelling cohnéctions are also made where
practicable and at fairly regular intervals and apart from the abundance of
geometric aata, a qQod'coverage of gravity data is commonly available.

Thus, prpviding.a gravity survey round thé station exists, the
problem of the deficiéncy of astronomic position determiﬂations may be
overcome by gravimeﬁrié.interpolations of the deviations of the vertigal.

A precision of * 0Y5 is possible by this method and is approximately the
order of accuracy of the astronomic observations.

One possibility of reducing the effect of refraction on measured
zenith distances would be to adjust the level net separately and to recompute
'new' zenith distances from the trigonometric heights derived from an
additional adjuétment in which the points connected by levelling have been
held fixed. A better method is to compute the zenith distances between
points connected by levelling according to the proposals within 5.4 and
to incorporate this computed zenith distance into the adjustment with its

appropriate weight coefficient.
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PART B: ADJUSTMENT.

The formulae derived in Chapter 5 are those that are required
for the computation of provisional co-ordinates from observed quantities
which are all subject to observational error. The observed values will
be used in this section to set up observation equations from which corrections
to the provisional co-ordinates can be deduced in order to obtain estimates

of the most probable values of these quantities.

In modern geodetic work, it isﬁéﬁstomary to measure directions,
distances, vertical angles, aziﬁuths,‘latitudes, léngitudes, levelled
differences in elevation.and gravity. g'The number of observations made
always exceeds the minimum réquired for the uniqﬁe determination of the
unknown quantities.  These redundant observatidns serve to guard against

blunders and to obtain a statistically more preciée estimate of the unknowns.

One way to deal with the problem of adjustment is to form
conditionlequations, one for each redundant observation, with the
corrections to the observed quantities as unknowns. Assuming a normal
distribution of errors,‘the‘most.prbbable set of corrections is given,
according to the principle.of least sQuares, by that set which minimises
the sum of the weighted squares of the residuals, while satisfying the
conditions equationé. A different approach is to assume initial values
for all the unknowns and to express the effect of small changes in the
observed quantities upon these values. The most probable corrections to
the initial estimate of the unknowns are then those which make the sum of
the weighted squéres,of the changes in the observed quantities a minimum.
As opposed to the adjustment‘by ‘conditions' this method represents an

adjustment by 'parameters or differential displacements.'

On accéunt of its.suitability for programmed computation, only
the method of differential displacements is considered throughout this

dissertation. Moreover, the least squares procedures and error analysis

are quicker.

The procedure is commonly commenced by assuming approximations

for the required unknowns. If the displacements resulting from the
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adjustment are too large, then the corrected values of the unknowns may

be used as second approximations and the process reapplied.

The main disadvantage of the method is the inability of the
procedure to detect mistakes, either in the data or the results, at

the completion of one cycle of the adjustment.

When the unknowns are the geographical or Cartesian co-ordinates,
the differential displacement method is known by the name of 'variation

of co-ordinates.'
6. Adjustment.

6.1 Differential Displacements.

It is now proposed to find the éhanges in length, azimuth and
zenith angle resulting from a change &x, 8y, 6z in the end co-ordinates
of a line segment with unit vector Qr.

Multiplying both sides of Equation (5.5) by s and remembering

that
s{a, b, ¢} = {x-x,v - y, z - z}
where the {x - x, ;i— Y, z - z} represent the changes in Cartesian co-ordinates

between adjacent surfade points, then
s{sin o sin 8} cos O sin B, cos B} = QT{; - X,y ~-Y,z -2} ... (6.1)

these relationships can be used to calculate the measured values s, o and B,

l.e.

s = /(E—x)ﬁ} v-92+@-222 ... (6.2)
tanoc=£'1— = — '(;—_y)cos(b-‘ (x - x)si_nw — (6.3)
(z - z2)cosp - (x - x)sin¢cosw - (y - y)sindsinw
cosB = §= —i— (% - xv) cospcosw + (;- 'y).cos(bsinw + (z - 2)sind| «e.o.... (6.4)

Upon differentiating Equations (6.2), (6.3) and (6.4) one obtains (Wolf 1963b)

ds =

0+

(X - x) (6% ~8x) + (¥ - y) 8y = 8y) + (z - 2)(6z - 8z)| ...... (6.5)
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a8 = (x - x)cos E —.scos $ sin W 6% - 6x) +
s® sin B
(y - y)cos E - scos ¢ sin w (6§.— 8y) +
s sin B '
..... . (6.6)
(z - z)cgs B - s sin ¢ (87 - §z) +
s sin B
cos 0 § & - cos ¢ sina § w
dq = S5in ¢ cos W sin.a ~ sin W cos a‘(dgi— §x)  +
s sin B
sin ¢ sin w sin O % cos W cos —
s sin B (Oy —6y) *
...... (6.7)
cos ¢ sin o 5z - 82) +

s sin R

cos B sin o § ¢ + (sin ¢ - cos a cos ¢ cos B) § w
which represent the sought expressions.

6.2 Variation of Co-ordinates.

The method of variation of co- ordlnates is readily adaptable to
the 51multaneous adjustment of a spatlal network on a digital computer.
The requlred provisional co-ordinates may either be obtained by a 'forward
computation' or from the geographical co-ordinates of a prior adjustment
and may then be used in conj@nction'with the iterative procedure previously

mentioned.

The unknowns of the observation equations are §x,8y,8z, the corrections
to the provisional Cartesian co-ordinates x,ly, z of the network stations
and 8 ¢, § w the corrections to astronomic latitude and longitude respectively,
it being necessary to introduce ¢ and w as unknowns because all observations
vith the exception of the measurea distances are subject to the direction of

jravity.



46

As 1s customary, the approximations -

{x, vy, 2z, , w, 0, X} .. (6.8)

= {x' + 6x, y' + 8y, 2' + 6z, ¢' + 8¢, w' + 8w, 0' + 80, k' + &k}

are introduced, where &0 is the unknown optimum correction to the round
of theodolite directions at the observing station and &k is the correction

to be applied to the assumed value of'the,cpefficieﬁt of refraction.

Denoting the unknowns &x, &y, Gz,‘6¢'.and Sw of the observation
equations by the veétdr 8Y, the changes 60, in the azimuth, 88 in zenith
angle and &8s in distaﬁce - resultiné ffom,displacéments  §x, 6%, 8y, 8y,8z,8z
in the.provisional co-ordinatés'of'the ﬁwp,endlstations and changes Sw,d8w,d8¢,8¢

in the direction of the verticals - are given by -equations of the form

Sa = aféy - &Y} | } _
88 = bléy - 8Y} ‘ , , PR (6.9)
ds = c{éy - 8y} '

The interim result will be the matrix of coefficients A and the vector of

right-hand sides b of the observation equations
AY = b+v . A (6.10)

The equations that must be satisfied by the unknowns, subject to v Wv being
a minimum, may be of the.follOWing types:-

(i) Directions (a)

vy = -%0 + a8y - 8Y} + (@' - a + 0') [ (6.11)
where
o' - t ' 2 o ! s ' »

tang' = —— {y Z_)cosw . (x X )3129 . : . (6.12)

(z - z')cosd' - (X' - x')sind'cosw' - (Yy' - y')sind'sinw’

86 = dw = 0 ‘ . (6.13)
and ’ ‘

a, = (sin¢'cosw'sina' - éinw'cosa')/s' sinB'

a, = (sin¢'sinm'sina' + éosw‘cosa')/s' sinf*

a, = -cos$'sina'/s' sinfB* ... (6.14)

a = cotB'sina' 4 .

a_ = sing' -~ cosa'cos¢'cotB’
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" (ii) Zenith angles (B).

vg = -sbk + b{oy - §Y} + (B' - B +sk ... (6.15)
where
cosf' = —, (x' - x')cosd'cosw' + (;“ -~ y"cosd'sinw' + (z' - z')sind'
...... (6.16)
§ = 68 = o ., (6.17)
s =/ (® -x)2 4§ -y2 4 (3 -2 . (6.18)
and
' b = (x' - x')gos?' - s' cos¢'cosw'"
1 s sinf"
b, = (y' - y')gosg' :'s'.cos¢'sinQ;
s“ sinf
b, = (z" - z'lfozf;sf s' sing’ . (6.19)
b = -cosa’
b5 = =-cos¢'sino'
(iii) * Distances (s).
v, = cléy - 8Y} + (s' - s)‘ ' e (6.20)
where
8 = 6% = 6w = 6w = 0 S (6.21)
and
{c;) ¢,y c,} = e ;,x') , ;,y') , Lz ;,z')} ...... (6.22)
(iv) Astronomic azimuths (a*).
Vo = al8Y - 8Y} + (@' -ox) S (6.23)
where
8¢ = w = 0 : . (6.24)

and the coefficients a were defined in Equation (6.14).
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(v) Astronomic latitudes (¢).

vy = S0+ (0 -0 (6.25)

(vi) Astronomic longitudes (Ww).

Vo = Sw o+ (W' -w)y .. (6.26)

where in all cases the dashed quantities_pertain to the approximately known
values and the asterisk is used to distinguish directions from astronomic

azimuths.

6.3 The Normal Equations.

The observation equation set AY = b + v, when subjected to the
least squares principle where VTWV is to be minimised and W -is the weight
matrix, become the normal equations (Thompson 1962)

T

ATWAY ATwb (6.27)

or, adopting a shorter notation

NY = a ' i e (6.28)

A solution to the normal equations will provide the vector of unknowns Y.

6.4 Dissimilar Quantities.

Many authors (Gale 1958), (Murphy 1958), (Rainsford 1968) to
mention only some, have considered the problem of combined adjustment of
angular and linear data. The apparént.aifficulty is best overcome by the
use of 0, the variance-covariance matrix of the observations. However,
in many practical situations, the actual variances and covariances of the
data are not known and for this reason, quantities are introduced which
are proportional to the variances and covariances (Tienstra 1956, 108).

These quantities are'usually called weight coefficients (Richardus 1966, 57).
If G is -the matrix of weight coefficients, then the relationship between

0 and G is given by (ibid)

o = 0,6 . (6.29)

where Oé, the constant of proportion, is the variance factor. The variance

factor has no dimensions, as the elements of G are assigned the same units



49

as the variances and covariances and may be chosen at will (ibid, 59).
It thus becomes mere routine to compare observed linear and angular data.

The weight matrix W is defined as (ibid) W = G !, that is,

it is the inverse of the matrix of weight coefficients. W 1is diagonal

when the observations are not correlated.

7. Error Analysis.

7.1 Variance-Covariance Matrix.

Assuming normally distributed observations and using the principle
of least squares, the inverse of the coefficient matrix of the normal equations
in the differential displacement technique of adjustment, gives an estimate
of the precisions of the unknown quantities. The matrix N ! (Equation 6.28)
whose diagonal and non-diagonal elements when multiplied by G;, the variance
factor, are respectively the variances and co-variances of the unknowns
(Ashkenazi 1965b, 78-80) is known as the variance-covariance matrix of the

unknowns. In the case of the differential displacement technique of

adjustment it is denoted by

- 2 !
Quy = o, N (7.1)

For a three-dimensional space, where the unknowns are the Cartesian co-ordinate
sets (x, y, 2) the diagonal sub-matrices qyx of QYY comprising the error
squares in the direction of the co-ordinate axes and the error rectangles

that describe the mutual correlation of the derived co-ordinates, give an

indication of the precision of the point definition.

The variance-covariance matrix is also used to calculate the
estimated precision of any quantity which is derived from the adjusted

co-ordinates (ibid, 80-82).

7.2 Error Ellipsoid.

The geodesist requires a mathematical model to represent the
uncertainties in the point definition. An error ellipsoid is customarily
adopted for this purpose, which, in the context of spatial point definition,
may be considered as a surface of equal probabilities of the definition of
the point in three-dimensional space, the probabilities mentioned being

according to the law of normal distribution.



50

The analysis of the error ellipsoid facilitates the calculation
of the standard deviation in any arbitrary direction, the weakest and the
strongest being two cases of special interest. Moreover, for an overall
indication of the precision of the point definition, the mean radius of the

error ellipsoid may be computed.

It can be shown (Malhotra 1969) that the spatial orientations
and magnitudes of the principal axes of the error ellipsoids may be found
by determining the eigenvectors and eigenvalues of the diagonal sub-matrices
qxx' Thus, once the inverse matrix N--1 has been calculated, standard
mathematical techniques may be employed in order to derive the spatial
orientation and magnitude of the individual ellipsoids. The problem of

finding the precision in any arbitrary direction is not as simple and the

Mohr circle technique illustrated by Grafarend (1967, 162) may be appropriate.
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PART C: THE SOLUTION OF THE NORMAL EQUATICNS AND THE INVERSION
OF THE MATRIX OF COEFFICIENTS.

It is well known that as long as the matrix of coefficients of
a set of equations can be stored simultaneously in the core of a computer,
either fully or in band form* and there is sufficient room for the
implementation of the reducing algorithm, the direct solution by decomposition
is the best method. A suitable alternative, when insufficient working space
is available is to resort to a partitioning scheme, which however, may
introduce the secondary problem of generating the coefficient matrix in

partitioned form if the partitions are of core size.

Otherwise, iterative methods (Varga 1962) appear attractive,
that is, provided the systems considered are not excessively ill-conditioned.
This is so since much less storage space is required and round-off errors
do not accumulate. However, despite these apparent advantages the use
of iterative procedures raises many questions about their convergence.

Particular problems are:-

(1) the existence of convergence;
(2) the rate of convergence and
(3) possibly ways of accelerating convergence.

The answers to these questions are determined almost entirely by the
eigenvalues of the coefficient matrix, the calculation of which for matrices
of large order, is as complicated a problem as finding the solution
(Wilkinson 1969).

An optimum accelerating factor for the Successive Over-Relaxation
(SOR) technique can be calculated for matrices that possess property A
(Martin & Tee 1961, 244). Matrices with property A occur in levelling
network adjustment problems (Ashkenazi 1965b) but not in geodetic spatial
networks. Davis (1967) and Brown et al (1964) speak favourably of the

application of SOR to large photogrammetric problems, although the method

by which the accelerating factor is determined is not elaborated. Again
* A matrix A is said to be a band matrix if a., = 0 for |i-jl>m, because
the non-zero elements form a band along the main diagonal. Band matrices

possess the advantage that in their triangular decomposition on a computer,
only the elements within the band need to be stored (see 8.21).



52

Brown (1968) seems to have abandoned iterative techniques of the solution
of the previous problem for a direct solution.

Accordingly, in view of these considerations, iterative techniques
of the solution of normal equations were rejected, respectively in favour
of:

(1) a direct solution and

(2) a partitioned solution.
Moreover, geodetic normal equation matrices are always symmetric and
positive definite*. For this reason the Cholesky method is favoured
for the decomposing algorithm since it is not necessary to pivot, a procedure
which usually increases the band-width and thus reduces the size of the
matrix that can be stored in the core of a computer.

In geodetic adjustment problems the inverse matrix of coefficients
of the normal equations gives an indication of the precision of the unknowns.
Thus, although experts (Forsythe & Moler 1967, 79) advise against its
computation, the calculation of the inverse cannot be avoided for geodetic
point definition. Two basic techniques which depend on the size of the
problem are suitable.

If the original matrix N (Equation 6.28) is banded and can be
accommodated in core then the corresponding N“1 is usually dense and
cannot, a fact which limits the full inversion to matrices of order 150
(ibid, 14) on medium capacity computers. Fortunately, in an error analysis
of geodetic point computation, only some of the elements of N“1 are required.
Consequently, if the upper half of the banded matrix N can be stored in
core, a method of partial inversion is suitable. Otherwise, if it cannot
be stored simultaneously, a partitioning scheme is required with the’
disadvantage of the requirement of a substantial amount of backing storage.

The solution and inversion processes involve many arithmetic
operations which, because computer representation is limited, introduce
rounding errors. It is thus necessary to investigate whether the calculated

quantities are sufficiently good approximations of the true solution and

inverse, and if they are not, to explore means of improving their accuracy.

* A matrix A is positive definite if its quadratic form xTAx>O, for any
real non-zero vector x. Matrices of coefficients of normal equations are
always symmetric and positive definite (Fox 1964, 81).
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In order to gain an insight into both of these problems, the factors which
determine the sensitivity of a system of equations Ax = b with respect
to small changes in the matrix A and the right-side b need to be

considered.

8. The Solution of the Normal Equations. Inversion of the Normal
Equation Matrix.

8.1 The Condition of a Computing Problem.

A computing problem is described as ill-conditioned if the wvalues
to be computed are very sensitive to small changes in the data. Thus a
system of linear equations Ax = b is said to be ill-conditioned if small
changes in the coefficients of the unknowns or the numerical terms of the

equations produce relatively large changes in the unknowns.*

8.1.1 Measure of Condition.

It is convenient to have some number which defines the
condition of a matrix with respect to a computing problem and to call such
a number a condition number. Ideally, this number should give some
overall assessment of the rate of change of the solution with respect to
changes in the coefficients and should therefore be proportional to this

rate of change.

8.1.2 Condition Number.

In ordexr to characterise and motivate the definition
of the condition number to be used, the sensitivity of x in

AXx = b ceesaa (8.1)

where A 1is a square matrix of order n, with respect to small changes
A in A and &b in b, is considered. With respect to only small

perturbations &b in b, the new solution x + 8x of (8.1) is defined by

A(x + 8x) = b + &b e (8.2)

* In geodetic networks, adjusted by the variation of coordinates method and
using the Least Squares principle, ill-conditioning is generally associated
with the amount of change introduced into the unknown quantities by small
changes in the values of the observed quantities. ‘
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Subtraction of (8.1) and (8.2) yields

Adx = b (8.3)
that is
x = A S (8.4)

and hence (see Fox (1964, 48-5]1) for a discussion of matrix norms)
-1 -
x| = [[a™'sol| < [[a”*] Ilsv]| ... (8.5)

using the inequality

[Tell < 11all 1]«
it follows from (8.1) that the relative error [lle]/’lxI], in the solution
satisfies

-1 -
[ex1/11=1 < 117 ] Tlsoll/11a]|7] |s]]
-1

= [all [1a™" || [|lsv|l/[|®l) .. (8.6)

when I,A[, IIA—III is very large the solution x will be very pessimistic

for most right-hand sides b and perturbations &b.

Thus, since the size of IIAII ||A_1I, provides an
indication of the sensitivity of the solution of (8.1) to perturbations, it is
taken as a condition number. An additional justification for the use of
this definition, based on the effect of perturbations in A may be found in

Wilkinson (1969, 190).

The condition number in most common use, the spectral

condition number of A with respect to inversion, is (ibid)
<@ = (a7, (8.7)

Two important properties of the spectral condition

number K are:-
(1) For any non-zero scalar, ¢

Kled) = k(@) (8.8)
(ii) If A is symmetric

K@) = !A1|/|>\nl ...... (8.9)

where A and A are the eigen values of largest and smallest modulus.

1
Allowing {]A,Iz = 1, which can always be achieved by multiplying (8.1) by
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a suitable constant, then

-1 1
K(A) = A A =
[all, a7 N
if A symmetric. A symmetric normalized matrix A is therefore ill-
conditioned only if [|A-1I|2 is large or, Xn is small. In using K

as a condition number, the implication is merely that a normalized matrix
is ill-conditioned if its inverse is 'large', which is consistent with the
standard concept of ill-conditioning since the inference is that a small
change in some of the right-hand sides will result in large changes in
the solution.

The following observations are made from Equations (8.8)

and (8.9) respectively:-

(a) the condition of a system of equations is not affected by multiplying
both sides by a constant;
(b)  in order to identify and ill-conditioned matrix, ,IAII and
-1
7] or 2,

of either of which for matrices of large orders is not trivial.

and An must generally be computed, the calculation

8.1.3 Normal Equations.

The spectral condition number for the normal equations
is (Taussky 1950, 111-112)

 (ATWA) K2(L) (8.10)

where

L = WhA

Consequently, if an ill-conditioning problem already
exists in the reduced observation equations, then the normal equation matrix

will be significantly more ill-conditioned.

8.2 The Solution of the Normal Equations.

8.2.1 Direct Solution.

If the band-width m of a positive definite, symmetric
matrix A is defined as the largest number of elements in any one of its
rows, from the rightmost non-zero element inclusive, then it may be decomposed

on a computer by the Cholesky method into the product

A = GET . (8.11)
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where:

(1) G is a lower triangular matrix with positive diagonal elements;

(2) the band-width of the triangular matrix GT does not exceed that of Aa;

(3) at no stage of the decomposition process is required information
located beyond the mth column and

(4) as soon as a particular element of GT is computed the corresponding
element of A is no longer needed and may therefore cede its storage
location to that of G (Ashkenazi 1965b, 26-27).

The triangularization of a positive definite symmetric
matrix by the Cholesky method has all the virtues. No interchanges are
necessary to ensure the existence and accuracy of the decomposition (Forsythe
& Moler 1967, 114). Moreover, ignoring rounding errors,

=1 -1 -1
A = GGT and A = (GT) G

giving (Wilkinson 1969, 245)

[all, = llellZ ana [1a7'], = [l¢7']]2

which is most satisfactory, since the spectral condition number equals
that of the square root of A. Perhaps the only adverse comment which
might be made is that n-1 square roots must be calculated, whereas none is
needed in ordinary Gaussian elimination. Only the Cholesky technique is
therefore considered as a means of providing a direct solution to the normal
equation system.

If a, 5 and gi’. are elements of the A and G

1
matrices,then for the diagonal coefficients of A

o R + g2 | (8.12)

a, R =
gj,l J,2 3.3

Js3
and for non-diagonal terms

. (3<1) e (8.13)

a, . = gi,lg' 1 + <:.;i’2gj,2 + ... + g gj,l

i,J I i,3

Used in correct sequence, these equations determine the
elements of G, and it will be noticed that the elements of A above the
diagonal are not involved because of symmetry.

The solution is obtained by a forward elimination (Gy = b)

and back-substitution (GTx = y) process.



57

8.2.1,1 Storage Requirements.

Because of the symmetry of A it is necessary
to store only %n(n + 1) or slightly over half of its elements resulting in
an important saving of computer storage for large matrices. If in addition
the matrix is banded, further space is saved. Space is saved becauvse only
the non-zero part of the matrix needs to be stored and such storaged arrangement
requires (m + 1)%(2n - m) locations in comparison to the previous.

However, the concept of banding is useful only if
m 1is appreciably smaller than n. After all, any matrix is a band matrix
with m = n - 1, and thus storage space is only saved if m < (n - 1).

It is emphasised that no intermediate storage is
needed since the elements of G are created at the same time the elements of
A  are replaced and that almost all the computer time required to solve
Ax = b 1is spent finding G; the computations actually involving b are
relatively short. Hence, if at a later stage it is required to solve
another system with the same matrix of coefficients as is the case with
iterative improvement or if the inverse is desired, there is every reason

to retain G and thereby avoid repeating the triangular decomposition.

8.2.2 Partitioned Solution.

In the method of partitioning, the coefficient matrix is
subdivided into convenient parts. Fig. 8.1 demonstrates an established
partitioning scheme for banded symmetric matrices, the reasons that the
band-width is chosen as a criterion for division being that:

(1) storage requirements are optimised and

(2) programming the formation of the partitions is simplified.

The method upon which the solution algorithm is based (Zienkiwicz & Cheung
1968, 243) accounts for the symmetry and sparseness of the matrix and the
fact that non-zero elements lie close to the diagonal by proper ordering of

nodes. In a tridiagonalised manner, the matrix may be written
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A11 A12
A A A
12 22 23
\ A A
A23 33 34

T

A34 AM AJS

A A
45 55

FIG. 8-1
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(a A 0 0 0 0 x ) (b )
11 12 1 1
T
A A A 0 . . 0 0 X b
12 22 23 2 2
o a2 a a . . . 0 x b
23 33 34 3 3
=, Jeieaen (8.14)
0 0 0 0
0 0 0 0 A A
(n-1) (n-1) 2(u-1n||*n-1{ |Pn-1
T
0 0 0 0 . . A A X b
L (n=1)n nn jUn n |
The first two matrix equations can be written in full as
A x; + A L%, = b1 ...... (8.15)
AT Xx +A x +A x =Db il (8.16
12 1 222 233 2
a solution of which will yield for X,
=a’lp - all (8.17
X, = A b, ALJALX, e .17)
Equation (8.17) upon substitution into Equation (8.16) gives
T -1 T -1
(B,, = A,A A )X, + A, x, =b, - A A b ... (8.18)
which by introducing the symbols
= T -1
By, = By, m BB
- T ~1
b, =b, - SPLIPL
rray be written
A22x2 + Azsxa = b2 ...... (8.19)
X, may be extracted from Equation (8.19) as before and may then be
substituted into the new row equation to give modified K33 and 53.
Such a process of substitution and elimination is possible until the
last row equation is reached, i.e.
A x = b, (8.20)
n'n n

the direct inversion of which will yield X If the process is reversed
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and the known values are back-substituted into equations of type (8.19)
then all the unknowns may be found.

It is seen that, since in this type of solution the
matrices are eliminated in blocks, a substantial amount of backing storage
is needed for the Aij and for making the intermediate calculations. Thus,
if the band-width is very large, it is advisable to look for an alternative

solution.

8.3 Inversion of the Coefficient Matrix.

3.3.1 Partial Inversion.

The inverse A ! of a symmetric and positive definite

matrix A which has been decomposed by the Cholesky method is given by

-1 -1 -1 -
A= Geh = &HTer =S (8.21)
-1
Let G = (s, .) with s, , =0 for i<j and let G. and S. be,

1,] 1,] 1 -1 J
respectively, the ith column of G and the jth row of G . Then for
1<k<n

Ska = 1= Sk,k ...... (8.22)
k
S.G. =0 = s .9, . J=%k-121,...,1 ..., (8.23
k3 izj k,i%i,5 ! )
from which sk i(i =k, k-1, ..., 1) may be caiculated for any k,
thereby obtaining all the elements of G_l. The desired elements of

-1
A are then given by Equation (8.21).

8.3.2 Partitioned Inversion.

If a large matrix A is divided into four partitions:-

W X

A= (8.24)
Y Z

where

A is a n xn matrix

W P XxXPp

X P x g

Y qxp

the inverse A , if partitioned in a similar manner is given by (Ayres 1962, 57)
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K L
e . (8.25)
M N
where
N = (z - wix}
M = (-N YW )
. ceeee. (8.26)
K = w - Wl

Theoretically, the technique can be expanded to invert
a matrix containing any number of partitions by inductively moving out from

the top left hand corner partition (Knight 1965).

8.4 Error Analysis.

The solution of the simultaneous equations Ax = b comprises the

following computational steps:

(a) decomposition of the coefficient matrix according to the Cholesky
method (A = G GT) ;

(b) forward elimination (Gy = b); and
{(c) back substitution (GTx = vy).

An additional back-substitution (A_1 =‘(GT)—1G_1) is necessary
to compute the inverse matrix. Thus, apart from the initial rounding errors
occurring in the formation of A and b, those occurring in steps (a), (b),
(c) and the inversion will affect the quality of the results.

Computations are to be made exclusively using a digital computer
and since there are two main modes of operation on automatic computers, a
decision is required regarding the most advantageous of the two for the
problem to be solved. The first mode is called fixed-point computation.
In this mode the computation must be framed so that every computed number x
satisfies certain inequalities such as -1 < x < 1. In general, each number
will be allowed a fixed quantity t, of binary (decimal) digits for its
representation and it is said that the computer works with words of t binary
(decimal) digits. If it is necessary to work to a higher precision than
1 part in 2t then numbers which are represented by a multiple of t binary
digits may be employed. The other mode of computation is called floating-point
computation. In this mode each number x is represented by an ordered pair

a and b such that x = Bb(a). Here B 1is the base of the floating-point
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computation, b 'is an integer, positive or negative, and a is a number
satisfying -% > a 2 -1 or % < a < 1. The number b 1is commonly called
the exponent and the number a is called the mantissae or the fractional part.

The number of digits allocated to a and b together is quite
commonly the same as that available for a fixed-point number. A typical
division of the word (IBM 360/50) is 8 binary digits in b and 24 binary
digits in a for a computer with a word of 32 binary digits. This means
that fixed-point computation is usually capable of giving a higher precision,
though often, in order to ensure that numbers do not grow out of the permissible
range, it is convenient to work for most of the time with numbers which are
appreciably smaller than unity. Some of the potential advantage of fixed-
point computation is then forfeited because of the detailed analysis which
would be necessary.

It is seen that for a given number of digits in the word, fixed-
point is potentially more precise than floating-point because of the number
of digits allotted to the exponent in the latter. However, much more
careful preliminary analysis is needed for fixed-point computation than
floating-point to ensure that the numbers do not pass outside the permitted
range and the natural flow of the computations must often be modified in
fixed-point by the introduction of appropriate scale factors. Accordingly,
in order to avoid an excessive use of scale of factors, numbers in fixed-
point computation are scaled so that they are much smaller than unity. In
this way more digits may be sacrificed than would be required by the exponent
in floating-point computation. If scale factors have to be introduced at
frequent intervals in fixed-point computation then it is little more than an
ad hoc floating-point computation.

In accumulating an inner product in fixed-point, the danger of the
sum exceeding capacity must be borne in mind constantly. The provision of
the accumulation facility in connection with floating-point computation avoids
this difficulty which is always present in fixed-point work. Further, it may
happen that a partial sum exceeds capacity but when the later terms are added
it returns to the permissible range. If it were known in advance that the
final sum would be in the permitted range then the spill-over could be ignored
because the final result would be correct, but unfortunately this is not usually
the position. These points are covered automatically in floating-point
computation, and although in general some rounding errors are inevitable,

assuming double word accumulation, they will be in the digit at the end of
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the second half of the register and therefore involve 2--2t instead of 2-t.

Accordingly, in view of these considerations floating-point
arithmetic is chosen as the basis to the computations within the context of

this dissertation.

8.4.1 Limitations Imposed by t-Digit Representation.

Since the A and b of Ax = b generally require more
than t-digits for their correct representation, it is necessary to work

with the approximations A' and b'. Thus,
A'=2 +8A, b'=b+6b .. (8.27)

where for floating point computations and binary arithmetic (Wilkinson 1969,

197)

|6Aij] < 2_t|Aij],|6bi] <2 (8.28)
so that

l6all, < 27| [all,, |ln]], < 27%||n]], ceeee. (8.29)

Wilkinson (7964, 93) shows that when working with t-digit floating-point
arithmetic, it is not even possible to obtain an approximate solution to a

set of equations for which k(a) > n.%2t

Concerning the effect of rounding errors made during
the course of the computations, Wilkinson (1969, 198) concludes that when
the original elements are not exactly representable by t-binary digits,
the error resulting from any initial roundings that were necessary are as

serious as those arising from all steps in the solution.

8.4.2 Cholesky Decomposition.

The computed G matrix satisfies
T
GG = A+ 6a

there being a danger of rounding errors destroying positive definiteness

-1 e :
when ||a Ilz < 21 / (n+ 1) (Wilkinson 1964, 117). However, if
accumulation of inner products is possible, the bound for 6A wusing a given

precision of computation is as small as possible for any method.
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8.4.3 Forward Elimination and Back-Substitution.

The forward elimination (Gy = b) and the back-substitution

.

T . . . .
(G'x = y) processes constitute the solution of two sets of equations with

a lower and upper triangular matrix of coefficients respectively. The

computed vectors y and x satisfy
(G + 8G)y = b and (G + dG)Tx =y il (8.30)

8G Dbeing some function of b (Wilkinson 1969, 248). Residuals corresponding
to the solution of (8.30) are smaller than those of the correctly rounded

solution, even when the matrix G 1is very ill-conditioned (ibid, 247-251).

8.4.4 Inversion.
An indication of the relative error in the computed

inverse B of A 1is given by the expression (ibid, 253)

e - a7' ] /a7 s (3.l)n2_t]'A_llloo/{l—(B.l)nZ-t| a7 ). (s.31)

from which it may be concluded that for a normalized matrix A, the computed

- -1
inverse B has a low relative error if (3.1)n2 tllA I! is small.
o o)

8.5 Accuracy of Computed Results.

A small residual (AB - I) necessarily implies that B is

a good inverse, whereas a small residual vector (Ax - b) does not

necessarily imply that x is a good solution (ibid). Thus when an inverse
B has been computed, (AB - I) may be calculated, thereby obtaining a
reliable bound for the error in B. However, in order to be able to

recognise the accuracy of the solution x of (Ax - b), an accurate
approximation of the inverse B 1is required as well as a reasonably sharp

bound for I!B - A_lfl.

8.6 Matrix Scaling.

Suppose that xj in Equation (8.1) is replaced by é§) x% for

i=1, ..... , n. The substitution take the form
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where D is a non-singular diagonal matrix defined by

d(2)

) 0
D = 1, (8.33)
2
SR
0 d( ’
n
Similarly, if
(1) o©
dl
D, = B (8. 34)
0 ath
n

is a second non-singular matrix and the substitutions

b = Db . (8.35)

are made for the right-hand sides of Ax = b then

A sz' = le' ...... (8.36)

or
-1

D1 A D2x' = b ... (8.37)

It is seen that the changes of variable (8.32) and (8.35) produce a new
-1

linear system with coefficient matrix A' = D, A D, and right-hand side
b' = D 'b.

The transformed matrix A' is said to be diagonally equivalent
to A if non-singular diagonal matrices D, and D, exist so that

Al

-1
D, A D,. Moreover, since A D, is the matrix A with its columns
d(2)

1

.....

2 -
d( ) and DllA is the matrix A with
gt

n
are referred to as the column and row scaled equivalents of A respectively,

multiplied by the factors n
: P 1 -
its rows multiplied by the factors 1/df ) cees Y/ » A D, and DIIA
-1 . . .
whereas D, A D, 1is spoken of as the scaled equivalent of A. In floating-
1
point computations with base R, the dé )'s are usually selected to be

integer powers of the base £, thus altering the exponents of the floating-

point numbers but leaving their fractional parts unchanged. No rounding-
errors are then introduced by Equation (8.37).

The subject of how scaling affects the solution of a linear system
is not very well understood (Forsythe & Moler 1967, 38), although, since the
critical factor which determines the convergence of the iterative refinement

method for solving simultanecus equations (See Chapter 9) is that the spectral
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condition number should be sufficiently small, it is generally agreed, at
least in theory, that the best way to scale matrix is to make the condition
number of its scaled equivalent as small as possible. The problem then
becomes that of finding the diagonal matrices D, and D, which yield
the smallest condition number «(A'). The minimizing D1 and D,
for a general matrix A, depend essentially on its inverse A--1 which will
certainly not be known as the object in scaling A is to help determine
A_lb. The calculation of eigenvalues for symmetric matrices A' of large
order 1is égain not a practical proposition. Wilkinson's (1961) approach
to the scaling problem is therefore to insist that a matrix A be
equilibrated* before a linear-system solver is applied, the matrix being
roughly equilibrated if all its rows and columns have approximately the same
length in some norm (Wilkinson 1969, 192). Regarding rounding-errors, the
most satisfactory results are obtained for the solution of Ax = b when
the matrix A is equilibrated because then a small perturbation of one row
(or column) of A is of the same magnitude as that of any other row (or
column) of A. Unfortunately, there is no unique equilibrated form of a
matrix and different equilibration algorithms will change it into different
matrices which can vary considerably in théir condition and scaling (Forsythe
& Moler 1967, 45).

Note that if the matrix A is symmetric, it is of advantage to
preserve symmetry in the scaling operation. Moreover, since x = D,x',

it is necessary to multiply x' by D, to obtain the correct solution.

* A matrix A is: row equiiibrated (relative to the norm ||xl'w) if for
each row index 1, B_l < max lai.[ < 1(1 £ i £ n);column equilibrated
(relative to the norm ['x|| ) if for each column index j, 8-1 < max
'aij' $1(1 £3j £n); and ezuilibrated if it is both row and column

equilibrated. The use of B permits the matrix to be equilibrated by

changes of exponent only.
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9. Iterative Refinement of Approximate Solutions.

9.1 Iterative Refinement of the Solution.

For the accurate solution of linear equations iterative refinement
procedures are very attractive since high accuracy solutions x can be
obtained to most linear systems Ax = b with only a modest increase in
time over obtaining the first solution. Moreover, for large systems a
single precision factorization plus iterative refinement has the advantage
over double-precision computation without refinement that it requires less
storage (only about half), is faster and gives useful indication about the
condition of the coefficient matrix. It possesses the disadvantage that
if the coefficient matrix is too ill-conditioned, iterative refinement
will not work whereas double-precision computation might well give an answer
of acceptable (although unknown) accuracy.

1)

The key to improving the accuracy of the first solution x( is

(1) (1)

a double precision computation of the residual r = b - AXx . Knowing
1 1 1
r( ), it is then necessary to solve the system ASX( ) = r( ). Thus, if
1 1
6x( ) were known precisely, then x(z) = x(l) + 6x( ) would accurately
solve the system Ax = b because
2
Ax( ) - A(x(l) + 6x(1)) = Ax(l) + AGx(l) = Ax(l) + r(l) =b .... (9.1)
Such a procedure should furnish a second solution x(Z) which is more
1 2 .
accurate than x( ). Forming r(z) =Db - Ax( ), the technique may be
repeated until the required precision is achieved. The previous is contained
in the iterative scheme
+ -1 -1
x(k 1 = x(k) + B (b - Ax(k)), x(o) =B b ceeane (9.2)

-1 -
where B is an approximation to A ' obtained implicitly during the solving

process. Successive applications give
(o) -1
X =B b
(1) -1
X (I +C)B b
2. =1
x2) 2 1+ c+dHe s ¢ T )
-1
¥ s rrcect .+ e
where
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It will be noted that each system (9.3) employs the same matrix
B_1 and is the reason that iterative improvement of a first solution adds
only a moderate amount to the computational time of the algorithm. However,
it is essential that the residual r(k) be computed with a higher precision
than the remainder of the calculations.

9.1.1 Convergence.

The series I +C +C%2 + ... + Cn ... converges to (I - C)-
for ||c|| < 1 (Fox 1964, 144). Thus when ||c|| < 1 which is satisfied
if ||A—1l| ||8a]] < % Wilkinson 1969, 255), x (%) converges to

-1 =1 -1
(I-C) B b = A b e (9.4)

9.1.2 Effect of Rounding Errors.

It is plausible to propose that if the iteration is
performed using t-digit arithmetic, then the accuracy of x(k) cannot increase
indefinitely with k since only t-digits are being used to represent the
components. Furthermore, for floating-point arithmetic the residual
corresponding to the first solution will most likely be of the same order of
magnitude as that corresponding to the correctly rounded solution and it can
therefore hardly be expected that the residual should diminish by the factor

2—p with each iteration. Nevertheless, this is precisely what does

happen (ibid, 2561).

9.1.3 Accuracy.
The iterative process gives a virtual guarantee that the
final vector is the correctly rounded solution. However if n2—tl|A—1|| > %,
then it will not in general converge and none of the computed solution will

have any correct figures.

9.1.4 Limitations.

If the iterative technique does not converge, then it is
said that the 'matrix is too ill-conditioned to be solved by the method in
question' unless higher arithmetic is used. The possibility remains however,
that despite convergence, the wrong answers are given. On this matter
Wilkinson (ibid, 262) reports that pivots* of order of magnitude n2"% or
solutions of order of magnitude 2_t/n are a sure sign that the condition

of a matrix is such that the convergence of the iterates in the unlikely event

* Corresponding to the diagonal elements of the G matrix in the
Cholesky approach. :
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of their occurrence are not to be taken as guaranteeing a correct solution.

9.2 Least Squares Solutions.

The previous remarks apply to the solution of the general equation

system Ax = b. In the standard least squares problem however, the vector
x 1is required for which ||b - Axll2 is a minimum (Golub 1965, 206).

A being an mxn matrix (m 2 n) and b and x vectors. In practice,
whether or not m = n, rounding errors contaminate the solution. Iif x(l)

(1)

is the computed solution and &x is determined so that

(1)
x

1
',(b - A - AGx( ))llz is a minimum, then since this implies that
1 1
]]b - A(x( ) + 6x( ))||2 is a minimum, x(l) + 5x(1) _is the least squares
solution of the original problem (Golub & Wilkinson 1966, 139). Hence if

1
r( ) is the residual vector defined by

r(l) =Db - Ax(l) ...... (9.5)

the required correction is the least squares solution with matrix A and

1
right-hand side r( ).

9.2.1 Linear Equation Case.

When m = n, then the computed solution satisfies the

equation
1
@+ X s (9.6)
1
where if A 1is very ill-conditioned, A + GA( ) could be singular. Moreover,
if (ibid, 141)
3
= -1 -
27n® 27%|[al[,]]a 1, <2Pe200 Ll (9.7)
then
1 - -p-1
x = <D /0 xl], < 287 - 2727 L (9.8)
where x = A_lb is the true solution. Experience indicates that (9.8)

is satisfied when p 1is defined by some relation such as
m2 Al a7 ], =27 L (9.9)

Thus unless A is too ill-conditioned the iterative
refinement procedure is certain to work with any right-hand side provided
the errors made in computing the residuals are unimportant. On the average
x(s) should gain roughly the same number of figures in each iteration until

it is correct to working accuracy and provided Kk (A) satisfies the requisite
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bound, and x(s) is ultimately attained for which
x - xS /%] < 27F ceeee. (9.10)

at which stage x 1is "correct to working accuracy.”

9.2.2 The Least Squares Case With m > n.

An analogous result to (9.10) cannot be obtained for
the least squares case, because if ATWb = 0, the correct solution is x = 0.
Nevertheless, it is reasonable to expect that llx - x(s)H2 will show a
progressive decrease in magnitude if A satisfies a bound of the form (9.7).
However, since the condition number for the normal equations ATWAx = ATWb

is given by the expression

K(ATWA) = k2(L) (See Equation 8.10) e (9.11)
then if A has a condition number of order Z%t, ATWA has a condition
number of order 2t and it will not be possible to solve the normal
equations using t-digit representation. Thus in striking contrast with the
linear equation case there will be right-hand sides for which iterative
refinement will never give solutions which are correct to working accuracy,

whatever precision of computation is used.

9.3 Iterative Refinement of an Approximate Inverse.

Methods similar to those for linear equations can be applied to

. . . -1 . . .
improve the accuracy of an approximate inverse. If BO 1s an approximation
-1
to A , the iterative scheme
B =B (21 - AB. ') (9.12)
k+1 - k k e« ® » @ & @ 3
will give a sequence of matrices B; ; which converge under certain conditions

to A"'. Thus (Fox 1964, 156)
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B =B (I + C)
1 o
Bl =B8N (T +C+c? )
2 o
-1 -1
B3=Bo(I+c+c2+c3+c”+c5+c6+c7)
cecer et nacennae feae e ceee cee s (9.13)
-1 - -
B =B1(I+C+C2+..+C2k1)
k o)
where
-1
C =I-AB
[o]

9.3.1 Convergence.

The above process will converge to A-—1 = B;I(I - C)-1 if
||C|| < 1 and it is seen that the matrix C 1is not exactly that of the
linear equation case, which was I - B;IA, but since the norm cannot exceed
IIB;1]| |IBO - Al| in either case, the criterion of convergence will be
the same. Thus if B;I is suitable for the iterative refinement of linear
equations, it is also suitable for iteration to produce an accurate inverse.
The rate of convergence for the iterative refinement of the inverse is

however considerably better than that for the linear equations case (ibid).
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PART D: THE TEST NETWORK.

10. The Network.

The network (Fig. 10.1) chosen to test the local astronomic vector
technique of computing three-dimensional Cartesian coordinates of terrestrial
points, is located predominantly in the State of South Australia, covering
approximately two-thirds of its area and containing also that ratio of the
State's total number of first-order traverse stations, (in all 263 points
were selected) but comprises parts of the Northern Territory and Queensland
networks. It is part of the AGD which was established to provide
mapping control for Australia and New Guinea. However, it must be
emphasised that the accuracies obtained from the survey methods used was

much greater than that required for mapping purposes.

10.1 Size and Location.

The State of South Australia has the ocean to the south and is
flanked on the other sides by land. It lies south of the 26th parallel
of south latitude and has as a western boundary the 129th meridian of east
longitude. The eastern boundary, north of the River Murray, corresponds
with the 141st meridian, while to the south, between the river and the sea,
the boundary lies approximately 3.2 kilometres to the west of this meridian.

The State is approximately 1 200 kilometres from east to west
at the northern boundary and 1 150 kilometres at the head of the Great
Australian Bight; from north to south it varies from 630 kilometres near
the western extremety to approximately 1 330 kilometres near the eastern
boundary; its coastline, excluding islands, measures approximately 3 400
kilometres. South Australia covers a total area of approximately one

million square kilometres (one-eighth of the area of the Australian continent).

10.1.1 Physical Features.

South Australia is a land of generally low relief,
the inland area being largely covered by featureless plains, or sand and
gibber deserts. Approximately 50 per cent of the State is less than 150

metres above sea level and over 80 per cent is less than 300 metres above

sea level.
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10.2 Data.

The observational material for the test network, completed between
1957 and 1971, was extracted from the field records of the Division of
National Mapping, Canberra; the South Australian Lands Department, Adelaide;
the Department of the Interior, Woomera and the Royal Australian Survey Corps,
Keswick.” Instrumentation and observing methods varied somewhat with
technological developments and experience. For this reason observing
methods are summarised and major problems are presented with a view of
providing a foundation to the observational accuracies quoted in Section 10.3,
which are to be used in the derivation of a set of weight coefficients for

an adjustment procedure by least squares.
10.2.1 Astronomic.

Prior to 1945, astronomic observations in Australia
were made with geodetic theodolites of English manufacture (e.g. the
Geodetic Tavistock). The methods employed were not of an impersonal
character. It was only with the introduction of the modern universal
instrument (T4 and DKM3a) and its associated equipment that a high precision

was possible.

Between 1957 and 1962 the T4 astronomic theodolite
was used extensively at Laplace stations. The Khancoban tests
(Leppert 1963) gave the impression that there was little difference in
accuracy between azimuths observed with astronomic theodolites (Type T4)
and a geodetic theodolite (Type T3). However, as the sample size used
to arrive at this conclusion was quite small, it must be appreciated

that these indications were not necessarily conclusive.

The results of the tests had a critical bearing
on the observing techniques of the Division of National Mapping, which

at the time was concerned about a significant disagreement between

*  Gravimetric data (Mather 1970a, 71-92) was used as well, to
interpolate the astronomic latitude and longitude where these

had not been observed.
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simultaneous and reciprocal® azimuth observations of a line (Johnson 1962),
the disagreement being attributed to lateral refraction errors. It was
hoped to minimise these discrepancies, particularly on the coastal
traverses, by double ended reciprocal azimuth observations. Moreover,
astronomical theodolites require observing tents and expensive equipment,
as well as experienced observers. This was not the case with geodetic
theodolites. The previous considerations in conjunction with the
conclusions drawn from the Khancoban azimuth tests, dominated the decision
by the Division of National Mapping, to observe T3 and T4 double ended

azimuths (Fig. 10.1).

Observations for latitude and longitude made at
stations in order to determine the geoid, were usually performed with
the DKM3a theodolite and proved less troublesome than the azimuth

observations.

10.2.1.1 Azimuths.

Since 0=Octantis is used for azimuth
observations in Australia, and unlike Polaris cannot be observed during
twilight, when shimmer is reduced and the temperature gradient changes
sign, observations were commenced the instant the star could be seen in

the telescope and were stopped within an hour or so.

The system of double pointing was used on
both T3 and DKM3a theodolites, the aim being to observe 12 zeros of double
pointing from each end of the line on each of two evenings; with additional
sets of 6 zeros for each evening a survey team was at a station for more
than two evenings. For single ended observations the minimum number of

zeros was increased to 18.

Lateral refraction errors were hoped to be
eliminated by considering the mean of reciprocal azimuth observations made
simultaneously from both ends of a line (Bomford 1967b, 55) even though

the two often differed by as much as one second of arc (Bomford et al 1970, 2).

* The term 'reciprocal' is used here analogous to its use

in trigonometric heighting (Bomford 1962, 204)
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OMIC DATA - SUMMARY OF OBSERVING METHODS

INSTRUMENT LATITUDE LONGITUDE AZIMUTH TIME
WILD T4 HT MT C
WILD T3 A(30%) SIGMA SW
DKM3a (I) CMA A(35°)|  OCTANTIS )
TAVISTOCK A(30°) <
TABLE 10.1
KEY
HT Horrebow-Talcott pairs.
CMA Circum-meridian altitude pairs.
A Almucantar altitude pairs.
Impersonal micrometer.

C Chronometer - Chronograph

SW Split hand stop watch

MT

Meridian Transit sets.
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10.2.1.2 Latitudes.

Meridian or Circum-meridian altitudes of
FK4 stars were usually observed with the geodetic theodolites, whereas
the Talcott method has many advantages and is theoretically more precise
than the Circum-meridian altitude technique. However, it requires an
extensive catalogue in order to obtain the pairing of the stars. For
this purpose the FK4 does not suffice, and a lengthy prediction analysis
is required using the Boss catalogue. This in itself is not inconvenient
provided the prediction has been programmed on a computer. However, an
analysis of the Boss catalogue by the Washington Observatory has detected
systematic errors which for the southern hemisphere are reputed to exceed
1" (Bomford 1965, 36) and consequently, the theoretically higher precision
of the Horrebow-Talcott method is somewhat diminished by errors in the

catalogue.

On the whole, Circum-meridian latitudes
of FK4 stars were found thoroughly satisfactory for Australian conditions.
Twelve pairs were stipulated as the minimum for a first-order station;
preferably 16 pairs. Observations on a single night were acceptable,
although 8 pairs observed on each of two nights were preferred. For
geoidal section stations and at points where latitudes were required only
for azimuth computation, 6 pairs on one night were usually considered
adequate (ibid, 36).

10.2.1.3 Longitudes.

The method of almucantars (equal altitudes)
was. preferred for longitude observations (Table 10.1), although the meridian
transit technique was used extensively earlier in conjunction with the T4
astronomic theodolite. Both stop watch and impersonal almucantars were
observed, the former with geodetic theodolites and the latter with the
DKM3a. The resulting standard deviation of the stop watch method was
often no larger than that of observations made with the impersonal micrometer.
However, the results are burdened with the personal equation of the observer
which was usually determined by observing stop watch longitudes at stations
where the longitude had already been determined impersonally. Nevertheless,
stop watch longitudes were found unsatisfactory and after 1966, only impersonal

observations were made (Bomford et al 1970, 1).
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Laplace stations were customarily observed
in pairs, with impersonal observations at one end of a line and stop watch

observations at the other.

For Laplace determinations, whether by stop
watch or impersonal methods, the aim was to measure 16 pairs, that is,
8 on each of two nights. The minimum was 12 pairs, with not less than
6 pairs on each of two nights. For geoidal determinations 8 pairs of

stars on one evening were usually observed.

10.2.2 Linear.
10.2.2.1 Distances.
Network distances were measured with the
tellurometer. Model MRA]l was used in the early stages of measurement,

however, the MRA2 appears to have been used extensively later (Table 10.2),

and some remeasurement was made with the MRA4. Individual lines were
measured from both ends, 36 or more fine readings being taken. The mean
value of the two determinations was then adopted. On some lines towers

were installed in order to raise the line of sight, and thus reduce ground

swing.
10.2.2.2 Levelling.
South Australia is covered by an extensive
third~-order levelling network (Fig. 10.2). Levelling lines were usually

confined to access routes which on the average follow the tellurometer
traverse. The data was obtained from the South Australian Lands
Department, the Division of National Mapping and the Department of the

Interior.

Generally speaking, the observations were
made according to the specifications stipulated by the Division of National
Mapping (Leppert 1965, 599-600), the levelling procedure adopted being one
of dividing the separate loops into sections of length 1.6 to 8 kilometres.

The sections were then forward and reverse levelled.

The Zeiss Ni2 and Watts Autoset levels
appear to have been used extensively. Approximately 50 connections

were made to the horizontal control network (Fig. 10.2).
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AZIMUTH: REPEATED OBSERVATIONS

Station Year Instrument Obs'd No. of Standard Standard
Name Obs'd v Value Obs. Deviation Deviation
(secs) (secs) of Mean
(secs)
1957 T4 19.95 23 1.01 0.21
. 1957
Attraction 1960 T3 23.36 41 - -
Bates 1961 T4 59.75 27 1.40 0.27
1962 T3 0.11 24 2.62 0.39
1960 T4 31.17 24 1.22 0.25
NM/E/18 1961 T3 27.25 6 - -
1962 T3 27.46 24 1.64 0.32
1962 T4 10.49 24 1.49 0.30
Colona 1961 T3 7.18 6 - -
1962 T3 9.06 24 1.64 0.33
Coppudurba 1960 T4 20.52 27 0.62 0.12
pp - T3 20.45 12 - -
cooper 1958 T4 43.98 30 1.04 0.19
p - T3 41.89 - - -
Xingoonva 1961 T4 11.93 29 0.97 0.18
goony 1962 T3 11.81 24 1.34 0.28
1960 T4 38.13 24 0.78 0.16
NM/E/ 89 1963 T3 37.93 12 1.49 0.59
1965 DKM3a 14. 39 12 2.10 0.61
NM/E/61 - T3 15.29 24 - -
1965 DKM3a 23.20 12 2.35 0.68
NM/E/178 - T3 25.52 23 . -
Oak 1958 T4 36.93 28 1.48 0.28
1961 . T3 35.45 12 1.64 0.47

TABLE 10.3
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10.2.3 Angular.
10.2.3.1 Directions.

Prior to 1957 normal geodetic triangulation
methods were implemented. In 1957, the tellurometer arrived in Australia
and changed geodetic techniques, since it was no longer necessary to use
only the most elevated terrain, but rather was cheaper, easier and of
greater practical value to confine trigonometrical stations to near access

routes. Control could thus be extended by traversing.

Directions were usually observed when
atmospheric conditions stabilised, that is, approximately one to two hours
before sunset, but depending on the time of the year. Triangle and
figure 'closures' so obtained were of a high gquality and were well within

the precision expected of first-order angular work.

Some noticeable trouble, in the angular
work, was experienced at Boola Boola, which although not in South Australia,
could be considered as an extremum of the occurence of such an event.

Johnson (1962, 219-220) reports a swing of 13" within a period of one hour

and 19" overall -~ not in what he calls a wild zero, but in each set of

12 pointings. Double ended reciprocal astronomic azimuth observations
indicated that the value of lateral refraction at this station was
approximately 43%V2. Therefore, when difficulty was expected, the practice
was, in the hope of minimising these effects, to observe reciprocal astronomic

azimuths

From Table 10.2 it is seen that the majority
of horizontal angular control was observed with the T3 theodolite. In most
cases, more than 36 arcs were observed, an arc consisting of a double pointing
to an object with a micrometer reading for each pointing, followed by a double
pointing to another object with a micrometer reading. However, in some of
the work completed by the South Australian Lands Department, the records
indicate that prior to 1965, only 12 arcs were observed. Otherwise and in

general, more than 36 arcs were observed.

Where angular observations were proving
troublesome, a larger number of arcs were measured and Laplace station

spacing was close.
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LATITUDE: REPEATED OBSERVATIONS

. Obs'd No. of Standard Standard
Station Year . . . \
. Instrument value Obs. Deviation Deviation
Name Obs'd

(secs) (secs) of Mean

(secs)

Bates 1961 T4 49,83 18 1.10 0.25
1967 DKM3a 49, 34 20 0.59 0.13

Hearne 1958 T4 4,15 20 0.71 0.16
1967 DKM3a 4.40 18 0.60 0.14

1961 T4 46.63 20 1.10 0.30

Kingoonvya 1962 T3 46. 39 71 0.70 0.08
1967 DKM3a 46.23 19 0.35 0.08

, 1957 T4 50.21 17 0.52 0.12

Low CLiff 5.5 DKM3a  50.70 30 0.52 0.09
Macaw 1965 DKM3a’ 57.27 13 0.76 0.21
1967 DKM3a 57.44 18 0.43 0.10

Stonev Ran 1959 T4 5.35 16 0.86 0.22
Y 9€ 1968 DKM3a 4.44 20 0.49 0.11
wild 1961 T4 16. 38 21 0.59 0.12
+ 1967 DKM3a 17.94 20 0.54 0.12
1960 T4 59.66 25 0.61 0.12

NM/E/89 1963 T3 59. 20 5 0.34 0.35
1962 T4 4,79 15 0.72 0.19

NM/E/178 1965 DKM3a 4.37 16 0.64 0.16
1963 T3 58.28 4 0.78 0.39

Oak 1963 T3 56.68 4 0.57 0.23
1958 T4 57.98 28 0.87 0.1l6

TABLE 10.4
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10.2.3.2 Zenith Distances.

Zenith distances are known to be severely
influenced by atmospheric refraction. Observational procedure varies as
apparent from Table 10.2, common practice being to observe from 2 to 4 sets
of simultaneous reciprocal zenith distances, 3 to 4 arcs comprising a set.

Observing times were, unfortunately, not always optimised.

It is known (e.g. Brown 1967, 4) that the
effect of refraction on vertical angle measurement is least around or
within a few hours of noon. Accordingly, most observations were made
between 10.00 and 15.00 hours. However, the Department of the Interior
completed its observations during the hours 19.00 - 22.00, when the effect
of refraction upon measurement is largest (ibid, 4). Instrumentation

is shown in Table 10.2. The T3 appears to have been used extensively.

Frequently, as for linear measurement,

towers were used in order to raise the line of sight above the terrain.

10.2.4 Gravity.

A detailed description of the gravity data which was
used to interpolate deflections of the vertical at points where the
astronomic latitude and longitude had not been observed, is given by

Mather (1970a, 73) and by Barlow (1970).

10.3 Accuracies.
10.3.1 Azimuths.

Standard deviations of the mean of 92 distinct azimuth
observations within the network are represented by Fig. 10.3. It is seen

that a precision of * 1V'0 is always attainable.

Observations repeated at different times, with different
instruments and by different observers are given in Table 10.3. The
differences obtained are usually larger than * 1'0. Moreover, Bomford et al
(1970, 2) found that the average 'misclosure' of 136 reciprocal Laplace
azimuths was 1V93 but magnitudes of up to 8" were sometimes obtained, with

no reason to suppose that any blunders were made.
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LONGITUDE: REPEATED OBSERVATIONS

Obs'd No. of Standard Standard

Stati
ation Yeaf Instrument value Obs. Deviation Deviation
Name Obs'd
(secs) (secs) of Mean
(secs)
1961 T4 31.19 7 - 0.13
Bates 1962 T3 30.17 13 0.24 0.08
1967 DKM3a 31.35 19 1.09 0.25
1960 T4 56.82 6 - 0.13
Black 1962 T3 56.86 12 0.24 0.08
1962 T4 9.54 5 - 0.13
Colona 1962 T3 9.03 13 0.24 0.08
Hearne 1958 T4 21.14 4 - 0.09
1967 DKM3a  22.50 18 0.85 0.20
1961 T4 '53.26 7 - 0.17
Kingoonya 1962 T3 53.45 93 0.60 0.06
1967 DKM3a 53.14 24 1.16 0.29
. 1957 T4 21.51 4 - 0.07
Low CLiff 1967 DKM3a  22.06 29 1.19 0.22
Macaw 1965 DKM3a 26.36 15 1.01 0.26
1967 DKM3a  26.37 20 1.16 0.26
1959 T4 33.00 7 - 0.19
Stoney Range ;5.0 DKM3a  33.30 19 0.92 0.21
vild 1961 T4 15.12 6 - 0.16
1967 DKM3a 15.48 19 0.66 0.15
Winailoin 1962 T3 11.08 18 1.37 -
g1ip 1967 DKM3a 10.68 22 0.84 0.18
1960 T4 6.35 8 - 0.17
NM/E/89 1963 T3 6.75 8 0.23 0.08
1958 T4 36.92 7 0.22 0.13
0ak 1963 T3 36.92 8 - 0.08
1963 T3 36.92 8 0.23 0.08

TABLE 10.5
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10.3.2 Latitudes.

Fig. 10.4 shows the standard deviation of the mean of
124 latitude observations made over the test network. Values for DKM3a
observations lie generally between 0'1 and 015, whereas observations
made with the T4 are grouped between 0Y0 and 0"35. For the geodetic

theodolites values seem to fluctuate between 0%15 and 0"4.

Recent (1967) DKM3a determinations (Fig. 10.5) indicate
an excellent agreement between the means of observations made on separate
nights. Of 30 points analysed, observations at 25 differ by not more
than 0Y4 and the remainder do not exceed 0"7. Bomford et al (ibid, 1)

quote similar magnitudes.

Observations repeated at different times, with different
instruments and by different observers are analysed in Table 10.4. The
average difference between set means is 0"6. Bomford et al (ibid) derive

a value of 0'4 for a sample space of 110 re-observed latitudes.

10.3.3 Longitudes.

Of 125 longitudes considered (Fig. 10.6) most standard
deviations of the mean were found to be less than 0"35, although some (T3

observations using a stop watch) were as large as 0"8.

Observations made with the DKM3a on two separate nights

are shown in Fig. 10.7. Agreement is not good but averages 0"5.

Repeated observations are represented in Table 10.5.
It is apparent that impersonal observations and observations in which the

T3 was used, compare favourably.
10.3.4 Distances.

Errors in electromagnetic distance measurement comprise
systematic (of an instrumental nature) and random (varying atmospheric
conditions affecting the velocity of the wave propagation) components.
Instrumental errors may be expressed as t a units of measurement and remain
unaltered irrespective of the length of the line. The random atmospheric
components b are conveniently expressed in ppm and occur because the

meteorological conditions along the line, used to calculate the refractive
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ESTTMATES OF SYSTEMATIC AND RANDOM ERRORS IN ELECTRONIC

DISTANCE MEASURING DEVICES FOR USE IN AUSTRALIA.

INSTRUMENT a (£ cms) b (fppm)
Tellurometer:
MRA 1 7 3}
MRA 2 5 6
MRA 101 2.5 6
MRA 3 (101) 2.5 6
*
MRA 4 0.3 6
Laser Geodimeter:
+
A.G.A. Model 8 0.6 1
TABLE 10.6

* Read out range.

Manufacturers specifications.
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index of the atmosphere, have been inadequately sampled. The total error

e in a measurement is thus given by
-6
e = *(a + bs 10 )

where s 1is the measured distance. Estimates for a and b for the
various instruments used over the network are presented in Table 10.6 and

are based on investigations by Robinson (1968).

10.3.5 Levelling.

In Australia, the accuracy of geometric levelling is
assessed either from the observed differences of independently double levelled
sections or from the loop closures obtained by single or independent double
levelling (Leppert 1965, 595). Moreover, since it is suspected that the
levelled difference in elevation depends almost entirely on the length of the
levelled route (Zbid), the accuracy is judged by the standard deviation of
the difference in elevation of two hypothetical terminals 1.6 kilometres

(1 mile) apart.

Leppert (ibid, 605) for an analysis of 95 loops and
6 513 sections (length 1.6 to 8 kilometres) gives mean standard deviations
of + 11 mm and # 3 mm respectively, the disagreement in values being

attributed to systematic effects.

Most of the South Australian levelling has been
completed since the publication of the above results. For the 25 loops
considered (Fig. 10.2), the standard deviation of the mean of 1.6 kilometres
of double levelling is * 11 mm. An analysis of individual sections was

not made by the author.
10.3.6 Directions.

The quality of triangulation methods is usually judged
by the overall triangular misclosure that was obtained. With tellurometer

traverses, however, this technique is not always feasible.

Johnson (1962, 219) states that the average triangular
misclosure to 1962 was 0Y75, which indicated good work. Bomford (1967b, 55)
quotes the standard deviation of a direction as 0"5, being equivalent to
an average triangular misclosure of 1Y0 (Bomford 1962, 144), but emphasises

that much of the triangulation in Australia is of better quality. He
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ZENITH DISTANCE

Individual Set Pointings

With Towers

. Set 1 Set 2 Set 3 Set 4 Set 1 Set 2 Set 3 Set 4

Station .

Face Left Face Right

89° 56" 90° 02"
58.2 57.0 58.3 56.6 04.9 05.7 06.9 04.9
T2/654 57.8 57.3 58.2 57.0 04.3 04.8 05.0 02.9
59.1 57.2 56.9 58.2 05.1 04.0 05.2 03.6

. 89° 56" 90° 02"
43.4 47.9 44 .2 43.0 15.8 10.9 13.5 12.0
T2/654 43.1 48.1 44.1 46.7 17.3 12.3 13.3 15.9
43.9 46.1 46.5 46.5 17.5 12.8 16.5 11.9

TABLE 10.7
ZENITH DISTANCE
Individual Set Pointings - Without Towers

. Set 1 Set 2 Set 3 Set 4 Set 1 Set 2 Set 3 Set 4

Station .

Face Left Face Right

90° 20" 89° 36!
56.6 56.8 57.5 57.3 57.1 56.5 58.8 57.3
Michael 56.5 56.1 57.5 57.0 57.2 57.9 58.2 57.5
57.6 56.7 57.8 57.1 56.7 57.9 57.4 57.8

89° 58" 90° 00"
07.7 10.8 11.6 13.3 54.1 49.6 49.2 47.3
Hardy 06.5 09.1 11.6 13.2 53.4 50.6 50.7 46.6
07.7 10.1 12.3 13.7 52.1 48.6 49.4 47.4

TABLE 10.8
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continues to say, that on traverses there is not the same continual check

and that some of it may be less good.

On the basis of this information, an individual South
Australian analysis of angular work was not made by the author, the figures

quoted by Bomford (1967b, 55) being accepted.

10.3.7 Zenith Distances.

Representative sample zenith distances are shown in
Tables 10.9 and 10.10. They are taken from the field records of the South
Australian Lands Department. It is seen (Tab;es 10.7 and 10.8) that a high
préciéion.is possible, éithough in general, individual set means cannot be
reproduced (Tables 10.9 and 10.10). The fact is, that zenith distances

are burdened with refraction.

Experiments made by Brown (1968}, in a region which with
the exception of the coast, is typical of the topography and climate of
the test network (Aitchinson 1969, 1-34), indicate that the angle of

refraction displays a remarkably similar pattern throughout the year (Fig.10.8).

Thus, providing the coefficient of refraction can be
accurately calculated, the inclusion of zenith distances into the network

computations appear feasible.

10.3.8 Gravimetric Deflections.

The basis to calculating gravimetric deflections of
the vertical are the Vening-Meinesz integrals (Heiskanen & Moritz 1967, 114)

which depend on Stokes' function S (V).

_ The structure of Stokes' function in which ¢  is the
element of solid angle about the computation point, and its derivative
ds () /dY, indicates that the magnitude of the function as § approaches 0°,
depends on cosec /2 which is very unstable in this range of values.
Accordingly, the accuracy of the gravity anomaly used is more critical for
the areas closer to the computation point and these regions require more
accurate field determinations. On the basis that S(Y) and as(y)/ay
are required to be linear for the elements of surface area over which
{€, n} are being evaluated, it is generally agreed(Mather 1968, 3) that
division of the earth's surface into meridian and parallel squares as shown

in Table 10.11 is adequate.
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ZENITH DISTANCE

Comparison of Set Means - With Towers
Station Zenith Distance Time
At To 90° 04' 128 10.15
T2/654 T1/654 15.2 11.00
(74m) (79m) 15.8 11.35
13.0 11.50
o

90~ 05' 06'8 11.45

T2/654 T3/654 04' 49.2 12.35
(74m) 59.0 13.25

55.8 14.20

TABLE 10.9
ZENITH DISTANCE
Comparison of Set Means - Without Towers
Station Zenith Distance Time
At To 89° 16' 004 13.15
01.8 14.00
Michael Patawarta 01.0 14.50
(67m) (1 008m) 00.8 15.20
o

90~ 03' 31'8 15.10
19.2 15.25
Hardy Norman 16.0 15.40
(56m) (56m) 07.4 15.55

TABLE 10.10
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Typical contributions of the various zones to {&, n}

(Mather 1970b) are also shown in Table 10.11.

For the test network sufficient data is available
to accurately calculate the contributions to {&, n} of regions where
is greater than a tenth degree. This is not so, however, for the four
one tenth degree squares surrounding the computation point. An accurate
evaluation of the contribution to {&, n} of these compartments requires a
closely spaced gravity survey (Rice 1952, 285-312) in order to test whether

the gravity anomaly gradient is linear over the region.

‘Table 10.1l1 indicates that without a close gravity
survey about the computation point, calculated deflections cannot be

expected to be better than * 1"0. Heilbronner (1968, 41} also quotes

this value.

11. A System of Standard Deviations for Weighting.

Standard deviations of observed quantities suggested by various
authors are showh in Table 1l1.1. The values that are to be adopted
in the calcuylation of a set of weight coefficients for adjustment purposes
are also presented (Table 11.1) and are based on the analysis made in
Chapter 10.

It should be noted that the effect of measuring distances from both

ends of a line and taking the mean of the observed values is to reduce

the standard deviation by a factor of the square root of two.
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GRAVIMETRIC DEFLECTIONS

Typical Contribution

Range of Y Representation Adopted to {£, n}
Y < 0%1 Individual readings 0.4 seconds
0°1 <y < 1% 091 x 0°1 sq. values 4.4
195 < p < 5° 095 x 095 sqg. means -3.4
5° < Y < 20° 1° x 1° sg. means -1.2
Y < 20° 5° x s° sg. means 0.1

TABLE 10.11
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PART E: COMPUTATIONS, RESULTS AND CONCLUSIONS.

Previously, the problem of point definition in Earth space was

considered in theory, that is:
(1) the fundamentals of the problem were examined;
(2) the problems that are likely to arise regarding the solution

of the large linear systems encountered and the inversion of

the coefficient matrix were investigated; and
(3) a test network was proposed.
Computations are to be made exclusively using a digital computer and
superficially it seems that all which remains is to program the proposed
model, punch the data, load both into a computer and, wait for the results
to appear. Unfortunately, matters are not as simple. There will be
obstacles of a computational nature that need to be overcome. In any
practical application for example, the size of the problem which can be
solved is limited by the storage capacity of the available computer and
larger than capacity problems require special programming methods.
Moreover, an appropriate method of numbering the network stations will
ensure a narrow band-width of the normal equation matrix and thus may
determine whether a linear system can be solved directly or the partitioned

approach must be adopted.

The data because it is copied will be subject to transcription errors
and since computer time is costly, careful preliminary analysis is necessary
before extensive computations are made. In the variation of co-ordinates
method loop or figure closures are commonly used for this purpose with the
disadvantage that, although indicating that something may be wrong, they do
not tell where in the loop the error lies. A direct comparison of
measurements may be a suitable alternative when the computations have already
been performed in another system. Thus, recalling that the test network is
part of the AGD which was adjusted on the spheroid in 1966 (Bomford 1967b),
the directions, azimuths and distances can be compared. Zenith distances
however, because they are generally only used to obtain geoidal heights and
astronomic position determinations which are implicit in the Laplace equation,

require special treatment to see if they are in error.
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Practical and economic considerations dictate that levelling
connections to the trigonometrical network be made at a limited number
of points. The inclusion of levelling in the computations will thus pose
computer storage problems, since widely separated connections imply a
large band-width in the normal equation matrix. As an alternative to
a direct solution, the partitioned approach may have to be rejected on

account of the time required to solve the system generated.

At network stations where the latitude has not been observed,
the diagonal coefficient of latitude in the normal equation matrix, since
it receives its dominant contribution from the zenith distances which are
of a lower precision than the other geodetic measurements, are quite small.
An attempt at solving such an equation system will exhibit all the symptoms
of an ill-conditioning problem and, while it is possible to avoid this
difficulty by proper scaling, it will be found more satisfactory, when

sufficient data is available, to interpolate the vertical gravimetrically.

The solution of the large number of normal equations and the
inversion of the coefficient matrix is not mere routine, a major problem
being the choice of method. The method chosen, direct or partitioned, is
usually governed by the amount of computer core space available, by the
time required to implement the adopted technique and, to a degree by the
condition of the linear system which is to be solved. Accordingly, if the
coefficient matrix is not excessively ill-conditioned and can be stored in
the core of the computer, then the direct method with iterative improvement
is generally preferred, not only because it is faster but also because the
inverse may be obtained from the factorization with only a modest increase
in storage requirements. Other reasons why the partitioned approach
should be avoided if possible, are that the inversion by partitioning is
not simply an extension of the decomposition process and that substantial

amounts of backing storage are necessary.

Finally, because numerous arithmetic operations are involved in
the full or the partial inversion of matrices of large orders, extensive
computation times are envisaged and it may happen that costs prohibit the
inversion of the system under consideration. The solution will then be
of unknown accuracy - although providing successive iterates are converging

it may still be correctly rounded - and a smaller problem needs to be
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examined in order to arrive at some conclusions regarding the accuracy of

the point location.

12. Preliminary Considerations.

12.1 Digital Computations.

Computations are to be made exclusively using a digital computer.
Regarding the computer available, the following are of interest:
(1) storage capacity;
(2)  the word structure; and
(3) the precision of the arithmetic.
Storage capacity is important since the size of the problem that can be
solved, is limited by it - whereas the word structure and the precision of
the arithmetic are of value in assessing the effect of rounding errors on

the solution to the problem.

The times required to perform the various arithmetic operations,
which depend essentially on the storage locations of the numbers concerned,
are also useful knowledge, since they may be extrapolated to give an indication
of the total computation time for a particular task. A lengthy analysis
will however normally be necessary using this approach and other methods

which are however less accurate are generally preferred.

12.1.1 Computing Machinery.

An IBM 360/50 electronic computer was used in the

network computations.

12.1.2 Storage Capacity.

Approximately one million bytes* cf core storage were
provided. In addition, five disc drives (providing approximately seven
million bytes of backing storage each), two of which are in constant use
by systems utility programs and two magnetic tape units (providing

approximately 24 million bytes of backing storage each) were accessible.

12.1.3 Computer Word Structure (Floating-point)

Floating-point numbers on the IBM 360/50 which occur

*
One byte is equivalent to eight binary bits.
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in either short or long formats, differ only in the length of their fractions
(Fig. 12.1a and 12.1b). It is seen that the floating-point numbers are
either 32 or 64 binary bits long. The short length, which is equivalent

to seven significant decimal places permits a maximum number of operands to
be placed in storage and gives the shortest execution times. The long
length gives up to 17 significant figures and is used when a higher precision

of computation is required.

The fraction of a floating-point number is expressed
in hexadecimal (base 16) digits, each consisting of four binary bits. In
the short format, the fraction consists of six hexadecimal digits occupying
bits 8-31 and in the long format the fraction has 14 hexadecimal digits
occupying bits 8-63. To provide the proper magnitude for the floating~
point number, the fraction is considered to be multiplied by a power of 16,

the characteristic portion (bits 1 - 7) being used to indicate this power.

Bit position O in either format is taken up by

the sign (S) of the fraction.

12.1.4 Floating-point Registers.

Four floaﬁing—point registers which are two words
in length and can contain either a short (one word) or long (two word)
floating-point operand are available for floating point computation. The
second part of the register is ignored and remains unaltered during short-

precision arithmetic.

12.1.5 Computer Arithmetic.

Although the final results in short-precision arithmetic
have six fraction digits, intermediate results in addition, subtraction and
division usually extend to seven fraction digits. Intermediate results

in long precision computations however, do not exceed 14 fraction digits.

12.1.6 Number Representation.

*
The range covered by the magnitude (M) of a normalized

The process of normalization consists of shifting the fraction left
until the high order hexadecimal digit (bit positions 8, 9, 10 and 11)
is non-zero, and reducing the characteristic by the number of hexadecimal

digits shifted.
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floating-point number is (IBM 1966a, 41):

(a) in short precision,

-65 - :
16 <M< (1-16 °)16°3,

(b) in long precision,
167 <M< (1- 16 ")16%2,
or approximately
5.4 x 10—79 <M< 7.2 x 1075 in either precision.

12.2 Mesh-point Numbering.

In the context of a geodetic adjustment problem which is to
be solved by the differential displacement technique, the band-width is
given by the expression 2(% - 1)d + 1, where £ is the number of unknowns
per station-and d is the maximum difference in serial numbers between

adjacent network points.

An appropriate method of numbering the network stations will
ensure a narrow band-width of the normal equation matrix and may determine
whether a generated equation system can be solved directly or in partitioned

form.

A situation in which the band-width is actually a minimum, can
only be achieved for idealised network configurations, such as open
traverses, closed loops or simple triangulation chains. Idealised network
configurations do not, hoWever, commonly occur in practice and for the
general-network encountered, it is at best only possible to accomplish an

approximate minimum by trial and erxror.

The general principles of a trial and error approach which may
serve as a guide to treating more complex layouts are as follows (Ashkenaszi

1965b, 30-32):

(1) a median axis (Fig. 12.2) is drawn to bisect the network and
(2) numbering of the network stations now proceeds in a direction
at right-angles to this median axis, the serial numbers being

increased as shown.

Serial numbers were allocated to the test network in this manner
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and a value of seven was obtained for the maximum difference in serials

between adjacent network points.

In mesh configurations of the test network type (a series of
closed loops) experience confirms that it is possible to obtain a maximum
difference in serial numbers of the mesh stations equal to the maximum
number of traverse lines cut by any perpendicular bisector of the median

axis, plus one.
12.3 Levelling.

The maximum difference in serial numbers between points connected,
en route, by levelling is 77 and occurs between serials 214 and 137 (Fig.
10.2). A serial difference of 77 will give a band-width of 924
[2x(7-1)x77+1] and 1270950 [%(924+1) (2x1836-924) ] elements within the
upper half of the band. If the matrix were stored in short format (Four
byte words) then 5 083 800 bytes are necessary, only about one fifth of this
storage requirement being however permissible on the IBM 360/50. If the
partitioned approach to the solution of the normal equations is adopted and
the partitioning scheme of Fig. 8.1 is implemented, then three partitions
of order 924x924, 924x912 and 912x912 respectively are created, which when
stored in short length computer words require 10 112 832 bytes of backing
storage. Disc storage is preferable in the generation of the partitioned
normal equation matrix (See 13.1.3)and, since a single disc on the IBM 360/50
provides only seven million bytes of backing storage, the three partitions
would pose some programming problems. Apart from the programming aspects,
which may be overcome, inversion of a full matrix of order 924x924 is likely
to demand large amounts of computer time. Even if a more efficient
partitioning scheme were chosen, it is quite likely that the solution time
for 1 836 simultaneous equations with a band-width of 924, using the
standard programming languages, will be large. Refraction-free zenith
distances as calculated from the combination of astronomic observations and

levelling data (Section 5.4) were therefore excluded from the computations.

12.4 Zenith Distances.

The main disadvantage of the variation of co-ordinates method
of adjustment is that it is difficult to detect mistakes, either in the

data or the results, at the completion of one cycle of the adjustment process.
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An established technique of checking the data is to compute loop closures,
which, although indicating that something is wrong, do not reveal where

in the loop the error lies. The test network is however part of the AGD,
which was adjusted on the spheroid, by the variation of co-ordinates technique,
in 1966 (Bomford 1967b). The computer output for this adjustment (Lambert
1969) gives adjusted and observed measurements. The observations shown
could accordingly be projected back into space and there be compared with

the available data. Any differences which were considered excessive

could then be investigated.

The previous approach is useful for the measured distances,
directions and azimuths. Zenith distances however, because they are
generally only used to obtain geoidal heights and, astronomic co-ordinates,
which are implicit in the Laplace equation, require special treatment to
see whether they are in error. . Transcription errors in the astronomical
observations will be difficult to check in a pre-adjustment analysis,
but large corrections during adjustment should be regarded with suspicion.

A method of checking the measured zenith distances is to compare them with
those computed from measured distances, astronomic co-ordinates and spheroidal
heights (Wolf 1963a, 112). Geoidal undulations for the region of the

test network when referred to the Australian National Spheroid are always

less than 10 metres (Mather et al 1971, Fig. 3.1), and therefore, assuming

an average distance of 30 kilometres, rarely affect a computed zenith distance
by more than * 60 arc secs. For this reason and the fact that zenith
distances are burdened with refraction, geoidal heights were used in the
calculations. Observed minus computed values are shown in Fig. 12.2a by

a frequency histogram. Only about 73% of the observations lie within the
range -100" < 0-C < 100" which is considered acceptable in virtue of the
neglected geoidal undulations and the effect of refraction. 11% of the
differences are in excess of + 200". That all is not well with the

observed zenith distances is confirmed by Fig. 12.2b which shows the
coefficients of refraction at network stations as calculated from simultaneous
reciprocal determinations, the formulae quoted in Clark (1957, 426) being
used in the calculations. About 37% of the calculated values appear within

the range 0 - 0.105.
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Reconsultation of the field records would undoubtedly have
resolved some although not all of the discrepancies revealed by Figs. 1l2.2a
and 12.2b. Instead, it was decided to compute zenith distances from a

model topography in the following manner:

(L) a topographic model based on the heights that were used in the
projection of the observations for the 1966 -AGD adjustment
(Lambert 1969) to the spheroid, was chosen; and

(2) zenith distances were now calculated from formula (6.4) using
observed or gravimetrically interpolated astronomic co-ordinates,
the rectangular Cartesian co-ordinates as computed from the

adjusted 1966 spheroidal co-ordinates and the assumed topographic

model.

A small random refraction effect of approximate magnitude % 1.5 arc secs

was also introduced by means of truncation.

12.4.1 Derived Weight Coefficients.

An error in the calculated zenith distances resulting

from errors in the model parameters is given by Equation 6.6. The
rectangular Cartesian co-ordinates used in the calculations are adjusted
quantities and some of the astronomic latitudes and longitudes are
gravimetrically interpolated. Assuming the calculated Cartesian
co-ordinates to be in error by not more than = 1 metre (See Fig. 15.10)

and considering the standard deviations shown in Table 11.1, it is seen that

the errors in the calculated zenith distances will be dominated by those

in the latitudes and longitudes, i.e.
2

2
o Ow cheres (12.1)

02 = cos?o Oé - sin 2 a cosd 0¢0w + cos? ¢ sin

2

B
The above expression may be suitably programmed using

the figures guoted in Table 1l1l.1, but it will be found simpler, in view

of the assumption already made, to work with an average value. Accordingly,

based on the figures shown in Table 12.1 and the fact that Equation (12.1)

will give an underestimate for Oé, the value 2.25 arc sec’® was adopted as

the variance of all computed zenith distances.
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COMPUTED ZENITH DISTANCES

(Estimated Standard Deviations)

¢ = 30°
AZIMUTH OBSERVED ¢, INTERPOLATED ¢ W
90° or 270° + 015 + 0"9
0° or 180° + 04 + 170

TABLE 12.1
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12.5 Origin Conditions.

12.5.1 Choice of Origin.

Trigonometrical station GRUNDY (Serial No. 98, Fig.10.2),
with geodetic latitude -25O 54' 11Y0780, geodetic longitude 134° 32° 464570
and height 397.5 metres (Lambert 1969), the point which was held fixed in
the 1966 Australian National Adjustment (Bomford 1967b, 62), was selected

as the datum point of the test network.

12.5.2 Co-ordinates of the Datum Point.

The rectangular Cartesian co-ordinates of the datum
point were calculated from the geodetic co-ordinates assigned to GRUNDY,
the parameters of the Australian National Spheroid, that is, 'a = 6 378 160
metres and f = 1:298.25, and Formulae 3.14. They were found to be

-4 027 503.765
{x ,v,2z} = 4 091 807.129 metres e (12.2)
O (@] (o]
-2 769 590.118

It is emphasized here that the reference spheroid for
the AGD is not geocentric (Mather & Fryer 1970, 6) and thus the coordinates
given in Equation (12.2) will not refer to a geocentric reference frame.

AGD co-ordinates may however, if desired, be converted té a geocentric system
by applying at the Johnston Origin (Lambert 1963) the three orientation

corrections

ANO = 7.2m * 0Y2m, Ago = -4V2 +072, Ano = —4"5 * 02 (Mather 1970c,
77) to the geoid-spheroid separation (N) and the components (§ and n) of

the deflection of the vertical in the meridian and prime vertical respectively.

12.5.3 Constraints.

At GRUNDY the direction of the vertical as defined

astronomically was assumed free of error.

12.5.4 Orientation of the Survey Scheme.

The test network was permitted to rotate about the
local vertical at the datum point in accordance with the principles of a

free net adjustment discussed in section 5.2.3.
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13. Adjustment.
13.1 Programming.

The following computational steps are necessary in order to
effect a solution to a defined adjustment problem using the differential

displacement technique and the least squares principle:-

(1) the formation of the observation equations;
(2) the formation of the normal equations;
(3) the solution of the normal equations and

(4) the calculation of the adjusted variables.

Several iterations of the above procedure are generally required before
the desired or possible precision is attained. The inverse of the
normal equation matrix may then be calculated and standard eigenvalue
strategy (Malhotra 1969) will provide the error quadrics of the particular

adjustment problem.

Although it is not a difficult programming task to automate
the entire adjustment procedure on an’ electronic computer, it is customary,
since computer time is costly, to peruse the results after each iterative
cycle and to continue with the next step only if successive iterations are
converging and there are no errors in the data, or if sufficient iterative
cycles have been completed. The programming principles involved are

described by Bomford (1967a) and by McLellan et al (1970).

Any of the standard languages, such as FORTRAN or PL/1l, appears

suitable for adjustment problems involving less than say 200 normal equations.

13.1.1 Problems associated with Large Adjustments.

13.1.1.1 Storage.

For very largevadjustment problems, the
storage requirements of the normal equation matrix by far exceed those of
all other variables and program statements combined. It is therefore
of advantage, in order to capitalize on the available core space, to divide
the whole adjustment computation into distinct steps as shown in Fig. 13.1.
However, since each step is then processed separately, a considerable
amount of backing storage is required for information which is used in more

than one step (Figs. 13.2, 13.3, 13.4, 13.5, 13.6 and 13.7).
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READ

(ol¢lwl xl lelkl)

.{

READ
@D@*w*a*a B s)/station
FORM
Observation Equations
WRITE

Processed Observations
@Observation Equations

Last Station?

lvss

WRIT
(1) Communication Variables
@2 Processed Preliminary

NO

Dato.
KEY—
OArbitrary Unit Name
I Approximate Values

* Astronomical

F1G.13-2. FORMATION OF OBSERVATION EQUATIONS.
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13.1.1.2 Programming Prinéiples.

The programming fundamentals which are
necessary to implement a three-dimensional adjustment in accordance with
the abovementioned divisions are summarised in Figs. 13.2, 13.3, 13.4,
13.5, 13.6 and 13.7 . Standard programming languages are inefficient
and no longer suffice to decompose or invert matrices of large order.
Machine language is recommended in programming these steps. Moreover,
since systems failure is imminent during large computation times, it becomes
necessary to periodically dump the intermediate results together with the
information that is required to enable recommencement of the calculations
at the point of interruption, onto backing storage. The latter applies

in particular to the inversion program (Fig. 13.6).

13.1.2 Disc Loading of Programs and Data.

Considerable amounts of computer time are saved if,
once the programs have been finalised and any errors in the data have

been corrected, both are disc loaded.

13.1.3 Partitioned Normal Equation Matrix.

If all the elements of the normal equation matrix within
the band cannot be accommodated in the computer core simultaneously, then
the matrix may be partitioned. In practice, however, observations are
customarily processed station by station and in the case of the geodetic
traverses, the network stations are treated not in numerical sequence but in
sections between junction points, within which, since the band-width should be
as small as possible, the numbering of nodes is not consecutive. Thus if the
observation equations are processed in the order in which they were formed,
accumulation of coefficients becomes rather disorderly. If many partitions
exist, then the processing of the cbservation equations in the order in which
they were generated (Fig. 13.2) can be fime consuming, since the movement
between partitions implies INPUT/OUTPUT operations from backing storage,
the time for which greatly exceeds that required for the arithmetic operations
(on the IBM 360/50 it takes approximately three seconds to locate and read/
write a partition of 10 000 elements, but only 0.1l4 seconds to process an

observation equation).
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Normal Equation Motrix
R.H.S. Vector

%

READ

@ An Observation Equation
FORM¥

Normal E quations
Last
NO | Observation Equation ?

lYES

WRITE
Normal Equation Matrix
R.H.S. Vector

KEY:

% A fixed point requires special treatment
O Arbitrary Unit Name.

FIG. 13:3: FORMATION OF NORMAL EQUATIONS
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OBSERVATTONS

PROPOSED WEIGHTING SCHEME

OBSERVATION WEIGHT UNITS
AZIMUTH 1)
DIRECTION 4
LATITUDE @ 6.25
LATITUDE + 1 Arc Seconds ’
LONGITUDE @ 2.78
LONGITUDE + 1
ZENITH DISTANCE ; 0.44
DISTANCE p Decimetres -

TABLE 13.1

OBSERVED

+ INTERPOLATED

- -
p (0.3 + 0.35s10 ) 2, s being in metres
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READ

Communication Variables
(19

Normal Equation Matrix

DECOMPOSE ¥
Normol Equation Matrix

WRITE
@ Decomposed Matrix

I1=1

g

SOLVE
Normal Equations
READ

Normal Equation Matrix

COMPUTE
Residual Vector r

READ

@ Decomposed Matrix
I=1+1

l 7

Fmax. <107 ?

NO I >Limit 2

[es

WRITE
@ Solution Vector

KEY: *Decompbsed matrix replaces the normal
equation matrix in the computer core.

O Arbitrory Unit Name.

FI1G.13 4: SOLUTION OF NORMAL EQUATIONS.
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INPUT/OUTPUT transfers may be reduced, if it is
realised that each observation connects only the unknowns defining two
points. Therefore, considering the partitioning scheme shown in Fig. 8.1,
the coefficients contributed to by a particular observation equation will
lie within the four consecutive partitions A, ., A, . ' A? .

i, i i, i +1 i,i +1
or since only the upper symmetric partitions need to be

and

A, .
i+ 1, i+1

stored, in the three adjacent partitions Ai,i’ Ai,i 1 and Ai +1, 0+ 1

If all the observation equations pertaining to m
consecutive rows of the normal equation matrix, where m is the band-width,
are treated in sequence, INPUT/OUTPUT transfers are minimised. This
condition may be enforced by sorting the observation equations prior to
the formation of the normal equations. Since the partitioned information
is frequently updated during the generation of the normal equation matrix

however, Direct Access programming techniques (IBM 7966b, 62) are recommended.

13.2 Initial Co-ordinates.

Formulae 5.14, the parameters of the Australian National
Spheroid and the corresponding geodetic co-ordinates of the 1966 Australian
National Adjustment (Lambert 1969) were used to calculate the initial

rectangular Cartesian co-ordinates of all network points.

13.3 The Variance Factor.

Since the choice of variance factor is arbitrary, the value

unity was selected.
13.4 Weights.

The weights of the observations adopted for adjustment purposes
are shown in Table 13.1 and are based on a variance factor of unity and
the standard deviations quoted in Table 11.1. Observations were assumed

to be uncorrelated giving a diagonal weight matrix W.

13.5 The Normal Equations.

13.5.1 Basic Matrix Properties.

13.5.1.1 Order.
The test network contains 262 variable
points each with seven degrees of freedom. Two additional degrees of
freedom are needed at the survey origin to account for uncertainties in the

approximate orientation and the refraction coefficient, yielding 1 836

(262 x 7 + 2) normal eguations.
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READ
@) communication Variables
@2 Preliminary Dato
@ Solution Vector
SORT
Solution Vector
COMPUTE
Adjusted (0XYZ O wk)
PRINT

Adjusted XY Z
PRINT

Adjusted ¢ w
UPDATE
@ (0|¢| wl xl Yl Zl kl )

v

. ' NO
6x,6Y, 0Z<Limit?
)
YES
Y
COMPU

Adjusted Observations
Variance Factor

KEY: 1 Approximate Values
(O Arbitrary Unit Name

F1G.13:5 COMPUTATION OF ADJUSTED QUANTITIES .
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13.5.1.2 Band-Width.

A maximum difference of 7 in serial numbers
between adjacent network stations will give a band-width in the normal

equation matrix of 85 [2 x (7 - 1) x 7 + 1].

13.5.1.3 Storage Requirements.

The total number of elements in the normal
equation matrix required in order to effect a direct solution and partial
inversion was thus 154 241 [%(85 + 1)(2 x 1 836 - 85) ], being equivalent to
616 964 (154 241 x 4) bytes of storage if working in single length computer
words or 1 233 928 (154 241 x 8) bytes of storage if working in‘double length

computer words.

In order to effect a solution by partitioning
using double length computer words, approximately 150 cylinders of disc
storage (200 Cylinders to a disc) were found necessary whilst the inversion

required roughly three magnetic tape units.

13.5.1.4 The Diagonal Coefficient of &¢.

The diagonal coefficient of &8¢ in the normal
equation matrix receives contributions as indicated in Table 13.2. At
stations where the latitude has not been observed, this diagonal element will
be dependent solely upon the contributions from the observed azimuths,
directions and zenith distances emanating from the point under consideration.
Contributions from observed azimuths and directions are quite small, since
the zenith distances for average terrestrial geodetic networks approximate
to 90°. The dominant contribution will thus be received from the observed
zenith distance. Zenith distances are, however, commonly of a lower precision
than the other geodetic measurements and their contributions to a particular
diagonal element will be less than those of the other measurements. It
is also not uncommon for a measured line to be of azimuth near 90° or 2700,
for which cos? a is significantly zero. Moreover, in the formation of
the normal equations, if the coefficient of the unknown in the observation
equation is of order 1o't, then the contribution of the diagonal coefficient
of the unknown in the normal equation matrix will be of order 10—2t. The

diagonal coefficient of J§¢, as well as off-diagonal terms in the row and

column pertaining to 6¢ in the normal equation matrix will thus be significantly
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READ
@Communicat ion Variables
@4 Data for Inversion*
@Decomposed Normal

Equation Matrix

———I-[Time for another Loop?

lYES

NO

COMPUTE

Partiogl Inverses
WRITE

A9 Partial Inverses +
Commnication Variables

3

1 Inversion Complete ?
&, -y

LYES

NO

WRITE
@9 Partial Inverses

WRITE

@4 Communication Variables
Partial Inverses

KEY

% Preset Dato

+ Stored in Caose of Systems
Failure

O Arbitrary Unit Name

FIG.13-6. PARTIAL INVERSION.
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NORMAL EQUATTONS

DIAGONAL COEFFICIENT OF &8¢

OBSERVATION CONTRIBUTION
AZIMUTH cos?B sin’a
DIRECTION 4 cos?B sin®o
LATITUDE @ 6.25
LATITUDE + 1

ZENITH DISTANCE 0.44 cos?’q

TABLE 13.2

@ OBSERVED
+ INTERPOLATED
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READ
@ Communication Variable s

(2 Rreliminary Data

Partial Inverses

COMPUTE
-Eigenval ues & Eigenvectors
of Partial Inverses
PRINT
Principal Axes & Orientation

of Error Ellipsoids

(O Arbitrary Unit Name

FIG. 13-7. ERROR ANALYSIS.
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zero at stations where the latitude has not been observed astronomically
In the evaluation of the determinant of ‘N, .a near zero row or column
implies a near zero determinant INI, meaning that the matrix is almost
singular.
An attempt at solving such an equation system

will exhibit all the symptoms of an ill-conditioning problem. These are,

for a solution by Gaussian elimination with partial pivoting (Wilkinson 1969,

254) the emergence of:

(1) 'small' pivotal elements;

(2) a 'large' computed solution; and

(3) a 'large' residual vector.

Experience confirmed these symptoms. If the Cholesky approach is adopted,

then the diagonal elements corresponding to the relevant coefficient of &8¢
tend to become negative during the triangularization algorithm indicating
that rounding errors have destroyed positive definiteness or that

|In"'] ], > 3.7 x 107(16°/1 837) (See 8.4.2).

If sufficient gravimetric data is available
then this difficulty may be overcome by interpolating the latitude gravimetrically.
As an alternative, when gravimetric data is not available it is possible to ignore
the relevant &8¢ row and column and to solve only for the other unknowns at
the points in question. This proposal will however be a departure from

reality.

13.5.1.4.1 Interpolated Deflections of the
Vertical.

The programs and the gravity
data necessary to compute deflections of the vertical on the AGD, at stations
where the astronomic latitude had not been observed, were available to the
author (Mather 1970a). The calculated deflections shown in Table 13.3
were used to deduce the 'astronomic' latitude and longitude from the

formulae (Heiskanen & Moritz 1967, 187)

*

O = g rE (13.1)

*
w

Ww + Nsec
gn(b

where ¢ and are respectively the geodetic latitude and longitude

on the AGD.



129

€°ET JTdVL

S1°9- 0§°C 602  €€°¥- L8°F- €91 0T'0 LT 00T 6L°0-  €¥°T- 6€
66°G-  ©0°L 807 FI'€- 0L"0 291  ZL'0 G2 S6 vz z-  L6°C 8¢
: Py b~ 8870 S0z  bL T~ LS°C 66T LL°T- SL°T 16 Z9°z- 0g°¢ 13
IaqumN TeTIdS = S 05° €~ - €0Z 00°Z- 8¢ (ST Z£'0 8T"T- 68 €9°1- ¥E°€-  ¥€
9G " p~ - 66T 80°0 LT 66T £€S°¢€-  LbP°0O- 98 66*0- vL'T- 2t
G662~ 0OL°'T 86T Z9°0 €0°0- ZST €670 €0 ¥8 ¢1°2- GL°¢ 1¢
, 00°2- ¥¥°'T1 L61  TL°1I- 80" ¥ 0St €0°I- 80°C ZL Po°1- 8T1°¢ 62
8€°1- ¥I°'1- 192 GZ°Z- 06°1 S61 69°0 44 6T  62°0 65 ¥ 0L 8L°Z- €2°C Lz
LES- 09°C- 9% 6Z°1- 8Z°T ¥6T 89°0- Z£°0 LYT  €2°¢€- Z¥'E- 89 LG0 591 9z
L6°T- 8Z°0- SST SE€'¥- OT°¥% Z6T 8£°0 zZe¢€ SPT be°T 8L°C L9 ze"€- 620 ¥4
99~  LT°Z-  PST 8v z- 09°'T 68T 26°2- 67 ¢ Z¥T  T€°0- OF°"T- 99 18°1T- 6% k4
08°0- 92°0 €6  96°T- SL°'T L8T ©v0°€- 00°¢ I¥T  62°0- GE£°TI- 19 66°0- £0°0- €2
ZT°9- 90°¢€- 08T SL°T- SO°L 68T 6S°0- 86°¢ OVl TO"L- €£L°F 09 P11~  G65°Z- 22
€E0°¥- 7S°0- 8%¥CT HS"Hp- LZ°T- €81 L9°C21~- O%°L seT  60°0 88°0~ 8§ 75°0- 9770~ 12
9€°€- €6°T~- LPZ 25°Z- 8L°C 28T S¥°0 9L°§ €ET  T19°%- ¥6°F 95 18°0 08°1- 0¢
§6°6- 88°0- 9T 20°€- HI'€- TI8T 9€°L- €¥L-  TET  PP°O §9°1-  ¥S IT°0- S%'0- 6T
$9°z- 1€°0- ¢vz  I€°1-  1IL°C 08T €5°0- £8°0 621 T10°0 60°8 €9 S8°0 9¢°¢- 8T
IL°T- 20 ive 01°0- G6°0 LLT  PE€°G- 6€£°9- pZI TE€'0- 9£°I- Z§ LS00~ 6£°1 o1
7L I- 870 ovZ 0€°Z- €670 GLT 1Lt~ 00'¥% 2T 66°¢ TL°L 1S T€"T1- S0°2 A
1L°T 9€°2 LET 2S¢~ 18°C2- WLI 69°0 Ge*z  TZT  I¥°0- LE'TI- 0S 91 T1'2- €1
0€°0 €T°T 2€T  E€V°v- 8¥°¢ €LT  T1°¢ 0L°0- LIT Z2Z°%- TI°0- 6% 1€°0- 1170 Z1
¢Z°¥v- 98°0- 0€C 08°G- 02°% TLT 98°G- 78°6 91T 0T1°0 L8°¢ LY 99°0- g€£°Z- 11
Ly 8T°T 67 88'7- I£°¢C 0LT 65°C 6T°T STIT SL°0 8b°Z- Sb L%°0 19°1- 0T
¥0°¢ Y170 8ZZ 99'¢- 8L°T 691 120 ST°¢ AN €E0°T- ¥E€°V 4% S0 99°z- 6
9L°¢€ €0°0- 922 €€°C- L8°C 89T L9°0 91°¢ €IT S6°0- Z£'0- €% L8 T LLz- 8
Zv 1-  L9°¢t 0zZ 921 6%°0- L9T L9°0 00°0 90T €¢°T1- L6°¢ 47 €6°0- €£°Z- L
86°0- €£°9 81Z 20°¢ Lz 99T 98°1- €9 0T Zv°0- OT't- 1¥F 60°'T~- 99°0- ¢
€9°G6~ 06°8 91z 19°1 (430 $9T - GG 0- €71 TOT 6€£°T- 66°C (04 12°1- 00°0 €
Wl w3 S wl w3 S Wl n3 S ub w3 S ! 03 S

IVOLId3A JHL JO SNOIIOT1IId dAIVIOJIAINI



130
13.5.2 Scaling.
It is convenient to preserve symmetry and positive
definiteness in scaling a matrix, if these properties were existent in
the original. The product of a matrix and its transpose will always be
symmetric and positive definite and, in the least squares problem, scaling
is therefore best effected once the observation equation has been formed.

Consider the observation equations

Ax = b+v=5>b" ... (13.2)

in which the dimensions of a particular left-hand side Ax are the same
as those of the corresponding right-hand side b! Scaling of the xj
and bi should thus be preceded by rendering the observation equations
dimensionless and is usually achieved by multiplication with W%, the
square root of the weight matrix (Grossmann 1961, 107), that is,

W%Ax = W%b' ...... (13.3)

Unknowns Xj or right-hand sides bi may now be scaled at will.

The coefficients of the normal equations given by
(W%A)T(W%A) are essentially a series of summed products, the equilibration
of which implies that none of their moduli should exceed unity or be less
than 16_1. It is however quite unclear how to program such an equilibrating
algorithm (Forsythe & Moler 1967, 45). Inspection revealed that, for
the case of the test network the moduli of the scaled coefficients (DZW)%A
[see Section 8.6] could be transformed to roughly within the range 0.1
and unity, by adopting the scaling scheme shown in Table 13.4. While
the normal equation matrix is then unlikely to be equilibrated in the sense
of the definition, coefficients within the separate rows (columns) will be
of approximately the same order of magnitude. Consequently, a small
perturbation within any one of the rows (columns) of the coefficient matrix

is of the same magnitude as that of any other row (column) and a linear

equation solver can be applied.

14. Solution of the Normal Equations, Inversion of the Coefficient Matrix.
Error Analysis.

14.1 Solution of the Normal Equations.

Since only 960K bytes of computer storage were available for

use and the banded normal equation matrix required 1 233 928 bytes in
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OBSERVATION EQUATIONS:  CHOICE OF UNITS

UNIT OF
NIT
VARIABLE MEASUREMENT SCALED U
80
S arc seconds 1
Sw
Sk dimensionless 100
&x
Sy metres L
10
8z

TABLE 13.4
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double precision computations but only 616 964 bytes in single precision

computations, it was necessary to decide whether to perform:

(1) a partitioned solution using a double precision matrix of
coefficients, without iterative improvement; or
(2) a direct solution using a single precision normal equation

matrix, plus iterative improvement.

The partitioned matrix, which requires almost a disc to
itself for backing storage, has first to be generated in partitioned form.
On the IBM 360/50 this will mean an additional 45 minutes over and above
the solution time, the latter being about the same for both methods.

“The normal equations if generated in single precision words take
appfoximatély 3 minutes of computafion time. Moreover, once the
decomposition has been accomplished using the direct approach, only

an additional back-solution is needed to calculate the inverse - whereas
the calculation of the inverse by partitioning necessitates a completely
new approach and thus extensive additional computer time. Considerable
amounts of intermediate storage are also necessary in the calculation

of the inverse by partitioning (Knight 1965). Accordingly, it was
decided to store the normal equatioﬁ matrix in short length computer

-words and to use the direct method of solution with iterative refinement.

14.1.1 Algorithm.

The following algorithm is commonly used to factorize

the coefficient matrix A of the linear system Ax = b by the Cholesky

method:
9,, = (all)%; glj = aij/g11 (i =121 ... (14.1)

i-1
9, = (ag; Q—zlg;iﬂz (i>1 .. (14.2)

i-1
955 = (a5 ;Elgligm.)/gii G > ... (14.3)

A diagonal element 93 is thus computed from the
square root of the difference between the corresponding diagonal element
asi and the sum of the squares of all the previously computed elements
g 1in the same column. A non-diagonal element gij is obtained by
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subtracting from the corresponding element aij the sum of the products,

row by row, of the corresponding elements g taken from the columns i

and J. This difference is then divided by the diagonal element 953
for the row. It is seen that once a pafticular gij has been found,
aij is not again required in the factorization; so gij may temporarily

replace aij in the computer storage.

The vector y may be found from the formulae:

y, = bl/g11 1= ... (14.4)

i-1
(b, gglgliyl)/gii (1 <1 i (14.5)

]
i

Each element yi is found in turn by subtracting
from the corresponding element bi the sum of the products, row by row,
" of the elements in column i and the previously found yi. The
difference is then divided by the diagonal term. Unless iterative
improvement is to be effected, the bi is no longer needed once the Yy
has been found so that y may replace b 1in storage.

Similarly, but by working in reverse order, the

unknowns x are found from the equations:

x = yn/gnr1 ...... (14.6)
n
X, = (y; =L 95,%07/9;, (i <n) ... (14.7)
£2=i+1

and x may replace y in storage.

Note that because A is banded, the limits & are

reduced in accordance with the band-width.

14.1.1.1 Inner Products.

Because of storage limitations aij and gij will
be represented in short length computer words. In order to minimise the
. . 2
effect of rounding errors the inner products Egli’ XgQngj’ ZgQin and
Zg,QxQ of equations (14.2), (14.3) (14.5) and (14.7) should however be
if 2

computed using double precision arithmetic.
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14.1.1.2 Negative Square Roots.

If any computed randicand
gﬁk(k =1, ..., n) is not positive, then the normal equation matrix is not
positive definite, possibly due to round-off errors. While this predicament
is not difficult to overcome by working in complex arithmetic (Fox 1964,
108-109) any results beyond the kth row will generally be found meaningless
and in the implementation of any computer program it is best to terminate

the decomposition when a diagonal element g becomes negative.

kk

14.1.2 Computer Representation of Matrix Elements.

The scaled observation equations were stored in
double length words. The normal equation matrix stored in single length
words was generated from the observation equations as a series of accumulated
inner products and since the general element of N 1is a single length word,
the separate products that are to be accumulated will be truncated to single
length after their multiplication. The vector of right-~hand sides was
formed in a similar manner but computations were made throughout in double
precision arithmetic. The elements N and d of the normal equations

Nx = d will thus be correct to (See Equation 8.28)

-7
ldNijl < £ 16 |Nij| ...... (14.8)

6a, | < g6 ) L (14.9)

f1 and f2 depending essentially on the number of accumulations in the
inner products (Osborne 1961, 629). The roundings IGNij| and IGdil

are seen to be minute for a well scaled matrix N and right-hand side d.

14.1.3 Computation Times.

14.1.3.1 Measure of Work.

Neglecting for the moment that the matrix

A in Ax = b is banded, the total arithmetic for the computation of G

in A =G GT is given by (Fox 1964, 184) % S 4 %-nz - %—n multiplications,
n root reciprocals, % nd® - % n additions. In solving linear equations

from the formulae Gy b, GTx = y, each takes %—n(n + 1) multiplications

and ;-n (n - 1) additions, so that the full total of arithmetic is

. 1 7
% nd + % n? + % n multiplications, n root reciprocals, g-n3 + n? - g n
additions. Tterative refinement constitutes the solution of the two

triangular systems G8y = &b and Glex = 8y, and each will require a
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further %n(n + 1) multiplications and %n{n - 1) additions per iterative
cycle.

‘ In the solution of the systeém Ax = b’ with’
fuli and symmetric matrix of coefficients of order 1 836, 1 036 551 132
multiplications, 1 836 reciprocal roots and 1 034 862 930 additions are
seen to be required, that is, a total of 2 071 415 898 arithmetic operations,
not considering iterative improvement. Since the normal equation matrix
is banded however and the zero coefficients outside the band play no part
in the solution only (m + 1)(2n - m)/n(n + 1) [154 241/1 686 366] or about

9.15% of the previous,need actually be performed.

14.1.3.2 Solution Time on the IBM 360/50.

The normal equations, including two cycles
of iterative refinement, toock approximately 82 minutes to solve using the
FORTRAN H compiler on the IBM 360/50, a dissection of the times for the

component steps of the solution process being shown in Table 14.1.

SOLUTION OF THE NORMAL EQUATTIONS

(Computation Times)

COMPONENT STEP v TIME
(Minutes)
(1) DECOMPOSITION 65

(2) FORWARD ELIMINATION
& BACK~-SUBSTITUTION 9

(3) ITERATIVE REFINEMENT
(Two Cycles) 8

TABLE 14.1

14.2 Inversion of the Coefficient Matrix

The method of partial inversion being an extension of the
Cholesky factorization was adopted to partially invert the normal

equation matrix.



136

14.2.1 Measure of Work.

The inversion of the G matrix involves %19 + %x% —-%n
. . . .y . C . 3 . . .
multiplications (ibid, 84), an additional %11 + %43 + %11 multiplications
L . ‘ . -1 ,
being necessary to evaluate the upper triangular.part of A . While the
- . . . . : -1
G matrix is required in full, only about 4n elements of A need to be
calculated, since the method of partial inversion was chosen. Thus, once
-1 13 12 1 4n . .
= = + = ——
G has been computed, another ( gn + 5 n 3r1) Ln(ntl) multiplications
will determine the partial inverses sought.
14.2.2 Algorithm.
The elements sik of G—1 (see Section 8.3.1) are
computed using the following recursive formulae:-
k
s, =-—=2 (V g.s.) G<k  .iee.. (14.10)
ik g.. - im mk
il m=i+a
1
S, = - .
ik g. . dia=xy L., (14.11)
ii
. = i >k) il .1
Sik 0 (i k) (14.12)

The evaluation of the elements of ¢! proceeds column
by column and in reverse order, the individual partial inverses being
symmetric and of order seven - though not at the survey origin where the
inverse is of order two. Thus, once seven (two) corresponding columns
of G—1 have been generated, their contributions towards the partial
inverses may be computed and since these columns then play no further
role in the calculations, they may cede their storage locations to the
next seven (two) columns of G-l. In this way only seven (two) column
vectors (order n) of temporary storage are required over and above the
storage requirements of the G matrix.

The above scheme may be conveniently programmed.

Moreover, to minimize the effects of rounding errors, the accumulations
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(14.10) and divisions (14.11) are best performed using double precision

arithmetic.

14.2.3 Computation Times.

The computation time for the full or partial inversion
of a matrix of order 1 836 using a particular computer and compiler, is
likely to be large. An acceptable method of estimating the time
required to invert such a matrix is to invert one of smaller order (say 400).
From the time taken to invert this matrix and the number of arithmetic
operations in both the smaller and actual matrices, it is possible, by
extrapolation, to arrive at a rough estimate of the time required to invert

the larger matrix.

The network from which the smaller matrix was derived
is shown in Fig. 12.2 and corresponds to the north-western portion of the
test network. It consists of 62 variable points and one fixed station,
giving a normal equation matrix of order 436, a band-width of 49 being
obtained for a maximum difference in station serials of 4. The inversion

of the G matrix and calculation of the 63 partial inverses took 82 minutes.

The number of multiplications and additions necessary
to evaluate the partial inverses from the G matrices of both networks are
shown in Table 14.2. An estimate of time for the inversion of the 263
partial inverses of the test network is accordingly, 100 hours

1 037 714 393
14 162 9237

computation was available and regarding the error analysis to be made, it

(

2 . . .
X %6)' Neither the time nor the money for such an extensive

was therefore decided to draw conclusions from the results obtained for

the smaller network.

14.2.4 Size of the Elements of N-I.

The size of the elements of N are of interest since
they give a useful indication of the condition of the matrix N. The moduli
of the diagonal elements of the inverse normal equation matrix are shown in
Table 14.3 Off-diagonal terms are not shown but are commonly smaller in
magnitude thanhphe diagonal elements. In this sense, the elements of N_1
are not large and it is therefore quite likely that N is not excessively

ill-conditioned. However, it should be noted that the above observation
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is made solely from the elements of the inverse which were calculated -

i.e., only a small percentage of the total inverse.

INVERSE NORMAL EQUATION MATRIX

( Range of diagonal Elements )

Modulus
SCALED UNKNOWN RANGE OF DIAGONAL COEFFICIENT
80 1 - 2
dx 50 - 300
Sy 50 - 300
Sz ' 25 - 300
§¢ 0.2 - 1
Sw 0.3 = 1
Sk 0.2 - 1

TABLE 14.3

14.3 Iterative Refinement.

14.3.1 The Solution.

14.3.1.1 Algorithm.

Since computer storage is limited, the
input matrix A of the linear systems Ax = b will generally have to
be destroyed to make room for its factorization. The matrix A will
again be required however to evaluate the residual vector r = b - Ax
and the matrix G will again be required to solve the system adx = Sb.
It is thus necessary to store both A and G on backing storage, from which
each may then be recalled at will. Once this has been programmed (Fig.13.4),
the residual vector r may be calculated from the recalled matrix A and

the computed solution x. Note that r must be evaluated using double

precision arithmetic.
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14.3.1.2 Results.

The maximum element |r|max of the residual
vector r in the solution of the normal equation system is shown in

Table 14.4, for four successive iterations.

SOLUTION OF THE NORMAL EQUATTONS

(Iterative Refinement)

ITERATION ||
max
-k
1 4.6 x 10
2 2.8 x 10 °
3 1.5 x 10~ °
4 0.7 x 10’

TABLE 14.4

The element |r|max is seen to converge and decrease in magnitude by
-1 s s . .
roughly 10 digits per iterative cycle. The elements of the vector

X were also found to decrease, by about 10'2x; per iterative cycle.

14.3.1.3 Implications of Convergence.

The steady convergence rate of the
elements of r and x indicates that |!I - B-1A|| < 1 (See 9.11) where
B—1 is the approximate inverse of A implicit in the solution process.
Thus I|A-1l{ |18a|| < %, or the matrix A is not too ill-conditioned and

the vector x 1is the correctly rounded solution.

14.3.1.4 Fixed Observations.

In a geodetic adjustment problem, fixed
observations are commonly assigned a small variance (Bomford 1967a, 11).
Small variances will however cause correspondingly large elements within
the normal equation matrix and thus give rise to large norms. One might
expect the condition of the system to deteriorate. Iterative refinement

of the solution however, with two fixed observations (a distance and an
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azimuth emanating from the survey origin) of weight 10® still converged
at a similar rate to that of a free net, although |r|max’ which occurred

in the row containing the large matrix elements tended to be several
orders larger.
14.3.2 The Inverse.

The approximate full inverse is required for its
iterative improvement. Since only partial inverses were calculated

however, iterative improvement of the inverse was not attempted.

14.4 Accuracy of the Computed Results.

Previously (Section 8.5), it was noted that a small residual
'(AB_1 - I) implied that B was a good inverse but that a small residual
(Ax - b) did not necessarily imply that x was a good solution. Moreover,
in order to be able to recognise the accuracy of x, it was disclosed that
an accurate inverse B was necessary as well as a reasonably sharp bound
for ||B - A_lll. The full inverse B was not calculated and the solution

x of Ax = Db will thus be of unknown accuracy.

14.5 Error Analysis.

Programs for the analysis of error ellipsoids were taken from
Malhotra (71969, 38-47), the calculation of the eigenvalueé and eigenvectors
for the real and symmetric submatrices Dy being based on the diagonalization
method of Jacobi (Wilkinson 1969, 266). The algorithm (IBM 1968, 164) is
general and is designed for a real and symmetric matrix of order n. It
is not as direct a method as that described by Korner (1968, 40).
Neverthéless, the total computation for the 62 free points in question took

only 23 seconds.

15. Three-Dimensional Cartesian Co-ordinates of Test Network Points.

15.1 The Adjusted Unknowns.

Corrections to approximate orientation, observed or gravimetrically
interpolated astronomical longitude and assumed refraction coefficient are
shown in Figs. 15.1, 15.3 and 15.4 respectively, in the form of frequency
histograms. Corrections to astronomic latitudes are generally within the

range of *#0.01 arc seconds and are not shown.
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As a method of terrestrial point co-ordination the classical
approach of reduction to the ellipsoid and computation by means of
ellipsoidal co-ordinates can be shown to be formally equivalent to the
spatial technique proposed in this dissertation (Levallots 1963).
Accordingly , since the topographical model used to calculate model zenith
distances was identical to that used in projecting the observations of the
1966 Australian National Adjustment to the Australian National Spheroid

both methods should give the same results.

In order to facilitate a comparison with the ellipsoidal
co-ordinates calculated in the 1966 Australian National Adjustment, the
corrections (8x, S8y, 8z) to the provisional Cartesian co—o;dinates were
transformed to changes in geodetic co-ordinates before presentation.
Changes in geodetic latitude and longitude are shown in Fig. 15.2, while

the resulting difference in height co-ordinates are presented in Fig. 15.5.

15.1.1 Cartesian Co-ordinates.

Departures from the final co-ordinates of the 1966
Australian National Adjustment as a result of a one phase computation using
the local astronomic vector method are represented in Fig. 15.2 as vector
quantities of magnitude (6¢2 + 6)\2)11 and direction tan ' %%' Co-ordinate
differences shown are not random in nature nor do they apéear to be, with the
possible exception of the northern and north-eastern portions of the test
network, the result of a rotation about the datum point. The magnitude
of the vector increases gradually with distance from the origin to a maximum
of five metres in the south-eastern sector, while its azimuth is predominantly
north~easterly, suggesting model differences between the two systems which
are of systemmatic character. The height changes given in Fig. 15.5

are generally in the range -20 cm < Sh < 20 cm.

15.1.1.1 Conversion Formulae.

Small changes &8x, 8y and 8z in

rectangular Cartesian co-ordinates (x, y, 2z) may be converted to corresponding
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increments &8¢, 6A and Sh in Ellipsoidal co-ordinates using the following

first order approximations:

8s cos o sin B

§s sin o sin B|  ciee.. (15.1)

{86, S\, 6n} =

8s cos B

where

V8x% + 8y® + 8z°

8y cos A - 8x sin A (15.2)
8z cos § - 6x sin ¢ cos X - S8y sin ¢ sin A" :

{8s,tan a,8s cos Bl}=

(8% cos ¢ cos A + Sy cos ¢ sin A + 6z sin @)

and ¢ and A are the ellipsoidal co-ordinates of the initial point.
Equations (15.1) and (15.2) are seen to be applications of formulae (5.4).
Alternative formulae for 6¢ and G8X which may be used as a check on the

computations are given by:

) 2
[993——] (x8y - yéx)

{6X,89} = ' ceee (1513
-8x sin ¢ - 8z cos $ cos A + %(V + h) cos? ¢ sin A SA
(V + h - e“cos® ¢)cos A

and can be derived by differentiating and manipulating the expressions

((v + h) cos ¢ cos A)

{x,y,z} = [(v + h) cos ¢ sin A (See Equation 5.14)

w1 - e?) + h sin d)

Equations (15.1), (15.2) and (15.3) may be conveniently programmed, the
data input being the co-ordinate increments 0x, 8y, 8z, the ellipsoidal

co-ordinates ¢ and A and the relevant spheroid parameters.
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15.1.1.2 The 1966 Australian National Adjustment.

The geodetic survey of Australia at the
completion of the 1965 field season comprised 2 506 network stations
(Bomford 1967b, 52). In a rigorous least squares adjustment of the
network using directions and the variation of co-ordinates method (i.e. three
unknowns per station, 7 516 (3 x 2 506-2) normal equations reguire solution.
The band-width is likely to be large. Extensive computation times can
thus be expected in solving the generated normal equation system and special
programming considerations (e.g. partitioning) will be necessary in view
of computer storage limitations. The previous complications can be
avoided, unfortunately at the expense of rigor (Wolf 1968, 378) by employing
the Bowie technique (Adams 1930) in which the survey to be computed is
divided into sections between junction points. The method of computation
is briefly: each component section between junction points is adjusted
independently using the least squares principle; the azimuths and distances
between the junction points of the independently computed sections are
obtained and in turn are placed into a single least squares adjustment to
provide the co-ordinates of the junction points; and finally each component

section is re-adjusted holding fixed the co-ordinates of the junction points.

In the original Bowie method of computation
as described by Adams (1930), loop configurations were adjusted separately
in latitude and longitude, and no allowance was made for the fact that the
component sections could differ in precision, refinements which were however
incorporated in the 1966 Australian National Adjustment. Various
approximations were made throughout the computations. The method of
calculation as adopted for the 1966 Australian National Adjustment is
therefore briefly elucidated, the reader being referred to Bomford (1967a,
1967b) for a full treatment of the subject. Constitutent steps of the

computations are discussed under the following headings:-

(1) the Free Adjustment;
(2) the Inverse Computations;
(3) the Rod Adjustment and

(4) the Forced Adjustment.
15.1.1.2.1 Free Adjustment.

The intention in adjusting

independently each component section between junction points, using the
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least squares principle and the variation of co-ordinates method was to
produce the most probable values for the azimuths and distances between
junction points. Overlaps beyond junction points were common and any
observation which was thought to affect the azimuth and distance between
one junction point and another was included in the computations. At
Laplace stations the Laplace condition was maintained automatically as

the geodetic longitudes were modified during the adjustment process.

15.1.1.2.2 Inverse Computations.

The geodesic azimuth and distance
between junction points was determined from the adjusted latitudes and
longitudes of the free adjustment once the loop closures indicated that
the constituent sections of the loop were free from gross errors, the formulae

given by Robbins (1962) being employed in the computations.
15.1.1.2.3 Rod Adjustment.

Geodesic azimuths and distances
between connected points were now adjusted in a single phase least squares
calculation, azimuths and distances being weighted inversely as the length
of each section. Since nearly all sections comprised a combination of
tellurometer traverse and triangulation, their linear accuracy in ppm
was not thought to vary significantly. However, in view of the fact
that in some sections only Single-ended astronomical azimuths had been
observed at approximately every eighth station, while in others simultaneous
reciprocal azimuths were determined for every line, their angular accuracy
was expected to differ considerably. A suitable, although somewhat
empirical weighting scheme was therefore devised (Bomford 1967b, 62-66).

The Laplace condition was again maintained throughout the computations.

15.1.1.2.4 Forced Adjustment.

In the forced adjustment, each
section was re-adjusted holding fixed the co-ordinates of the junction points
as obtained in the rod adjustment, the aim being to produce a unique set of
co-ordinates for each of the 2 506 network stations, together with a unique
set of adjusted observations. Overlaps were common and more than one
set of co-ordinates would normally be obtained for stations adjacent to
the junction points. Accordingly, since the intention was to produce

a unique set of co-ordinates and observations, the azimuth and length of
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one line at each junction point was determined by selecting the weighted

mean of the azimuths and lengths obtained in the free adjustment. However,
before this task could be implemented, each azimuth taken from the free
adjustment had to be modified slightly to maintain the Laplace condition,

the longitude of the junction point having been altered in the rod adjustment.
The co-ordinates of the far end of the line were then computed and were
subsequently held fixed in all sections emanating from the junction point in
question. Moreover, since only one set of co-ordinates was desired for any
point, overlaps included in the free adjustment were generally removed in

the forced computations.

15.1.1.2.5 Error Analysis.

The precision of the point
location was not evaluated in the 1966 Australian National Adjustment,
probably because the interpretation of the results would have been difficult

in the light of the computational procedure adopted.

15.1.1.3 Point Co-ordination Using the Modified Bowie
Method.

Although an improvement on the original method
described by Adams (1930), insofar that the latitudes and longitudes are
adjusted simultaneously and that the varying precision of angular work
within component sections is accounted for, the modified Bowie technique
of point co-ordination as adopted in the 1966 Australian National Adjustment
must be considered an approximation when compared to a rigorous one phase least
squares computation (Wolf 1968, 378). Distortions will be introduced,

mainly due to:

(1) the assumption that Laplace azimuths are error free;

(2) the oversimplified weighting scheme adopted for the derived
lengths and azimuths of the Rod Adjustment; and

(3) the exclusion of the overlaps during the Forced Adjustment.

If the discrepancies shown in Figs. 15.2 and 15.5 could be attributed
entirely to the effects of the modified Bowie technique - and unfortunately
they cannot, since for example the data sample spaces involved differ
significantly - then, as the magnitude of the resultant vector increases
steadily with distance from the origin and its direction is predominantly

northerly, it would appear that the distortions produced are systemmatic
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in character. Irregular distortions occur in the north-western portion
of the network however, where the adjustments to the AGD co-ordinates
"were larger. than could happily be attributed to the accumulation of random

errors" (Bomford 1967b, 69).

At the south-eastern extremety of the test
network the magnitude of the vector differences between the two systems is
alarmingly large. While it‘is not suggested that the approximations
within the Bowie method of computation are the sole contributors to these
discrepancies, a specific study into their possible effects would certainly
be beneficial, particularly since the intention is to recompute AGD

co-ordinates with improved height data during 1972.

15.1.1.4 The Co-ordinate Differences.

Previously it was established that a significant
contribution towards the vector discrepancies shown in Fig. 15.2 could be
expected in consequence of approximations within the modified Bowie technique.
The height co-ordinate which was permitted to vary in the present solution
but not for that of the 1966 National Adjustment represents a change along
the geodetic normal for which both the geodetic latitude and longitude are
constant and thus should not affect the results given in Fig. 15.2.
Nevertheless, as a method of terrestrial point éb—ordination the classical
approach of reduction to the ellipsoid and computation by means of ellipsoidal
co-ordinates is formally equivalent to the local astronomic vector technique
(Heiskanen & Movritz 1967, 224) and since the spheroidal heights used in the
calculation of model zenith distances were identical to those used in the
projection of the observations of the 1966 Australian National Adjustment to
the Australian National Spheroid then, if the data and network configurations
are also identical, both methods should theoretically give the same results.
But the data sample spaces and the network configurations used, as can be
visualized by comparing Fig. 10.1 and Bomford (1967b, Fig. 1), were not the
same for the two configurations, nor was the available data used in an
identical manner. For example, single ended azimuths were chosen in
preference to the mean of two simultaneous reciprocal values, while the
distance, measured from both ends of the line, was averaged and included as

two separate observations. Contributions towards the co-ordinate
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differences can also be expected as a result of the fact that in the local
astronomic vector method of computation the survey scheme, in accordance
with the least squares principle, is rotated about the local vertiéal at
the datum point, whereas in the ellipsoidal approach the rotation takes

place about the corresponding ellipsoidal normal.

The configuration used in the 1966 Australian
National Adjustment covers all of Australia and consists of triangulation as
well as tellurometer traverses. The test network, however, contains only
tellurometer traverses and roughly 10% of the total number of stations.
The results could therefore not be identical even if both networks had been
adjusted rigorously in a single phase least squares computation. Moreover,
since the national network is more extensive, a greater number and better
distribution of azimuths will determine its orientation. In fact, 275
well distributed simultaneous reciprocal azimuths were used in the orientation
of the national net (ibid, 57) while the test network was oriented using
only 92 single ended observations a significant proportion of which were
located in the Great Australian Bight region where lateral refraction anomalies
were large (Johnson 1962). Hence it is conceivable that the two networks
should differ somewhat in orientation, although the results obtained cannot

i

be attributed to a rotation alone.

There is no reason, logiéal or otherwise, why
lateral refraction should be eliminated in the mean of two corresponding
simultaneous reciprocal azimuths. Single ended values were therefore
preferred in the local astronomic vector technique. However, as lateral
refraction was not accounted for in the model it is to be expected that the
results, rather than departing from those of the National Adjustment, should

depart from reality.

Distances were measured independently from
both ends of the line and may thus be included in the computations as two
separate measurements. The differences, even for the longer lines, rarely
exceed a few decimetres in magnitude and adopting the mean should not
significantly bias the results. The impact of additional observations in
the adjustment is to enhance the degree of overdetermination and to produce

larger coefficients in the normal equation matrix, the latter implying, on
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the assumption that the magnitudes of the unknowns as well as those of

the right-hand side vector are roughly equal, a smaller solution.

The local vertical and the geodetic normal
at the datum point do not coincide, the two differing by 0.12 arc seconds
in latitude and 0.55 seconds in longitude. Co-ordinate increments
resulting from a rotation about any axis through the origin are defined
by Equation (5.18). Thus if (W, ¢) and (W + Sw, ¢ + 6¢) are the
direction parameters of the normal and vertical respectively, then the
co-ordinate differences produced in rotating the same survey scheme by

amounts 5&1 and Gaz respectively about these directions will be given by
{8x, 8y, 8z} = OR {x—xo, Y=Y z—zo} ...... (15.4)

where &R is a square matrix of order three, and

6R;, = 6R,, = O6R;, = 0O
6R12 = (Sa, - 8a,) sin ¢ - S0, 8¢ cos ¢
6R13 = -(Sa, - da,) cos ¢ sin w + S0, (cos ¢ cos wdw
- sin ¢ sin w8} - sin ¢ cos wWSPSw)
6R,, = (Sa, - 8a,) cos ¢ cos w + Sa, (cos ¢ sin wéw
+ sin ¢ cos wSd - sin ¢ sin wSPSw)
Since {x-x , Y-V _, 2-2 } = 107{0.5, 0.05, 0.6} metres for the test
o o o max
network, it is seen that second and third order terms in Equation (15.4)
are negligible and that therefore OJR = (5@1 - Gaz)R. Accordingly, if
Sa, = 8a,, no significant co-ordinate increments are generated.

A

15.1.2 Orientation.

The correction to the assumed orientation at network
stations (Fig. 15.1) generally lies within the range *2 arc seconds,

although 31.4% of the values lie outside this range.

15.1.3 Astronomic Latitude and Longitude.

Adjustments to observed longitude are shown in Fig.
15. 3. 81.4% of the corrections are seen to be in the range 0.1 arc

seconds. The corresponding adjustments to observed latitude rarely exceed
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*0.01 arc seconds and for this reason are not shown. Two aspects of

these adjustments require analysis, namely, that -

(1) the correction to latitude should be one order of magnitude
smaller than the correction to longitude; and
(2) the correction to astronomically determined longitude should

be larger than its gravimetrically interpolated counterpart
(Fig. 15.3).

The fact that the correction to latitude is less
than the correction to longitude is partly explained by their respective
weight ratio which is 2:1 (Table 13.1). At the first application of
the least squares process however, ¢ and ¢' in the latitude equation
(Equation 6.25) were set equal and the contribution of this equation to
the right-hand side terms in the normal equation system will consequently
be zero. Moreover, the rows and columns of the normal equation matrix
for which the coefficient of §¢ is the diagonal elements, are characterized
by very small off-diagonal terms(13.5.1.4) while the dominant contributions
to the corresponding right-hand side constant are received from the zenith
distances (ibid). Zenith distances are however commonly less accurate
and are therefore assigned a smaller weight. Accordingly, since for the
topographical model the (0O-C) term in the zenith distance equation was of
the same magnitude as that of the remaining observation equations, the previous
right-hand side elements will be smaller than those pertaining to the other
variables. Hence assuming the scaled unknowns to be of approximately
equal size, and the actual solution confirms that they are, the correction
to latitude will also be smaller than the remaining unknowns. The latitudes
thus fit the mathematical model more closely than do the longitudes.

That the corrections to the astronomically observed
longitudes should be considerably larger than the corrections to the
gravimetrically interpolated quantities is perplexing, particularly since
their weight ratio is 3:1 (Table 13.1). The apparent inversion can
possibly be attributed to the fact that the gravimetrically interpolated
longitudes are of better quality than initially estimated, or that the

astronomic longitudes are not as accurate as they are thought to be.

15.1.4 Refraction Coeffigient.

The value zero was adopted as the approximate refraction

coefficient k' in equatioh (6.15). 89% of the corrections &k to k' lie
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within the range #0.002 (Fig. 15.4) corresponding to an angular displacement

[%%?—p"] of #1.94 arc seconds in a distance of 30km, the average network
distance. The 6k are in agreement with the amount of refraction
introduced into the model zenith distances (See 12.4) and, since the
corrections to the model zenith distances due to adjustment are always
smaller than 0,05 arc seconds in modulus (See 15.2.4) appear to account

for the height variations shown in Fig. 15.5,

15.2 The Adjusted Observations.

The adjustments to the observations indicate the fit of the
measured data to the adopted mathematical model, small corrections for
example revealing a good fit. A comparison with the corresponding
corrections obtained in the 1966 National Adjustment, although of interest,
was not made on account of the distortions introduced during the forced
adjustment.

Adjustments to the astronomic azimuths, the directions and the
distances of the test network are presented in Figs. 15.6, 15.7 and 15.8
respectively. The corrections to the distances, expressed in ppm are
given as well (Fig. 15.9), while those pertaining to the model zenith
distances, since they are always less than 0.05 arc seconds in modulus,

are not shown.

15.2.1 Astronomic Azimuths.

Of the 92 azimuths within the test network, 64.5% (59)
received adjustments of *1 arc second (the 'a priori' standard deviation)
oxr less. The size of the correction varies somewhat, there being no
general pattern to suggest that the adjustments to the observations made
with the astronomic theodolites (T4 and DKM3a) are smaller than those made
with the geodetic theodolites (T3 and Geodetic Tavistock), nor did the
coastal azimuths, for which large refraction anomalies were expected, receive

larger corrections.

15.2.2 Directions.

From Fig. 15.7 it is seen that 95.4% of the corrections

to the observed directions lie within the range *0.5 arc seconds, that is,
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the 'a priori' standard deviation. The values which exceed 0.5 arc.
seconds in modulus generally do so by not more than 0.1 arc seconds,
although several directions on the coastal traverse received corrections
as large as 0.9 arc seconds in modulus.

An observation with a residuwal which is larger than
three times the 'a priori' standard deviation is commonly rejected. None
of the corrections to the measured directions exceed 1.5 arc seconds in
modulus and there is thus no statistical reason to suspect poor quality
data. The larger adjustment, however, occur solely in the coastal
segments of the network and could possibly be construed to signify the

presence of lateral refraction.

15.2.3 Lengths.

A significant proportion of the corrections to the
measured distances are smaller in modulus than 4 ppm (Fig. 15.9), that
is, the average 'standard deviation' assuming a mean network distance of
30 km. The segmenfs of the test network corresponding to loop 457 and
part of loop 64 in the National Adjustment (Bomford 1967b, Fig. 1), however,
are characterized by adjustments which often exceed 10 ppm. The MRA2
tellurometer, for which errors in crystal calibration were increasingly
noted (ibid 69), was used to measure many of these lengths. Moreover,
loops 45 and 64 traverse the Musgrave and Everard Rangeé of Central
Australia as well as parts of the Great Victoria Desert. ‘The Great
Victoria Desert is distinguished by low terrain and sand ridges, while
very hot temperatures can be encountered in any of the above regions, even
during the winter months, that is, the field season. Bomford (#id) feels
that, on the average, the recorded temperature may be a little high, an
error of O.SOC affecting the distance by roughly 1 ppm. - However, it is
difficult, though not impossible, to imagine the temperature to be in error
by as much as SOC and only component of the test network to be influenced
by crystal calibration errors. Nor is it logical to expect the
meteorological conditions over one region, the topography, vegetation and
climatic aspects of which are essentially the same as elsewhere (Aitchinson

1969)to be less accurately sampled. Accordingly, as already noted by
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Bomford (1967b, 69), it is more likely for an undetected gross error to

exist within either or both of these loops.

15.2.4 Zenith Distances.

Despite the fact that the model zenith distances
possess the smallest weights, their corrections arising from the adjustment
are always less than 0.05 arc seconds in modulus, that is, about the size
of the adjustments to the observed latitudes. Height variations ©&h,
resulting from the computations, were almost totally absorbed by the correction
8k to the assumed refraction coefficient (See 15.1.4)and the adopted variance
of 2.25 arc seconds? for the derived zenith distances thus appears to be a

considerable under-estimate of their precision.

15.3 Error Analysis.

Since the implementation of a full error analysis was estimated
to require approximately 100 hours of computer time (See 14.2.3), only the
sample variance factor and the 'a posteriori' standard deviations of the
observations were calculated for the test network. However, in order to
evaluate the precision of the spatial point definition, a smaller component
net (Fig. 12.2) comprising 62 free points was fully analysed. The standard
deviations of the unknowns, together with the correspondiné corrections
resulting from adjustment are shown in Tables 15.1 and 15.2. Typical
error ellipsoids are presented in Figs. 15.1la and 15.11lb whereas the mean
radii (Fig. 15.10) of the error ellipsoids are used to give a comprehensive

representation of precision.

15.3.1 The Variance Factor.

The sample variance Sz, an estimator of the variance
factor Oé, may be calculated from the expression

T
2 YJ’E—X (15.5)

where r is the number of degrees of freedom, v 1is the vector of residuals

and W is the weight matrix. The network adjustment comprising 401
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redundancies yielded a figure of 0.617 7 for the sample variance.

15.3.2 Standard Deviations of the Observations.

The 'a posteriori' standard deviations of the

observations are defined by

S, = 7%? ceeees ‘(15.6)
i

where S is the square root of the sample variance and the wi are the

‘a priori' weights. A variance factor of value unity was selected in

the calculation of the weight matrix (See 13.3). The 'a posteriori'

standard deviations will therefore be 21.4% smaller than the corresponding

'a priori' figures.

15.3.3 Standard Deviations of the Unknowns.

The standard deviations of the unknown quantities

are given by

o = Svgq e (15.7)

X XX
where the q,., are the pertinent diagonal elements in the inverse normal
equation matrix. Standard deviations calculated for the unknowns of the
component net (Fig. 12.2) together with the corresponding corrections to
be applied to their initial estimates are presented in Tabies 15.1 and 15.2.
The corrections to the assumed co-ordinates resulting from adjustment are
always smaller than the standard deviations, suggesting that the assumed

co-ordinates are already known to the precision attainable.

15.3.4 Exror Ellipsoids.

Sample Error ellipsoids for typical points of the partial
network are depicted in Figs. 15.1la and 15.1l1b, the symbols a, b and c
referring to the semi-axes in decreasing order of magnitude. The direction

cosines of the semi-axes are also given.
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The spatial orientation of the error ellipsoids, with
the exception of near origin'stations (Fig. 15.11b), appears to be
similar, while their mean radius, as expected, increases gradually with
distance from the datum point. The two stations adjacent to the datum
point (Serials 55 and 59 - Fig. 12.2), each exhibit an error ellipsoid with
a mean radius of 0.46 metres, whereas for the most distant station
(Serial 24) a value of 1.17 metres ié obtained. - The previous magnitudes
seem to be in agreement with ﬁhe 'a priori' piecision of the data and the

law of propagation of errors.

16. Conclusions. _
The principal problems in the coordiﬁaﬁion of terrestrial points
which are connected by an extensive geodetic.ne£Work’were seen to be of
a physical and a computationél_nafure; ”That'is~to séy, the adoption of
a three-dimensional Euclidean mathematical model as- 'a basis to computation
necessitated the linearization of the measurements made through the
atmosphere, whereas over-determination of the unknown parameters introduced
large normal equation systems which had a tendency to be ill-conditioned.
The linearization of measurements burdened with refraction is a
problem common to all existing methods 6f terrestrial point definition,
whether two or three-dimensional. In practice, the torsion of the ray
(lateral refraction) is generally ignored, while its curvature (vertical
refraction) is deduced from meteorological data sampled only at the terminals
of the line. Investigations into the form of the ray, although feasible,
involve the higher differentials of curvature and torsion, which cannot be
measured. The use of an atmospheric model, which makes as few assumptions
as possible but accommodates the obsefvations that can be taken - such as
temperatu:e, pressure and humidity at the two end points of the line -
represents a suitable alternative. Thus, if the atmosphere were assumed
to be in static equilibrium, which might approximately be so in settled

weather during the afternoon, then the surfaces of equal density (isopycnics)

which are virtually identical to surfaces of equal refractive index, are
gravitational equipotentials. The present accuracy of measurement, however,
hardly justifies the employment of an exact gravitational model. The use

of a system of confocal ellipsoids (Hotine 1969, 214-223) would probably
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suffice. Another approach, at least to the solution of the height problem,
is to connect adjacent ground stations by precise levelling. Practical
and economic considerations however, dictate that levelling ties to thev
trigonometric network be made at only a limited number of points. The
inclusion of levelling in the computations in order to control the propagation
of errors introduced by inadequate refraction data thus poses considerable
computer storage problems, since widely separated connections imply a large
band-width in the normal equation matrix. The use of iterative techniques
avoids this complication because the coefficient matrix remains unaltered
during the solution process and only the non—zero'elements of the matrix need
thus be stored. |

Many normal equations arise in the least squares adjustment of
extensive configurations, using the variation of coordinates method. The
number of equations to be solved in the variation of coordinates approach
equals the number of neéessary observationé, while by "conditions", it is
equal to the number of redundant observations.: In a configuration of the
test network type‘(a series of closed loops)'the number of redundancies
will be small when compared to the number of necessary observations.
Accordingly, since it requires less computer time and, in view of the
rounding errors which occur, is more accurate to solve the adjustment
problem using the least number of normal equations, it would be of immense
advantage to solve the adjustment by means of correlates. ) However,
before the "conditions" can be formulated as implicit relations of the
observations, refraction must be entirely removed from the zenith distances,
necessitating as a prerequisite the definition of a model atmosphere. The
programming of a general configuration by the method of correlates, moreover,
cannot be considered as trivial. ‘ Further, since only the corrections to
the observations are obtained from an adjustment by correlates, and the
coordinates of the network stations are desired, coordinates must still be
calculated. Whilst the calculation of coordinates over and above
adjustments might be considered inconvenient and unnecessary, particularly
since the variation of coordinates approach yields the end product directly,
for large problems, it is always faster - note that the condition method is
a one cycle solution whereas in the variation of coordinates technique
several iterative refinements are commonly required - and more accurate to

choose the method involving the least number of normal equations.
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At network stations where the latitude has not been observed
astronomically the diagonal coefficient of 8¢, the error in thé observed
latitude, as well as off-diagonal terms in the row and column pertaiﬁing
to G6¢ in the normal equation matrix will be significantly zero. A
near-zero row or column in a square matrix however implies a near-zero
determinant and the coefficient matrix is thus almost singular. An
attempt at solving such an equation system by Gaussian elimination, using
a particular computer word length, exhibits all the symptoms of an ill-
conditioning problem - that is, the emergenée of 'small' pivotal elements,
a 'large' computed solution and a 'large' residual vector - while in the
Cholesky approach the diagonal elementS'corfesponding to the relevant
coefficient of ¢¢ tend to become negative duringithe triangularization
algorithm. The previous predicament may be avoided by interpolating
the latitude gravimetrically, that is, wheﬁ sufficient gravity coverage
is available. Otherwise, the use of parfitioniﬁg and higher precision
arithmetic is recommended. Unfortunately, it does not follow that the
calculation of the least squares solution with a giveﬁ accuracy is always
straight forward. The spectral condition number for the normal equations
is (k(WA))?, so that difficulty can be expectéd with any method if Kk (WkA)
is large. . The existence of satisfactory computational procedures which

avoid the formation of the normal equations is thus of considerable

importance. Let S be a square and non-singular matrix of order n and
s . . T .
let 'L = WhA. Multiplying the normal equations by S yields
sTefx = sTuTp L (16.1)

which on replacing LS by B become

BTLX' = BTb ...... (16.2)

and the solution of the normal equations and (16.2) will be identical since
the non-singularity of S ensures their equivalence. The aim is to select

B in such a manner that
T
K (B L) = k(L) i (16.3)

which is possible if the columns of 'A are linearly independent as L can

then be factorized into L = QR, where @ is an orthogonal mxn matrix
-1

and R is upper triangular (Househo Lder 1964, 7). Moreover, B = LR 0.
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. . T T . : . . '
Accordingly, since B'L = Q' QR = R 1is an upper triangular matrix, (16.2)
may be solved using back-substitution. Further, it will be noted that

(16.3) is satisfied, since

]%

K (R) [ (R'R) /A, (R'R)

]%

[, (=7Q"or) /A, (RTQToR)

K(QR) = K(L)

and the formation of the normal equétions canlbe avoided if the factorization
BTL is generated directly. Two techniques may be used to obtain this
factorization, namely:-
(1) the Bjorck method  and
(2) the Gram-Schmidt orthogonalization method (Bjarck.1967).

However, since the accepted approach to‘erIOr.analysis in the least squares
method is via the inverse normai eQuation,matrix; an alternative error
analysis must then be found. ' A

Application of the model to a major portion of the network stations
which were included in the 1966 Australian. National Adjustment revealed
large discrepancies between the two systems of computation, particularly
at the south-eastern extremety ' of the test network. Although the
resulting coordinate differenceé were in part attributable to the use of
the data not being identical and the test network comprising only a small
segment (10%) of the National configuration, significant contributions
were expected as a result of approximations within the modified Bowie
technique of computation - thét is, error free Laplace azimuths, over-
simplified weighting scheme of derived quantities, and convenient exclusion
of overlaps during the forced adjustment. - The intention is to readjust the
National Net in 1972 with the improved height data which is now available.
A specific study iﬁtb the effects of the previous approximations on an
extensive configuration, such as that selectea in Chapter 10, would be of

considerable benefit in the interpretation of the results.
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EXPLANATORY NOTES.

p-45 - p.48 THE PARAMETERS §¢ AND &w IN THE OBSERVATION EQUATIONS.

The angular and linear data, once corrected for
curvature, pertains to the straight line segment
connecting the observed and the occupied ground points.
The angular measurements are made solely with reference
to the plumb-line at the occupied station and the lengths
are independent of the direction of the plumb-line at
either of the points in question. Hence, in the
observation equations for (o), (o*) and (B) and for

(s), ¢ = OSw = 0 (BEquations 6.13, 6.17 and

6.24) and §¢ 8¢ = Sw = Sw = 0 (Equation 6.21),

respectively.

p.97 TABLE 10.9 AND TABLE 10.10

The figures in brackets located below the station hames
refer to the elevation of the ground point above Mean

Sea Level.

p.108 - p.112 REJECTION OF THE OBSERVED ZENITH DISTANCES AS DATA.

Further proof that all was not well with the observed
zenith distances arose when they were included in the
solution. The results exhibited: (1) ‘enormous'
increments to the approximate co-ordinates; (2) corrections
to observed longitude exceeding 10 arc seconds; and

(3) refraction coefficients which were pure fantasy.

It was believed that these events could be attributed

to an over-estimation of the precision of the zenith
distances. The computations were therefore repeated
using a variance of Oé = 100 arc seconds?. Decomposition
of the normal equation matrix by the Cholesky method
however, led to negative diagonal elements, signifying

an ill-conditioning problem, that is, the observed

zenith distances and the other measured data were no

longer compatible.
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p.150
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CONSTRAINTS AT THE SURVEY ORIGIN.

The orientation of the survey scheme with respect to the
global Cartesian system was thus not strictly effected
in accordance with the principles of a 'free net'

adjustment which were described in Section 5.2.3.

TABLE 13.3.
FIG. 10.2 should be consulted for the approximate

locations of the stations quoted.

ITERATIVE REFINEMENT OF THE NORMAL EQUATIONS.

The first application of the iterative refinement
process to the solution of the normal equations already
vielded increments &x to x which were smaller than
the 'a posteriori' standard deviations depicted in
TABLE 15.1 (p.160), indicating that the data did not
really warrant the use pf the technique. The results
quoted in TABLE 15.1 were however derived from the
component net shown in FIG. 12.2 (p.107). For the
complete solution it remained to determine whether
successive residuals r converged. Two iterations
provided the necessary information.

ADOPTION OF THE MEAN VALUE OF TWO SIMULTANEOUS
RECTPROCAL AZIMUTHS.

One 'logical' reason for adopting the mean value of

two simultaneous reciprocal azimuths is that experience
in the United States and Australia has indicated that
the mean value gives loop closures which reflect a
precision in excess of that implicit in individual
azimuths.

ADDITIONAL OBSERVATIONS AND THE SOLUTION OF THE

NORMAL EQUATIONS.

There is no doubt that additional observations produce

larger diagonal coefficients in the normal equation
matrix. Non-diagonal terms and the vector of constants
however, may either be enhanced or reduced in magnitude.
Additional observations thus do not necessarily imply

a smaller solution.
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ERRATA.
Page Line
1 10 For 'System' read 'system'

15 11 For (ibid, 12 & 47) read (Hotine 1969, 145)

16 25 For tzcos¢/K read tlcos¢/K

19 2 For 'provice' read 'provide'

27 ) For ur read ur

) FIG.5.1 r
27 ) For A~ read A
- ¥ r

29 FIG.5.2 For U read U

39 3 For pr - pr read Iprl - |pr|

46 21 For (o' - o + 0'") read (' = a - 0")

48 15 For 'to' read ‘of!

48 17 For (Rainsford 1968) read (Rainsford 1969)
51 19 For 'possibly' read - 'possible'

54 25 For ', ¢! read 'e,!

63 15 For Wilkinson (1964, 93) read Wilkinson (31963, 93)
143 26 For 'systemmatic' read 'systematic’
145 1 For 'Ellipsoidal' read 'ellipsoidal’
145 19 For V(1 - e?) + h sing read V(L - e%) +h sing¢
148 35 For 'systemmatic' read 'systematic'

173 18 For 'extremety' read 'extremity’
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