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ABSTRACT

This paper reviews technigues and results in the combination of gravimetric and
satellite data. The first section of the report deals with theoretical procedures,
while the second section deals with current solutions. In the first section,

the estimation of mean anomalies for use in combination studies is discussed with
the location of current gravity material being described. Specific techniques

for combination solutions are discussed for various models. These models include
those where the gravitational field is represented by a set of potential coefficients,
or by a set of discrete blocks distributed on the Earth. The potential coefficient
solutions compared are those of the SAO Standard Earth 1| and It!, the Goddard

Earth Model 6 (GEM 6) and a solution by the author. These solutions are compared
in terms of root mean square coefficients,undulations and anomaly differences, and
implied anomaly degree variances. In addition, comparisons were made through
terrestrial anomaly comparisons, astro-geodetic undulation comparisons and orbit
fitting tests. Some solutions compared reveal certain solutions to be better for
some purposes than others.

1. Introduction

The purpose of this paper is to discuss some of the procédures used for the combination of gravimetric
and satellite data and to compare some of the current solutions that ettempt to describe the Earth's

gravitational field.

We should first define what we mean by the farth's gravitational field. We note first that in some
cases it is convenient to talk about the gravity field of the Earth instead of the gravitational
field. Gravity and gravitation are related in that gravity, for a point rotating with the Earth, is
the vector sum of the gravitational attraction and the centrifugal force. For points located on the
surface of the Earth we are primarily concerred with gravity while for points located at satellite

altitude we are interested in the gravitational field.

On the surface of the Earth we can determine gravity by making measurements of its normal component

(using gravimeters) and its other components through the determination of the deflection of the ver-

tical. Primarily, however, we can consider that we can determine the normal component of gravity at
various discrete points on the surface of the Earth. These points may be located on the land, on the
oceans, on ocean bottoms, or (in a few cases) at points of aircraft altitude. (Here we should note

that measured gravity is a function not only of the Earth's attracting masses and centrifugal force,
but also is effected by lunar and solar tides, by Earth tides, and to a very minor extent, the atmos-
phere. Formally, these latter effects are removed from measured gravity to yield a result independent
of these quantities.) If we could obtain a dense global coverage of point gravity measurements we
could say that the gravity field on the Earth has been determined and through the application of
suitable equations, the gravitational vector at points in space could be determined (HEISKANEN &

MORITZ 1967,chapter 5). Unfortunately the area gravity coverage for the Earth is not complete with
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wide areas {especially in some oceanic areas) having little gravity data, or data not generally
available to the scientific community. A discussion of gravity measuring techniques may be found

in HEISKANEN & VENING MEINESZ (1958) while a discussion on the utilization of gravity data for various
geodetic purposes may be found in HEISKANEN & MORITZ (1967).

This lack of data had prevented an accurate analysis of the broad variations of the Earth's gravity

field until artificial satellites were launched. A satellite moves within the gravitational field
of the Earth {(plus other forces, of course). Observing the precise motion of the satellite allows
us to infer information with respect to the Earth's gravitational field. Since a satellite's position

will be perturbed only in a minor way, due to local gravity irregularities, we generally think of the
analysis of satellite information being used to determine the broader variations of the Earth's
gravitational field. (These statements do not consider new satellite observation techniques such as
satellite-to-satellite tracking, or satellite gradiometry that provide a measurement at satellite
altitudes, of quantities that depend on the gravity field of the Earth.) A discussion on how a
satellite's motion depends on the Earth's gravitational field may be found in (KAULA 1966a), or
(MUELLER 1964).

If we say that the local variations of the Earth's gravity field are best determined by direct gravity
measurements, and that the broad variations are determined through the analysis of satellite motion,
the most complete description of the Earth's gravitational field must come from some combination of

the two techniques.

This paper specifically concerns itself with some of the techniques used for this combination. I
will not attempt to analyze all techniques used for combination solutions. Rather, | will discuss
certain techniques that are currently being used, with appropriate references to other pertinent

papers when necessary.

2. Gravity Material

Discrete measurements of gravity (g) are generally converted to gravity anomalies, Ag, by subtracting
from the observed gravity some reference gravity due (generally) to an equipotential rotational

ellipsoid. We have
bg = g7 - ¥ (1),

where g7 is the observed gravity reduced to some reference surface. In most applications carried
out to date, this reference surface has been taken to be the geoid with no masses external to it.

The specific way in which the reduction is done in obtaining g7 from g will yield different types of
anomalies. The starting anomaly for use in combination studies is the free-air anomaly. For this
and other types of anomalies, see (HEISKANEN & MORITZ 1967,chapter 3). (We will discuss later modi-

fications to the free-air anomaly for more precise statements of the combination procedures.)

The discrete anomalies available on the surface of the Earth are not directly usable for most com-
bination solutions. (However, BJERHAMMAR (1963) has, for example, proposed to use discrete values
for some purposes.) Because of this, the anomalies are formed into values representative of various

size areas on the Earth's surface, We write:
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g - l” Ay d (2,
A
A

where Ag is the mean anomaly in a block whose area is A. Usually A is defined to be an area bordered
by meridians and parallels.  These areas (or blocks) may be equiangular (such as 1° x 1°) or equal
area (RAPP 1971a) in size. For a given basic block area there will be fewer equal area blocks than
equiangular blocks on the surface of the Earth. Thus, for computational efficiency and statistical
effectiveness, it is most efficient to use equal area blocks in combination studies. However, the

gravity data used in recent combination studies has been supplied in 1° x 1° blocks {(ACIC 1571).

Such blocks need to be used in the estimation and prediction of mean anomalies in five degree equal
area blocks, The larger size blocks are currently used in some types of combination studies. Other
types of combination work use mean anomalies in ten degree and fifteen degree blocks (HAJELA 1973).
The estimation of the five degree equal area blocks from the 1° x 1° data requires several decisions
on the appropriate procedure. KAULA (1966b) used a linear regression technique to determine five
degree equal area anomalies based on 1° x 1° data. RAPP (1972a) used a modification of Kaula's work
that carried out anomaly prediction, and the prediction accuracy considering the location of the

1° X 1° anomalies within the 5° equal area blocks, as well as the accuracy of the 1° x 1° data.

The specific procedure used is as follows. The 1° x 1° means were first formed into mean anomalies
for areas 60 nautical miles (nm) (in latitude) and 6030 nm (in longitude). These anomalies were
then used to estimate the mean anomalies in 300 nm (in latitude) and 300£30 nm (in longitude) biocks
by predicting, in the 300 nm block any missing 60 rm blocks by linear regression. The 300 nm mean
anomaly was then formed as a straight average of the 25, 60 nm blocks in the 300 nm blocks. No

estimations were made for a 300 nm block unless it contained one or more observed 60 nm blocks.
The specific equation used for predicting a 60 nm anomaly (g*) was given by MORITZ (1969):

¢t = e+ g (39,
where C is a column vector whose elements are the covariance between the block (p) to be predicted
and the observed anomalies; C is a matrix whose elements are the covariances between the observed
anomalies; D is an error covariance matrix for the observed anomalies; and g is a column vector of the
observed anomalies within the 300 nm block in which g* was situated. For these computations D is
taken as a diagonal matrix with each diagonal element being equal to mj, where mj is the standard
deviation of the observed anomaly gj. The standard deviation (m) of the 300 nm anomaly was computed

from (I1BID,p.11)
M= T -T e+ T (1),

where C is the mean square value {or variance) of the 300 nm mean anomalies, and Ei is a column
vector representing the covariance between the i~th observed anomaly and the 300 nm block in which

it lies.

The above equations were applied to a set of 23,355 1° x 1° anomalies which were based on a set of
1° x 1° anomalies of ACIC (1971) supplemented by additional material not present in the ACIC set.

For example, using data not made available by ACiC, 323 ACIC anomalies in the Canadian area were
replaced by updated values, and 1989 new, 1° x 1° values in the Canadian area were added. This data
enables the prediction of 1283, 5° equal area anomalies and their accuracy. The location of these

blocks is shown in figure 1. Since these predictions have taken place, new gravity material has
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become available in several areas. One large block of data are the results from Project SEAMAP of

the National Geodetic Survey.

The procedures described above are only one of several that have been used by various investigators.
More sophisticated techniques are possible. For example, the use of a localized covariance as
opposed to global functions in developing the C matrices of equations 3 and 4 may lead to more precise
estimates of some quantities. However, RAPP (1964) found that localized covariances did not yield
significantly different anomaly predictions but did yield different anomaly standard deviation
predictions. The inclusion of more 60 nm anomalies in the prediction of a 300 nm mean may be
warrantedbut .the resultant error correlation between the 300 nm blocks may cause more problems than

is worth.  The studies of GROTEN (1966) indicate the addition of known anomalies somewhat distant

from anomalies to be predicted have little influence on the predicted anomaly.

Since we do not have global gravity coverage, a decision must be made for combination solutions as to
what anomalies should be assigned (if any) for these empty areas. (Some combination methods do not
require global estimates for the terrestrial gravity field. However, to assure that distortion - in
terms of geoid heights or anomalies - is not given to the empty areas, it is usual practice to utilize
global anomaly estimates in any combination solution.) The estimation of anomalies in unsurveyed
areas is a field of study in itself (ORLIN 1966) which will not be gone into here. For recent
combination solutions the following procedures may be found:

1) estimation of empty areas by linear regression from known 5° equal area anomalies

(KAULA 1966a);

2) incorporation of model anomalies computed on the basis of topography and

an isostatic hypothesis (RAPP 1968);

3) computing anomalies from a set of potential coefficients derived from satellite

orbital analysis (KBHLNEIN 1967); and

4) setting the anomalies in the unsurveyed areas to zero with large standard deviations

(GAPOSCHKIN & LAMBECK 1971).

The linear regression is valuable because of its well defined applicability. However, its accuracy
is subject to how well is the linear regression model formed (e.g., is the correlation of free air
anomalies with topography considered) and how strong are the correlations between the known anomalies
and the anomalies to be predicted. The mode] anomalies are useful as they incorporate independently
estimated data (such as topographic heights). They may not reflect actual mass anomalies. The use
of satellite anomalies in the empty areas is fine when we can ignore the havoc that such a procedure
raises in trying to carry out a rigorous least squares solution. The use of a zero anomaly admits
our ignorance and keeps the combination sciution from ''blowing up'' in the empty areas if no other

information were used.

3. Satellite Data

The fundamental satellite observations are the direct observation of satellites. These observations
include those of right ascension and declination, range, and range-rate (or some funcﬁion of range-
rate). This data is generally processed to extract gravitational field information (as well as
station co-ordinates, tidal parameters, orbital parameters, etc.). This gravitational field infor-

mation is then combined with terrestrial gravity information in a variety of ways which are discussed
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in the following section.

4. Combination Methods

There are many methods to combine satellite and terrestrial gravity data. A summary of some of these
may be found in (HOPKINS 1972). Space does not permit a discussion of all methods nor complete
details of methods to be described. Basically, there are two types of combination methods that
differ in the manner in which the gravitational field is represented. The first method represents
the Earth's gravitational field using potential coefficients while the second method uses discrete

blocks on the surface of the Earth.

4,1 Combination Methods Using Potential Coefficients

We represent the Earth's gravitational potential (V) by a set of fully normalized potential coefficients

(€53

as follows:

o L L
k = ra . -y . Y
VvV o= 7& (1 + 222 [ é—} mZo( Cop COS mA  + Sgm SIN mh) Py (sin )} (5),

where: kM is the geocentric gravitation constant;

r is the geocentric latitude
3 is the geocentric latitude of the point at which V is being computed;
A is the longitude ‘
a is a nominal equatorial radius; and
Fhm are the fully normalized associate Legendre functions.
Potential coefficients can be related to gravity anomalies in two ways. The first is through the

following equation:

E&m Ekm : cos mA B
= MR T e JJ Aq Pgm(sin ®) do (6)
Slm SZm ] o) sin mi
ref

where: (Ekm'gkm)ref are potential coefficients implied by the reference figure (or gravity formula)
to which the mean anomalies ZE-(given as blocks do) are referred to. When the anomalies are
referred to a rotational equipotential ellipsoid gravity formula, all (Ekm’gkm) are zero except
for Eio when £ is even. In that case the reference values of E@O with 2 > &4 aFgfgenerally considered
negligible. The integration in equation 6 is taken over the Earth which is here approximated by a

spherical surface. Equation 6 follows from the discussion in (HEISKANEN & MORITZ 1967,section 2-20).
The combination adjustment is carried out by estimating Ag values and their standard deviations from
“terrestrial gravity material, and by taking values of the potential coefficients and their standard
deviations from satellite analysis. Then equation 6 is used as a mathematical model to formulate a
weighted least squares adjustment where the following quantity is minimized:

- p-1 - p=1
vg og vg VIt v, 7,

where Vg and Vc are the residual vectors for the gravity anomalies and potential coefficients, and
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D_ and D_ are the variance-covariance matrices of the observed anomalies and the a priori known
g c

potential coefficients.

The details of the adjustment procedure using this method are found in (RAPP 1969a). The first
computation using this approach was done by KAULA (1966b) where an adjusted set of potential coefficients
complete to & = 6 plus some additional terms were sought. The results of this method will be a set

of adjusted potential coefficients and a set of mean gravity anomalies consistent with the adjusted
potential coefficient set, yet retaining the greater detail that would exist in anomaly blocks smalter
than that defined by a set of potential coefficients solved for up to a degree less than 180°/6°,

where 6 s the block size in which the Ag values are given.

Ancmalies and potential coefficients may also be related by the following equation (RAPP 1967)

Ag = KM ?max a ' ) %[E»-- A+ S sinmh ) B, (sin ®) (8)

g = T L F-] mio B COS mA o+ S%m sinmA j Py (sin ¢ ,
where Rmax is the maximum degree for which nctential coefficients are to be found or are given. EEm’
ng are the potential coefficients referred to an ellipsoid whose flattening is specified. Actually,
equation 8 does not give the standard anomaly, but rather the anomaly component in the radial direc-
tion. The difference is insignificant (RAPP 1972b). In some combination studies spherical approxi-
mations to equation 8 have been used by letting r be a mean radius (R) of the Earth. Considering

the accuracy of current gravity material such approximations do not appear critical

Knowing terrestrial estimates of g and a priori values (from satelﬁite analysis) of the potential
coefficients, equation 8 may be used as a mathematical model to cobtain weighted least squares esti-
mates of the potential coefficients under the same condition as specific in equation 7. The details
of the adjustment procedure are given in (RAPP 1969a). This method was used by RAPP (1968) to obtain

adjusted potential coefficients to £ = 14 plus some additional terms.

I't should be noted that both equations 6 and 8 can be used to determine potential coefficients given
only terrestrial gravity material. Whether these equations are used in this manner, or as the foun-
dation for a combination solution, the results for the two methods (assuming equivalent spherical
approximations) will be different unless all anomalies (given in equal area blocks ) have the same

standard deviations (RAPP 1969a).
PELLINEN (1965; 1969) also discusses combination solutions using equations similar to 6 or 8.

The exclusive use of equations 6 or 8 ignores the fact that satellite estimated potential coefficients
are not estimates independent of other unknowns such as station co-ordinates and parameters dependent
on the satellite orbit (such as initial condition, drag effects, etc). To consider this information
we consider two sets of normal equations, one arising from the satellite adjustment and the other

arising from the potential coefficient solution from terrestrial data using equation 8. We have:
a N X + (g N + N)P = quU. + U (9),

where X are station co-ordinate parameters, P are the potential coefficient parameters, NS y are the
,

normal equations for the station co-ordinates from the satellite data; NS p and NG are the normal
,
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equations for the potential coefficients from the satellite and terrestrial gravity data respectively.
US and UG are the constant vectors of the normal equation, g is a scaling parameter used to provide
the most effective weighting between the satellite and terrestrial information. Equation 9 is solved
to obtain the X and P vectors. The arc {or orbit) dependent parameters do not appear in equation 9
as they are usually eliminated by the technique described by KAULA (1966a,p.105). The combination
technique represented by equation 9 with some version of 8, has been used by GAPOSCHKIN & LAMBECK
(1971), LERCH ET AL (1972a;1972b) and GAPOSCHKIN (1973).  BJERHAMMAR (1969) gives a more general

view of combining data from different satellite solutions where he shows how observation and/or normal
equations may be combined to determine station co-ordinates and potential coefficients on a basis of

normal equations supplied by different investigators.

The preceding method has only used gravity information to infer information with respect to potential
coefficients. However, gravity data may also be used to determine deflections of the vertical and
geoid undulations which may be used to determine geocentric station positions. This additional
information can be incorporated into a combined solution with satellite data to determine not only
station positions and potential coefficients but datum shifts and an equatorial radius. This general
method is described by RAPP (1971b) with computer prdgrams for the implementation of the method given
by GOPALAPILLAI ET AL (1971). To date no results from this procedure have been published.

FISCHER (1968a;1968b) and GROTEN (1970) have described techniques where astro-geodetic undulation
solutions can be incorporated in combination solutions. Although no numerical results were given by
Groten, Fischer computes a set of potential coefficients to degree 13. Because of the non-global
extent of astro-geodetic undulation, the development of global information from them {s more a

theoretical procedure than a practical one.

MORITZ (1970) derived a procedure that can be used for a combination sclution using the concept of

least squares collocation. In this type of solution, the quantity minimized is
s“Cts o+ viDly oo+ yiDily (10),
g g g c ¢ ¢
where s is the signal array and C is the covariance matrix of the signal. When a combination solution
using equation 6 is considered, the signal array corresponds to the gravity anomalies. When equation
8 is used, the signal is considered to be the potential coefficients. In this latter case the re-

lationship between a set of potential coefficients, Py estimated under the usual least squares prin-
ciple (equation 7) can be related to a set, p, determined from the least squares collocation
principle through
-1 -1 ‘]
p = (I +nN1c?) Py (11),
where N are the coefficients of the unknowns (NX = U) in the usual least squares solution {(where N

contains a priori information on the estimated potential coefficients) and C is the covariance matrix

between the potential coefficients that are being estimated.

4.2 Combination Methods Using Discrete Representation of the Earth's Gravitational Field

The use of a spherical harmonic expansion to represent the Earth's gravitational field has played the
major role in combination solutions because of the advantageous manner in which the potential coef-
ficients can be used for satellite orbital analysis (KAULA 1970). However, for future data acquisition

schemes and as an independent alternative to potential coefficients, it is reasonable to consider the
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surface of the Earth ( or some approximation to it) divided into discrete areas for which a function

related to the Earth's gravitational field is to be determined.

In 1965, Arnold proposed a method where gravity anomalies in discrete blocks could be determined
throught the analysis of the orbital variations of various satellites. In this procedure the per-
turbations on the orbital elements were related to the gravity anomalies through the generalized
Stokes' equation and its derivatives. In the Arnold procedure, known anomalies were held fixed in
solving for a limited number of anomalies considered as unknowns. Additional details may be found

in (ARNOLD 1966; ARNOLD 1972).

OBENSON (1970; 1972) extended the idea of Arnold to the extent that a global anomaly field could
simultaneously be found from a generalized least squares solution with satellite data alone, or in
combination with terrestrial gravity material. Obenson's procedure considered the influence of the

gravity anomalies on the satellite position expressed through orbital element variations.

KOCH (1968) proposed that the Earth's gravitational field be represented by a low degree set of po-
tential coefficients plus a disturbing potential represented by the potential of a single layer dis-
tributed in discrete blocks on the surface of the Earth. The density of the surface layer for each
of the blocks can be determined from orbital analysis and in combination with surface gravity material

if necessary.

RAPP (1971c) outlined a procedure where the Earth's gravitational field could be represented simply by
a set of discrete gravity anomalies. Such anomalies can be determined from orbital analysis or can
be solved in a combination solution with observed terrestrial gravity material. As with the Koch
solution, a global set of discrete parameters is determined in a generalized least squares adjustment

where the terrestrial material is incorporated as a priori information.

For either the Koch or Rapp procedure we may represent a set of satellite observations as follows:

o(r ,r ,t , t, R, A, G, P) =0 (12),
o] (o] o

where o and r, are the initial position and velocity vectors at time to. t is the time from ty R
represents a reference set of potential coefficients, A are parameters depending on the satellite
arc; G are the parameters of the gravitational field, and P are the co-ordinates of the observed

station. The unknowns of greatest interest are G and P.

To further consider G, we represent the gravitational potential, W, as a sum of a normal potential due

to a low degree reference field and a disturbing potential T.
W = U+ T (13).

In Koch's case, T is:

T - HE o) g (14),

where X“ is an auxiliary density of the surface layer (referred to the U field) in a surface element

dE and 2 is the distance between the block and the point at which the evaluation of T is done. In
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Rapp's case, T is given by the generalized Stokes' equation (HE!SKANEN & MORITZ 1967,p.93):

T = ﬁ%»JJE S(r, %) Ag” dE (15),

where S{r,P*) is the generalized Stokes' function dependent on the distance from the centre of the
Earth to the point at which T is being computed, and Y% is the spehrical arc between the element dE
on the spherical approximation to the Earth, and the sub-computation point. The anomalies Ag™ are

referenced to the U field.

In order to develop the observation equations for this type of procedure is is necessary to differen-
tiate equations 14 or 15 in three directions to determine the accelerations acting on the satellite
due to the density layer or the anomalies. These derivatives can then be used in the variational
equations which are numerically integrated (along with the equations of motion of the satellite) to

obtain the derivatives of the satellite observation with respect to the gravitational parameters.

For a combination solution with the surface gravity material and the surface density solution, a
global terrestrial field must be transformed into surface density values using the following

equation (KOCH & MORRISON 1970):

X o= AQZ;.G v =3 A ” (8g - G) s(u) dE (1e),
(&) J
where G is the mean global anomaly. The standard deviations of the y values can then be determined

from an error propagation with equation 16 using the standard deviation of the terrestrial anomalies.
This terrestrial derived information may be used as a priori information in a generalized least

squares adjustment.

A combination solution with surface gravity material, and the analysis with anomalies incorportaed as
unknowns is made simply by adding the a priori anomaly data into the adjustment scheme. No trans-
formation is required. Details of this adjustment are in (RAPP 1971c). For comparisons with the
usual potential coefficient determinations, the density values or the anomalies resulting from these
discrete block solutions can be converted into potential coefficient sets. In the case of anomalies,
equation 6 can be used. In the case of surface density values, the following equation can be used

(KOCH & WITTE 1971):

1 .
= + ST TR Al JJ X r dE (17)
’ E

ref

where the integration is carried out numerically over the blocks used in the solution.

The use of surface density values as unknowns has the advantage of computaticnal simplicity over the
use of anomalies in the evaluation of the derivatives needed in the observation equations. In

addition, the use of surface density values may have a strong theoretical basis when considered with
respect to the assumptions on the use of the generalized Stokes' equation. On the other hand, the

use of anomalies as unknowns permits a very simple combination solution to be Carried out without the
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need for any transformation of data. In addition, any theoretical problems can apparently be resolved
by proper interpretation of what anomaly is being found, or what precisely is the anomaly to be used

in a combination solution.

4.3 Theoretical Concerns

Further discussion is warranted with respect to some problems connected with the combination proce-

dures discussed in the preceding sections.

Equation 7 has two approximations connected with it. First, the reference surface on which the
anomalies are given is assumed spherical. LELGEMANN (1972) gives equations that show how corrections
for this assumption can be made and that- in fact such corrections are negligible at least up to

degree 30. An analogous discussion may be found in OSTACH & PELLINEN (1966) who do not give numerical

results. We also have assumed in equation 7 and also in equation 15 that our terrestrial anomalies
(or the anomalies being solved for), refer to a spherical surface. In fact, the terrestrial anomalies
we use refer to the surface of the Earth. Formally these anomalies may be reduced to a common

spherical surface (e.g., the Bjerhammar sphere) using procedures discussed by BJERHAMMAR (1969).
PELLINEN (1969) and OSTACH & PELLINEN (1970) indicate that the anomalies, used in formulas such as
equation 7, should be Ag + G,, where G, is the Molodensky correction term, which is near the mean
terrain correction for the do area. Thus, the anomaly to use in the combination studies is not the
free air anomaly but rather the Faye anomaly which contains the terrain effect. The large size of
the anomaly blocks used to date and the inaccuracy of the terrestrial data, has not warranted such

corrections to data (RAPP 1970).

A related concern is often expressed with respect to the convergence at the surface of the Earth, of
the spherical harmonic series expressed by equation 8. If the series diverges (which formally it
does) some concern is then stated with respect to combination solutions made with terrestrial gravity.
data given at the Earth's surface. The concern is bypassed by the knowledge that we are not solving
for an infinite set of potential coefficients, but rather for a finite set which are being determined

from a finite data set.
PELLINEN (1965) also suggests that the G, correction be made to the anomalies used in equation 8.

At the current data accuracy level, and in the size of the anomaly blocks being used, and the highest
degree to which potential coefficients are being determined, the theoretical refinements considered
above are probably not important at this time. On the other hand, PELLINEN (1962) showed that the
effect of neglecting the G, terms in the coefficient determinations from anomalies may lead to errors

on the order of 15-20% for low degree coefficients. Since we purport to know these low degree
coefficients to better than this relative accuracy, we need to look in more detail at the case of the

G terms in our terrestrial anomaly data. As smaller block sizes are used, with different types of
satellite observation data, the precise definition of the boundary value problem as related to satellite
and gravimetric data will be needed both in the theoretical and practical sense.One start in this area

is the work of BAUSSUS VON LUETZOW (1972).

OSTACH & PELLINEN (1970) continue the discussion on the proper anomalies to be used in determining, in
essence, potential coefficients. In this paper, a spherical harmonic expansion of the G, correction
term is given. Such an expression could be used to determine a global, but smoothed representation

of G,, which in turn could be used to find the corresponding effect on the potential coefficients.
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5. Results

In this section we wil) discuss some of the current { Nov 1973) solutions that are postulated to
describe the Earth's gravitational field. Although results exist for both potential coefficient
determinations and discrete block determinations, more discussion will be devoted to the former as

this is the area in which extensive computational effort has been expended.

5.1 Potential Coefficient Results

We will consider four potential coefficient determinations computed from the combination of gravi-
metric and satellite data. These are:

A: 1969 Smithsonian Standard Earth Il (GAPOSCHKIN & LAMBECK 1970; GAPOSCHKIN & LAMBECK 1971)
(called SE I1). This solution consisted of 316 (20 of which were fixed zonal coefficients) potential
coefficients which are complete to degree 16 with additional zonal and resonance terms to degree 22.
The combination procedure was carried out basically using equation 9 with equation 8, solving simul-
taneously for the geocentric co-ordinates of 46 stations. The terrestrial gravity data used consisted
of 935, 5° equal area anomalies used by KAULA (1966b), with the empty areas estimated from a linear

regression procedure applied to the 935 anomalies.

B: Smithsonian Institution Standard Earth |l (GAPOSCHKIN 1973). This solution consisted of
386 potential coefficients which are complete to degree 18 with additional zonal coefficients to
degree 36 and resonance terms to degree 23. The combination procedure was carried out as with SE 1|
but with an updated anomaly set, setting anomalies in the empty areas to zero. In addition, no
partial derivatives of the anomalies with respect to the zonal harmonics or tesseral harmonics less
than the 9th degree were computed. The justification for this was that such derivatives are neg-
lTigibly small. The results of RAPP (1969b) whereby potential coefficients were found solely from

terrestrial data do not support this justification.

C: GEM6. The GEM6 solution is the combination solution made with the pure satellite solution
GEMS., These new models are updated models of the GEM1 and GEM2 solutions (LERCH ET AL 1972b), and the
GEM3 and GEM4 solutions (LERCH ET AL 1972a). The GEM6 solution consists of 337 potential coefficients
and the geocentric co-ordinates of 134 tracking stations. The coefficients are complete to degree
16 with additional terms to degree 22. The combination procedure was carried out using essentially

equations 8 and 9. The anomalies used for the combination solution were those used by RAPP (1972;

1973a).

D: RAPP (1973a). This solution is a combination solution made with equation 11 using the
least squares collocation principle. This model, which started from the GEM3 potential coefficient
set, contains 449 coefficients being complete to degree 20, with additional terms to degree 22.
The gravity data used in this solution was based on 23,355 1° x 1° anomalies processed using equations
3 and 4 to determine 1283, 5° equal area anomalies and their standard deviations (RAPP 1972). The
remaining blocks were filled up using model anomalies based on topographic isostatic information
(UOTILA 1964). In addition to the potential coefficients, this solution provided a set of 1654, 5°
equal area anomalies adjusted, through equation 6 to be consistent with the adjusted potential

coefficient set.
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5.2 Potential Coefficient Comparisons

5.21 Potential Coefficient Differences

In this section we will compare the four potential coefficient sets in several ways. In table 1, we
give the root mean square difference (A), the average percentage difference (%), the root mean square
undulation (AN) and the anomaly difference (8g), when the coefficient sets are compared in terms of
common coefficients. In table 2, we give the root mean square undulation and anomaly difference
between the solutions when all the coefficients of a solution are considered. To estimate the

maximum undulation or anomaly difference between a solution, multiply the RMS difference by four.

Tabile 1
Root Mean Square Potential Coefficient, Undulation and Anomaly Differences, for Various

Potential Coefficient Sets

SE SE L L GEMG®G
RMS RMS RMS RMS RMS  RMS
ax1p° T M &g £x108 T M s &¥10° T AN &g
(m) (mgal) (m) (mgal) (m) (mgal)
SELI -- -- -- -- 0.066 81 7.5 10.6 0.049 90 5.5 9.3
SET I 0.066 81 7.5 10.6 -- -- -- -- 0.056 80 6.4 8.6
GEM6 0.049 90 5.5 9.3 0.056 80 6.4 8.6 -- -- -- --
Rapp 0.049 62 5.5 9.2 0.058 72 7.2 10.0 0.026 49 3.0 5.3
Table 2
Root Mean Square Undulation and Anomaly Differences Between
Complete Potential Coefficient Sets
SE I SE 1 GEMEB ‘I
RMS RMS RMS RMS RMS RMS
AN 8g AN Sq AN g
(m) (mgal) (m) (mgal) (m) (mgal)
SEIY == -- 7.7 1.4 5.5 9.4 ;
SE1I]* 7.7 1.4 -~ -- 6.6 9.6
GEM6 5.5 9.4 6.6 9.6 -- -
Rapp 5.9 10.8 7.4 1.1 3.7 7.7 |

SEI'll to £ = 23 only

5.22 Anomaly Degree Variance Comparisons

The potential coefficients may be converted to anomaly degree variances using the following:

2 = v2(g - 1)2 2 T2
opleg) = Y2 - 02 JT2 o+ T2 ) (18),
where the E;o and E;o are referred to an ellipsoid of a specified flattening. Values of the anomaly

degree variances as computed from the potential coefficient sets described in section 5.1 are given
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in table 3 along with the anomaly degree variances computed from gravity data alone (RAPP 1972) using
the procedures described by KAULA (1966b).

Table 3

Anomaly Degree Variancest

(mgal)?

L SEI SEIII GEM6 Rapp Gravity®

2 7.4 7.2 7.5 7.5 12.7

3 33.0 33.5 33.7 33.9 31.3

4 20.0 20.4 1.3 19.2 13.6

5 17.8 25.9 21.7 21.6 15.1

6 15.7 18.2 20.1 18.9 19.9

7 15.5 19.3 17.5 18.8 15.5

8 6.7 19.6 8.4 10. 4 7.5

9 12.7 1.7 8.8 1.1 16.1 |

10 12.9 1.0 1.4 1.4 9.6 i

n 12.2 10.0 7.7 8.4 10.8 |

12 5.1 9.1 .2 4.8 3.9

13 11.1 9.3 10.7 1.7 8.2

14 8.4 8.1 5.9 5.5 8.3 !

15 3.2 8.3 8.6 7.3 8.6 |

16 13.8 10.1 6.8 6.5 8.7

17 9.9 5.7 8.6

18 8.7 10.7 9.6

19 11.0 7.4
20 8.9 6.8

RAPP (1972) + Reference Flattening 1/298.256

The biggest difference between the SEI| and the SEIIl occur at & = 5 and 8 where the SEIIl values are
" 8.1 and 12.9 mgal? higﬁer than the SEIl! values. For these two cases the SEl! values agree better

with the gravimetrically derived anomaly degree variances than the values obtained from the SEIIIl.

The lower value at 2 = 8 also occurs in the GEM6 and Rapp solutions.

5.23 Astro-Geodetic Undulation Comparisons

A set of potential coefficients can be used to derive a set of geoid undulations which may be compared
to astro-geodetic undulations after an appropriate transformation. The agreement of the transformed

undulations with the astro-geodetic undulations (as judged by the root mean square undulations differ
difference after the transformation) can be used to infer the value of the potential coefficients in

describing geoid undulations

Results for such comparisons have been described by RAPP (1973a) for all solutions given here except

for the SEIll which is reported here along with the other values. These comparisons have been made
on the North American Datum with 3112 points and on the Australian Datum with 1084 points. The root
mean square differences are given in table 4. Considering the information from both datums, the best

agreement is found with the GEM6 coefficients with the poorest agreement found from the SEill set.
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Table 4
RMS Difference (After Adjustment) Between Astro-geodetic
Undulations and Undulations Computed from Potential

Coefficients (metres)

| North American Datum Australian Datum
PoosEd +5.2 + 2.9

© SELIN 6.1 + 2.6

i

. GEM6 t 3.9 t 2.2

[ Rapp £ 4.4 £ 2.0

5,24  Anomaly Comparisons

Anomalies may be computed from potential coefficients as seen from equation 8. These anomalies may
then be compared to the actual terrestrial anomalies to consider their agreement. KAULA (1966a) gave
procedures for such comparisons when the potential coefficients were determined solely from satellite
data. These comparisons have also been made with potential coefficients derived from combination
solutions. The analysis of these comparisons must be balanced against the fact that the anomalies
against which comparisons are being made have usually been used in the combination solution being
judged. Thus, the comparisons may not reveal absolute truth, but rather relative truth. In this
section we carry out these comparisons with the four potential coefficient sets of section 5.1,
recognizing that 2 cutof 4 sets used different gravimetric data in the combination solution. The
terrestrial anomalies used for the comparisons are the 927 values given by RAPP (1972) (with the
anomalies in the Canadian area corrected by -2 mgal), having standard deviations less than or equal to
+10 mgatl. Other subsets of the terrestrial field were tested, but the results to be reported here

are representative.

The comparison terms are as follows:

E[(gT- gs)z}: the mean square difference between terrestrial anomalies (gT) and those derived from
potential coefficients (gs);

E[eg] : mean square value of the error associated with the potential coefficients;

E(ng) : mean square value of neglected higher order terms in the computation of 955 and

E(dg;) : mean square effect of the true contribution to 9 from the potential coefficients

The above values have been computed for two subsets (to & = 12, and 16) of each potential coefficient

set as well as the complete set. The results are given in table 5. The results of the comparison
made to 2 = 12 indicate that the SEIl| coefficients are less accurate than the other three sets. The
agreement with the terrestrial anomalies is about the same in the SE{l and SElIll, and the GEM6 and

Rapp solutions.

The results of the comparisons made to & = 16 indicate that the SEIl coefficient set is less accurate
than the other three sets all of which are about the same accuracy. The comparison of the complete
coefficient sets indicates the SEI! is again poorer than the other sets. The Rapp set shows a
slightly better agreement with the terrestrial field but this is due to the inclusion of more

potential coefficients in its solution than are found in the other solutions. In all cases, the
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Table 5§
Comparison of Anomalies Derived from Potential Coefficients with Terrestrial Anomalies

(mgal)?

To L =12 To =16 Complete

((o,09)2) £(c2) £(50%) Els?) Ellsysg)?) E(E) E(6e®) Ela) E((oymag)?) E(eZ) Eo%) E(o})

SEt 174 28 110 160 177 57 84 186 182 66 8o 187
SEFII* 175 45 94 176 148 42 70 200 141 48 56 213
‘GEM6 154 25 93 177 138 31 71 199 143 38 69 201

Rapp 164 34 95 175 146 39 71 199 133 L7 50 220

Complete to & = 23
GEM6 coefficients appear to be the most accurate as judged by E[eg].

5.25 Orbit Fitting

A set of potential coefficients can be used in the representation of the Earth's gravitational field

for satellite orbit computations. In the fitting of an orbit to the observations, the fit (as judged
by the root mean square residual after adjustment) is a measure of how well the gravitational field

is represented by the set of coefficients being tested. For complete testing of a set of coefficients,
orbits not used in the original estimation of the potential coefficient sets should be used. in
addition, the testing should be over as wide of range (in terms of inclinations, heights, etc) of
orbits as possible. For this paper, however, | have the results (table 6) of orbit fitting for a

single Geos 1 arc using laser data in a seven day arc.

Table 6
Root Mean Square Orbit Fit

(metres)
!Solution Fit
f
SELI + 4.8
}
I SELI 7.9 !
! GEM6 7.2
j Rapp 5.0
The poorest fit is found with the SEI!l coefficients with little difference between the SEll and the
Rapp sets. More extensive testing in this area needs to be carried out similar to what was done by

MARSH & DOUGLAS (1970) and WAGNER (1972).

5.26  Undulation and Anomaly Maps
Potential coefficients can be converted to geoid undulations through the following equations which

are spherical approximations:

%
max % _
N =R Z Z (Cim cos mA + S

o (sin ) (19),
2=2 m=0

msin mA) le
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and

[RaSels]

(E*mcos mh o+ §kmsin mA) Ehm(sin ) (20),

)
Ag = Y} (2- 1) ¥

2 m=0

where CE are the differences between the observed values and those values implied by an equipotential
m ” !
ellipsoid of a defined flattening. As mentioned in section 4.1, the differences involving CZO and 40

are the only ones usually considered. The ellipsoid to which the N and Ag values refer is a mean
Earth ellipsoid (see HEISKANEN & MORITZ 1967,section 2~20 & 2-21). R is a mean Earth radius, and vy
is an average value of gravity over the Earth. Values of N and Ag computedbthrough equations 19 and
20 with the coefficients of RAPP (1973b) referred to a flattening of 1/298.256 are given in figures 2
and 3. To demonstrate some of the differences between the various solutions, figure 4 gives the
anomaly differences between the RAPP (1973a) solution and the SEIl solution. The maximum anomaly
difference is 40 mgal occurring in the south Pacific area. This area is represented in more detail
in figure 5 where anomalies in the block =-10° to -40° latitude, and 190° to 235 east longitude are
given. The anomalies have been computed for the SEIl, SEill, GEM5, GEM6 and the Rapp potential
coefficient solutions from an integration over 5° equal area blocks strating from equation 8. In
addition, we give the terrestrial anomalies (and. their standard deviations) where they existed in the
area. The GEM5 solution, which is based on satellite data alone, shows a smooth anomaly field in
this area where the maximum anomaly range was 16 mgal. The SEll solution and the SEI{l solution have

a high and a low in this area with the maximum anomaly variation reduced by 19 mgal in the SEI{l

solution relative to the SEI}. No observed gravity data was used in this area in the SEII. What
gravity material was used in this area for the SEIll is not known. The Rapp solution also shows
several maxima and minima, but not to the extent found in the other solutions. Additional gravity

material is needed to verify the actual existence of the highs and lows in this area, or to see if, in

fact, they are simply the result of a distortion introduced into the area by the adjustment procedure.

5.26  Summary

Current potential coefficients found from a combination of gravimetric and satellite data differ
because of the satellite data used, the gravity data used, the combination procedure, and the degree
at which the coefficients have been truncated. 't is difficult to define what is the best coefficient
set, although some of the comparisons made in the preceding sections indicate that one or more of the

sets tested may be better suited for a specific purpose than one of the others.

5.3 Discrete Block Solutions

Gravitational field solutions using discrete blocks have been reported by ARNOLD (1972), KOCH &
MORRISON (1970), KOCH (1970), KOCH & WITTE (i971), and RAPP (1973b).  Arnold estimated 52, 20° x 20°
mean anomalies out of 101 values on the Earth, assuming 49 anomalies as perfectly known, using 1182
observation equations based on the observation of six satelljtes. Koch & Morrison solved for 48,

30° x 30° surface density values based on 8692 optical observations of five satellites and a set of
surface density values determined from terrestrial gravity material. They give potential coefficients
to degree 8, based on a satellite solution and on the combined solution. KOCH (1970) used the 48
block satellite solution in conjunction with more detailed gravity material to estimate a 192 block
solution which must be dominated by the gravity material since only the 30° x 30° blocks from the

satellite solution were used.

KOCH & WITTE (1971) reported a satellite alone solution for 104, 20° surface elements computed using

Doppler data from five satellites. The potential coefficients derived from their solution implied
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anomaly degree variances much ltarger than found by other investigations (at least up to degree 11)

indicating that their solution has distorted potential coefficients.

RAPP (1973b) using the generalized Stokes equation (e.g., see equation 15), solved for 184, 15° equal

area anomalies, and selected station co-ordinates. A satellite alone, and a combination solution
were made. The satellite solution processed 17,651 optical observations from ten satellites in 29,
5 to 7 day arcs. The anomalies and their standard deviations for the 29 arc combination solution are

shown in figure 6.

As with the potential coefficient combination solution, the combination solutions of a least squares
nature, require some decision on a relative weighting between the two data types. This is needed as
the satellite alone solution yields standard deviations for the unknown anomalies of unrealistically
small value. For example, the standard deviation of the anomalies found from the 29 arc satellite
solution average *2 mgal where comparisons of the solution anomalies to well known terrestrial anomalies
indicated a realistic standard deviation to be on the order of *6 mgal. Thus, a scaling factor was
applied to the satellite normal equations, before the combination solution was made, to yield a more

realistic weighting scheme between the satellite and terrestrial information.

The potential coefficients implied by the anomalies found in the RAPP (1973b) solution agreed fairly
well with potential coefficients derived from the more standard type of analysis. tn addition, the
anomaly degree variances computed from the potential coefficients agreed well with those computed

from other sources.

The results obtained from current discrete block solutions represent sets of methods rather than
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results that are to be regarded as most current representations of the gravitational field This is
because the amount of satellite data analysed in the discrete block solutions is considerably less

than that used in such solutions as the SEII, SEtIl, or GEM6.

6. The Representation of the Earth's Gravitational Field

The combination of satellite and gravimetric data in the future will face the use of new observation
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data obtained from satellites. The two new data types that will be available are satellite

altimetry

and

satellite-to-satellite tracking.

In using this data, and of course, existing

satellite data, the proper way inh which to represent the Earth's gravitational field must be considered.

In addition, it may be that a global gravity field will not be sought in one given solution.

Rather, solutions for thegavity field in local or regional areas could be found with the global

field constructed from regional sets.

The representation problem is a rather important one at this time with a good deal of effort being

placed on trying to define a system that can define the gravity field in an approoriate manner.

In

addition, to the potential coefficient and discrete block (surface densities or gravity anomalies)

representative investigations have been carried out with point masses (BALMINO 1972; NEEDHAM 1970);
sampling functions (LUNDQUIST & GIACAGLIA 1972; LUNDQUIST, GIACAGLIA & GAY 1973); or some analytic

description of the anomaly field through some power series (STRANGE 1972), or through ‘'regional

functions'' (DUFOUR & KOVALESKY 1970), or through the disturbing potential being represented in an

analytic way, by a surface density layer distributed over a sphere bounding the Earth (VINTI 1971).

For future work several of the above systems will undoubtedly be used to describe the local part of

the Earth's gravitational

field.

What procedure is best

is not clear at this time.

tf we wish to

easily incorporate existing terrestrial gravity material into a combination solution with a new type

of representation; if we wish a function or quantity that can theoretically be related to the gravi-

metric boundary value problem, so that the external gravitational field as well as the field on the

Earth's surface can be defined, and if we wish to be able to geophysically interpret the parameters

of the local representation, it would appear that discrete blocks of gravity anomalies referred to
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some high degree {e.g., £ = 12 or 20) potential coefficient field may be the appropriate form of

representation desired.

7.  Summary

This paper has attempted to outline some of the procedures, problems and results that are found in

the combination of satellite and terrestrial gravity material. Details have been relegated to the
references where possible. We have now just about passed the era of the broad wavelength determi-
nation of the Earth's gravitational field. Although current solutions do not agree in detail, the

broad character is well defined.

If detailed gravity material were available on a global basis, we could consider the gravity field
determined. Such is not the case because of unsurveyed ocean areas and land areas for which data is
not available. Gravity material in the ocean areas is increasing but complete coverage cannot be
expected for many years, and in some areas perhaps not in the foreseeable future. Consequently, the
need for satellite systems that can refine our knowledge of the Earth's gravity field. The use of
this new data could, in the limit, provide a global gravity coverage in 2° x 2° blocks on the surface
of the Earth. The future accuracy of this field is not clear although the studies of SCHWARZ (1972)
and REED (1973) indicate the possibility of obtaining anomalies to a standard deviation on the order
of 1 to 3 mgal. Such results on a global basis can be used to satisfy almost all but the most local

requirements for our knowledge of the Earth's gravitational field.
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10. Discussion

TAPLEY: What technique of weighting did you use to combine your satellite data with surface data?

RAPP : Are you referring to the block data or the geopotential data?
TAPLEY: The original geopotential data.
RAPP : There was not a unique weighting factor applied to the whole system. A systematic analysis

of every single potential coefficient was gone through to estimate uniquely for each po-
tential coefficient, a standard deviation. When those standard deviations were used, we
found that it was not possible to get good orbit fits. So we tightened up the standard
deviations on the a priori potential coefficients from satellites. On doing so, we got
good orbit fits. A whole series of solutions were obtained. We finally picked the one

which would give good orbit fits but did not distort terrestrial gravity data significantly.

TAPLEY: The second question is on your single orbit fits for laser tracking data. Which tracking

station locations were used?

RAPP : The tracking station locations used were those obtained by Marsh, Douglas & Klosko using

the GEODYN program.
DUNN: For a forty degree inclination satellite, what gravity model would you go for?

RAPP : | don't know. If I were to say '"My own solution', | would be said to be biased. GEM 6

looks quite good.
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EFFICIENCY OF METHODS FOR IMPROVING THE PRESENTLY AVAILABLE INFORMATION ON THE EARTH'S GRAVITY FIELD

ABSTRACT

Test computations and statistical considerations are used in estimating the
possible improvement of gecid and gravity field computation based on
satellite orbit analysis. Satellite altimetry and gradient measurements
are mainly dealt with.

New methods and techniques for improving the present knowledge of the Earth's figure and gravity field
have been discussed more or less in detail, e.g.WILLIAMSTOWN REPORT (1969). Altimetry from artificial
satellites (GREENE 1972; STANLEY ET AL 1972) and, to some.extent, gravity gradient observations (FORWARD
1972) might be of primary importance in this connection besides satellite-to-satellite techniques

which will not be dealt with in the present paper. The full exploitation of such new methods will, of
course, lead to improved computational methods and theoretical procedures. Until now, satellite
altimetry was mainly considered in connection with other methods, leading to new types of ''combination
solutions'; see, for instance RAPP (1971). A somewhat different approach in altimetry has been pro-
posed by ARNOGLD (1972). The latter paper leads to the question to what extent can geoid undulations

be directly predicted.

A similar question could be raised in considering the present knowledge of the gravity field. Ten
years ago, the prediction of gravity in un-surveyed areas was a major topic in physical geodesy;
meanwhile large scale information is obtained, e.g., from satellite orbit analysis. In many areas

where detailed geoid heights are to be computed, detailed knowledge in the neighbourhood zones is

available. Because of
T 1 9y
- A = 2 - 12
g %n Y 3 T ,
where T = disturbing potential;
Y = normal gravity;
n = normal direction; and
Ag = gravity anomaly,

the prediction of T and the geoid undulation

N = T/y (2)
is, in general, simpler than the Ag-prediction. For the prediction of any quantity is in most
cases easier than the prediction of its derivatives. The discrepancy, in general,is not so big at

sea where altimetry is relevant as on land, but even when dealing with mean values or smoothed data,

T-prediction is remarkably advantageous.

In order to get information on the statistical parameters of N, we have analyzed the global gravimetric

geoid by VINCENT & MARSH (1973); as this geoid has been basically evaluated from 1° % 1° mean free
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air anomalies, it might be used, within its reliability, to study the spectrum of the gravity field up
to degree n = 180. However, as the corresponding gravity material is certainly affected by bias,
spectral methods might lead to perturbed results, with severe perturbations in areas where biased
gravity material has been used. On the other hand, the direct evaluation of statistical parameters

of T and N from those of Ag by simple integral transform is not basically superior.

Accuracy investigations for the zone of geographic longitudes A and latitudes ¢
20°< ¢ £ 80° (north) ; 200°> A > 50° (east), .

and specifically for continental areas within this zone, indicate sufficient reliability for determining
statistical parameters. A comparison has, for instance, been done with a very local geoid section
(GROTEN & RUMMEL 1973) in central Europe. Figures 1 to 3 show the latter geoid section where regional
gravity data have been combined with the latest coefficients model by RAPP (1973a), the SA0 Standard
Earth |11 and the Goddard Earth Model (GEM) 5. When NO = -17.0 m is added to the numbers given in
these figures, they are then related to the 1967-reference ellipsoid adopted at Lucerne where, however,
Rapp's latest set of constants (GM, a, w,...) was used in evaluating No' For details, see (GROTEN &

RUMMEL 1973).

Under the assumption of isotropy and stationarity, the autocovariance functions within the above given
area were evaluated for the global geoid, and for the local gecid within the zone shown in figures 1 to
3. in eliminating the trend, simply the effect of the outer zones corresponding to the above men-
tioned (global) coefficient sets has been omitted. Even though the local shape of the geoid section
changes remarkably with ‘changes in the outer zones, corresponding variations in the statistical

parameters are small.

In addition, assuming stationarity, autocorrelation functions along meridians (X = const) and latitude
circles {$ = const) have been studied. Even when the samples are relatively small, they indicate
systematic changes in cov(N) for profiles of constant latitude which are not fully explained by the
heterogeneity of Ag-material. Figure 5 shows a few examples for ¢ = consf; more details will be
given in a forthcoming paper (GROTEN 1974). Figures 6 to 9 show a few examples for the autocorrelation
along meridians A = const. As these data are basically obtained from 1° % 1° mean gravity values, the
corresponding N-values are, of course, smoothed data. But on comparing the results for the local

geoid with those for the global section it is seen that the tendency in very high harmonics seems to

corroborate earlier assumptions by Kaula and specifically those by RAPP (1972).

On applying the well known linear autoregression prediction formulas to the local geoid section, it was
found that within d = 20 km or so, N can be predicted along profiles with a relative error of about 5
to 10 %. For the global geoid, the same accuracy is obtained within d = 50 km.  These accuracy

estimates were evaluated by directly comparing ‘‘observed with predicted values.

Unless collocation procedures are applied from the very beginning in satellite altimetry, it might be

useful to extend the geoid obtained along altimeter profiles to 'unsurveyed' areas.

In order to get a few hints on the very high harmonics we compared the local geoid section with a

small geoid part obtained from astro-geodetic* and torsion balance measurements within the same area.
It came out that even though the gravimetric geoid section was basically obtained from mean Ag-values
for 6' x 10' blocks, the corresponding loss of information is quite small. Such a comparison is, of

course, always affected by local bias. Part of it is removed by topographic and terrain correction;

Heitz-geoid as transformed by GROTEN (1970)
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‘but Tocal geology cannot be fully taken into account in most cases.

By comparing the autocorrelation functions given by KAULA (1963) with thoséiféwuéxéﬁpTés given here,
the potentialities in predicting N or T directly become evident. In contrast to the above discussion
of N-values alone, the detailed results of combination solutions with altimetry, etc. as given in

(GROTEN 1970a) will be dealt with in (GROTEN 1974).

The application of recent gradiometry techniques in space and in the air as presented for example during
the Symposium on Dynamical Gravimetry at Fort Worth in 1970, give rise to methods which are not so
affected by very local topographic influence which bother gradiometer observers on the Earth's surface
for several decades. One of the basic advantages of such methods lies in the fact that the influence
of Ag at P (at the Earth's surface) on 3Ag/3h at a point P' (at elevation h) decreases as £7°%, where

2 = PP'. This rule holds for the lower altitudes above the Earth's surface. The basic principles
are in these cases best represented by using Fourier series where for Agh at elevation h we get the well

known relation

- : Ch(12 2 h
Agh = ) an exp(n(unx + vmy) h(un + vn) ] (3).
By transforming to a series of trigonometrical functions using Euler's formula we usually get for
3Ag/3h the coefficients

~aA g3 (4)
nm

and so on, whenever the coefficients of the corresponding Ag-series are Anm’ Bnm ....... , where
a =Vt +nd).

Analogously, the coefficients for the horizontal gradients are found to be

-ah
nmoA e (5)
and so on. For "two dimensional models' as often used in exploration geophysics, we have
nostom or no<< om,
one of them being small. In these cases both types of gradients do not differ significantly; other~

wise the latter formula behaves approximately like
a?a o @M (6).

For Anm = 1, the above expressions are discussed in figures 10 and 11. From gradients observed at

elevations h, we arrive of course, at Ag at the Earth's surface b factor multiplications usin
9 Y p g

aeth (7

for vertical gradients, and by using
(pm)=1 3" (8).

The advantage, at least in theory, becomes evident by comparing the corresponding factor in downward
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continuation of Ag.

At higher elevations, the decrease of the effect of local phenomena is advatageous. FORWARD (1972)
has given results of detailed studies using Kaula's rule 10°5/n2. The difference in information
obtained at high altitudes h > 250 km, at one side, and at altitudes h = 10 km is best explained by
figures 12 in the case of the ''vertical gradient''. It is realized that the superiority of gradient

observations at satellite altitudes is relevant for harmonics of degree n > 40.

Figures 12 are self explaining as far as the general features are concerned. In dealing with
spherical harmonic series, the slow decrease of the high harmonics of 39/3h with increasing degree
can be a remarkable disadvantage whenever real orbits are considered instead of the simple model
orbits. For in this case averaging out of harmonics beyond a certain degree is no longer feasible
so truncation errors arise which are higher than in the case of conventional orbital analysis. Even
if the harmonic series is replaced by alternative representations of the gravity field, as done for
example by Koch and others, any improvement cannot be anticipated. A term-by-term attribution of
9g/3h to the potential does not seem to be feasible in space, in any case. But in the case of ''low'
altitudes as for example in the caie of aircfaft profiles (as earlier mentioned), the application

of Tinear integral equations is superfor to spherical harmonic expansions as flat approximations

are sufficient. Then, of course, trdncation_errors are avoided by simply smoothing the data.
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MATHEMATICAL MODELS OF GEOPOTENTIAL GRADIENTS

ABSTRACT

The gravitational potential of the Earth and its gradients are most
frequently expressed in terms of spherical harmonics. This representation
can be wasteful of computer time and/or core storage and can present
numerical difficulties when higher degree coefficients are involved.

A few viable alternatives to spherical harmonics such as point mass sets
and surface density layers are examined. This evaluation is conducted in
terms of goodness of fit and second order gradients of the geopotential

and in terms of facility of computation.

1. Introduction

The most frequently used expression for the gravitational potential of the Earth at an exterior point
is a summation of spherical harmonics. This expression can be easily differentiated with respect to
the spherical co-ordinates of the external point to derive expressions for the first, second and
higher order gradients (spatial derivatives) of the geopotential. The number of coefficients
required for the spherical harmonic representation increases as the square of the highest degree
used. In the electronic computer, then, this representation might utilize an undesirable amount of
processing time and core storage. Further, numerical difficulties are encountered in many computers

due to exponent limits on floating point numbers.

What we seek, then, is an alternate model which meets three criteria
(1)  readily differentiable to any desired order;
(2)  minimal number of coefficients; and
(3) avoidance of very large or very small exponents in the computations.
Representations considered in this paper are
(a) point masses (EALUM 1971);
(b) density layers (KOCH & WITTE 1971); and
(c) Taylor's series (JUNCOSA & JOHNS 1965).
Although the partial derivatives required for these representations are not as succint as those in the

spherical harmonic representation, a little care is all that is required.

We might select a ''best'’ model from these alternatives by considering the goodness of fit to test data
in various applications. Possibly, we may select as ''best'' that model which is most conservative of
computer time and/or core storage. Again, we may wish to consider the trade-offs between goodness of
fit and computer resource conservation. The purpose of this paper is to present the derivation of

the models rather than propose a definitive selection of a '"best'' model.



Figure 1. Global and Local Co-ordinate Systems
2.  Fundamentals

The geopotential and its gradients are herein represented in terms of global spherical co-ordinates,

global Cartesian co-ordinates, and local Cartesian co-ordinates {(see figure 1). We define the giobal
spherical co-ordinates (B,A,r) in the usual sense, i.e., B is the geocentric latitude for the exterior
point, A is its geocentric longitude (from Greenwich), and r its geocentric radius. We define the

global Cartesian co-ordinates (x,y,z) as being Earth centred - Earth fixed with the z axis coincident
with the Earth's rotational axis and the xy plane coincident with the Earth's eguatorial plane. The
x axis is directed through the Greenwich meridian and the y axis completes the right-handed orthogonal
triad. The local Cartesian co-ordinates (£,n,7) are defined as being centred at the exterior point

and oriented so that the T axis coincides with the outward directed radius vector. The &n plane is

normal to this axis with the & and N axes directed north and east, respectively.

The first order derivatives of the geopotential express the components of the gravity vector at the
exterior point. In terms of partial derivatives with respect to spherical co-ordinates, they are

(MORITZ 1971)

1 1
i . . - 1 . [ R 1
Vc Vr ’ VE r VB ’ Vn r cos B VX (.
where Vr = 9V/5r, etc. The second order derivatives express the components of the gravity
gradient tensor at the exterior point. Again, in terms of partial derivatives with respect to the

spherical co-ordiﬁates (1BI1D)

-1 1
Vg = o Vgg 7V (2a),

1

1
VEn - rZ cos BVBX Y FTSec B ten BVA - Vni
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1 1 _
Ve =t Vg t o Vg T Vg (2¢),
v = ———-,-—] v + v v iy (2d)
nn r2cos B TAX ror P2 8 ’
v - 1 1 = v (2e)
nz r cos B ri r’cos B A tn ’

and

Ve =V, 0f).

Gradients can be transformed between local and global Cartesian co-ordinates by a rotation matrix

(1B1D)

{
Vx Vg
vy = A v, (3),
VZ VC
and
v . v v v
XX ny ez 23 gn 44
T
v v v = A v v v A L
yx vy yz ng nn ng ()
v v v v v v
zx zy 2z 42 n 44
where
- sin B cos A - sin A cos B cos A
A = - cos B sin A cos A cos B sin A (5),
cos B 0 sin B

or by its inverse, which equals its transpose due to orthogonality

Ve Yy
v = AT v (6)
n y
VC Vz
and
v v v v v v
g &n gL XX Xy Xz
T
v v = v v A .
ng nn e A Vy>< YY Yz o
Vee  Ven Vg Y V2 Vg
We note here, also, that the gradient tensors, both local and global are symmetric. Also, per Laplace's
equation
v + + vV =V + + vV =0
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3. Mathematical Models
3.1 Spherical Harmonics

The usual expression for the gravitational potential of the Earth on an external point in terms of

spherical harmonics is (e.g., HOTINE 1969)

o N n
V(B,A,r) = %ﬁ [1 + nzz {é} mZO an(sin B)(Cnmcos mA + Snm sin m%} (8),
where (B,A,r} = global spherical co-ordinates of exterior point,
GM = Earth's gravitational constant,
a = Earth's equatorial radius,
an(sin B) = associated Legendre functions, and
c , S = conventional geopotential coefficients.

im nm

This expression can be easily differentiated to yield the required nartial derivatives.

We see that frequent references to sine and cosine routines are required in the computation process.
as the coefficient set grows larger, the number of associated Legendre functions required increases
rapidly. Recursive relations (HOPKINS 1973; BURINGTON 1949) are available to relieve the situation
somewhat. Still, the process is quite formidable. If in the above equation, we choose to eliminate
the effects of the constant term and of the coefficients CZO and CQO’ we operate upon the anomalous

potential T, i.e.,

T = v - U (9)
where
vo= N s 2% (i) ¢ CI
r 20 20 r 4
a readily differentiable form. The anomalous potential le

(e.g., HEISKANEN & MORITZ 1967,p.86)

2
A9 = e 37

where the CZO and CQO are omitted.

3.2 Point Masses
The hasic formutation for the gravitational potential at a

terms of point masses is (EALUM 1971)

N ED 1
V.(B,A,r) = M 21 [ m ] )
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where
(m,/M) = ratio of the j-th point mass to the Earth's mass;
Pij = distance from the point mass j to the exterior point i; and
N = number of point masses in the set.

In the global Cartesian co-ordinate system (x,y,z),

p2. = % + % - 2r.rcos ¥ (15).
] ! J o
The subscript ; refers to the exterior point and the subscript i refers to the j-th point mass. The

spherical distance ¥ is given by
|

cos ¥ = sin Bi sin Bj +  cos Bi cos Bj cos(r, - Xj) (16).

The partial derivatives which are form-invariant within and between the global co-ordinate systems,

by the chain rule, are

N mJ] 1 Bpij
Vs = G .z - [ ﬁ-) _?. 3s (172)
j=1 ij
and
N om 3, . 9p, . 3%, .
- gz i L ) 1
st oM .z [ M J [Q?. ds  at dsot (17v),
j=1 iJ ij
where s,t = X,y or 2z, or s,t = B.,, A, or r,.

i 1 i I

Computations of gradients in the global Cartesian co-ordinates (x,y,z) is accomplished directly by
taking the partial derivatives in the above equation with respect to x, y and z. Should gradients
be required in the local Cartesian co-ordinate system (&,n,Z), transformations reflected by equations

6 and 7 are applied.

On the other hand, if the partial derivatives are taken with respect to 8, A and r, the computation of
gradients in the local Cartesian co-ordinates (£,n,z7) proceeds through equations 1 and 2. Should
gradients be required in global Cartesian co-ordinates (x,y,z), transformations reflected by equations

3 and 4 are applied.

The gravity anomaly, a function of the anomalous potential, can readily be expressed in global Cartesian

co-ordinates (NEEDHAM 1970) as

N m, re - F..
SR =

where
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3.3 Density Layers
The basic formulation for the gravitational potential at a point exterior to the Earth expressed in

terms of density layers is (KOCH & WITTE 1971)

GM "max no 1 N 1
V.(BA,r) = i+ ) al 7 P (sinB)(C cos mi,+ S sin mk.) + ) X.J[ — (19),
| r. -2 ri) me0 nm i nm I nm i 121 ] pij
' n ' ;g AE,
J
where X, = density function of layer;
Ej = area of layer;
Max = maximum degree of spherical harmonic portion; and
N = number of density layers

If the potential be represented as the sum of the spherical harmonic portion and the density layer
portion, i.e.,
v o= U o+ T,

the density layers can be used to represent the residual potential above a certain harmonic degree

n . Now let
max

N ( de

.= ] XJ J — (20)

j=1 AE, i

J j J
This equation expresses a critical point in the density layer model. Since the integral over the
surface element Ej is solved numerically, it is subject to errors of quadrature. KOCH (1971) develops

analytical expressions for the surface elements on ellipsoidal and spherical surfaces which can be
used in Jieu of the integral. Fineness of the grid about the computation point is analogous to the

well known scheme for computation of geoid heights from surface mean gravity anomaly elements.

The integral in equation 20 is replaced by the area of the layer, i.e.,

E. /o .. = JJ dEj/Oij (21)

J ]
AE,
J
and the anomalous potential can be expressed as

N E.
T = Z ¥ _J (22).
= 1

The development of expressions for the gradients in the local Cartesian co-ordinate system (&,n,z)

closely parallels the development in terms of point masses, i.e., equation 17. Quite simply,
N ap, .
1 ij
T = E -x, B, —— = (21a)
P =1 Jooof; e
and
N 9p.. 3P, . 25, .
2 ij ij 1 ij
R e 1)
Pq j=1 ey ap 3q PT; apaq
where
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The computation of the gradients then proceeds through equations 1 and 2.

3.4 Taylor Series

While the coefficients in the point mass and density layer approaches have séme physical meaning,

the Taylor series approach (JUNCOSA & JOHNS 1365) is unique in that the coefficients do not. For the
basis of this method we return to fundamental potential theory. Lét (B,A,r) and (B*,A',r') be the
spherical co-ordinates of the ex%erior point and some mass element dm of the attracting mass, as

illustrated in figure 2. For the potential the the exterior point, we have

FBA.F) = g_[JJ dm(8',A',r') dg' dx' dr! ‘ (22).
r {(t+ (r' /)% - 2(r'/r) cos 6)

The integration is taken over the Earth's total volume. Denoting the direction cosines of the two

vectors by

(u,v,w)- = (cos » cos B,sin X cos B,sin B) ; and
E,n,2) = (cos A' cos B',sin A' cos B',sin B'),
we have
cos O = uf + vn + wh .

Then equation 22 can be expréssed in the form of a Taylor series

V) i+ j+k
J dm dB' dA' dr! (23),

F(B,A,r) = %”J ! § ) A [%

where Ci'k are coefficients that depend upon the various derivatives of the integrand with respect to

ug, vn and wZ up to the (i+j+k)-th order.

(B,2,1)

Figure 2. Geometry of Potential Theory



105
We now invert the order of integration and summation and perform the summations in the order
i+ j+k = 0; P+ j+k =13 i+ j+k=2 etc.
\ \ 2 2
Recognizing here that the possible derivatives are linearly dependent since u + v o+ owo=1,

we may finally write for the potential

Z[B u+ Byv+B w] + {LC](3U2 1)+ ¢ (3vi - 1) + Couv + Chuw + CSVW] +

FBAN = 2+ Llsu+ay+n,

= |-
-\‘Jd

2 3

2.

—-L.[D](su2 - 3u + Dz(Sv2 - 3)v + 03(5u - v o+ Dq(5v2 - Du+ Dd_(5u% - Nw +

5

D6(Sv2 - Dw + D7uvw } + %3[5‘(35u“ - 30u? + 3) + E2(35v" - 30v? + 3) +

E,(7u? - 3)uv + Eu(7V2 - 3)uv + E_{7u? - 3uw + E6(7v2 - 3)vw + E7(35u2v2 + 5w - 4) +

5

58(7u2 - Nvw + E9(7v2 - 1uw ] (24),

where A, B], BZ’ ........ E9 are coefficients to be determined. While this expansion is given to the
fifth power of r~1, the pattern is readily seen, should it be desirable to extend the representation

to higher powers of el

Obtaining the required partial derivatives of equation 24 with respect to the spherical co-ordinates

of the exterior point is quite tedious, but the derivatives themselves are rather simple. The partial
derivatives with respect tor, i.e., Fr and Frr are direct, while the remaining partial derivatives
involve the chain rule, i.e.,
_ oF du oF dv oF dw
Fx = 8 * WXt Bwix (25),
and 2 2 2 2 2 2
_ 9°F du du 0°F v dv 9°F 9w ow dF 9°u 9F 3°v oF 3w

xy BT I3y T OW? Wy YT W % Y 30 dxey T av 3x3y © Bw oxdy (26),

where

X,y = B,Xorr.

We then proceed through equations 1 and 2 to obtain gradients in the local Cartesian co-ordinate

system (£,n,7).

4, Characteristics of Observations

While the gravitational potential is not usually measured directly, satellite-to-satellite tracking
provides a means of doing so (COMFORT 1971). Equations 8, 13, 19 and 24 express the potential in

the various mathematical models under discussion. The first ordervgradient is the gravity vector at
the exterior point. In practice, it might be measured as range and/or angular rates, but for the sake

of this paper, it will be used directly.

The second order gradients or gravity gradients can be measured directly by gradiometers at or near
the surface of the Earth or at satellite altitudes (HOPKINS 1972). In the surface case, we expect
that a three sensor system will yield all nine components of the gradient tensor (of which five are

independent). In the orbit case, the principal contribution to the signal is (GLASER & SHERRY 1971)



- -1 .
v, Voo = = Vg -V (27).

il
el
Al
Faat
-
-

Currently, the best data we have available for determining the geopotential is the set of mean gravity
anomal ies. Using potentials, first order gradients, second order gradients, or mean gravity data as
observations, equations can readily be written for computation of spherical harmonic coefficients,
point mass ratios, density values, or Taylor series coefficients by a least squares process.

Generation of pseudo-observations for numerical tests is described in the following section.

5. Numerical Tests

Pseudo-observation data generated using the spherical harmonic model was used as a norm against

which to compare the alternative models. Using a set of spherical harmonic coefficients complete to
degree and order 36, potentials, gravity vector components and gravity gradients were computed for
1440 points defined in global spherical Earth fixed co-ordinates selected from polar, circular orbit
at an altitude of about 300 km. A set of surface gravity gradient pseudo-observations was computed
in a latitude band extending 45 degrees each side of the equator. The harmonic coefficients were

themselves derived from recent unclassified mean free air gravity anomaly data.

Initially, a set of 186 point mass ratios, spaced over the Earth at a 900 nautica! mile interval, was
computed from the anomalous potential data, i.e., the input observations were adjusted to remove the
contribution of the reference ellipsoid. The masses were placed at a distance of 5400 km from the
Earth's centre. From these mass ratios, the first and second order gradients and mean gravity
anomalies were computed and compared with the test data. The required gradients were computed both
in local co-ordinates directly and in global co-ordinates rotated to lccal. To assess the effect of
increasing the mass set size, a set of 410 point mass ratios, sraced over the Earth at 600 nautical
mile intervals were computed from the V_  component of the orbit data. From this data the potential and
the remaining gradients and gravity anoﬁaly data were computed and compared with the test data. The
density layer concept was applied by computing a set of density layer values located on the surface

of the Earth coincident with the location of the point masses. The anomalous potential data was used
to derive these values, without application of the quadrature techniques to represent the surface
element. As in the point mass tests, the first and second order gradients were computed and compared

with test values.

The Taylor series coefficients were computed from the full potential values. A total of 25 coeffi-
cients were computed, incorporating the fifth power of r—]. From the coefficients, the first and
second order gradients were computed and compared with the test data. Test results are given in
Table 1.

We expect a good comparison between potentials as this is the data used to derive the coefficients for
the representation. All comparisons are within an order of magnitude of the desired accuracy. The

computation of the gravity vector components directly in local co-ordinates, more complex mathematically,

yields no better results than the simpler global to local computation. The gravity gradients,
especially those in orbit, are reasonably well predicted by either route. Generally the mean anomaly
results are somewhat poor. However, a spherical harmonic representation for gravity anomalies can be

just as poor for certain coefficient sets derived solely from orbit data (DECKER 1972). Another
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important consideration is that of computer time. One may wish to consider trade-offs in computer time

versus accuracy. Typical computer times are given in table 2.

A substantial savings of computer time in the application of the point mass model can be achieved by
the computation of the gradients in global co-ordinates and applying the appropriate rotation matrices.
Each alternative model represents a savings over the spherical harmonic model in terms of computer

time, the price being a loss of atcuracy to some degree.

6. Conclusions

It is reasonable to conclude that all three alternatives to the spherical model are viable. The
limited size of the point mass, density layer or Taylor series coefficient sets introduces a limit to
the precision of representation. Each representation can be made more accurate by increasing the

number of defining coefficients.

The Taylor series representation provides the most compact representation and is highly conservative
of computer time. The point mass and density layer models are competetive with it and with each
other. The trade off is an order of maghitude difference in computer time requirements versus a

factor of two improvement in accuracy.

In such applications as orbit computations using a numerical integration scheme such as Runge-Kutta
or Cowell's method, the necessity to re-compute the gravity vector component several times in one
integration step makes the Taylor series model quite attractive. It is for this reason that here-

tofore ignored Taylor series model ought to be given further study. It is my intention to do so.
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Table i

(RMS - Computed vs Test Data)

Potential V. K v v, -V Ag
Model ‘ I 44 tr CEE 2
cce em’/sec? cm/sec? (Surface) EU* cm/sec
[ATEE
Point Masses(186) 8.9 x 10"
Local 3.0 x 1079 2.1 x 1077 2.2 x 1072 4.2 x 107} 1.6 * 107" 1.1 X 107°
Global to Local 1.1 x10°2 7.2 x 1077 6.9 x 107° 1.6 x 107 1.1 x 1077
Point Masses(k10) 1.5 % 10°
Local 1.6 x 1072 1.7 x 1072 3.4 x107° 1.3 8.5 x 107! 4.6 x 1077
Global to Local 1.6 x 107° 1.7 x 107% 3.2 x 1077 3.3 x 107 4.6 x 1077
Density Layers 2.7 x 10° 4.1 x 1072 9.0 x 107> 7.6 x 107° 7.7 x 107}
iTaylor Series 6.4 x 105 7.6 x 107% 5.4 x 10°% 4.7 x 1077 4.2 x 1071 2.1 x 107! 1.3 x 1077
Representative 6.0 x 10! 8.8 x 102 7.6 x 107 1.2 3.1 x 10> 4.5 x 10° 1.4 x 1077
Values
Desired Accuracy 1.0 x 10° 3.0 x 107% 3.0 x 10° 3.0 x 107° 1.0 1.0 x 107" 2.0 x 107°
Computation not made
1EU = 107 cm sec Zem™! (Eotvos unit)
Table 2
Computation Times (UNITVAC 1108)
Derive
Model Coefficients VC’VW’VE VCC VQC V€€ Ag
(Total) sec/pt sec/pt sec/pt sec/pt
Point Masses (186) 8" 5%
Local 0.253 0.103 0.231 0.138
Global to Local 0.064 0.121 0.058
. h m s
Point Masses {410) 17 23 45
Local 0.491 0.206 0.815 0.292
Global to Local 0.114 0.212 0.094
Density Layers 9" 08° 0.220 0.226
Taylor Series 0" 28° 0.026 0.009 0.035 0.015
Spherical Harmonics 0.377 0.145 0.378 0.150

* Not computed
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9. Discussion

RAPP :

HOPKINS :

RAPP:

HOPKINS:

RAPP :

ECKHARDT :

Let me add a comment about gravity gradiometers because | think it is something that may be
coming along. Many people think that gravity gradiometry is primarily going to help us
determine the details of the gravity field; if you observe a gradiometer over an area it

reacts very locally.

| should like to add that gravity gradiometry can assist in getting global information of

tong wavelength.

The question is whether the gravity gradiometer will be accurate enough to obtain the

resolution obtained presently from potential coefficients using the orbital technique.

The accuracy of the gradiometer is one part in a billion plus or minus another twenty
(bias).

Second; the representations you tested. There is another one that would have been nice to
test - the gravity anomaly, which is something you can measure. You don't measure point
masses or terms in a Taylor series. So if you are locking for a representation which can
easily be combined, you use the anomaly. A report was completed nine months ago by a

graduate student (G. REED of the US Army) at the Ohio State University on satellite gradio-
metry and its implications in determining the gravity field of the Earth. He studied the
problem of recovering gravity anomalies or point masses from rotating gradiometer data or a
hard mounted system. He concluded that the most reasonable representation was obtained
using anomalies. The use of an anomaly representation allows straightforward combination
solutions to be made. So | add that as a comment; there are additional views to those

expressed by you.

I have a question on Taylor series. You have a spherical solid harmonic converted to a
Cartesian type solid harmonic. I's it the identical thing whether you do it in spherical or
rectangular harmonics. The Taylor series should give the same answer as the spherical
harmonics. You are comparing your models with much higher degree models. In a way

it is not fair.
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That's what | am doing with the point masses. | am comparing smaller models with the

rather larger spherical harmonic models.

You should compare Taylor series models with the same.degree spherical harmonic models -
with the same amount of information - and see what you get in the shortest time. That

will give the answer.

You mention the transformation between the local system and the geocentric system done by
Moritz. This only holds for a spherical Earth. It does not hold for an ellipsoidal
Earth or the real Earth. Your formulae are therefore restricted. The exact transformation

is given in (HOTINE, M. Mathematical Geodesy. ESSA Monograph 2,Washington DC 1969)
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EVALUATION OF THE GRAVITATIONAL POTEWNTIAL AND ATTRACTION OF A MODEL OF THE EARTH'S TOPOGRAPHY
AND COMPENSATION )

ABSTRACT

Development of a method of directly computing the gravitational
potential and attraction of the earth's topography and isostatic
compensation, at geoidal, surface, and orbital elevations, is
reported. Some preliminary results, from a programme of world-
wide numeric evaluation, illustrate the basic features of these
fields and demonstrate some practical limitations to the
attainable accuracy.

1. Introduction

In a recent study by FRYER (1970) estimates of the global indirect effect for the free-air

geoid were computed. It has been shown (e.g. HEISKANEN & MORITZ 1967, p. 145; MATHER 1968 A,

p. 45) that the free-air ''co-geoid' closely approximates the geoid, and the associated indirect
effect is, therefore, expected to be comparatively small. Fryer's estimates (summarized in

figure 1) displayed appreciably greater magnitude than anticipated and remarkably slow attenuation

of the effect with increasing distance from the major topographic masses.
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Figure 1. Total Indirect Effect for Global Solution
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Consequently, the study reported here has been directed towards a general assessment of the
effects of the earth's topography and isostatic compensation on its gravitational field and
thus ultimately, the evaluation of the geoid. The approach has been to evaluate directly
the Newtonian gravitational potential and attraction of a digital model of the topography
and compensation. This procedure has assumed the compensated topography to be in complete
isolation from the remainder of the earth, and all other energetic influences. The direct
nature of this approach and its investigative bent, may be contrasted with the solution
oriented, and thus more involved, derivations of Fryer, wherein the properties of the effect

were not of primary concern.

‘As the major computational work for this study is continuing, only results of preliminary

investigations are presented, and any conclusions must be tentative.

2. The Indirect Effect

Stokes' formula for the determination of the geoid requires gravity anomalies representing
boundary values at the geoid. Consequently, matter exterior to the bounding surface (that is,
topography above the geoid) is mathematically removed or displaced inside the boundary. The
resulting disturbance of the gravitational potential, and hence the geoid, is referred to as
the indirect effect. A formulation of the indirect effect for the free air geoid has been
derived by MATHER (1968 A, 1968 B) and shown to comprise, like the geoid solution itself, a
zero-order term, a potential dependent term, and a term with Stokesian characteristics. The
free air geoid closely approximates a non-regularized geoid, in that the ''direct' effect, due

to the attraction of the topography and compensation, is dismissed from the reduction procedure.

Fryer's detailed derivations of the potential and Stokesian terms for the indirect effect

(FRYER 1970, p. 45 et seq) show the former to be predominantly a function of a residual potential,
representing the difference between the potential due to the topography exterior to the geoid

and that of its mathematical condensation as a surface layer on the geoid. The major contributing
component of the Stokesian term arises from a Stokes integration of the differential terrain
correction, being the difference in attraction of the topography between the surface and the geoid.

Fryer's global estimates of these terms are illustrated by figures 2 and 3, respectively.

3.  Computational Methods
Evaluation of the potential and attraction of the topography and compensation at a point, requires

the solution of the following fundamental integrals, in 3 dimensions, derived from Newton's law of

gravitation, (see figure 4).

POTENTIAL: V

[
=~
—

ATTRACTION
COMPONENTS: x. = - kHJ (i=1,3)
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where: k is the gravitational constant (6.67 x 10 ! m’kg-'s~?)
dv is an elemental volume of matter,
o is the density of matter
r is the distance of the elemental volume from the point of computation,
x. are the rectangular coordinates of the point of computation, and

éi are the rectangular coordinates of the elemental volume.

A total solution for a particular point requires the limits of integration to be such as to
include the whole of the topography and compensation. Then, to determine the spacial qualities
of the gravitational field, evaluation may be repeated for a number of points distributed
globally. Bearing in mind the contributing terms of the indirect effect, these points may be
chosen at the geoid and at the surface of the earth. Points at an elevation representative of

satellite orbits (500 km) may be similarly considered.

Whatever method of evaluating the integrals is employed, the limits of integration must be
defined by adopting mathematical models to represent the extent of both the topography and
compensation. The most common’y available digital data representing the topography is in the
form of mean elevations, based on various ''square'' subdivisions of the geographical coordinate
graticule. |sostatic compensation limits are defined in terms of the topographic elevations,
after adopting a particular compensation model. Topographic elevations are usually referred to
the geoid, however it is necessary to assume that this coincides everywhere with some basic
figure of thé earth, so as to enable definition of the spatial distribution of the topographic
masses with respect to a local coordinate system at each computation point. Polar coordinates

in the local system are easily derived by a transformation from the general, geocentric reference

frame.

A number of methods are available for solution of the integrals, including rigorous evaluation,
numerical integration {cubature), and series expansion. |f each topographic block, defined by

a geographical coordinate system, is approximated by a homogeneous, rectangular parallelopiped, a
rigorous solution of the potential and attraction integrals is available in general form

(MACMILLAN 1930, p. 72). Alternatively, without need of the rectangular approximation, conventional
numerical integration technigues can be applied, by dividing the block into smaller elements. A
further solution is provided by series expansion of the reciprocal distance (1/r) in terms of
Legendre polynomials (lbid, p. 81), however the convergence of this series as r approaches zero
requires careful consideration. The applicability of each of these methods is dependent upon the
accuracy sought, and is therefore governed mainly by the distance of the topographic block from

the computation point. This leads naturally to the introduction of a set of zones, surrounding the
computation point, within each of which, a particular method is applied, consistent with the required
accuracy. Accuracy is also affected by the degree of subdivision in each zone, because of the

redistribution of matter which results from adopting a mean elevation over the extent of each block.

4. Assumptions and Their Effects

In view of the nature of the indirect effect as essentially a small correction term in the overall
determination of the geoid, it has been assumed that accuracy corresponding to the order of the
flattening should be sought throughout the derivations and calculations. This criterion may not
always be fulfilled in practice, largely because of external limitations imposed by the available

data. The major assumptions and models involved in the evaluations are summarized in table 1.



TABLE 1

ASSUMED MATHEMATICAL MODELS

1. Figure of the Earth:
International Ellipsoid, 1967
Semi-Major Axis a = 6 378 160 m
Flattening f = 1/298.25

2. Isostatic Compensation:
Airy-Heiskanen Model
Crustal Thickness T = 30 000 m
Sub-crustal Density p = 3270 kg m °

3. Density of Topography:
de Graaff-Hunter Model
Density of Column (kg m=%) = 2770 - h/21 (h<2100 m)
= 2670 (h>2100 m)

where h is the mean elevation in metres.

Lk,  Topographic Data:
A Set of Digital Models, Comprising Mean Elevations

Based on Geographical ''Square' Subdivisions of 5' and 1°.

A figure of the earth is required to determine the distribution of the topography with respect to
the computation point, but the influence of its departures from reality on the results is negligible.
Indeed a plane model would be adequate in the inner zone and the difference between a spherical and
a spheroidal model in the outer zones is quite insignificant. A spheroidal model was adopted, since

only a slight saving in computation time would accrue from the use of any less realistic model.

The Airy-Heiskanen model for compensation was adopted as one which reasonably fits the available
evidence, without introducing the unmanageable complexity of a regional model into the process of
storing and accessing the digital data. It has the further advantage of facilitating comparisons with

results of other studies.

Rather more concern must arise from the choice of a density model. Any departure from reality of the
densities used is propagated directly into the solution, since they act much like a common scaling
factor in the calculations. It is most unlikely that any available model is correct to the order of
the flattening and the effect of mass stratification on the gravity field is ignored. Certainly, a
better modél could be compiled, from the available geological mapping at least, though the task would

be a major undertaking.

Topographic mean elevations introduce two important sources of error. The first depends on the
primary accuracy of the data, which is determined by its source and method of compilation. Clearly,
the user of such data has little or no control over these factors. Mean elevation data used in the

present study has been gathered from four sources:
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(1) One degree mean values were compiled from the available
five minute data, as listed in (2) and (3) below and, where this
coverage is incomplete, from one degree values prepared by W. H. K.
Lee of the University of California.

(2) Five minute data for North America and Europe was supplied by the
U.S.A. Defense Mapping Agency (CZARNECKI 1970).

(3) Five minute values for Australia were derived by linear interpolation
from the tenth degree data compiled by MATHER (1968 A).

(4) Five minute values for the remainder of the world are being simulated.
A linear correlation of regional geomorphology, based on the one
degree data, is used to provide a linear model for conversion of
known five minute values to areas where such data is lacking.

There are approximately 3.2 million positive five minute mean values in the global model.

The second prominent source of error relates to the use of a digital model composed of mean values.
Representation of the topographic elevations within some finite and relatively large area, imposes
an apparent shifting of mass and an overall smoothing of gradients. Both factors contribute to a
distortion of the gravity field being evaluated, to the extent that the digital model misrepresents
reality. It should be noted that the five minute data, including the simulated values, enter into
the calculations pertaining to the inner zones only. Outer zone calculations are therefore based

entirely on “realistic' data.

5. Preliminary Investigations

A number of preliminary comparisons of formulae and methods and numerical checks have been completed.
In particular, the behaviour of formulae, and the effect of approximations in the contact zone
(within 5' of the computation point), where the value of r approaches zero, have been closely
investigated. A comparison of evaluations of the potential of the topography in this zone, using a
cylindrical assumption (Ibid, pp. 92 - 104), by numerical integration based on Simpson's formula,

and by a rigorous formula for a rectangular prism, is summarized in table 2.
TABLE 2

COMPARISON OF METHODS OF EVALUATION OF THE POTENTIAL
OF THE CONTACT ZONE

Dimensions of Block: 11 120 m (0°.1) sq. x 5000 m high

Density: 2670 kg m=3
METHOD POTENTIAL (Jkg™!)
Cylindrical Assumption 58.42

Rad. = 12 647 m

Numerical Integration

No. of Intervals = 2 x 2 x 2 79.20
4 x4 x 4 55.63

6 x 6x6 61.20

8 x8x8 57.40

10 x 10 x 10 59.21

12 x 12 x 12 57.78

Rigorous Formula 57.68
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As might be anticipated, the cylindrical assumption tends to slightly over-estimate the
solution, though it provides a valid result in this unstable region, near the discontinuity
in the reciprocal distance. Although numerical integration does not entirely fail under
these circumstances, it is seen to present an osciliating solution as the number of intervals
is increased. Further investigation has revealed that this effect is not present beyond the
contact zone. However, any saving in computation time for this method, relative to a rigorous

solution, is marginal.

Another method, relevant to all but the contact and inner zones, is provided by expansion of
the reciprocal distance in a series, dependent on Legendre polynomials. The first term of
such a series is no more than the commonly employed sphere, or point mass, approximation.
Experimental calculations, with up to five terms, have shown that the first term alone
provides a satisfactory result, when the distance r is greater than about ten times the
maximum dimension of the topographic block. Consequently, this approximation may be safely

applied beyond about 30' from the computation point.

Table 3 contains the definition of zones used, the size of data subdivisions within each zone,
and the method of evaluation employed. A degree of flexibility of zone boundaries and data

subdivisions has been programmed into the computer routines.

TABLE 3

METHODS 0 F EVALUATION AND DEFINITION gF ZONES

SIZE OF DATA
Z0NE , LIMITS SUBDIVISIONS METHOD
CONTACT 0 to 5 5' x 5 R1GOROUS
INNER 51 to <20 5! x §! RIGOROUS
NEAR 30" to 2% 5' x 5 SERIES EXPANSION
OUTER >2° 300 x 30" + SERIES EXPANSION
[o] o]
1 x 1
¢ x 5°

* Boundary of inner and near zones varied, depending on mean elevations

t Data subdivisions in outer zone varied, depending on ''ruggedness’’ of topography

Hence the change from rigorous formula to series evaluation is varied depending on the

mean elevations. A similar refinement is included in the outer zone evaluation, where the
presence of steep topographic gradients within a data subdivision can introduce a

significant error, if they are not depicted more realistically by smaller data subdivisions.
For instance, if a 1° block of topography, 5° from the computation point, contains elevation
differences of about 3000 metres (such as may occur in the Himalayas), an error approaching
3% is introduced by adopting a mean elevation for the whole area. Under these circumstances,

the computer routines are designed to resort to a smaller data subdivision.
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Results of some early evaluations for the contact zone are illustrated in figure 5. Gravitational
potential at the surface, due to the topography and compensation within five minutes of the
computation point is plotted for a profile along the 19° north parallel of latitude, where it
crosses the Eastern Sierra Madre in Mexico. This area depicts well the effects of steep
topographic gradients, relatively large elevations, and the sea coast. A high degree of
correlation clearly exists between the potential and the elevations, and there is no evidence of
slow attenuation of the field. The vertical component of the gravitational force behaves similarly.
Simplified test evaluations have also provided a provisional indication of the general trends to be
expected for the outer zones. Apparently, the influence of the topography and compensation on the
gravitational field extends further than anticipated, resulting in a noticeable smoothing out of
the high correlation with local topographic variations, seen in the contact zone. This is
substantially in agreement with Fryer's results, where the outer zone contribution to the potential

term was found to be fairly constant at 6.3 metres, or about 37% of the total (FRYER 1970, p. 127).

6.  Summary

1. Fryer's global estimates of the indirect effect for the free air
geoid are larger than expected and display slow attenuation away from the
sources of topographic influence.

2. This study attempts to investigate these results, using a different
approach, based on a direct global evaluation of the gravitational potential
and attraction components due to the topography and isostatic compensation.

3. Mathematical models have been adopted to define the figure of the earth,
the isostatic compensation, and the density. A digital model, including
some simulated data, is used to represent the topography.

4, Preliminary investigations indicate that the influence of nearby
topography {the contact zone) does not contribute to the effect described
by Fryer. These investigations further suggest that the topography in the
outer zones (at distances of the order of the separation of the continents)
may exert a significant influence on the magnitude and gradient of the
gravitational field.
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8. Discussion

FRYER:

ANDERSON:

QURESHI :

ANDERSON :

REILLY:

ANDERSON :

About the matter of slow attenuation; my calculations agreed with ANDERSON's that the
attenuation from a topographic block in isolation is quite rapid and can be modelled
against topographic shape - however, when considered from a global calculation, the actual
distribution of data has a cumulative effect, making the attenuation around a large mass

appear slow.

I can't comment at this stage as | don't have global solutions but only preliminary

calculations over selected areas.

I's the calculation being carried to an angular distance of 5 degrees from the computation
point?

At each point | evaluate; so all topography is taken into account at each computation

point.

In the topographic-isostatic model you are adopting, are the masses of the topography

and compensation of a given column equal and opposite? | note that you use a variable
density for the topography.

The variable density is constant for a given block. It varies from block to block. As
the density of compensation is based on the value assumed for the density of the topography,

the net effect is equal and opposite.
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