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POSITION FROM GRAVITY

ABSTRACT

Procedures for obtaining position from surface gravity observations

and reviewed and their relevance assessed in the context of the application
of modern geodetic techniques to programs of Earth and ocean physics.
Solutions based on the use of surface layer technigues, the discrete value
approach, and the development from Green's third identity are stated in
summary, the latter being extended to order e® in the height anomaly.

The representation of the surface gravity field which is required in order

that this accuracy may be achieved is discussed. Interim techniques
which could be used in the absence of such a representation are also
outlined.

The role which can be played by the determination of changes in observed
gravity to a few microgal, in the definition of geodetic reference systems
for long period studies in Earth physics, is discussed and the consequences
of changes of zero degree summarized. The possible use of these techniques
in future geodetic practice is also assessed.

1. Introduction

1.1 Preamble

At first glance, it would appear that geodesists of today should be grateful for the activities of
exploration geophysicists which have made significant contributions to all the well known data banks
available at present. After all, it is only in the past two decades that the course of events has
looked favourably on the collection of gravity information with solely geodetic objectives in view.
All the available surface gravity information has still not been able to provide meaningful defini-
tions of position on its own at the time of writing. The techniques of satellite geodesy revolu-
tionized practical determinations related to position from a consideration of the Earth's gravity
field, and there is little argument that these methods give relevant position-related parameters
with a precision of about 2 - 4 %, the higher precision estimate being obtained on the use of combi-

nation techniques incorporating surface gravity information with satellite data.

Many factors have changed since the advent of the satellite era less than two decades ago. A tech-
nical advance of importance is the development of the surface ship gravimeter which provides a means
of defining the surface gravity field in ocean areas with a resolution which if used advantageously,
can be shown to be adequate for all present day requirements in Earth and ocean physics. A second
development of great significance is the sensational improvement achieved in the precision with which
absolute determinations of gravity based on interferometric techniques can be made (e.g., COOK 1965;
FALLER 1965). The permanent installation maintained by the Bureau International des Poids et Mesures
(BIPM) at Sevres, France, has been achieving a measuring precision of 3 ugal for some years now
(SAKUMA 1971), improving the resolution of g from 2 parts in 10° to about 3 parts in 10° in less
than a decade. To this should be added the capability which has been available for some time, and
enables the measurement of differences in gravity with an accuracy better than 1 part in 105 on land

* Prepared while at NASA/Goddard Space Flight Center, Greenbelt, Md, USA - X Doc.-592-73-164(June 1973)
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without any appreciable measurement time.

These significant improvements in metrology pose a series of interesting problems which must be dealt
with before the maximum geodetic information can be obtained from surface gravity measurements. In
the first instance, it becomes necessary to review the implications of adopting a rigid body model for
the Earth as the basis for computations of position from surface gravity data. Further effect to be
considered is the change in the Earth space lJocation of the rotation vector and their influence on the
determination of position from gravity. Short period mass changes smaller in magnitude than Earth
tide effects, and possibly more difficult to model, may also have to be considered. Into this cate-
gory fall changes in atmospheric circulation patterns from some model, variations in the water table
and similar phenomena. Over a long time-scale, it is necessary to consider the implications of a

possible secular variation in the gravitational constant G.

As most of these effects are 7 - 8 orders of magnitude smaller than that of g, it has been accepted
practice to convert observed gravity g to the gravity anomaly Ag by differencing g from the
value Y of normal gravity for a model of the Earth, afforded by the value of GM, the rate w of
rotation of the Earth, assumed to be constant, together with the equatorial radius a and flattening
f of an ellispoid of revolution which "best fits" the geoid. No allowance is made for the possi-
bility of variations with time, in any of the parameters defining this system of reference. This is
not inconsistent with the concept of determinations relevant to a certain epoch, provided

(a) the observations used are all made during the epoch considered; and

(b) the accuracy sought is less than 1 part in 107 in g.

The magnitude of gravitational deviations from a solid Earth model are smaller than o{]O_6g}

The largest effect is the diurnal Earth tide variation with magnitude 0{10—79}. It has not been
considered necessary at the present time, to recommend the adoption of a systematic procedure for
modeling and removing the effect of the Earth tides from observed gravity except when establishing
gravity standardization networks, in view of the limited accuracy of elevation data used in comp-
uting the gravity anomaly. This would call for the adoption of a universally acceptable model for
Earth tides, which would then be used as a matter of routine to correct observed gravity prior to
use in geodetic computations. Such corrections are only necessary at fundamental gravity stations
where determinations are made with the highest possible resolution for either the definition of
global gravity standardizatio networks (MATHER 1973,p.68) or when attempting to locate changes in the
position of the Earth's centre of mass (geocentre) with time (MATHER 1972,p.13). The need for
applying such corrections at other stations will depend on the extent of gravity coverage available

locally and whether elevation datums have been unified at the 50 cm level.

Current practice accepts the validity of each individual nation's elevation datum as well as its
gravity datum. The continuance of such a practice is unwise if systematic errors at the 50 cm level
are not to occur in the final results. The most taxing goal is the definition of the geoid in

ocean areas to the highest possible accuracy, in order that such results could be used with satellite
altimeter data to study ocean circulation by defining the sea surface topography. On present trends,

it would appear that 5-10 cm accuracy is desirable in geoid determinations for this purpose.

I't is in this context that the use of gravimetric techniques in the determination of geodetic position
should be reviewed. The present development covers
(a) the basic developments underlying the determination of position from gravity;

(b) a review of some of the methods suggested to the present time, for solving the
boundary value problem in physical geodesy;

(c) techniques for the preparation of data sets for this task; and

(d) the geodetic interpretation of such solutions in Earth space.
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In all sections, an assessment is made of the requirements which will have to be met in order that

the independent evaluation of selected geodetic characteristics available from surface gravity deter-

minations, can be used in the resolution of some possible ambiguities from other methods when applied

to studies of high precision for Earth and ocean physics.

1.2 A guide to notation

1.2.1 Recurring Symbols

a

d
dz
do

=
| = o

=
o

=
a3

o

w o

Ag
bW
89g

= equatorial radius of the ellipsoid of reference

separation vector between equivalent points P on the Earth's surface and Q on telluroid
increment in orthometric elevation

element of surface area on unit sphere

eccentricity of the meridian ellipse; el = 2fF - f2

f(¥) sin ¥

flattening of meridian ellipse

Stokes' function = cosec 3¢ + 1 - 5 cos ¢ - 6 sin Y - 3 cos w[log{sin (1 + sin %W)}}
gravity as cbserved at the surface of the Earth

ellipsoidal elevation

height anomaly

normal elevation

mass of the Earth, including the atmosphere

global mean value of X

aw’ /v,

a*w?/GM = m + o{f?}

elevation of geoid above ellipsoid

unit vector normal to the surface of the Earth

free air geoid; the Stokesian contribution to hd

indirect effect to free air geoid; non-Stokesian contribution to hd

geocentric distance

radius of sphere containing all topography - the Brillouin sphere

radius of sphere which is internal to the Earth's surface - the Bierhammar sphere

mean radius of the Earth

distance between the point of computation P and the element of surface area d$

2R sin AN
ZRmSin U
surface of the Earth

spheropotential due to the system of reference

spheropotential on the surface of the reference ellipsoid

disturbing potential

geopotential

potential of the geoid

geocentric rectangular Cartesian co-ordinate system X]X2X3

local rectangular Cartesian co-ordinate system X %X with the g axis along the local
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normal, the x X, plane defining the local horizon, with axes oriented north, east.

azimuth 1
ground slope; subscripts 1 and 2 refer to components north and east

normal gravity due to reference system; subscripts o and e refer to values on
reference ellipsoid and equatorial gravity respectively.

gravity anomaly at the surface of the Earth, defined by equation 10
geopotential difference with respect to the geoid

gravity disturbance

longitude, positive east
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= components of deflection of the vertical; subscripts 1 and 2 refer to valuesin the

oy
El

north and east directions respectively

r = deflection of the vertical, positive if outward v-rtical lies north, east of normal

® = density of surface layer, except in section 3.4

¢ = latitude, positive north; subscripts ¢ alg’ refer to geocentric, astronomically
determined and geodetic latitudes respectively.

U = angutar distance at geocentre between the point of computation P and the element of
surface area dS

w = angular velocity of rotation of the Earth

i.) 23
. ox.
i=1 i

1.2.2 Conventions

a=b+ o{b?} = terms whose order of magnitude is equal to or less than b2 are neglected

(b < 1)
oV T XYT XY,
= = = L. hel i i i
X, aijbj =X ai]b]+ aizh2 , there ing as many equations as possible values of i
asc = a is approximately equai to ¢
2. Basic principles

2.1 The system of reference
The principle behind the determination of Earth space position from gravity observations made at the
surface of the Earth is implied from deviations of observed gravity from values at an 'equivalent!
point on some Earth model, whose parameters are completely defined. Current geodetic practice (IAG
1970,p.12) specifies a rigid body model by the following parameters.
(a) The value 1{= GM) where G is the gravitational constant & M the mass of the Earth.
(b} The constant rate w of rotation of the rigid Earth model.

(¢) The eguatorial radius a of an ellipsoid of revolution which presumably is one of
best fit to the gecid.

(d) The dynamic form factor J., which is equivalent to a value for the flattening f
for the reference ellipsofid.

It is conventional to choose the value for a such that the ellipsoid has the same volume as the
geoid. This is not a necessary condition if zero degree effects are taken into account when formu-
lating a solution for the boundary value problem. What is more important in solutions which aspire
to accuracies greater than the order of the flattening (i.e., %30 cm in the height anomaly), is that
the ellipsoid lies everywhere within the physical surface of the Earth. This permits the use of
Laptace's equation in the representation of the appropriate disturbing potential without approximation.
The adoption of such a procedure without an equivalent adjustment in U could cause larger num-
erical values of the gravity anomaly, which would in turn, call for greater caution in developing

computer algorithms for evaluation purposes.

It can be stated without being contentious that the value adopted for a has to be based on some
determination of the scale of Earth space. This would be provided by either the measurement of long
arcs at the surface of the Earth by classical techniques (e.g., the PAGEOS baselines) or else by
laser ranges to either satellites or the moon. All determinations of scale are therefore based on
the velocity of light and the definition adopted for the basic interval of time. The value of the
flattening f of the reference ellipsoid is best deduced from the second degree zonal harmonic
obtained from the secular variations in the right ascension @ of the node and the argument w of

perigee of near Earth satellites. The precision claimed at the present time (e.g.,LERCH ET AL 1972,
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p.27) for this harmonic is 1 part in 105, the required relation being (e.g., MATHER 1971a,p.85)
1y 2 3, 1.2 3
C20-3m 3f 7mf+3f + olf’} (1,
where
3.2
L atw
moT M
w being the angular velocity of rotation of the Earth. The exact relation between the observed
secular variations QZO and CZO is (e.g., I1BID,p.151)
. 3 2
Qo = 3z 8 cos i Chg (2),
2(1 - ez)2 a7t

a, being the equatorial radius of the satellite orbit, e its eccentricity and i the inclination.

The change df in f due to changes da, dw and d(GM) in a, w and GM are given by

_ 3 ¢, da dwy _ 1 d(GM) , 2
df = 5m (3—8— +2—w—} T—Gﬂ-—@m +C20) +O{f df} (3).

The ratio df/f is therefore of the same order of magnitude as d(GM)/GM for a specified value of a
as the ratio dw/w is at least an order of magnitude smaller, if these ratios reflect the precision

with which each of these quantities are determined,

It is all-important that the rotational characteristics assigned to the reference model are exactly
equivalent to those influencing gravity as measured at the Earth's surface. This is implicit in
deriving equation 60 from equations 58 and 59. The rotation vector in Earth space is not fixed and
hence deviations from the rigid body model occur in practice. The rate w of rotation is subject to
secular variations due to tidal friction. Certain shorter period effects have to be accounted for,
at least in theory, when reducing gravity to a rigid body equivalent of the Earth; the practical
consequences are negligible as their magnitude is less than 1 part in 107 in g. A second factor is
the change in position of the instantaneous axis of rotation wit" respect to the Earth's crust. The

total contribution of the rotation to observed gravity is the appropriate resolute of
g. = pu (4)

directed away from the axis of rotation and perpendicular to it. The changes dgr in g, due to
changes dp in p, which is the distance of the point at which gravity is measured, from the axis of

rotation, and dw in w is given by

B -12
dg. = g | 2=+ - * of10 "“} (5).

The effect of the ratio dw/w will be less than 1 pgal on observed gravity for a 10 msec variation in
the length of day, and hence this term is not of significance in the reduction of observed gravity if
the latter were restricted to some epoch of observation. The effect of polar motion is reflected

in the second term in equation 5 and is o{1 ugal} (BURSA 1972)

Short period changes in observed gravity with larger magnitudes have been reported by SAKUMA (1971)
after modeling the effects of Earth tides. It should be noted that a 1% change in the local atmos-
pheric density is of order 10 microgal, while quasi-stationary changes in the local geological for-

mations, e.g., in the local water table, could cause gravitational effects of this same magnitude.
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I't is therefore important that both the atmosphere and the local geology be modeled in the vicinity

of those gravity stations at which g is to be re-measured at regular intervals with the highest

possible precision.

The dominant gravitational variation with time is that due to Earth tides, with magnitude o{10% ugal}
and Earth models for this effect are well known in the literature (e.g., MELCHIOR 1966). It is
important that an unambiguous Earth tide model at the 10 ugal Tevel be uniformly adopted when speci-
fying gravity values at stations comprising the global gravity standardization network described in

section 4.

The final parameter defining the reference system is W(=GM). The commonly accepted values of GM ére
presently based on the analysis of interplanetary space probes. The technique used can be briefly
summarized as follows (ESPOSITO & WONG 1972). Doppler data from inter-plénetary space probes is
analysed using numerical integration procedures for the determination of the motion of the probe with
reference to a geocentric inertial co-ordinate system. Perturbations due to the Earth's departure
from a sphere, solar radiation pressure, planetary and lunar gravitational effects and spacecraft
attitude control forces are modeled when effecting this solution, which also provides revised estimates
of tracking station co-ordinates as a by-product of the solution. The main conclusions of relevance
to the present review are the following. Firstly the value of GM is based on the velocity of light.
Secondly, the potential.Uo on the surface of the reference ellipsoid, assumed to be an equipotential,

is related to the values adopted for w, a, f and W by the relation (e.g., MATHER 1971a,p.83)

where
e® = 2f - 7.

As GM has an uncertainty of 1 part in 106 at the preéent time, it follows that Uo will differ from the
true potential of the geoid consistent with Newtonian gravitation, as scaled by the velocity of light
by at least 1 part in 106. I f UO were assumed to be equal to the potential wo of the geoid, it

would be tantamount to imposing a second scale constraint when using grévitational techniques in
geodesy. The only way out of this impasse is to use external geometrical information which when
combined with the gravitational solution, will give an improved estimate of Wo as discussed in

section 5. Such an estimate would be consistent with the scale provided by the velocity of light.

In the interim, it should be borne in mind that all position determinations based on gravity alone

may have a constant scale error of upto 1 part per million on this account.

In summary it may be stated that

(a) Only Earth tide effects need be allowed for in all work except those determinations
required for the monitoring of co-ordinate systems;

(b) Position determinations based on gravity alone are liable to have a constant scale

error of upto 1 part per million due to the uncertainty in the assumption Uo = wo.
The following conclusions may therefore be drawn about the adoption of a rigid body model of the
Earth as an intermediary in the definition of position from gravity, with the highest possible
precision as the ultimate goal.

(i) The only departures from rigidity which need be considered for solutions of the
boundary value problem are the effect of Earth tides on gravity observations
especially when establishing gravity standardization networks.

(ii) An error in GM will give rise to ambiguities in scale if Wo is forced to be equal
to Uo' For further discussion, see section 5.1
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2.2 Data requirements
Observed gravity will be the result of two kinds of determinations. The first type will be absolute
determinations with the highest precision possible, while the second will be point values established
by differential techniques based on the former, and with a precision which is about one order of mag-
nitude inferior. The practice adopted in gravimetric determinations is the use of gravity observa-
tions and a knowledge of the surface topography of the Earth to determine the separation vector d
between equivalent points on the reference model, whose Earth space position is known, and the
physical surface of the Earth, as illustrated in figure 1. The separation vector can be completely

defined by the height anomaly h, and the angles ga which are more completely defined in the next

d
sub-section.

The most exacting requirements are called for in the definition of position from gravity when deter-
mining the gecid for ocean physics applications, where present estimates of requirements call for
resolution at the *#10 cm level. The equivalent order of magnitude is e’(i.e., 5 parts in 10*) which
can be assessed as %50 ugal in the gravity anomaly Ag. On the basis of the discussion in the
previous sub-section, it would be adequate to maintain a rotating rigid body model as the system of
reference and apply the appropriate reductions to observed gravity to make the measurements compatible
with the model. The position so defined will be unaffected by short period time variations in the

Earth's gravitational field.

The nature of the reductions necessary will depend on the purpose for which the gravity data is
required, the accuracy with which it has been established and the nature of the elevation data
available for its reduction. Earth tide corrections necessary at stations monitoring changes in

g for global reference system definition (MATHER 1972,section 3.3) should be capable of resolution

to 1 gal. Some difficulty may bte experienced in removing ocean lodaing effects, especially:

in coastal areas, as these could influence the tidal correction in the second significant figure
(HENDERSHOTT 1972). Corrections for short period variations of the atmosphere and the stratigraphy
in the vicinity of gravity stations monitoring the reference system, are also necessary. This pre-
supposes the existence of ''accepted’ models for both the atmosphere and the local stratigraphy, and
the effect meteorological changes may have on them. While Earth tide effects should be allowed for
when making any gravity determination, the summary in section L4 indicates that the effect of omitting
the correction on determinations of position from gravity is likely to be negligible as the tidal
effect has the characteristics of a random measurement error. All further discussion will therefore
assume observed gravity g as having been observed on a rigid Earth, rotating with uniform angular
velocity, the gravitational effects of polar motion being corrected for when using gravity data for

the definition of geodetic reference systems.

The formulation of relations at the surface of the Earth is based on the following principles.

(a) An estimate is available of the geocentric co-ordinates of the point P at the surface
of the tarth. In classical terms, these surface co-ordinates (¢a,Ka) are related to
the vertical at P by astronomical determinations, and can be evaluated at best to a
factor of one or two better than 1 part in 10° (i.e., %6 m in each co-ordinatel.

This estimate differs from the true geocentric co-ordinate by amounts upto 107%* radians
depending on the magnitude of the local deflection of the vertical.

(b) The displacement of P above the eguivalent point P, on the ellipsoid is defined by the
normal elevation hp, which is related to the difference in geopotential AW between the
equipotential datum for elevations (the geoid) and P as obtained from levelling, by
the relation

P
AW = 'J g dz,
geoid

g being the observed gravity for the section of the line of levelling where the ortho-
metric height difference is dz. The equation defining h, in terms of AW is the
relation (e.g., MATHER 1971a,p.100)
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FIGURE 1 : The Separation Yector d and the Reference System
I 2 sinte) of B2, e
h = YO1+BYO(1+m+f 2f sin%o) +(aYo) + olf},

where Yo is the value of normal gravity on the reference ellipsoid, and
aw’ (6),

Ye being the value of normal gravity at the equator, and AW is treated without regard to sign for

points exterior to the geoid.

It has been shown (MATHER 1973,section 4.3) that the data requirements for the determination of the
height anomaly hd with a precision equivalent to that possible in establishing hn are well within the
capabilities of measuring and data sampling techniques available at the present time. Thus position
determination from gravity in any absolute sense

(i) requires a knowledge of astronomical co-ordinates; and

(i1) calls for a global representation of the gravity anomaly field.
The resolution of the fnformation from positional astronomy at the present time will have to improve
by a factor of 50 before the horizontal determinations are of adequate accuracy for the complete
determination of ﬁosition by this method alone. Such a determination will also require the determi-

nations of the deflections of the vertical £, to o{lo-hia} .

It can therefore be concluded that the determination of geocentric position from positional astronomy
and surface gravity to accuracies much in excess of 1 part in 10% may not be a practical possibility
in the foreseeable future. The determination of the height anomaly on the other hand, will remain a
problem of fundamental interest as it forms an integral part in the definition of sea surface topography

from space. The ensuing development will continue to deal with the complete development necessary
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for the determination of position from gravity, but only in outline. ~More detailed review will be

confined to the techniques for determining the height anomaly.

2.3 Basic Relations
The formulation of the Molodenskii problem (HEISKANEN & MORITZ 1967,p.291) can be treated as cne which
seeks the determination of the separation vector 3 between "equivalent' points P(¢g,xg,wp=wo+Aw) on

the Earth's surface and Q(dg,%3,U

=UO+AW) on the associated spherop U=U, of the reference system, as

Q Q

illustrated in figure 1. If the subscripts a refer to values determined astronomically at P, the

separation vector is given by

3 7,

i = REG h
- ugaa TNy

where Ra are the meridian and prime vertical radii of curvature of the associated spherop, 3 are unit
vectors oriented along the tangent plane to the spherop at Q in the meridian and prime vertical resp-
ectively, while § is the unit vector along the outward normal at Q. The subscripts g refer to the

surface co-ordinates of the point P' in figure 1 on the associated spherop U= UQ whose normal passes

through P.

The locus of the point Q is called the telluroid and mirrors the physical surface of the solid Earth
and oceans to order . The system of reference is based on the family of spherops (U=UO+AW)
exterior to the reference ellipsoid defined by the geometrical parameters a and f, and the
gravitational characteristic u(=GM), with the constraint that the surface of the reference ellipsoid
is the equipotential surface U = Uo' As pointed out in section 2.1, there is no necessity for the
ellipsoid to be forced to have the same volume as the geoid (w=w0) provided terms of zero degree were
retained in the solution. In such circumstances it is no difficult to show that (e.g., MATHER 1973,
p.14) the height anomaly (hd in figure 1) is given by

hy = olvy - (W - uo)] + o{1073m) (8),

1
d Y
where the disturbing potential at P is given by

v = W -U (9).

The quantity W_ is defined by the value WO of the geopotential on the equipotential surface used as
the datum for geodetic levelling, and the observed difference of geopotential AW between this surface

at P, by the relation

W= W+ AW,
o

The datum in use at the present time is that afforded by mean sea level derived from tide gauge
readings over periods in excess of one year. As solutions of the geodetic boundary value problem
require definitions which are applicable globally, it is essential that all regional definitions of
mean sea level are correlated on a world wide basis to a common epoch in the first instance before
the differences in geopotential AW can be considered to be referred to an equipotential surface of
the Earth's gravitational field. I't has been estimated that systematic errors of o{£10 cm} could
result in solutions of the boundary value problem if errors on this account were of o{#30 cm} and

each datum covered o{10% km?} (IB1D,p.68).

A second problem of consequence and of which little is known at the present time, is the possibility

of quasi-stationary departures of the sea surface from the equipotential surface defined by the
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results of geodetic levelling. The phenomenon, known as stationary sea surface topography, has been

reported along coastlines in many parts of the world. A summary of some results is given by HAMON &
GREIG (1972), indicating magnitudes of 30-50 cm being commonplace, with one reported as large as 1.7m

over 3000 km. This effect is discussed further in section 4.
The gravity anomaly Ag at the surface of the Earth is defined by
bg = g - Y, (10,

where gp is the value of gravity observed at P, corrected for departures of the Earth from a rigid
body model, as described in section 2.1, and yp,‘is obtained from the equivalent value Y, of normal
gravity on the reference ellipsoid, given by the commonly used relations of the type (e.g., HEISKANEN
& MORITZ 1967,p.79)
_ .2 .2 3
Y, = Ye(l + B sin ¢g + Bysin 2¢g + o{f?®}) (11),

where Ye is equatorial gravity defined by the values adopted for a, f, GM and w(e.g., IAG 1970,p.
48 ;MATHER 1971a,p.87), B = off} and B, = o{f2}, using the relationship (e.g., IBID,p.101)

Y R
Yor =Y 2 {1+ f+m- 2f sin’¢ Ty o{f?}) (12),

AW having the same significance as in equation 6.

Possible sources of systematic error in the computed value of Y , and hence Ag arise in the definition
of ¢9 and AW, While the effect of errors in the latter have already been described, ¢g should be
defined to *0.4 arcsec if Yp' is not to have an error of approximately %= 10 ngal. It is therefore
important to use any of the global solutions available at the present time for the definition of
geocentric position, to evaluate geocentric orientation parametérs for each of the regional geodetic
datums (MATHER 1973,p.16) before computing gravity anomalies for high precision determinations,

rather than use values referred to regional geodetic datums.

The equation described as the fundamental equation in physical geodesy (HEISKANEN & MORITZ 1967,p.86)
defines the relationship between the disturbing potential Vd and the gravity anomaly Ag as (MATHER

1973,p.18)

aV

d 9 1
Ty = - /Ag + Sl'hd [ + 59 z? + o{1 ugal}) (13),

where the terms within the bracket take into account effects smaller than o{f Agl, ¢ being the

deflection of the vertical at the point considered.

The philosophy underlying equation 13 is the contention that the geocentric position of P is not
known, though estimates adequate for the linearization of the quantities involved are available.
Circumstances may well arise in the future where accurate horizontal and vertical surveys may be
available and the principal practical role of techniques in physical geodesy is the determination
of the geoid in ocean areas for study of ocean circulation. In such a situation, it is envisaged
that all the land masses are linked to a geocentric system of reference using laser ranging methods
and/or VYLBIl, giving at least one fundamental station on each geodetic datum. Horizontal survey
methods together with geodetic and astro-geodetic levelling, will provide data for completely
defining geocentric position of points on any regional network which includes at least one

fundamental station, with an accuracy of 1 part in 108, As surface ship locations can be routinely
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determined to within one order of magnitude greater, it is of relevance to examine the gravity dis-

turbance S8gf{e.g., HOTINE 1969,p.312), given by

aVd 1
= - n = [ —_— 2 {
&g 9, o oty est ¢t ofl ugal} (14),

where the uncertainties in defining the position of P can be estimated as #0.2 arcsec in horizontal
position and #2 m in normal displacement, if the astro-geodetic levelling is based on an adequate
distribution of stations. The effect of errors due to the first source on &g are ol{1 ugal}l while
that of those due to the second are o{5x10° ugal}.  Thus the gravity disturbance, whose order of
magnitude is not significantly different to that of the gravity anomaly, is likely to have errors
of of{5x10% ngal} which are probably correlated with wavelengths in excess of 1000 km (e.g., MATHER,
BARLOW & FRYER 1971,figure 4.2) uniess radically new techniques are available for determining

either geocentric position at each gravity station such that the radial component
is resolved with systematic biases of wavelengths longer than 1000 km held to
below the 20-30 cm level;

or the contribution of astro-geodetic levelling with the same resolution as
geodetic levelling.

The projection of present day techniques does not lead to the conclusion that there would be sig-
nificant advantages in using the gravity disturbance 8g in preference to the gravity anomaly 4g in

formulating solutions of the boundary value problem.

The separation vector g, illustrated in figure 1, can be represented by components along the axes of

a local Cartesian co-ordinate system X at Q, with the x3 axii oriented along the spherop normal at Q,
as illustrated in figure 2, in accordance with equation 7. d is of importance in defining the geo-
centric orientation vector 8 for regional geodetic datums using surface gravity data (MATHER 1971b,
p.62). A description of how such information could be used to assemble a world geodetic system
linking the major land masses by comparing the separation vectors as obtained from gravimetry and

astro-geodesy is given by MATHER (1971c).

The mainstream of practical endeavours at the present time is in the determination of the height
anomaly hd. Over 90% of the power in such determinations comes from the ''free air geoid' Nf,
obtained by the use of free air anomalies (i.e., surface gravity anomalies to the order of the
flattening) in Stokes' integral which is set out out in equation 15. The latter is a solution of
the boundary value problem for a spherical Earth which is exterior to all matter and whose bounding

surface is an equipotential (STOKES 1849).

The deflections of the vertical Eu are usually obtained using the principles generally attributed to
VENING MEINESZ (1928). Working on a spherical reference system, he showed that if the separation Nf

between the physical and reference surfaces were given by Stokes' integral

Ne, = 1*%” f(4) 0g do (15),

where Ag is the value of the gravity anomaly at the element of surface area do on unit sphere which
is at an angular distance ¥ from the point of computation P, f(y) being Stokes' function (e.g.,

HEISKANEN & MORITZ 1967,p.94), then
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Figure 2. The Separation Vector and the Local Cartesian Co-ordinate System
as illustrated in figure 3, where X is a two dimensional Cartesian system in the horizontal plane at
the point of computation P, with the x4 axis oriented north and Xy axis east. It is not difficult
to show in the case of Stokes' problem that
o[t
EOL = W)J T cos AOL Ag do (17),
as
9 1 9
vy TR W cos AOC (18),
o
where
‘ Ay = o and Ay = 3T - @ (9,
o being the azimuth of do from P. This follows as only § in the kernel of the integral at 15

varies as the point of computation changes from P to some adjacent point Q in the case of the Stokes

problem.

The required expression for the Molodenskii problem is not the same as the elevation hp of P appears
in the kernel of the integral. As the deflection of the vertical at the surface of the Earth is

obtained from the height anomaly hd (IBID, p.312), which is given by
hy = hd(q;,)\,hp) = hd(w,occ,hp) (20),

where o is the azimuth of P from the element of surface area do, it can be shown that (MATHER 1971c,

b.88)

£ = .]_ ?_'id ﬂ)_ Eid % (2])
a h | 3y 3u d0_ 3u ’
o (¢4 g o

Uy being the set of curvilinear surface co-ordinates on the reference surface, and hu the associated
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Rdy

Figure 3. The Vening Meinesz Problem
linearization parameters. For the latitude-longitude system

up o=@ f u, = 7 (22),
while

h1 = R H h2 = R cos ¢ (23)
for a spherical approximation of the Earth. In the case of solutions to order e°,

h] = o o+ h; hz = (v + h) cos % (24),
o and v being equivalent to the Ru defined in equation 7. The detailed development of solutions of

the boundary value problem in this case use the geocentric latitude bc instead of the geodetic
latitude ¢, all parameters referring to quantities relating angular displacements between the geo-

centric radii to the pole P and d-.

As explained above, the principal task in determining position from gravity is the definition of the

height anomaly h which is equal to the geoid height N in ocean areas, where /W = 0. The next

4’
section deals in summary with some of the methods which have been proposed for defining the height

anomaly.

3. Techniques for the Solution of the Boundary Value Problem

3.1 Introduction

Attention will be confined to three techniques whose use to obtain solutions to the boundary value
problem have been extensively reported in the literature. The methods considered deal with
formutations of solutions to what is known as Molodenskii's problem, at the physical surface of the
Earth. It s not intended to formulate solutions for surfaces other than that of the Earth, e.g.,

the geoid, obtained by defining N instead of hd' Neither is any attempt made to discuss the merits
of regularization (e.g. MOLODENSKI| ET AL 1962,p.45),  where the conlitions applicable to Stokes'
problem are artificially created by the transfer of mass to within the geoid. The main advantage
claimed for such techniques is a utility which is desirable when the surface gravity coverage is

poor, as the adoption of certain types of mass transfers enables a more reliable prediction of gravity

anomalies for the chosen model. The validity of such claims is open to question if the end-product
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of the calculations is to be a meaningful determination of positional parameters, which can only be

as good as the available data.

The three techniques which will be covered, ostensibly do not require a knowledge of the stratifi-
cation of matter within the Earth, defining solutions in terms of an "adegate sampling' of the gravity
field at the surface of the Earth, in conjunction with a complete definition of the associated
topography. They can be classified as

1 Surface layer solutions;

(1)
(2) Solutions from data sampled at discrete points on the Earth's surface; and
(3) Solutions from Green's third identity.

It is of interest to summarize the basis of each of these methods.

3.2 The Surface Layer Technique

This method, initially developed by Molodenskii (MOLODENSKII ET AL 1962,p.118 et seq.) was first
published in 1949. Considerable material is available on the problems associated with the practical
use of this technique by MORITZ (1966; 1970; 1972) and members of the Soviet school (e.g., BROVAR
1964 ; MARYCH 1969; YEREMEFY 1969; PELLINEN 1972). The derivation calls for the representation of

the disturbing potential V, at the surface of the Earth by a surface layer of density ® such that the

d
former can be represented at any point P either on the surface of the Earth or exterior to it by the

relation
d
Vap = ”s - ds (25),

where there is no restriction on the shape of the surface S. It can be shown that

3V

(——ﬁ} = - 219 cos B+ 41—(»([ kil dST (26),

3h P p hoi Her J
where the subscript _ refers to evaluation at P, Bp being the ground slope at P.  The first term on
the right appears because of the indeterminance at P itself. The inner zone in this region is
treated as a disk (e.g., HEISKANEN & MORITZ 1967,p.129), the negative sign being introduced as the
outward derivative is required, while the attraction of the disk is toward the geocentre. The cos B
term allows for the slope of the surface of the disk with respect to the vertical. No approximations

are involved in the derivation of equation 26.

The ensuing development which is well documented (IBID,p.300) can be summarized as follows, on

retaining those terms whose contributions are greater than o{fhd}. On using equations 8,13,25 and
26,
W=-u_
oY 3 |1 1 Y 1
Ag = 270 cos B - —=——° T] - U (a—h(—] - = [—-h— —|® ds + off Ag} (27).
P P v, B, L)y, R, Y
As
NN 2 13y
Z = - — 28
Yp[ah]p Rp+0{fy8h} (28),

and
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1
r = (R + R® - 2R R cos §)? (29),
p p
it follows from figure 4 that
CA A R ) RO N L -]—[R-Row)—-——%R N S
3 r) T OBk F T OR T T T T Rees Tt PN W
P p p p p
Thus 2 2
R? - R
3 1? 1[5y 3 p 1
— = - == = = + + off — } (30)
3h { [ah 2R r 3 R r
pt ") Tptohip T p 2Rpr

Equation 27 can therefore be written as

W
-2

Ag = 210 cos R
S p P Y (2R r 2R r3
P

- Uy 3 R? - R®
° (—l - ” ( + P_ ¢ ds + off Ag} (31).
(oh R j
P P P .
The solution suggested by Molodenskii for equation 31 is based on the method of successive approxi-
mations where the surface of the Earth (S) is transformed into the surface S using a parameter k
which specifies the relationship between the geocentric radii R and R to equivalent points on S and S

by the relation (MOLODENSKI| ET AL 1962,p.120)

R o= R_+ k(R-R) (32),
where Rm is the mean radius of the Earth and 08 kst Thus § and § coincide when k = 1,
while the classical Stokesian case in which no topography exists exterior to the ggoid, is obtained
when k = 0. This is equivalent to scaling all elevations and grades by k from h and tan 7 to h and
k tan B where

h = kh,

and the related angle B is given by

T+ kPran?)h) (33).

o
]

COs

Other relevant conversions are

1
1l

(r; + k2(h - hp)z)% + offr} (34),
where o is the expression for the spherical case, given by

o = ZRmsin B2 (35).
Molodenskii simplifies the solution by introducing the parameter X defined by the equation

R2
X = EZ ¢ sec B (36),
m .
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which, when taken in conjunction with the relation
d$ = R2%do sec B (37),

where do is the element of surface area on unit sphere, enables eguation 31 to be written as

R; Mom U (ay 3R% . R; R? - RZ
Ag = — 21X cos?8 - =2 T c IR 2 do P ( ———;——P x do + olf Ag} (38).
Ro P P "p My p 0" p’ r

It can be shown that (IBID,p.121) that if X were expanded in a power series of the form

X, k

Ho~18

and on introducing a set of functions Gi‘ the use of equations 33, 34 and 39 in equation 38 gives

the system of integral equations

wo_ Uo 3 [ Xi
G, = 21r><i + 2——R—- - 7Rm,J? do, i=1, (ko) ,
m o
on equating the coefficients of k', and as RZ - R; = 2R (h - hp) + offR?}.  The quantities

Gi are obtained in this manipulation as

h - hp
G, = R? ” do (42),
m rg ><o

with more complex expressions for higher values of i (IBID,p.122), being of the form
Gi = Gi(h’hp’ %’Xl’ ........ X(;-])) (43).

Equation 38 reduces to equation 40 when h ='hp =0 and B =0. The Molodenskii problem is
equivalent to Stokes' prcblem in such a case, the solution of which is equation 15; which, on taking

zero degree effects into account (MATHER 1971c,p.85), can be written as

W-u R

- _ _ o o _ M{ag} m
Ne = V[Vd + W UO) = Y R, i TTT_Y_” f(y) 2g do (4h),

where M{Ag} is the global mean value of Ag. The substitution of equation 25 in equation 40, in an

appropriately modified form gives

3V .
ot o= le w5 (1)
m

on adoption of the representation
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. © . X
vy o= L Ky o= ZO ” k' =" do + offy } (46).

The second equality in equation 46 would be consistent with equation 25 only if there were no topo-
graphy. If this inconsistency were removed (MOLODENSKIF ET AL 1962,p.123), the final expression for
the height anomaly would be aseries in G, embedded in the form set out at 44 with some topographic

correction terms whose effects are purely local in character and need only be considered in areas of

rugged topography, being functions of r;3, the series being obtained when k = 1. In this case,

W-u R :

o o M{G} m JJ (47)

= - —F f G do + T ,
hd Y Rm Y Ly (W)
where
. (48)
6 = _Z G,
i=0

and T are the series of topographic correction terms whose form is given by MOLODENSKII (IBID).

MORITZ (1966,p.91) has given alternate forms for G1, and shows that if the gravity anomalies are
linearly correlated with elevation, G1 reduces to the terrain correction. Thus the combination of

equations 42 and 45 gives

R h-h : , (h = h) (i9)
G] = 2—17_” ——-——Fr3 Ag do = 57 0 Rm JJ ——————Lrs dg s
o
o

the second equality being based on the assumption of linear height correlation of gravity

anomalies (1BID,p.88).

Notes
(1) This technique will be practically effective only if the contributions of
the higher G; are significantly smaller than those obtained for | = 0 and
1. The evaluation of any particular G; presupposes a knowledge of all

Xj(j < 1), which in turn are defined through equation 45. The solution
is therefore iterative, and as the series in X; 1s theoretically infinite,
it is desirable that

x;, = ol107!

X;-]} (50)

for efficient practical evaluation. As G, is the gravity anomaly, the first
iteration gives the free air geoid, which contains over 90% of the power in
the solution. I't should therefore require only three iterations to obtain
a solution to order e’ in hg if equation 50 were satisfied.

(2) There would be little difficulty in meeting this criterion if the ratio
(h - hp)/r0 = of{1071}.  As the oceans comprising 70% of the Earth's surface
and non-mountainous regions make little or no significant contribution to
topographical effects, the magnitude of the corrections to the free air
geoid would be small if the above criterion were satisfied. All topography
with grades in excess of 59 pose problems in this respect when they occur
within a few km of the point of computation, distant zone effects being
rapidly submerged by the r; term. Also see section 3.5
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(3) Serious embarrassment is caused when slopes exceed #4T. Divergent series
are obtained, making an iterative approach unstable. Discussions on the
problem of convergence are available in the literature (MORITZ 1970;
MORITZ 1972; KRARUP 1972). For a further discussion see section 3.5

(4) The quantity G can have no first degree harmonic, as the solution of

Stokes' problem forbids the existence of such harmonics. Consequently the
reference ellipsoid used for computing normal gravity is situated at the
centre of mass of the mass distribution needed to produce values of gravity
at the surface of the Earth which would give rise to a gravity anomaly dis-
tribution equivalent to that of G. The writer is not aware of any detailed
investigation of this problem but it is unlikely that the nett effect would
exceed o{5%10 cm}.

(5) The extension of this theory to orders of accuracy greater than that of the
flattening is possible in theory. Such a solution could be obtained on
including all effects of relevant magnitude in equations 27 and 28, and on
allowing for the existence of the atmosphere, noting that Stokes' integral
is strictly valid only if there is no mass exterior to the phsyical surface.
In addition, it is necessary to take into account the Earth's ellipticity,
when utilizing the orthogonal properties of surface harmonics.

3.3 Solution from Discrete Values
This technique was originally proposed by Bjerhammar who summarizes the problem as follows (BJERHAMMAR
1964 ,p.14).

"A finite number of gravity data (gravity anomalies) is given for a non-spherical
surface, at it is required to find such a solution that the boundary values for
the gravity data (gravity anomalies) are satisfied in all given points."

The Bjerhammar problem is differently posed to that of Molodenskii and a different approach is used

for the representation of the gravity anomalies at the surface of the Earth. Working on the basis
that the representation of the surface gravity field can only be in terms of samples taken at

discrete points at the Earth's surface, Bjerhammar proposes the interpretation of such data in terms

of a set of model anomalies Ag* on the surface of a sphere of radius Ry which is less than or equal

to the polar radius of the best fitting ellipsoid. The appropriate requirement in Earth space is

that any point on the Earth's surface lies exterior to the sphere of radius Rp (the Bjerhammar sphere),

whose centre is collocated with the geocentre.

The technique of solution can be summarized as follows. The surface of the Bjerhammar sphere is

partitioned into a grid, each element of which has a surface area Rédo, and is represented by the

model gravity anomaly Ag*, assumed constant over the area. The disturbing potential Vdp at any
exterior point P whose geocentric distance, as illustrated in figure 4, is Rp, is given by
R? @ R yn
_ b 2n + 1 b
Vdp v JJ Ag Z [R ] Pno(cos V) do (51)
p n=2 n -1 p
under conditions applicable to Stokes' problem. Ag* obviously cannot have a first degree harmonic

and the possibility of satisfying this condition in conjunction with the geocentric collocation

of the Bjerhammar sphere is subject to the same arguments as outlined in note 4 to section 3.2.

The observational data is in the form of gravity anomalies Ag as determined at discrete points at

the surface of the Earth. Using the fact that Poisson's integral
_ n2
Rb(kE Rb) H
Ho = " ~ dg (52)
P kij r3
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applies without approximation to any function H which is harmonic exterior to the Bjerhammar sphere,
is is possible to define gravity anomalies g at all exterior points, if a surface distribution of
the data set Ag* were available on the sphere. Alternately, if Agi are the gravity anomalies
measured at the surface of the Earth, the equation defining Agi in terms of the Ag* is obtained from

equation 52 as

R, (RZ, - R2) Ag%
b b
Ag., = -——75%%———~—— Z ——%— do. (53),
I m H [ J
P J ij
where ro is the distance between Pi on the Earth's surface, with geocentric distance Rpi’ and the

surface element doj on the Bjerhammar sphere.

VERTICAL

VERTICAL

GEOCENTER

Figure 4. Relations for r

Equation 53, called the discrete integral equation by BJERHAMMAR (1968,p.6), can be treated as a set
of observation equations which can be solved by standard techniques for the elements Ag*. The tech-
nique is subject to certain practical difficulties when tested on models with heavy point masses
between the sphere and the Earth's surface (IBID,p.67). In such cases, Bjerhammar advocates the
use of the disturbing potential rather than the gravity anomaly in equation 53, presumably by
recourse to an iterative procedure. The validity of the technique hinges on whether the disturbing
potential computed at all points Pi at the Earth's surface due to the Bjerhammar system is identical
with that due to the Earth. For a summary of the proof of this condition, see (BJERHAMMAR 1969,
pp.452-6)..
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The instability of the inversion procedure due to the nature of gravitational attraction and its
susceptibility to large masses locally (e.g., mountainous regions) led Bjerhammar to suggest that
the more stable disturbing potential Vé on the Bjerhammar sphere be used as an intermediary in the
solution on the following lines (IBID,p.498 et seq). The disturbing potential V. at P. on the

Earth's surface is given by equation 52 as

R, (R°, - R?) Vi
le = : plﬂ > JJ :} do QSA)'

I

As
v R 4RZ ¢3 - 3r. (R?P - R2 + r2)(R* - RZ) oV
d} b i i b p b . 2 d
e s Il - Vi do o+ ol izt (55),
i

2 N
R (] 4R, 3(R?. - RY) R®. - R’
_ b (( [ pi b pi b «
by, = E—R;T'in _:% =S + = vido o+ off Ag} (56).
S i i i J

Equation 58 is simplified by differencing V% from the value Vgo which is the value of Vé at the

d
point on the Bjerhammar sphere corressonding to P. It can be shown (1BID,p.499) that equation 56 can
be transformed to . .
R, Vi R SRZ. - R 3(R%. - R%)’
Ag. = - b_do _ b (( pl b p! b2 [ (vs - v Ydo + off Agl (57},
i , 8 R . P oS d do
R pi L i i J
P
which is a generalized version of the Molodenskii inverse of Stokes' integral (MOLODENSKII ET AL 1962,
p.50).
llotes
(1) The use of this system would, at first glance appear to be a prohibitive
task. This is not the case as the terms being integrated are scaled by
r™3 and hence only limited regions need be considered around each primary
point at which evaluations are made. Details of tests in the West Alps

using a 5°x 5° area with a 15°x 159 buffer zone, with basic sub-divisions
of 5'x §', are given by Bjerhammar (I1BID,p.508), an iterative procedure
being used to recover fg=.

(2) The intellectual elegance of the method is enhanced by its ability to
combine al! manifestations of the Earth's gravitational field into a single
solution entity. |t must be added that this same end can be achieved by
using the methods proposed by KRARUP (1969), though the problems associated
with practical implementation have yet to be tackled in the case of high
precision determinations

(3) The factors which have to be taken into account to extend the solution to
orders smaller than that of the flattening are similar to those outlined
in section 3.2(5)

(4) The solution, like that from Krarup's method, is unique for a given dis-
tribution of data. This of course, doen not mean that the answer obtained
is correct to the order of accuracy with which the problem is formulated. Data
needed for solutions of the boundary value problem are dealt with in
section 4.

(5) For completeness, the solution should incorporate terms of zero degree as
in section 3.2.
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3.4 Solutions from Green's Third Identity

Considerable work has been done in this field (e.g., ARNOLD 1959; KOCH 1965; MORITZ 1965; MATHER 1971c).
The basic integral used is Green's third identity which is obtained by the application of Green's
theorem to two scalars r~1 and W which is harmonic in the volume Ve exterior to a surface S. On
combining the gravitational and rotational effects (e.g., HEISKANEN & MORITZ 1967,p.15), the final
expression obtained for the gravitational potential (Np) at a point P on the surface S, on the

assumption that all matter is contained within S and rotates with constant angular velocity w, is

W= ” {l VeN W - W VN l]ds - 22 ”J 1 av, (58),
p 2m ) r r r
where = R > . . .
Vv = = i being unit vectors along the axes X, of ‘a Cartesian co-ordinate

system and r the distance of the elements of surface area dS and volume dVi interior to S, from P.

A similar expression is obtained for the potential Up at P due to a gravitating ellipsoid of reference
which has the same gravitational characteristics as the Earth, including rotation. On considering

the same surface S which is that of the Earth,

IR > > 1 2 1

v, "EF}I [F—VNU UVNrJdS 2w J”rdvi (59),
>

N in both equations 58 and 59 being the unit vector normal to S at dS. Both equations hold exactly
if Uand W are harmonic exterior to S. This condition requires that no matter exists on either
system exterior to the Earth's surface. The practical consequences, which are of significance when

resolution approaching the order of the flattening is sought as the end result of computations, are

the following.

1. The reference ellipsoid must always liec within S. As S councides with the
ocean surface over 70% of the Earth, the reference ellipsoid must be smaller
than the ellipsoid which best fits the geoid by an amount greater than the
largest negative geoid undulation if no condition is to be be imposed on the
mass distribution within the equipotential ellipsoid.

2. There should be no atmosphere exterior to S if equation 60 is to hold to
accuracies in excess of order lO'ZVd.

3. Both the reference ellipsoid and the Earth are assumed to rotate with the same

constant angular velocity w. frregularities in the Earth's rotation have to be
allowed for as corrections to observations in instances where such magnitudes
are of significance. For details, see section 2.2 and 4.

The practice to date has been to treat the atmospheric effects as those which should be modeled

and allowed for as corrections to observations prior to use in computations {(e.g., !AG 13970,p.18).

In a recent solution MATHER (1973,p.28 et seq.) formulated a solution of the boundary value problem
to o{eahd} by separating the gravitational effects of the atmosphere from those of the solid Earth

and oceans.

In conventional solutions, the disturbing potential Vd is obtained on differencing equations 58 and

59, when

Tl v, |ds (60).

=

- - - R
Vgp = My - U = 2ﬂ”[vd§Nr
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This equation is not valid to orders smaller than 0{10_2Vd} as it assumes the geopotential to be
harmonic outside S. A function which does satisfy Laplace’s equation exterior to S is the potential

W' due to the solid Earth and oceans, which is related to W by the relation

Wooe W - v (61),
a

where V_ is the potential of the atmosphere, which is of order 10'6w, and more significantly,

v = o{1o‘zvd}. As such, it is desirablie to construct a theory which allows for its existence

in the course of the derivation.

The final solution using this technique can only be obtained by iteration, the number of iterations
required, as in the surface layer method, being a function of the accuracy sought. Favourable
conditions for the adoption of an iterativeprocedure are the following.

a. A significant amount (> 90%) of the power should be generated in the first
iteration.

b. The iterative procedure should have the ability to converge to the correct result.

c. The number of iterations necessary for achieving the desiring degree of resolution
should be as small as possible.

When surface gravity is the sole source of information, the only procedure available for obtaining an
adequate first approximation to the height anomaly hd is the use of Stokes' approach. Fundamental
to this technique is the assumption that the disturbing potential is harmonic exterior to and on the

surface S, and therefore can be expressed in the form

o /\
o n
v, = | , n#l (62),
d heo Rn+1
where
n
A= ) A (63),
n nm
m=0
and
A = P (sin¢ ){C cosmr + S sin mk) (64),
nm nm ¢ Vnm nm

the last equation being the standard expression for a surface harmonic.

The adoption of this model enables the combination of the effects of the disturbing potential Vd and
its vertical gradient avd/ah on using equation 13, thereby transforming the formulation to a rep-
resentation of the observed quantity, the gravity anomaly Ag. Details of the problems involved in
obtaining a solution of the boundary value problem to order eahd are dealt with by MATHER (1973,p.31
et seq.). To preserve flexibility in the formulation of results to any required order of accuracy,
it is desirable to retain physical relevance in the derivation by constructing the integral at 60

such that the disturbing potential Vd is replaced by the qguantity
A A (65),
where Va is the potential of the atmosphere.

A generalized solution which did not consider either the existence of the atmosphere or the fact
that the potential of the geoid was not known, the latter being disregarded after due consideration

as a quantity which correctly cannot be determined from gravimetric methods alone (MOLODENSKI| ET AL
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1962,p.104), was formulated by Molodenskii in 1945 (1BID,p.93). A specific solution was given by
ARNOLD (1959), which could be written as

R R?

m 1 . dh
hdp = Eﬁ%‘JJ (Ag - v Eatan Ba)f(w) do + 557~JJ :3[(hp- h) + R sin ¢ a?-vd do (66),
o

where Ea are the components of the deflections of the vertical, f(¥) is Stokes' function, tan @xbeing

the components of the gradient of the ground slope in the north and east directions,

dh  _ ) 6
o - cos Au tan Ba (67),
where
Al = o ; Al = 34T - o (68),
and r0 is given by equation 35. A revision of the derivation to the order of the flattening
showed that (MATHER 1971c,p.85)
W= R R’ v
- o __o_ Misg} m n 1 - i dh (d | tan Bldo
hdp = 7 Rm - + Ty f(Y) Ag do+ Ty r (hp h)+RmS|n wdr :7 Y Eu %
o
(h - h)y?2
+ off h,} if [-JEF——~J= olf} (69),
o
and Laplace's equation were satisfied to off $2Vd} at all points exterior to and on S.  Equations
66 and 69 would then be equivalent if
1 1
— £ ! = — .
3 J( Y £, tan B F(V) do R fIroY £ tan 8 do (70)

The effect of the terms common to the kernels of the integrals on either side of the equality in
equation 70 can be expected to arise from only 30% of the surface area of the globe. Significant
contributions to hd will be restricted to only about 5% of the surface area, being about one order
of magnitude smaller than Ag if ga = 0{10-“} and tan R = 0{10—1}. The high probability of
correlation between the signs of Ea and Ba in regions where the latter is significant magnitude,
indicates that this effect is likely to be always positive. As hy = o{10%m}, it is realistic to
estimate the effect of the above term as o{5x10 cm}, the effect being consequential if regions of

mountainous topography occur near the point of computation.

The first term in the second integral at 69 converges much more quickly with increase of s and can
be treated as a purely local effect. The advantage of the solution at 69 over that at 66 is the
fact that all terms due to the interaction between the ground slope and the slope of the equipotential
can be treated as purely local effects, giving solutions where the neglected effects do not have mag-
nitudes much in excess of the order of the flattening. Another advantage of the solution at 69 is
its unambiguous definition in Earth space as the Stokesian term defined a contribution with reference

to an ellipsoid whose centre is at the geocentre of the Earth with no atmosphere.

The generalization to order e’ in hd (i.e., #5 cm) deals not only with the effect of the topography,
the interactions between the slopes of the topography and the equipotential surfaces of the Earth's

gravitational field, as well as the atmosphere, but is also in keeping with the physical
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characteristics of the scalar potential (MATHER 1973). It also establishes the nature of the re-
lationship between the Stokesian term and the indirect effect without limitations imposed by the
simplistic approximations permitted by the adoption of a lower order of accuracy and identifies the
anomaly to be used in Stokes' integral. The geometry of the solution is also specified in Earth
space, as the centre of the reference ellipsoid is located at the centre of mass G' of the solid
Earth and oceans, whose co-ordinates X;i with respect to a geocentric Cartesian co-ordinate system

are given by (IBID,p.26)

M

- M
Xei = mo Xai (71,
e

where Xai are the co-ordinates of the centre of mass of the model adopted for the Earth's atmosphere,
Ma and Me being the mass of the atmosphere and the solid Earth and oceans respectively. The final

formulae obtained in the solution referred to are summarized below.

hap = Neg + Moo (72},
where the Stokesian term pr is given by
W~ U M{Ag } -
o) o) = [ R (
= - A
e, T RS J/ F) g, do (73),

Yp being the value of normal gravity at P' in figure 1, R being the radius of the Brillouin sphere

whose centre is collocated with the centre of mass of the solid Earth and oceans G', and contains

the solid Earth and oceans. The gravity anomaly Agc is defined by
9. = g, +Ag, . (74),
where
SVa Va
Ag1 = Ag + _rh + 2 ﬁm (75)7

Va being the potential of the atmosphere, and

A ZVC; 1 e BAg 3 1
g = R0 T 79 rARSE volen) e,
if
1 2 3A
fidR) _Tﬁfi =  ole’ag)
where
dR = R - af{l - f sin2¢c) - h + off dR} (773,
2 3% £, tan ¢ N
by B sig
T ) = 5 25 o+ off T } (78),
a=1 o m m
and
¢y = f + m - 3f sin2¢C + off?} (79).



141

The angle ¥ is computed in calculations to o{e3hd}from the geocentric latitude ¢C and longitude X as

-1, .
] —;cos (sin ¢C sin ¢cp + cos ¢C cos ¢cp cos dXA)

where
dr = A - A

(80},

(81},

the value without subscript referring to do, and those with subscript b to the point of computation

P. The indirect effect NCp is given by

v 2 (V! x_tan B
_ _ap 1 R d , a a1 dRy _ _ 9lg
o =7 + Ty JJ - {3;— tan BQ PV 7R B(CA + 3 R} o dRah + Ag' oyt
p P o r
2
ofe’ag}| do if —;-(dR)2 égﬁ% = ofe®Aq}

r being the distance between do and P, R being the geocentric distance, given by

R =afl - f sin2¢c) + h + o{f?R}

and h the ellipsoidal elevation. The other expressions which need definition are
ov! 5y
= - 9Y 2
5;& tan 8, = Y £, tan B+ Ng 5, tan B, + o{f?Ag}

the two dimensional co-ordinate systems X having the same significance as in figure 2,

X dh
= tan Ba = = (1 + cx)snn v I

where dh/dr is defined by equation 67,

_ _cos(3¥ - 8)
c = T -1
X cosizy + +
2 sin § sin Y - %;—COS(%w + 6)
= - tan! A: + off2tan 6}
{ 2 cos & sin sy + ?r-sin(%w + 6)
m
N %‘%?- cot 3 -~ & + off?} if v o> 5°
m
AR = R - R
P
and
§ =f sin 20 cos o_ + o{f?}
c (o}

The term & is given by

o
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b = (R Recos(v+8)] -1 (90),
rob p J
and
dR
1 + 27?
c, = -1 (91)
A : ’
(1 + c—r—)
where
5 dR + dR
L TS (92),
v Cr ) m
and
¥ = 2R sin W (93)
Notes

(1) The adoption of an iterative procedure to solve equations 72 to 93 cannot be
avoided. See note 1 to section 3.2 for background. Mather (IBID,p.49 et
seq.) has suggested an iterative procedure which should require three stages
in the computation for determining N_ to 5 parts in 10° (i.e., ole’h }),
while the Stokesian contribution neeg be evaluated only once, but in two
stages.

(2) The first two terms in equation 73 are of zero degree and are meaningful only
when the surface gravity field is sufficiently well defined to give an adequate
value for the global mean surface gravity anomaly. Present day solutions
which are heavily dependent on satellite determined low degree harmonics of
the Earth's gravitational field, are insensitive to the effects of these terms.
For a further discussion of zero degree effects which would be of conseqeunce
in solutions based on adequate distributions of surface gravity data alone,
see section 5.

(3) It could be construed that the conditions attached to equations 76 and 82 are
a limitation on the development outlined above. The relevant terms which are |
omitted have a nett differential effect of

1 (1 - R?) 2 3%Aq
WJJ szf(W) rJ(dR) ——a?— do
on h, which would be negligible if the quantity 3%Ag/3h? had random error
chapacteristics over areas larger than 10" km? with magnitudes of order
107° mgal m %, which is only one order of magnitude smaller than that of
3%y/3h*.

ey The components of the deflections of the vertical £ are computed on the
principles outlined in equations 16 to 2h. A series of expressions which
include effects with magnitudes of the order of the flattening are given by
MATHER (1971c,p.86 et seq.). Such expressions should be adequate for the
evaluation of hy to ofe*hy}, but fail if accuracies of this type are required
from the deflections themselves. Extension would principally require the
use of an ellipsoidal co-ordinate system and a more careful evaluation of
some of the higher derivatives of characteristics of the gravitational field
which have been assessed as having insignificant effects on the height anomaly.

3.5 Conclusion
The formulation of a solution of the boundary value problem at the physical surface of the Earth, in

contrast to Stokes' problem where there is no topography exterior to the geoid, calls for the
evaluation of ''topographical' terms which arise as a consequence of

(a) departures of the Earth's surface from a level surface; and

(b) elevation of the point of computation above or below the surrounding topography.

The first effect has contributions with long wavelength which, on present assessment of geoid
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determinations, should not have effects in excess of o{50 cm} unliess rugged topography occurs in the
vicinity of the point of computation. The second effect is a purely local one as it is scaled by

the factor r'3, as seen in equations 42, 57 and 69.

The limitation in theory of the surface layer method is the heavy reliance it places on the convergence
of the series in Gi’ defined at 43, in the mathematical sense. It may appear to be paradoxical in
practical terms, that the slope of the topography of distant areas, which at least to a first order

of approximation, are in isostatic compensation, can affect computations of the height anomaly.

These terms occur because the gravity anomaly used in computations and defined by equations 10 and

11, reflect the mass distribution of the Earth as it exists. If, on the other hand, a suggestion
similar to that made by DE GRAAFF HUNTER (1958) calling for the smoothing of the topography such that
slopes in excess of 59 did not exist, were adopted, there would be little to choose between the
methods outlined in this section for the solution of the boundary value problem. In such a case,

each of the iterative methods mentioned would not require more than three iterations to achieve a

5 cm resolution in hd'

The conclusion that a model had to be adopted for the topography was also reached by MORITZ (1972,
p.49) after a detailed study of the convergence of Molodenskii series. This approach has in the
latter half of this century, become anathema to physical geodesists (e.g., MOLODENSKII| ET AL. 1962,
p.118) as it involves making assumptions about the density of material comprising the upper layers of
the Earth's crust. In contrast, the quantities Ag, h, tan B and aiAg/Bhi must be considered those
which can be observed. fn this sense, the solution described in section 3.4 exhibits favourable
convergence characteristics, as the solutions involved are not open ended, but controlled in magn | tude
as terms in a rapidly convergent power series in the parameter f (= 0{1073}). In practical terms
however, the higher differential coefficients BiAg/ahi are unlikely to be determined with sufficient
density to be of practical use, and the adequacy of eguation 69 will depend largely on the magnitude
and wavelength of the series (i!)-]hi(BiAg/Bhi). Cumulative magnitudes of o{#0.5 mgal} with wave-
lengths of 100 km or less can be considered to be acceptable for solutions to order eahd, as
discussed in section 4.

Reverting to the question of smoothening the topography in order that grades do not exceed 10_], the
following problems will have to be attended to if such a procedure were adopted as everyday practice
in physical geodesy

(a) The principles underlying the transfer of mass and their associated
consequences should be clearly defined.

(b} The question of assigning a density for each element transferred will
have to be dealt with, as the resulting corrections to observed gravity
will depend on the model adopted for these masses.

If such procedures were deemed to be necessary, it would be madatory to adopt a model for the Earth

with surface slopes less than 5°. The transfer of matter to achieve this goal will change both
observed gravity as well as the location of the center of mass of the physical system. The exact
numerical values of the corrections made will depend on the principles adopted for the mass transfer.

Physiral geodesists advecating this type of approach will have to face up Lu Lhe philosophical
problem of which elements of topography to flatten out or fill. It is most important that a single
model be adopted in order that the geodetic community is not subject to a confusing variety of
results which are not in agreement, not because of significant factors, but merely as a consequence
of the adopted smoothing procedure. The limited surface gravity data available at the present time
continues to keep the above problem in the area of academic interest alone. It is one in which

continued discussion is to be encouraged.
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The solution of Molodenskii's problem by means of analytical continuation (MORITZ 1969; MARYCH 1969)
has not been dealt with as it has been shown to be eguivalent to the solution obtained using the
surface layer approach (MORITZ 1970). Another method which may prove to have some benefits is the

use of numerical integration techniques, on which published material is hard to come by.

4, Practical Considerations

4.1 Introduction

Practical considerations fall into two distinct categories. The first concerns the optimum
sampling of data in order that the necessary precision can be achieved in numerical computations.
The second is the extraction of the most probable results from whatever (inadequate) data is
available. The second falls beyond the scope of this review and is covered elsewhere in this
Symposium. One exception is the use of Molodenskii and Cook truncation functions to obtain the

maximum information from satellite determined gravity anomalies and local gravity fields.

The problem can be summarized as follows. Over 90% of the power in hd comes from Stokes' integral.
Many regions exist where dense local gravity fields are available, but where beyond some 1imiting
angular distance wo’ the available gravity data from the analysis of the orbital perturbations of
near Earth satellites on combination with whatever surface gravity data exists, can be represented
as a set of surface harmonics of the type given in equations 63 and 64. The free air geoid at

equation 73 can be written as (MOLODENSKII ET AL 1962,p.147)

W - U o
o o _ Midgr R
Mrp ¥ AR T

u 2- X
[ ( fO8) &g sin w didy+ o= | Qg (94),

0 0

where the gravity anomaly &g toc be used in Stokes' integral is expressed by the set of surface
Yy &9 9 P Y

harmonics

Qn is Molodenskii's truncation function, given by
Q= { f(y) P _(cos v) sin y dy (96),

Pno(cos U) being the Legendre zonal harmonic. Values of Qn for various vo are given by Molodenskii
and his co-workers (IBID,p.150) to n=8, DE WITTE (1967) to n=25, and HAGIWARA (1972) to n=18. The
computational efficiency of this method over the use of surface quadrature techniques for distant
zone effects, in the present era where distant zone fields are heavily dependent for quality on
satellite data, is a factor of 70 (OJENGBEDE 1973,p.32). In practice, only a limited number (at
present, upto degree and order 20) of such harmonics are available and a rounding off error will
occur in computations, due to the existence of a residual in the power spectrum of gravity anomalies
on adopting the surface harmonic representation. Molodenskii uses an elegant technique to show

that the use of harmonics to n=8 with surface gravity representations up to wo=23°, results in errors

less than %2 m, while extension of surface gravity coverage to ¢O=350 reduces the truncation error

to less than *50 cm (MOLODENSKI| ET AL 1962,p.164) .
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Similar considerations apply to the computation of the Vening Meinesz contribution to the deflections
of the vertical using Cook's truncation function (COOK 1950,p.377), the equation equivalent to 94 in

this case being (DE WITTE 1967,p.455)

o227 3 ©
1 o 3(F (¥ . 1
£, = K?V'J J () Ag cos Ay sin ¥ d¥da + 5 Zz(n—1)c I (97),
0o n=
where
1
COCn] = m JJ Agn pn.](COS w) cos Au do (98) ,
Ay being defined by equation 19 while Cook's truncation function a, is given by
cos Y
9 = J °§i{f(w)} p . (cos y) d(cos ¥) (99).
-1 Y] nl

The relationship between the functions Q, and q_ has been established by HAGIWARA (1972,p. 461) who
gives a proof of the equivalence of the developments of Molodenskii and Cock. On using the same
values of n and UB described in the previous paragraph, Molodenskii shows that the truncation errors
in Ea are less than 1.1 arcsec and 0.2 arcsec respectively in the two cases given. It can be
concluded with confidence that the use of truncation functions is capable of giving a resolution
equivalent to the best astro-geodetic results as is borne out by determinations in Australia (MATHER,

BARLOW & FRYER 1971,p.19) and the tests carried out by OJENGBEDE (1973,p.41).

4.2 The Sampling of the Gravity Field at the Surface of the Earth

The overwhelming majority of surface gravity data available at the present time have been established
for geophysical purposes motivated by regional considerations. Such information has to be carefully
screened before being put to geodetic use. There are problems that arise in the establishment of the
value of observed gravity itself. Until recently, most gravity determinations of quality were made by
differential means using gravimeters. I't is now possible to carry out an absolute determination of g
with a resolution of #50 pgal using a transportable apparatus (MORELL! ET AL 1971,p.17) while reso-
lution at the %3 ugal level has been reported by the apparatus at Sevres, France (SAKUMA 1971).

It is all-important in the first instance that a}l values of observed gravity are correctly referred to
the unified gravity standardization network defined by the International Gravity Standardization

Network 1971 (1GSN71) or an equivalent global control network, in order that datum discrepancies may

be minimized, if not eliminated. The solution of the geodetic boundary value problem requires an
evaluation of the gravity anomaly. This calls for a knowledge of

(a) the geodetic latitude ¢, of the gravity station to 0.04 arcsec (£ 1 m) for an
accuracy of %1 ugat; and

(b) the geopotential difference AW with respect to the geoid to #0.003 kgal m for a
resolution of +1 pgal in the gravity anomaly Ag,

in addition to the requirements stated earlier for values of observed gravity. This also calls for
the definition of a datum for the geopotential differences on a global basis, and to some desirable

degree of resolution.

The status at the present time is as follows. While IGSN71 is available, it is most unlikely that
any of the large gravity data banks are reliably connected to this network in toto at the present

time. Most values of normal gravity are computed from regional geodetic co-ordinates of gravity



146

stations which are unlikely to differ from geocentric values by more than %10 arcsec. Thus all
values of normal gravity computed in a given continental area covered by one of the regional datums
(usually up to 5% of the Earth's total surface area), are subjectsto systematic errors not exceeding
4 mgal. The lack of a global datum for geopotential cannot cause errors much in excess of % mgal
if the datum for elevations were based on at least one year's tide gauge readings, and there is no
evidence available at present which indicates that the mégnitude of stationary sea surface topography
is much in excess of *2 m. While these magnitudes appear to be small, their effect on the evaluation

of Stokes' integral is significant, being systematic in character.

Present day geoid computations from surface gravity data are therefore limited in effectiveness as a
consequence of irregularly distributed data which could be subject to systematic errors due to the
effect of inadequately defined datums on the data set used in the computations. The existence of such
effects cannot be tolerated when the data is required for the determination of the geoid with the
highest possible precision in the study of sea surface topography, whose magnitude is unlikely to
exceed 2-3 m. The term sea surface topography refers to departures of the ocean surface from an equi-
potential surface of the Earth's gravitational field and is partially due to salinity, meteorological
and tidal effects. The magnitude of the residual departures on allowing for these factors, and termed
stationary effects, can only be estimated from manifestations along coastlines which have been obtained
by comparing the results of geodetic levelling with tide gauge readings. Departures which cannot as
yet be explained, have been reported in Australia (e.g., HAMON & GREIG 1972), the United States (e.g.,
STURGES 1972) and elsewhere with slopes approaching or in excess of 0.1 arcsec. On balancing satellite
altimeter technology presently available against oceanographic requirements, it would appear that a 10
cm resolution in the determination of the geoid is a desirable goal for this purpose (WILLIAMSTOWN

REPORT 1969,3-2).

The criteria governing the factors which constitute a ''desirable'' representation of the gravity field
for the solution of the geodetic boundary value problem is dependent on the requirements for the
solution of Stokes' integral which, as discussed earlier, provides over 90% of the power. This

would apply to any of the techniques of solution described in section 3.  The following is a summary
of a recent look at this problem (MATHER 1973,p.53 et seq.). A suitable form of Stokes' integral for

quadratures evaluation is

lem oy Dog 1w O Ag.(”?ga‘) (100),
I

where Agij is the value of the gravity anomaly representing a n? X n? square,

K $ 1.58 x 1072 (101),
and uij = cos ¢ci' or sin wij depending on whether a Tatitude-longitude or azimuth-angular distance
system of co-ordinates is used. Equation 100 would be adequate if the subdivision of the basic n?X n?

into N(= n?/mz) m®x m® squares (m < ni), where the k-th such square will be represented by the gravity

anomaly Agk at an angular distance wk from the point of computation P such that
Ag, = Ag+c ; Fly) = F(q))+cwk (102),

Ag and F(y) being given by
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9 = gk; by Fo = g Loy (103),

Le] [o]

and the use of these smaller sub-divisions in the quadratures evaluation in lieu of the n X n;

squares together with the appropriate area mean, did not reduce the quadratures error to below the

desired order of accuracy (of{e}).  This would happen if
N
¥ 104
) cgk Sk ofe} (104},
k=1
implying no correlation whatever between variations in f(y) and Ag over the n? x n? area. While the

function F(¥), given by
Fiu) = f(U) sin ¥ (105),

has predictable variations, Ag defies accurate prediction free from systematic bias except over very

short distances and under carefully controlled conditions. As gravity has to be sampled at discrete
points, the quadratures approach makes a representation procedure mandatory. Consequently, some
finite element of surface area has to be represented by a single observation. tt is useful to bear

in mind that
(a) the global gravity standardization network available at present has a station
accuracy of 0.2 mgal (MORELLI ET AL 1971 ,p-6);

(b) errors in gravimeter ties seldom exceed #0.2 mgal if performed with adequate
instruments and any sort of minimal care; and

(c) geopotential errors of o{#3 kgal m} give rise to an error of o{#1 mgal} in the gravity
anomaly.
A precision of %1 mgal in the gravity anomaly is relatively easy to obtain in areas where the regional
geodetic level network is reasonably dense. The gravity anomaly also undergoes changes with position
within the basic square it is expected to represent. This penchant was characterized by a quantity
introduced by de Graaff Hunter, called the error of representation E{Ag}nm for an n® x m° square,

which in the case of a fully represented square, is given by (DE GRAAFF HUNTER 1935)

2

N (&g, - Bg)
(eteg) )° = ] —tj— (106).

A reliable value for E{Ag}nm is obtained from N evenly spaced values of Agi covering the n® x m°

square, EE being the mean value of the gravity anomaly, given by

b =g I bg, (107).
i=1

Several estimates of this statistical characteristic of the gravity anomaly field at the surface of
the Earth are available in the literature (e.g., 1BID; HIRVONEN 1956; MOLODENSKI| ET AL 1962,p.172;
MATHER 1967,p.131). Samples which are available at the present time from different parts of the
globe reflect the flatter continental areas. E{Ag}n in such areas is a function of square size and

in general terms, can be expressed by the relations

+ C] vn 1% <n<5°
E{pg}, = (108)

* CZ n n < 3°
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for an n° x n° square, where n is in degrees and E{&g}n in mgal, when C1 =12 and C2 = 3 x 10. It
can also be shown that E{Ag}n is a function of unsigned ground slope |B|, with magnitudes which can

be as much a five times as great in very rugged areas, especially when n is small. As such variations
are functions of gound slope and not elevation, it is estimated that about 2-5 % of the Earth's surface
will require values of C] and C2 which are significantly greater than those given above, for an

adequate representation of variations in the gravity anomaly.

The number of terms involved in the quadratures evaluation is a function of the accuracy desired in

the computation. If the requirments of sea surface topography determinations (1 part in 10*) were to
be met, it would be necessary, for estimation purposes, to restrict square sizes to those over which
the contribution of the terms containing the second differential coefficient of F(J) were held to
o{eBhd}. The reguired number of summations is o{10%}. The study of the propagation of systematic
and random error characteristics through equation 100 under these circumstances shows that an adequate
representation of the surface gravity field which would enable the achievement of an accuracy of #10 cm
in the final result would be one which had an E{Ag} value of *3 mgal, if the data were not subject to
systematic error in excess of * 50 ngal. Such a representation is afforded by a 10 km grid in non-
mountainous areas. While the estimation characteristics of gravitationally disturbed regions are
covered by the above figures, which assume that oceanic fields will have a similar tendency to vary as
continental data, regions characterized by larger ground slopes have significantly greater values of
E{agl. It would be necessary to reduce the size of the grid in such cases to retain E{Ag} at #3 mgal.
The use of the smoothening technigues described in section 3.5 would of course reduce these values.

It follows that present day techniques for establishing surface gravity anomalies are adeqguate for the
determination of sea surface topography. It .is interesting to note that the station spacing required
on the above basis, is already available over large continental areas like the United States, Canada

and Australia, at the present time.

The consequences of systematic errors in &g which hold the same sign over considerable extents, on the
values of hd computed, are significant. A systematic error e, which holds its magnitude and sign

o o Lo - .
over a n X n  area, but has random characteristics over larger extents, is shown to have an effect

e, on the computed value of h, given by (IBID,p.65)

Ns d
e = *oiK'ne, ! (109},
Ns Jats]
where K" = 10, for eNs in c¢cm, n in degrees and eAg in mgal. I f e, were held at #5 c¢m, the estimate
[s)
of the magnitude of the tolerable systematic error e , which is inversely proportional to its wave-
o

-0

length, varies from o{#5 mgal} when n = 0.1° to o{*0.1 mgal} when n = 5

Likely sources of systematic error have been listed at the commencement of this sub-section. The

following conclusions can be drawn.

(1) 1GSN71 would be an adequate gravity standardization network for sea surface
topography studies only if the station density were 1 per 5 x 10" km? and
the errors of adjacent stations were not correlated at the 200 ugal level.
Neither of these conditions is likely to be satisfied. An adequate net
would be afforded by stations at which absolute determinations had been
carried out with %50 ugal resolution, and a representation of 1 station per
10% km2. In the interim, it would be advisable that all gravity data
should be subject to randomization procedures at the level of the precision
of the gravity standardization network, prior to use in solutions of the
boundary value problem.

(2) Gravity anomaly information on each geodetic datum should be corrected for changes in
normal gravity due to the datum not being geocentric (I1BID,p.16}.

(3) The term "'geoid" which is synonymous with both the global datum for elevations
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as well as the '"undisturbed" free level of the sea, should be defined on the
basis of models which afford resolution with an accuracy of *10 cm.

A possible problem of some significance in the determination of sea surface topography and other high
precision determinations of hd’ is the existence of the sea surface topography itself with not insig-
nificant amplitudes (e.g., 3-4% m) and substantial wavelengths. The evidence for the existence of
such phenomena is widespread but based on purely coastal phenomena, as obtained from levelling- tide
gauge comparisons. Extended studies of the sea surface using short pulse high resolution altimeters
should go a long way toward clarifying whether stationary sea surface topography is merely a coastal
phenomenon, and if not, the dominant wavelengths with which it is prone to occur. The existence of

stationary sea surface topography with 4000 km wavelengths and 2 m.amplitudes would cause errors of

o{x1 m} in hd. While this estimate is based on the maximum magnitude of the phenomenon reported to
date, the existence of such an effect will require an iteration in the determination of hd'
(For a later perspective on this problem, see the other paper by Mather in these Proceedings. The

rapidity with which these iterations converge is more a function of the wavelength of the stationary

sea surface topography than of its amplitude.

5. Gravity and Earth Space

5.1 Gravity and Scale
A problem which requires careful scrutiny is the possibility or otherwise of defining a scale for
Earth space from gravity determinations at the surface of the Earth. It must be clearly emphasized

that the ensuing development excludes the consideration of satellite data which constitutes the basis

of low degree representations of the Earth's gravify field at the present time. The problem could be
stated as follows. Given an adequate distribution of determinations of surface gravity, how are the
effects of zero degree hdo in the global distribution of height anomalies to be interpreted. This

effect can be written as

W o-u M{Ag }

o] C
h = — - R
do Y Y

+ N+ of{fh, } (110),
co do

on considering equations 73 and 74, NCO being the contribution of zero degree by the indirect effect
NC. Wo is not known and it is common practice to assume the first term to be zero. The second and
third terms will have finite magnitudes. A change in the value of GM will provide nearly equal and
opposite changes in the terms containing Uo and M{Agc}. Hence equation 110 cannot be evaluated unless

the value of wo were known, which is certainly not the case to order #1 m at the present time.

Equation 110 could however be used to find out the potential of the gecid Wo if hdo were known from
some independent determination (e.g, geometrical satellite geodesy). The numerical value of hdo

can be established by analyzing the differences

v, = h . +h . -h (111,
where the subscript i refers to evaluation at the i-th station in a global satellite station network,
hd being determined gravimetrically with the first term in equation 110 supressed. The value so

obtained for hdo on use in equation 110 will give a value for wo which is consistent with the set of

units defined.

Any "improvement'' in the value of GM obtained from gravimetric determinations in the strictest sense



150

will have to be based on the assumption that the potential of the geoid WO is equal to that of the
equipotential ellipsoid of revolution Uo' The geoid is a physical reality, being a manifestation of
the mass distribution which gives the observed gravitational phenomena at the surface of the Earth,
while Uo is defined by the chosen values for the parameters a, GM,w and f which define the system of
reference. It has been deduced thaF the term (WO— UO)/Y is approximately 3 m if the ellipsoid were
one of best fit to the geoid and the value adopted for GM was the best estimate available for the

Earth (MATHER 1971¢,p.98), provided the free air anomaly had no zero degree harmonic.

Thus any deductions which can be drawn about scale from gravimetric determinations alone are subject
to ambiguity, if restricted to a single epoch. The effect of zero degree deduced from comparisons
between geometrical satellite solutions and surface gravity determinations of hd described by equation

111

is the term of zero degree obtained on studying changes in observed gravity determined by the use of

, should be used only for the purpose of determining the value of wo. A second effect of importance
absolute techniques with a resolution approaching t1 ygal, as determined on specially designed obser-
ving platforms, well distributed about the Earth, between successive epochs in time. Such changes

can be interpreted as either reflecting an expansion of the Earth, as measured within the framework of
the velocity of light and the adopted standard for the measurement of time intervals, or else as a

change in the value of GM. For a discussion see (MATHER 1972,p.15)

5.2 Gravity and Geodetic Reference Systems

The preceding development has assumed that the Earth has a fixed mass distribution subject to some
periodic changes due to effects like Earth tides. Such a description would be adequate only if

the observations were taken over a limited period of time, such as one or two decades. There is
considerable evidence which seems to point to the large scale re-distribution of at least the masses
constituting the Earth's crust, over very long periods of time, with the attendant possibility of mass
variations at greater depth depending on the nature of the mechanism which could produce such crustal

motions.

A possible consequence of such mass re-distributions could be the motion of the Earth's centre of mass
(geocentre) with respect to the Earth's crust. The analysis of high precision determinations of
absolute gravity at a well distributed net of observing platforms as described in the previous sub-
section, could provide a means of recovering the motion of the geocentre between epochs, on analyzing
the first degree harmonic of changes in absolute g (IBID). It should be pointed out that a problem
in filtering out short period effects due to meteorological causes has to be overcome before results
of reliability are likely to be obtained. Fortunately an estimate of the same effect can be obtained
on studying changes in geocentric position of a global network of laser tracking stations using

dynamic technigues, to provide a verification of the effectiveness of the determination.

5.3 The Role of Gravimetric Methods in Earth and Ocean Physics

Until recently, it was generally held that gravimetric methods if used with adequate data, provided the
only non-controversial technique for computing ellipsoidal elevations with the same resolution as that
available from geodetic levelling, thus completing the definition of geocentric position of points on
the Earth's surface in three dimensions. Position determination at the present time has not provided

resolutions which can confidently claimed to be better than 1 part in 10°.

It is now clear that the most precise determination of geocentric position is required primarily for
studies in Earth and ocean physics, rather than for any direct engineering or technological purpose.
It would not be exaggeration to state that resolution to 1 part in 10% would be the aim of geodetic
techniques beiﬁg currently developed for such schemes. While there is no clear indication that

surface methods, subject to restrictions imposed by atmospheric uncertainties, can be improved to
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meet these goals, extra-terrestrial techniques like laser ranging to near Earth satellites and VLBI,
promise that such goals may well be achieved in the near future. There is also no reason to doubt at
this stage, that transportable versions of these systems could not achieve this same degree of reso-

Tution.

I't would therefore appear that, with the passage of time, there would be less use of geodetic levelling
and the systems of reference implicit in its concept, for use in Earth physics. The exception is of

course the study of the instantaneous geocentric position of the ocean surface, and the interpretation
of these results for the study of ocean circulation. The determination of the geoid with the highest
possible precision is a necessary prereguisite for such studies. Gravity information will still have
to be assembled and anomalies computed on the basis of elevations referred to an equipotential surface,

the most convenient being the geoid.

Three matters of significance which should be closely studied before undertaking the task of assembling
an adequate gravity anomaly field for computation of geoid heights to £10 cm, are the following.

(a) The definition of the physical model to serve as a datum for elevations with
an accuracy which is not more than a factor of three less than the highest
precision sought in the geoid solution.

(b) Techniques to be used for minimizing the effect of gravity base station
errors on geoid computations.

(¢) The gquestion of whether it is necessary to adopt a model for the 'surface of
measurement' and, if so, the nature of an acceptable mode! and the procedure to
be adopted in converting measurements on the Earth's surface to equivalent
quantities on the model.
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8. Discussion

QURESHI : What role do geological anomalies play in this type of work?

MATHER: In trying to determine geodetic information, it is preferable to treat the gravity effect
in terms of the free air anomaly and to keep the other contributions as a set of topography
dependent terms which are treated separately in terms of elevations or their geopotential

equivalents.

QURESHI : But geological anomalies are not always related to the topography.

MATHER: Yes. For example if you take an isostatic type anomaly and use it in Stokes' integral, you
obtain a co-geoid. Provided you compute the correct indirect effect by taking all factors
into consideration, you will get the correct answer. But this is not the same problem.

In this case you are trying to make a geoid determination; you are trying to create Stokes'
conditions by manipulating the topography. But most geodesists want to avoid making

assumptions about (the density distribution of) the topography.

MORITZ: This old question of density and its effects is more or less obsolete. We know that
density does not have such a large effect on the probliem. A much larger effect is

introduced, as you mention, through the interpolation problem.
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GLOBAL DETAILED GEOID COMPUTATION AMD MODEL ANALYSIS

ABSTRACT

A global detailed gravimetric geoid has been computed by combining the.Goddard
Space Flight Center (GSFC) GEM-6 gravity model derived from satellite and surface
gravity data and surface 1°- by - 1° mean free air gravity anomaly data. The
accuracy of the geoid has been assessed at *2 m on the continents, and 5 to 7 m
in areas where surface gravity data are sparse.

The GSFC GEM-4, -G models, the SAO 2, 3 models and the Rapp '73 model were consi-
dered in order to arrive at the best base gravity mode! for use in detailed geoid
computations. RMS differences between GEM-6 and the other models ranged from
3mto 7 m. The maximum differences in all cases occurred in the southern
hemisphere where surface data and satellite observations are sparse. These
differences exhibited wavelengths of approximately 30° to 500 longitude. To
study the source of these differences, detailed geoid heights were computed with
models truncated to twelfth degree and order, as well as eighth degree and order.
This truncation resulted in a reduction of the rms differences to a maximum of

5 m. Comparisons have been made with the astro-geodetic data of Rice (United
States), Bomford (Europe) and Mather (Australia). Comparisons have also been
carried out with geoid heights from satellite solutions for geocentric station
co-ordinates in North America and the Caribbean.

1, Introduction

A global detailed gravimetric geoid has been computed by combining the Goddard Space Flight Center
-(GSFC) GEM-6 gravity model (LERCH ET AL 1973) derived from satellite perturbations and surface
gravity data, with 1°- by = 1° mean surface free air gravity anomaly data. Previously, a local
detailed geoid combining the above model and 19~ by - 1° surface gravity data was computed for the
north east Pacific and the north Atlantic area to provide an independent base of comparison for the

GEOS-C altimeter experiment (MARSH ET AL 1973).

In the process of computing the geoids presented in this reference, several satellite gravity models

published in the past four years were tested in order to determine the best base gravity model for

detailed geoid computations. The models used in the geoid computations, in addition to the GEM-6
mode] were GSFC GEM-4 (LERCH ET AL 1972), the SA0-2 {(GAPOSCHKIN ET AL 1970), SA0-3 {GAPOSCHKIN 1973)
models and the Rapp '73 model. The rms differences between geoid heights computed using the GEM-6

gravity medel and those computed using other gravity models, ranged from 3 m for the Rapp 1973 model
to 7 m for the SA0-3 gravity model when the computations utilized the complete set of spherical

harmonic coefficients.

The largest geoid height differences occurring in the above comparisons were located in the southern
hemisphere. These differences exhibited a wavelength of approximately 30o in longitude, indicating
errors in the middle degree and order coefficients of the various models. This finding prompted
recomputations of the geoid with the satellite models truncated to lower degree and order, starting
with (12,12). As a result, the rms difference was reduced to 1 m for GEM-4, and to 5 m for SAO-3.

Geoid profiles at 10° intervals in latitude were drawn for all models (complete and truncated).
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Differences between the geoids along these profiles were generally 5 m in areas of relatively dense
surface gravity data and as large as 25 m in areas of sparse or absent gravity data. However, when

truncated models were used, the differences were reduced to a maximum of about 15 m.

The accuracy of the GEM-6 detailed geoid is assessed at *2 m in areas of dense surface gravity
coverage and 5 to 7 m in areas of less dense coverage based on comparisons with astro-geodetic

geoids and dynamically derived station heights.

2. Method of Computations and Data Source

The method of computation is presented in detail in (VINCENT ET AL 1973). The detailed geoid heights
were computed by combining the GEM-6 satellite gravity field and surface 1°- by - 1° gravity data.

The component of the detailed geoid obtained using the GEM-6 gravity field is derived as a function
of the spherical harmonic coefficients of the gravity model and the surface geoidal heights are
derived by incorporating surface 1° - by -~ 10 gravity data into Stokes' equation for areas 20°- by -

20° centred at the computational points.

The surface gravity data used in the computations consisted of 23,947 records of 1°- by - 1° mean
free air gravity anomalies obtained from the Defence Mapping Agency/Aerospace Center. This data set
was complemented with collections from the National Ocean and Atmospheric Agency, and the Hawaii
Institute of Geophysics. However, whenever possible, local data collected by local agencies were
considered first in data preparation. When these data were not sufficient, the above mentioned

sources were used to fill in the voids. The data file is discussed in detail in (1BID).

3. Analysis

The base gravity model used in detailed geoid computations provides information on the long wave-
length (approximately > 1000 km) undulations of the geoid. The short wavelength information is
provided by the 1°- by - 1° surface gravity data. A1l models tested were complete to degree and
order 16 with selected higher degree terms, and were therefore capable of providing the 1000 km
information on the geoidal undulations. Since all models were combined with the same set of 1°-
by - 1° surface gravity data, the resultant differences in the detailed geoid heights are due to
variations in the gravity models. The analyses of the models and the final choice of the base
model for use in detailed geoid computations were carried out by
1. inter-comparing the respective geoids of these models; and

2. comparison with external standards such as astro-geodetic geoids and dynamically
derived tracking station co-ordinates.

3.1 Inter-Model Comparisons

Detailed geoids were computed using the full set of coefficients of the five gravity models and
profiles were drawn along parallels of latitude around the entire globe at 10° intervals in
latitude. Figures 1 through 5 present representative examples of these profiles. In the northern
hemisphere, representative profiles were chosen at 20° and 40° north latitude (figures 1 and 2).
These profiles show an average variability of about %5 m; however, individual differences as large as
10 m do appear. For example, in figure 2, at longitude 180°E, the geoid computed using the SA0-2
model differs from the geoid computed using the GEM-6 solution by 10 m. The models show the largest

scatter at 180°%F mainly because of a lack of surface gravity data available. The dominant
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Figure 1. Detailed Geoid Profiles at Latitude 20°N

differences in these profiles are the amplitudes of the main features, rather than the slopes of the

geoids. It is noted that there are many places along these profiles where the respective geoid

profiles vary only by a few percent.

In figures 3 through 5 (southern hemisphere), a completely different picture emerges. The scatter

is much more prevelant. This is largely attributed to the sparsiﬁy of surface gravity data, as
well as-a lack of satellite observational data. The scatter in the profiles increases gradually

towards ‘the Antarctic. For example, in figure 3, the scatter is evident only along longitudes
200°E to 3500E, but in figures 4 and 5, the divergence is noted along the entire length of the
profile. In figure 5, the maximum difference reaches approximately 25 m at longitude 180°E.

In contrast to the northern hemisphere, the geoid slopes in the southern hemisphere exhibit large
variations.

MARSH ET AL (1973) showed differences between GEM-6 and other models to exhibit a wavelength of
approximately 30o to 50o in longitude. This variation, when translated into spherical harmonic
terms, corresponds to middle degree and order. The orbital perturbations arising from spherical
harmonic coefficients of degree and order larger than (8,8) are generally on the order of a few
metres, a fact which makes accurate recovery of the individual coefficient values difficult

except in the case of resonance. This fact, plus the findings of BROWND & RICHARDSON (1973)
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as large as 5 m with respect to each other. They are also in disagreement with the general trend
of the other truncated models, as well as indicating features not portrayed by the general trend.
However, further truncation of the SA0-2 and SA0-3 models to (8,8) generally reduces the differences
along the main features and eliminates some of the extraneous features. As one truncates back to
lower degrees, the resuits of the geoid computations tend to become identical because the satellite
coefficients are nearly equal. But since the surface data within 10° of the computation point

cannot completely represent the effect of the truncated wavelengths, this does not necessarily mean
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Figure 2. Detailed Geoid Profiles at Latitude Lo°N
when conducting tests on the gravity anomalies derived from various gravity fields, coupled with
the scarcity of surface gravity data in the southern hemisphere, led to the re-computation of the
detailed geoids using truncated gravity models (12,12) and (8,8). Brownd & Richardson found that
when satellite derived gravity anomalies were compared with surface gravity data using truncated
models, the (12,12) field agreed best with the surface gravity data while the lower and higher
degree models were divergent from the surface data.
Figures 6 through 10 present profiles of detailed geoids computed using models truncated to
(12,12), plus SAD-2, and SAO-3 truncated to (8,8). " One point noted throughout these profiles is
that truncation to (12,12) for the GEM-4, GEM-6 and Rapp '73 models reduces the differences between
then to an envelope of about 2 m. The SA0-2, SA0-3 (12,12) models on the other hand, show variations
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that the answers are getting better, but rather that the truncated models are identical. The GEM

models and the Rapp '73 model represent the geoid better because of the higher accuracy of their

higher harmonics as further upcoming tests show.

RMS differences have also been computed for the complete and truncated models versus GEM-6.

GEM-6 Complete
versus Model (12,12)
Rapp +2.7m + 1.6m
GEM-4 + 3.7 m £ 1.3 m
SAO0-2 t 4. 5m £3.3m
SA0-3 +6.5m +52m

It is felt that global rms differences are probably not too meaningful, since the differences in the
southern hemisphere are much larger than in the northern hemisphere. Furthermore, these relative
differences could be interpreted as a lower bound for the absolute accuracy of the geoid. Figures

11 through 14 present gecid height differences in histogram form. As is noted in these histograms,

35¢
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the most frequent differences are in the range of -5 to +5 m.

3.2 Comparison with External Standards
3.2.1 Comparisons with Astro-geodetic Geoids

250
(EasT)

Detailed Geoid Profiles at Latituvde 40°s

Detailed gravimetric geoids computed with the above mentioned models were compared with the astro-

geodetic geoids of BOMFORD (1971) 'in Europe, RICE (1973) in the United States, and MATHER ET AL (1971)

in Australia.

using transformation sets of MARSH ET AL (1973) before comparisons were made.

in all cases, the astro-geodetic geoids were transformed to a centre of mass system

in Europe, detailed gravimetric geoids were computed with the Stokes' functions integrated 10° and

20° around the point of computation. This was done

1. because of the availability of 1°- by - 1° data;

and

2. to assess the long wavelength contribution of the gravity models.

A profile at latitude 48°N recommended by Bomford as being the most representative, was used for the

comparison.

GEM-4, GEM-6 and the Rapp '73 models.

the SAO-3 model showed a tilt of 1.6 arcsec with respect to the astro-geodetic geoid.

The SA0-2 and SAO-3 profiles were similar, but they were different from those for

In the case of 10° integration, the detailed geoid using

However, when the GEM-6 model was considered, the differences became much less systematic and were

350
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Figure 5. Detailed Geoid Profiles at Latitude 50°5S
of the order of %2 m (figure 15). when the 20° integration was performed, the SAO-3 model and the

GEM-6 mode! both agreed well with the astro-geodetic geoid (figure 16)., The GEM-6 detailed geoid
did not change when the integration interval was increased from 10° to ZOQ, indicating a more
accurate representation of the long wavelength features by the GEM and Rapp '73 models. In

Australia, the comparisons with Mather's astro-geodetic geoid were conducted along a profile 26%s

(figure 17). The detailed geoid, when based upon the SAO-3 model, exhibited a tilt of 1 arcsec
with respect to Mather's geoid. However, the detailed geoid based upon the GEM-6 model showed
only 0.5 arcsec tilt. GEM-6 matched the results Mather found in his studies on the Australian
datum:

Another comparison was made with Rice's astro-geodetic geoid for a profile in the United States at
latitude 35°N. Table 1 presents the differences between Rice's geoid and the detailed geoids
computed using the various models. The differences in the geoid heights for all models were
random except for SA0-3 and GEM-6 where an additional constant value of 2 m for SAO-3 and 1 m for
GEM-6 had to be added. The agreement between Rice's geoid and all the models was on the order

of #2 m.

3.2.2 Comparison with Dynamic Station Heights
Goddard Space Flight Center Long-Arc Orbital Analyses have provided geocentric co-ordinates for

tracking stations {MARSH ET AL 1973). Geoid heights of the tracking stations derived from this
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Profile

Tabile 1

at Latitude BSON

Difference Between Rice's Converted Astro-geoid and Detailed Geoid Computed using Various

Models (units metres)

Longi tude Rice GEM-4 * GEM-6 = SAO-11 %  SAQ-II] T RAPP
(deg) : |
KEY:-
81 -34 -1 -2 -2 -2 -1} )
8 * Rice minus
3 -30 1 0 0 -2 1 GEM-4 detailed
85 -32 - -1 -9 - -1 geoid height,
3 ! ' 2 GEM-6, ....
‘ 87 -29 0 0 -1 -2 0 .
; T Systematic
f 91 -29 1 0 -2 0 difference of
92 -2 - 1 m has been
9 0 2 0 1 0 added
93 -31 -1 1 -1 -1 -1 .
[T Systematic
96 -29 2 3 1 -1 2 difference of
99 -28 1 2 m has been
! 0 0 ! added
1o1 -28 ) 1 0 1 1
105 -20 1 2 2 3 3
107 -21 0 0 0 2 1
110 -23° 0 -1 0 - 2 1
113 -27 0 -1 -1 2 0
115 -30 1 -1 0 1 0
17 -31 2 1 2 2 2
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solution were compared with detailed geoid heights. Table 2 presents the results of these compa-
risons for stations in the United States and the Caribbean. The results obtained using all the
satellite models are similar, except for those computed using the SAQ-3 model where differences as
large as 5 m versus the average are apparent. The rms agreement for all models is about * 3 m.
This agreement is considered excellent considering the various error sources inherent in this type
of comparison. For example, errors can be attributed to

a. dynamically derived station heights;

b. mean sea level values; and

c. gravimetric geoid heights.

4, The Goddard Earth Model (GEM-6) Detailed Geoid

The GEM-6 gravity model was chosen to be the base model for detailed geoid computations. The
GEM~6 model consists of a geopotential field in spherical harmonics and a centre of mass system of
tracking stations. The GEM-6 solution was computed from a combination of the GEM-5 solution with
surface gravimetric data and simultaneous satellite tracking data (LERCH ET AL 1973). The GEM-5
solution is based on satellite data only. The satellite data consisted of 350 weekly orbital arcs
of optical, electronic and laser tracking data on 27 close Earth satellites. in addition,
approximately 100 one- and two-day arcs of GEOS tracking data were employed for refinement of

tracker co-ordinates. The surface gravimetric data consisted of a global collection of 300-by-300
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Table
Comparison Between Dynamic Station Heights and Gravimetric Geoid Using Various Models (Metres)
Station Latitude Longitude GSFC 73" o o i i x
Number (deg) (deg) Long Arc GEM-4+ GEM-61 SAO-11+ SAO-11lk RAPP KEY
1032 48 307 12 -1 0 5 1 1 * Geoid Height =
1021 38 283 -43 -9 =10 -9 -14 -9 (Dynamic height
1022 27 278 -29 2 1 -1 -3 ! above ellipsoid)
minus
1030 35 243 -30 5 3 2 3 3 (Mean Sea Level
1034 48 263 -27 1 -1 -3 -3 2 height)
1042 2 -34 -2 - - - - .
35 7 3 3 b 7 3 4 GSFC '73 (MARSH,
7036 26 262 -27 -2 -3 -3 -5 -2 DOUGLAS & KLOSKO
7037 39 268 -35 -1 -1 -2 6 - 1973)
minus
7050 39 283 -4o -6 -8 -6 -12 -6 GEM-4 detailed
7045 4o 255 =18 0 0 1 - -1 geoid, GEM-6,....
9001 32 253 -22 1 1 6 1 2
9021 32 249 -30 -1 -2 -8 -2 -1
7072 27 280 -32 4 0 -1 -2 1
7075 46 279 -32 5 5 5 1 6
7033 32 295 =35 4 4 6 2 6
7040 18 294 -46 4 4 2 3 3
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nautical mile equal area anomalies developed by RARP (1372). The simultaneous observational data
from the North American MOTS-Laser network and from the global BC-4 network were processed geometri-
cally before inclusion in the the GEM-6 solution. The GEM-6 model is complete tc degree and order

16, with higher degree zonal harmonics and selected satellite resonant terms extending to degree 22.

The global detailed geoid (GEM-6) is presented in figure 18. The parameters used in the compu-

tation of the detailed geoid are :
No = 6263687.5 kgal m,

Yo = 978032.2 mgal,

a, = 6378.142 km,

1/f = 298.255,

GM = 3.986009 x 10° km3sec™?, and

w = 0.72921151467 x 10™" rad sec™!.

The general difference between the satellite geoid (GEM-6) and the detailed geoid are on the order
of 10 m or less. However, large variations in geoid heights do exist in certain areas. For
example, in Australia, prominent differences of 10-12 m occur in the eastern part of the country
due to the dominance of mountain ranges that adjoin relatively flat plains and shallow continenta!l
slopes. A difference of 15 m over the Puerto Rico trench occurs, which is a function of a large
gravity gradient over a small region. These differences, coupled with numerous others,

are the representation of the surface gravity short wavelength contributions to the geoid that are
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not provided by the above satellite model.

5. Conclusions

The accuracy of the GEM-6 detailed géoid is assessed as 2 m in areas of dense surface gravity

coverage.

The greatest divergence in these models appears in areas of sparse surface data coverage, notably
in the southern hemisphere. The magnitude of these differences was as large as 25 m with a

wavelength of approximately 300 to 500,

Analysis in the southern hemisphere with models truncated to (12,12) indicated that caution should
be exercised in interpreting geoid details provided by higher degree and order harmonic coefficients

when surface data is lacking.
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7. Discussion

STOLZ: Why did you choose these particular sections for illustrating the comparisons?

VINCENT: The selection was arbitrary.

WALCOTT : What is the basis for the *2 m figure quoted for accuracy?

VINCENT: It is based on values of dynamic station parameters and astro-geodetic geoid comparisons.
MATHER: Did you always go out to twenty degrees (from the point of computation)?

VINCENT: No; only when data was available. If there was no information, the value of the difference

was put to zero.
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A 1973 GRAVIMETRIC GEOID OF AFRICA

ABSTRACT

Results of a preliminary gravimetric geoid computed on the Geodetic Reference
System 1967 (GRS67) are given in the form of undulation and deflection maps.

For the computations, 19 x 1° mean free air gravity anomalies formed the inner
zone and five degree equal area values the outer zone around each computation
point. Some of the required 10 x 1° means, together with their accuracies,

were obtained by statistical prediction methods using an autocovariance function -
derived from the known 1° X 10 values.

The results confirm the general south-easterly down slope of the geoid undulations.
The average computed standard errors are about 3.6 m in the undulations and 0.6
in the deflections

1. Introduction

Research in geodesy on Africa within Africa is generally very frustrating, mainly because of lack of

data (and funds). One usually starts off by writing to related departments in the various countries
in the continent. Most of these departments never reply and the few that do, refer one to either
Britain, France or the United States of America. With some luck, one may receive some data from

Britain or (in most cases), from the USA several letters and months later!

Computation of the geoid (undulations and deflections) and the related accuracies from gravity
anomalies is a straightforward application of well-known formulae. However, as far as we know,
this has never been done for the whole African continent. This paper is thus a primary attempt at
computing what is, in fact, a ''free air co-geoid' which, it is hoped, would be improved upon as

more gravity data becomes available.

2. Gravity Data Used

The free air gravity anomaly data used consisted basically of: United States Aeronautical Chart and
Information Center 1° x 1° mean values (ACIC 1971), Rapp's five degree equal area values (RAPP 1972)
and Bureau Gravimetrique International Bouguer anomaly map and 5° x 5% means (BGI 1971). A total

of 5450 1° x 1
1©

to be better values. 0f the remaining 2950 19x1° values, 350 were obtained from Bouguer anomalies

° sub-blocks, enclosed within 197 5° equal area blocks, were required. 2500 of the

x 1% values were given in the ACIC report and 210 of these were replaced by what were considered

either given as point values or read off from several maps that were available to us. The rest,
2600 of them, were predicted using the minimum variance or contouring methods. Figure 1 shows the

area covered by the 1° x 1° mean values.
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For the minimum variance method, an autocovariance function was developed from the 2850 known
1% x 19 means. This function was then used to predict the unknown 1°x1° values in any area
within the limits of the maximum range of the function. The prediction equations given by

MORITZ (1969) were used.

Thus, using matrix notation,

- _1
Ag = T (C+D)” Ag (M,
and
2 =_ 7 -1 =T
m = T-T(+p) ' C (2),
A9
~ . . o o
where Ag is the predicted 17 X 17 value;
Ag is the column vector of known 19 % 1° means;
m? is the variance of the predicted anomaly;
C is the matrix whose elements are the covariance between the known blocks;
T  is a row vector whose elements are the covariances between the block p being
predicted and the known blocks | used in the prediction; thus
Thus
T. = c . ;
¢, oi (3);

D represents the given variances of the known 1° x 1° anomalies used in the predict
prediction; and

€ is the variance of the 1° * 1° anomalies.

Thus

T = c. ().

However, there were some areas, particularly south of the West African coast, where contouring was

used owing to the short range nature of the covariance function.

As a result of the new and predicted 19 % 1° values, 168 five degree equal area means were replaced,
116 of them differing by 5 mgal or less from the Rapp values. The variance of each new value was

obtained from equation 2 with appropriate definitions of the matrices.

Finally, the one degree and five degree anomalies were transformed into the GRS67 system to which
the computed deflections and undulations were referred. The transformation equations were

Ag = Ag, + 1.71 + 0.11 sin%¢ mgal (5),

67 R

where AgR are the Rapp five degree anomalies referred to a differently defined reference system,
and

Ag = Ag, + 2.33 - 13.6 sin’p mgal (6),

67 |

where AgI are the 1° x 19 values referred to the International Gravity Formula.
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The Four Shaded 19 x 1° blocks were not included in
the Computations

Both equations 5 and 6 imply a Potsdam correction of -14 mgal (IAG 1971) and an atmospheric gravity
correction of -0.87 mgal (ECKER & MITTERMAYER 1969)
3.  Computational Techniques

Stokes' and Vening Meinesz equations are the relevant equations for the computation of the undulations

and deflections of the vertical respectively. Thus
N R JI Ag S(y) do
£ - 1 (7
InG ’
cos o
ds
" el g [ e
sin a
where s(U) is Stokes' function;
G is the mean Earth gravity ;

R is the mean Earth radius;
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Ag are free air anomalies;
do  is the element of area of the surface o whose anomaly is Ag and at an azimuth o from
the computation point; and

o = cosec 1.

In practice the required values are computed from any of several numerical forms of equation 7.

For example,

N R} Ag s(¥) Ao
m
1
£ - e ®)
[coson
n p ] bgds(y) t+ Ao
m o lsnn o
or -
N R J Ag — J s{y) ao
m n
3 - 9)
TG s
1 cos o
n oZAg—st(w){ }AO
n R
m n sin O
where m is the number of large blocks covering the Earth's surface; and
n is the number of sub-blocks in each large block m.

. |
Equation & was used for the computations done in this paper. Because of the behaviour of Stokes

function and its derivative as the computation paoint is approached, the computations are usually

done for an inner zone using smaller blocks, and for an outer zone using larger blocks, 1° x 1°
and 5° equalarea mean values respectively for this paper. Thus, symbolically,
N
= £ + € (10)-
" Jnner " Jouter
Equations 8 and 10 can be written in matrix form as
E o= K A+ KAy (),
where E represents the computed undulations and deflections;
A represents the gravity anomalies for the inner zone | and the outer zone 0; and
K represents the coefficients of the anomalies, whose elements are given by
k e SW) 4o
Ni TG 1
k.. = (12).
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The covariance matrix of the computed undulations and deflections ZE follows from equation 11

OBENSON (1973). Thus

B T K T K KD Ko Ky T Koo Ko T K (13),
| 0 1”0 1”0
where
ZA is the covariance matrix of the given anomalies. Only the first two terms on the right
of equation 13 were used in the evaluations done here since XAIAO is generally not known in
practice.

3.1 Determining the Limits of the Inner Zone

The spherical cap defining the inner zone has been variously given as extending up to between 10° to
400 away from the computation point (UOTILA 1959; MATHER 1969; NEEDHAM 1970). It was however
determined here by comparing the deflections and the undulations, computed separately, from a five

© values within the five degree block at various

degree equal area anomaly block and from 1° x 1
points. The location of this block was varied in distance and azimuth from the computation point.
Though the spherical distance differed with the position of the computation point, it was found that
the lengths, in terms of Ap and AL for any spherical range of differences between the one degree
and five degree contributions to the deflections and undulations, were the same for all points.
Table 1 illustrates this for a maximum difference of not more than 0.08 m for the undulation and

0.02 for the deflection components.

Fromthese tests,the inner zone was then defined as a circle of radius s = J[ap? + ax?] = 20°
around the computation point. This Timit produces a total maximum average error of about 1.5 m
in the undulation and 0.3 in the deflections. However, owing to the shape of the given anomaly

blocks, the inner zone for each computation point was taken as shown in figure 2.

Since five degree equal area blocks were used, the east-west lengths were chosen in terms of whole

blocks - hence a maximum of four blocks on either side of the point. For most points within the

Table 1

Sample Results Used to Determine the Limits of the Inner Zone

Computation Point S = (5° - 1°?i£;§;§?g§:ions F

j ¢ A v /(892+02%) 3 n N f
i (deg) (deg) (deg) (deg) (sec) (sec) (m) :
1 !
f i
! 70 0 6.1 17.3 0.003 0.004 0.01 f
J k5 5 12.3 17.3 0.010 0.018 0.08 }
20 0 16.5 17.3 0.001 0.001 0.01 :

0 15 17.7 17.3 0.001 0.001 0.01 j

-10 20 17.5 17.3 0.001 0.005 0.03 /

-35 25 14,7 17.3 0.000 0.003 0.01 |

-60 0 9.4 17.3 0.018 0.010 0.0k I
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continent, the arrangement in figure 2 applied, but there were other points, especially near the

coast where Ad and AX were as low as 10° or two 5° equal area blocks away. However, the average
number of 1° x 1° blocks inside the inner zone was about 1200. For lack of more detailed data,

the four 1° x 1° blocks immdeiately surrounding the computation points were not used in the

computations.

4, Results

The undulations and deflections of the vertical were computed at 91 points at the intersection of the
five degree equal area blocks within the continent. Figures 3, 5 and 7 show the contour maps of

N, £ and n respectively. Figures 4, 6 and 8 are their accompanying standard errors.

To obtain the total value of either the undulation of deflections at any point, the contribution
of the four 1° % 1° blocks surrounding the point should first be computed from a more detailed
anomaly field and simplified forms of equation 7, and then added to the value read off maps.

For the undulations and their accuracies, these values are generally negligibly small. However
figure 3 confirms the general south-easterly down slope of the undulations, decreasing from a
maximum of 56 m in  northern Morocco to -8 m in Somalia and Kenya. Figures 4, 6 & 8 indicate
average standard errors of about 3.6 m in the undulations and 0Y6 in each deflection component

throughout the continent.

5. Discussion

It is usual to compare free air undulations with equivalent astro-geodetic values in order to deter-
mine absolute abcuracies; hence some information on the effect of the "indirect effect' and the
reliability of the estimated anomalies and their accuracies. It was not possible to do this here
because of the lack of numerical data on any astro-geodetic geoids computed in any part of the i
continent. A suitable comparison would have been the recently-completed 12° latitude astro-geodetic
geoid profile connecting western  Sudan, iust north of the Chad/Central African Republic
boundary with Dakar in Senegal (WALKER 197t; MCCALL 1970; YATER 1971). However this was not
possible as none of the papers mentioned above contained any discrete values either of the profile
or of the Adindan datum on which the profile was based. But a visual comparison between a profile
taken approximately along latitude 12°N in figure 3 and that given by Walker shows that both 'rise
steeply from Sudan to central Nigeria and then drop smoothly from central Mali to Dakar'' (WALKER

1971).

The results given here should be useful in the determination of various Earth parameters and

transformations between the various geodetic datums on the continent.
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Gordon of the University Computer Centre helped with programming problems and Rowland Asocegwu

and Jimoh Ogunsanya (both post-graduate students in the department), carried out some of the

predi

7.

ACIC

ction and map contouring.
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8. Discussion*
WALCOTT: As an outsider, | have a question. Gravity is measured with respect to the geoid .. ?
RAPP: Gravity is measured with respect to the Earth's surface. The question is what you should
do with this gravity. In all solutions of the boundary value problem you work with some
residual. The main guestion relates to how you formulate the boundary value problem. In

the days of Stokes, you formulated it on the geoid by eliminating the masses exterior to it.
This was incorrect and from developments between 1932 and 1945, it was accepted that we
would try to compute the surface of the Earth (i.e., deflections of the vertical and height
anomalies). The next question is deciding on the best way to do that. As Mather said

(earlier) this morning, all sorts of complications arise.

WALCOTT: I's there a difference in datum between AgT and Ags?
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RAPP : You have to be careful to make sure there is not a difference in the datum. To do that

we have to define the reference ellipsoid (or the reference surface to which the undulations
are to be referred) very carefully. If this is not done, for example, if the gravity
anomalies were computed using a certain gravity formula which is not compatible with that
used for satellite potential coefficient determinations, there will be a systematic error

in the undulations which are computed. Some recent work (RAPP, R.H. 1973 . Accuracy of
Geoid Undulation Computations. J.geophys.ies.78,7589) showed that an error of 1 mgal in
defining the proper gravity formula can give @ 1 - 3 m error in this type of formulation.

It is really a critical issue.

KEARSLEY: Can you comment on the stated accuracy of the deflections of the vertical?

RAPP: They sound reasonable when you consider that the effect of the four inner blocks is

excluded. A big inaccuracy comes from the inner area.

MATHER : | would like to comment on that. Once we were doing some work for (the Division of)
National Mapping, gravimetrically checking astro-geodetic deflections of the vertical.
Computation out to 150 km using a tenth degree grid enabled us to recover all but
about 13 arcsec in the long wavelength component and the effect of the innermost zone

(within 5 km of the point of computation)

MORITZ: If the inner zones are not known, instead of excluding them altogether, it would be
advisable to rather fit a polynomial to the four inner zone mean values.

ECKHARDT: We are discussing the separation of Ny N, e N and presumably hoping that N_ is small.
Another way of doing this for a limited area like Africa or North America is to modify
Stokes' function. If we can say that what we measure on ground is error free, except

that it doesn't cover the whole Earth. 1f we take the difference between (this field

and) say, a (12,12) satellite model, the contribution of the difference will only be in the
higher degree harmonics. Stokes' function can therefore be modified by subtracting the

lower degree harmonics arbitrarily such that the outer zone effects become zero, on

subtracting a set of Legendre polynomials Pn(w) from Stokes' function S(U) such that
vy - ;
s Lh P ()
becomes small. | have done this for example, for a (12,12) solution and say 15°{radius of

surface gravity). This is one way of modifying Stokes' kernel and ignoring the (outer

zone) term. (For illustration see figure on p.187).

RAPP : This type of approach can be found in (MOLODENSKII, M.S. ET AL 1962. Methods for Study of
the Extermal Gravitational Field & Figure of the Earth. |srael Program for Scientific
Translations,Jerusalem) where it is shown how you can modify Stokes' kernel to any particular
degree and the idea of truncation theory was developed for many functions by DE WITTE (

1967. Geophys.J.R.astr.Soc.12,449-464).  The objection | have to this that there is no
reason to believe that the anomalies computed from potential coefficients to say degree 12,
are sufficiently accurate that we can justify forcing contributions from degree two upwards
to be zero. We force the low degree terms to be zero by summing Stokes equation not from
n =2, but fromn = M max which will force any information in the lower degree terms to be
essentially zero. It will be necessary to guarantee that there is no error in these

particular anomalies. I can show that N is generally small. A recent publication (RAPP
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1973. Op.cit.supra) shows that the magnitudes from this region are quite small in relation

to the errors in the gravity field.

t would like to comment that Molodensky truncation functions were used to prepare a geoid
map of Australia by GRUSHINSKY AND SAZHINA (1971. J.geol.Soc.dust. 18,183-199) of the
Soviet Union and we find that this technique gives good agreement with the Stokesian

approach.

This paper was presented on . OBENSON'S Behalf by R.H. RAPP,

MODIFIED STOKES KERNEL

See comment by D. Eckhardt on p.186
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GRAVIMETRIC GEOID OF CANADA *

SBSTRACT

A gravimetric geoid over Canada has been calculated from Stokes' formula. The
gravity data used in this computation are in the form of 1° block averages over
Canada and a three degree belt beyond her southern boundary, 1° x 1° mean values
over a large part of U.S.A. and 5° x 5° block averages over elsewhere.

The computed geoid refers to Reference System 1967 and indicates a marked depression

of geoidal height at the western edge of Hudson Bay. While the position of the
depression is in good agreement with similar studies made earlier, its magnitude
of 60 m is significantly higher. Another local depression of the geoid is at

the southern part of British Columbia-Alberta border.

The '"local variations' of geoidal height due to %° and 1° x 1° data set have been
separately computed and their accuracy has been estimated to better than 1.0 m.
The standard error of the regional contribution to the geoid height may, however,
be as large as 5.0 m, when 20 mgal is assumed for the standard error of 5° x 5°
block averages.

1. Publication Details

The text and diagrams of this paper have been published. The relevant details are:

Contribution 499, Earth Physics Branch,Department of Energy,Mines & Resources,
Ottawa, Canada.

2. Discussion *

LAMBERT: | understood you wanted a solution of the geoid to reduce satellite observations. Won't

satellite observations themselves give all the accuracy required for geoid determinations?

WALCOTT: The contribution from the local geoid is the part not included in the coefficients and is as
large as 20 m in some areas. The geoid obtained is very smooth. The main point | want
to make is that if | took out the difference between observed gravity and that computed
from satellite geoids, it would give a contribution of N2 which is about 20 m. We want

an accuracy of about 1 m.
LAMBERT : I was under the impression you could get 1-2 m from X, Y and Z.

WALCOTT: The X, Y and Z have been obtained to 1-2 m, but to obtain elevation at the point, you need
the geoid to better than 1-2 m.

This paper was presented on behalf of D. NAGY & M.K. PAUL by R.I. WALCOTT.
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DEFLECTIONS OF THE VERTICAL FROM GRAVIMETRY IN THE NARRABRI REGION OF NEW SOUTH WALES

ABSTRACT

The Narrabri-Manilla region of New South Wales has been chosen as a sgitable
area for testing the theories used for the computation of the deflection of
the vertical by gravimetric means. This is because:
i) the national astro-geodetic networks through the area reveal it as a
disturbed region; and
ii) the region contains a cross-section of terrains which enables testing
under greatly varying conditions.

The expressions used in the computation are examined to test their relevance,
both as to basic concepts used in their derivation and also to see the
limitations inherent in terms related to correction for topography.

1. Introduction
1.1 Aim of the Paper

The computation of the deflection of the vertical by gravimetric means has received a lot of attention.
Most of this has sprung from the solution offered by Molodensky, and has aimed at modifying his
original formulae to obtain a more convenient computation and easier interpretation. To date the
formulae have been successfully applied to theoretical models (e.g. MOLODENSKII ET AL 1962, p. 217)
but, to the author's knowledge, these formulae or their modifications have yet to have had unqualified
success in application to a real-life situation. There are two aspects which are the main cause of
such failures, and it is naturally, difficult to tell how much either aspect is contributing to this
failure. One is the lack in the coverage of gravity data and the other is the uncertainty of the

behaviour of the terrain correction terms in areas of steep terrain.

The aim of this paper is to look at two of the approaches which have been developed for the
computation of the deflection at the surface, to discuss the assumptions made at the various stages
of the derivation, to try and predict the points of weakness in the resulting expressions when these

are applied in the test region and to consider their adaptability for computational purposes.

1.2 Symbols
do = element of surface area on unit sphere.
ds = element of surface area on earth's surface.
dz = increment in orthometric elevation

Vening-Meinesz function

&=
n
—_
<
e
—
Ll
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Stokes function
observed gravity at the Earth's surface
normal height above ellipsoid

height anomaly

global mean value of Ag
elevation of geoid above spheroid

free air geoid

distance between point at which computation is taking place (P)
and element of surface area dS

r on the éurface of the sphere
r on the earth's surface
mean radius of the earth
radius vector at P ‘

distance along the meridian

Terrain Surface
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Deflections at the Surface

Figure 1.
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S/ = distance along the prime vertical

u = potential due to the reference system (normal potential or
spheropotential)

UO = normal potential at the surface of the ellipsoid

Vd = disturbing potential

= geopotential

= potential of the geoid

o

X, = focal rectangular Cartesian coordinate system, where x, lies
along the normal, and the X%y plane defines the local”horizon
(x] is North, X, 1s East)

o = azimuth

B = ground slope; subscripts 1, 2 refer to components in N, E directions
respectively.

Y = normal gravity due to reference system.

Ag = free-air gravity anomaly at Earth's surface

AW = difference in potential between geoid and a generalised geop

A = longitude, positive East

£ = components of the deflection of the vertical; subscripts 1, 2 refer
to component in N, E directions respectively; subscript p refers to
deflection at P.

o = deflection of the vertical; positive of outward normal lies North
and East of the normal

4 = a function of the density of the surface layer

& = Tatitude, positive North

= angle subtended at the geocentre between computation point P and
element of the surface area, dS

2. The Test Area
2.1 Llocation and Nature

The area chosen for the test area is the Narrabri-Manilla region in the state of New South Wales,

and lies 600 km north-west of Sydney and 300 km inland. It is bounded roughtly by -30%07' to

-30°52' in latitude and +149%451 i longitude. This region contains the junction of four sections

of the astro-geodetic levelling network of Australia, and distributed through it are 12 astro-geodetic
stations spaced about 30 km apart along the loops. These stations are reckoned to be fixed to an

accuracy of about 0.4 arcsec in latitude and 0.8 arcsec in longitude (see MATHER ET AL 1971, p. 11).

There were a number of reasons for choosing this area. One was the abundance and distribution of
control stations mentioned above. More importantly, computations already carried out showed large
differences between the astro-geodetic values and those determined gravimetrically, indicating the
shortcomings of the method used for computation in this disturbed region. The area encompasses a
great variety of topographical types, ranging from the completely flat plains of the Wee-Waa district
to the West to the very rugged and broken terrain of the Kaputar National Park. The control stations
themselves are situated in terrain of varying types, grading from the flat, through the small
symmetrical ad isolated hills, to foothills and finally rugged mountain ranges. |t must be realised
that the terrain itself is largely the reason for the anomalous deflections, nevertheless it is an
advantage to have such a gradation as this should indicate at what stage the theory, especially that
for inner and middle zones, will break down, and how much 'reinforcement' is needed to satisfy the

limits of accuracy.
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2.2 Gravity Dsta

Gravity in the area has been surveyed by the Bureau of Mineral Resources, Geology and Geophysics

as part of their programme tc provide a complete gravity coverage of the continent (see IBID, p. 7)
This has resulted in = density of gravity readings of about 1 station per 16 km? in flat areas to

1 station per 8 kmz in the mountains in the area of this test region. The density required for
accurate computations is still somewhat a matter of conjecture, but has been variously thought to

be {for mountainous areas} 1 point every 0.5 to | km within several kilometres of the control
station {PELLIMEN 1968} and "a .05 degree (5 km) grid within 0.5° (5 km) of the control point, in
addition to the 0.01° grid within 0.1° when evaluating using a computer't (MATHER ET AL 1971, p. 27).

Several field trips have been made to intensify the existing gravity field. As a general rule the
aim has been to encircle the station with 6 to 10 gravity readings at a radius of about 2-3 km,
with the existing density doubled to a distance of 8 km (all of these being chosen with an
overriding consideration that the points be chosen. in critical positions, such as at the foot of
the hili or mountair),

Gravity was messured by a Worden gravimeter (kindly loaned by the Bureau of Mineral Resources) with
traverses terminating at the isogal Stations at either Narrabri or Tamworth, Heightwas determined
in a number of weys. In some cases it was possible to use the third-order control stations or
level runs placed for the mapping programme in the area, but usually (especially for inner zone
stations) height was determined by trigonometric heighting with distances observed direct by EDM
or found by subiterse methods. In some caseé height was fixed by single base altimetry over short

distances. Posifion was found either by radiation from a known station or by scaling from the

exceilent 1:231 (2 inches to a mile) maps which cover most of the area.
The final accuracy of gravity values, especially those determined from the later trips, is expected

to be of the order of 0.3 mgal.

3. The Gravimetric Approach to Plumb-Line Deflections

2.1 The (luassical Approach

In the gravimet-ic approach to this problem, one is trying to determine the tilt of the normal
equipotentis!l s.rface, the spherop, to the actual equipotential surface, the geop. The classical
approach to this is to consider these two surfaces at the level of the reference surface. t then
becomes a matter of finding the rate of change of the separation of the geoid from the spheroid, N,

in the direction of the two axes defining the local coordinate system.

Hence, {e.g. MEISKANEN & MORITZ 1967, p. 112)

which, when applied to Stokes Integral, result in the Vening~Meinesz expressions
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1 d R
[ = —{f(x c.d - =1, 2 e (2
3 ﬂ??hJJ Ag dw{f(¢)}cos «j-do ] (2)
where o, = o; and az = 90 - o

It is worth emphasising that the problems associated with the solution of (2) are a direct
consequence of the difficulties associated with Stokes solution and the evaluation of the

separation of the geoid-ellipsoid system. This problem is well expressed by Brovar

when he states ' Geodesy can and must solve this problem (i.e.,of relating the geodetic

survey at the surface to the ellipsoid - Author's comment) without involing any hypotheses concerning

the internal structure of the earth'' (BROVAR ET AL 1964, p. 91).

3.2 The Contemporary Approach

In 1945 Molodensky devised an approach which by-passed the need to reduce information to the elusive
geoid. This approach has had a great impact on physical geodesy and methods are still being
developed to provide efficient and practical means of solving the rather cumbersome expressions
which derive directly from his formulation. Some of these methods will be treated lTater, but
firstly it is necessary to show in simple terms the new geometrical concepts which evolved as a

result of this new approach.

The surfaces of the earth (S) is thought to be represented by a second surface known as the telluroid.
This was defined originally by HIRVONEN (1960, p. 39) as the locus of points whose positions were
defined by the geodetic ¢ and » of the surface point P and whose spheropotential was equal to the
geopotential at the P. This (see figure 1) was the intersection of the normal through P with the
spherop U = W . Definition in this way was inconclusive and a modified definition was suggested by

DE GRAAFF-HUNTER (1960, p. 193). In this system the '‘Terroid' became the locus of associated points
defined by the astronomically observed values of ¢ and A for P on the spherop U = wp (see point Q,

figure 1),

i.e,¢Q=¢ , A=A , U, =U_+ aW e (3)

In terms of location and derivation this modification made little difference, but it did provide a
more absolute definition for the position of the reference surface (hereafter called the telluroid)
as its planimetric location was no longer relative to the local ellipsoid chosen for the geodetic
computations. {t can be seen that the telluroid is still a reflection of the terrain but is now
slightly displaced (the displacement being a function of the deflection of the vertical) and that
the normal to the spherop through Q has the same spatial orientation as the vertical through P.

{(For a more formal explanation, see MATHER 1968, pp. 34 and 42).

it is the height anomaly (hd) between the geop Wp and the spherop U = U, + &W which is the subject
of the solution and, incidentally, which substitutes for N to produce a surface known as the "quasi-
geoid' when referred to the reference surface, the ellipsoid. (See HEISKANEN & MORITZ 1967, p. 293;
MOLODENSKI | ET AL 1962, p. 76).
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3.3 The Deflection at the Surface

The deflection of the vertical at P can now be defined as the small change in the separation
between Up and Wp for an increment in the distance along the surface Wp. This change in
separation manifests itself as a change in the height anomaly (hd) and hence the two components

at' the surface in the meridian and the prime vertical can be seen to be

i  dng
1 T 3
p 954
dh
_ d
S N (4)
p A

The variable hd is calculated at the telluroid, hence it is necessary to relate the separation of
the two surfaces WQ, UQ at Q to the equivalent separation between W_and Up at P. This has been

expressed as (MATHER 1971, p. 86; HEISKANEN & MORITZ 1967, p. 313)

dh

X3 . de. P |

a.

+

d i
b § Wew 4% e 11

[a %

Where the second term is the correction to the differential at the tellurcid and is seen to be
the change in the height anomaly with height compounded with the change in the height of the

telluroid in the direction being considered.

For completeness it should be recognised that the 3-dimensional axis system at Q does not have
the same spatial orientation as the axis system at P, having suffered the small displacement z.

The axis system at Q must therefore be resolved into the axis system at P.

dhd dhd dx3
viz, & = {-{(=—) + — —= 1} cos &. e j=1,2
J dxj Tell dx3 dxj ]
which, on expanding cos gj and accounting for the magnitude of £ in Australia, will degenerate

to (5).

The second term on the right hand side of (5) evaluates as - éi . tan Bj where Sj is the slope
of the ground (this being equivalent to the telluroid slope at the associated point). This term,
as has been shown in HEISKANEN & MORITZ (1967, p. 314) and MATHER (1971, p. 88) compensates with

part of the first term in the expression being considered when this term is expanded.

The evaluation of this first term will obviously depend upon the approach adopted to find the
height anomaly. Two approaches will be referred to (i) Molodensky's approach, using surface layer
techniques and (ii) the approach which uses as a starting point Green's third identity. A

summary of these approaches can be found in (MATHER 1973, pp. 21-28 and pp. 32-43), but for a more
detailed development the reader is referred to MOLODENSKII ET AL (1962, pp. 118-124) and HEISKANEN
& MORITZ (1967, pp. 300-312) for the former approach, and for the latter approach MATHER 1970,
pp. 10-21 and MATHER 1971, pp. 78-86.
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4. The Height Anomaly and its Differential
4.1 By Surface lLayer Techniques
4.1.1 Derivation

This approach is based on the premise that the potential relating to a body can be expressed in
terms of an attracting layer on the surface of that body. This is extended to express the

disturbing potential (and not the potential) in terms of the layer

where ¢ is related to the density of the surface layer on S which is held to be producing

the disturbing potential vd at P,
P

The development of the theory is well known (see MOLODENSKII ET AL 1962, pp. 118-124) and will
not be repeated here. The end product is an expression which gives both the height anomaly and
(subsequently) the deflection in terms on a series of successive approximations of the density
of the anomalous surface layer, in turn expressed as a function of the surface gravity anomalies

and corrections to these at each point for the irregularities of the earth's surface.

Hence, to the second order, it is found that

R R2 (h-hp)2
hd = m (AQ+G1+G2) f(w) dO‘W —;3—-— Ag do . e (7)
9 o
and
g, = El— (ag + 6, +6,) -3 (fu) cos a. do
J my - 1 27 dy J
2 L Ag+G
+ %%— 93z (h-h )2 ag cos a. do - ! tan B. =1, 2 .. (8)
Y g rh P J J
o
where
> h-h
G = B —L2 Ag do
1 2 3
or
o
and
R2 h"h
= = P 2
G2 T ; G1 do + Ag.tan? B
Jorl

aj is defined in (1).

Some of the methods devised to modi fy the above are considered below.
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4,1.2 Practical Evaluation

A summary of some of the approaches developed to evaluate equation (8) can be found in
(PELLINEN 1968). Some use mathematical devices to simplify the expressions. Others, by
modifying the original concept have used a different physical model as the starting point

and have thus made modifications.

(a) In 1962, Pellinen suggested an approach which aims at removing the effect of the topography
from the general solution and independently evaluating the effect the 'removed' topography will

have on the deflection. This method as originally developed is given by PELLINEN (1962) and is

also outlined by MORITZ (1969, pp. 27-30).

The free-air anomaly at the surface is adjusted to account for the contribution made to this

anomaly by the topography above a stated reference surface.

i.e. AgC = Ag - AgT

where Agc is the anomaly corrected for topography
Ag is the free-air anomaly at the surface

and AgT is the contribution to g of the topography

Agc is substituted for Ag in the Equations (7) and (8) to find the parameters defining the anomalous

field at the reference surface. Thus, to a first order approximation, we find

_ 1 d
EJ S = (ag + G1C) W {f(y)}. cos a,.do + AEJT (9)
where
3 -
£. = - keRZ h hp . siny . cos a, . do
Iy Y J
2
rZr
o
G1 = G1 with Agc substituted for Ag.
c
As mentioned by Moritz, an advantage in this approach is that the G1 values will be similar and

smoother than the G, values in the original expression (8). However? Agc may attain large values

being in essence th; Bouguer anomaly, as might the corrections AEJ . A device to alleviate this
problem has also been suggested by PELLINEN (1968) (see also TMORITZ 1969, pp. 30-33).

A spherical surface, concentric to the original reference surface at sea level and passing thrcugh
the computation point P, is held to have a surface layer of density ph which produces an anomalous
potential field. The gravity anomaly resulting from this surface layer will have a compensating
influence on the mass of the topography removed in the aforementioned approach. |f the anomaly
accumulating in this way (which is shown to be the Faye anomaly, the free-air anomaly plus the
terrain correction only) is mow used in place of AgC in the earlier expression (9), and due

consideration given to the correction term which results, it is found that (MORITZ 1969, p. 31)
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. 4
EJ' T by - (ag + €) v {f(¥)} cos o do
+ Ozo ! —9— d-‘f(lb)cosu do + 8¢ j=1,2
n=1 m . n dw J J .
- J

where Ag + C is the Faye anomaly.

ah are the correction terms computed using the Bouguer anomalies

3 h-h
and 3¢, keR” 'jrjl (%f-- %~J sin ¢y cos a. do e j=1,2
J Y o ¢} 1 J
= 2 1 1
C = kpR (=— - —) do ... (10)
r r
o o 1

By using this device the gravity anomalies and the correction term 8f are both reduced in size.
Also, as with the first approach, the uncertainty of the density of the sub-surface is overcome
because it is compensated when the correciion term is added. The adoption of the reference
surface passing through the computation point (as in the second approach) should also improve
the convergence of the higher order terms, and improve the accuracy of the first order

approximation.

(b} The other type of approach used in solving Molodensky's expression use mathematical devices
in order to simplify them. In this respect it is worth mentioning a method developed by MORITZ
(1969) who uses analytical! continuation of the gravity anomaly from surface to sea level and thus
gains a solution by means of successive approximations. While some doubts about the validity of
this approach (i.e. continuation below the surface of the attracting body) are expressed, it is
felt to be justified by the equivalence gained with matched terms of the modified Molodensky
approach. In this way, MORITZ (1969, pp. 35-37) derives to second-order accuracy

- ’ d_ —
Ej = m 0(Ag+g1+g2) 0 {f (v)} COSOLJ. do e j=1,2
where
9, = '(h-hp) L (4g)
= _1 - 2 - -
9, 3 (h hp) L L, (8g)} - (n hp) L, (g,)
w2 [ f-f
with L ()= = || —& do o an
2T r3
o

Moritz claims that, though for all practical purposes this is identical with Molodensky's
original expressions, it is an easier statement to evaluate. A big advantage from the computing
viewpoint is that successive terms of the series are evaluated recursively, although it is probable

that the 2nd order is as high an order as is needed for most cases.
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Nevertheless, their expressions do appear simpler to evaluate than those in (6), although
care must be taken to ensure the terms convergesignificantly. To assist in this, as Moritz
states, it is possible to substitute the Faye anomaly for the free-air anomaly in (11) and
apply the corrections as per (10). Now the 9, and 9, terms being computed from the Bouguer

anomalies will be smaller and this should aid convergence.

Obviously for inner zone computations a device such as is used in 4.2(b), or as suggested in
ARONOV ET AL (1971), using an intermediate step, will have to be adopted.

4.2 By Green's Third Identity

4,2.1 Derivation

The disturbing potential when expressed in terms of Green's Third ldentity is used to obtain

the height anomaly

¥~ Y Rm
hd = — - R, {Ag} + Ty Ag.f{y).do
% g
v
R2 . dh; .'d
+ .0 1 {{(hp-h) +Rsin 37} - - YEJ. tan BJ.] do
2my r o

(See MATHER 1971, pp. 78-86 for derivation)

Differentiating this with respect to the two axes defining the horizontal plane at P, the tilts
of the two equipotential surfaces in these directions result as the sum of two components, that
directly contributed by the Vening-Meinesz expressions, and a correction to this for the departure

of the topography from the (ideal) reference surface, viz.:

. d
Epj Y T . Ag HE'{F(W)} cos a; do
R ] v
R [ in dh -3cosiy dh d
+ ({(R.sin — + h_ - h) C + R cosy }
2my o drO P 2sinty dro BRQ;T;Eg

sin O.
cos¥ _1yJ __Rsin d_ (dh J}
+ Rsin‘iy Ej tanBj) cosaj + -1 R sin®3y dxO (dro) Vd siny do

i=1, 2 co (12)
(see IBID, pp. 86~89 for full development)

4.2.2 Practical Evaluation

For computation purposes (12) can be greatly simplified by dividing the area involved into 3 zones,
(see outer, central and inner zones) and assuming a planar approximation for the inner and central
zones, with outer zone computations (>3°) made on a spherical model. This reduces the expression

(15) to
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(a) The Stokesian Term

m 2“'
1 3 '
Ee = K};‘J¢OJO Ag 55'{f(w)} cos a do e =1, 2

I TTY N
v N ag) 0D

The first term being the familiar Vening-Meinesz formula applied to central and outer zones,

and the second term the inner zone contribution to this quantity.

(b) The Terrain Correction Term

Y {27 2 - h_-h
1 1 dh p
3 = = {— Z g tan B, - [(2—— + 3 cos a. +
cp. 27 " jo 2 k=1 fk k dr0 R J
J o
ia_ dh Ne = Ne
(-1 55— G sin a.] —2 3 45 e j=1,2 .o (13)
r j 3
c o ¥
where ' = 3°, bo = 0.01° e 1 km
ang S _ can 5.+ st a
n dro = cos ac an 81 sin ac an 82
ag—- g%— = = sin o tan B1 + cos o tan 82
c o
a = 180° - q
c

Here the introduction of the term Nf - NF is an equivalent to a zero-degree datum shift and is

analogous to the introduction of a reference surface through P mentioned in 4.1 (a) of the surface
layer solution. It entails a knowledge of the geoid-spheroid separation at all points involved in
the middle zone computation and this can be obtained (if not already known) from the data which is

to be used in the computations.

Similarly the term ga tan Bu will generally be small, so zero-approximation values for these can

be computed as a first step and stored ready for use as part of the programme.

5. Conclusions

Although the above expressions have not yet been tested for the region under investigation, it is
worthwhile trying to predict how they will behave under the conditions which prevail there. It is,
in thisrrespect, useful to note the results of an investigation by DIMITRIJEVICH (1972) who
calculated the affect of the terrain correction (equivalent to G1 in expression (8)) on the

deflection at a number of control stations in the United States.
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_The greatest topographic effect is down the west coast of the continent where mountains reach

about 4 000 metres above sea level, and it was mainly in this region that the gravity anomalies
received the correction. The results of the computation showed that for a station lying 4° east

of the mountain range the terrain corrections introduced about .4 arcsecs into the prime vertical
component (with, understandably little effect being felt in the meridional component). This effect
.attenuated as the computation point moved eastward. It also lessened when the computation point
was taken in the mountains themselves, suggesting a compensatory effect due to the rough symmetry

of the terrain about the control station.

In the test region under investigation a similar situation exists. On the western edge plains
stretch north west and south with the Nandewar Ranges to the east. The inner zone will easily
satisfy the planar assumption, but the central zone, being unsymmetrical in the east-west direction
is expected to introduce large corrections into the value for 52' This will be further complicated
by the irregularity and steepness of the terrain to the east manifesting as an uncertainty in the

B or h-hp and Nf-Nf terms. There may also be problems in obtaining convergence in the G1 and G2
terms in this area,pand the use of the Faye anomaly should help to alleviate this. There will be

a further uncertainty in £y introduced by the fact that for the outer zone, the region to the East
becomes ocean. This means that, although the spherical approximation will hold good, Ag values will
be poorer. The use of the Stokesian approximation for the expansions of the outer zone in the other
three directions will also be valid particularly to the west. The north/south extensions will
probably not hold so well, as to the south at § = 6° one meets the Snowy Mountains region with
mountains reaching 2 500 m and to the north at y = 22° lies New Guinea with its rugged mountain systems.
Also, the use of the free-air aromaly in such large mountain passes as the Himalayas is a source of

systematic error, and here the technique which applies terrain corrections should prove stronger.

Moving eastward into the mountains themselves one is confronted with more problems relating mainly to
the assumptions of planarity in the derivation. It will be necessary to reduce the inner-zone radius,
perhaps even to as little as 200 m, and it may well be that the intensified gravity field may still
prove insufficient. - It is fortunate that the area is well mapped andinterpolations may prove to be
sufficient to strengthen the field, There will be some 'balancing' of the terrain effects due to a
closer approximation to symmetry in the central zone. Even so it may well be that the assumptions

prove inadequate and a more rigorous approach will have to be applied.
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8. Discussion

RAPP: About eight months ago a dissertation was submitted by a graduate student (EMRICK, H.) at
Ohio State University that discussed, among other things, techniques for computing deflections
of the vertical at Pike's Peak in the Colorado Rockies. The idea was to use the G1 term
of Molodenskii, the modification G1, the terrain correction and the two corrections you
mention 94 and 9y He used blocks down to 200 m squares and carried out computations to
about 150 km from the computation point at several points. He computed deflections of the
vertical using four different techniques including the Bjerhammar iteration down to the
reference sphere and compared the differences. The maximum difference was probably less
than one second between tHe uncorrected deflections and the various correction terms.

The differences between the various correction term models was a maximum of 0.5 sec.

See pp. 117-153 of these Proceedings
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GENERAL DISCUSSION ON SESSION C - (H.MORITZ AS CHAIRMAN)

MUELLER:

MATHER :

MUELLER:

MATHER:

MORITZ:

WALCOTT:

MUELLER:

WALCOTT:

RAPP :

WALCOTT:

MATHER

WALCOTT:

MATHER:

MUELLER:

WALCOTT:

(To MATHER) How can you get a value of W from a global geoid solution like that produced
by VINCENT ?

Stokes' integral as commonly known is insensitive to terms of zero degree. The formulation
of the boundary value problem in terms of gravity anomalies at the surface of the Earth can
be made without making any assumptions on this account. It is not possible to draw any
conclusions about the term of zero degree without external constraints as there is one term
WO which is unknown at some level of precision. We do not know the potential of the geoid
to 1 part in 107 at the presenttime.

You therefore state that in addition to a solution of the boundary value problem, it is

necessary to have an external constraint before a value can be obtained for WO?

Yes.

How does the geoid in Canada compare with the VINCENT-MARSH global geoid?

| couldn't say at this time as | haven't seen the detail of their geoid.

You said that the N3 term is in the order of 0 - 20 m. You also stated that it is
negligibly small. Which statement is true?
My statement is true. What may not be true is the data in the Bulletin Geodesique

reference. RAPP might like to comment on that?

| am trying to recall the Bulletin Geodesique article and | dont recall the global five

degree anomaly field.

The techniques are right but the data may be questionable.

| would like to comment on the methods of solution used, assuming we are using the level of
data dealt with in the preparation of the three geoid maps presented today. VINCENT
mentioned that only an (8,8) solution was needed to adequately represent distant zone
effects in such solutions. The use of Molodenskii truncation functions should adequately

cover the contribution of outer zone effects, provided the inner zone were well represented

by surface gravity. This technique has been used by some Russian groups to prepare geoid
maps. There is a certain uncertainty in the present techniques as it is not clear where
the surface gravity representation ends. A presentation later in this symposium by

Y. HAGIWARA will illustrate the use of this technique.

Surely the technical problem is that there is insufficient data?

The practical consequences are marginal, but the technique is neater.

{ would like to refer to VINCENT's map. From strictly geometrical satellite solutions, we

compared his undulations at 158 stations around the globe and the average difference was
0.2 m. This is a pretty good geoid solution.

A stepwise function was used to fit data across the US border. There are differences

between ACIC data as compared with our (Canadian) data in contiguous positions.
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MORITZ:

MATHER:

MORITZ:
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Has the discrepancy between the Ottawa datum and the Washington Datum been taken into

account (when preparing the Canadian geoid map)?
Yes they have. The differences between ACIC data and our data are not systematic.

As MATHER pointed out, the question is the extent of the wavelength of the systematic error.

Hopefully they are not of long wavelength.

A comment to MATHER. You mentioned the approximation of your solution up to the order of
e’. | have some doubts because the basic formulation of the problem is only correct to
the order of e?. We have studied the linearity and non-linearity problems in some

detail and have found that especially vertical deflection calculations are very sensitive
to higher order terms in the formulation. A recent reference to the problem of a non-
linear formulation of the geodetic boundary value problem is the contribution of M. PICK
(1973. Studia geod. et geophys. 17,173) where the influence of the higher order terms on
regional effects is shown for the region of CSSR and cannot be ignored, even for geoidal
undulations. Thus, the accuracy of some solution is also dependent on the accuracy of the
formulation of the problem. The central question is how accurate the linear formulation
is. ™
As far as the accuracy of the data goes, the present formulation should be sufficient and
there are many other factors that come in, for example, problems of computing those second
and third order terms in the linear formulation. There is also the question of numerical

errors due to lack of data which may be much larger.

Another important question is deciding on whether or not a uniform method should be adopted
for processing gravity information so that the ''best' solution can be obtained from irre-
gularly distributed information. Take the three geoid maps presented today. VINCENT
ignored higher degree effects in those areas where no one degree information was available
(equivalent to representation by the spherical harmonic model); | presume NAGY & PAUL
adopted a similar procedure, while it would appear that OBENSON did a covariance analysis
for prediction purposes. These are different approaches. There is a case to be put
forward for a uniform approach. | do not know whether there is a clear cut answer to this
problem.

I don't gquite know’what you mean by uniform processing. There is a related topic which
can be more fully discussed at the appropriate session {(Session |) - the optimum treatment

of existing data since this problem involves statistical considerations

Maybe something could be said in general terms as it is felt that the differences in the

solutions is due in part, to the different methods used to process the data.

Yes. Since the data is largely the same, differences in answers will always be due to the
different procedures used. The various procedures should be encouraged so long as they

are proceeding on valid lines.

How do you define random and systematic error? We talk about different persons processing
data differently. A systematic error in one set of data (processed by one person) may be

random in the global context.

Significant sources of systematic error in surface gravity anomalies are firstly those in

the datum for observed gravity, and secondly those in the height datum. We assume that



QURESHI :

MORITZ:

204
all datums are located on the same equipotential surface. The boundary value problem, as
commonly formulated is dependent on the term AW with respect to the geoid. Irrespective

of whether errors on this account are due to levelling errors (as maintained by oceanog-

raphers) or so-called sea surface topography, we still have the effect on the data. These
are sources of systematic error of long wavelength. A numerical manipulation could be
performed to get rid of these effects. An example of random effects are elevation errors

at individual gravity stations.

How about marine gravity observations where we have large errors with an accuracy of

t 5 mgal?

There are two different sorts of errors. Firstly there are measuring errors and secondly
there are interpolation errors in gravity observations which are taken along profiles.

The latter errors may be larger.

* A
Post-Symposium Reply from MATHER: Having since read PICK's paper, it can be stated that the basis

for his development had already been taken into consideration in the solution to order

e? referred to.
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