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A SYSTEM OF OBSERVATIONS FOR FOUR-DIMENSIONAL GEODESY

ABSTRACT

Four-dimensional geodesy is a convenient term for those new high-
precision observation techniques which yield position and gravity
and, within a short time span, their.variations. This data has
applications in many areas of earth physics.

The measurements are approaching an accuracy of one part in 108.

A global network of observing stations is required to obtain full
accuracy, and this is consistent with the geophysical need for a
fundamental station on each continental plate. Continuous monitoring
of position and time at this station should be suppiemented by
periodic observations at a number of subsidiary stations spread over
the plate.

The siting and marking of the stations requires care to avoid local
movements and to ensure that the instrumental positions can be
initially defined and later redefined precisely after a lapse of
decades, or even centuries. In practice it is not possible to site
all fundamental observing instruments at one observatory and they
need to be connected in time and position by surveys of ultra high
precision.

Coordinating bodies are needed on a national and international level
to ensure that the observing programs, the data storage, the analyses
and the research in this area are interrelated for optimum benefit.

1. Four-Dimensional Geodesy

New techniques of measurement are providing geodetic results of such high accuracy that the changes,
with time, in position, length and gravity need to be taken into account. Conversely the measurements
yield valuable data in the form of rates of change of these elements with time. Time becomes an active

element, so that it is appropriate to use the term four-dimensional geodesy (4-D geodesy) in these

studies.

The precision of measurement is approaching 10 cm for position, 10 microgals for gravity and one part
in 108 for intercontinental distances (FALLER ET AL 1972; SMITH ET AL 1972A; SAKUMA 1971; KELLERMAN
1972). Since these accuracies are of the same order of magnitude as the annual variation of position
and gravity, it should be possible to detect changes within a time span of about three years and to

define rates of change within ten years.

In order to make valid comparisons it is essential that all results be referred to the same reference
system. Within a framework where all elements, even the so-called fundamental constants, may be changing,
this is a requirement fraught with difficulties. The time span of observations is several decades, at
least; the observing stations are spread over the whole globe; and the observations involve objects in

earth-based and celestial coordinate systems.
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This problem has been investigated by Mather who has proposed a special reference frame for
long-term studies (MATHER 1972; 1973). H]s solution involves adopting a rigid body model for
the earth and applying corrections to account for any variations from the model. Appropriate
expressions are derived for transforming astronomical observations into the system. Since the
emphasis is on determining movements of continental plates, a single station is chosen as
reference, and movements in longitude are all referred to its longitude. Shifts in the position
of the geocentre - the earth's centre of mass ~ are vital, and will require to be monitored by

periodic high-precision measurements of gravity.

Within this framework the data should be expressed in a form made familiar by star catalogues.
The data should be given for a particular epoch, say 1975.0, with the 'proper motion' of each

element listed, in addition.

2. Applications

L-D geodesy brings a new emphasis on time and the need for a special reference frame. It also
introduces a closer relationship between geodesy and other earth sciences. Data from geodesy is
applicable to many of the problems currently being investigated in geophysics, geodynamics and

oceanography (KAULA 1971; LAMBECK 1972).

Variations in the position of the earth's axis of rotation and in the rate of rotation will be
measured by continuous observing programmes to yield results accurate to about 10 cm and 100 us
(MELCHIOR & YUMI 1972). Greater accuracy in polar motion and rotation will help resolve problems
in the possible mechanisms of the variations, such as the relationship between earthquakes and
the Chandler motion and between rotation, atmospheric circulation and the coupling between the
core and the mantle (KAULA 1971; MELCHIOR & YUMI 1972; MANSINHA ET AL 1970). Detailed data on
continental plate motion will show whether present motion is the same as the average over past
millions of years; whether there are differential movements; whether plates are subject to flexure
or vertical movements. The measurements will fill in details in the picture of global tectonics
which has emerged over the past decade. This indicates that continental plates are moving apart,
with related sea floor spreading from mid-ocean ridges, while elsewhere the plates are colliding
with one plate being subduced or forced under the other (le PICHON 1968; HEIRTZLER ET AL 1968;
DEWEY & HORSFIELD 1970; le PICHON ET AL 1973).

Satellite geodesy should improve the determination of the gravitational field in two ways:

improved accuracy from laser ranging should yield more accurate values for the low order harmonics,
and satellites carrying radar altimeters should provide a higher resolution. Anomalies in the

low order harmonics show a correlation with tectonic features (HIDE & MALIN 1970), but until more
laser range data is available for analysis, the accuracy will not be sufficient for the unambiguous

definition of the anomalies (LAMBECK 1972).

In relation to the earth's elasticity, the new observations will provide data on earth tides and
the response of continental margins to tidal loading. It will be possible to determine the Love

number k and to investigate its apparent variations in different regions of the globe (SMITH ET AL

19728).
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The launching of the GEOS C satellite in 1974 will provide measuremesnts of the geoid surface
over ocean areas, from which, in the first instance, the gravitational field can be determined
to a higher resolution (APEL 1972)}. If the geoid is known independently, ther geoid - sea level
relationships, such as open ocean tides, sea surface slopes, and ocean circulation can be

studied (APEL 1972).

3. Measurements

The measurements of 4-D geodesy include laser ranging to satellites (SMITH ET AL 1972A), laser
ranging to the moon (BENDER ET AL 1973), very long baseline interferometry {(VLBI) (SHAPIRO &
KNIGHT 1970) and high precision gravimetry (SAKUMA 1971). Each method of observation has its
Iimitations on accuracy. Laser ranging to both satellites and the moon is affected by the
atmosphere and the inherent accuracy of the instruments but these are no longer limiting factors
(FALLER ET AL 1972; SAASTAMOINEN 1973). In satellite ranging, uncertainties in the gravitational
field, earth tides, radiation pressure and atmospheric drag, all of which cause perturbations of
the orbit, are the factors which limit the accuracy (KAULA 1966). In lunar ranging it is again
the perturbations of the satellite orbit - in this case the lunar librations - which are the

limiting factors (WILLIAMS ET AL 1973; FALLER ET AL 1972).

Altimeter results from GEOS C are expected to be accurate to slightly better than one metre when
observing in the high energy mode. Later altimeters, as in the SEASAT series of satellites of the
EOPAP programme, should be accurate to 10 cm. The limitations are in the instrumentation, the

directional guidance and the effects of ocean waves and other surface irregularities.

In VLBl the volume of data required and the high rate of acquisition have caused difficulties but
these have been effectively overcome (SHAPIRO & KNIGHT 1970). The system is capable of giving the
required precision but the atmospheric corrections place a limit on the accuracy. Because of the
great length of the baselines, there is no similarity between the paths traversed through the
atmosphere at the two ends (JONES 19695 SHAPIRO & KNIGHT 1970; KELLERMAN 1972).

Doppler measurements of satellites are generally considered to be of lower acruracy but the method
has given results consistent to one metre, in the determination of polar motion (BEUGLASS & ANDERLE
1972). It has been stated that the instruments are capable of an accuracy of 5 cm (SMITH 1971).
The remaining limitation on the accuracy is the uncertainty in the atmospheric correction. The
advantages of the Doppler system are the ease of obtaining observations, the number of satellites

available and the 24 hour capabilities, independent of weather.

4, The Ideal System

In order to obtain the full accuracy of the methods, satellite and lunar laser ranging require a
global distribution of observing stations. This is consistent with the geophysical need for a
fundamental station on each major continental plate. The problems are on the southern land masses:
South America, Africa and Australia, and in Asia where until recently scientific cooperation was
very difficult. A satisfactory distribution would be a very minimum of six stations, one each in

North and South America, Europe, Southern Africa, Eastern Asia and Australia.

Each station would constitute the fundamental geodetic observatory for its region. Facilities

would include the two laser ranging systems, antenna for interconnection of stations by VLBI,
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Doppler satellite instruments and a base for absolute gravity measurements. A continuous
programme of observations would include Yaser satellite and lunar ranging and Doppler measurements.

The VLBl and gravity measurements would be taken at regular intervals.

In addition to the fundamental station, each region would require a number of main stations set up

for periodic observations according to a set programme. Here observations would be made using
transportable equipment for satellite ranging, Doppler measurements, gravity and possibly interferometry
using wide-band transmitters carried by satellite or on the moon. With a 1 000 km spacing, it would
require about 15 stations for the Australian continent and its margins. For a 500 km spacing, the
requirement would increase to 40 stations. |In addition it would be desirable to add a coverage of

stations on appropriately situated islands so as to cover oceanic regions.

5. Location of Stations

Apart from normal siting requirements the fundamental stations should be chosen for stability in
position over a long term, extending over several decades and possibly centuries. On a regional
scale, they should avoid coastal areas where tidal loading may be difficult to model, and zones of
known instability due to crustal collision, faulting, earthquake or volcanic activity. On a local

scale, site investigation will be needed to avoid local faulting, subsidence.or known local earthquake

zones.

The objective is to be able to relate, to mm accuracy, positions of all observations taken over the
full time span, and to ensure that movements are representative of the whole region. A system of
reference marks will be necessary. The marks will probably be in three sets, each set comprising four
marks or more. One set will be the stable monuments, set in bedrock and not easily accessible. The

next set will be the working monuments, conveniently situated for connecting to the instruments by

precise survey. The third set will be the recovery marks placed, for safety, at some distance from
disturbing influences on the observing site. The marks will all be interconnected by precise survey.
Since there are four marks in each set it will be easy to detect the disturbance of one or two marks.

The same considerations hold for main stations, though they need not be applied so strictly. They
may be situated especially for observing a disturbing factor such as fault movement or coastal tide

loading.

Because of the accuracy requirement, the definition of the ''instrument centre'' to which measurements
refer, requires careful consideration. The centre may be defined implicitly in the calibration
process, or it may depend on the physical form of the equipment. The design of the instrument should
provide a clear and direct definition of the centre for the connection to the working monuments by

precise survey.

6. The System in Practice

The situation in practice will fall short of the ideal. It may not be possible to set up all observing
systems in each of the six continental regions. The instruments are unlikely to be sited together in
one geodetic observatory. It may not be possible to arrange a full coverage of main stations over each

continent and oceanic region.
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As a result one of the problems arising will be the determination of relative positions of

different observing systems, so as to compare results. This will be, in effect, tying together
the elements of the geodetic observatory. Conventional ground surveys, if carried out to the
highest precision, will be sufficiently accurate for plan position over distances up to about 100
km. Care will be necessary in transforming the measurements into the appropriate reference system.
Transfer of heights by precise levelling involves an extra difficulty because the datum for those
heights is the geoid. The difference in geoid ellipsoid separation can only be carried to the

required accuracy for short distances, well under 100 km.

From these considerations it is clear that in most cases the methods of 4-D geodesy will be
required to determine the relative positions. It will also be necessary .to interrelate the
stations in terms of their gravity values, and, during observing periods, their time systems. These

determinations should provide no difficulties.

7. The System in Australia

In Austra]ia there are some activities relating to 4-D geodesy. The Division of National Mapping .is
setting up a lunar laser ranger near Canberra, as part of its Time Service. Initially the results

are not expected to be in the 10 cm accuracy class. There is considerable activity in VLBl by the
Space Research Group of the Weapons Research Establishment and others, but not directed towards
geodetic results. A joint project has been proposed, involving groups in the U.S.A. and the

School of Surveying, University of New South Wales (UNSW), to be sponsored by SAO and the Australian
Research Grants Committee. |f supported, this project will make use of the Tidbinbilla antenna to
measure three base-lines of a trans-Pacific network. |In gravimetry, the CStR0's National Standards
Laboratory is active in absclute gravity measurement, and the Bureau of Mineral Resources, which
already has gravity stations of the National ISOGAL network distributed through Australia, has no
formal plans to measure time variations in the gravity field. There is at present no prospect of
setting up a satellite laser ranging instrument. This leaves a serious gap in the world-wide network,
and in the types of measurement to be undertaken in Australia. |In particular it leaves Australia with
no participation in international studies, which are currently being planned, of the ocean surface

using satellite altimeters.

A further element is necessary in 4-D geodesy: research and development. Much essential development is
being undertaken by the National Mapping Division in setting up its lunar laser system. The UNSW
School of Surveying has commenced a programme of research on a small scale but this has so far not been
directly related to observing systems. In Australia the difficulty in this and other aspects of 4-D
geodesy is that while the activities of the National Mapping Division include the applied aspects of
geodesy, there is no body to take responsibility and provide funds for scientific geodesy. It will be

unfortunate if, as a result, there is limited Australian participation in this new phase of geodesy.

8. Coordination of Activities

The activities under discussion cover a wide geographical range and a diversity of measuring techniques.
They share common aims, so it is obvious that coordinating bodies are necessary on national and
international levels. It is envisaged that these bodies would have an advisory role. Each national
committee would keep in touch with the activities of 4-D geodesy, making assessments to ensure that the
coverage was comprehensive and encouraging new projects where necessary. The committee might need to

take a hand in the 'housekeeping' functions such as the provision and survey of adequate reference
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marks, facilities for retaining records of data and distributing data. The national committees
would be the channels of communication with the international committee. This committee would

have an analogous function in relation to the programmes in the various member nations.

The existing coordinating bodies in Australia are probably similar to those elsewhere. The
Academy-of Science has a National Committee on Geodesy and Geophysics (ANCOGG) which has a small
Sub-Committee on Geodesy. This sub-committee is too limited as the scope of activities required
in 4-D geodesy go far beyond its scope. On the other hand, ANCOGG has interests in a great range
of fields besides those involved in 4-D geodesy, and even so does not encompass the whole of 4-D
geodesy. There is a clear case for the establishment of an ad hoc body to carry out the functions

of coordination in four-dimensional geodesy.
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10, Discussion

MELCHIOR: | am still not clear on the nrohlem of Pannler accuracv. Ve get a precision of 80 cm

from the Navy Navigation Satellite. If we had satellites at a greater distance, say 3000
km with 3 frequencies, you could have a higher precision with Doppler
ANGUS-LEPPAN: Yes. I have carefully not mentioned future possibilities. Particularly with Doppler

there are possible new deve lopments just over the horizon.

MELCHIOR: When you are proposing some programs, don't you think there are existing in the Geodynamics
Project some working groups who should deal with the problem and have probably not done

so?

WALCOTT: There are the necessary organizations at the international level but not at the national

level.
BOULANGER: Yes.

MELCHIOR: I am a member of working group six in the Geodynamics Commission; this working group deals
with problems of the rotation of the Earth, changes in gravity, tides, etc, and they have
until now, not made anything very clear.

BOULANGER: We have several regions in the Soviet Union where velocities of vertical crustal move-
ments reach 120 mm yr_1. I't is not possible to use such precise measurements without

fixing the time of measurements. It is quite easy to see in this problem of measurements

for four-dimensional geodesy as spoken of four years ago by Kukkdmakki, Levallois and

Marussi. A special study group should be formed to look into this matter; perhaps

firstly the question of international programs. In geodesy it is very important and

it must be an inter-union organization.

MELCHIOR: The Geodynamics Project is precisely such an inter-union project and with some working

groups; and some of those groups are working.

DOOLEY: In the context of measuring changes in gravity, | would like to mention that the

(Australian) Bureau of Mineral Resources, in conjunction with the Division of National
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Mapping, is setting up two networks in New Guinea for measuring crustal movements in two
regions of rapid movement and we plan to make gravity measurements across these zones.

Secondly, with the help of Boulanger's group, we have a very accurate net of gravit
g Y Y

measurements covering the whole of Australia. It is planned that in ten to twenty years
from now, this net will be re-measured with a view to detecting changes in gravity in
this way. You also state that your system should have at least one station on every
continental plate. | would suggest that you need at least two fundamental stations to

each plate, as it requires three parameters to define the relative motion of two plates.

It is not possible to get relative rotation from one station.

ANGUS-LEPPAN: The proposal is to have one station at which you take regular observations and a

number of other stations where you have a program of periodic observations.

DOOLEY : It will depend on whether you measure relative azimuth at these stations. If you
measure only distance, and you are on the one plate, the distances should stay the

same. You should measure at least three distances between two plates.

ANGUS-LEPPAN: The proposal was in terms of fixing position each time with respect to the basic frame,

rather than distance.
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FUTURE APPLICATIONS OF LASER RANGING SYSTENMS

1. Text

The NASA Earth and Ocean Physics Applications Program (EOPAP) will make extensive use of the advanced
laser tracking capabilities which are now being developed. The Earth Dynamics portion of the program
will involve laser tracking of satellites in order to make very accurate measurements of the Earth's
crustal and rotational motions. Tectonic plate motions of the order of a centimetre per year; and
polar motion anomalies of the order of a couple of centimeters in half a day will be monitored to
provide basic information about earthquake processes and their possible correlation with the motion

of the Earth's rotational pole. The Ocean Dynamics missions of EOPAP will also depend on the power

of the laser approach to give the accurate orbital positions needed for the interpretation of the

EOPAP OBJECTIVES

¢ DEVELOPMENT AND VALIDATION OF METHODS LEADING TO EARTHQUAKE-HAZARD
ASSESSMENT AND ALLEVIATION MODELS TO PREDICT PROBABLE TIME, LOCATION
AND INTENSITY OF EARTHQUAKES.

o DEVELOPMENT AND VALIDATION OF MEANS FOR PREDICTING THE GENERAL OCEAN
CIRCULATION, SURFACE CURRENTS, AND THEIR TRANSPORT OF MASS, HEAT,
AND NUTRIENTS.

e DEVELOPMENT AND VALIDATION OF METHODS FOR SYNOPTIC MONITORING AND
PREDICTING OF TRANSIENT SURFACE PHENOMENA, INCLUDING THE MAGNITUDES
AND GEOGRAPHICAL DISTRIBUTIONS OF SEA STATE, STORM SURGES, SWELL,
SURFACE WINDS, ETC., WITH EMPHASIS ON IDENTIFYING EXISTING AND
POTENTIAL HAZARDS.

¢ REFINEMENT OF THE GLOBAL GEOID, EXTENSION OF GEODETIC CONTROL TO
INACCESSIBLE AREAS INCLUDING THE OCEAN FLOORS, AND IMPROVEMENT OF
KNOWLEDGE OF THE GEOMAGNETIC FIELD FOR MAPPING AND GEOPHYSICAL
APPLICATIONS, TO SATISFY STATED USER REQUIREMENTS.

Figure 1
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MEASUREMENT REQUIREMENTS SUMMARY
MEASUREMENT ACCURACY
e CRUSTAL MOTION 1cm / year
¢ POLAR MOTION, EARTH ROTATION 2cm/ 0.5 day
® SATELLITE ORBITS 10cm
e GRAVITY FIELD / GEOID 10 cm
¢ SEA SURFACE TOPOGRAPHY 10 cm

Figure 2

altimeter data (see figures 1 & 2; NASA 1972).

The evolution of laser tracking system accuracies is indicated in figure 3. The EQPAP flight missions
which will take advantage of these capabilities are listed in figure 4 (NASA 1972; VONBUN 1972).

Laser tracking will be used to determine the altitude of the GE0S-C spacecraft as its altimeter
measures sea surface topography in the western north Atlantic next year. Lasers having a 10 cm

range accuracy located at Wallops Island, Bermuda, Cape Kennedy and Goddard will track this satellite
and provide the kind of accurate geometrical position reference needed both to calibrate the altimeter
and to determine topographical features of the ocean after the instrument has been validated.

Results of an analysis of the accuracies attainable with laser tracking data from Goddard, Cape

Kennedy and Bermuda are indicated in figures 5 and 6 (BERBERT 1973).

LAGEOS, a dense, spherical, retroreflector studded satellite, to be launched into an orbit of high
altitude and inclination in 1976, will be a key element of the EOPAP endeavour. LAGEOS will be the

LASER TRACKING SYSTEM ACCURACIES

1970 50cm
1973 10cm
1975 5c¢m

Figure 3
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first flight mission devoted exclusively to laser ranging applications.
will be designed especially to minimize
corner cube array, and uncertainties in
pressure effects. A network of lasers
provide the data needed for determining

ensemble of large tectonic plates which form the Earth's cover.

NASA EARTH AND OCEAN PHYSICS APPLICATIONS PROGRAM (EOPAP)
MISSIONS EMPLOYING LASER RANGING
GEOS-C 1974
LAGEOS 1976
SEASAT | 1978
GEOPAUSE 1979
SEASAT I 1982
Figure b

The satellite and its orbit

errors associated with retroretlection from the satellite's
orbital perturbations due to gravitational and radiation
having 5 cm range tracking accuracy will be deployed to
accurate LAGEOS orbits, and to monitor the motions of the

Polar motien and variations in the
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Figure 5. GEOS-C Height Uncertainty Corresponding to Laser Tracking from Goddard,

Cape Kennedy, and Bermuda for a lTypica! SE - NW Arc
Detailed assumptions are listed in figure 6, and discussed in (BERBERT 1973)



713

Lasen Obseavations (1 per 10 seconds)

Range Bias AR 20 em
Range Noise ‘ o 20 cm
Azimuth Noise oA 30 arc sec
Elevation Noise oE 30 arc sec
Time Bias at Reference-Site (Goddard) At 0 usec
Time Bias at Other Sites At 50 usec

Gravity Field

Spherical Harmonic Coefficients 0.25 (APL 3.5 - SAO M1)
: oM 1 x 10-6.
) Suwrvey
g Reference Site (0, 0, 0) metres
' Other Sites
: Cape Kennedy (1.0,0.5,0.7) metres
; Bermuda -(1.0,0.9,0.8) metres

Figure 6. A Priori Error Estimates for Orbit Height Recoveries

Earth's rotational rate will also be determined by this LAGEOS system consisting of the dedicated

satellite and the associated laser network {(figure 7).

The San Andreas Fault Experiment (SAFE), aimed at detecting and measuring motions some 100 km from
the fault line, will also take advantage of the LAGEOS capabilities to achieve more accurate results

Sites already occupied at Quincy and San Diego will be supplemented by additional stations at other

PRECISION GEOMETRIC REFERENCE
CRUSTAL MOTION
POLAR MOTION
EARTH ROYTATION

PASSIVE DENSE
LASER REFLECTOR SATELLITE

Figure 7. LAGEOS
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Figure 8.

locations in western North America, (figure 8).

A Tonger look into the futuré oQtlined in the general EQPAP plan reveals the SEASAT-A, GEOPAUSE and
SEASAT-B spacecraft envisioned for launching in 1978, 1979, and 1982 respectively. It is anticipated
that SEASAT-A will be tracked by lasers deployed both globally and in local regions in the manner
planned for GEOS-C. The improved capabilities developed for the LAGEOS program will also be used

to good advantage in support of SEASAT. '

GEOPAUSE, in a circular, polar orbit at a distance of about 30,000 km will also be tracked by the
advanced ground laser complex (SIRY 1971). Thought‘is being given, too, to the possibility of
operating a laser system in the GEOPAUSE satellite and using it to track retroreflectors on the

ground. Uncertainties associated with orbital perturbations due to the geopotential will be
negligibly small for this high orbit. The satellite will be above the horizon for four or more lasers
simultaneously in many parts of its orbit; hence the prospect of eliminating tracking system biases

on a continuing basis is opened up. Observation of polar motion and variations in the Earth's
rotation rate in time intervals of less than half a day will also be possible. It will be practical

in addition, to monitor crustal motion both in the small, in terms of effects occurring near fault
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zones, and in the large, in terms of the gross motions of the tectonic plates relative to one

another.
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3. Discussion

HOLDAHL : In the diagram showing locations where you would send your portable lasers, the array
seems quite dense (Ed: See diagram in paper by SIRY in this volume). Do you think the
methods you described can compete with conventional geodetic methods at distances less
than 300 km?

SIRY: Rule of thumb has it that conventional geodetic methods have a resolution of 1 part in
10°. So once you go beyond 100 km, you are not operating at the 10 cm level. That's

the rationale for using these techniques at the 300 km level.

HOLDAHL : What is the minimum spacing at which the observing stations should be placed? '
SIRY: Let's put it this way; beyond 100 km you would have difficulties in doing work to 10 cm
accuracy with conventional techniques. You can improve on this by a factor of 2 to 5

by using satellite techniques.
WALCOTT: Isn't 1 part in 10° pessimistic? Aren't we up to 2 parts in 1077

ANGUS-LEPPAN: These are instrumental accuracies; but you are measuring through the atmosphere and |

don't think the question of refraction has been solved to 1 part in 10°.

TPost Sympos ium Comment by HOLDAHL: The rule of thumb mentioned should not be applied to detection
of height changes. Error in height changes, when computed from levellings, is proportional
to the square root of the distance between the observation point and the reference
point. For distances less than 1000 km, precise levellings can detect height changes

with an uncertainty less than 10 cm.
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DISCUSSION ON SESSION "M" - METROLOGY (G.A. BELL AS CHAIRMAN)

ECKHARDT :

Air Force Cambridge Research Laboratories (AFCRL) is presently supporting the develop-
ment of a new, second generation laser-interferometer absolute gravity system which
offers significant improvements over the original instrument constructed by Faller and
Hammond with the support of AFCRL and the National Bureau of Standards. The method
employed in both instruments is to drop one reflector of the two-beam Michelson inter-
ferometer and to determine the distance fallen in known time intervals by direct

measurement in terms of interference fringes.

The original instrument which was designed to be transported and was successful in that
it was taken to eight different sites and, after spending between one and two weeks

total set-up, operate and take down time, absolute values with a precision of better

"than *0.05 mGal were obtained at most sites. The apparatus was bulky and when packed

for shipment had a total weight of about 2500 1b packed into about 20 shipping

containers.

The aim of the new instrument is to decrease the time required to obtain an absolute
value of gravity with a precision of at least as good as *0.05 mGal to about 2 or 3
days and to cut the total weight to at most 800 Ib. This is being accomplished by
making some radical changes in the mechanical design and employing present day state-

of-the-art electronics and computing equipment to give rapid computation of results.

The mechanical design has evolved with the express purpose of removing the necessity
of having an ultra high vacuum. This removes the approximately 100 1b weight of the
high vacuum pump and cuts the time by at least one full day besides greatly simplifying
the problem of using trouble free materials in the vacuum chamber. Reliability will
be increased because the tendency for clean surfaces to stick together will not exist

in the moderate vacuum needed with the new design.

The main feature of the new design is that the freely falling reflector is enclosed in

a small evacuated chamber which falls along with the reflector. These both fall in a
larger vacuum chamber but since the air which comes in contact with the falling object
is falling with the acceleration of gravity, air resistance cannot affect the
measurement. The vacuum required in the outer chamber need be no better than 1072

mm of Hg to prevent gaseous turbulence and to avoid air drag slowing its fall. The
interior of the small chamber requires a vacuum of only 107 mm of Hg to place all
possible air resistance effects beyond the level of consideration. While the mechanism
required for separating the reflector from the small chamber during the fall is somewhat
elaborate, it should be very reliable and be able to withstand many repetitions of

operation.
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The electronics system will make digital time measurements between a large number (50 to
500) of interference fringes and will thus make independent measurements of g and the
gravity gradient as well as detect seismic motions occurring during the fall of the
object. The digital data will be processed immediately by an on line process and control
mini-computer. This will save all the time and trouble required with the original
instrument to prepare data for computation and get co-ordinated with a computer facility

at or near a field site.

The overall height of the instrument is about 1.5 m, while the use of aluminium in place
of stainless steel and a lighter base permissible because of the new design, have also
contributed to improvement in total weight. The progress of the state-of-the-art in
electronics has resulted in electronic and computation systems that do much more than in

the original instrument while its weight has been cut by a factor of two or three.

The future of absolute gravity instruments lies in two directions:
portable instruments with precisions of between 0.01 mGal and 0.10 mGal; and
fixed stations with precisions in the 0.001 mGal range.
The technology for producing such portable instruments is well in hand and if there were
demand for a large enough quantity, they could become production items in the same sense
that gravimeters have. The work of Sakuma at Bureau International des Poids et Mesures
(BIPM) has shown that the technology for 0.001 mGal precision is available but the size
and complexity of his instrument prove that it is not obtained without a great deal

of extra effort and expense.
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