

## Reference to Districts.

A Northern Boundaries
B Liberty Plains
C Banks Town
D Parramatta
EEEE Ground reserved for Govt. purposes
F Concord
G Petersham
H Bulanaming
I Sydney
K Hunters Hills
L Eastern Farms
$M$ Field of Mars
N Ponds
O Toongabbey
P Prospect
Q
R Richmond Hill
$S$ Green Hills
T Phillip
U Nelson
$\checkmark$ Castle Hill
W Evan
The cover map is a reproduction in part of a map noted as follows:
London: Published by John Booth, Duke Streel, Portland Place, July 20th, 1810

Reproduced here by courtesy of The Mitchell Library, Sydney

UNISURV REPORT NO. S12, 1974

# An Evaluation of Orthophotography in an <br> Integrated Mapping System 

G.J.F. Holden

Received March 1974

School of Surveying,
The University of New South Wales, P.0. Box 1 ,

Kensington, N.S.W. 2033. Australia

National Library of Australia
Card No. and SBN
0858390140

## A B STRACT


#### Abstract

Since the modern revival of interest in Orthophotography, and in particular since early 1960 when production instruments for the technique became available, a number of practical tests have been carried out in order to determine the mapping accuracies which can be achieved in practice. Several mapping projects have incorporated orthophotographic processes, and a few have been conceived as orthophotomap projects. An analysis is made of current projects and previous tests, and the analysis shows that to a large extent both the projects and the tests have been rather biased by conventional mapping criteria, and that many of the tests have been concerned solely with the problems of very large scale mapping. It is contended that this is rather paradoxical, because this technique is one which should be most advantageously used in quite a different context, namely that of medium scale mapping for underdeveloped terrain; a sphere of surveying in which world mapping capability is quite unable to cater with the demand.

From this viewpoint a series of tests was carriea out, in which planning, fieldwork, and production phases were integrated from the initial stages of ground control intensification, through the aerial triangulation phase, culminating in the production of orthophotographs. Additionally the concept of


[^0]1. ORTHOPHOTOGRAPHY : PRINCIPLES, DEVELOPMENT O ..... OFINSTRUMENTS, AND MAPPING APPLICATIONS.
1.1 Introduction1
1.2 The relationship between Rectification and Orthophotography2
1.3 Development of Instruments for Orthophotography ..... 4
1.4 Mapping Applications of Orthophotography ..... シ
2. ERRORS OF THE ORTHOPHOTOGRAPHIC PROCESS
2.1 Introduction ..... 28
2.2 Photogrammetric Restitution Errors ..... 27
2.3 System Errors ..... $-8$
2.4 Scanning Errors ..... 31
2.5 Connection Errors and Projection Film Errors ..... 3.3. CHARACTERISTICS OF THE TOPOCART-B-ORTHOPHOT-OROGRAPHINSTRUMENT COMBINATION$シ$
3. TESTS OF ORTHOPHOTOGRAPHIC PLANIMETRIC AND ELEVATION ACCURACY
4.1 Introduction ..... 50
4.2 Planimetric Accuracy Tests ..... 59
4.3 Vertical Accuracy Tests ..... 6
4.4 Characteristics of previous Tests ..... 7
4.5 Objectives of Test Programme ..... 80
4. GROUND SURVEYS IN TEST AREA, AND AERIAL TRIANGULATION OF MAPPING BLOCK
5.1 Fowlers Gap Arid Zone Research Station ..... $\Xi$
5.2 Aerial Triangulation Block Ground Surveys ..... $E 7$
5.3 Experimental Work in Perspective Centre Calibration ..... 9.
5.4 Methods of Determination of Perspective CentreCoordinates5
5.5 Restoration Stability of Perspective Centre Calibration ..... 102
5.6 Computation Methods of the Intersection Problem ..... 105
5.7 Execution of Aerial Triangulation Phase ..... 111
5.8 Aerial Triangulation Results ..... 112
5.9 Aerial Triangulation Errors in Test Models ..... 116
5. EXECUTION OF TEST PROGRAMME
6.1 Selection of production parameters for tests ..... 118
6.2 Description of Test Model A in broken terrain ..... 120
6.3 Description of Test Model $B$ in flat terrain ..... 122
6.4 Provision of additional Photogrammetric Test Points ..... 124
6.5 Operation of the Test Programme ..... 125
6.6 Calibration of Coordinatorgraph ..... 129
6.7 Measurement of Planimetric Errors ..... 134
6.8 Measurement of Elevation Errors ..... 135
6.9 Cartographic Treatment of Drop Line Charts ..... 138
6. TEST RESULTS AND CONCLUSIONS
7.1 Internal Errors in Planimetry ..... 147
7.2 External Errors in Planimetry ..... 168
7.3 Elevation Errors at Profile Signals ..... 180
7.4 Elevation Errors on Contours ..... 184
7.5 Contour Tests Assessed by Australian Map Accuracy Standards ..... 188
7.6 Production Times for Drop Line Charts ..... 197
7.7 Conclusion ..... 200
Acknowledgements ..... 203
Bibliography ..... 204
Appendix A : NOTES ON COMPUTING METHODS AND PROGRAMS ..... 211
Annexure 1 : EXAMPLES OF DROP LINE CHART CONTOURINTERPRETATION
7. ORTHOPHOTOGRAPHY: PRINCIPLES, DEVELOPMENT OF INSTRUMENTS, AND MAPPING APPLICATIONS.

### 1.1 Introduction

An orthophotograph is in principle a photograph in which individual images are at a uniform scale, located in correct relative position to one another; as if the corresponaing object points had been projected by parallel orthogonal projection into the image plane. A camera registers images by central projection through the camera lens, producing a photographic image which is a central perspective of the corresponding object points. In the genexal case, the central perspective images are neither of uniform scale, nor are the shapes of areas delineated by groups of point images conformai with an orthogonal projection of the object shapes.

Photographs produced in an aerial camera are characterised by image displacements in relative positior, and by scale variations; quantitatively influenced both by the extent of elevation differences in the terrain and by the extent to which the camera axis is tilted out of the vertical. Terrain objects which are on relatively higher elevated ground are registered as larger scale images apparently dispiaced in position away from the camera nadir. In the exceptional case of flat terrain devoid of elevation differences, the small unavoidable tilts of the camera axis transform area shapes through central projection into shapes which are not conformal with an orthogonal projection in a horizontal datum such as a map. It follows that the individual images are not of uniform scale.
1.2 The relationship between Rectification and Orthophotography.

Aerial photographs of flat or uniformly sloping terrain can be transformed by a reversal of central projection into orthogonal projection. The transformation may be numerical or analytical, given image coordinates of points ( $\mathrm{x}, \mathrm{y}$ ) and the corresponding orthogonal projection coordinates of object points ( $X, Y$ ) ; and can be represented by the well known projective transformation (Helava, 1968, 10):

$$
\begin{align*}
& x=\frac{a_{1} x+b_{1} y+c_{1}}{a_{0} x+b_{0} y+1}  \tag{1.i}\\
& y=\frac{a_{2} x+b_{2} y+c_{2}}{a_{0} x+b_{0} y+1} \tag{1.1i}
\end{align*}
$$

The coefficients of $x, y$ are functions of the elements of inter and outer orientation of the aerial camera.

More usually the transformation is either graphicai, or optical-mechanical by the process of photographic rectificacion, through which images of flat or constant gradient terrain may be transformed to restitute the displacements and scale variations. The process, in order to be rigorous, is a plane area transfomaビ.... When there is relief present in the object terrain, plane ared transformation is not possible from a theoretical point of view; but an approximate transformation can be achieved by partitioning the whole photograph into smaller zones of neariy equivaient elevations, and rectifying separately for each part, which can
be called differential rectification, or rectification by facets. The originator of the idea, which is the fundamental principle of orthophotography, was SCHEIMPFLUG, who in 1898 patented a method of rectification in zones for the preparation of photo maps (Brunnthaler, 1972, 93). Such a process with single photographs is clearly very time-consuming, and requires either extensive ground control or alternatively map information in order to determine the parts of nearly equivalent elevations.

Double-point model restitution, the ordinary system of analogue plotting machines, gives continuous information on position coordinates (X, Y, Z); provided that the plotting cameras are oriented in correct relative and exterior orientation with respect to a datum plane. Such instruments are therafore capable of controlling the differential rectification of one of the two photographs in the plotting cameras, and of producing a new photograph which is an orthogonal projection of model points at a specific model scale.

The image transfer of points from the rectifying photograph of the pair may be represented by equations of the collinearity type; which specify the condition that image coordinates, ( $x, y,-f$ ) of the plotting camera, coordinates of the perspective centre ( $X_{C} Y_{C} Z_{C}$ ), and the coordinates in the model ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) are collinear. The equations reduce to the form:

$$
\begin{equation*}
x=\frac{z\left(a_{1} x+b_{1} y+c_{1}\right)}{a_{0} x+b_{0} y+1} \tag{1.16}
\end{equation*}
$$

$$
\begin{equation*}
y=\frac{z\left(a_{1} x+b_{1} y+c_{1}\right)}{a_{0} x+b_{0} y+1} \tag{1.iv}
\end{equation*}
$$

In principle the transformation could be a physical transfer of images on a point by point basis from camera image to projected image; but in practice the requirement to expose on film a new photographic image in a reasonable period of time imposes limitations. The image transfer is usuaily made through the medium of very small area elements which have both finite width and length. This exposure element is commoniy a slit the length of which is rather small compared to the width, and can be considered effective as a short line element.
1.3 Development of Instruments for Orthophotograpny

Instruments capable of differential rectification have developed since the 1920 decade, but the major advances occurred in the 1950 decade. FERBER made a patent appiication in Germany in 1927 and described the principles of the Gallus apparatus for photo-reconstruction in 1928 (Ferber, 1928). The Gallus-Ferber Photorestituteur is described by HASSETM as a type of orthophotograph instrument (Hassett, 1966, 867). In 1929 LACMANN designed a rectifier for uneven terrain which utilised the projection system of the then current Zeiss Sterepplanigraph plotting camera. Vertical (Z) control was achieved pneumatically with the aid of wooden profile templates, and a direct connection was also possible between the separate components of rectifier and plotting machine (Lacmann, 1931s, 10).

BEAN in the U.S.A. carried out experimental work from 1936, and the revival of interest post Worla War II in orthophotography as a production mapping process is aue to his efforts more than any other individual. His approach utilised direct double-projection instruments operating on the anagiyphic projection system, in order to expose in the model space a blue sensitive film to the projected images from the blue-filtered projection camera (Bean, 1968, 38). An acceptable image quality of the projected images is possible on account of the depth of focus due to the small aperture of the projection lens. BEAN produced an engineered prototype in 1956, and a production model U-60 utilising either ER-55 (Balplex) or Kelsh projectors, as plotting cameras. Models T-61 and T-64 followed in 1961 and 1967.

A characteristic of the BEAN instruments is that the projected images are exposed in the model space, with the necessity to provide for the film platform and exposure slit transport mechanisms; so that the instruments can only be usea in an orthophotographic function. There is also a limitation on the maximum enlargement possible between photograph and orthophotograph of about $X 3$ on account of the optimum focus zone of the projectors.

GIGAS in 1960 developed the ideas of LACMANN and in conjunction with the Zeiss company devised the Gigas-Zeiss i orthoprojector, introduced at the International Congress of Photogrammetry in Lisbon in 1964 (Meier, 1968, 57). Essentially the orthoprojector is one plotting camera component of a zeiss

Stereoplanigraph, complete with the Zeiss Bauersfeld teiephoro focussing system for critical focus at all projection aistances. The G-Z1 may be coupled directly to a stereo plotter, not necessarily of the optical projection type; so that the projected images move across a film easel in exact correspondence wich the movements of the model points in the plotter, but the possibility exists to change the model scale to a different rectification scale. Alternatively the G-Zl may function completely off-line to the plotting machine under controi of data stored during a model scanning operation. Ail of the previously described instruments function on the principie of direct optical projection for the image transfer operation, but the G-Zl may of course be used under storage control in conjunction with a mechanical type plotter.

The manufacturers of mechanical type plotting machines
have been slower to develope orthoprojection systems since the direct projection restitution system is not a feature of such instriments. The optical viewing systems of mechanical projection instruments are essentially complex stereoscopes, by which the mechanical image points are marked. Nomaily the optical axis of the observation system is orthogonal to the photograph dispositive, and in order to project an image forming ray it is necessary to incorporate an auxiliary image cransfer system. Orthoprojector instruments incorporating such a system may be classified as "non-direct optical image teansfen systems" in contrast to "direct projection image transfer systems" as previously described (Blachut, 1972, 82-85..
C. Zeiss VEB Jena were the first instrument company to incorporate a differential rectification device by an auxiliary image transfer system, in a mechanical analogue projection system. The device was first utilised in the universal plotter Stereotrigomat in which a pencil of rays in the left plotting camera photograph was separated from the visual observation train, and brought to a projection plane by means of an electromechanical inversor (Cimeman, Tomasegović, 1970, 195). A version of the image transfer device is now available with the topographic plotter ropocart B, and is designated orthophot B.

In the period 1968-1970 the Wild Company of Switzerland developed an orthophoto attachment PPO-8 for the precision plotter A8 Autograph (Höhle, Schneider, 1973, 77). The image transfer is from the left photograph in on-line operation. A small image segment is optically rectifiea for tip and tilt of the plotting camera, and projected orthogonaijy onto a light-proof film drum at the rear of the plotting machine (Bormann, 1970).

In 1967 the Italian company Ottico Meccanicca Italiana introduced an orthoprinter now marketed as the O.M.I. Nistri orthoprinter; which is a separate unit to the analytical plotter AP-C which monitores the optical image transfer from a duplicate photograph. In the image transfer system, corrections are introduced for scale variations and rotation of the image due to tip and tilt of the photograph and variations in terrain height (Parenti, 1968, 21-28).

An entirely different system of image transfer utilises cathode ray tubes or electronic image transfer. These systems operate with automatic image correlation in the plotting and orthophotographic mode of operation, and permit much faster scanning than is possible with human manual operation.

Consequently it is possible to use very much smaller line or area elements for the exposure, so that accuracy is in principle hardly dependent on topography as it is ordinarily. At present however, automatic systems cannot discriminate between ground features and the upper surface of buildings and tree-cover, so that the automatic and very fast scanning possibilities are restricted usually to the production of relatively smail-scale orthophotos (Blachut, 1972, 90).

Instruments utilising automatic image correlation and electronic orthophoto image transfer are (Bruinnthazer, 1972, 93):

Integrated Mapping System .. .. .. 1961
Digital Automatic Map Compilation.. .. 1962
Automatic Stereo Mapping System .. .. 1963
Stereomat Wild B8 .. .. .. .. .. 1964
Stereomat A2000 Wild-Raytheon .. .. 1968
Gestalt Orthomapper Hobrough .. .. 1970
Detailed descriptions will not be given of the
instruments mentioned, since there are extensive explanations in literature in the references quoted; except that a description of the image transfer system will be detailed in the case of the Orthophot B, used in the system tests described in this work.

### 1.4 Mapping Applications of Orthophotography

Practical applications of orthophotography are, even at this time, still in an evolutionary stage of development. The major application is in the orthophotomap, which can be defined as an orthophotographic base combined with conventional cartograpsac line or area overprinted data. At the very least the additional data will comprise a locational guide and a point reference system. At a further stage of utility the orthophotograph may be combined with a contour overlay, which may have been produced in the source instrument concurrently with the image transfer; or alternatively may have been produced off-line in a conventional plotting mode. Additional possibilities are overprints containing names, highway classifications, cadastral boundaries and parcel numbers, landutilisation classifications, and administrative boundaries. The orthophotomap may be available as a simple continuous tone bromide print, a screened dyeline print, a single colour lithographic print, or a multi-coloured lithographic print.

Opinion on the status of orthophotography in mapping programmes has been epitomised by extreme viewpoints. On the one hand there is the conservative cartographically-biased conclusion that orthophotomaps are no more than map substitutes of a temporary or second-rate nature compared to high-quality conventional ine rays. At the other extreme are enthusiasts who regard the orthophotomap as a superior product on account of the wealth of detail and completeness of information content; particulariy in view of the faster rate of production with consequential costeffectiveness. BLACHUT has put the matter in its proper perspective (Blachut, 1968, 207), by pointing out that the orthophoto technique may offer a new approach to conventional mapping in a variety of applications; and that there is not much value in approaching this complex question by accepting as valia, criteria applicable to
$10 . \quad$ it
F\%
conventional maps. It is instructive to examine some of the projects which have been commenced by various authorities in recent years, as listed in Table l.I.

Table l. I is not a complete listing of orthophoto projects in recent years, but with the exception of Item 2, only projects involving large numbers of map sheets of the order of several hundred, have been included. Item 2 is not a production project, but rather a concept of mapping for developing countries, due to JERIE.

Of the 10 production projects listed, only Items 3, 5, 7, 9, 10 and 11 can be claimed to have been conceived as orthophotomaps from the initial planning stage, whereas the others are projects in which the orthophotomap raniss as a temporary substitute for conventional line maps. The literature cited in respect of the conceptuai orthophotomap projects is characterised by a common approach: the concepr of a multipurpose map base which is the pictoriai record of land use, resources, and integrated survey data. In effect the maps are planned as pictorial data banks.

It is interesting also to examine the planning specifications for the projects listed, as given in Table l.II. Columns (iv), (viii) and (ix) are of particular interest because of the diversity of specification. Column (iv) gives the constant $k$ of the formula:

$$
\begin{equation*}
m_{b}=k \sqrt{m_{k}} \tag{1.v}
\end{equation*}
$$

TABLE 1.I

| Item | Locations | Purpose | Map Scale $1: m_{k}$ | References |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Australia-Interior | Topographic Base | 1:100 000 | Lambert, 1971, 2 |
| 2* | Developing Countries | Mapping by Phases | 1:50 000 | Jerie, 1972, 3-17 |
| 3 | U.S.A. | General Base Map | 1:24 000 | Olsen, 1973, 118 |
| 4 | Sweden | Economic (Forest Axeas) | 1.20 000 | Johannson, 1968, 151 |
| 5 | S. Korea | Development | 1:12 500 | Visser, 1968, 5 |
| 6 | Sweder | Economic Base | 1:10 000 | Johannson, 1968, 153 |
| 7 | New South Wales | Topographic Base | 1:10 000 | Urban, 1973, E1-4 |
| 8 | Germany <br> Land Nordxhein-Westfalen | German Base Map | 1:5 000 | Voss, 1968, 3 |
| 9 | California | Mattipurpose | 1:4 800 | Ryser, 1973, 128 |
| 10 | New South wolos, | 'rop Codastro Base | 1:4 000 | Urban, 1973, ET-4 |
| 11 | 18.w Somin Welos | 3)woramen | 1:? 000 | Uremen 19\%3s,1w |

This constant is commonly taken in the range 180 to 300 for conventional photogrammetric plotting (Förstner, 1968, 107-108;, and it is interesting to note that only in the cases of items 3 and 7 of what might be called the conceptual orthophotomapping projects is the upper limit exceeded to any considerabie extent: together with the JERIE proposal item 2.

Column (viii) gives the number $C$ where $C$ is the zatえ. Altitude: Contour Vertical interval, and should be read in conjunction with column (ix) which defines the method of derivation of the contour overlays of the orthophotomap. It should be noted that in no case does $C$ exceed 1000, except when the contours are derivea by conventional plotting techmiques. Non-conventional contouring was specified in only one case of conceptual orthophotomapping (S. Korea Item 5). Where nonconventional contouring is used in orthophotomapping in projects originally planned for conventional mapping techniques, only in the case of Items 4 and 6 (Sweden) does the $C$ number exceed 400.

The exceptional specification to all current projects is the proposal of JERIE, item 2. In brief he has suggested a concept in which the base topographic mapping of developing countries takes place in successive phases of complexity, the photogrammetric phase of which is based on high altitude super wide angle photography. The initial publications shouid be orthophotomaps without annotation; followed in subsequent phases with contoured orthophotomaps, next by annotated versions, finally by conventional muiticoloured line maps. The contouring should be by dropped line charts produced during the initial phase.
TABLE 1.II

| $\begin{array}{\|c\|} \hline \\ \hline \\ H \\ H \\ (i) \\ \hline \end{array}$ |  |  |  |  |  | Contour <br> Interval <br> V.I. (m) <br> (vii) | Altitude <br> Contour <br> Ratio <br> C <br> (viii) | Contour Derivation (ix) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1:100 000 | 1: 84000 | 266 | 7400 | SWA | 20 | 370 | Mixed derivation: includes dropped Lines, Dropped Segments, Digitised contours, Ground Control Interpolation. |
| 2 | 1: 50000 | $\begin{aligned} & 1: 100000 \\ & 1: 150000 \end{aligned}$ | $\begin{aligned} & 447 \\ & 671 \end{aligned}$ | $\begin{array}{r} 8500 \\ 12750 \end{array}$ | SWA | 20 | $\begin{aligned} & 425 \\ & 637 \end{aligned}$ | Dropped Lines |
| 3 | 1: 24000 | 1:120 000 | 775 | 18250 | WA | - | - | - |
| 4 | 1: 20000 | 1: 30000 | 212 | 4500 | WA | 5 | 900 | Dropped Lines |
| 5 | 1: 12500 | 1: 37500 | 335 | 5700 | WA | 10 | 570 | Dropped Lines |
| 6 | 1: 10000 | 1: 30000 | 300 | 4500 | WA | 5 | 900 | Dropped Lines |
| 7 | I: 10000 | $\begin{aligned} & \text { 1: } 48000 \\ & \text { (1:32 000 } \\ & \text { for Contours) } \end{aligned}$ | $\begin{gathered} 480 \\ - \end{gathered}$ | $\begin{aligned} & 7300 \\ & 4850 \end{aligned}$ | WA | $4$ | $1200$ | Conventional Plotting |
| 8 | 1: 5000 | 1: 13000 | 184 | 2000 | WA | 5 | 400 | Conventional plotting |
| 9 | 1: 4800 | 1: 24000 | 346 | 3650 | WA | 10/20 feet | 1200/600 | Conventional plotting |
| 10 | 1: 4000 | 1: 16000 | 253 | 2450 | WA | $\underline{2}$ | 1225 | Conventional Plotting |
| 11 | 1: 2000 | 1: 8000 | 179 | 1200 | WA | 1 | 1200 | Conventional Plotting |

The Commonwealth of Australia is in a somewhat urique position of development, and of mapping availability. Vast areas of the continental interior are underdeveloped, and the best available maps for planning purposes and for exploration and management of resources are at extremely smail scaie; complete coverage of the continent at 1:250 000 having been acnievea only recently, but with much of the series out-oft-date. In early 1973, only some $10 \%$ of the total coverage of aimost 500 sheets was available with detail revised since i968, and oriy about $25 \%$ with contours. None of the planned new contoured edition on Australian Map Grid are actually avaiiabie.

The Division of National Mapping, responsible for geodetic surveying and for the production of copographic maps for Commonwealth purposes, has as its current primary mapptne objective the topographic mapping of Austraita by the ena of 1978 at l:100 000 scale with 20 metre contours (Lambert, 127E. 5). The series comprises some 3000 sheets for compilation, but many (particularly in the interior), are unlikely to be published at scales larger than $1: 250$ 000. A very large number of the map sheets will be in the form of orthophotomaps (Icem i, Table l.I), for which the corresponding specifications (Table 1. II) are quite conservative judged by conventional ine maps criteria, although the instrumentation involvec in the production is extremely sophisticated.

Some areas of the continent are highiy developed. in particular the eastern seaboarả, where the pace o aevenujuar has accelerated at such a rate that modern very large soãe aga. are urgently required as base maps for planners, engireecs, developers, and administrators. Thus in New South waies mapang
is in progress at scales 1:10 000, 1:4 000 and 1:2 000 (Items 7, 10, 11 of Table I.I); and this mapping has been conceptuai orthophotomapping from the initial planning stage. Nevertheless the specifications accord with the criteria of conventional line mapping, except that the photograph : map scale ratio in the case of the 1:10 000 orthophotomaps is somewhat outside the normal range.

It is clear that orthophotography is to play a major role in Australian topographic base mapping programmes, but at this period of time the role is still an evolutionary one with many technical problems to be solved. The reaction of the potential map user to an orthophotomap product, compared to the classical cartographic presentation is hardly known, but the urgency of current mapping programmes is so great that completion in a reasonable time scale is not possible by conventional techniques.

It is the purpose of this work to examine some of the problems associated with orthophotomapping at medium scales; in an integrated mapping system in which the successive phases of ground control, aerial triangulation, and photogrameer.processes, all contribute to the accuracy and usefulness of the product.

## 2. ERRORS OF THE ORTHOPHOTOGRAPHIC PROCESS

## 2.1

An analysis of the accuracy of differential rectification by orthophotography should not be confined to the image transformation process alone, since orthophotographic production is an extension of the principles of ordinary photogrammetíc restitution, and is usually controlled by conventional analogue plotting instruments. To the extent that the data for position location and image scaling is provided, either manually or automatically, by the guidance of a measuring mark in model space - so the control data (measuring mark position) is subject to the errors of any restitution process.

Additionally, the image transfer system utilised in the orthoprojector is a further source of error, indepencena of the restitution errors. Finally, subsequent treatment of the transferred image, and the physical characteristics of the film base or any derived reproduction medium for presentation of the result, will introduce further errors; anaiagous to those errors introduced in conventional plotting after transfe. from model space to line plot and to cartographic product.

Neglecting those errors introduced by reprodaction of the orthophotograph, the sources of error may therefore be classified in four groups which are considerea indepencent of one another:
(i) Restitution errors: of the same origin and order of magnitude as any conventional photogrammetric process;
(ii) System errors: unique to the orthophotographic process, caused by the departure from a rigorous point-by-point image transfer;
(iii) Connection errors: caused if the projection film is not located in the model restitution space, but operates as a connected component either on-line or off-line;
(iv) Projection film errors: caused by the lack of flatness of the projection film plane, by instability of the film base, and by processing.

Assumming that some type of elevation data is produced simultaneously with the orthophotograph image transfer, elevation errors additional to (i) are introduced on account of the interpretation and editing of the aata; and by the subsequent cartographic treatment to obtain a contour document.

### 2.2 Photogrammetric Restitution errors

Errors are inevitable in the photogrammetric process; and a complete analysis of the sources of error should incluãe the following factors:
(i) Ground Control: Accuracy of survey control system and method of point fixation. Accuracy of identification in photograph.
(ii) Image errors: Residual (uncorrected) lens aistor-ione uncorrected atmospheric refraction displacements. E . In flatness errors, film base instability errors. negative and diapositive processing errors. Pass-point errors: If the restitution models ace not fully controiled by identified ground controls. the system of pass point determination produces errors. In particular the aerial triangulation method and instrumentation, and the aeriai triangulation adjustment procedure.
(iv) Orientation errors: The influence of errors of inner, relative, and absolute orientation on the model point position; and the influence of inner and exterior orientation errors in the orthoprojector if this is a separate unit of the direct projection type.
(v) Projection errors: The influence of the geometrac performance of the restitution instrument.

In attempting to estimate the magnitude of ercors due to these sources of error, the difficulty is that no general statemert can be made on account of the very large number of variables in the possibilities; in particular due to the camera ana measuring instrumentation, and to the flight specifications for particular cases. However, a great amount of theoreticai investigation of individual physical sources of error has been made, and a large number of controiled experiments have beer. carried out to confirm theoretical predictions.

AHREND (Ahrend, 1966) has summarised the result oi many experiments to determine the behaviour and magnitude of individual sources of error. Theoretical investigations of the horizontal accuracy of block adjustment of aerial triangulation by the anblock method have been carried out by ACKERMANN (Ackermann, 1966); and of the vertical accuracy of aerial triangulation by JERIE (Jerie, 1968). Controlled experiments have been carried out to confirm theoretical predictions, in particular by the O.E.E.P.E.

It is possible therefore to estimate the magnitude of errors in extreme cases, and to give some indication of a more general range of errors.

For example, AHREND (1966, 75) estimates a plan
coordinate mean square error in a model for the case of a universal plotter of the $C 8$ type and a 150 mm wide angle camera, and for the case of full ground control identified by natural points, in terms of accuracy at the plate:

$$
\begin{equation*}
m_{p}= \pm 7.2 \mu \mathrm{~m} \tag{2.i}
\end{equation*}
$$

and for the corresponding vertical accuracy:

$$
\begin{equation*}
m_{z}= \pm 16.5 \mu \mathrm{~m}= \pm 0.11 \% / 00 \mathrm{H} \tag{2.i1}
\end{equation*}
$$

AHREND however goes on to say that no allowance has been mace for residual terrestial (survey) errors of ground control, or for the effect of refraction.

AHREND'S figure for plan accuracy is almost that used by MEIER (1966, 80) in his estimates of theoretical accuracy of the C8-GZ1 system, in which he quotes 8 fm for pian errors inclusive of sources of error excepting 2.2 (iii) above, anc̈ presumably making no allowance for errors in the controi. AHREND'S figure includes an allowance $m_{x, y}= \pm 5 \mu \mathrm{~m}$ for the influence of the plotting machine, determined from calibration measurements on 20 C 8 stereoplanigraphs and the Supragraph; and this allowance may be compared for example at a lower level of precision of the restitution machine, with that of $m_{x, y}= \pm 10 \mu_{m}$ given by SZANGOLIES (1972, 84), determined from factory calibrations of 10 Jena Topocart plotting machines of the topographic type. Adjustment of AFiREND'S figures according to the propagation of independent errors, yields the following mean square errors of a controlling instrument of this order:

$$
\begin{align*}
& m_{p}= \pm 11 \mu \mathrm{~m} \\
& m_{z}= \pm 25 \mu a=0.17 \% / 00 \mathrm{H}
\end{align*}
$$

The foregoing figures may be regarded as the internal or relative mean square error extremes, due to ordinary photogrammetric restitution errors; but making no allowance for sources of error due to control from $2.2(i)$ ara 2.2(iii). The external or absolute precision ( $\mathrm{m}^{\circ}$ ), which is of great importance in planning mapping projects, is very mas more difficult to estimate on account of the wide range of possibilities due to size of area, disposition of ground control, methods and instrumentation for aerial trianguiation, and adjustment procedures. It should however be stresseã tiñ for most mapping projects at medium aná small scales, provacio:
of pass point control for individual models, from fairiy large blocks of aerial triangulation, will be the normal procedure rather than fully ground controlled individual models.

As far as plan accuracy is concerned, ACKERMANN has investigated the theoretical horizontal accuracy of adjustment by the Anblock method, of blocks of up to 200 independent models (Ackermann, 1966, 145-170); and this represents perhaps a standard size of block for topographic mapping in developing countries. There is in any case only a small dependence on size of block in the Anblock adjustment, providing that the perimeter of the block is well controlled by ground-fixed plan points. ACKERMANN gives the maximum standard deviation of a tie-point in such a block (in the center of the block) as only 1.2 times the standard error of unit weight, and the mean square value for all the tie points as 1.06 times standard error of unit weight. According to ECKHART (1966) a standard error of unit weight of $16 \mu \mathrm{~m}$ at plate is assumed for wide angle photographs of $23 \times 23 \mathrm{~cm}$ on film. The corresponding mean square coordinate error for a block of 200 models is $17 \mu \mathrm{~m}$ at plate.

In Australia until quite recently a great reiiance has been placed on strip and simultaneous strip (block) adjustment, by the polynomial form of adjustment due to SCHUT (1968): perhaps owing to the fact that sCHUT's programs are available without charge and are easily adaptabie to various computers, and to user modifications. BERVOETS (1973, K6) has recently analysed practical results of aerizi triangulations by 11 organisations in Australia engaged in mapping projects, and his analysis gives for the average mean square error of residuals at ground controls after
horizontal plan polynomial block aujustment a figure $m=70 \mathrm{~m}$ at plate. BERVOETS however points out that this is oniy a general impression of the magnitude of precision, as this is a mean figure from blocks averaging 160 models, and of mixed wide angle and super-wide angle systems.

```
    With respect to vertical accuracy of block aerial
triangulation, theoretical estimates for planning purposes may
```

be made principally from the work of JERIE (2968). JERIE
investigated the theoretical propagation of elevation errors on
account of types of camera, number and distribution of ground
controls, and dependence on auxiliary data instruments. He
remarks that it is not possible to take into account a second set of factors including the quality of photography and the procedure and equipment used for the aerial triangulation; concluding that these factors should be determined by practical tests within an organisation since they should be more or Less constant. JERIE calculates for a block of 8 strips by 20 moaids, with elevation control in every strip at the enas and center, for aerial triangulation without auxiliary data, and for wied angle camera, a mean standard deviation at pass poincs of $0.36^{\circ} / 00$. with a maximum of $0.49^{\circ} / 00 \mathrm{H}$, excluding extreme marginal pass points. Interpolating JERIE's figures for a standara biock of 200 models, we obtain a mean standard deviation at pass points of $0.42^{\circ} / 00 \%$.

BERVOETS in his analysis of practical aerial triangulation results in Australia gives a mean square ercor of ground residuals after polynomial block adjustment, of $m_{z}^{\prime}=30 \mu \mathrm{~m}$ at plate, but the blocks are mixed wide and super-w-an
angle systems, so that the figure given represents a remarkabiy low range of 0.20 to $0.34^{\circ} / 00 \mathrm{H}$. The low range is probabiy due to the fact that the production blocks analysed were unlikely to have been heavily over-determined for elevation controls, all of which would normally have been used in the adjustment transformations, so that the figures quoted are perhaps less reliable as an overall guide than the theoretical predictions of JERIE. We may suggest, as typical of ranges of accuracy for adjusted pass points in a 'standard' mapping block of 200 wide angle models, figures of the following order:

$$
\begin{aligned}
& m_{p}^{\prime}=17 \text { to } 70 \mu \mathrm{~m} \text { at plate } \\
& m_{z}^{\prime}=0.20 \text { to } 0.45^{\circ} / 00 H \text { (2.v) }
\end{aligned}
$$

2.3 System errors
2.3.1

System errors are those errors inherent to the orthoprojector image transfer system, tine classification "system"being due to MEIER (1968), and they are for the most part proportional to the tangent of the angular field ( $\alpha$ ) of the projection camera. The fundamental cause of the errors is that the image transfer, for practical reasons, cannot be effected on a point-by-point basis from original image to projected image. The exposure element is normally a slit of finite dimensions, essentially a line element, and usually effective as a horizontal line element in the model surface, which is not horizontal in the general case.


Fig. 2.1: Orthophot Standard Slits


Fig. 2.2: System Error-Slit-Width

Figure 2.1 for example illustrates the availabie exposure slits for the Jena Topocart-Orthophoto combination. Each exposure slit has finite width (b) and length (1). At each end the slit is diagonally shaped, to provide an exposure blending area in successive scans, as a rectangular shape would result in visually obvious lines of double exposure or gap lines, in the event of the very smallest difference between the slit width and the incremental shift ( $\Delta x$ ) between successive scan profiles in the model. Whilst system errors due to exposure slit width can be halved by halving the exposure slit width, each halving of the selected width doubles the operating time for a given scan speed. Ciearly selection of optimum slit width for given terrain conditions is a decisive factor in efficient production planning.

System errors occur at the exposure slit, whether the slit is actually in the model surface (direct projection), or in an additional component as in the case of mechanicai type plotting machines (non direct image transfer); if the terrain surface at the slit is not horizontal. In the case of sloping terrain across the exposure slit. perpendicuiar to the direction of movement of scan, even in the absence of observer elevation errors only the centre of the siit defined by the measuring mark position is at correct elevation; anc other terrain points within the exposure element are projected with incorrect elevation. Such off-centre points suffer radial displacement away from the nadir or towards it (figures 2.2 and 2.3). The error in elevation $\Delta_{z}$ of an off centre point is a maximum $\left|\Delta_{z}\right|$ at the extreme end of the exposure element, and


FIG.2.3: Radial System Error


Fig.2.4: Double Images at Sit Margin
for a transverse ground slope $\beta_{x}$ may be taken with a slight degree of over-estimation as:

$$
\left|\Delta_{z}\right|=\frac{\mathrm{b}}{2} \tan \beta_{x}
$$

The displacement in projected position $\Delta x$ is however radial to the photograph nadir and proportional to the angular field $\alpha$ of the projection camera, whence

$$
\begin{equation*}
\left|\Delta_{x}\right|=\frac{b}{2} \tan \beta_{x} \tan \alpha \tag{2.vili}
\end{equation*}
$$

The system error due to silt width is also the cause of profile margin discrepancies in the form of overlaps of detail (points imaged twice) or missing detail (points not imaged) according to the direction of transverse slope. For example in figure 2.4 the terrain surface point $P$ is projectea in two successive scans to $P_{1}$ and $P_{2}$, and in the projection plane these two images are radially separated in the direction of the nadir. For the case of a terrain slope of opposite direction to the projection ray, detail in the scan margin would be missing. The maximum overlap may be taken as twice the maximum displacement (2.viii).

System errors due to slit width may be controlied by appropriate selection of slit width $b$, but at the expense of increase in scanning time. Other possibilities exist however. particularly when as in the case of the GZl, the orthoprojector is operated off-line via a profile storage device. In such a mode of operation it is possible to carry out the scanning operation in the restitution plotter at a wide scanning increment $\Delta_{\mathrm{X}}$ during which phase the plotter is iinked to a
storage unit SG1, in which each scan line is scribed as a profile on a $24 \times 30 \mathrm{~cm}$ glass plate (Meier, 1968, 61). Subsequently in off-line operation the storage plate is scanned in a scanning unit LGl which is able to operate the orthoprojector at a scanning speed of $10 \mathrm{~mm} / \mathrm{sec}$ in the projection plane, changing the projection distance accoraing to the elevations recorded on the profiles. Furthermore a smaller incremental shift $\Delta_{\mathrm{X}}$ may be seiected, so that the width of the scan in the projection may be reduced to as little as one sixth of the profile interval used in the restitution plotter. Control of these additionai intermediate profiles is by automatic linear interpolation of elevations across the recorded profiles.

An additional possibility with the GZl is the use of the optical interpolation system using fibre optics (Bmunthaler, 1972, 95). With this attachment it is possibie in effect to tilt the exposure slit accoraing to the transverse terrain slope. A ring of fibre optics is placed around the siic of the orthoprojector with its base parallel to the projection plane, perpendicular to the directions of the optical fibres. The upper surface of the optic ring is shaped to contain gradients from horizontal to $35^{\circ}$ slope. The appropriate siope is placed in the path of the projection rays by automatic interpolation of the recorded elevations across the scanning path.

In spite of the fact that the interpolating element is made of fibre optics, there is no loss of image quality, since with 16 fibres the resolution of the fibre optic ring is aimost 30 lines per mm in the projection plane, increasing to as much as 90 lines per mm if 6 fibres are used (Hobbie, 1969, 226).

In the absence of any correction device, control or system error due to slit width should be achieved in the production planning stage, by appropriate selection of exposure slit for terrain conditions. Figure 2.5 indicates the maximum displacement $\left|\Delta_{r}\right|$ which will occur for combinations of slit width and mean transverse terrain slopes $B_{x}$, for a scanning area of $200 \mathrm{~mm}(\mathrm{y})$ by $100 \mathrm{~mm}(\mathrm{x})$ at picture scale. Slopes in particular directions may be estimated from the work of NEUBAUER (1969, 180), who investigated the frequency distribution of ground slopes (slopes in the fall line). Not taking into account unusual geomorphological formations, the fall line is found to be independent of azimuth; so that for a particular direction such as the transverse scan qirection the relationship between mean transverse slope $\beta_{x}$ and mean overall siope $\hat{\beta}$ may be expected to reach:

$$
\begin{equation*}
\tan \beta_{\mathrm{x}}=\frac{\tan \beta}{\sqrt{2}} \tag{2.ix}
\end{equation*}
$$

## 2.3.ii

Slopes in the direction of scan produce no signizicant error in location of images, on account of the very short lencth of the exposure slit (excepting that an error may occur on accomit of observer profile error). Image quality may however deteriocate, due to projected image movement because of the movement in elevation of the slit during the period of transition of the slit through a projected ray (figure 2.6). For an anguiar field angie ony in the model space $Y Z$ plane, radial direction $\hat{y}$ in the $X Z$ piane, slope $\beta_{y}$ (in the direction of scan), and length of siit i, the image movement $W$ is given by:


MAXIMUM RADIAL DISPLACEMENTIACImmFOR SCAN AREL $100 \mathrm{~mm} . x$ BY 200 mm y (AT PLATE) FOR 150 mm UA*E Vd/b: MAGNIFICATION RATIO FROM PLATE TO ORTHOEHDVE

Fig. $2 \cdot 5$


Fig. 2.6: Image Movement Due to Sut Ler.
$w=1\left(\frac{\tan \alpha_{y}-\tan \beta_{y}}{1-\tan \alpha_{y} \tan \beta_{y} \cos \gamma}\right)$

MEIER shows (Meier, 1966, 91) that a tolerance inma of 0.4 mm for image movement at the scale of the piate is just reached inside the maximum plotting area of a $23 \times 23 \mathrm{~cm}$ wide angle photograph, for the case of a 1 mm length slit and $25^{\circ}$ slope away from the projection ray. Again, control of image movement should be achieved at the planning stage by appropriate selection of slit length for prevailing terrain slopes. In the case of the JENA Orthophot , special slits are available for mountainous terrain in the following lengths:

| Width | Length |
| :---: | :--- |
| 4 mm | 0.5 mm |
| 4 mm | 0.25 mm |
| 2 mm | 0.25 mm |

### 2.4 Scanning Errors <br> 2.4.i.

Scanning errors are due to incorrect elimination of $x$ parallaxes by the observer, so that the measuring mark is noe at correct elevation. It is clear that they should not be classified as 'system' errors, since such an error is commonplace in any normal restitution method, and thus the errors are restitution errors. In the case of flat terrain, an elevation error $\Delta_{z}$ results in a planimetric displacement $\Delta_{r}$ radiaj from the nadir as a function of the angular field $\alpha$ (figure 2.7):

$$
\Delta r=\Delta z \tan \alpha
$$

MEIER (1966, 83) considers that in the case of sloping terrain, and the dynamic scanning mode of operation, the error in $z$ is made up of two components. One is a constant $C_{C}$ expressing the fact that an error will be made even when the mark is stationary, for which MEIER estimates a mean square value of $0.1 \% / 00^{Z}$. The other part is variable dependent upon the velocity of scanning $V_{B}$, the ground slope in the scan direction $\beta_{y}$, and the reaction time $C_{t}$ which is taken by the observer to convert visual stereoscopic information into the appropriate $\Delta_{z}$ correction of the measuring mark. Accordingly, (figure 2.8), the mark and the exposure slit travel forward a distance $V_{B} \cdot C_{t}$ during the reaction interval, and the corresponding elevation error $\Delta_{z}$ taking into account the constant error, is:

$$
\Delta_{z}=v_{B} \cdot C_{t} \cdot \tan \beta_{y}+c_{c}
$$

Equation (2.xii) then represents the error in elevation due to the scanning process, and the corresponding planimetric displacement is:

$$
\begin{equation*}
\Delta_{r}=\tan \alpha\left(V_{B} \cdot C_{t} \cdot \tan \beta_{Y}+C_{C}\right) \tag{2.xiii}
\end{equation*}
$$

From (2.xii) we may derive the mean square error in elevation in any concurrently produced elevation record such as a arop line chart, in terms of speed in the image plane $V_{B}$, camera focal length $f$ in $m m$, and mean slope $\beta_{y}$ in the scan direction as:

$$
\left.m_{z}(0 / \infty)= \pm \sqrt{ }\left[\frac{1000}{f} \cdot \tan \beta_{Y} \cdot v_{B} \cdot C_{t}\right]^{2}+c_{C}^{2}\right]
$$



Fig. 2•7: Radial Displacement Due to Observational Scan Error.


Fig. 2-8: Elevation Error Due to Reaction Time.

MEIER (1966, 84) gives a graph of this relationship with arguments maximum slope and image plane speeds $1-4 \mathrm{~mm} / \mathrm{sec}$, using $c_{t}=0.16 \mathrm{sec}$, and deriving a range of $m_{z}$ of $0.2-0.60 / 00^{2}$
2.4.ii

In making estimates of theoretical accuracy for particular cases, it is important not to confuse the same sources of error, and for this reason the writer prefers to remove the constant part $C_{C}$ from MEIER's formulae, since this is strictly a usual restitution error and is accounted for in equations 2.1 to 2 .iv. The question also arises as to the general validity of equations $2 . x i i$ and $2.1 i i$. Whilst it seems very reasonable that errors of this type should take place when changes of slope are encountered during the scan, it aiso seems reasonable to assume that on uniform slopes the operator wili respond with correct elevation rate of change after an initiai adjustment of elevation; so that only the usual eievation errors will be made on average, with irregular errors whose frequency depends on the frequency of slope changes in the terrain rather than the actual slope.

### 2.5 Connection errors and projection film errors

2.5.i.

Connection errors occur when the projection fill not located in the model space, as it is for example in the case of the Bean Orthophotoscopes. In the case of an off-ine direct-projection system such as the GZl, the possibinity ar-ses of incorrect setting of the exterior orientation elements oi the projection camera, but the errors due to this source win
be negligible if correct procedures are followed, as the effect of very small tilt setting errors has littie infiuence in planimetric position. Care must be exercised in the fine setting of kappa so that the recorded profiles and the scant direction are correctly aligned. The major error possibility lies in incorrect transfer of $Z$ (magnification control) due to mechanical tolerances, causing a planimetric displacement proportional to angular field: $\Delta Z . \tan \alpha$. $\operatorname{MEIER}(1966,80)$ estimates a mean square coordinate error of the order of $\pm 0.030 \mathrm{~mm}$ in the orthophoto due to this cause.

The flatness of the film platform surface, the degree of efficiency of the electrostatic tightening of the finm, and the scaling of the film also contribute to planimetric errors. Film deformation errors arise from processing of the exposed film, but differential errors amounting to a non-unifom scaie change are negligible in the case of a polyester base Enin. since unlike film in a serial camera there is no tension in. one direction due to film advance. Uniform scale changes may be estimated to give a mean square error of $\pm 5 \mathrm{~m}$ in the scale of the aerial photograph (Ahrend, 1966, 66). There nay in any case be no real significance in the case of uniform scale changes, depending on the subsequent reproduction techniques for the orthophotograph. If the treatment invoives only contact reproduction techniques, the planimetric scaie error will have no significance in position location sif the orthophotograph is combined with a grid or a scaie bar correspondingly adjusted; so that the error will oniy be noticeable in matches with adjacent sheets. In the case of reproduction involving process camera work, the orthophoto negative will in any case be rescaled. VISSER (1968, 8)
concludes from his tests of GZl that flatness of table surface, tightening of film, and deformation of film together contribute to planimetric mean square coordinate errors of $\pm 0.07 \mathrm{~mm}$ in the scale of the orthophoto, corresponding to $\pm 25 j \mathrm{~m}$ in the scale of the aerial photograph for his enlargement setting.

> 2.5.ii

In the case of on-line projection not in the model space, such as takes place in the Jena Topocart, connectian errors are negligible provided that the optical and mechanical system is correctly calibrated and aligned; so that the measuring mark position coincides with the centre of the exposure slit throughout a scan run. As the optical transier axis is orthogonal to the projection film, no error takes place in dependence of the angular field. However as the optical transfer is non-direct projection, so no optict. rectification of the images within the exposure siit uasee place; and the possibility arises of scale variations and of $\emptyset$ tilt image rotations within the exposure slit, which will be discussed in 3.9. The film flattening in the exposure plane is mechanicaliy enforced within a film cassetce, wh the theoretical possiblity of affine deformation of $x$ asrection relative to $y$ direction as the film is advanced across the cassette shutter in incremental Ax steps. However the writer has not been able to detect any significant differences between $x$ and $y$ residual errors at control points in his series of tests, which might be accounted for by affine deformation of film. It seems reasonable only to allow for uniform scale changes in theoretical predictions.
3. CHARACTERISTICS OF THE TOPOCART-B-ORTHOPHOT-OROGRAPH INSTRUMENT COMBINATION

## 3.1

The JENA Topocart B plotting machine of topographic classification evolved from the earlier model Topocart C (Cimerman and Tomasegović, 1970, 150). The differential rectifier Orthophot A was introduced in 1965, originaliy as a component of the stereotrigomat universal instrument systen. an improved version Orthophot $B$ being introduced in 1968. Whe first combination of the Orthophot with the lower order plotcer Topograph appeared in 1969. The current version, which aise provides for drop line chart drawing with the drawing head Orograph, has been used in the tests described in the work (plate 1).

## 3.2

The plotter Topocart $B$ is an extremely versatile equipment of rather unusual mechanical design features, and is capable of very high restitution precision for an instrument of this classification. For plotting purposes only, as distinct from orthophotography, it is possible to plot from negatives or positives on glass, film, or paper; over an extremely wide range of focal lengths of camera $\left(C_{k}=50 \mathrm{~mm}\right.$ to 215 mm$)$. The range of $z$ movement permits the following magnification fanges ( $\mathrm{V}_{\mathrm{m} / \mathrm{b}}$ ) between plate and model for the usual camera types:

Super wide angle $88 \mathrm{~mm}: 0.8$ to 2.2
Wide angle $115 \mathrm{~mm}: \quad 0.6$ to 2.7
Wide angle $150 \mathrm{~mm}: 0.5$ to 2.1
Normal angle $210 \mathrm{~mm}: \quad 0.3$ tc $2 . \sum$


Topocart-Orthophot-Orograph with HP9810A
desk calculator
PLATE 1

The ratio from piate to map scale $\left(\mathrm{V}_{\mathrm{k} / \mathrm{b}}\right)$ may be selected by transmission gears to the drawing table in a total range 0.1 to 10 times. Lateral and longitudinal tilt of the camexa $\omega$ and $\phi$ may be accomodated to $\pm 5 \mathrm{~g}$. The connections to $x$ and $y$ handwheels, and to $z$ foot disc are interchangeable, and any two drives may be transmitted to the drawing tabie; making $2 t$ possible to plot from terrestial photographs for both tercescial topographic and close-up photogrammetry; and to plot profiles and cross sections from aerial photography.

Mechanical coordinate counters can be read directiy to 0.01 mm in the model, and may easily be set to specific numbers and reversed in direction, so that the piotter may readily be used for numerical applications. The $x, y$, w output shafts can be fitted with digital encoders without difficulty.
3.3

The plate carriers are mounted horizoncaily on $\%$ so
$y$ carriages, but are not capable of physical tilt rotations in. the usual manner of plotting cameras; other than kappa rotatione Instead the transformation between each pair of plate image coordinates $x^{\prime} y^{\prime}$, and the corresponding model coordinates $x y$, is realised through analogue computers for each photograph carrier system. The computers take the form of lineals or straight-edges, arranged to rotate in horizontai pianes around a verical axis of rotation below each carrier system. The spatial direction for each image is first projected into corresponding directions in $x y$ and $y z$ planes, represent corresponding horizontally stacked $x$ and $y$ lineals on each siec The spatial coordinates $x$ and $y$ corresponding to each parcia. image, are transformed by the lineals into image cočinatee
$x^{*} y^{*}$, which may be in a photograph tilted by angles $\phi$ and $w$ in nature. The transformation for each plate carrier is rigorous according to the following equations for perspective transformation:

$$
\begin{aligned}
& x=\frac{\left[\left(C_{k} \cdot \cos \omega-y^{\prime} \sin \omega\right) \sin \phi+x^{*} \cos \phi\right]}{\left(C_{k} \cdot \cos \omega-y^{*} \sin \omega\right) \cos \phi-x^{*} \sin \phi} \cdot z \\
& \left.y=\frac{(3 \cdot 1)}{\left(C_{k} \cdot \cos \omega-y^{\prime} \cos \omega+C_{k} \cdot \sin \omega\right)} \sin \omega\right) \cos \phi-x^{\circ} \sin \phi \cdot z
\end{aligned}
$$

Equations 3.1 and $3 . i i$ are respectively equivalent to 1. il and 1.iv. The horizontally stacked lineals on each side thus perform the functions of mechanical computing rectifiers for each corresponding pair of plate images. Auxiliary lineais capable of being fixed at angular displacements permit the $\phi$ and $\omega$ rotations to be set separately for each side. For base scaling setting $b x$, the right space point is transiated relative to the left, and additionally at the right space point it is possible to set a translation movement by ${ }^{*}$, controlled by micrometer drums so that $y$ parallaw measurements. can be made. Movement in $z$ is effected by foot disc and drive to a $z$ carriage which supports guides for $x$ and $y$ movement carriages. Additional relative movement of the right $x$ ans $y$ carriages corresponds to a translation base component bzat, diciuded for each space direction lineal into components $b z_{x}{ }^{\prime \prime}$ and $b z_{y}{ }^{\prime i}$. Since the spatial direction for each projection. ray is separated into projections in $x z$ and $y z$ planes, the camera constant $C_{k}$ is accordingly separated into components $C_{k x}$ and $C_{k y}$ on each side. It is therefore possible to set different constants for $x$ and $y$ directions at the plate. by which affine errors due to differential film shrinkage may be compensated.

A complete description of the plotter and in particular the mechanical computers, is given in the appropriate instrument handbook (VEB Car2 Zeiss Jena, 1971).

## 3.4

The orthophot $B$ differential rectification unit is rigidly attached to the rear of the Topocart plotter in a cast box-section frame, entirely enclosed in removeable panels. Access to the interior is provided through a door panei, in order to permit the insertion and removal of a film cassetce so that the scanning operation may be carried out on ine to the plotting machine, in a room under normal lighting condicions. The film cassette (io, fig. 3.1) consists of a casing with a hinged lid, enclosing a film carrier so that the cassette is completely light proof. On the underside of the casing theye is a slotted aperture extending the entire length of the cassette, covered by a shutter blind, which can ony be released mechanicaliy when the cassette is in operating position winin the orthophot. Micro switch contacts ensure that the scanning operation cannot be commenced with the shutter closed.

The film carrier is a cylindrical drum, to which one edge of the $y$ direction of the film is firmiy fixed by springloaded pin clips. The film sheet is drawn tightly over a stage through felt jaws, as the drum rotates for each incremental $\Delta x$ step during the scanning operation. A gear at the end of the axis engages with the step switch mechanism (9, fig. 3.7), and transmits the $\Delta x$ increment to the film carrier. The drum diameter of the cassette is alesigned for a fim thickness of 0.20 mm , but film in the range 0.15 to 0.25 mm can be used without focussing difficulties. The maximum size of film whico

can be inserted is 600 mm ( $x$ direction) by 750 mm ( $y$ direction). However about 50 mm at each side in x direction is required to attach the film in the cassette, and about 20 mm must be allowed in the $y$ direction at the starting end, so that the fectivermaximum film format is $500 \mathrm{~mm} \mathrm{(x)}$ by 730 ma ( $y$ ). The image magnification control permits magnification possibilities from original picture to orthophoto $6 \mathrm{~V} / \mathrm{b}^{\prime}$ within the range 0.7 to 5 for flat terrain; but for a scanning arearof $100 \mathrm{~mm} x$ by $200 \mathrm{~mm} y$ in the picture scale, corresponding to full usable format, the maximum enlargement $V_{d / b}$ is 3.65 times in one operation of scanning; corresponding to the maximum effective orthophoto film format. In order to utilise the $V_{d / b}$ upper limit of 5 , the scanning operation must be carried out in two phases for the upper and lower portions of the picture.

## 3.5

During scanning the cassette carriage is activaced by a $y$ spindle (ll fig. 3.1), to move backwards and forwaras in the $Y$ direction across the slit diaphragm (14 fig. 3.2). A motor (7 fig. 3.1), the speed of which is stabilized, and wisk can be controlled in an overall ratio of $1: 9$ d drives a $y$ selysyn transmitter ( 6 fig. 3.1), via a gear which changes the speed in two stages. The $y$ selsyn transmitter is connected by cable to receivers on the $y$ spindle of the cassette carriage (1 fig. 3.1), and on the drawing table (15 fig. 3.1). The drawing table receiver is in turn mechanically connected through. gear wheels and lead screw to the Orograph drop line drawing head (17 fig. 3.1), and to the $y$ spindle in the Topocart

(19 fig. 3.1); so that the cassette, drawing table, and model $y$ drives are continuously coordinated.

In order to be able to adapt scan spped to terrain conditions, y scan speed can be vasied by the operator during the scan by finger tip control; in a ratio of $1: 3$ of a selected basic speed within the overall $1: 9$ ratio of the drive motor. Basic scan speed is adjusted to a suitable mean value, by a trial scan at varied speeds through the most difficult terrain area of the photograph, before the operationai scanning commences. Speeds of 0.7 to $2.0 \mathrm{~mm} / \mathrm{sec}$ in the picture scale are recommended for difficult terrain, and ito 3 $\mathrm{mm} / \mathrm{sec}$ for simple terrain. Multiplication of these speeds by the overall magnification factor $V d / b$ gives speed in the rectification plane; and reference to figure 3.3 shows the appropriate basic speed setting (controlled by potentiometer as a fixed setting), the appropriate $y$ selsyn gear stage fast or slow, and the variation of speed possible under operator control during the scan.

As film exposure is proportional to $y$ scan speed, speed variation during scan would normally result in exposure changes with consequential density variations in the developeả film. In order to compensate this, a variable density grey wedge is placed below the slit diaphragm ( 12 fig. 3.2) , which is automatically moved to appropriate transmission density when the operators variable speed control is adjusted. The ability to achieve constant film exposure over a wide range of scan speed by finger-tip control, is a very desirable feature of on-line orthophoto production.

## 3.6

The $\Delta x$ increment necessary to move from one scan profile to the next, is activated by a mechanical step switch mechanism. The increment is selected by a numiered controi knob, corresponding to the slit width placed in the diaphragm aperture, and activates adjustable stops at the step switch mechanism.

The transmission of the increment to the drawing table and thence to the piotter, is effected by a Wheasstone bridge as measuring element. A generator potentioneter (8 fig. 3.1) transforms the $\Delta x$ increment at the step switch mechanism to an anaiogous electrical resistance. A receiver potentiometer (16 fig. 3.1) is fixed at the drawing tabie gears. As the $\Delta x$ increment is released by the step switch mechanism at the cassette, at the limit of each $y$ scan by an end limit switch, so the Wheatstone bridge becomes unbalanced. The operator then carries out an $x$ movement using the x-handwheel of the Topocart, which adjusts the receiver potentiometer until zero balance of the bridge is restorec. Exact balance is indicated by a null indicator (32, fig. 3.3) visible from the observers operational position.

## 3.7

Contrary to the original Stereotrigomat system, the right hand photograph in the topocart is the photograph differentially rectified. The illumination source for projection is a fan-cooled 12 V .100 w . halogen lamp $4 \mathrm{fig} \cdot 3.2 \mathrm{i}$ directed through the right hand diapositive. The vìsuai
observation ray path is interrupted by a beam splitting prism (2 fig. 3.2), and two lens element systems (4 and $\overline{6}$, fig. 3.2) produce through two deflection prisms, a real exactiy twicemagnified intermediate image of the photograph image at a point 8 fig. 3.2. This intermediate image is again brougit to an image at the film stage in the cassette, through two roof prisms (7 and 10, fig. 3.2), a projection lens (9fig. 3.2) between the roof prisms, and a final deflection prism 11 fig. 3.2. The roof prisms are mechanically coupled by a Peancellier inversor, so that the prisms shift towards or away from one another along the optical axis of the projection lens of focal length $f_{e}$. Each position of the inversor and of che roof prims corresponds to a certain magnification of the projectec image at the rectification plane, compared to the twice magnified intermediate image. The extra focal distances $m$ and $m^{2}$ from the focal points of the projector lens, to the intermeaiate image point and to the rectification plane respectively, are coordinated by the Peancellier inversor, so that correct focussang corresponding to the Newtonian lens law $m$. ${ }^{1} \mathrm{~m}=\mathrm{f}_{\mathrm{e}}{ }^{2}$ is aohievec. The corresponding principal distance a and projection distance $a^{3}$ give the imaging ratio:

$$
\begin{equation*}
v_{d / b}=\frac{a^{I}}{a} \tag{2,:3}
\end{equation*}
$$

This imaging ratio must be continuously varied accoraing to terrain elevations on the centre line of the scan profile. in order that photograph images at non-uniform scale due to elevation differences are brought to the required uniform orthophoto scale. Control of magnification is providea by the parameters $c_{k}$ of the camera constant, and variable $z$ in
the Topocart model, also taking into account the intermediate double magnification, and the magnification factor $V_{d / n}$ from model to rectification plane:

$$
v_{d / b}=\frac{a^{1}}{a}=\frac{z}{c_{k}} \cdot v_{d / m}
$$

Control is achieved by a self-balancing potentiometer comput.... bridge, on the transmitter side of which the variable ratio $\mathrm{Vd} / \mathrm{b}$ is simulated by the analogous ratio of the resistances of a set of linear potentiometers. The $z$ component resistance $i s$ presented through a helical potentiometer variable by movement of the $z$ spindle, multiplied by the magnification factor $V / / m$ set at the Orthophot by interchangeable gear wheels. Adaitionaily a correction to the $z$ resistance on account of the $b_{z}{ }^{\text {" }}$ base component if any, is set by a second potentiometer at the Orthophot. The variable camera constant $C_{k}$ also represented by a resistance, is set on a counter at the Orthophot as the resistance of a further helical potentiometer. A ifnear potentiometer is coupled by gears to the projection-side roof prism of the Pencellier inversor, the movement of which is controlled by servo motor activated by any current in the computing bridge. A movement in $z$ at the plocter produces a drive to the servo motor until zero balance is restorec at the computing bridge, when there is coincidence between che computed scale and the imaging scale set by the invexsor.

## 3.8

The z selsyn transmitter (22, fig. 3.i) providing the $z$ data for control of magnification, is also utilised for control of the Orograph dropline drawing head for presentation of elevation data. A separate $z$ selsyn receiver(13, fig. 3.1) is placed in the electronic control cabinet, the rotary movements of this receiver acting on an optical pulse generator scanned by a photoelectric device. The analogue to digital converter transforms the input shaft rotations into electric pulse sequences which show the magnitude and direction of each change in elevation. For each revolution of the input shaft, the pulse generator supplies 625 pulse changes, one such pulse corresponatng to 0.001 mm change in the elevation of the floating mamin the plotter model. An output signal generator (14, fig. 3.1) energizes an alternating current magnet in the drawing head (17 fig. 3.1) at appropriate contour intervais which may be selected. Contour intervals are selected by placing an adaptor plug, identified by a number equivalent to the contour interva. in terms of model scale millimetres, into the electronic contris cabinet. A large number of such plugs are available in the range 0.03 to 5.08 mm , equivalent to metre and feet intervais for standard metric and imperial map scales.

The drawing head is designed to contain a verticai plunger into which is fixed a steel scribing needle. The alternating current magnet causes the scribing needle to oscillate at right angles to the direction of movement of the drawinc head ( $y$ scan direction) at 100 Hz frequency. The pulse generator


Scan Speed $\mathrm{mm} / \mathrm{sec}$. in Rectification Plene FIG. 3.3. SCAN SPEED CONTROL POSSIBILITES

| elevations up |  |
| :---: | :---: |
| mmin model scale | metres in nature |
| $7 \cdot 8,8 \cdot 4,9 \cdot 0,9.6,10 \cdot 2$ | 195, 210, 225,240, 255 |
| $7 \cdot 6,8 \cdot 2,8.8,9.4,10 \cdot 0$ | $190,205,220,235,250$ |
| $7 \cdot 4,8 \cdot 0,8.6,9.2,9.8$ | 185, 200, 275, 230, 265 |
| MODEL SCALE 1:25000 CONTOUR INTERVAL:5m |  |
| OROGRAPH ADAPTOR: 0 NULL POINT: $8 \mathrm{~mm} / 200$ |  |

feeds two different voltage signals corresponaing to two different amplitudes of the needie to the magnet. inciuding a condition in which there is no input signal, the result is that three different line thicknesses are generated, the centre thickness of which is adjustable at the arawing head relative to the other two. Each line length then represents a band width horizontally of a particular zone between two contours. It is necessary to identify the starting point of a sequence of lines, and this is done by nulling the Orograph with the model $z$. counter set at a selected whole number. The first line in the upwards direction is then the finest line thickness. For the case of the scribing needle, the line thickness of the thin line is 0.1 to 0.2 mm depending on the grinding of the needie point. The thick inne is dependent on the setting of the magnet with respect to the scribing plunger and should be 0.8 to 1.0 mm . The medium line may then be adjusted to provide clear differentiation. The scribing needle is intended to be used in conjunction with emulsion coated giass plates as drawing medium, but in the tests described in this work a ball point pen was substituted, and the drawing medium used was a five-sheet laminated white drawing card with a smooth finish. The most suitable ball point was found by experimentation to be a black fine point 'Jumbo' refill by Papermate. The white card was found to be more suitable than drafting film, which tended to fill the ball housing of the ball point with plastic residue. Figure 3.4 illustrates the identification of contour zones in a particuiar case.

### 3.9 Non-direct image transfer errors

In direct optical inage transfer by reprojection such as takes place in the Bean Orthophotoscopes and the GZi, scale variations and image rotations due to photographic tilts are optically rectified by reprojection; so that if no observer errors or system errors are made (flat terrain conditions), the projected images are perfectly rectified. In the case of the non-direct image transfer system of the Topocart, the magnification control by the inversor ailows only for change of scale of image due to elevation differences. Scale variations due to $\omega$ and $\phi$ tilts are illustratec in fig. 3.5, showing the distortion of an orthogonal square gria in flat terrain. As the movement of the exposure slit of width $b$ is in the $y$ direction of the plate, it is seen that an $\omega$ tilt causes uniform scale change along the slit wiatn. but the scale varies during the scan according to y plate coordinate. The effect of $\phi$ tilt is to cause scale variation proportional to $x$ coordinate, i.e. non uniform along the sint width; and additionally a rotation of images within the sist.

Corrections must be made for the effect of the scaid variation within the exposure slit, as otherwise dispiacement o. detail would occur on the slit margins, causing overlaps anc missing details. The non-uniform effect of the $\phi$ scaie variation is negligible within the small slit widths: taklng into account the small tilts possible in a plotter designed for near-vertical photography, but correction must be made


Effective Slit Track

(4) 1 多

FIG. 3.5. EFFECT WITHIN EXPOSURE SLIT OF SCALE VARIATIONS DUE TO TILTS


FIG. 3.6. CORRECTION OF $C_{k}$ FOR w TLIT SCALE
for the mean scale at the centre of the sitt due to x posicion. Figure 3.6 illustrates how correction may be achieyed for $\omega$ tilt by adjustment of the camera constant $G_{k}$, by substitution at the magnification computing bridge of a canera constant $e_{\mathcal{W}}$, which represents the constant of a perfectly vertical camera in the same spatial position, and which would procuce the same scalecof image as the tilted camera.

$$
c_{\omega}=c_{k} \cos \omega+y^{2} \sin \omega
$$

Similarly for $\phi$ tilts:

$$
C_{\phi}=C_{k} \cos \phi+x^{4} \sin \phi
$$

And for the combined effect of the tilts ( $\omega+\phi$ ) we nay sumsmatuca an adjusted camera constant $C_{(\omega+\phi)}$; for plate cooratnates $x^{\prime} y^{*}$ from the right hand plate centre as origin:

$$
C_{(\omega+\phi)}=C_{k} \cos \omega \cos \phi+y^{1} \sin \omega+x^{\infty} \sin \varphi \quad(3 \cdot v)
$$

The function $C_{k} \cos \omega \cos \phi$ is easily computed fron the the values read at the plate rotation arcs; or may be appired as a correction $\Delta_{c k}$ from tables provided, in which $\Delta_{c k}$ is aiways a negative correction:

$$
\Delta_{c k}=\mathrm{Ck} \cos \omega \cos \phi-\mathrm{Ck}
$$

The correction $\Delta_{c k}$ is made to the ck counter at the orthophot (Fig. 3.7).

For the residual correction to $C_{k}$ due to image coordinate position $x^{\prime} y^{\prime}$, a "special tilt compensatornfox large tilts" may be provided which is attached beside the right plate carrier carriage. Swivelling rulers are manually set to the rotation angles $\omega$, $\phi$ read from the arcs, and the position of the plate relative to the rulers determines the plate coordinates $x^{\prime} y^{\prime}$. The appropriate corrections are computed by this analogue computer, and transmitted as resista.ces by two potentiometers which continuously add the resistances to the resistance representing $C_{k}$ at the computing bridge magnification control. If this residual correction to $C_{k}$ is not made, the mean saaie error within an exposure siit is.

$$
\pm\left(y^{\prime} \frac{\sin \omega+x^{\prime}}{C_{k}} \sin \phi\right)
$$

For the case of $y^{\prime} \max =x^{\prime} \max =r$; and for a silt wath $b ;$ the displacement $\Delta r x$ at the edge of the slit in $x$ directior is:

$$
\Delta r_{x}= \pm \frac{r \cdot b \cdot(\phi+\omega)}{2 C_{k}}
$$

Table 3.I gives limit values for $(\phi+\omega) g$ which result in maximum displacements $\pm \Delta r_{x}$ of $\pm 0.1 \mathrm{~mm}$ in the Orthophoto, for the case of a 150 mm wide angle camera with maximum scan area $100 \mathrm{~mm}(\mathrm{y})$ by 200 mm (x) in the photograph scale, for different overail magnification factors $\mathrm{Vd} / \mathrm{b}$ from photograph scale to orthophoto scale.

| $\mathrm{V}_{\mathrm{d} / \mathrm{b}}$ | Ix | 2 x | 3 x | 4 x | 5 x |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Slit Width mm |  |  |  |  |  |
| 1 | 19.1 | 9.5 | 6.4 | 4.8 | 3.8 |
| 2 | 9.5 | 4.8 | 3.2 | 2.4 | 1.9 |
| 4 | 4.8 | 2.4 | 1.6 | 1.2 | 1.0 |
| 8 | 2.4 | 1.2 | 0.8 | 0.6 | 0.5 |
| 16 | 1.2 | 0.6 | 0.4 | 0.3 | 0.2 |

TABLE 3.I Limit Values $(\phi+\omega)$ gor 150 mm Camera
3.10

The rotation of images due to $\phi$ tilt is not cocseo.e. . but should be minimised by appropriate choice of slit wiach afuel orientation is completed, at which stage $\phi$ of the right $2 i a t e \cdots$ be read from the $\phi$ "arc. The rotation is evident as a $Y$ displacement at the slit margin, effective proportionateiy ficun the slit center, as the center point is always correctiy iceand. by the model point location in the plotter. For the tocai y displacement (dy) in image position at the plate of an inase with respect to plate center as origin of coordinaies, we have in terms of plate scale displacement:

$$
d y=\frac{x \cdot y}{C_{k}} \cdot d \phi
$$

The relative displacement for a small increment dx is:

$$
d(d y)=\frac{y}{c_{k}} \cdot d \phi \cdot d x
$$

Whence the displacement $\Delta r y$ over an incremental distance of haif slit width is:

$$
\Delta r y=\frac{\mathrm{b} \cdot \mathrm{y} \cdot \mathrm{~d} \phi}{2 \cdot \mathrm{c}_{\mathrm{k}}}
$$

And the displacement in the orthophoto at magnification $V d / \mathrm{D}$ is:

$$
\Delta r y=\frac{v a / b \cdot b \cdot y \cdot \phi}{2 \cdot C_{k}}
$$

Clearly the maximum displacement $\Delta r y$, is the same amount as the maximum displacement $\Delta r x$ (due to scalar errors if the tilt correction device is not used), for the same given conditions, i.e. $y \max =100 \mathrm{~mm}$ at plate. It follows that Table 3.1 may also be used to determine the limit vaiue $\phi(g)$ for a maximum displacement $\Delta r y$ of $\pm 0.1 \mathrm{~mm}$ at slit margin for the case of a 150 mm wide angle camera.

## 4. TESTS OF ORTHOPHOTOGRAPHIC PLANIMETRIC AND ELEVATION ACCURACY

## 4.1

In this section a review is given of the procedures and results of the principal experimentai cescs reported, concerning the accuracy of orthophotograph production techniques and an outline is presented of the objectives and experimencal work carried out during the investigation. Phere is aiways some difficulty in comparing photogrammetric experimental work, because of the variable factors involved; in particuar the differences which occur in photographic instrumencation and flying altitude, the variable ratios possible in the , out and orthoprojection equipment, the system variations such as such speed and slit width and ori course in the terrant conditions. Furthermore the test controls are of variable accuracy and may be derived from ground marked signais, or from hignerpreaision photogrametric work; and the results are tot - -ways presented in a uniform manner. Where possibie the resurs published by the experimenters have been reduced in the rase of planimetric errors, to mean square vector (positiond exce $m_{p}$ in millimetres at the orthophoto scale; and also the corresponding error mpb in micrometers at the common base of original picture scale. In the case of vertical excors the results are given in terms of parcs pro mille fiy2ng altitude ( $\% / 00^{Z}$ ). The tests are reviewed in approximate chronological order of pubiication, añ are separately g-ver as planimetric tests identified by the letter $p_{\text {a }}$ and eiev. $i o n$ tests identifiea by the letter E. Whenever possible the

## 59.

relevant variable factors are given:
flight altitude : Z
original picture scale number : mb
model scale number $: m_{m}$
orthophoto scale number : mad
orthophoto slit width (m.m) : b
model scan width if applicable : $b_{m}$
scan speed in original picture scale: $V_{B}$ ma/sec

### 4.2 Planimetric Accuracy Tests

4.2.i Test Series 1P

NEUBAUER (1964) presented the first numericai data on accuracy after evaluation of four orthophotos of the REICHENBACH test field. Instrumentation for the tests was a C. 8 Stereoplanigraph directly coupled to GZl. The range of relsef $\Delta z$ in the models tested amounted to about $20 \% z$.

| $m_{b}$ | $m_{d}$ | $Z$ | $V_{d} / b$ | $V_{B}$ | $b$ |
| :---: | :---: | ---: | ---: | ---: | ---: |
| 8500 | 3000 | 1275 | 2.83 | 1.7 | 4 |

Check points
60 signalised per orthophoto $\pm 0.12 \mathrm{man} 42 \mathrm{~m}$
$m_{p}$ (points near slit centre) $: \pm 0.11 \mathrm{~mm}$
$m_{p}$ (points near slit margin) : $\pm 0.14 \mathrm{~mm}$

MEIER (1906, 81) comnents that the smail difterences between errors at the centre of the slit and ecrors at the margin, confirm that it is not only the systen errors which have to be taken into account, but above ail the scaning error.
4.2.ii Test Series 2P

JOHANSSON (1968, 55) reported on tests in whicis a standard orthophotomap sheet of the 1:10 000 Economic Map of Sweden was tested in planimetry by comparison of 98 points, check coordinates of which were deteminea by measurements in a Wild A7 plotter. The map sheet composed of 3 orchophoto models covered a relatively hiliy woodland area with elevat. on differences of $3.7 \% 2$. The plotter inscrumentacion was boc: C. 8 and Stereometrograph, and GZl orthoprojector in the storage mode.


The measurements in the A7 were assumed to have a planimetric standara error of about $\pm 0.05 \mathrm{man}_{\text {, }}$ and the cocracmato graph of about $\pm 0.03 \mathrm{~mm}$, so that the following reduced exrose are obtained for the total orthoprojection metnod:

| $\mathrm{m}_{\mathrm{p}}$ | EDG |
| :---: | :---: |
| $\pm 0.19$ | $63 \mu \mathrm{~m}$ |
| $\pm 0.17$ | $57 \mu \mathrm{~m}$ |

## 4.2.iii Test Series 3P

MEIER (1968, 82) pubiished the results of tests carried out by Rikets Allmäna Kartverk of Stockhoim on 9 orthophotomap sheets; believed to be produced by the C8 - GZl combination:

| $m_{b}$ | $m_{d}$ | $V_{d / b}$ |  |
| :---: | :---: | :---: | ---: |
| 10000 | 4000 | 2.5 |  |
| Check points | $m_{p}$ | $m_{p i o}$ |  |
| 75 |  | $\pm 0.16 \mathrm{~mm}$ | $66 \mu \mathrm{~m}$ |
| 95 |  | $\pm 0.15 \mathrm{~mm}$ | $59 \mu \mathrm{~m}$ |
| 91 |  | $\pm 0.18 \mathrm{~mm}$ | $72 \mu \mathrm{~m}$ |
|  |  |  |  |
| $m_{b}$ | $m_{d}$ | $V_{d / b}$ |  |
| 30000 | 10000 | 3 |  |

Check points

| 24 | $\pm 0.37 \mathrm{~mm}$ | $123 \mu \mathrm{~m}$ |
| :--- | :--- | ---: |
| 36 | $\pm 0.19 \mathrm{~mm}$ | $63 \mu \mathrm{~m}$ |
| 65 | $\pm 0.37 \mathrm{~mm}$ | $123 \mu \mathrm{~m}$ |
| 66 | $\pm 0.19 \mathrm{~mm}$ | $63 \mu \mathrm{~m}$ |
| 58 | $\pm 0.29 \mathrm{~mm}$ | $97 \mu \mathrm{~m}$ |
| 67 | $\pm 0.19 \mathrm{~mm}$ | $63 \mu \mathrm{~m}$ |

MEIER comments that in these tests, the theoretically estimaced magnitude of residual errors in orthophotos made with the GZl was confirmed.

## 4.2.iy Test Series 4P

FŐRSTNER (1968, 111) reported on further tests made in the Institut für Angewanate Geodäsie, of the REICHENBACH test area, additional to those of NEUBAUER (test series iP). A total of 44 orthophotos were prepared from which the coordinates of some 6000 signalised points were measured by coordinatorgraph:

| $m_{b}$ | $m_{d}$ | $Z$ | $V_{d / b}$ | $b$ |
| :---: | :---: | :---: | :--- | :---: |
| $8000-12000$ | $3000(?)$ | $1200-1800$ | $2.83-3.6$ | $2-4$ |


| Check points | $m_{p}$ |
| :--- | :--- |
| 6000 signalised | $\pm 0.16 \mathrm{~mm}$ (similarity transform to |
| points in each sheet) |  |
|  | $\pm 0.20 \mathrm{~mm}$ (transform to 5 controls per |
| sheet with charge of scaie) |  |
|  | $\pm 0.24 \mathrm{~mm}$ (transform to 5 controls winout |
| change of scaie) |  |

The tests were carried out with C8 and GZl directiy coupice, using variations of slit width $\bar{b}_{i}$ and also variations of basem height ratio of 0.3 and 0.6 as a method of control of maximum projection angle in the $x$ direction. FÖRSTNER comnents thac orthophotos prepared with a slit width of 4 rm snow a mean square error which on average exceeds by $10 \%$ those taken whth a slit width of 2 mm and that orthophotos produced from a base ratio of 0.6 show a mean square error which on the averace exceeds by $5 \%$ those produced with a base ratio of 0.3. He
also comments that the influence of the magnification ratio $V_{d / b}$ is practically negligible, but it should perhaps be noted that the range tested was only 27\% different.

## 4.2.v Test Series 5P

VISSER (1968, 10-22) has reported on several tests of the REICHENBACH test field with a $C .8$ directly coupled to GZ1.

## First test model

| $m_{b}$ | $m_{m}$ | $m_{d}$ | $Z$ | $V d / b$ | $V_{B}$ | $b$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 12000 | 10000 | 4000 | 1825 | 2.4 | $1.3 \mathrm{~mm} / \mathrm{sec}$ | 4 |
| Check points |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| 5 controls, and 54 | checks | $m_{p}$ | $\mathrm{~m}_{\mathrm{ph}}$ |  |  |  |
| (signalised) |  | $\pm 0.20$ | $83 \mu \mathrm{~m}$ |  |  |  |
| Second test model |  |  |  |  |  |  |


| $m_{10}$ | $m_{m}$ | $m_{d}$ | $Z$ | $V_{d} / b$ | $V_{B}$ | $b$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 8500 | 5000 | 2500 | 1275 | 3.4 | $0.74 \mathrm{~mm} / \mathrm{sec}$ | 4 |
|  |  |  |  |  |  |  |
| Check points |  | $m_{p}$ | $m_{p b}$ |  |  |  |
| 5 controls, 55 checks | $\pm 0.22$ | 65 Hm |  |  |  |  |
| Third test |  |  |  |  |  |  |

Conditions as for the second test, but variabie
speeds with two different observers:

Observer No. I
Observer No. 2

| $V_{B}$ | $m_{p}$ | $m_{p b}$ | $m_{p}$ | $m_{p b}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0.74 | $\pm 0.17$ | $50 \mu \mathrm{~m}$ | $\pm 0.14$ | $41 \mu \mathrm{~m}$ |
| 0.97 | $\pm 0.17$ | $50 \mu \mathrm{~m}$ | $\pm 0.16$ | $47 \mu \mathrm{~m}$ |
| 1.47 | $\pm 0.20$ | $59 \mu \mathrm{~m}$ | $\pm 0.15$ | $44 \mu \mathrm{~m}$ |
| 2.20 | $\pm 0.18$ | $53 \mu \mathrm{~m}$ | $\pm 0.24$ | $71 \mu \mathrm{~m}$ |
| 2.94 | $\pm 0.17$ | $50 \mu \mathrm{~m}$ | $\pm 0.16$ | $47 \mu \mathrm{~m}$ |

VISSER comments that the results show a high correlation for the same observer between tests at different speeds, due to the influence of the system errors and the common errors of snapmarking of the signalised points; but that the scanning error appears to be almost independent of speed, in contrast to the formula of MEIER given in equation 2.xiii.

## 4.2vi Test Series 6P

ACKERMANN (1969) investigated errors in very large
scale orthophotomaps. From original scale photographs of 1:4000 an orthophoto was produced at 1:1250, subsequently enlarged with a process camera to $1: 1000$. The total magnifications factor from picture scale to map $\left(V_{k / b}\right)$ is thus 4. The orthophotomap image details were comparea with corresponding details of photogrametric iine maps, 10500 individual checks being made. The extreme scale conditions of this test result in large system errors and scanning errors, because of the possibility of very large elevation differences being present in images within the exposure siat.

| $m_{b}$ | $m_{d}$ | $m_{k}$ | $V_{d / b}$ | $V_{k / b}$ |
| :---: | :---: | :---: | :---: | :---: |
| 4000 | 1250 | 1000 | 3.2 | 4 |

```
    MPk M
Various details at ground level: \pm0.20-0.46mm 50-115 \mum
Objects with large perspective errors, e.g.:
    Bridge crossing valley }\quad5.3\textrm{mm}\quad1325 j
    Roof corners 2.5 mm 625 \mum
```


## 4.2.vii Test Series 7p.

FLEMING (1973, 55) pubiishea the results of planimetric accuracy tests, in which Contractors to a government agency produced orthophotographs of the same areas using different instrumentation : Zeiss GZ1, Jena orthophot, SFOM 693, Kelsh Orthophotoscope, and Hobrough Gestalt Photomapper. The tests were performed from three different photographic scaies in areas of various types of relief as follows:
a. Low relief area : $\Delta Z<1 \% Z ; m_{b} 19000,8$ test modeis. b. Medium relief area: $\Delta \mathrm{Z} 4 \% \mathrm{Z} ; \mathrm{m}_{\mathrm{b}} 38000,7$ test models. c. Mountainous relief area: $\Delta Z 13 \% Z ; \mathrm{m}_{\mathrm{b}} 50000$, 10 test modess. Details are not given of the relevant restitution pararecees, but the results are presented in terms of mear square errors at original photographic scales. The error checks were made at 25 points per orthophoto, the positions of which were determined by photogrametric measurements in a Wild A7 piocter: mpb
Low relief area : $40-60 \mu \mathrm{~m}$
Medium relief area : $\quad 30-60 \mu \mathrm{~m}$
Mountainous relief area: $60-270 \mathrm{jm}$

FLEMING points out that the largest errors $\{270 j \mathrm{~m}\}$
were recorded for a test in which a model was scanaed with sile
width inappropriate to terrain (large system errors).
Apparently there was no correlation between tested accuracy and instrumentation. In the cases of the low and medium relief areas, the errors corresponded in magnitude with the theoretical predictions of MEIER (1966). Comparing the errors with U.S. Map Accuracy Standards for a standard in which $90 \%$ of points checked should be within $\pm 0.05 \mathrm{~mm}$ of line position; it followed that the orthophotos of iow and moderate relief areas could be used at $V_{d / b}$ ratio of 5.5 times, whereas for mountainous areas the maximum allowabie $\mathrm{V}_{\mathrm{d} / \mathrm{b}}$ ratio would be 1.5 times.

An additional feature of this test series was that a number of sapp marked points were positioned in tree cover at maximum field angles in the models. It was shown that systematic radial displacements could be detected at these points in orthophotos produced by automatic electronic correlation, in contrast to the manually-scanned orthophotos.

### 4.3 Vertical Accuracy Tests

4.3.i Test series IE

MEIER (1966, b) published the first numerical accuracy data on contours produced from drop-line charts, obtained concurrently with orthophotos. Meier compared the derived contours with a contour plot of WALDMATT area, produced by conventional photogrammetric techniques. 136 check points were selected on contour lines of the photogrammetric plot of an area of $0.25 \mathrm{~km}^{2}$, and the interpolated errors of the drop-line derived contours were classified by groups of terrain slope, varying between 3 and 50\%. The instrumentation was Zeiss C8 and GZl directly coupled. The contour interval of the drop-line signals was $5 \mathrm{~m}\left(2.80 / \mathrm{oo}^{\mathrm{Z}}\right)$, equivalent to a C number (see 1.4) of 360.

| $m_{b}$ | $m_{m}$ | $m_{d}$ | $Z$ | $V_{d / b}$ | $V B$ | $b$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12000 | 10000 | 5000 | 1800 | 2.4 | $1.38 \mathrm{~mm} / \mathrm{sec}$ | 4 |

Meier's test confirmed dependency of elevation errors upon terrain slope, as postulated in his analysis of errors of the GZl system (see 2.4.i), obtaining for the mean square error in elevation:

$$
m_{z}= \pm(0.58+2.82 \tan B) m
$$

Elimination of the errors due to normal photogrammetric plotting, gave for the errors due to orthoprojection scanning:

$$
\begin{aligned}
m_{z} & = \pm(0.56+2.64 \tan \beta) \mathrm{m} \\
& = \pm(0.31+1.47 \tan \beta)^{\circ} / 00^{2}
\end{aligned}
$$

Meier comments that the results of the test are in general agreement with his preaiction of errors, and that they satisfy the specifications for both mean and maximum ermors of the German Base Map 1:5000.

## 4.3.ii Test Series 2E

HAMPEL (1967) produced an orthophoto at a scale of 1:2500 of BURLADINGEN area, with elevation differences of $5 \% Z$ and slopes of 0-190\%. Profile drop-line charts were produced without conversion to contours, and compared with eight profiles surveyed in the terrain, arranged parallel to the orthophoto profiles. Comparison was made at 98 profile points, also arranged in slope groups. The drop-line signal changes were made at contour intervals of $2.5 \mathrm{~m}\left(2 \% / 0^{Z}\right)$, equivalent to $C$ number 480, $C 8$ and GZl were directiy coupled.

| $m_{b}$ | $m_{m}$ | $m_{d}$ | Z | $\mathrm{Vd} / \mathrm{b}$ | VB | b |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8000 | 5000 | 2500 | 1200 | 3.2 | $1.56 \mathrm{~mm} / \mathrm{sec}$ | 4 |

The error of elevations was found:

$$
m_{z}= \pm 0.6 \mathrm{~m}= \pm 0.5 \% / 00 \mathrm{Z}
$$

Hampel found no dependency of elevation error on account of slope.

## 4.3.iii Test Series 3E

JOHANSSON (1968, 156) published elevation accuracy data concurrently with planimetric test series 2P. Elevacion errors were determined by the comparison of check points obtanhes from measurements in wild A7 piotter. Drop line signais were produced at contour intervals of $5 \mathrm{~m}(2.1 \% / 00 Z)$, equivaient to

C number 920. Comparison was made at 134 points interpolated from the derived contours. The production parameters are identical with those of test series $2 P$. The errors of elevation were found:
all tested points: $m_{z}= \pm 1.7 \mathrm{~m}= \pm 0.37 \% 00 \mathrm{Z}$,
points in open areas: $m_{z}= \pm 1.6 \mathrm{~m}= \pm 0.35^{\circ} / 00^{2}$,
points in forest areas: $\mathrm{m}_{\mathrm{z}}= \pm 2.0 \mathrm{~m}= \pm 0.43^{\circ} / 00^{\mathrm{Z}}$

Dependency upon terrain slope was apparentiy not
tested, but a contour plot was also produced by purely conventionai plotting on Wild B8 plotter, and also tested. The accuracy of the two plots was of about the same order, except that in the case of points in forest areas, the $B 8$ results were somewhat better with $\mathrm{m}_{\mathrm{z}}= \pm 0.33^{\circ} / 00 \mathrm{Z}$. Reduction of the errors of the orthoprojection contours by the estimated error of the measurements in wild $A 7$, results in a figure of $m_{z}= \pm 0.35^{\circ} / 00$ for all tested points.
4.3.iv Test series 4E

VISSER (1968, 10-27), aiso tested elevation accuracy
concurrently with the same test models as used in planimetric test series 5 P , where the production parameters may be found.

## First test model

The selected profile interval was $5 \mathrm{~m}(2.70 / 002)$. corresponding to $C$ number 365.

55 ground points interpolated from contours:
$m_{z}= \pm 0.74 \mathrm{~m}= \pm 0.410 / 00 \mathrm{Z}$

## Second test model

The selected profile interval was 2 m (1.60/002). corresponding to $C$ number 637:
$m_{z}= \pm 0.37 \mathrm{~m}= \pm 0.29 \% / 00 \mathrm{Z}$.

This test was carried out at VB $0.74 \mathrm{~mm} / \mathrm{sec}$, and subsequently repeated with scan speed VB $1.5 \mathrm{~mm} / \mathrm{sec}$ :
$m_{z}= \pm 0.47 \mathrm{~m}= \pm 0.37 \% / 002$.
In the same test model, a profile was selectea anc scanned at five different speeds, twice at each speed. The repeatability of profiling at speed was judged on the basis of the differences of the errors between pairs of profiles scanned at the same speeds. 131 check points were compared, derived from static profile measurements in Zeiss c8. The absolute accuracy of profiling was determined by comparison of individual profiles against the static measurments.

Visser concluded that the results were aimost the same for all speeds over the complete $\mathrm{V}_{\mathrm{B}}$ range of $0.74-2.54$ $\mathrm{mm} / \mathrm{sec}$. The absolute errors varied from $\mathrm{m}_{z} \pm 0.12$ to $0.32 \% / \mathrm{co}$ over three groups of slope at all speeds. In the case of irregular broken terrain (but with only slight siopes of $2-5 \%$ the cerrors were significantly worse, and in this case a significant constant error of $0.5 \% / 00^{2}$ was apparer...

The same test model was completeiy scanned by two different operators at five different speeds. Contours were derived, and height errors found at 56 ground check points by interpolation from the contours. As average, Visser found:

$$
\mathrm{m}_{\mathrm{z}}= \pm 0.56 \mathrm{~m}= \pm 0.43^{\circ} / 00^{\mathrm{Z}}
$$

Visser comments that the tests on both profiles and derived contours showed that the errors were aimost independent of scan speed, and that it appeared that actual slope was not as significant as changes of slope.

## 4.3.v Test series 5E

ACKERMANN (1969) concurrentiy with his very iarce scale planimetric test series 6p, produced a drop inne chara with 1 m contour interval ( $1.70 / 00 \mathrm{Z}$ ), corresponding to a C number of 600. Interpolated contours were arawn at an interval of 0.1 metre. 263 points were compared with contour lines from photogrametric conventionai plotting:

$$
\mathrm{m}_{\mathrm{z}}= \pm 0.22 \mathrm{~m}= \pm 0.37 \% / 002
$$

## 4.3.vi Test Series GE

HOBBIE (1969, 225) repeated the WALDMATM model test of series 1 E (MEIER), using the same instrument production parameters except that the C8 and GZ1 were not directly coupled, but used in the storage mode of operation (see 2.3.i). The purpose of the test was to investigate the efficiency of the zeiss Electonic Contourliner system for GZl, in which a sexies of dots are generated across the scan path by cathode ray tube, at contour intervals derived by interpolation from the stored profile information. The
resulting array of dots has the appearance of lines of contount. Comparisons were made with 201 arbitrarily chosen points combined in slope groups, compared to a conventional contour plot assumed to be free of error. Hobbie found:

$$
\begin{aligned}
m_{z} & = \pm(0.6 \pm 0.2)+(1.3 \pm 0.6) \tan \operatorname{Bim} \\
& = \pm(0.33 \pm 0.11)+(0.72 \pm 0.33) \tan \beta 1 \% / 008
\end{aligned}
$$

Hobbie comments that these results represent a corsiaderabie gain in accuracy over the corresponding figures of tesc series ie produced from drop lines.
4.3.vii Test Series 玵

SCHNEIDER (1970) carried out a comprenensive serice of tests, the purpose of which was to examine both the quairy and accuracy of contours derived from drop-ine charts; especially in terms of orthophoto scale 1:5000 and the specifications of the German Base Map 1:5000. The testa were carried out at two levels of significance: namely the accuracy of the profile signals, and the accuracy and quaility of che derived contours. A number of variable paraneters were tesced. such as speed of scan, slit width, observer influence, iand slope influence, landcover influence, and to a rather lifincec extent the influence of picture scale. Instrument cominazocau used were Zeiss c8 and Zeiss Planimat, coupiedto Orthoprojector GZ1.

The number of separate tests is such that it is not possible to give the production parameters for each, but for example Schneider found very close agreement with Meier's test series $1 E$ under similar conditions.

Schneider concluded that for profile signais, as far as the scanning error is concerned:
(a) of all parameters slope is the most significane.
(b) the difference between observers was of iittie influence,
(c) the scan direction had little influence.

As a general conclusion, Schneider found that derived contours satisfied both the mean square and maximum specifications for the German Base Map 1:5000; except that in the cases or fasu scanning speeds $V_{B}$ of 2.5 and $3.3 \mathrm{~mm} / \mathrm{sec}$ in ground slopes below 5 g , the tolerances were exceeded. He found that the accurac: of signals does not necessarily correspond with derived contouaccuracy, commenting that in drawing the contours a kinc of adjustment takes place. Schneider found little significance in slit width, except in so far as elevation details between profiles may be completely missing.

## 4.3.viii Test Series 8E

SCHMIDT-FALKENBERG (1970) carried out a series o tests in some respects similar to those of SCHNEIDER \{series os. His purpose was to examine the suitability of drop-ine chart derived contours, particuiarly from the view point of completeness of representation of land-forms, as weli as accuracy, for the German Base Map 1:5000. The principal tests were carried out in the REICHENBACH test field, when slopes up to $17^{\circ}$, mean slope $7^{\circ}$. The variable factors tested included those of profile interval, picture scale, and observer. Elevation errors were measured by interpoiation
from contours, at 69 randomly distributed check points surveyed on the ground. The instrumentation was Zeiss C8, and GZl in storage mode of operation. The contour interval of the drop lines was 2.5 m , and the speed of $\operatorname{scan} \mathrm{V}_{\mathrm{B}} 1.3 \mathrm{~mm} / \mathrm{sec}$.

Falkenberg found the following errors, in which $m_{z}$ is the arithmetic mean of the mean square errors for the number of tests stated:

| $\mathrm{m}_{\mathrm{b}}$ | $\mathrm{m}_{\mathrm{d}}$ | Z | C | $\mathrm{V}_{\mathrm{d}} / \mathrm{b}$ | $\mathrm{m}_{\mathrm{z}}$ | Number of tests |
| ---: | :---: | ---: | :---: | :---: | :---: | :---: | :---: |
| 8000 | 5000 | 1200 | 480 | 1.6 | $\pm 0.5 \mathrm{~m}\left(.410 / 00^{Z}\right)$ | 5 |
| 12000 | 5000 | 1800 | 720 | 2.4 | $\pm 0.6 \mathrm{~m}\left(.33^{\circ} / 00^{2}\right)$ | 11 |
| 20000 | 5000 | 3000 | 1200 | 4.0 | $\pm 1.1 \mathrm{~m}\left(.370 / 00^{Z}\right)$ | 4 |

Falkenberg made a particular study of the grouping of errors by slope values, in order to decermine whether or not slope errocs confirmed to a law of the type attributed to KOPPE 1902. KOPPE postuiates that errors in elevation on maps are dependent on slope with the following relationship, in which $a$ and $b$ are constants, $B$ is ground slope, and $V_{z}$ is an error in elevation:

$$
\begin{equation*}
V_{z}= \pm(a+b \tan \beta) \tag{4.1}
\end{equation*}
$$

Falkenberg investigated the errors of each test terms of linear correlation between errors and the correspona $n=$ slope, and also in terms of the distribution of errors. as a general conclusion he found no confirmation whatsoever of a Koppe type law. Falkenberg considered however that his resuine
were in general agreement with those of HAMPRL (test series $Z$, and also that the requirements of the German Base Map were satisfied, in spite of the fact that the tolerances for this map are stated in terms of a Koppe type law.
4.4 Characteristics of previous tests

$$
4.4 . i
$$

Planimetric errors in the tests sumarised ine withia
the range $m_{p} \pm 0.12$ to 0.46 mm in the orthophotograph, correspoza 2.6 to a range $\mathrm{m}_{\mathrm{pb}} \pm 42$ to $123 \mu \mathrm{~m}$ at plate; exciuding the resuits from mountainous terrain (test series 7p) and those with hatge perspective errors (test series 6P). An analysis or Cre production variables shows that there has been a marked preponderance of tests at the large scaile end of the mappirg range, and in particular an emphasis on tests designed to show the suitability of orthophotography for the German Base Map series 1:5000. All of the tests except those of ELEMENO (test sexies 7P) have been of a single orthoprojection system (GZl), and practically all have used a single restitution plotter (Zeiss C8 Stereoplanigraph) of the highest stacaack of precision.

Ali of the tests can be considered tests ofter internal accuracy of orthoprojection, based either on error-zee control, or alternatively on photogrametric control in which allowance is made only for the accepted restitution errors of single models. In large-scale mapping it is guite a nomal
procedure to provide complete control for each mapping model, and in the production of the orthophotomaps it may be guite usual for a single photograph (two models) to constitute a single large-scale map sheet. Such a procedure ensures that the orthophotomap composed of the two joined orthophotographs, has uniform photographic contrast, so that there is little or no evidence of a join line (Urban, 1973). It is therefore reasonable to assume that large-scale orthophotomaps should have errors of the order of the range disclosed by the summarised tests.

For medium and small-scale mapping however, normally the individual models will be oriented in the orthophotographic productions phase on control established from an aerial triangulation block. Furthermore separated models will provice orthophotographs which will be fitted to a control sheet so that several such componenes comprise one mapsheet. Significant errors may occur on account of the errors in the pass point control. The question of absoiute accuracy in the geodetic sense is not important, because separate blocks of aerial triangulation pass points will be constrained in relation to one another by perimeter controls of suitable precision. Accuracy within the individual biocks, and the relationship of pass point errors between separated models within the biocs and within the map sheet, is of more importance. In this work the errors of position and elevation within a biock of triangulation are referred to as the extemal errors of a model or orthophotograph ( $\mathrm{m}_{\mathrm{p}}{ }^{\prime} \mathrm{m}_{\mathrm{z}}^{\prime}$ ), as distinct from the errors within a single orthophotograph, referred to as the
internal errors ( $m_{p}, m_{z}$ ). Perhaps there is an anomaly in the fact that the majority of tests are concerned with the most precise product of mapping technology: namely the large scale map in a European environment; whereas many authorities have stressed the importance of this new mapping technique in terms of the mapping problems of underdeveloped countries, where medium and small scale mapping is the primary objective.

## 4.4.ii

Test results on the accuracy of elevations is obtainea
in the tests either from drop line prøfiles, or from the derived contours. The range of results is $\mathrm{m}_{\mathrm{z}}= \pm 0.3$ to $0.5 \%$, Z , plus in some cases a dependency on ground siope or the order of ( 1 to 1.5 ) $/ 00 \mathrm{Z}$ tan $\beta$. It is interesting to note that dependency on slope is confirmed in about half che tests; but not in the remainder. Test confmmation : of dependenoy on scan speed is also divided in opinion. From the viewpoint of planning criteria it is interesting to note that the test parameters in terms of $C$ number are rather uniformiy moderate. in the range $360-650$. Only in the case of test series $3 E$ at 920, and in one model of series 7E at 1200, do the $C$ numbers approach what may be considered more usual criteria for conventional medium and small scale mapping. It is aisc notable that the landforms of the test areas, in tnose cases where drop lines have been converted to contours, are not particularly complex; being characterised by regular slopes and rather simple draingge patterns. The suitability of the arop line system for derivation of contours in complex irregular landforms, at medium and small scales, cannot be confirmed from the published tests.

## 4.4.iii

Few details are given in the tests regarding the time taken and methods used, to derive contours from the graphical data. This is particularly important because it could be the decisive factor for production planning of the contouring process, especially if the process is not oniy time-consuming but also a technically demanding procedure in the case of complex terrain landforms. Furthermore if the e is a very wide range of possible times depending on land forms. then it becomes extremely difficult to forecast and plan an efficient production line between the phases of photogrametric work, cartographic work, and reproduction. We have to look elsewhere than to the tests for data on this important factor, and there appears to be a wide range of opinion.

VOSS (1968, 7), in an article on the production of 1:5 000 orthophotomaps in North Rhine-Westphalia, estimates that about four days are required for a two model mapsheet in the case of medium-high mountains; for the interpolation of contours from profiles produced by GZl. This figure of about 14 hours per model in such a case, does not include the fair drawing (or scribing) of the derived contours, For which he estimates a further 3 days per map sheet. IANBERT (1971) estimates 2 hours per model as an average figure for interpolation of contour segments produced by 38 stereomat. adding that the figure could vary from 20 minutes in flat terrain to 8 hours in difficult mountainous texrain. Comparing these figures, one should bear in minc that contour segments are short portions of contours correctly oriented


#### Abstract

within the scan width, so that we may presume that the interpolation problem is rather easier than the problem with continuous profile line signals in which the signal change points are always perpendicular to the scan direction. SZANGOLIES (1973, 155) states that "the quickest and least expensive method for producing contour line plans is now as before and despite certain doubts, the derivation of contours from dropped lines." He estimates that the derivation of the contours from dropped lines takes 0.5 to 4 hours for one model.

It may well be that the question of production time for interpolation, is the crucial factor regarding the viability of drop line profiles as a contouring procedure, particularly as the procedure of direct scribing is now so widespread with conventional odntouring. In such a case the machine compilation plot is substantially a fair drawing requiring only editing, the addition of contour numbers, and retouching. A production process in which orthophotos are produced separately on one instrument, and contouring by conventional methods on another, such as that described by URBAN (1973, E2) may therefore lend itself to more efficient production planning.


[^1](c) tests should be conducted over a wide range of scan speeds and slit widths;
(d) results should be evaluated in terms of both internal and external errors;
(e) elevation errors should be tested in terms of accuracy of profile signals and also derived contours:
(f) drawing times for the interpolation of drop line signals and the derivation of contours should be determined;
(g) correlation should be tested between errors and variable production and terrain parameters.

Further details of the test block and models are ven subsequently, but at this stage it should be stated that a bick of wide-angle photography was selected as a test area, in winin a number of ground controls were provided. An independent model triangulation was carried out, and adjusted to provide pass point control for the production phase. The orthophotograph scale was selected as 1:25 000 from 1:60 000 original photography. Two models were selected as test models within the central strig of the triangulation block, one of terrain including irreguiar broken landforms, and one of substantially flat terrain. rae two models were separated within the strip by three models between them, so that the separated test models were as far distant from one another as would be possible in a single map sheet publication scale. The map distance from extreme west ecge of one model to extreme east edge of the second was 900 mm .

In the case of the model of irreguiar terrain (model A), tests were carriea out at siit widths of $2,4,8$ and 16 mm ; each test at fixed scan speeds $V_{d}$ in the orthophoto of $2,4,6$ and $8 \mathrm{~mm} / \mathrm{sec}$, and aiso at a variable speed at operators personal choice. In the case of the fiat terrain model (model B), tests were carried out only at 8 and 16 min slit widths at a fixed speed of $4 \mathrm{~mm} / \mathrm{sec}$. Inäividual tests are identified by test labels consisting of two digits, the first of which consists of the slit width, and the second of which. identifies the scan speed. Model B tests are prefixed oy the letter $B$. The complete test programme with identification labels is shown in Table 4.I.

## (i) Planimetry Tests <br> Model A, Broken Terrain

| Orthophoto Scan Speed $V_{d}:$ | 2 | 4 | 6 | $8 \mathrm{~mm} / \mathrm{sec}$ | Variabie |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Image Scan Speed $\mathrm{V}_{\mathrm{B}}:$ |  | 0.83 | 1.67 | 2.5 | 3.33 |
| Siit Width b mm |  |  |  |  |  |
| 2 | $2 / 0$ | $2 / 1$ | $2 / 2$ | $2 / 3$ | $2 / 4$ |
| 4 | $4 / 0$ | $4 / 1$ | $4 / 2$ | $4 / 3$ | $4 / 4$ |
| 8 | $8 / 0$ | $8 / 1$ | $8 / 2$ | $8 / 3$ | $6 / 4$ |
| 16 | $16 / 0$ | $16 / 1$ | $16 / 2$ | $16 / 3$ | $16 / 4$ |

Model B, Flat Terrain
8
B/8/1
16
B/16/1
(ii) Elevation Profile Signal Tests

$$
\begin{array}{ccccc}
2 / 0 & 2 / 1 & 2 / 2 & 2 / 3 & 2 / 4 \\
& 4 / 1 & & & \\
& 8 / 1 & & & \\
& 16 / 1 * & & & \\
& & & &
\end{array}
$$

(iii) Elevation Derived Contour Tests

2/1
4/1
8/1 (and $B / 8 / 1$ )
16/1* (and $B / 16 / 1$ )

Table 4.I Cont.

*Test $16 / 1$ contour interval was $10 \mathrm{~m}, \mathrm{C}$ number 688.
5. GROUND SURVEYS IN TEST AREA, AND AERIAL TRIANGULATION OF MAPPING BLOCK.

### 5.1 Fowlers Gap Arid Zone Research Station

Fowlers Gap Station is a 39000 ha property leased by the University of New South Wales, situated about 110 km north of the City of Broken Hill in the extreme west of New South Wales. The University operates the property as an Arida Zone Research Station, the average rainfall being 193 mm per annum, the principal areas of research being concerned with che pastoral industry in an arid environment. Research projects have been initiated in such diverse fields as vegetation studies: land system surveys, water resources, marsupial studies, and climatology. Until 1970 the best available mapping of the area was in the form of aerial photograph mosaics with no elevation information, and this was quite inadequate to the needs of many research workers.

In April 1970 the N.S.W. Minister of Lands agreed that his Department would assist in the production of a twosheet 1:25 000 multicoloured topographic map of the station, contoured at 5 m interval. Control for the photogrammetric mapping had previously been provided by the School of Surveying as a final-year student class exercise. Fig. 5.i shows the triangulation network established at that time, by breaking down from major geodetic stations to a lowerorder density by classical triangulation methods. The 14 triangulation points established in the network were subsequently permanently beaconed with tubular steel tripods:

and since the original 6 geodetic stations within a 40 km raúius of the property were also beaconed, the area was unusually well controlled to a density not common in the less developed interior of Australia. The triangulation network was connectec by spirit-levelling from two stations to a line of geodetic levelling which followed the highway traversing the Station. Four rounds of horizontal angles, and of reciprocal vertical angles, were observed with $l^{\prime \prime}$ theodolites on all lines of the network; which was adjusted by a programme for the adjustment of networks by the parametric method devised by Dr. J.S. ALIMAN of the School of Surveying. The trigonometrical heighting network was adjusted by condition method by Mr. M. MAUGAN of the School of Surveying. The precision of the adjusted coordinates of the network stations is estimated to be a standard error in plan coordinates of $\pm 0.04 \mathrm{~m}$, and for ezevations $\pm 0.05 \mathrm{~m}$.

### 5.2 Aerial Triangulation Block Ground Surveys

The requirement to provide photogrammetric control for the mapping project referred to in 5.I, together with the ready availability of smail scale photographyr promptedt the writer to consider the suitability of the area for research work in orthophotographic mapping. The only other possiblity of a well controlled test block in Australia was photographed by Super Wide Angle photography, for which unfortunately no instrumentation was available within the University for the execution of the aexial triangulation phase. The photography
of the Fowlers Gap area consisted of strips of 115 mm wiãe angle photography by wild RC5a camera of $180 \times 180 \mathrm{~mm}$ Eormat; photographed in April 1965 at an altitude of 6875 m , precure scale 1:60 000. In the extreme north of the station, a strip at the same scale had been photographed in September 1968 immediately after the network triangulation observations, and the photogrammetric control in this strip had been premarked. The marks consisted of crosses of black ard yeliow polythene pinned to the ground, of materiai 3 m wide ( $50 \mu \mathrm{~m}$ at picture scale), and of 1 m ( m lenth 6 m ( $100 \mu \mathrm{~m}$ at picture scale). 8 such premarked controis had been positioned. and all were subsequently verified in the photography. At the same time as the northern strip was photographed, 8 adacionai strips had been photographed at altitude 2875 m , picture scaie 1: 25 000. This photography was therefore available zor phot. identification purposes at larger scale than the mapping photography; and also made it possible to carry out certain. parts of the projected test programme with greater precision than possible with the mapping photography, in particular the testing of accuracy of profiles and derived contours, and the provision of photogrammetric check points.

A block of 3 strips each of 10 models of the $1: 60000$ photography was selected for the aerial triangulation phase. Whilst small in terms of production medium scale mapping biock. this limitation was to a large extent dictated by the necessity to carry out much of the work single-handed. It is felt that the block is large enough to simulate a standard mapping biock and to provide useful data on the problems associated with orthophotographic mapping projects. In principie the

Iundamental control for the block was planned to consist of 6 fully controlled points, 3 each on the permeter of thetop and bottom strips, and additionally 4 points of elevation data only, in the centre strip containing the test modeis (fig. 5.2).

Including the fundamental block controis, a tot: of 58 fully controlled points were fixed by ground surveys, of which 8 were the premarked points in the northern strip. 310 of the points were distributed throughout the block, ano 27 wese provided in the two selected orthophotograph Models A ant 3 . These latter points, 14 in Model $A$ and 13 in Model $B$, were located in such positions as to provide 4 ideally situaced controls for each of the 1:25 000 picture sale overiaps fainag within the mapping photography models $A$ and $B$.

All surveyed points except these within the orthophoto models were fixed by resection and trigonomecricaheighting, as the open nature of the terrain traversed by foothills of the Great Barrier Range of relative elevation 200 m , and the presence of a number of beaconed triangulation points, was well suited to such procedures. The 31 resection points were fixed by 1 or 2 man survey parties in 19 days working time, with the 2 man parties averaging 2 points per day. The limitation on working speed was imposed not so much on account of cross-country traveliing time, but by the necessity under Australian summer conditions to observe horizontal angles early in the morning or late in the evenig. when the effects of heat haze and shimmer are minimal.
90.


Conversely elevation angles (non-reciprocal at resection points\%. should be measured in the period $\pm 2$ hours around midday when the diurnal variation in the vertical refraction angle is minimal (Brown, 1968, 52).

All resection points were fixed from a minimum of 4 triangulation points, usually 6 , using 1" theodolites and 4 rounds of angles. Connection to a suitable identifiable photographic point was then normally made by a very short radiation usually measured by steel tape, and with some form of check made on the radiation, such as a two leg traverse from the resection point. Identification of the selectea photographic control point was made on the 1:25 000 photography, and supported by a field book sketch of the immediate area.

The 14 points in model $A$ and the 13 in model A wece surveyed using an electronic distance meter, Hewiett Packarä Distance Meter 3800A. The survey work has been reported by ROBINSON (1972, 143). As the instrument is graduated in non-SI units, these units are used in the following description.

The fewlett Packard Distance Meter 3800A is a short range distance measuring instrument weighing 30 lb incluang power pack. The instrument uses a gallium arsenide diode, to emit an infra red carrier wave. The range of the instrument is quoted as 10,000 feet in ideal atmospheric conditions, and 7,500 feet in normal conditions using 3 prisms (of the AGA cype.. The readout system comprises a manual null, which has a maximu.. unambiguous reading of 9999.998 feet. The least count of the readout is 0.002 feet, although the reading may easily E interpolated to . 001 feet.

The instrument is mounted on a yoke which can be adapted for the tribzach systems of Widd, Kern and Zeiss theodolites. The power supply is a 12 volt lead acid or nickel cadmium internal battery or a 12 volt external battery. The power is supplied to the measuring head through a power pack, which contains an atmospheric control unit. This control unit has a dial graduated from -50 to $\pm 100$ where these figures represent a parts per million (p.p.m.) correction to the distance for any variation in atmospheric conditions from standard. A table is supplied so that users can read off the p.p.m. setting by entering with the temperature, in degrees fahrenheit and pressure in inches of mercury or feet above sea level.

Two traverses were executed by a 3 man party wither models $A$ and $B$, referred to as traverses $A$ and $B$, each startinc and terminating at a network control point. Traverse A consisted of 6 lines with a total length of 25000 feet, the traverse closing with a vector coordinate error of 0.72 feet (scale error i:35 000), and angular misclosure of 14 seconds of arc, and an elevation closure of 1.21 feet calculated from simultaneous reciprocal vertical angles observed along every line. The range of temperature and pressure during the measurements was $66^{\circ} \mathrm{F}$ to $84^{\circ} \mathrm{F}$, and 29.1 to 29.2 inches ar mercury. Traverse $B$ consisted of 7 lines with a totai length of 33000 feet. The traverse closed with a vector coordinate error of 0.56 feet (scale error 1:59 000), an angular misclosure of 2 seconds of arc, and an elevation closure of 0.67 feet. Several long radiations were measured during the course of the traverse to photographic control points ana checked at the control point end by a minimum of two dicection. observed to triangulation points. The two longest radiatione were:
(a) 10500 feet measured after a thunderstom at a temperature of $70^{\circ} \mathrm{F}$ and a pressure of 28.9 inches of mercury. The atmospheric conditions for this measurement were ideal, and no difficulty was experiencea during the measurement.
(b) 10600 feet measured at 1900 hours in temperature of $69^{\circ} \mathrm{F}$ and pressure 29.3 inches of mercury.

During all measurements three reflectors were used except on one line of 8000 feet, for which six prisms, giving an increase of about $10 \%$ in return signal strength, were used.

The 14 traverse stations occupied, and the 27 photographic controls fixed, were surveyed by a 3 man party in 6 working days with dawn to dusk working. The superiority of E.D.M. as a method for photographic control purposes, even in an area eminently suitabie for classical triangulation procedures, was clearly demonstrated in this survey. Three factors are of particular importance:
(i) Speed of reconnaissance, free from restrictions imposed by the necessity to obtain clear sightlines to a number of fixed points. It is usually always possible to place controle in ideally located photographic positions.
(ii) Freedom from the severe limiations imposed by observing restrictions for horizontal and vertical angles. It is always possible to shorten the line length and continue working under difficult lighting conditions.
(iii) The ability to obtain celiable elevations by simultaneous reciprocal observations along the lines.

Analysis of the computations for all of the surveyed controis gives an estimated precision expressed as a standard error at the photograph controls of:

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{p}}^{\prime}= \pm 0.2 \mathrm{~m} \\
& \mathrm{~m}_{\mathrm{z}}^{\mathrm{s}}= \pm 0.3 \mathrm{~m}
\end{aligned}
$$

However as all of the points were subsequently snap marked usinc Zeiss Snap Marker for the aerial triangulation photographs. and Wild PUG4 for the orthophotograph diapositives the estimated precision at the diapositives has been reduced to $\pm 0.6$ metres for both plan and elevation, resulting in the following figurea for control accuracy at picture scale 1:60 000.

```
\(m^{\prime}{ }_{\mathrm{pb}}= \pm 10 \mu \mathrm{~m}\)
\(\mathrm{m}_{\mathrm{z}}= \pm 10 \mathrm{~mm}\left(0.09^{\circ} / 002\right)\)
5.3 Experimental Work in Perspective Centre Calibration 5.3.i

The aerial triangulation phase was to be execuced by the method of Independent Models, using a wild A. 8 precisuon plotter. At the time of execution (1969-1970), very -ivele literature on perspective centre calibration had been puilusnce. and therefore a considerable amount of work was carcee ou. .... this topic, which to some extent paralleled work besne se.u-n.... out simultaneousiy elsewhere.

Aerial triangulation by the method of Independent Models, sometimes called semi-analytical triangulation, has become a popular procedure because modern Precision plotters such as the Wild \(A-8\), Zeiss Planimat, and Zeiss stereometrograph can be used in duai-purpose roles boch as traditional cartographic plotters, and also for aerial triangulatio: observations. In large photogrammetric organisations this promotes efficient and flexible planning of production som plotters in this category, in oontrast to the situation of recent times, when aerial triangulation was the reserve of the more expensive and relatively fewer Universal plotters, or analytical systems using comparators. There is little doubt that precision plotters can achieve measuring accuracies of the same order as the Universal machanes. In smail organisations the practicai advantages of carrying oue ali work on one type of machine are extremeiy attractive.

The basic requirements of a plotter capabie oz independent model triangulation are that it must be possicie to carry out a relative orientation, and it must be possible, as in the case of the classical procedure, to register the coordinates of pass points.

In the observation procedure two successive modes are separately set up by relative orientation only, i.e. at arbitrary scale and exterior orientation. The connection between successive models is achieved in the computational absolute orientation of a new model, through transformation into the coordinate system of the previous mocel, by the control data provided by common pass points ard the comuo. perspective centres.
5.3.ii

The computational problem may be written as the
transformation:
\[
\left(\begin{array}{l}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right)=\lambda \cdot M_{0} \quad\left(\begin{array}{c}
X^{\prime \prime} \\
Y^{\prime \prime} \\
Z^{\prime \prime}
\end{array}\right)+\left(\begin{array}{c}
\Delta X \\
\Delta Y \\
\Delta Z
\end{array}\right)
\]
in which \(\lambda\) is a scale factor, \(M\) is a \(3 \times 3\) orthogonal matrix in which the elements are functions of 3 rotations \(k, \phi\) and \(\Omega\) around \(Z, Y\) and \(X\) axes respectively, and \(\Delta X \Delta Y \Delta Z\) are translations giving 7 unknowns. \(X^{*} Y^{\prime} Z^{\prime}\) are the coorainates in the first (fixed) model, and \(X^{\prime \prime} Y^{\prime \prime} Z^{\prime \prime}\) the coordinates in the next model.

By analogy with the empirical absolute oriencacion of a plotter in a cartographic role, there is no difficuity in the solution for the 6 unknowns \(\lambda, K, \Omega, \Delta X, \Delta Y, \Delta Z\), Front a minimum of 2 separated pass points in the smail comon overiap between models, for which full coordinates are known in both systems; but there is no solution possible for \(\phi\) unless a common third point is available waich is non-collirean with them, because the joined models would be iree to rotate in \(\phi\) around the axis joining the pass points, which is nearly a y axis.

The best solution for \(\phi\) is given by a third comon point which is as far as possible from the pass point axis. and this common point is the perspective centre of the common plotting camera between the two models, which is the right camera of one model, and the left camera of the successive model. Clearly for the determination of \(\phi\), orily the \(X\) coordinates of the perspective centres are required with precision, but because the proceduresis computational the

Y and \(Z\) coordinates must also be known at ieast approximately. The point is of interest however, because it will be shown that the \(X\) (and \(Y\) ) coordinates can be detemained without being influenced by errors in the determination of \(z\).

Since the perspective centres must be known in the model coordinate system, in principle each model should be set up in a condition in which the coordinates of the perspective centres remain invariant, so that any element which moves a perspective centre should not be disturbed. In such a case it will usually be sufficient to determine perspective centre locations by calibration immediately before and after a complete task of several models comprising a strip or biock. In some plotters however the locations of the perspective certres change during relative orientation, e.g. in the Planamat because the axes of rotation of \(\phi\) and \(\omega\) do not intersect the projection cardan; and in the PG2 where the element \(\overline{\text { b }} \Phi\) is essential for relative orientation; and in such cases the locations must be determined in every model observed.

The precision to which the coordinates of the perspective centres can be determined is a matter of importance both for practical reasons and from a theoretical point of view. In the first place the stability of the centres will have a direct bearing on the frequency of calibration, and in the second place the method of effecting the mathematical join between models is influenced.

TRINDER (1971) has remarked that in the well-known. method of SCHUT (1967) and THOMPSON (1959), the perspective centres common to two modeis are made to coincide. His conclusion is that the perspective centre are thus given a variance of zero, apparently on the assumption that they are determined with infinitely greater precision than the coordinates of common model pass points. Published experimentai work such as that of LIGTERINCK (1970), STEWARDSON (1972), and EBNER and WAGNER (1972), does not support this assumption, and it would seem more appropriate to introduce suitable variances for common pass points and oommon perspective centres into the transformation. The recent Independent Nodel programe of the Institute of Photogrammetry of the University of stuttgart assigns the same weight to perspective centres as to model pass points.

\subsection*{5.4 Methods of Determination of Perspective Centre Coordinates.}

\section*{5.4.i}

There are three methods available for use in the determination of perspective centre coorainates, one of winch requires essential special equipment, the second of which requires at least a calibrated reseau or grid plate for tre observation, and the third which requires no extra equipment and is completely general. The methods are respectively referred to in this work as (i) Vertical Space Rod Method. (ii) Spatial Resection Method, and (iii) Spatial Intersection Method.

\section*{5.4.ii Vertical space Rod Method}

In principle special equipment is provided to enable each space rod in turn to be placed vertical in the plotcer, either by means of magnetic bubble leveis (Zeiss PLANTMAR) or by means of auto-collimators (PG2, PG3). When this position is achieved, the space rod is moved verticaliy until a calibrated mark on the space rod is viewed through a microscope. Recording of the \(\mathrm{X} Y\) position of the projection centre is made immediately, and the Z is obtained by adaing the known calibrated distance of the annular mark along the space rod to the actual \(z\) reading of the model point which may be in an arbitrary datum selected below the lowest point of the strip surface. The mark will usually be offset from the perspective centre by some constant amount which will be taken into consideration.

The advantage of the method is that it is extremeiy quick and is thus eminently suitable to those plotters in which the perspective centre must be determined in every model, because Relative Orientation has aitered the position of the perspective centres in model space. EBNER and WAGNER (1972) conclude that their experimental work shows that this method gives better results in the case of wide angle photography than the spatial resection method, and that in the case of ultra-wide-angie that the results are about the same. The method is not however oi general application because of the requirement for special equipment.

\section*{5.4.ini Spatial Nesection}

This method requires the use of a calibraced reseau or grid plate on which at least 3 non-colinear zourta are observed at a constant \(Z\) value, and the model space xy coordinates of these points registered. Initial approximate values \(X_{c} Y_{c} Z_{c}\) of the projection centre are required. The discrepancies dX, dY, between the measurea coorainates and computed ideal projected coordinates are inserted in linearised cor rection equations of the form:
\[
\begin{aligned}
& v_{X}=d X_{C}+\frac{X}{Z} \cdot d Z_{C}+\frac{X Y}{Z} \cdot d W-\left(\frac{X^{2}+Z^{2}}{Z}\right) \cdot d \phi+Y \cdot d K-d X \\
& V_{Y}=d Y_{C}+\frac{Y}{Z} \cdot d Z Z_{C}+\left(\frac{Y^{2}+Z^{2}}{Z}\right) \cdot d \omega-\frac{X Y}{Z} \cdot d \phi-X \cdot d K-d Y
\end{aligned}
\]

The problem will usually be overdecermined and solution of the normal equations by a least squares methoc gives corrections \(d X_{c}, d Y_{c}{ }^{\prime} d Z_{c}\) to the assumed perspective centre coordinates, and du, d \(\phi\), dK to the initial setcing of the orientation elements. The corrections are applee and the solution iterated until the changes in the correct...... are not significant.

The major drawback of this method apart fron
fact that a grid plate is requined, is that the exroxs of aorientation \(\Delta x_{o} \Delta y_{0} \Delta c\) are assumed to be zero when such with rarely be the case. These errors arise from three sources: firstly the placing of the grid plate on the register piate in the plotting camera, secondly the inner orientation ertoma of the fiducial marks of the register plate, and thindiy the location errors of the platerhoider, and this latter error wi. change according to which plotting camera an individuat piace holder is placed in.

\section*{5.4.iv Spatial Intersection}

The method of spatial intersection, which has been that used in this work, has the advantage that it is compietely free from errors of inner orientation and requires no special equipment whatsoever; so that it may be used for example with observation points defined by photographic images, by artificiai photographic points such as artificial pass points, by register plate marks, or by grid points. It is therefore eminentiy suitable in production since perspective centre determination can be made at any phase of the triangulation procedure even when models are set up for observation if for some reason chis should be considered desirable.

The observed points are observed at two different \(Z\) levels in the plotter ( \(Z^{\prime}\) añ \(Z^{\prime \prime}\) ), separateä by as great a measured \(Z\) distance as possible for the configuration of polnte and the working ranges of the plotter. The intersection \(X_{c} V_{c} c_{0}\) is defined by the intersection of two or more lines joining corresponding points at different levels. The collinuricy equation for the perspective centre and two corresponaing points is given by:
\[
\frac{X_{C}-X^{\prime \prime}}{X^{\prime \prime}-X^{\prime}}=\frac{Y_{C}-Y^{\prime \prime}}{Y^{\prime \prime}-Y^{\prime}}=\frac{Z_{C}-Z^{\prime \prime}}{Z^{\prime \prime}-Z^{\prime}}
\]
or in matrix notation:
\[
\left(\begin{array}{ccc}
-\left(Z^{\prime \prime}-Z^{\prime}\right) & 0 & \left(X^{\prime \prime}-X^{\prime}\right) \\
0 & -\left(Z^{\prime \prime}-Z^{\prime}\right) & \left(Y^{\prime \prime}-Y^{\prime}\right)
\end{array}\right)\left(\begin{array}{l}
X_{c} \\
Y_{c} \\
Z_{c}
\end{array}\right)=\left(\begin{array}{ccc}
-X^{\prime} & X^{\prime \prime} & Z^{\prime \prime} \\
& & Y^{\prime} \\
Y^{\prime \prime}
\end{array}\right)
\]

There are 3 unknown \(X_{c} Y_{C}^{Z}\) and each pair of points gives two equations so that the problem is soived with one observed pair of corresponding points in which both \(X\) anc \(Y\) coordinates are observed, and one pair for which eitner \(X\) or \(Y\) are observed. In practice usually 6 poincs are fuily observed at both levels, and it seems logical to select points at standard relative orientation and pass poincs locations.

It is interesting to note that although \(X_{C} Y_{c} Z_{c}\) are normaliy determined simultaneousiy by actualiy measuring the \(Z\) level shift ( \(Z^{\prime \prime}-Z^{\prime}\) ), that any arbicrary values may de assigned to \(Z^{\prime \prime}\) and \(Z^{\prime \prime}\) and the numerical solutions for \(x\). are not altered, but of course the \(z_{c}\) value changes. The probiem may in fact be approachea as if ic were a owo dimensional problem, by assuming that the observations are made in one \(Z\) plane and reducing the colinearyty equations \(=\)
\[
\frac{X_{C}-X^{\prime \prime}}{X^{\prime \prime}-X^{\prime}}=\frac{Y_{C}-Y^{i \prime}}{Y^{\prime \prime}-Y^{i}}
\]

It follows that the precision of ceteminatiot of \(X_{c}\) and \(Y_{c}\) is not influenced by the determination of \(Z_{c}\) or the measurement of \(\left(Z^{\prime \prime}-Z^{\prime}\right)\).

\subsection*{5.5 Restoration Stability of Perspective Centre Calibration}

There is now available a reasonabie amount of test
data on the question of the precision of perspective centre determination on particular instruments. A matter of interese however, for which no data was available, is the extent to
which the perspective centres may be regaraed as stable, provided that all orientation elements and coordinate initialisations whick affect the positions ane returned to the calibration state.

In general, any instrument in which the relative orientation elements move the perspective centre must inciude a calibration in every model. In principie any instrumere in which this is not so, may be returnea to a particular calibration state by careful setting of appropriate datums on any variable outside the plotting cameras which either physically or effectively changes the coordinates of the centre. If the number of variables is large however the restoration of the calibration conaition is poor.

The wild A-8 instrument has the least number of variables which affect perspective centre position, partiounariy if the base carriage \(X\) and \(Y\) scales are used for coordinate reading, as must be done if no automatic registration aevice is available. The variables are 3:
\(Z_{0} \quad(Z\) column and Glass Scale initialisation)
bx (Base Setting)
\(\Phi_{0} \quad\) (Common Longitudinal Tilt Datum).
The only modification to the instrument was che addition of an index mark on the \(\Phi\) wheel axis and the axis bearing to define \(\Phi_{0}\). The instrument was then returnea to stanaard calibration state by setting a bx value of 160 ma .

Cor wide angle photographỳ, setting \(\Psi_{0}\), and secting \(z_{0}\) by bringing the \(z\) column main reading to 300 man with the 2 Lead screw index mark aligned. A i:5 000 metric glass scaie was set to zero at this position so that XYZ cooncinates couia ion read in similar units (as the XY scales are in 2 ma units).

A test was carried out in which 10 separate calibrations were made by 15 point spatial intersection meade over a period of 7 days. Before each caitbration the varuade elements were deliberately moved off by large amounts and the brought back to datum positions. Each test incluaed smal random inner orientation errors of the gria plates used. In two tests relative orientation elemencs \(\psi\) and \(w\) were given large inclinations. The observations were computed both as 6 point and 15 point intersections. The abbreviated resu_cs for the left camera are given in rabie \(5 . i\) in tems of micrometers at the plate (i.e. model eniargenent i).

TABLE 5.1

\section*{Restoration Stability from ic Calibrations}

6 points \(\quad 15\) points \(\quad 35-6\)
\[
\mathrm{C}_{\mathrm{X}_{\mathrm{L}}} \quad \mathrm{C}_{\mathrm{Y}_{\mathrm{L}}} \quad \mathrm{C}_{\mathrm{Z}_{\mathrm{L}}} \quad \mathrm{c}_{\mathrm{X}_{\mathrm{L}}} \quad \mathrm{C}_{\mathrm{Y}_{\mathrm{L}}} \quad \mathrm{C}_{\mathrm{Z}_{\mathrm{L}}} \quad \Delta c_{\mathrm{X}} \Delta c_{\mathrm{Y}} \Delta c_{Z}
\]
\begin{tabular}{lllllllllll} 
m.s.e. & 14 & 15 & 11 & 13 & 14 & 11 & mean & +4 & -1 & -8 \\
spread & 44 & 52 & 37 & 39 & 44 & 33 & \(\max\) & +12 & -7 & -10
\end{tabular}

It was concludea that the instrument could be restored to calibration condition with some degree of confiaence. The test supported the results of other workers that observations to more than 6 points are haraly warranted. It should be noted that the 3 maximum differences between computed coordinates fron. 15 and 6 point observations all occurred in different cailbrations for the \(\Delta X, \Delta y\), and \(\Delta Z\) differences.

A simple modification to an A-8 plotter has been designeă to facilitate rapid restoration of predetermined cailbrations, and this modification is still under test. A spacing block of mild steel about 65 mm in length is inserted at the \(\Phi\) lead screw base plate under the ieft hand camera, and this takes the weight of the upper plotting mameras when \(\Phi\) is rotated to a reading below 100.00 g . Restoration to calibration parameters for \(\Phi\) is very easily achieved, and tests are in progress to determine the precision.

\subsection*{5.6 Computation Methods of the Intersection Probiem \\ 5.6.i Form of the Equations \\ For each point observed at the two ievels \(z^{\prime \prime}\) and \(Z^{\prime \prime}\) two equations are formed:}
\[
\begin{aligned}
& -\left(Z^{\prime \prime}-Z^{\prime}\right) X_{c}+\left(X^{\prime \prime}-X^{\prime}\right) Z_{c}=X^{\prime \prime} Z^{8}-X^{\prime} Z^{\prime \prime} \\
& -\left(Z^{\prime \prime}-Z^{\prime}\right) Y_{c}+\left(Y^{\prime \prime}-Y^{\prime}\right) Z_{c}=Y^{\prime \prime} Z^{\circ}-Y^{\prime} Z^{\prime \prime} \quad \text { S.B }
\end{aligned}
\]

Where \(X^{\prime \prime} Y^{\prime \prime}\) and \(X^{\prime} Y^{\prime}\) are the measured coordinates and \(X_{0} V^{Z}=\) are the coordinates of the perspective centre, \(z^{i \pi}, z^{4}\) and the measured coordinates contain observationai errors and
residuals \(v x^{\prime \prime}, ~ v y^{\prime \prime}, ~ v x^{\prime \prime}\) vy', \(v z^{\prime \prime}, ~ v z^{\prime}\) are therefore intcoauced into the equations.
\[
\begin{aligned}
& \text { Equation }(5 . i!) \text { becomes: } \\
& \left(Z^{\prime}+v z^{\prime}-Z^{\prime \prime}-v z^{\prime \prime}\right) x_{c}+\left(X^{\prime \prime}+v x^{\prime \prime}-X^{\prime}-v x^{\prime}\right) Z_{c} \\
& =\left(X^{\prime \prime}+v x^{\prime \prime}\right)\left(Z^{\prime}+v z^{\prime}\right)-\left(x^{\prime}+v x^{\prime}\right)\left(Z^{\prime \prime}+v z^{\prime \prime}\right)
\end{aligned}
\]

Equation (5.iii) takes identical form except that
\(X\) and \(v x\) are replaced by \(Y\) and \(v y\).
If the equations are expanded and products of residuals ignored the following result is obtained for zite \(X\) equation:
\[
\begin{aligned}
& \left(x^{\prime}-x_{c}\right) v z^{\prime \prime}+\left(x_{c}-x^{\prime \prime}\right) v z^{\prime}+\left(z_{c}-z^{\prime}\right) v x^{\prime \prime}+\left(z^{\prime \prime}-z_{c}\right) v x^{\prime} \\
& +\left(z^{\prime}-z^{\prime \prime}\right) x_{c}+\left(x^{\prime \prime}-x^{\prime}\right) z_{c}+\left(x^{\prime} z^{\prime \prime}-x^{\prime \prime} z^{\prime}\right)=0
\end{aligned}
\]
 in order to form the coefficients in the equations. If \(\therefore \mathrm{pela}\) are observed at both levels, a set of \(2 n\) equations of this type is obtained.

The equations have the form \(A v+B x+C=0\) whe-e \(A\) and \(B\) are rectangular matrices, while \(v, x\) and \(C\) are the vectors of residuals, perspective centre coordinates, ad constant terms respectively.

The least squares solution of the equations is
\[
\begin{aligned}
& x=-\left[B^{T}\left(A G A^{T}\right)^{-1} B\right]^{-1} B^{T}\left(A G A^{T}\right)^{-1} C \\
& v=-G A^{T}\left(A G A^{T}\right)^{-1}(E X+C)
\end{aligned}
\]
where \(G\) is the matrix of weight coefficients of the obsen o. . . . . .

The variance-covariance matrix of the perspective centre coordinates is given by -
\[
\sigma_{X X}=\sigma_{0}^{2}\left[B_{G^{-1} B}\right]^{-1}
\]
where the unit variance \(\sigma_{0}^{2}=\frac{v^{T} G^{-1} v}{r}\) and \(r\) is the number of redundancies. If \(n\) points are observed then \(r=4 n-6\) (for two level observations).

It is ciear that even when only a few points are observed, the vectors \(x\) and \(v\) cannot be solved on a smail programable calculator from equations (5.iv) and (5.v). A program was therefore written for the IBM 360, and was used to compute a large number of intersections. This program was devised by Mr. L. BERLIN of the School of Surveying, who collaborated with the writer in perspective centre calibration experiments.

\section*{5.6.ii Relative Precision of Coordinates}

In forming the \(G\) matrix, the assumption was made that the observed \(X\) and \(Y\) machine coordinates had equal precision. One cannot however assume that the precision oz the \(z\) settingswwill be the same. This is because the \(z\) setting is an observation of a different type, in which no pointing is made with the measuring mark. For a correct least squares solution of the \(Z\) coordinate of the P.C. the absolute values of the weight coefficients are not important. Muicipisoation of the \(G\) matrix by an arbitrary scalar wili yiela the sane solution. However it was expected that the relative precisacto of the \(Z\) setting and the \(X, Y\) coordinate measurements woulc. affect the \(Z\) coordinate of the perspective centre.

The situation 15 analogous to the ajustabnt of is geodetic net in which both angies and aistances have dear measured. The resuit obtanned will depena on the taza de weight coefficients of the angies to the cusuances.

The relative precision of the 2 setting to we X, Y measurements couid be detemaned ewormaily, but Gza was found to be unnecessary. A large number oE 6 poart ajís 15 point calibrations, made on the wila \(z-5\) steroploteaz. were processed using widely different ratios for the estimace precisions. The perspective centre coordinatea were jound to agree to within a few micrometers imespective of the rucio used, as can be seen by Table 5.II.

It is significant that the detemination \(0 \bar{x} x_{c}\) and \(Y_{C}\) for a perspective centre is not affected by the precisic: of the \(Z\) setting values, nor by the actual range of \(z\) used becwean the levels. If the centre coordinates are to be used ony for the solution of common \(\bar{\Phi}\) longitudinal tilt between models, and not for the solution of the other six unknowns. then ony xy is required with precision.

\section*{5.6.iii Computation on a Desk-Top Calculacoz}

Equations (5.11) and (5.11i) can se wreates as
they were observation equations in which the right and bian.
are the "observations".

The set obtained will have the form:
\[
A x=b
\]
and the least squares solution, wili be
\[
x=\left\langle A^{T} A\right\rangle^{-1} \cdot A^{T} D
\]

The result obtained is identrad to the resur obtained using equation (5.iv) but the comoutation is much easier because only 9 registers are requized for tre alcaence \(A^{T} A\) and \(A^{T} b\). This computation metroe is therefone revonmadied when the precision of the cocrduaces is not rec,-med.

To show that the above equation yieids gie game solution for \(X\) as equation ( \(5, i v\) ), let \(A V-U\), weae \(\because\) can de regarded as the vector of corrections to a set of "quabi" observations, then:
\[
U+B X+C=0
\]

For which the least-squares solution is :
\[
X=-\left(B_{G_{I}} B^{-1} B_{B}^{T} G_{i}^{-i} C\right.
\]
where \(G_{1}\) is the variance-covariance matrix \(0: 0\). Now \(G_{1}=A G A\) where \(G\) is the variance-covariance maccix oi \(V\) and therefore \(\left.x=-\left[B^{T}(A G A)^{T}\right]_{B}\right]^{-i_{B}}\left(A G A^{T}\right)^{-1} C\) which is ane \(d\). as equation (5.iv).
TABLE 5.17
Example of an intersection computed with different absolute values of estimated
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Estimated & Vaxiances & & \multicolumn{3}{|l|}{Perspective centre Coorlinates} & Conspute & Varian & & Observation \\
\hline \[
\begin{aligned}
& 0 \\
& \left(\frac{x x y}{}\right) \\
& y_{1}
\end{aligned}
\] & \(\sigma_{\mathrm{z} 2}\) & \[
\frac{\sigma_{z z}}{\sigma_{x x}}
\] & \({ }_{0}\) & \(\mathrm{Y}_{\mathrm{C}}\) & \({ }^{2}\) & \({ }^{\sigma}{ }_{C l} x_{C}\) & \[
{ }^{\sigma} y_{C} y_{C}
\] & \[
{ }^{0} z_{c_{c}} z_{\mathrm{c}}
\] & points \\
\hline \((517 \mathrm{~m})^{2}\) & \((54 \mathrm{~m})^{2}\) & 1 & 240.0275 & 200.1522 & 150.0247 & . 00005 & . 00004 & . 00032 & 6 \\
\hline \((10 \mu \mathrm{~m})^{2}\) & \((10 \mu \mathrm{~m})^{2}\) & 1 & . 0275 & . 1522 & . 0247 & . 00005 & . 00004 & . 00032 & 6 \\
\hline \((5 \mu \mathrm{~m})^{2}\) & \((50 \mu \mathrm{ma})^{2}\) & 100 & . 0275 & . 1522 & . 0215 & . 00005 & . 00004 & . 02340 & 6 \\
\hline \((10 \mu \mathrm{ra})^{2}\) & \((100 \mathrm{Mm})^{2}\) & 100 & . 0275 & . 152 & . 0215 & . 00005 & . 00004 & . 02340 & 6 \\
\hline \((5 \mu \mathrm{~m})^{2}\) & \((5 \mu \mathrm{~m})^{2}\) & 1 & . 0213 & . 1516 & . 0247 & . 00002 & . 00001 & . 00025 & 15 \\
\hline \((10 \mu \mathrm{~m})^{2}\) & \((10 \mu \mathrm{~m})^{2}\) & 1 & . 0213 & .151\% & . 0247 & . 00002 & . 00001 & . 00021 & 15 \\
\hline \((5 p m)^{2}\) & ( 50 mm\()^{2}\) & 100 & . 0213 & . 1516 & . 0215 & . 00002 & . 00001 & . 03725 & 15 \\
\hline \((10 \mathrm{~mm})^{2}\) & \((1004 \mathrm{~m})^{2}\) & 100 & . 0213 & . 1516 & . 0215 & . 00002 & . 00001 & . 07725 & 15 \\
\hline
\end{tabular}

\subsection*{5.7 Execution of Aeria! Triangulacion Phase}

The aerial triangultion of the mapping biock was executed by Independent Model method, using a Wina A. 8 piocee. for model measurements. The 180 mm diapositive piates were prepared with arbitrarily selected artificià pass pciacs. 2 z snap marking with Zeiss snap marker at -aage positions ma0 ma. ( \(y\) ) from plate centre, with an adational point close to centre. Apart from checking that the pass points diä not iie on disturbing image details, no attempt was mace to associate the pass points with identifiabie image details. unnes were identified oniy on one diapositive for each point, except that every aiternate outer pass pont in the dencre strip was transferred to lateral strips to serve as tie pomes. Grom.in controls were aiso snap marked.

The models were relativeiy oraencen wits perpocti centre variable parameters as defined in 5.5 , restorac uo standard calioration positions. The bx setting of iou na geve model scales of approximately \(1: 25000\), so that the triarsaiau...... was carried out at about the same scale as the subsequent orthophotographic mapping. Coorainates were read directiy from. \(X\) and \(y\) carriage scales and micrometers, as ercociers were ant fitted. A glass i:5 000 eievation scaie was used for 2 reac.... to give same scale XYZ coordinates, as the canciage leã ack are 2 mm pitch and the \(X Y\) scale graduations are physicaily \(\quad\) a.... divisions. All points were measured twice without uncouping the freehand movement of the model point, and estmation of cooranace micrometer drums made to \(0.001(X, Y)\), and to 0.005 on. the 2 .n. .
```

The average time for complete measurement of a wowen from initial insertion of aidpositives was 2 nours. Due to intermptions of normal academic work when the plozeer wai required for other purposes, it was not possible to carry our the triangulation continuously. Frequent recaiibrations oz perspective centre coorantates were therefore made usiss tie intersection method, and observing to the six pass points within a model. Such a caisioration at two levels, with manual recording, takes oniy about 45 minutes. As each new mocid was observed, the connections to the previous model were zescud using program indemodrorw (appx. Aj) prepared by the writer for Hewlett Packard Model 9810A desk calculator. A desk calculator used in such a role operates virtualiy as a complee: on-line to the plotter, average time for a model connection solution being about 45 seconas.

```

\subsection*{5.8 Aeriai Trangulation kesults}

For the reasons discussed in S.j.in, connecutan 0
Independent Modeis by a computational process in which peropect..vo
centres are joined as if tiney were error free, is unaeskazie. Program INDEMODFORM was thexefore prepared for the stas formations, a characteristic of the prog-an Deing that zevese centres and model pass poincs ane treated with the same weyran As a check however, the same model data was processed thang. SCHUT's program (1907), on the University of New South Waies IBM 360 computer. Table 5.11 I gives the comparison between the two methocis of scxip formation, in terms of mioromecers at
plate scale 1:60 000. The figures given are the mean square errors of the resiauai haif-aiscrepancies from mean coorainate positions at the join poincs, i.e., hait the resiauais setween each join point after transfomation. Separate figures ane given, firstly for all joins inciuaing perspective cencres. secondly for model pass points oniy. In the former case the discrepancies using scruT program are zero at perspective centres. For the first case there is haréy a significant difference for \(\Delta x\) and \(\Delta y\), but an improvement of \(8 \mu \mathrm{~m} \Delta z\) with INDEMODFORM. In the second case, an improvement takes place of \(10 \mu \mathrm{~m}\) in \(\Delta y\) and \(13 \mu \mathrm{~m}\) in \(\Delta z\).

After strip formation, the strips were suijected to block adjustment using the program referred to in 2.2 , (SCHUT, 1968). The program is essentiainy a strip adjustanc in which height corrections are parabolic runctions of specimed degree in the planimetric coordinates, and the planimetras aujustment is a conformai cransformation of specifiea aegree in the planimetric coorainates. The block acjustment is ar iterative procedure in which each strip is transiformed inctu. using as control points any grounc controis and tie poses wiw overlapping strips. As the iterations proceeć, the upcated vaiuss of tie points are used as grouna concrols. SCZUT commente (1968, 2) that as a ruie cen icerations of a block acjuscnent are ample to obtain the desired degree of convergence.
TABLE 5.III
Mapoing Block Triangulation


In the case of the mapping block, adjustment was computed with 2nd degree planimetric corrections, and 2nd degree longitudinal and lateral height corrections. The solution was iterated nine times, at which stage examinacion of changes in successive coordinates of selected points indicated that convergence was aatisfaccopy. The comptation was carried out using strip coorainates computed both fro.. INDEMODFORM and SCHUT programs. Table 5.III also gives results for mean square errors at tie points for both solutions, and the finai resicual errors at ail check grounc controls, maximum values aiso being given. The improvement in \(\Delta y\) and \(\Delta z\) residuals, as indicated in the strip formation resuits, is maintained to a limited extent at all stages. but particularly in \(\Delta z\).

The accepted results, give for the checked precisio:
of the mapping block at plate:
\[
\begin{align*}
m_{p}^{\prime} & = \pm 40 \mu m  \tag{5.iv}\\
m_{z}^{\prime} & =0.22 \% / 00^{Z}
\end{align*}
\]

In comparing these figures with those of the estimates (2.v) and (2.vi), it is seen that the pian error is almost at the mean of the range, and the elevation error at the lower end of the range. However the block is smaller than a usual mapping block.
```

    5.9 Aerial Triangulation Errors in Test Modeis
    The errors of the derived aerial triangulation
    coordinates (X'Y'Z') witnin test mocels A and s were
separately analysed. The analysis was performed using
program ABSOR (appx. A), also prepared by the writer foc
HP9810A desk calculator. The coorcinates X'Y'Z' were
subjected to an analytical absolute oriontation, by compu-ason
with the known ground coordinates (XYZ) of the i4 ground
controis in model A and the is ir model B. For the sake -I
convenience, all geodecic coordinates usec irom every phaze
Of the test programme from aerial trianguiation onwaräs, were
arbitrarily scaled to equivalent muilimecres at orthopnctognuz....
scale 1:25 000 and shiftea to aronccacy Locai onigin, see
Fig. 5.2. The model errors are given in table 5.TV. The
model errors were in general racher better than in the alock
as a whole, out within model A there was a rather systemuld
tendency in the pian cooramnates, only 3 of the X' arci Y
coordinates naving negative erruce, with the remannker navala
positive coordinate ercors.

```

TABLE 5.IV

Analysis of errors of aerial erianglation coorainates within test moders
(a) Model \(A\)
\(\Delta \Omega=-0.6 c\)
\(\Delta \Phi: \quad-2.0 \mathrm{c}\)
\(\Delta k: \quad-0.2 c\)
Scalar: \(-0.16 \% / 00\)
Transiation \(\Delta X:+0.022 \mathrm{ma}\)
" \(\Delta Y:+0.045\) man
" \(\Delta z:+0.004 \mathrm{~nm}\)
\(m^{\prime} x^{\prime}= \pm 21 \mu m\) lat piate;
\(\mathrm{m}^{\prime} \mathrm{y}^{\prime} \pm 26 \mathrm{~m} \quad\) "
m' \({ }^{\prime}\) : \(\pm 33\) "
\(\mathrm{m}^{\prime}{ }_{\mathrm{z}}: \pm 0.160 / 00^{2}\)
(b) Model B

A0: \(\quad 1.70\)
\(\Delta \Phi: \quad+0.00\)
\(\Delta K:-0.20\)
Scalar: +0.10\%/00
Translation \(\Delta \mathrm{X}:+0.005\) matian
" \(\Delta \mathrm{Y}:+0.014 \mathrm{max}\)
" \(\quad \Delta Z:-0.009 \mathrm{~mm}\)
\(m^{\prime} x^{\prime} \quad \pm 17 \mu m\) fat platel
\(m^{\prime} y= \pm 20 ; \mathrm{mm}\)
\(m^{\prime} p^{2} \pm 26 \mathrm{~mm}^{\prime \prime}\)
\(\mathrm{m}_{\mathrm{z}}: \pm 0.25^{\circ} / 00^{2}\)

2ัล.

\section*{6. EXECUTION OF TEST PROGRAMME}
6.1 Selection of production parameters for teste 6.1 .1

The mapping photography of 1.60 ucu scaile ofececc several possibilities of choice or orthophorograph scaie ... the combination ropocart-orthophot. As a generai puractphe the tests were to be carriea out ar maximun oossiniatabou. rather than to be insluenced by conventional mapong uriacor.... The maximum entargement from plate to model scale is decemmou by available \(z\) range for a particuiar classification of ouncou. as given in 3.2. In the case of 1 i 5 m wide angle camera tra maximum enlargement model scale from plate scale \(V^{2 / 2}\); is 2.7, and thus the maximum rational metric model scaie 15 1:25000 \((\mathrm{Va} / \mathrm{b}=2.4)\). The connection from Topocart to 0rajopede is through a range of mechanical gears, buc practivai imitations are imposed by overall range of magnificacio.i from plate to orthophotograph \(\mathrm{V}^{\mathrm{d}} / \mathrm{b}\) as given in 3.4; since For a scanning area equivalent to \(100 \mathrm{~mm}(x)\) by 200 mm (y) ar ziou maximum \(\mathrm{V}^{\mathrm{d}} / \mathrm{b}\) is 3.65 in a single scanning operacion. Sax-ng \(\mathrm{V}^{\mathrm{m}} / \mathrm{b}\) as 2.4, the gear comection possibinities to the oracuau: inversor control permitted choice oiz either 1 or 1.25 magnification from model to orthophoto, for an overais \(v^{c} / \mathrm{d}\) of esther 2.4 or 3 , orthophoto scales \(1: 25000\) or 1:20 000 . The former scaie gives a value for the constant x of Formian (1.v) \(m_{0}=k \sqrt{m_{\mathrm{K}}}\) of about 380, and the latcer of about 425 , both figures being well above conventionai ampang initu. Orthophotograph scale of 2:25 000 was seleceed, as than i. nore usual standard medium mapping scaie.

\section*{6.1.ii}

Choice of appropriate contour interval for proziso signais for the production of drop inne charts is conationed by the availability of Orograpn adaptor plugs (3.8) for a particular model scale; but is influenced aiso by tac veman: conditions and the elevation ranges within the tese areas. Model A of broken terrain contained a total range of elevacion of about 100 m , Model B of relatively rlat terrain a range os only 20 m . In the latter case a choice of contour intervai of 20 m or 10 m would have proved guite inadequate for ceste of contouring possibilities in flat terrain, and thus a chosod of 5 m seemed appropriate. In the former case the area contanha several hill slopes of the order of 20 g , and in such siopes a contour interval of 5 m would resurt in pianimetric soparazuen of profile signals and contours, of only 0.62 ma at ocriopho 0 scaie 1:25 000. nowever the mean siope of the model wad estimated from the slopes at all check points as 3 g. cesura in a mean planimetric separation of about 4 mm at orenophote scale. Considered in terms of Contour/Aitituae ratio \(C\) anainu. for a filight altitude of 6875 m , the contour interval \(c=5\). gives C number 1375, and contour interval of 10 m gives C nube 688. The larger number was deliberately seiected for the majority of tests in accordance with the principle of wockacg to maximum possibilities. However it would cieariy have ies. absurd to attempt such a smali profile interval in voaen \(\mathfrak{A}\) in

would be created in attempting to join corresponame prokter signals with a mean planimetric separation along che prosisec of 4 mm . In ali tests therefore except 16 mm sift widit ceze in Model A, the selected contour interval was 5 m ; and a , the case of the exceptions the contour interval was 10 m (caine \(\mathrm{s} . \mathrm{Z}\) Orograph adaptor plugs of \(\Delta z\) interval 0.2 mm and 0.4 man were available for the model scale 1:25 000.

\subsection*{6.2 Description of test model A in broken terrain} Model A was an area of about \(5 \frac{1}{2}\) by 10 km , with total elevation range of about 100 m , and ground slopes in the fall lines to a maximum of 20 g , mean grouna siope at 56 points 3 g . The centre axea of the modei is charactersise by a broadiy undulating perched stony plain, with shai wwly incised dendritic arainage: draining through a rather sanjy tract up to 200 m wide, towards the east. Above the maid drainage tract there are rounded gravei hilis, with slopes to 6 g , and some minor iimestone outcrops of local eievacio. 15 m . Vegetation in this area conists of bladeer saicbur (atriplex vesicaria) and grasses, with the arainage trates generally bare. The north section of the model was more -ugged with some ranges of massive sanastone of rather rocky cresce and faces, with local elevations to 50 m, incluaing one varg steep peak: "Butiers Peak:. Vegetacion inciuces satbuch an grasses, and fairly extensive cover of miga crees fac⿻u丨a aneuraj. The western side of the model is rather scory


Model A (0506) of broken terrain, at plate scale 1:60 000.
undulating country with a dense dencrotic jrainage: suvenen Gulined in many places, and draining to the west. me sour. eastern part oi the model contains high sandstone riaces oz iocal elevation to 50 m with prominent outcrops of guartaice. anc iow rounded hilis with an extremely complex patcern ou incising trellis drainage, araining to the soich. A striking Feature is a long high sandstone riage some 200 m wiae, runntig almost northwarais, and thus paralied to the \(y\) scanningi direction of the moder. This model was expected to present a severe chailenge to the principle oi drop ine derived concouxs. in view of the geomorphology of the area, and the compaex drainage pattern, draining to ail priracipai directions wis is pictured at plate scale \(1: 60000\) in plate 2.

\subsection*{6.3 Description of test model 8 in That terrain}

Model \(\bar{B}\) was also an area of about 55 , - 2...
different in character, since the total elevarion range u............
20 m with an aimost uniform siope from south-western coner ez the model to north-eastern, of the oraer of 0.is g. The acea consisted principaliy of a flat to che east of a i kia uc. fioodplain, with a main trenchea creek 10 w wide passhez diagonally across the north-western part oE me model. -n main creek was rather inderinite im many piaces wich sovo. sinuous braided sandy channeis. In the fat thene sow........... Fard bare claypans; and rather ill detinea Janinage zancu. The vegetation consistea of saitoush ana abunanc peremangrasses, and scattered and ischated pravey watile fúac. victomiae). Moãei \(B\) is pictured at piate scale i. plate 3.

6.4 Provision of additional photogrammetric test polnts Since only 14 grouna check points were providea 4 . model \(A\), and 13 in model \(B\), additional check points were provided in both models by photogrammetric methods. The area of each orthophotograph model was also covered by six overiaps of 115 mm wide angle photography at plate scale \(1: 25000\) from altitude 2875 m (5.2); and the location of ground controis enabled each of these larger scaie overlaps to be set up on 4 ground control points. Additional photographic concrois were selected and marked by wild PUG4 Point Transien Device, both on the 1:25 000 diapositives and in one plate of a sec of 1:60 000 diapositives to be used for the orthophotography. The 1:25 000 plates were set up in Wild A. 8 plotter at moãe scaie 1:10 000, and the new points measured fow Xyz cooranctey with three observations to each mark, togetner with the ground controis. The mean observed coordinates were transfomed anaiytically to the ground control system, through \(2 P 9810 \mathrm{~A}\) program ABSOR (appx. A). The residual errors at the grounc controls after transformation, enabled an estimate to de make for the precision of the new points of \(\pm 0.5 \mathrm{~m}\) for zoth pian and elevation. It was assumed therefore that the new pointo had the same precision at the mapping photography scale as the surveyed control points, as given in equation (5.7). Gae location of all controis in botn mocieis, totailing 56 in Model A and 50 in Model \(B\), is shown in the pian vector \(-\infty\) figures in 7.
```

    6.5 Operation of the test progiamme
    Tabie 4.1 gives a schedule or the tesc grocramme.
    In Model A, twenty tests were mun at four slit width sizes anc
with five speed variations. Pour of the speed variatione
were tests in which the speea was guite constant Inroughout
the scan. The fifth variation was a variable speed scan at
operators discretion, and in each of the four variajle speed
test subsequent analysis of total time and line lengtn showed
that the average speed achieved was about 2.6 mm/sec in the
orthophoto, equivalent to }1.08\textrm{mm}/\textrm{sec}\mathrm{ at piate. In every
test a drop line chart was proauced by Orograph. It was not
intended to analyse all of these charts, but since their
production involveci very lictie extra work, superifluous chants
were produced in order to gain experience in the cechnigue; asd
in particular to provide spare charts for experimencs in concom.
drawing.
A record of production times, now cf settincy vamue
of variable controis such as exposure lamo incensity, was
maintained on a panel fixed to the drop inne charts, exampia
of which may be seen in annexure i. The item 'scan tame' refer.
to the total scanning time from the momenc at which the cascetuo
shutter is opened, until the cassette snutter is finaliy cicsed.
This time includes the time required to move from one sca.. -m
to another, but excludes any short non-operationa- peczoc, wode
the operator momentarily rested. The icem 'compiecion ame"

```
includes operator rest periods, and work carried out aitec cassette closure. This work includes the identification of control points, marginal notes, and in principle the provision of 'guide contours' and spot heighting of saiient points by conventional plotting techniques.

The identification of control points is essential because the chart cannot easily be placed in orientation in a similar marner to a conventional mapping plot prior to commencing work, owing to the mechanical operations necessary in starting the scanning procedure. The chart however remains in registration with the plotter when the Orthophot unit is disconnected at the drawing table after final closure of the cassette shutter, at which stage the plotter derives may be converted to conventional plotting mode. The identificution of contour bands with elevation values was achieved after cassette closure, and before orthophot disconnection, oy moving slightly to the right of the last profile by a few \(\Delta x\) increments. With the cassette shutter microswitch shoricircuited, a short scan length was then run with elevation raised through each band in turn, anc the band ilmits were then labelied with model \(z\) vaiues and corresponding eievazans as shown in plate 4.

In principle at this stage, guiae contours and \(=0\).
heights should be providea, as well as contours for missin. details such as isolation contours between profile innes. In practice the complexity of contouring of moäel \(A\), was such that it would have been very disficult for the operacor to decide


Production of drop-line charts by Orograph Plate 4
when to cease plotting in this conventional way. This procedure was therefore deifberately curtailed, and guide contcurs were provided only for one concinuous contour along each fall ine of the long sandstone ridge, and one isolation contour of the peak, both features referred to in 6.2 .

The scan and completion times do not include the preparation period prior to scanning; comprising relative and absolute orientation, switching of the arive elements, test exposures, and insertion of the film and the cassette. The tests of model A were carried out over a period of 3 months. and the average of all preparation periods was 2 hours. The inner orientation of the plates was never altered, but severai relative and absolute orientations were carried out.

In every test the control data used for orientation was simply that of the 4 outer pass points with coordinate derived from the aerial triangulation results (5.8; Absolute orientation was carried out by measuring model coordinates of these points and computing the orientation parameters by HP9810A with ABSOR program (appendix A). Aiter secting corrections, orientation was consiaerea satisfactory to nomal production standards, when residual \(\Omega\) and \(\Phi\) errors did not exceed \(\pm 1 \mathrm{c}\), and scalar error \(\pm 0.5 \% / 00\).

Test model \(B\) in flat terrain, was executed oniy au was considered to be normal production slit widths and speed for such a case; namely a fixed speea of \(4 \mathrm{~mm} / \mathrm{sec}\) in the orthophoto ( \(1.67 \mathrm{~mm} / \mathrm{sec}\) at plate), and exposure sitit watha 0 d only 8 mm and 16 mm .

The film used throughout the tests was KOLAK Commercial Film 4127, estar thick base, 0.18 mm thick. Developement was by ILFORD Bromophen, a phenidone hyaroquinone developer, with stock solution diluted by 3 parts water; and developement variable but on average \(1 \frac{k}{2}\) minutes with continuous agitation in a dish. The film was then wasned. and subsequently fixed with ILFORD Ilfofix, an acid hardening
 were left in running water for 3 hours, and then allowed to dry naturally suspended in the darkroom for 24 hours. Subsequentiy they were suspended in a frame, and allowed to stabilise for a minimum of 48 hours in the laboratory where the cooramatorgrath was housed, before any coordinate measurements were mace.

All operational tests and processing procedures we.. carried out by the witer.

\subsection*{6.6 Calibration of Coordinatorgraph}
6.6 .1

Plan measurements on the orthophoto negatives were to be made to the snap marked check points, using a spotting microscope in the pencil holder of a wild 1006 ma square coordinatorgraph, and mechanicai counter drums with direct reading to 0.01 mm and estimation to 0.001 mm . The coordinatorgraph is normaily connected as plotting table to a piotter, but was disconnected for the orthophoto measuremeace. The coordinatorgraph is of the type with a fixed rail for one axis, usually the \(y\) axis, carrying a movable cantilevered rail driven by lead screw, normaily the \(x\) axis. The cantilevacea rail contains a seconä lead screw driving the pencin holaex.

This type of coordinatorgraph is prone to small systematic errors of non-orthogonality of the movabie axis, and adjustment screws are provided to rectify this situacion. The adjustment is however rather insensitive, and it was singularly difficult to adjust within \(\pm 30\) seconds of orthogonality. This error is trivial in conventional plotting, amounting to a displacement on one axis of \(\pm 0.0 \% \mathrm{~km}\) at a distance of 500 mm from the fixed axis, but the exroc would have caused an apparent systematic displacement of coordinates in the \(y\) direction on one side of the measured orthophotographs.
6.6.ii

It was decided to calibrate the coordinatorgraph, and the method of calibration ia depicted in piate 5 , in which three Wild \(T 2\) theodolites were used to intersect a pricker point placed in the pencil holder. Intersections were observed simultaneously by three observers, at successive nominal \(X Y\) coordinate locations at 100 mm spacing, at 40 poincs defining a coordinate grid \(400 \mathrm{~mm} X\) by 700 mm Y. The observinc target was driven to successive locations, and airections read by estimation to 0.1 seconds with two pointings on one face at each location. One complete set of observations on one face took about 2 hours, and in view of this time lapse the observations were repeated after changing face, and the second set treated as an independent calibration. Derivation of adjusted coordinates was obtained by treating the observä゙ucne as a triangulation network, and agjusting by the parametric


Calibration of Coordinatorgraph
PLATE 5
method holding only two stations of the network as fixed, fameiy the two stations at the greatest separation closest to the \(Y\) axis. The reliability of the calibration was juagea sy computing the standara deviation of the differences \(\Delta X, L Y\) between the coordinates derived from the two calibracions, the standara deviation (vector) being 10.013 mm maximum vector difference 0.032 mm . The differences \(V_{X}, V_{Y}\) between mean adjusted coordinates and nominal coordinates were anaiysea and found to be highiy systematic. The standard deviation of \(V_{X}\) was \(\pm 0.017 \mathrm{~mm}\) with a mean of -0.025 anci a maximum of -0.06 es and of \(V_{Y}\) a standara deviation of \(\pm 0.036 \mathrm{~mm}\) with a mean \(0-\) +0.053 mand a maximum of +0.143 mm .
\[
6.6 .1 i 1
\]

Considering only the non-orthogonaility a of the
\(X\) axis, and assuming that the fixed axis is \(Y\), the relationt between orthogonal coordinates \(X * Y *\) and non-orthogonai cooranaze. \(X Y\) is given by:
\(X^{*}=X \cos \alpha\)
\(Y^{*}=Y+X \sin \alpha\)

Allowing also separate scalars \(\lambda_{X}\) and \(\lambda_{X}\) for cre \(X\) and \(Y\) axis, shifts of origin \(\Delta X^{*}\) ana \(\Delta Y^{*}\), and a common
rotation \(\beta\), the relationship is:
\[
\begin{aligned}
& X^{*}=\lambda_{X} \cdot \cos (\alpha+\beta) \cdot X-\lambda_{Y} \cdot \sin \beta \cdot Y+\Delta x^{*} \\
& Y^{*}=\lambda_{X} \cdot \sin (\alpha+\beta) \cdot X+\lambda_{Y} \cdot \cos 3 \cdot Y+\Delta Y^{*}
\end{aligned}
\]

The equations can be considered to take the general form of an affine transformation:
\begin{tabular}{ll}
\(X^{*}=A 1+A 2 X+A 3 Y\) & (6.1) \\
\(Y^{*}=B 1+B 2 X+B 3 Y\) & (6.1.)
\end{tabular}

This formulation was usea to transform nominal coordinates XY to adjusted coordinates \(X^{* y *}\) by a least squares solution for the 40 points; using the writer's progran Arprant. for HP9810A desk calculator. The transfomed coordinates were then compared with the adjusted coordinates, and from the resiou. differences \(V_{X} V_{Y}\) the suitability of the transformation wain judged as a model of the coordinatorgraph encoss, comparee to whe figures given in 6.6.ii. The standard deviacion \(0: V_{X}\) was now \(\pm 0.015 \mathrm{~mm}\), with a mean of zero and maximum of +0.030 mm and she standard deviation of \(V_{Y}\) was now \(\pm 0.013 \mathrm{~mm}\) with a mean of zero and maximum of -0.033 mm . The systematic efrects had peen entirely removed.
6.7 Measurements of Planmeric Errors

The orthophoto regatives, after being ailowad co stablise in the laboratory environment, which is controijed for temperature and humidity, were measured over the inumand. glass table of the coordinatorgraph, using a spotting aiocosen and measuring to the snap marked hades of the oned pont.... The coordinate errocs at the check puints wexe ontanca by processing through he98ioA desk caloudaco accoraing to tw procedures.

In the first procedure ained at denvinc tae intemal errors ( \(V_{X}, V_{Y}\) ) due wo the crarophococrajan provess. the measured coordnaces were subjected to a hnedar sminar.... transformation using the mosc relianie concrol mabouaun namely the 14 groma contuons of model A ana zine ol on roael \(B\). All measured coorainaces were however yeec agzubed by affine transfomation, using transfommenon elemente deive



 Wexe transtomed, storeá on magnetio cara, anc zusectera. processed through program zeshbuats. an thas prograin ade transformed coordnates were comparea witi: stored coneec coordinates for all of the check points: wid the exroxs \(V_{y,}\) and the plan vector errore \(V\) extracted ara prined.

In the secona procedure, the measured cocrenates were teated in a similar manner except that the controls used. for transformation were solely che aexial criarguation vaiued of the four cornex pass pointe in each rodei. we resurans errors \(V_{X}^{\prime}, V_{Y}^{\prime} V_{P}^{\prime}\) were considered to de the exterral stox. due to the infiuence of the aexal bazangiatuono

It would have been possione to transiona the mea - ad coordinates airectiy to check coorainates through the afine transformation AFFriRAN, but it was thought that chis procedur: woula have tended to obscure che existence of possible afine effects from the orthophotugraphic production, and in any case the transformation woula have been pooriy determined in the case of the external errors with chiy four controis.

\subsection*{6.8 Measurement of Elevation Errors}

The measurement of elevacion sarors on paceognatu . plans of any type, is beset by peouinom disizculteles. We preferced method must be by aceual oheokinc in the fieno. \(\operatorname{do}\) the time required in this case woume rave deen prondocevi aw nearly 800 checks were mac̈e. The graphion informacion. wavigu in the form of a profine limit-signai, of in the fomm de a dayer contour, will rarely-coinciae with a ched controi; so the some form of interpoiation as aecessary in order so bervve
 investigated the posicion errors which ocour in incexpolacio.
procedures, and it is clear that unioss the dreci-anon by coincidence on the fall-line perpenaicular to two parafic.. contours, that serious errors may occur in the secuavaion.
 separation is iarge, incerpolation woula aackiy be puc......... In the case of interpolation between concours, Uhe preciston. is rather wncertain in the case of becken terrain.

Por these reasons a more aireow methoc of manduce. was sougnt, and this was possibie because oi the avainabino. of larger scaie photography covering the occhophocograph veau models. The drop line charts were measured brez…y it ad. parts each, each part being covere by a \(1: 10\) 000 moded an Wila A. 8 plotter from photography et plotine scade it 20 ou the model being reduced at the drawing table oo the pict and 1:25000, as depictea in plate 6. A magnazng aesk ian. .a.
 needie as pointer in the pencil holder. The inasviduai duades were absolutely oriented using the correct ground control vabe. of the four controls in each i:10 000 modei. In une oaze o. measurements of pcofile signai accurach girce ejevation ruen.... were then taken to the profile inmit signai closese to a disc. point: and in the case of contour measurements to the cioses. contour poirt. As tine models were sec ap on correct ounur. the discrepancy between a mean onserved measuranent and lie corresponding indicated elevation was the excecnal axcer y The observed measurements were however Lrse surjected eo ar araiytical correction for the smail absoiuct craeracio. ar......... of the 1:10 000 models, througn prograr ABCo.


Direct Measurement of Elevation Errors
PLATE 6

The intemai exroce \(v_{2}\) were d vanted dy dí ustans the extemai excore \(V_{z}^{\prime}\) acoorang to the ga-outaced dosohte orientation axrons of the acrien uriangutaben oosanazes of the ground concrols of modeds \(A\) anc \(B_{\text {, }}\) denved fron. tho anaiysis of errose given in 3.5.

\section*{6. 9 Cartographic Treatment of Brop -ine Charts} 6.9 .1

In principle, concoure are colved from peofen signals by joining corresponaing signar bano changee an successive profiles. If the charts are prowdec yy the cr-an process in ar instrument such as the ropocar-ortho, combination, then usualiy a few guice corcours wili have jec. adced by corventional plotting, anc it is a particuian advantage ox ins instimment chat conveadion to convenciona. plotting is quick and convenxenc. It -s generally yazauanad that a stereoscopic overiap of the nocel shonl: De vacou a. an ordinary mirror stereoscope, in order to corralate the signais with landEoms.

In practice there are many anzefoultaes, out lie major probieme can be attributed to two oauses.



copograpaso teaturea.


ance progane muerva.
\[
6.9 .1 i
\]

In the former case of irregular signal changes an successive profiles, there is evicence that signai irreguiaituic are not confined to a particular system, but appear to be e cnaracteristic of profiling procedures. Both SCHMIDI-FALKENBEX (1970) and SCHNEIDER (1970) have investigated the causes and effects of signal irregularities in the GZi system, anc very similar effects are proauced by the Orograph system. Examination of the arop line charts in armexure i, partioulariy in relatively flat areas, reveals severai cases of irreguiar changes in successive profiles whicn cannot be attributed to topography, proaucing a characteristic 'broken comb" patterr. along the supposed ine of a contour. Some of these irregularities are certaniny the result of profiling errozs on the part of the observer, the scanning errors of 2.4 , but these shoula be smail, and non-systematic. An error \(\Delta z\) in scanning causes a corresponaing position displacement of the profile signai change of \(\Delta z \cot \beta\), where \(\beta\) is the teran slope in the direction of scan. It follows that a smail profiling error produces a marked displacement in rathen -20 terrain. There are however very systematio irrogniaritiez extending over several profile lines which obviousiy cannot be attributed to scanning error.

\section*{Several experiments were carried ow in an acteng} to rationaiise the causes of the irregularities. The pracipal experiment was one in which a model was created of tercain of completely uniform slope. Jwo identical diapositives were ased́ one of which was cut in haif and viewed with the concesponiar.
identioal images of the other, the piotured thenserves ......s devola of x parallaxes except when these were archanabaly introduced. This was done by rotating the 'mocen" Encua. variations of absolute tile \(\Omega\) anc scanning at several seecus and profile incervais. The experments were rocnciusive. in the sense that it was not possible to juentiny the precse causes of irregulatities nor was te posebile to compictedy rationalise the sehurour at different var-aje parametera. The following wather tentative conclusions wect nace:
(a) the frreguiarities are not -ojuted to 30. of scan.
(o) the irregularities do include a conanat.: component traced to backiasin in the \(z\) councur gear wheels aro ase 2 cranamission.
(c) Chere appeared to be a turaerioy do grodnoe asspiaceneres an oppoctee araug.ent
 high and low, ana this was adiational te tamount due to backiash srom (o)
(a) the inwegliacities become iess mackac wach increasing prorile separacion, on Laencioa, shopes,
(e) the irreguatities wece ansagrizicaiv on shopes greater than lx \(^{3}\) g.

The backiash component (b) amounted to 0.02 ra \(\Delta z\) in the modei, in the instrument used; which represenc. \(\quad 3\). of the length of profile signai ( \(\Delta z=0.2 \mathrm{~mm})\) used in the majority of tests. It shoula be possible to compensate thas effect by appropriate delays in the Orograph circuit, accocings to the direction of change of \(Z\). However this effect, and aize the deficiencies noted at (c) and (d) may well be due to sone defect in this machine only. The conclusions are however very similar to those reached by SCHNEIDER, except that he concluded that direction of scan was not significant. On the questica of how to deal with irregularities during the contouring process, the only possiole conclusion is that of SCHNEIDER, namely that a mean line should be taken through irreguiar signal changes unless there is topographic evidence in suppore of an inceguiai course. It should be noted that an interpoiation system such ae that available with GZl, tends to obscure the presence of these irregularities in the actual scanned profiles.
6.9.iii

Irregularities may also of course be attriouted to genuine topographic features, particularly in broken terrain such. as occurs in parts of model \(A\). An additionai probiem due to topography, is that anomaiies result in signais between succes. profiles when the fall line for long features is perpendicuiar to the profile direction, such as occurs with the long ridge in the extreme south of model A (see annexures 1.3 anc 1.41 .

Profile scan intervals which are unsuitabiy wide resuit in loss of features narrower than the profile intervai, and in loss of most smail isolation concours. Examples may be notez in annexure 1.4 in the treatment of the peak in the extrere north of the chart, in the loss of the two small hilis immediately south of the peak, and in the missing upper isolation contours of the iong riage in the extreme south. A particular difficulty in areas of complex broken terrain, is the treatment of contours in the area of watersheas.

Several rather abortive attempts were made with the interpretation of charts, before a satisfactory method of overcoming some of these problems was evolvec. The key to ar. interpretation which is topographicaily correct, and which gives the derived contours some semblance of geomorphologice: meaning, is to combine a line arawing of the dratnage patcerr with the drop line signais before actempting to dexive contours. The principle of the technique is illustrated in plate 7. The chart has been combined with a drainage drawing, and a single contour callea the 'principal contour' has Deer Lánti-ued throughout its course. The principal contour is defined as o. at about the mean elevation of the chart whith is at che suate
 case the top end of the thickest signal at the 230 m levei.

The drainage trace is quite easily owtanea the corresponding orthophoto negacive over a inght undid using also for detailed reference a mirror sterecsuopew....... the relevant diapositives. The arainace trace zor wowi ot
143.

```

was completed in 2 hours, sut this unme exolukes the time u.g.o
to transEer to the arop fine cnatc. Nme reason For chiz we tacu
in these experiments the transmer waz somewhav crucogy ezo.sum
by means of ordinary carbon paper, and this was rather sow.
In practice with the sopnisticated Eacilities oz a mapping
organisation, more satisfactory anc iapicu means are available.
It is thought that the most satisfactory interpretation meduun
would be a non-actinde blue base, on wnite piastic, procioced
photomechanicaliy from a comivined negative of drainage trace
and drop line chart. It should be possible to carry out the
interpretation sirst in pencidy and subsequervay to inN az

``` a Eair-arawing.

After the initiai phase or iacntification ot tra orincipai contoux, it is relativeiy easy zo identify che remaning concours upwaras and downwards. Tne drainage xeq a particuiarly vaiuable guiae in peak areas aiong pacouea perpendicular to fall innes, and in areas of proker tergans. It is thought that the technique is of generai opoinablu, gy, for example also with contour segments, ir aneas ol anteoun cerrain.
6.9 .1 V

The same generai princiole of conbining a banaz trace with the arop lines was followed in the ilac terran. omodel \(B\), except that here it was not necessary to inentur.. a. principai contour. The rather simple drainage pattem wae traced from the orthophoto in 20 minutes. The complete
treatment of test \(B / 16 / 1\) is shown in plate 8 . Systematac irregularities of signal changes may be noted in particuiar along the course of the 145 m contour. Even in this racher simple case, the drainage pattern proved useful in drawing the contours through the floodplain area. The total drawing time for test \(B / 16 / 1\), including drainage interpretation, was 2 hours. Times for model \(A\) are given in 7.6 .

It should be noted that all of the drop ine chart examples are mirror-reversals. This occurs because the corresponding orthophotograph negatives were produced for correct reading emulsion to emuision contact positive reproduccion. Under these circumstances the gear switching possibilities to the drawing table produce a mirror-reversed positive.

7. TEST RESULTS AND CONCLUSIONS
7.1 Internal Errors in Planimetry
7.1.i

Internal errors \(V x, V y, V p\), were derived for all orthophoto test models in both test areas, at all combinations of speeds and slit widths, by the measurement and computational procedures described in 6.7. From the residual errors, the mean and mean square errors were computed, and a twenty-cell histogram distribution diagram generated by HP9810A desk calculator (appendix A). In the case of test models A scanned at speeds in the orthophoto (Và) of \(4 \mathrm{~mm} / \mathrm{sec}\), which were aiso analysed for external errors, vector diagrams of the direction and magnitude of the errors were also produced, by HP9810A desk calculator and plotter. Similar diagrams were produced for the two tests carried out in test Model B. The vector diagrams and histograms are shown as figures 7.1 to 7.10 inclusive, and may be identified according to scan speed and slit width by reference to the table of test labels Table 4.I.

Mean square errors were computed in every case according to the formula:
\[
\begin{equation*}
m=\sqrt{\frac{V V}{n}} \tag{7.i}
\end{equation*}
\]

Table 7.I gives results for Model A of mx, my, mp in terms of micrometers at \(1: 25000\) orthophoto scale: \(\mu \mathrm{m}(\mathrm{d})\), and also in terms of micrometers at 1:60 000 picture scale: \(\mu \mathrm{m}(\mathrm{b})\). Table 7.II gives the corresponding maximum coordinate errors \(\Delta \mathrm{X}, \Delta \mathrm{Y}, \Delta \mathrm{P}\) in the same terms.
MM.N






FIG.7.2. DISTRIBUTION OF EXIE: ERRORS ME :



FIG 7.4. DISTRIBUTION OF INTERNAL ERRORS TEST \(4 / 1\)



FIG. 7.6. DISTRIBUTION OF INTERNAL ERRORS TEST 8/1

MAN



FIG.7.8. DISTRIBUTION OF INTERNAL ERRORS TEST 16/1

\section*{3}
－GRIUND CONTRDL ＋PHDTDGRAMMETRIC CDNTRDL
\(\times\) FHDTD PRSS PDINT

TEST G／日／I INTERNAL PLAN ERRDRS \(M P= \pm \square 13: M M\)

2．9ロロ。

2日ロロ．

26010．

2506．

                            FIG 7/



\footnotetext{
lue of my for a given speed of scan.
10s mintuan vato of mer a given slit wion b.

}
mate 7.1


MAXTMUN INTERNAS MSNTMETEIC COORDTHAE ERRORS MODEL A
TABIE 7.19

In each Table, the maximum vector exror for the four tests with different exposure slits at the same soar seed is identified by means of an asterisk. Aiso identinied 2 , means of underlining is the minimum vector error in the Eive tests using the same exposure slit at different speeds.
7.1.ii

Some rather general conclusions may be inferred from the results presented in Tables 7.I and 7.II:
(a) the influence of system errors is apparent insofar as the largest m.s.e. vector erro: occurs for any given speed with the greatest exposure slit width of \(\overline{16} \mathrm{man}\)
(b) similariy the maximum vector erron occurs in every case except one, with the 16 m . slit, and in the exception with tite 0 ma. slit;
(c) the influence of speed of scan upon errors is not as marked as might be expected. the minimum errors in every case for a certain exposure siit occurring at the faster scan speeds, rather than the slowest speed or the observers choice of variable speea;
(d) there is littie eviaence of differences of an affine nature between the errors in \(x\) and those in \(Y\), as in the case of the mean square errors there are 13 exampies from 20 in which \(m_{x}\) exceeds \(m_{y}\), but in oniy 7 does the difference exceed 10 ju at orthophoto scale; and in the case oi the maximum coordinate errors there are l3 examples in which \(\Delta Y\) exceeds \(\Delta x\), but in oniy 10 of these does the difference exceed \(10 \mu \mathrm{~m}\) at orthophoto scale.

With respect to 7.1.in(a), the inriuence \(0 \approx\) system errors is further confirmed because in every case in smallest mis.e. vector error mp occurs with the smailest exposure slit width, but on the other hand the infiuence -is perhaps not as great as might be expected, since the range un results from minimum \(m_{p}\) to maximum \(m_{p}\) is quite smail:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{v}_{\mathrm{d}}\) & & & & & pod \\
\hline \(2 \mathrm{~mm} / \mathrm{sec}\) & : & \(\pm 138\) & - & & 149 \\
\hline variable & : & \(\pm 23\) & - & \(\pm\) & 153 \\
\hline \(4 \mathrm{~mm} / \mathrm{sec}\) & : & \(\pm 106\) & - & \(\pm\) & 136 \\
\hline \(6 \mathrm{~mm} / \mathrm{sec}\) & : & \(\pm 105\) & - & \(\pm\) & 257 \\
\hline \(8 \mathrm{~mm} / \mathrm{sec}\) & : & \(\pm .119\) & - & & 163 \\
\hline
\end{tabular} The total range of \(\mathrm{m}_{\mathrm{pd}}\) of \(\pm 105- \pm 163 \mathrm{~mm}\) may be compared what the range for the planimetric tests summarised at 4.4 .2 ow \(\pm 120- \pm 460 \mu \mathrm{~m}\), corresponding to \(\pm 44- \pm 68 \mu \mathrm{~m}\) in the original picture scale compared to \(\pm 42- \pm 123 \mathrm{pm}\). zron the test results of Model A, we may therefore concivae thau Orthophot-ropocart combinacion is capabie of accuraciés wai match those of restitution-differential rectification combinations based on restitution instruments or hisgex occe. classification. The arithmetic mean of the \(20 \mathrm{~m} . \mathrm{s.e}\). vectec errors is \(\pm 135 \mu \mathrm{~m}\), equivalent to \(56 \mu \mathrm{~m}\) at plate. the contribution of differential rectification to the intemai errors of mapping, for this type of broken terrain, is therefore exceedingly small comparea to normal mapping accuracies. As a criterion, the National Mapping Council ug

Australia Standards of Map Accuracy of February 1953 may be cited; which states: "for maps pubiished at scales of 1:20 000 or smaller, not more than 10 per cent of points tested shall be in error by more than \(1 / 50\) th of an inch ( 0.51 mm ) measured on the publication scale." The criterior. is therefore equivalent to a standard deviation at publication scale of \(\pm 306 \mu \mathrm{~m}\), compared to the arithmetic mean m.s.e. of \(\pm i 35 \mu \mathrm{~m}\). Of the 1120 points tested in the 20 tests, only one point ( \(0.1 \%\) ) exceeded the 0.5 mm criterion; and only 15 points ( \(1.3 \%\) ) exceeded 0.3 mm , of which 8 points occurred in the tests with 16 mm exposure slit. it is interesting to note that the Australian Standards quaiify the accuracy statement by limiting the application only to "weil defined" points, classifying such points as those which ate easily visible or recoverable on the ground. From this point of view it may be argued that any properly focussed point image on an orthophoto is weli defined, and that since the totai information content of the orthophoto is obviousiy much greater than that of the conventional line photogrametale plot, one may speculate that the orthophoto is intrinsicaly of greater accuracy than a conventional photogrommetric plot.

\section*{7.1.iii}

With respect to 7.1.ii(c), the results of tests Of errors for dependency upon speed of scan are somewhat unexpected, particularly in so far as the best resuits judged by minimum \(m_{p}\) were not obtained at the variable speea, wher.
the operator had complete control over the scan speed of the moving floating mark. The best results were obtained at speeds in the orthophoto of \(4 \mathrm{~mm} / \mathrm{sec}\left(\mathrm{m}_{\mathrm{p}} \pm 106-136 \mu \mathrm{~m}\right)\), equivalent to \(1.67 \mathrm{~mm} / \mathrm{sec}\) in the plate. This figure corresponds almost precisely with the figure given by MEIER (1966, 83) of \(1.7 \mathrm{~mm} / \mathrm{sec}\) for the scan speed best suited to the case of medium relief. It seems therefore the the operator is not the best judge of his own scanning ability, but that it pays to put him under a slight strees in order to keep him alert.

However in order to test dependency upon speed, the test results of the series from 2 mm slit were subjected to testing by linear correlation using program innerin (appenaix A). The 2 mm series was selected since the influence of system errors should be negligible in this series, and the linear correlation tested by comparing the corresponding errors \(v_{x}\) between the slowest speed test ( \(v_{d}=2 \mathrm{~mm} / \mathrm{sec}\) ) and each of the faster speed tests in turn. The \(v_{x}\) errorswwere tested rather than the \(v_{p}\) errors, because in the latter case the sign of \(v_{p}\) was given somewhat arbitrarily, with vectors in the lst and \(3 r d q u a d r a n t s\) positive, ana in the remaining quadrants negative. Program LINEFIT calculates the equation of the straight line of best fit of a set of data points, giving the factors \(m\) (slope), and \(b\) (constant), of the equation:
\[
\begin{equation*}
\mathrm{Y}=\mathrm{m} \cdot \mathrm{X}+\mathrm{b} \tag{7.11}
\end{equation*}
\]

The program also gives the correlation coefficient r (Freurd, 1962), where:
\[
\begin{equation*}
r=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \sum\left(Y_{i}-\bar{Y}\right)^{2}}} \tag{Z.iii}
\end{equation*}
\]
and \(-1 \leq r \leq+1\) where the sign corresponds to the slope \(m\). The correlation tests were therefore carried out by setting up equations for each case of the form:
\[
v_{x_{2 / i}}=m \cdot v_{x_{2 / 0}}+b
\]
and the results are given in Table 7.III, where the constant term \(b\) is in \(\mu m\) at the orthophoto scale:

\section*{TABLE 7.III}

Correlation between \(X\) errors in the 2 mm exposure
slit tests
\begin{tabular}{lccc} 
Test & \(m\) & \(B\) & \(r\) \\
\(2 / 4-2 / 0\) & 0.83 & -23 & 0.87 \\
\(2 / 1-2 / 0\) & 0.57 & -29 & 0.73 \\
\(2 / 2-2 / 0\) & 0.46 & 5 & 0.70 \\
\(2 / 3-2 / 0\) & 0.64 & -14 & 0.74
\end{tabular}

The resuits show that the innear correiation is hagh setween the various test, but that there is cercainiy no ciear reiationship based on speed of scary since the slope oit the Iines does not increase with increased speed, but on the contrary decreases until the speed of \(6 \mathrm{~mm} / \mathrm{sec}\) in the orthophoto. The high correlation must occur on account of the common errors of identification and snap-marking and control accuracy of the tested points, since the syster. errors are minimal in this series of tests. This general conclusion is in agreement with that of VISSER given at 4.2.v.

\section*{7.1.iv}

A number of cases of double or missing images were noted in the test measurements, and dependency upon system errors is quite marked, as shown in Table 7.IV:

TABLE 7.IV

Double or Missing Inages in tests of modeSlit Width Total Points Doubie or Missing \% Points
\begin{tabular}{cccc}
2 mm & 280 & 0 & 2 \\
4 mm & 280 & 7 & 2.3 \\
8 mm & 280 & 10 & 3.6 \\
16 mm & 280 & \(i 1\) & 3.0
\end{tabular}
7.I.V

Scale errors of each of the measured orchophocograpa
were derived from the transformation omputacione: and we wad in parts pro milie in rabie 7.V:

TABLE \(7 . V\)

Scalar errors of orthophoto negatives in wocei \(=\)
Parts pro mane
\begin{tabular}{cccccc} 
Slit Width & \(\mathrm{V}_{\mathrm{d}}=2 \mathrm{~mm} / \mathrm{sec}\) & \(2.6 \mathrm{~mm} / \mathrm{sec}\) & \(4 \mathrm{~mm} / \mathrm{sec}\) & \(6 \mathrm{~mm} / \mathrm{sec}\) & \(0 \mathrm{~m} / \mathrm{sec}\) \\
2 & -0.3 & -0.6 & -0.7 & -0.5 & -0.8 \\
4 & -0.7 & -0.6 & -0.5 & -0.2 & -0.4 \\
8 & -0.5 & -0.4 & -0.6 & -0.8 & -0.2 \\
16 & -0.5 & -0.6 & -0.5 & -0.4 & -0.0
\end{tabular}

The mean square error of the scaiacs of the 20 cesus is \(0.53 \%\), but it should be notea that scaining of the individual test modeis was considered satissactory Erom a production viewpoint when correct within \(\pm 0.5^{\circ} / 00\) beee \(6.5 \%\). It is not thought that the exciusively negative sign of the scalars is significant, because the \(b_{X}\) micrometer of the plotter was hardly changed throughout the series of tests. The \(b_{x}\) micrometer of the mopocart is somewhat insensitive to very small changes, and it is thought that a more precise scaling than \(\pm 0.5^{\circ} \%\) coula only be achileved by a very prolonged orientation testing procedure, whici. may hacaly be justified in production.

The effect of a smali scalar error is significant if several orthophoto Eimm negacives are to be matched and joined to a control grid, as wili be common in the case or medium scale mapoing. If the figure of \(\pm 0.53^{\circ} / 00 \mathrm{~m} . \mathrm{s} . e\). of scalar is representative, a corresponding planimetric error of \(\pm 63 \mu \mathrm{mm.s.e}\). is obtained at each corner point of a 100 mm by 200 mm model at plate. The plate scale may therefore be enlarged twice without any great difficuity in fitting to a control gria, but for eniargements above this limit, scaing of the model in the restitution plotter is very criticai, and the extra orientation time to achieve scaling of the order of say \(\pm 0.2 \% \%\) must be accepted as necessary.

\section*{7.1.vi}
rest Model B was scanned with only 8 mm and it man slits at the fixed speed of \(4 \mathrm{~mm} / \mathrm{sec}\) in the orthophoto, equivalent to \(1.67 \mathrm{~mm} / \mathrm{sec}\) at plate. The resuits of the tests are given in Table 7.VI.

TABIE 7.VI
Internal Planimetric Errors of Test Model B fflat texas.
\begin{tabular}{|c|c|c|c|c|}
\hline Slit Width & & \(m_{x} \quad m_{y} \quad m_{p}\) & \begin{tabular}{ccc}
\(\Delta X\) & \(\Delta Y\) & \(\Delta P\) \\
\(\max\). & \(\max\). & \(\max\).
\end{tabular} & \begin{tabular}{l}
Scale Error \\
0 /00
\end{tabular} \\
\hline 8 mm & \[
\operatorname{\mu im}(\mathrm{d})
\] & \[
\begin{array}{rrr}
\hline 87 & 101 & 133 \\
36 & 42 & 55 \\
\hline
\end{array}
\] & \[
\begin{array}{rrr}
\hline 184 & 308 & -311 \\
77 & 228 & -130 \\
\hline
\end{array}
\] & +0. 4 \\
\hline 16 mm & \[
\mu m(a)
\] & \[
\begin{array}{rrr}
118 & 83 & 144 \\
49 & 35 & 60
\end{array}
\] & \(\left\lvert\, \begin{array}{lll}-321 & 294 & -324 \\ -134 & 123 & -135\end{array}\right.\) & +0.4 \\
\hline
\end{tabular}

The results are very similar to the corresponding teste of Model A.

\subsection*{7.2 External Errors in Planimetry}
7.2 .1

A1L of the test models scomed at a specd of \(4 \mathrm{~mm} / \mathrm{sec}\) in the orthophoto were also anaiysed in order wo derive external errors: \(v_{X}{ }^{\prime} v_{Y}^{\prime}, v_{p}\) as defined in 4.4.is by transfomation of the measured coorainates through progran BMMTRAN (applying the afinne correction option., and using as control coordinates solely the four cornex pass poirts with control coordinates derived from the aerial triangulation adjustment. Whe cesuits are given, in tems of micrometers at ortnophoto scale 1:25000 at Table 7.VM.. together with the corresponding intermai errors in parenthesis.

MABLE 7.VEI
Extemal Planimetric Exrons, gests eaecated at \(4 \mathrm{~m} / \mathrm{sec} \operatorname{sen}\)
Speed \(V_{d}\) (fm at oxthophoce Scale 1.25000
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Model A} & & & & \(4 \mathrm{XI}^{\prime \prime}\) & \(\Delta Y^{\prime}\) & - \\
\hline & \(\mathrm{m}_{x}^{\prime}\) & \(\mathrm{ma}^{\prime}\) & mis & rux. & max. & max. \\
\hline \(\mathrm{b}=2 \mathrm{~mm}\) & 97 (84) & 79 (65) & 124(106) & 212(-197) & \(281253)\) & 23 \\
\hline \(\mathrm{b}=4 \mathrm{~mm}\) & \(103(92)\) & 131 (82) & -66(123) & 230 (260) & 290イ179. & S2E \\
\hline \(\mathrm{b}=8 \mathrm{nma}\) & 173(92) & \(103(97)\) & \(202(134)\) & 383( 269) & \(-260653)\) & - 20.0 C \\
\hline \(\mathrm{b}=16 \mathrm{~mm}\) & 181 (98) & 85 (95) & \(200(136)\) & 425 ( 298 ; & \(2.7(243)\) & - \\
\hline \multicolumn{7}{|l|}{Model B} \\
\hline \(\mathrm{b}=8 \mathrm{~mm}\) & 111 (87) & \(141(101)\) & \(179(133)\) & \(200(184)\) & -331 6 (308, & \(-30\) \\
\hline \(\mathrm{b}=16 \mathrm{mmi}\) & 135(118) & 103 (83) & 170(144) & \(344(-321)\) & 340 (294) & 427 \\
\hline
\end{tabular}

\section*{7.2.ii}

Immediately apparent from Table 7.VII is the general degradation of accuracy due to the basis of aerial triangulation data. The arithmetic mean of the m.s.e. vector errors of Model \(A\) is degraded from \(\pm 125 \mu \mathrm{~m}\) to \(\pm 173 \mu \mathrm{~m}\), and of Model \(B\) from \(\pm 139 \mu \mathrm{~m}\) to \(\pm 175 \mu \mathrm{~m}\). The arithmetic mean of the absolute values of maximum coordinate errors is degraded from \(275 \mu \mathrm{~m}\) in the case of Model A to \(361 \mu \mathrm{~m}\), and in the case of Model B from \(318 \mu \mathrm{~m}\) to \(383 \mu \mathrm{~m}\). Coordinate vector errors greater than \(300 \mu \mathrm{~m}\) totalled only 4 points from 324 tested points (1.2\%) in both areas in the case of internal errors, but increased to 20 points ( \(6.2 \%\) ) in the case of external errors. The principal effect of transforming only to the pass points however, was to cause the residual errors to become strongly systematic in distribution, as may be seen from the vector diagrams and histograms 7/11 to 7/20 inclusive. It should be noted however, that the residual errors of both models are nevertheless acceptable in terms of the criterion of Australian National Mapping Standards of Map Accuracy (7.l.ii).
MM.N



FIG. 7.12. DISTRIBUTION OF EXTERNAL
MM.N



FIG. 7.14. DISTRIBUTION OF EXTERNAL ERRORS TEST 4/1



FIG. 7•16. DISTRIBUTION OF EXTERNAL ERRORS TEST 8/1
MM.N



FIG.7.18. DISTRIBUTION OF EXTERNAL ERRORS TEST 16/1

MM.N

7.3 Elevation Errors at Proribe signats
7.3.i

Elevation ercors were measured directiy on the profile signal change points, by the observational techanaus described in 6.8. Profile signal errors were tescea throughout the scan speed range in the 2 m. exposure \(51+2\) series of Model \(A\), and also throughout the fixed speed idzies of \(4 \mathrm{~mm} / \mathrm{sec}\) scan speed (in the orthophoco) in Mocel A. A. Am as the accuracy of the signais is concerned, there is no theoretical dependency on the intervais of whe profiles. yan in principle can orly effect the accuracy of the derivea contours.

The accuracy of the profile sigrais is of paccou-. interest because the resuits are consigerec to de of geneza. application, i.e. not confined to the drop-ine system aione The signal change points, as tested by the airect obsenva. technique, are equivalent to profile elovavion zanaz... type, including those of a purely digital nature, exoeg...... only any electromechanical exrors of datays caueed deaz. the signais have been converted to a graphoa som

Mean square ecrors dne maximum erross ane giv.

The mean square errors have aiso deen usea to dacuce romitu
C numbers using the formula:
\[
c=1000 / 3.33\left(\mathrm{~m}_{\mathrm{z}} \cdot \% / 00^{2}\right)
\]

The formula assumes that contours coula be proanced fico. the profiles without further error degradations, and that the accuracy criterion for the contours shousa be that \(90 \%\) of the points on the contours would be correct withir one hali the contour interval.

Tables 7.VIII and 7.IX are for the internal \(V_{e}\). in so far as external influences due to the errors of aerial triangulation have been removec̃.

\section*{TABIE 7.VIII}

Internal Profile Errors of Model A at Various Scan Speeas
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\begin{array}{ll}\text { Scan Speed } & \left(\mathrm{V}_{\mathrm{d}}\right) \\ \mathrm{mm} / \mathrm{sec} & (\mathrm{Vb})\end{array}\) & \[
\begin{gathered}
2 \\
0.83
\end{gathered}
\] & \begin{tabular}{l}
Average 2.0 \\
" 1.08
\end{tabular} & \[
3.67
\] & 6
2.5 & 8
3.34 \\
\hline \(\mathrm{m}_{\mathrm{z}}^{0} / 00^{\mathrm{Z}}\) & 0.32 & 0.34 & 0.23 & 0.23 & 2. 32 \\
\hline \(\mathrm{v}_{\mathrm{z}} \max { }^{\circ} / 00 \mathrm{z}\) & 1.08 & 1.01 & 1.07 & 0.62 & 1.0. \\
\hline \(\bigcirc\) number & 938 & 882 & 1304 & 1304 & 930 \\
\hline
\end{tabular}

TABLE 7.IX
Internal Profile Errors of Moate a at speed Vea
\begin{tabular}{|l|l|l|l|l|}
\hline Profile Intervai & 2 mm & 4 mm & 8 mm & \(26 \ldots \mathrm{~m}\) \\
\hline\(m_{z} / 00^{2}\) & 0.23 & 0.22 & 0.27 & 0.26 \\
\(v_{z} \max \% / 00 Z\) & 1.07 & 0.63 & 0.53 & 0.70 \\
\(C\) number & 1304 & 1364 & 1211 & 2.35 \\
\hline
\end{tabular}
7.3 .12
 7.VIII and 7.IX:


\subsection*{7.3.1ii}

Comparison of the test results with those of HAMPEL given at 4.3.ii, may be obtained in particular with the four tests of Table 7.IX, where the scan speed at the plate is \(1.67 \mathrm{~mm} / \mathrm{sec}\); compared to \(1.56 \mathrm{~mm} / \mathrm{sec}\) in the HAMPEL profile tests. The range of results is \(\pm 0.22\) to \(0.27 \% / 0 c^{2}\), and the result of HAMPEL was \(\pm 0.5^{\circ} / 00^{Z}\). The rather large discrepancy may be partially due to the method of testing, since HAMPEL's checks were against derived profile sections rather than on the actual signal change points; but more probably the discrepancy occurs because of the wider range of slopes of the HAMPEi test of the order of \(0-190 \%\), compared to \(0-33 \%\) in Model A.
7.3.iv

A more satisfactory comparison is obtainea with the profile tests of VISSER in the second test model of the REICHENBACH area, given at 4.3.iv:
slopes speed \(V_{b} m / s e c\) m.s.e.
REICHENBACH \(0-19 \% \quad 0.74-2.94=0.12\) to \(0.32^{\circ} / 00^{2}\)
FOWLERS GAP 0-33\% \(0.83-3.34 \quad \pm 0.22\) to \(0.34^{\circ} / 002\)
The two sets of results confirm that a standara of accuracy is obtained in profile signals, in moderate slopes, of an order rather similar to that of conventional photogrametcic contouri.g.
```

    7.4 Elevation Errors on Concours
    7.4.i.
    The profies of the sences or tests or mode- A
    carried out at scan specas va of 4 ma/seo, were converted
to contours by the proceduce described in 6.9.ini, and
errors derived on the contour lines close to the check
pontes by the measumemenc cechnicue of 6.8. The internai
errors are given in Table 7.X, corresponaing to the provitag
emors of rable 7.IA.

```

CABLE 7. X
Intemal Contour Errors of Model \(A\), Scan speed \(V_{i}, ~ \operatorname{ag} /\) sec
Profile Separation: \(2 \mathrm{~mm} \quad 4 \mathrm{~nm} \quad 8 \mathrm{~mm} \quad 26 \mathrm{~mm}\)
\begin{tabular}{llllll}
\(\mathrm{m}_{z} / 00 z\) & \(:\) & 0.24 & 0.24 & 0.36 & 0.46 \\
\(V_{z} \max / 0 Z^{Z}\) & \(:\) & 0.92 & 0.61 & 1.20 & 2.44 \\
0 number & \(:\) & 3250 & 1250 & 833 & 652
\end{tabular}

Comparison between results from the provire signals and fro.. the derived conturs showe chat where is a slight faining-ofu An accuracy of contours derived from che ciose zor-2e separations of 2 and 4 mm a racher more pronounced dedind in the accuracy from the E m profile separation and a catan marked loss of accuracy with the 16 ma separation wich in clearly unsuitable Eor the cerrain zype.

The relationship between the results was further investigacei, by testing the linear correlation between the errors acoc-aing to equations \(7.1 i\) and \(7.1 i i\), by forming equations oz zie gec.
\[
v_{z c}=m \cdot v_{z} \cdot p+b \quad \quad\left(7 \cdot v_{i}\right)
\]
where \(v_{z c}\) is the error on a concour neacest to a check point. and \(v_{z p}\) is the corresponding error on a signal change point nearest to a check point. The comparison is not strictiy valid, since the errors do not refer to precisely the same points, but this smail discrepancy was not thought to be very significant taking intc account the relatively large number of points (56) in each test. The correlation coefficients found for each test were:
\begin{tabular}{cc} 
Profile separation & \(r\) \\
2 mm & 0.86 \\
4 mm & 0.63 \\
8 mm & 0.37 \\
16 mm & 0.20
\end{tabular}

These resuits show that the intrinsic accuracy of the profide signals is retainea after deriving contours, only by appropriate choice of profile separation interval. In the case of the first three tests, the mean interval of signai changes aiong the profiles amounted to 4 mm ( \(6.1 .1 i\) ), anc for the 16 mm test the mean intervai of signal change aions the profile was 8 ma because the contour interval was dounied. It is apparent that in the first two tests with high cocreiandos. that the profile separation is equal to or less than the sigrai
interval along the proisie. In the remaining zests, to profile separation is dowie the signal intervai, ana grere is a marked decrease in correlation. It may be concluced thou a suitable choice of proftle separation, is one in whion whe separation is equal to the mean sigral plan interval along the profiles, so that on werage contours are construated from a square grid of discrete points. Additionaily of course, system errors must be considereà, and the size and direction of topographic features taken into account.

\section*{7.4.i主}

When the concoux piots were Detrg cestea vie actual test iocations on the contours wece marked, ain in the prozi-e drection subsequentiy measurec. It was possible to cest the corceiation between elevacion erceas and ground siope \(\beta\), by forming equations of the type:
\[
v_{z c}=\operatorname{motan} \beta+i \quad \quad \theta \cdot v \cdot
\]

The results, together with the correiation coeszionene:are given in Tabie 7.Xi.

TABLE 7.XI
Internal Concour zrcors as a punccior of sioge


It should be noted that the linear correiation is rather weak, and in the case of 16 mm profilie separation practicaily non-existent, so that not too much creaience should be placed on the results as evidence of a koppa type law (4.3.vii). The critical value for \(r\) is 0.25 (for 54 degrees of freedom) at a level of significance \(\alpha=0.05\); i.e. a probability that there is no inear correlation of 5\% (Fisher and lates, 1963). The First three cests therefore indicate that there is some statistical evidence. albeit rather weak, of correiation between elevation errors and ground slope. The mean result of the first three tests (the final test being excluded on acount of the very jow correlation coefficient) is:
\[
v_{z}= \pm(0.18+1.8 \tan \beta)^{\circ} / 00^{2} \quad(7 . v i l i)
\]
7.4.iさi

The previous results were obtained after acjuscing the direct measurements of elevation errors for the computed absolute orientation errors of the aeriai triangulation, derived from the analysis of errors at 5.9. The unagjusced measurements are externai errors ( \(v_{z}^{\prime \prime}\) ', and the resules zor contours of Test Model A are given in Table 7.XII, togetinez with those of rest Modei \(B\), which was analysed oniy for external errors.

\section*{TAEME 7.XTI}

```

Profile Separation: 2 am 4 mm a ma Lome e ra,
m'0/00Z 0 0.27 0.23 0.39 0.53 0.27
v

```

```

        * maz שexcala nocienc
    Comparison with Tabie 7.X showe tuac the Cegradataun w.
accuracy due to the aerial criangulation pams polmge as wo:
as markea as in the case of the pianimetrio ernoze, a, -
Of mean squace errors for model A Denhy I c.25 co 0.5% %
compared to external accuracy of m 0.24 <0 0.40%/002.
Indeed in one case (4 tha profile) the externai accuracy is mac.y........
better, aue presumabiy to a shight emor in leveling of ano
original model at its pass points. The resulus bowever due wo
unexpected since the computed levehiang ercors of wode: A v.
very small (raile 5.JV.a), and during w.ee cest progremue
levelling of the modeis was camried our co = ic w.0.
7.5 Concour Tests Assessed Dy Mustralian rap
Accuracy Standarás
7.5.1
The results of mabie 7.xma nay de amacese% %
Dasis of Austraiian Map Acounaby Stancacas. The movman

```

```

since it is not compietely ciear whether the suandata i. -
straightionwara scatement of excoc cujerence wo wecteg a
standara is of the koppe type (eqn. 4.D). The stanaucd

```
reads: "Vertical accuracy, as applied to contour maps on all publication scales, shall be such that not more than 10 per cent of the elevations tested shall be in error more than one-half the contour interval. In checking elevations taken from the map, the apparent vertical error may be decreased by assuming a horizontal displacement within the permissable horizontal error for a map of that scale". The standard may therefore be interpreted, where \(m_{z}\) is the mean square error of tested elevations, and \(V I\) is the contour interval as either:
\[
\begin{align*}
m_{z} & = \pm V I / 3.33  \tag{7.ix}\\
\text { or, }: m_{z} & = \pm\left(V I / 3.331+m_{p} \cdot \tan \beta\right) \tag{7.x}
\end{align*}
\]
7.5.ii

On the basis of equation 7.ix, for a 5 metre contour interval, \(m_{z}= \pm 1.5 \mathrm{~m}\); and on the basis of equation \(7 . x\) for a \(1: 25000\) publication scale map, \(\mathrm{m}_{z}= \pm(1.5+7.65 \tan\) B) m . The flight aititude ( 6875 m ), and mean square value of slopes at check points ( 5 g ) for Model \(A\), give in terms of parts pro mille Z :
\[
\begin{aligned}
& m_{z}= \pm 0.22^{\circ} / 00^{z} \text { or } \pm 0.31^{\circ} / 00^{z} \text { for a } 5 \mathrm{~m} \text { contour interval } \\
& m_{z}= \pm 0.44^{\circ} / 00^{z} \text { or } \pm 0.53^{\%} / 00^{Z} \text { for a } 10 \mathrm{~m} \text { contour interval }
\end{aligned}
\]

In the case of Model B , mean square value of slope 0.15 g :
\[
m_{z}= \pm 0.22 \% / 00 \mathrm{Z}
\]

7.5.1ii

Diagrams of the elevation errors of the six models amalysed ar externai contoui errors are given as figures 7/21 ro \(/ / 26\). A rather characteristic pattern of errors is evident in the figures for the tests of Model A, exemplified by a preponderance of larger errors in particular in the series of points on the eastern side of the model. Examination of the actucl slopes in the vicinity of these check points, revealed that the points all occurred in areas of rather marked char. es of slopes ia the scan airection, rather than large absolute siopes.



MM．N
```

30『®.
290%.
2日『『.
Z7ロロ.
2506.

```

MM.N

MM.N



\subsection*{7.6 Production Times for Dropline Charts}
7.6.i

Times for the conversion of the drop inne charts \(t o\) contour documents are given in Table 7.XIII, for an area in the chart of 400 mm by 200 mm .

TABLE 7.XIII
Contour Drawing by the Drainage Interpretation recinici, e
Irea: 400 by 200 mm

time for conversion is rather evident, and based on these results figure \(7 / 27\) has been constructed. The iigure repraseles contour conversion times per \(\mathrm{d}_{\mathrm{m}}^{2}\), for areas of broker teriani, but again with the time spent on arainage interpretazion excluded. It is clear that this elemenc is rather variane. but it is thought that the time actually taken in chese tescs: equivalent to 15 minutes per \(d_{m}^{2}\), represents an upper imit, due to the complexity of the drainage pattern.

It is clear that contour documents prociuced maniaì.
from dropline charts are by no means a free bonus of the orthophotographic process. On the contrary, considerabie time and effort is necessary, together with an expertise which may only be achieved by proper training. One should also recognise that the document produced is not a fair-uro trace, and that a considerable amount of extra cartographic time may be required for this purpose. However it shoula de possible, within the more sophisticated facilities of a production mapping agency, to overcome this disacivantage by use of a suitable drawing medium, such as is suggested in 6.9.in..

In spite of the foregoing remarks, the producta...
of contour overlays by drop-line techniques shouid not be condemned, or dismissed as merely a passing phase. It hus been demonstrated in these tests that contours can be prodicec in terrain conditions of some complexity. It should be acknowledged that the data for the contours has not invoived a photogrametric operator in any consiaerabie extra macr. time over and above that required for the scanning operat.un.
MEAN SIGNAL DENSITY / dm \({ }^{2}\)

BROK! N
ONVEFSIO: TIME
FIG.7.27. DROP-1 INE CONTOUR

\begin{abstract}
Furthermore there is no requirement for adaicional expensive equipment, such as would be the case if the scanned proflies were digitised. It is clear that the additional conversion work could be carried out by a junior cartographic techniciar after appropriate training. Whilst the results may lack the elegance, topographical exactitude, and geomorphological quality of a conventional photogrammetric plot, such contoure could satisfy the requirement for elevation data rather rapidly in the context of the mapping of an underdeveloped territory, based on qualitative and quantitative criteria realistically lower than is normal with conventional mapping.
\end{abstract}

\subsection*{7.7 Conclusion}
7.7.i

The various tests have been carried out under conditions which simulate a medium-scale mappias project of underdeveloped terrain, and in which the phases of production have been integrated from initial field-work onwards. The tests confirm:
(a) the high internai planimetric accuracy of orthophotographs,
(b) that good elevation resuits are achieved internally with profile signals during the scanning operation,
(c) that the influence of scanning speed is rather low both in respect of horizontal and vertical accuracy,
(d) that the influence of systen exrors is rather marked with unsuitabie choice as slit width in broken terrain.

From (a) above, it follows that the usual standards achieved for example in Independent Model Triangulation, are sufficient to ensure that the final map product should meet established map accuracy standards. From (b) above, it would appear that results may be achieved from continuous digitising techniques, which are comparable to conventional photogrammetric contouring.

> 7.7.ii

Additionally it is shown that considerable effort is required to produce contours from drop-line charts, if the terrain structure is rather complex. A technique has been developed, based on interpretation by drainage pattern, which may have general applicability to the interpretation of pictorial elevation signals.

\section*{7.7.iii}

In conclusion, Resolution 9 of 7th November 1970,
framed by the Sixth United Nations Regional Cartographic Conference for Asia and the Far East (U.N., 1970, 16)
is wholeheartedly endorsed:

\section*{The Conference}
iNoting the urgent need for maps at various scales and the importance of providing them for purposes of economic and social development in the countries of the region,

Drawing attention to the wealth and completeness of the information presented by orthophot maps, especiaily for the planning and execution of natural resources development projects,

Woting further that in appropriate cases modern orthophototechniques can be used to economic advantage in the production and revision of maps,

Recommends that increased use should be made or orthophotos for map production and revision in order to save time, expense and highly skilled manpower, and that map users in general should be educated in the practical application or orthophotos and orthophoto maps;

Further recommends that assistance should be made available to the countries of the region by those countries which have already gained experience in the practical application and production or orthophoto maps and in map revision using orthophotos, and that close cooperation should be encouraged between the different disciplines using maps in the countries of the region in order to obtain the maximum benefit from orthophoto maps;

Urges all Governments to encourage the training of map users in the use of air photographs and orthophotos.

\section*{ACKNOWLEDGEMENTS}

The author acknowledges with gratitude the active interest and encouragement of Professor P.V. Angus-Leppan, Head of the School of Surveying, University of New South waies. He is very much indebted to his colleague and Supervisor Dr. J.C. Trinder, for advice, guidance, helpful criticism, and particularly for his assistance in the latter stages of this work.

In a University School as active as the Schooi of Surveying it is rather invidious to single out some colleagues to the exclusion of others; because the author is very much aware that all staff, administrative as well as academic, cheerfully undertake extra burdens when a full-time staff member is engaged on research work. However a particular debt of gratitude is owed to Messrs. A.J. Robinson and A.P.H. Werner for their expert (and unpaid) participation in field work, and again to the latter for much help in translation work. The author has also been fortunate to find in Mr. L. Berlin a stimulating, willing collaborator, especially in the work associated with perspective centre calibrations. He is most grateful to Dr. S. Nasca for the painstaking and time-consuming task of plan measurements carried out on the orthophotograph test negatives.
\begin{tabular}{|c|c|}
\hline ACKERMANN, F. 1966 & "On the theoretical accuracy of planimetric block triangulation". Photogrammetria, 21. \\
\hline ACKERMANN, F. 1969 & "Uberprüfung einer grossmasstäbigen orthophotokarte". Bildmessung und Luftbildwesen, 37, 5/69. \\
\hline AHREND, M. 1966 & "Analysis of Photogrammetric errors". Zeiss-Mitteilungen, 4, (1966), No. 2. \\
\hline ALBERTZ, J. KREILING, W. 1972 & "Photogrammetric Guide". Wichonann, Karlsrube. \\
\hline \[
\begin{aligned}
& \text { BEAN, R.K. } \\
& 1968
\end{aligned}
\] & "The Orthophotoscope and its Development" Canadian Surveyor, Vol. XXII, No. 1. \\
\hline \[
\begin{aligned}
& \text { BERLIN, L. } \\
& \text { HOLDEN, G.J.F. } \\
& 1974
\end{aligned}
\] & "Programmable Desk Calculators and Independent Model Triangulation". (In Print) Photogrammetric Engineering, \\
\hline BERVOETS, S.G. 1973 & "Aerotriangulation and Block Adjustment in Australia". Proc. 16th Austration Survey Congress, Canberra. \\
\hline \[
\begin{aligned}
& \text { BLACHUT, T.J. } \\
& 1968
\end{aligned}
\] & "Further Extension of the Orthophoto Technique". Canadion Surveyor, Voi.x..... No. 1. \\
\hline BLACHUT, T.J. 1972 & \begin{tabular}{l}
"Orthophoto technique: basic inscruments and Methods". World Cartography, \\
Vol. XII, U.N., N.Y.
\end{tabular} \\
\hline BORMANN, G. 1970 & "Orthophoto Attachment for the Wild Autograph". Proc. ASP-ACSM Corventiv: Washington, D.C. \\
\hline
\end{tabular}

BROWN, M.S. 1968

BRUNNTHALER, F.J. 1972

CIMERMAN, V.J. TOMASEGOVIC 1970

EBNER, H . WAGNER, W. 1972

ECKHART, D. 1966

FERBER, R. 1928

FISHER, R.A.
YATES, F.
1963
FLEMING, E.A. 1973

FORSTNER, R. 1968

FREUND, J.E. 1962
"Refraction Measurements in an Aria Climate". R.E.F.-E.D.M. Conference November 1968. University of New South Wales.
"Orthophoto Mapping in Practice".
World Cartography, Vol. XII, U.N. N. M.
"Atlas of Photogrammetric Instruments". Elsevier, Amsterdam.
"Aerotriangulation with Independent Models in the Zeiss Planimat".
Nachrichten aus dem Kasten und
Vermessungswesen, Series II, No. 27,
"The Anblock Method: Practical International Symposium on Aerial
Triangulation, Urbana, Illinois, A.s.P.
"Gallus apparatus for photo-reconseruction:"
International Civil Aeronauties Cor, ere.
Washington, D.C.
"Statistical Tables for Biological, Agricultural and Medical Research". 6th edn., Oliver and Boyd, Edinburgh.
"Accuracy and Image Quality of Produccion Orthophotographs". Orthophoto Workshop II, A.S.P.
"Experience with GZ-1 Orthoprojector" Canadian Sumveyor, Vol. XXII, No. i.
"Mathematical Statistics". Prentice-Halz.
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { HAMPEL, G. } \\
& 1967
\end{aligned}
\] & \begin{tabular}{l}
"Orthoprojektion und Grundkartenwerk \\
l:2 500 unter besonderer Berucksichaigung der Hohendarstellung". Bizdmessing. und Luftbildwesen, 35,
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { HASSETT, T.J. } \\
& 1966
\end{aligned}
\] & "Aerial Mosaics and Photomaps" Manual of photogrammetry, 3rd Ean., Vol. II, A.S.P. \\
\hline \[
\begin{aligned}
& \text { HELAVA, U.V. } \\
& 1968
\end{aligned}
\] & "On Different Methods of Orthophotorrak. Canadian Surveyor, Vol. XXII, No. 1. \\
\hline \[
\begin{aligned}
& \text { HOBBIE, D. } \\
& 1969
\end{aligned}
\] & "Gigas-Zeiss Orthoprojector equipment news". Bildmessung und Luftbildaweser, 37, 5/1969. \\
\hline HÖHLE, J. SCHNEIDER, H. 1973 & "The Use of the Wild PPO-8 Orthophoto Equipment for the A-8 Autograph" Orthophoto Workshop II, A.S.P. \\
\hline \[
\begin{aligned}
& \text { HOLDEN, G.J.F. } \\
& \text { BERLIN, L. }
\end{aligned}
\] & "Programmable Desk Calculators anä Independent Model Triangulation" (In Print) Photogrammetric Engineer: \\
\hline \[
\begin{aligned}
& \text { JERIE, H.G. } \\
& 1968
\end{aligned}
\] & "Theoretical Height Accuracy of Strip and Block Triangulation with and without the use of Auxiliary Data". Photograrmes. 23.1. \\
\hline \[
\begin{aligned}
& \text { JERIE, H.G. } \\
& 1972
\end{aligned}
\] & "New concepts of topographic mapping in developing countries". World Cartography, Vol. XII, U.N., N.Y. \\
\hline JOHANNSON, 0. & "Orthophoto Maps as a Basis for the Economic Map of Sweden at the scale I:10 000". Canadian Surveyor, Vol. XXII, No. 1. \\
\hline
\end{tabular}

KOPPE, \(C\). 1902

LACMANN, 0. 1931

LAMBERT, B.P. 1971

LAMBERT, B.P. 1973

LIGTERINCK, G.H. 1970

MEIER, H.K. 1966

MEIER, H.K. 1966 (b)

MEIER, H.K. 1968

NEUBAUER, H.G. 1964

NEUBAUER, H.G. 1969
"Die neue topographische Laudeskarte des Herzogtums Boraunschweig im Masstab 1:10 000". Zeitschrift für Vermessungswesen, 14/1902. Stuttgart.
"Entzi mungsgerät für richt ebenes

"Production of Small and Medium Scaie Maps with the aid of Orthophotography" Commonwealth Survey Officers Conference, Paper Cl.
"Statement of Activities of the Division of National Mapping for the period lst January 1972 to 31st December 1972" Department of Minerals and Energy, Canberra.
"Aerial Triangulation by Independent Models". Photogrammetria, 26/1970.
"Theory and practice of the Gigas-Zeiss Orthoprojector". Zeiss-Mitteizungen, 4 (1966) No. 2.
"Art und Genauigkeit der Höhendarsteilung in Orthoprojektor Gigas-Zeiss".
Bildmessung und Luftbildwesen, 34, 1966.
"The Gigas-Zeiss Orthoprojector Design Features and Practical Results". Canadian Surveyor. Vol. XXII, No. 1.
"Uber die Genauigkeit von Orthophotc Institut für Angewandte Geodäsie, Frankfurt.
"Die Geländeneigungen und uiber Einfluss auf die Lagefehler der differentiellen Entzeming"
Bildmessung und Luftbildwesen, 37, 4/1969
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { OLSEN, R.W. } \\
& 1973
\end{aligned}
\] & "Orthophotoquad Production in the Geological Survey". Orthophoto Workshop II, A.S.P. \\
\hline \[
\begin{aligned}
& \text { PARENTI, G. } \\
& 1968
\end{aligned}
\] & "Analytical Plotter with Orthoprinter". Canadian Surveyor. Vol. XXII, No. 1. \\
\hline \[
\begin{aligned}
& \text { ROBINSON, A.J. } \\
& 1972
\end{aligned}
\] & "Field Tests with the HP3800A Distance Meter". Australian Surveyor, Vol. 24, No. 3. \\
\hline \[
\begin{aligned}
& \text { RYSER, H.A. } \\
& 1973
\end{aligned}
\] & "A Multipurpose Mapping Program for the County of San Mateo". Orthophoto Workshop II, A.S.P. \\
\hline SCHMIDT-FALKENBERG, H. 1970 & "Höhenlinien aus photogrametrisch gemessen Geländeprofilen und uber Brauchbarkeit fur den Kartenmasstab 1:5 000." German Geodetic Comission, Series C, No. 151. \\
\hline \[
\begin{aligned}
& \text { SCHNE IDER, H. } \\
& 1970
\end{aligned}
\] & \begin{tabular}{l}
"Untersuchungen am Orthoprojektor GZ1 über die Höhengenauigkeit der Profilschraffenmethode". \\
German Geodetic Commission, Series C, No. 162.
\end{tabular} \\
\hline SCHNEIDER, H. HÖHLE, J. 1973 & \begin{tabular}{l}
"The Use of the Wild PPO-8 \\
Orthophoto Equipment for the A-8 \\
Autograph". Orthophoto Workshop II, \\
A.S.P.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { SCHUT, G.H. } \\
& 1967
\end{aligned}
\] & "Formation of Strips from Independent Models". N.R.C. Canada Report \(A P-F F \quad 3 \hat{c}\). \\
\hline \[
\begin{aligned}
& \text { SCHUT, G.H. } \\
& 1968
\end{aligned}
\] & "A Fortran Program for the Adjustment of Strips and Blocks by Polynomial Transformations". N.R.C. Canada Report AP-PR33. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { STEWARDSON, P.B. } \\
& 1972
\end{aligned}
\] & \begin{tabular}{l}
"The Determination of Frojection \\
Centre Coordinates". Intemational \\
Archives of Photogrammetry, XIT congress.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { SZANGOLIES, K. } \\
& 1972
\end{aligned}
\] & ```
"Method and accuracy of differentiai
rectification with the Topocarc-
Orthophot-Orograph". Jena Review, 2972/2.
``` \\
\hline \[
\begin{aligned}
& \text { SZANGOLIES, K. } \\
& 1973
\end{aligned}
\] & "Economy and Accuracy in the productior. of Orthophoto Maps". Orthophoto Workshop II, A.S.P. \\
\hline THOMPSON, E.H. 1959 & \begin{tabular}{l}
"An Exact Linear Solution of the Problem of Absolute Orientation". \\
Photogrammetria 1958-59, Vol. 15, No. 4.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { TOMASEGOVIC } \\
& \text { CIMERMANN, V.J. } \\
& 1970
\end{aligned}
\] & "Atlas of Photogrammetric Instruments". Elsevier, Amsterdam. \\
\hline \[
\begin{aligned}
& \text { TRINDER, J.C. } \\
& 1971
\end{aligned}
\] & "Some Remarks on Numerical Absoiute Orientation". Australian Sumeyor. Vol. 23, No. 6. \\
\hline UNITED NATIONS 1970 & "Report of the Sixth United Natione Regional Cartographic Conference =oc Asia and the Far East". Document E/CONP/.57/2., U.N., New York. \\
\hline \[
\begin{aligned}
& \text { URBAN, F. } \\
& 1973
\end{aligned}
\] & "Large Scale Mapping in New Soutin Wales". 16th Australian Survey Congrese, Canberra. \\
\hline \[
\begin{aligned}
& \text { VISSER, J. } \\
& 1968
\end{aligned}
\] & \begin{tabular}{l}
"Orthophotos at the I.T.C." \\
I.T.C. Publication A41/42.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { voss, F. } \\
& 1968
\end{aligned}
\] & \begin{tabular}{l}
"Die Herstellung von Orthophotokarten \\
1:5 000 in Nordrheim-Westphalen". \\
N.O.V. - Nachrichten aus dem öffentlsoner Vermessungsdienst. Nordrheim-Westfalen. 1/1968.
\end{tabular} \\
\hline
\end{tabular}
```

YATES, F.
FISHER, R.A.

```

ZEISS-VEB
Carl Zeiss JENA 1971

\section*{ZEISS-VEB}

Cari Zeiss JENA 1971
"Statistical Tables for Biological, Agricultural and Medical Researci". 6th edn., Oliver and Boyd, Edinourgh.
"Instruction Manual Topocart B". Brochure 14-G3686-2.
"Instruction Manual Orthophot". Brochure 14-G373-2

\section*{APPENDIX A}

\section*{Notes on Computing Methods and Programs}
1. Much of the experimental work described involved considerable calculation effort, the mathematical complexity of which was rather trivial, but the volume of which presented some problems. During the period in which the work was executed, turn-around times at the IBM 360 computer of the University of New South Wales were particularly slow during teaching sessions, amounting to 48 hours or more. Terminal facilities were not available to the computer from the photogrammetric laboratories, so that it was not possible for example to test model connections between successive models in Independent Model Triangulation without unacceptable delay. At a rather eariy stage in the work, the School of Surveying obtained a programmable desk calculator, HEWLETT-PACKARD Model 9810A, and virtually all computational work was carried out by this means; excepting only work requiring massive storage such as Block Adjustment. The calculator was operated almost as a mini computer, in a role practically on-line to photogrammecte plotters, except that there was no physical connection ochec than through the operator. It proved possible to devise programs which were subsequently combined into a 'photogrammetric package', handling all phases of Independent Model triangulation from perspective centre calibration to strip adjustment (Berlin and Holden, 1974).

The HP9810A calculator is the basic unit of a 9800 system, for which there are numerous plug-in and peripheras devices, such for example as the Plotter used to draw the model error diagrams of Chapter 7 .

The calculator may be manually operated, or program operated; the standard program memory storing up to 500 progra steps, with standard data memory to 5l data numbers, the two memories being separate. Programming features include conditional and unconditional branching, direct and indirect data storage, data register arithmetic, relocatabie programs, subroutines, program editing, and the ability to automaticaily load magnetic cards containing either programs or data. The calculator used in this work was extended so that the available program steps became 2036, and the data memory was extended to 111 registers. In addition two ROM's (read-oniy. memories) were available. The Mathematics ROM permits automatic keying of logarithms and exponential functions; trigonometrical functions in degrees, radians, or grads; coordinate transformation; vector arithmetic; manipulation of complex numbers; and the programming facility of iterative subroutines (do-loops). A Printer Alpha ROM was also installed together with a Printer, permitting the printing of alphanumeric characters and messages. The basic calculator includes a 3 line display, in which up to 10 digits and 2 exponent digits are displayed in either fixed point or floating point numbers. However, calculations are performed and data is stored, with two additional digits to

```

ABSOR: Calculates an orthogonal three dimensional
rotation, shift of origin, and scale change,
between sets of three dimensional coordinates.
INDEMODFORM: Forms the individual sets of coordinates of
Independent Models into a continuous strip,
either in ground coordinates or in the
coordinates of the first model.
The first four programs listed are trivial, and descriptions
are given only of the remainder. An adaitional program used
was PERCAL, for perspective center calibrations, devisec zy
L. BERLIN, and described elsewhere (Berlin and Hozcien, 15%.

```
4. SIMTRAN
4.1 The program computes a linear similarity transformaz...
of the form: \(\quad X^{*}=A X+B Y+C 1\)
\(Y *=A Y-B X+C 2\)
ir which \(A, B, C 1, C 2\) are functions of four unknowns:
\(A=\lambda \cdot \cos \theta\)
\(B=\lambda \cdot \sin \theta\)
\(\mathrm{Cl}=\Delta \mathrm{X}^{*}\)
\(C 2=\Delta Y^{*}\)
in which \(\lambda\) is a scale factor, \(\theta\) a rotation, and \(\Delta X *\) and \(\Delta Y *\) are shifts of origin of the system \(X, Y\) in units of system \(X^{*}, Y^{*}\).
4.2 The least squares solution is direct, by calcuiating the following terms after all corresponding data is entered for \((n)\) points:
\[
\begin{aligned}
I & =\left[X X^{*}\right]+\left[Y Y^{*}\right] \\
I I & =\left[Y X^{*}\right]-\left[X Y^{*}\right] \\
I I I & =[X X]+[Y Y] \\
I V & =n \cdot I I I-[X]^{2}-[Y]^{2} \\
A & =\frac{n \cdot I-[X]\left[X^{*}\right]-[Y]\left[Y^{*}\right]}{I V} \\
B & =\frac{n \cdot I I-[Y]\left[X^{*}\right]+[X]\left[Y^{*}\right]}{I V} \\
C 1 & =\frac{\left[X^{*}\right]-A[X]-B[Y]}{n} \\
C 2 & =\frac{\left[Y^{*}\right]+B[X]-A[Y]}{n} \\
\lambda & =\sqrt{A^{2}+B^{2}} \\
\theta & =\tan ^{-1} \cdot \frac{B}{A}
\end{aligned}
\]
4.3 Both sets of coordinates are retainea in stexage order to compute residuals \(V_{X} V_{Y}\) between \(X * Y\) and the \(w, \quad\) zormad values of \(X Y\). A radius vector standard error is computed Eron. the residuals in the form:
\[
\sigma=\sqrt{\frac{V_{X} V_{X}+V_{Y} V_{Y}}{2 n-4}}
\]

Because the corresponding pairs of coorainates are retainad in store, the total number of corresponding pairs to compuce the transformation is limited to 20 , occupying 80 registers. After the calculation, as many other points may be transformed as desired.
4.4 The program includes an affine option, intenced to be used with program stored functions Ai, A2, A3, B1, B2: 33. in order to adjust coordinate \(X Y\) as they are entered. This facility compensates for the known non-orthogonaility of the measuring instrument (6.6). The complete SIMTRAN program has 1280 instructions with 100 data registers allocated. An example of the input/output print is given in Table A.I.

SIMILARITY
TRANSFORM \(X *=A X+B Y+C L\) \(Y^{*}=A Y-B X+C 2\) WITH AFFINE OPTION
G.J.F.HOLDEN U.N.S.W.MAY 1972

SET ELAG IF AEEINE OPTMON REQUIRED
ENTER N NUMBER
OF COMMON POLNTS FOR COMPUTATION OF COEFFICIENTS (2 TO 20) RFFINE NOT USED
9.00000*

ENTER N SERS XY IN FINAL SYSTEM
\(99.99540^{*}\) 200.02180* 299.98110* 200.05710*
499.96490* 200.09290*
99.98490* 399.99220*
299.96320*
400.05390*
499.93210* 400.08870*
99.95280* 599.99450*
299.96970*
600.05740*
499.95150*
600.06880*

ENMER N SETS XY
INTTIAL SYSTEM
100.00000*
200.00000*
300.00000*
200.00000*
500.00000* 200.00000*
\(100.00000^{*}\) 400.00000*
300.00000* 400.00000*
500.00000* 400.00000*
100.00000* 600.00000*
300.00000* 600.00000*
\(500.00000^{*}\) 600.00000*

A
B
Cl
\(-0.00012\)
0.03538

C 2
0.03435

SCALAR
0.99994

ROTATION IN ARC \(-0.00012\)

RESIDUALS
0.00897
0.01238
0.01113
0.00252
0.01519
\(-0.00834\)
\(-0.005 .-\)
0.03034
0.00409
\(-0.00642\)
0.02305
\(-0.01628\)
-0.0063:
0.01589
\(-0.02735\)
\(-0.02206\)
\(-0.02125\)
\(-0.0065\)
SMANDARD ERROR ZADIUS VECTOR 0.02552

ENTER XY OThEES
SET RLAG TE
AFFINE OP:ION
WAS USEL

TABLE A. I

\section*{5. AFFTRAN}

This program computes an affine transformation:
\[
\begin{aligned}
& X^{*}=A I+A 2 X+A 3 Y \\
& Y^{*}=B I+B 2 X+B 3 Y
\end{aligned}
\]

The upper triangular terms of the normal equations from \(n\) corresponding points are similar for both \(A\) and \(B\) unknowns, cind the \(A\) equations including the vector of constant terms are:
\[
\begin{aligned}
\mathrm{n} \cdot \mathrm{~A} 1+[\mathrm{X}] \cdot \mathrm{A} 2+ & {[\mathrm{Y}] \cdot \mathrm{A} 3-\left[\mathrm{X}^{*}\right] } \\
{[\mathrm{XX}] \cdot \mathrm{A} 2+} & {[X Y] \cdot \mathrm{A} 3-[\mathrm{XX*}] } \\
& {[Y Y] \cdot \mathrm{A} 3-\left[\mathrm{XX}^{*}\right] }
\end{aligned}
\]

Solution of the normal equations is by Choleski aecomposit:
The program then computes residual errors \(V_{X} V_{Y}\) for the transformed \(X Y\) coordinates, and standard errors in the form:
\[
\sigma_{V_{X}}=\sqrt{\frac{V_{X} V_{X}}{n-3}} \text { and } \sigma_{V_{Y}}=\sqrt{\frac{V_{Y} V_{Y}}{n-3}}
\]

A specimen input/output of the 1032 instruction, 98 register program, in a version for a maximum of 20 corresponding poi..... is given in Table A.II. Data entry 1 is the number \(n\), \(a<c\) entry 2 is initial \(X Y\) coordinates, and data entry 3 is the final \(X^{*} Y^{*}\) coordinates. The data is identical to that of Table \(A . I\), and the improved residuals \(V_{X} V_{Y}\) may be noted.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{AFFINE}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\(\mathrm{X}^{*}=\mathrm{Al}+\mathrm{A} 2 \mathrm{X}+\mathrm{A} 3 \mathrm{Y}\)} \\
\hline \multicolumn{2}{|l|}{Y* \(\times \mathrm{Bl}+\mathrm{B} 2 \mathrm{X}+\mathrm{B} 3 \mathrm{Y}\)} \\
\hline \multicolumn{2}{|l|}{G.J.F.HOLDEN} \\
\hline \multicolumn{2}{|l|}{UNSW MAR 1972} \\
\hline \multicolumn{2}{|l|}{DATA ENTRY 1} \\
\hline \multicolumn{2}{|r|}{9.00000} \\
\hline \multicolumn{2}{|l|}{DATA ENTRY 2} \\
\hline & 100.00000* \\
\hline & 200.00000* \\
\hline & 300.00000* \\
\hline & 200.00000* \\
\hline & \(500.0000{ }^{*}\) \\
\hline & 200.00000* \\
\hline & 100.00000* \\
\hline & 400.00000* \\
\hline & 300.00000* \\
\hline & 400.00000* \\
\hline & 500.00000* \\
\hline & 400.00000* \\
\hline & 100.00000* \\
\hline & 600.00000* \\
\hline & 300.00000* \\
\hline & 600.00000* \\
\hline & 500.00000* \\
\hline & 600.00000* \\
\hline
\end{tabular}

DATA ENTRY 3
\(99.99540^{*}\)
\(200.02180^{*}\)
\(299.98110^{*}\)
\(200.05710^{*}\)
\(499.96490^{*}\)
\(200.09290^{*}\)
\(99.98490^{*}\)
\(399.99220^{*}\)
\(299.96320^{*}\)
\(400.05390^{*}\)
\(499.93210^{*}\)
\(400.08870^{*}\)
\(99.96280^{*}\)
\(599.99450^{*}\)
\(299.96970^{*}\)
\(600.05740^{*}\)
\(499.95150^{*}\)
\(600.06880^{*}\)

TRANSFORMATION ELEMENTS

AI
0.01007

A2
0.99992

A3
\(-0.00005\)
B1
0.00404

B2
0.00020

B3
0.99996

RESIDUAL ERRORS VX
VY
\(-0.00278\)
\(-0.00612\)
\(-0.00424\)
-0.00111
\(-0.00381\)
\(0.0034 i\)
-0.00184
0.01496
0.00409
\(-0.00642\)
0.01942
-0.00091
0.01069
0.00414
-0.01198
-0.01844
-0.00954
0.01048

SIGMA VX
VY
0.01145
0.01143

ENTER XY OTHERS
6. ABSOR
6.1 The absolute orientation program is a spatiai similarity transformation with over-aetermination, the formulation of which is similar to that given by ALBERTZ (1972). The orthogonal transformation equation is rigorous but the solution for the 7 unknowns (l scalar, 3 shifts, 3 rotations) is not a simultaneous solution of all. The shifts are determined as centre of gravity origin shifts for the two systems, the scalar as the mean scalar for all corresponding distances from the two origins. The 3 rotations are determined by a least squares procedure, in which the nomal equations are solved for corrections to initial values of the rotations (usually zero) to provide updated values, which are then used in the transformation to compute new constant terms to reiterate the normal equations. The iterations terminate (usually after one or two with near vertical photography) when the corrections to all rotations are smaller than \(10^{-5}\) racians. The solution of the normals is by Cholesky decomposition using only the upper triangular elements and the vector of constant terms.
6.2 The program calculates in the following sequence after data is entered for ( \(n\) ) points; the data being entered firstly in the final system XYZ, and then in the same order 0 . points in the initial system xyz.
(iv) The normal equations are formed for solution of corrections \(\partial \omega, \partial \phi, \partial k\) to the current values of the rotations; the upper triangular and constant terms being:
\[
\begin{aligned}
& {\left[\bar{y}_{i}^{2}+\bar{z}_{i}^{2}\right] \partial \omega-\left[\bar{x}_{i} \bar{y}_{i}\right] \partial \phi-\left[\bar{x}_{i} \bar{z}_{i}\right] \partial \kappa-\lambda^{-1} \cdot\left[\bar{z}_{i}\left(Y_{i}-Y_{i}^{\prime}\right)-\bar{y}_{i}\left(Z_{i}-Z_{i}^{\prime}\right)\right]} \\
& {\left[\bar{x}_{i}^{2}+\bar{z}_{i}^{2}\right] \partial \phi-\left[\bar{y}_{i} \bar{z}_{i}\right] \partial K-\lambda^{-1} \cdot\left[\bar{x}_{i}\left(Z_{i}-z_{i}^{\prime}\right)-\bar{z}_{i}\left(x_{i}-x_{i}^{\prime}\right)\right]} \\
& {\left[\bar{x}_{i}^{2}+\bar{y}_{i}^{2}\right] \partial K-\lambda^{-1} \cdot\left[\bar{y}_{i}\left(x_{i}-x_{i}^{\prime}\right)-\bar{x}_{i}\left(y_{i}-y_{i}^{\prime}\right)\right]}
\end{aligned}
\]
(v) Updated values of the rotations are formed:
\[
\omega^{n+1}=\omega^{n}+\partial \omega ; \phi^{n+1}=\phi^{n}+\partial \phi ; \kappa^{n+1}=\kappa^{n}+\partial \kappa^{n}
\]
(vi) The program returns to (iii) above.
6.3

The iterations terminate when each of the corrections to rotations is smaller than \(10^{-5}\) radians. In the event that the solution does not converge by 10 iterations, a "check data" message is printed and program execution stops. When the program terminates normally, the transformation parameters and the residual of the transformed coordinates are printed out. A radius vecor standard error is also computed, and printed first in units of the final coordinates, secondly in units of the initial coordinates, the form of the error being:
\[
\sigma=\sqrt{\frac{V_{X X} V_{X}+V_{Y} V_{Y}+V_{Z} V_{Z}}{3 n-7}}
\]
(i) Centre of gravity coordinates are calculated for both systems, the centre of gravity of the final system giving the three shift unknowns:
\[
x_{s}=\frac{\left[x_{i}\right]}{n} ; x_{s}=\frac{\left[x_{j}\right]}{n} ; \text { and similarly for }
\]
\(Y_{S}, Z_{S}, Y_{S}, Z_{S}\).

Following this the sets are reduced to the centres of gravity:
\[
\begin{aligned}
& \bar{x}_{i}=x_{i}-x_{s} ; \bar{x}_{i}=x_{i}-x_{s} ; \text { similarly for } \bar{y}_{i}, \bar{z}_{i}, \bar{y}_{i}, \bar{z}_{i} . \\
& \text { (ii) } \\
& \lambda=\frac{\left[\sqrt{\bar{x}_{i}^{2}+\bar{Y}_{i}^{2}+\bar{z}_{i}^{2}}\right]}{\left[\sqrt{\bar{x}_{i}^{2}+\bar{y}_{i}^{2}+\bar{z}_{i}^{2}}\right]}
\end{aligned}
\]
(iii) Transformed coordinates \(X_{i}^{\prime} Y_{i}^{\prime} Z_{i}^{\prime}\) are calculated from the orthogonal transformation in matrix form:
\[
\left(\begin{array}{c}
X_{i}^{\prime} \\
Y_{i}^{\prime} \\
Z_{i}^{\prime}
\end{array}\right)=\lambda \cdot R\left(\begin{array}{c}
X_{i} \\
\bar{Y}_{i} \\
\bar{Z}_{i}
\end{array}\right)+\left(\begin{array}{c}
X_{s} \\
Y_{s} \\
Z_{s}
\end{array}\right)
\]
in which \(R\) is a \(3 \times 3\) rotation matrix of which the nire elements are the well known functions of three rotations \(\omega, \phi, k\). In the first iteration the matrix is a unit matrix unless predetermined values of the rotations have been stored.

At this stage, as many other points as may be desired may now be transformed.

Two versions of the program exist, one which compute from a maximum of 4 corresponding sets of coordinates in which only 51 storage registers are used, and one from a maximum of 12 sets in which 98 registers are used. The programs consists of 2035 instructions. A specimen input/output is shown in Table A.III.

\section*{7. INDEMODFORM}

The core of this program is the previous ABSOR program, incorporated as a subroutine. The program has been compiled for a standard pattern of model joins consisting of a perspective center and three pass points corresponding to one-another in the two models to be joined.

Three types of data entry control stages of the program. Data entry type 1 consists of points in the first fixed model which are not: join points. Data entry type 2 consists of the perspective centre and three model pass points of the fixed model at the first join, followed immediately by the corresponding points in the new model. At this stage absolute orientation is iterated, terminating when the test limit is reached. The mean strip coordinates of the model joins are printed, each followed by the half discrepancies. The number of iterations is printed. Data entry type 3 consists

ABSOLUTE
ORIENTATION
TOPOCART 18.8.73
G.J.F. HOLDEN
U.N.S.W. JAN 73

ENTER (N) NUMBER OF COMMON POINTS KNOWN IN BOTH SYSTEMS (3 TO 12 IN THIS VERSION) 6.*

ENTER N SETS XYZ OR ENH COORDS IN FINAL SYSTEM

09A
910176.* 910483.* 5412.*

10A
1076853.* 909116.* 5196.*

10C
073798.* 716565.* 5531.*

108
1070298.* 526882.* 5824.*

09B
907972.* 528121.* 5982.*

09C
908542.* 719405.* 5778.*

ENTER N SETS XYZ IN MODEL SYSTEM 395690.*
592170.*
\(5325 . *\)
562200.* 595815.* 5115.*
565000.* 403341.* 5375.*
567200.* 213545.* 5625.*
404910.* 209975.* 5821.* 399775.* 401180.* 5675.00000*

ITERATIONS 2.00000

OMEGA

PHI 0.00018

KAPPA
(RADIANS)
X SHIFT
9.91273166705

Y SHIFT
7.18428666705

Z SHIFT
5620.50000

SCALAR
1.00014

RESIDUALS
44.
-8.
-18.
-65.
1.
16.
7.
54.
-10 .
5.
-66.
-6 .
-16.
1.
4.
25.
17.
14.

STANDARD ERROR (VECTOR)

\section*{38.}
38.

OTHER POINTS ENTER XYZ
10E
\(557224 . *\)
\(501668 . *\)
\(5436 . *\)
1068985.
815149.
5556.

DOMEGA 1.6 C
DPHI 1.1 C
SCALE 1/24997
ERROR -0.01\%

TABLE A.III
of points in the new model which do not join to a succeeding model, and these are transformed by the stored orthogonal transformation into strip coordinates and printed. Data entry type 2 follows for the next join section. The first four points are transformed to strip coordinates and stored, and entry to absolute orientation started again.

If sufficient ground control exists in any model, the strip may be formed up in ground coordinates by starting the formation at this model, and treating the ground and model coordinates as a spurious model join. The remainder of the strip may then be formed first in one direction and then in the other.

As only 4 points are used in the computation of the absolute orientation, it was possible to use only 51 registers. The program consists of 1946 instructions, and a specimen input/output showing the beginning of a strip is given in Table A.IV.

INDEPENDENT
MODEL
TRIANGULATION
GJF HOLDEN UNSW JAN 1973

DATA ENTRY TYPEI.
STRIP 1348/1
51044
160336.
199593.* 63650.*

DATA ENTRY TYPE2
51040
240023.*
200203.*
200009.*

51041
238770.*
294271.*
64542.*

51042
240727.*
104595.* 65455.*

51043
240006.*
199177.*
64420.*
160046.*
200148.*
199994.*
159657.*
295195.*
64142.*
160473.*
104429.*
64327.*
160336.*
199593.*
63650.*

\section*{B|OGRAPHY}

JOE HOLDEN is a Lecturer in the School of Survering, ad was formerly a Career Officer in the Survey Branch of tre Corps of Royal Engineers, where he also served on the Geographical Section General Staff. His interests are Cartographic and Terrestial Photogrammetry and Accuracy of Orthophoto Processes.

THE SCHOOL OF SURVEYING, THE UNIVERSITY OF NEW SOUTH WALES
P.O. Box 1, Kensington, New South Wales, 2033

> AUSTRALIA

\section*{Reports}
1.* The discrimination of radio time signals in Australia
G.G. Bennett
UNICIV Rep. D-1
2.* A comparator for the accurate measurement of differential barometric pressure
J.S. Allman
\(9 p p\)
UNICIV Rep. D-3
3. The establishment of geodetic gravity networks in South Australia
R.S. Mather
26pp
UNICIV Rep. R-17
4. The extension of the gravity field in South Australia
R.S. Mather

26pp
UNICIV Rep. R-19
5.* An analysis of the reliability of barometric elevations
J.S. Allman \(335 \mathrm{pp} \quad\) UNISURV Rep. 5
6.*. The free air geoid for South Australia and its relation to the equipotential surfaces of the earth's gravitational field
R.S. Mather 491pp UNISURV Rep. 6
7.* Control for mapping (Proceedings of Conference, May 1967)
P.V. Angus-Leppan (Editor) 329 pp UNISURV Rep. 7
8.* The teaching of field astronomy
G.G. Bennett \& J.G. Freislich

30pp
UNISURV Rep. 8
9.* Photogrammetric pointing accuracy as a function of properties of the visual image J.C. Trinder 64pp UNISURV Rep. 9
10.* An experimental determination of refraction over an icefield P.V. Angus-Leppan

23pp
UNISURV Rep. 10
11.* The non-regularised geoid and its relation to the telluroid and regularised geoids R.S. Mather

49pp UNISURV Rep. 11
12.* The least squares adjustment of gyro-theodolite observations G.G. Bennett

53pp
UNISURV Rep. 12
13. The free air geoid for Australia from gravity data available in 1968 R.S. Mather

38pp
UNISURV Rep. 13
14. Verification of geoidal solutions by the adjustment of control networks using geocentric Cartesian co-ordinate systems R.S. Mather

42pp UNISURV Rep. 14
15.* New methods of observation with the Wild GAKI gyro-theodolite G.G. Bennett

68pp
UNISURV Rep. 15
* Out of Print

G General Series
Price: \$4
\(S\) Special Series (Limited printing) Price: \$20

Reports (contd.)

16* Theoretical and practical study of a gyroscopic attachrent for a theodolite
G.G. Bennett 343pp UNISURV Rep. 16

17* Accuracy of monocular pointing to blurred photogrammetric signals J.C. Trinder

231pp
UNISURV Rep. 17
18. The computation of three dimensional Cartesian co-ordinates of terrestrial networks by the use of local astronomic vector systems A. Stolz 47pp UNISURV Rep. 18
19. The Australian geodetic datum in earth space R.S. Mather 130pp UNISURV Rep. 19
20. The effect of the geoid on the Australian geodetic network
J.G. Fryer

221pp
UNISURV Rep. 20
21. The registration and cadastral survey of native-held rural land in the Territory of Papua and New Guinea G.F. Toft 441pp

UNISURV Rep. 21
22. Communications from Australia to Section V, International

Association of Geodesy, XV General Assembly, International Union of Geodesy \& Geophysics, Moscow 1971
R.S. Mather et al 72pp UNISURV Rep. 22
23. The dynamics of temperature in surveying steel and invar measuring bands
A.H. Compbell
195pp
UNISURV Rep. S7
24. Three-D Cartesian co-ordinates of part of the Australian geodetic network by the use of local astronomic vector systems
A. Stolz

UNISURV Rep. 58
25. Papers on Four-dimensional Geodesy, Network Adjustments and Sea Surface Topography
R.S. Mather, H.L. MitcheIL, A. Stolz 73 pp UNISURV Rep. G 17
26. Papers on photogrammetry, co-ordinate systems for survey integration, geopotential networks and linear measurement
L. Berlin, G.J.F. Holden, P.V. Angus. Leppan, H.L. Mitcheil and A. Campbell 80 pp UNISURV Rep. G 18
27. Aspects of Four-dimensional Geodesy
R.S. Mather, P.V. Angus-Leppan, A. Stolz and I. Lloyd

100 pp UNISURV Rep. G 19
28. Relations between MSL \(\varepsilon\) Geodetic Levelling in Australia
H.L. MitcheIL 264 pp
UNISURV Rep. S 9
29. Study of Zero Error \(\&\) Ground Swing of the Model MRA101 Tellurometer A.J. Robinson 200 pp UNISURV Rep. S10
30. Papers on Network Adjustments, Photogrammetry and 4-Dimensional Geodesy.
J.S. Allman, R.D. Lister, J.C. Trinder and R.S. Mather
31. An Evaluation of Orthophotography in an Integrated Mapping System
G.J.F. Holden
232 pp
UNISURV REP. S12
32. The Analysis Precision and Optimization of Control Surveys G.J. Hoar 200 pp UNISURV REP. S13
33. Papers on Refraction, Mathematical Geodesy and Coastal Geodesy P.V. Angus-Leppan, E. Grafarend and R.S. Mather

66 pp UNISURV REP. G21
* Out of print

G General Series Price: \$ 4.50\%
S Special Series (Limited Printing) Price: \(\quad \$ 11.50 \% *\)

\section*{Proceedings}

Proceedings of conferences on refraction effects in geodesy \(\varepsilon\) electronic distance measurement
P.V. Angus-Leppan (Editor) 264 pp Price: \$10.00**

Australian Academy of Science/International Association of Geodesy Symposium on Earth's Gravitational Field \(\varepsilon\) Secular Variations in Position

UNISURV REP. S11
R.S. Mather \& P.V. Angus-Leppan (eds)

764 pp
\[
\text { Price: } \quad \$ 25.00^{+}
\]

\section*{Monographs}
1. The theory and geodetic use of some common projections (2nd edition) R.S. Mather 125 pp Price: \$4.50\%\%
2. The analysis of the earth's gravity field R.S. Mather 172 pp

Price: \(\quad \$ 4.50 \% *\)
3. Tables for Prediction of Daylight Stars G.G. Bennett 24 pp

Price: \(\quad \$ 2.00 \% \%\)
4. Star Prediction Tables for the fixing of position
G.G. Bennett; J.G. Freislich \& M. Maughan

200 pp
Price: \(\quad \$ 7.50 \% \%\)
5. Survey Computations
M. Maughan 98 pp

Price: \(\$ 3.00\)```


[^0]:    producing contours from drop line profile charts was investigated under rather more realistic terrain conditions than has been attempted previously, in order to obtain data on production times for the cartographic treatment. It proved necessary to devise a technique, namely that of drainage interpretation, in order to be able to deal with the problem of profile interpretation in broken terrain; and it is thought that this technique may have general application to other pictorial profile methods. During the progress of the work, other problems were identified, and in particular investigations were made into calibration methods for perspective centres in Independent Model Triangulation. Also a series of computer programs were developed for photogrammetric work with small programmable desk calculators, including a program for strip formation.

    It was shown by the results of the tests that the planimetric accuracy of orthophotography is consistently rather high, and contributes only small errors to the final product of the integrated mapping project. It was shown that the intrinsic accuracy of profiling is high, but that a rather marked degradation occurs in the contouring phase, suggesting that somewhat reduced criteria should be adopted for elevation specifications in orthophotomap medium scale mapping projects when based on the drop line technique.

[^1]:    4.5 Objectives of tesc programme

    A Zeiss Jena Topocart B and Orthopnot, togetner with drop line profile Orograph accessory, was deliverea to the School of Surveying of the University of New South Waies in September 1971. Unfortunately some damage occurred to lineais of the right-hand projection system in transit, and replacement and satisfactory installation was not completed until November 1972. After study of the types of orthophotography tests published, a test progranme was aevisec within the concept of an integrated mapping system in which the orthophotomap is the topographic base at medium scale. The concept was one in which planning criteria for production were to be deliberately based on extreme imits rather than conventional conservative limits. In particuiar the relationship between original picture image scale and orthophotota. scale; and the altitude/contour interval; were botin to be beyond normal conventional limits. The following factors ave considered to be desirable objectives:
    (a) Control for the orthophotograph production madels should be provided by pass points from an aerad triangulation block;
    (b) test models should be selected in which the ianozo. were of different types; one with feacures in whe system errors could be expected to be gulte rarkec. and in which landforms would test the suicablity of drop line profiles for complex terrain patcea.... and one in conditions of relativeiy fiat texatar.

