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THE ANALYSIS, PRECISION AND OPTIMIZATION

OF CONTROL SURVEYS

SUMMARY

The problem of optimization is basically one of estimating
the precision of station coordinates in a proposed survey. The measure
for coordinate precision used in this study is the error ellipse. Error
ellipses may be obtained from the given optimization procedure, their
accuracy being chiefly dependent on the precision of the variances of
the proposed observations which will form the survey in gquestion. The
factors affecting the precision of both angqular and distance observations
are analysed and estimates of their magnitude, based on literature, past
experience and experimental work are made. These individual estimates
are combined by the Law of Propogation of Variances to predict the

observational variance that is likely to be achieved in the field.

Methods of analysing the precision of angular and linear
_observations are examined and suitablé, theoretically valid, methods
are formulated for each type. These methods are applied to a number of
actual networks and the variances of the observations forming these networks
are estimated. The agreement between these variance estimates and those
from the analysis of contributing factors is generally good provided that
the differences between laboratory and field conditions are taken into

account.

The variances obtained from the analysis of the actual networks
were broken down to basic components, taking into account the equipment
and techniques used, and the conditions under which the observations were
taken. The agreement between the basic components of the observational
variances in the large networks tested shows that it is practical to
estimate the observational variances from these basic components for use
in the optimization of surveys, given knowledge of eguipment, technigues and

conditions.

Such estimates are used in two examples designed to show some

practical techniques which are of use in the optimization of surveys.
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CHAPTER 1

INTRODUCTION

Control surveys are of many types. They range
from geodetic surveys , covering many hundreds of kilometers,
to the relatively small scale control surveys required for an
integrated cadastral survey system, They include engineering
surveys which range in precision from those required for dam
deflection surveyé to those required for approximate setting
out of engineering works. All control surveys irrespective
of size or intended precision, are of limited use until an
estimate can be made of the precision to which the stations have
been, or will be, fixed. It is important that the survey  should
have adeguate precision to fulfil the purpose for which it was

designed.

The error ellipse is the accepted criterion of

point precision and the factors on which it depend are:

1. The approximate coordinates of the
network stations.

2. The type of the proposed observations,
(Directions, Distances, Azimuths etc.),
and their position in the network.

3. The precision of each observation forming

the network.

The statistical theory and techniques needed to
calculate . error ellipses has been developed over the years
but there has been little investigation into the precision
of the ellipse. It will be seen that this precision is
almost entirely dependent on the precision to which the

observational variances have been estimated.



One approach to the problem of estimating
observational variance is to analyse the factors that contribute
to it by empirical and experimental means. wWhile the results
of such an analysis are useful, the method is not satisfactory
for estimation of variance due to the difficulty in simulating

field conditions in laboratory experiments.

Attempts have been made in the past to overcome
this difficulty by analysing field observations. Most of
these attempts have been based on the fact that observations
in a network must fulfil certain geometric conditions and
the variance estimates obtained were derived from the
condition misclosure. These methods suffer from the major
disadvantages that they use only a percentage of the
observations, that they can only be used with angular
observations, and that they usually require fairly extensive

calculations which would not otherwise be necessary.

Some relatively recent work has bzen done on the
application of Variance Factor analysis to the estimation of
observational variances, Ashkenazi (19870). Such an approach
overcomes all the problems of the condition closure methods
as it is applicable to both angular and linear observations,
it uses all the observations and it involves virtually no
superfluous calculation. A significant part of this report
is devoted to improving the techniques associated with Variance
Factor analysis, and several observed networks are analysed to
show the application of the improved technique (vide Chapters

5, 6 and 7).

Once variance estimates for observations taken
using given instruments, given téchniques and under given
observing conditions have been obtained, it is possible to
break these estimates down into the basic components of
variance. Using these components, the variances of
observations taken, or to be taken, using specified equipment

and observing techniques and under specified observing
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condit ions may be asscessed, or predicted. These predicted
variances may be used in optimization studies; aimed at
calculating the optimum configurations of stations, and
type, position and precision of observations to achieve a
specified precision of point fixing. Two examples of such
studies are given in order to demonstrate some of the

practical techniques involved (vide Chapter 9).

Standaxd metric units and their abbreviations,
as given in Australian Standard 1000 (1970), will be used in
this report. Exceptions to this are the abbreviation of

2
"'sec" for second of arc and "sec”™" for seconds of arc squared.
Abbreviations for mathematical terms will be explained when

they are first used.



CHAPTER 2

THE THEORY OF OPTIMIZATION

2.1 Introduction

The optimization of a network involves the pre-—
analysis of that network to ascertain the optimum configuration
of the stations, and the optimpm placement and precision of the
observations between the stations. As the word pré—analysis
implies, optimization is carried out before the network is
observed, and the actual values of the proposed observations

are not required.

In the past, the planning of surveys has been
based on empirical standards, experience and intuition. The
validity of this procedure depends on the pattern of new work
conforming closely to that of past experience. Unfortunately,
no two surveys are the same and any deviation from standardised
design can only be assessed intuitively. This intuitive

assessment may have adverse effects on the precision of the

survey.

‘The empirical standards set down by the various
authorities tend to be fairly similar in form. Two examples
of these standards are the requirements for horizontal control
surveys set down by the United States Coast and Geodetic Survey
(Gosset, 1959) and by the National Mapping Council of Australia
(1966) .

The requirements of the Coast and Geodetic Survey
were written before the wide-spread use of electronic distance
measurement became common. Scale control was obtained from
bases measured mainly by invar bands. Measurement by invar

band is a very time consuming procedure and hence these bases



were spaced as widely as possible. This spacing was calculated
by a trial and error method testing the strength of figure

of different configurations of stations between the bases.

The formula used was explained as follows; (Gosset, Ibid).
"Strength of Figure formula is an expression of the comparative
precision of computed lengths in a triangulation net as
determined by the size of angles, the number of conditions to

be satisfied and the distribution of base lines and points of

fixed position”.

The formula used to calculate strength of figure

was:

_ DzC 5 42 2
S = 5 Z(6A+6AGB+6B) eeo (2.1}

where S 1is the strength of figure,

D is the number of directions observed in the network,

| less the directions observed along the fixed line,

C 1is the number ofvconditions to be satisfied in the

network,
and dA' 6B are the respective logarithmic differences of the

sines, expressed in units of the sixth decimal place, and
corresponding to a change of oné second in the distance angles,
A and B of a triangle, The distance angles of a triangle are
the angles opposite the side that is known and the side that

is reguired.

Gosset (7bid, p.288) gives a table of values for
(6% + 8p0g + 6%), in which the arguments are the two distance
angles in a particular triangle. The summation, I, is taken
for all the triangles used in computing the value of the side

in question from the side taken to be absolutely known.,

As an example of the application of the formula,

consider the network shown in Fig. 2.1.

Side AB is the fixed side, EF is the side in
question, and directions are measured, both ways, along all lines

in the network. The sizes of the angles, in degrees, are



o

shown in Fig. 2.1. The number of conditions to be satisfied,
{C), is eight, and the number of observed directions, (D),

excluding those over the fixed line is twenty-two. Therefore:

Two possible ways of calculating through the network are:

1. Through triangles ABC, BCD, CDF and CEF.

2. Through triangles ABD, ACD, CDE and DEF.



-

oN

—

L



[89)

Evaluation of (2.1) for these chains gives values for strength

of figure of:

i

1. s 0.4 (32 + 7 + 12 + 11) = 40

li

2. s 0.64 (13 + 20 + 27 + 13) = 47

All possible chains would be tested, and limits were placed on
the values of S obtained. If, for a certain configuration,
the values fell inside these limits, the spacing of bases in

that configuration was regarded as being satisfactory.

The usefulness of the method, and others like it,
falls down when the network does not take the form of a chain.
In the case of triangulation covering a broad area, there will
be many ways of calculating the strength factors using the

many different chains of triangles between the bases.

The National Mapping Council criterion is far
less stringent, in. that it is only suggested that strength
of figure lie within certain limits. It was realised that
this formula can only apply to a limited number of networks

and hence it is only offered as a suggestion.

In both sets of standards, the only other
guidelines for the design of the configuration of networks
are very vague regulations stating that figures be well conditioned,
that single triangle chains not be used and specifving the spacing
between staticns etc. Even if it was possible to conform to
these regulations in every case, they certainly provide no

guarantee that the accuracy specifications will be met.

Some specifications were given for the accuracy
of angle and distance measurement, but the surveyof had to rely
mainly on experiencs in deciding what field measurements and
procedures were required to obtain these accuracies. He
could only be sure that he was getting these accuracies by
testing his cbservations after the survey was completed.

In the majority of cases this situation led to the gross
"over observation" of the network, usually with little
improvement in positional precision. However, this was
more economical than finding that the standards had not been
reached_after completion of the fieldwork, and thus having

to re-visit the field stations for further observations.
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The implicit requirement of a survey 1s that
stations be coordinated to some specified positional precision.,
Common practice is to assess a survey only on the observational
precision, acting on the assumption that provided the scheme
is composed of figures of sufficient strength and without any
abnormalities, the observational precision will reflect the
positional precision. The cbservational precision is
usually assessed by examining triangle or other misclosures,
or by examining the size of corrections to the adbservations
after an adjustment. However, the over—riding weakness of
such a method is that the estimate of positional precision
can only be obtained after the scheme has been observed and

adjusted.

Positional precision may be assessed by means of
the error ellipses at each of the stations in question,
These ellipses may be calculated from the weight ccefficient
matrix for the station coordinates. This weight coefficient
matrix is not dependent on the actual values of the
observations and may be obtained from an optimization

procadure.

Contemporary thought on the interpretation of
error ellipses is that they give the precision of coordinates
with respect to the fixed control, or in the case of relative
ellipses the precision of the differences of coordinates
between the terminal points. Some research projects within
the School of Surveying, University of New South Wales, have

recently thrown doubt on the validity of this interpretation.

In an effort to resolve this doubt, a number of
people are working on projects designed to test various
hypotheses. It is not anticipated that any final answer
to this problem will be found before 1974. One research
project along this line is a Ph.D thesis to be written by

R. Lister and readers after 1974 should refer to that thesis.

Since the qualitative aspect is not in doubt,

the current interpretation has been adhered to in this report.
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2.2 (Concepts of Optimization

To optimize a network, knowledge of three components
is required.
1. The approximate coordinates of the stations.
2. The type of the proposed observations
(Directions, Distances, Azimuths etc.)
and their position in the network.
3. The anticipated precision for each type

of observation.

With this information, it is possible to calculate
the error ellipse for the stations and verify that the desired
positional precision can be attained. The effect of additional
or fewsr observations and changes in observational precision
can be assessed by varying components two and three. The
effect of additional stations, or stations in different locations
can be assessed by modifying component one. In this way the
most economical method of achieving the desired positional
precision may be determined before any field measurements are

taken.

2.3 Theory of Optimization

The Parametric or "Variation of Coordinates"
method of adjustment is now the most commonly used for survey

adjustments. This adjustment procedure has been given by

‘many authors (e.g. Allman, 1967 and Madcour, 1968) but will be
repeated here to show how the method may be used for the

optimization of a survey.

The estimates of the variates (the coordinates)

are given by the parametric equations:

P=p+V=2aX+C cee (2.2)

or more simply:

AX + T =V ce. (2.3)



z
o
[
I
[t

and

as]

< T

)A

=)

system.

11

is the matrix of adjusted observations,

is the motrix of obserxrvations,

is the matrix of corrections to the observations,

is the matrix of coefficients, in which the
individual elements are dependent on the coordinates
and the type of observation.

is the matrix of parameters.

is the matrix of constants .

is the matrix of absolute terms such that T = C - p,

Consider observations made in a plane coordinate

The parametric equation for a direction observation

from station i to station j can be shown (Clark, Vol. 2, 1966)

to be

where

of the form:
s = O Poy.s = 0. = 80, +a, (AX, = AX) + b, (AY -~ AY))
RSy ij Yig i i ij i 3 ij i j
eee (2.4)
Vuij is the correction to the observation,
c . . . .
i3 is the_calculated bearing from station i to
station j, and is derived using the approximate
coordinates of those stations.

paij is the ocbsexrved direction.

6; is the approximate orientation of the direction
observations from station i, with respect to the
coordinate system.

AOi is the least squares parameter for the orientation
at station i, so that,

0, =0, + A0,
i i i
0i is the least squares estimate of the orientation

at station i.



Similarly,

X, = X. + AX,

where (Xi, Yi) are the least squares estimates of the plane

ccordinates of station i.

ij c

where 0 is the number of seconds in one radian,
c ., , . , .
and Dij is the calculated distance between stations i and j,

and is derived from the approximate coordinates of those stations.

Relating the terms of equation @.4) to the general

form of the parametric equation (2.3):

-1, a.., —a,., b,.
1] 1] 13
are the coefficients of the parameters AOi, AX ., ij, AYi and

and —bi. are elements of the A matrix as they

i
'AYj, {(2lements of the X matrix). v i is an element of the
V matrix. The constant term, ((gj - pc&j - 6;) is an element

of the T matrix.

The parametric equation of a bearing observation
from station i to station j, in a plane coordinate system is

identical to (2.4) except that the orientation terms are omitted.

c
= - N +a
B . p(&lj .

Vg. . (X - AX) + b (Y, - AY))
i3 L] i} 1 J 13 1 3

.-« (2.5)

The parametric egquation for an angle observation at station i

to stations j and k is the difference between two direction

equaticns.
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' Ot 'T' - . Coa (AN =AY
\Yijk ik ] P\ljk s i kK

- a.. (X, = AX.) - b, (AYy. - Ay.) s (2.0}
1] i 3 ik 1 3

The parametric equation for a distance measured between stations

i and j is of the following form:

Vo.. =DS, = py.. + Cos of, (AX, - AX.) + Sin oS (AY, - AY,)
Dij ij 3 i ij 3 i

cee (2.7)

The corresponding parametric equations for a

spherical coordinate system are similar in form,

From these equations the normal eqguations may

be formed,

T _ T -
A lax + ATG T = 0 ..o (2.8)

where G is the matrix of weight coefficients of the observations.

The normal equations may be restated as:
N T . -1.,
NX+A G "T=20 .o (2.9)

where

N = aTg-l ... (2.10)

The solution of these normal equations is given by:

X = N 'a‘g T ... (2.11)

The matrix of weight coefficients of the adjusted parameters

‘X is given by the inverse matrix N”l, whence:

-1
Q. =N "= Q Q crereencol
X
XX 1X1 X1X2 xlxu

Q Q ceresercsl
X, %, X,X, xzxu- ees (2.12)

o 0 teereeoss0

X X X X X X
a1l u 2 u u
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The error ellipses of the adjusted points are given by the

equation:

L © x2 - 29 XY, +0 Yi) =5

v.y. 1 x,y, 171 X X,

Q Qy - Q2 y. i'i iti i1
X. X,V Y. X, Y.
it Yi¥i i1

cee (2.13)
- . . .th .
Wnere Xi and Yi are the adjusted coordinates of the i point

and S? is the variance factor.

From equation (2.13), the semi-major axis, the

semi~minor axis and the orientation may be derived as:

Semi-najor axis =

2 |4 . L _ 2150 b
S [u(QXX t ny) + {Q(QYY Qxx) + (Qxy) } } ee . (2.14)

i

Semi-minor axis

2 1, B B 2% %
S (1(Qxx + ny> {%(QYY Q)+ (Qxy) } ] ..o (2.15)

and the orientation of the semi-major axis

2Q
6 - hean=! —XL__
Qux ny

cee (2.16)

Consider the weight coefficient matrix G.
This matrix may be arrived at as follows:
Generally the variance of the observation (Oi)

will be either unknown or determined by an estimator Si so that,
of = S eo. (2.17)

Some suitable dimensionless number may be taken

2

as a variance factor S such that,

Si = s% g,. eee (2.18)
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where 9.5 is the weight coefficient of the particular observation.

This may be expressed in matrix form as:

2
g O12 013 "Gln Sl 512 S13"'51n 931 912 gls"'gln
2 2
a e .
2 U?_ J2-L N 82 SZ3 SZH _ Sz 922 g23 g?_n
5 ce.(2.19)
o s 953
h—y-4 - 2. .
G Sy Inn
oxr Variance/covariance % Estimate of = s%G
“Matrix of Varianc¢e/covariance
Observations Matrix of
Observations
An estimate S2 of S? may be obtained after the
adjustment.
-2 M
5% = — cee (2.
. (2.20)
whe:e r 1is the number of redundant observations in the network
.. T - . .
and M the minimum (= V G 1V) is given by:
T - T T -
M= (A6 IT)"Xx + TG T ee. (2.21)

The mathematical model for any adjustment is
formed by the observations, their variances and the geometric
configuration of the giations in the network, If the model is
validly chosen then the value of s? will approach the value of

s?.

In other words, if the observations and their
estimated variances satisfy the mathematical model, then
s* = s%.

The S% in equation (2.13) is therefore nothing
more or less than a scaling factor on the size of the ellipse

in the same way as it is a scaling factor on the G matrix.
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The ervor ellipses may therefore be calculated
when the weight coefficient matrix , (Q ), and the variance
XX

factor, (SZ), are known.

The weight coefficient matrix of the adjusted
coordinates Qxx is not dependent on the values of the

observations:

0 = (afe~la)!
XX
It depends only on the weight coefficient matrix

of the observations (the variance matrix if s? = 1) and the

geometric configuration of the network.

2.4 Factors Affecting The Accuracy of Optimization

It was stated in Section 2.2 that the error
ellipses obtained from an optimization are dependent on three
factors.

1. The approximate coordinates of the station.

2. The type of the proposed ébservations

(Directions, Distances, Azimuths etc.)
and their position in the network.

3. The anticipated precision for each type

of observation.

The accuracy of the error ellipses will obviously
not be greatly dependent on- the accuracy of the approximate
coordinates, except where points are very close together or
where very thin triangles and other ill-conditioned figures
are involved. Special care must be taken under such
conditions,; but in general the problem can be overcome by
calculating the coordinates of the crucial points to ensure
that they are in the intended relationship to each other.

In the majority of cases, no significant accuracy will be lost
if the coordinates are carefully scaled off maps, sympathetic

in scale to the area of the survey.
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No approximations are involved in choosing the
types of observation to be used so there is no loss of precision

in the error ellipses due to this source.

_The accuracy of the error ellipses is critically
dependent on the accuracy of the variances used in the
optimization. However, it seems reasonable to assign a
variance to observatiohs taken with a certain make and model
of instrument using specified techniques and with a knowledge
of observing conditions. . This conclusion has been confirmed
by the analysis of independent networks using similar instruments.

The details of this analysis are given in Chapter 7.

2.5 VConclusions

Error ellipses may therefore be calculated without
any knowledge of the adjusted coordinates of the network points

or of the actual values of the observatiomns.

There is no need to use simulated observations as

Schmutter and Adler (1971) have done,

In addition, their set of simulated observations
is only one sample from an infinite population. Surely it

is better to examine the whole population rather than a single

sample.

Further, in using simulated systematic components,
it may be assumed that these follow a predictable pattern in
that their _magnitude at each station could be determined within
specified limits. In carrying out the adjustment, the
predictable portion of the systematic error must be applied
to the observation to reduce the observation to the reference
surface. The remaining portion of the error can only be
assumed as random and should be taken intc account when assessing
the estimate of the variance of the observation. The significance
of this is that in the adjustment and in any statistical analysis

of the network, only the randomcomponent of -the systematic error
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should be considered., This component, taken with an estimate
of the effects of plumbing errors, lateral refraction, instrument
dislevelment etc., foxms the external component of the observational

precision.

Undoubtedly the most important aspect of the above
is that the error ellipses can be obtained before the field work
is carried out, An optimization procedure such as this
enzbles the surveyor to make an estimate of manpower and

expenditure required to obtain a given precision.
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CHAPTER 3

FACTORS AFFECTING THE PRECISION
OF ANGULAR OBSERVATIOQNS

3.1 Introduction

All angular observations may be expressed in terms
of a basic element, the direction. For example, an angle may
be deduced by taking the difference between two directions and
astronomical azimuth observations consist of a direction to a
star and a direction to a reference object. This being the
case, the factorsvthat affect the precision of direction
observations will also affect the precision of angles or

azinmuths dexrived from them.

3.2 Definitions

Angular Observations include directions, angles

and observed astronomical azimuths.

It is not proposed to enter the controversy
about whether angles (repetition), or directions, (iterative),
should be observed, and these terms will merely be defined as
they are understood by the author and as they will be used in

this report.

A Direction. If a theodolite is set up at a
station A and pointed to a target B on face left, and the
horizontal circle is read, a semi-direction is obtained.

If another semi-direction is read to target B on face right,
the mean of the two semi-directions will give the direction

from station A to station B,
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A single semi-direction should not be considered
as an observation as it ceontains many of the systematic errors
cf the theodolite. If the observation is to be treated
statistically, the observational errors should always be

random.

An Angle, If the directions from a station A
to stations B and C are observed, the angle BAC is the difference
between the two directions. If the direction to a third
station, D, is also read, the angles BAD and CAD may also be
deduced. It should be noted that these angles are not
observations in their own right, but are combinations of the
direction observations from which they are derived. Further,
the angles are correlated, as each direction observation is
used in the derivation of more than one angle, and extreme care
must be exercised if they are to be used in an error analysis.
If the angles are obtained by the repetition method of observations,
(Clark, 1965), although they are still derived quantities, any
particular direction is not used in the derivation of more than
one andgdle, so such angles are independent and uncorrelated
guantities and can be treated as normal observations in an error

analysis,

As thoe observations taken in the field are
directions rather than angles, the analysis set out later

in this Chapter will be mainly concerned with directions.

Arc, Semi-Arc and Set. A gomil-aqre on stations

R, C and D would be made up of the semi-direcctions, on one face,
to staticns B, C and D. An aqrec observed to these stations
would be the mean of two semi-arcs observed on opposite faces,
at the same circle setting or zero. A g2t of directions is

the mean of a number of arcs.

3.3 Observing Procedure for Direction Observations

As Richardus (1968, p.162-168), points out, there

are two ways of observing a set of directions, These are,
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the obsarvatiocn of independent semi-arcs, and the observation
of complete arcs. Hae favors the observation of independent

semi-arcs on the grounds:-

1. The periodic or systematic part of circle
vgraduation error is more completely eliminated as there are twice
the number of circle settings. By changing the circle setting
after each semi-arc, there are 2n independent samples, where m
is the.number of complete arcs. By changing the setting after

each complete arc, there are only n independent samples.

2. 1If the circle setting is only changed after
each. complete arc, it is quite possible for the observer to
mentally predict the readings on the second face from those
taken on the first. If the values he actually reads do not
coincide closely with his predicted readings, he may be tempted
to reobserve, hence disturbing the distribution of the
observations. If the circle setting is changed after each
semi-arg, the readings in the first and second semi-arcs will
be totally different and it is improbable that the observer
will be able to predict the readings of the second from the

results of the first.

However, the individual semi-arcs will contain
some systematic errors, which can be minimised if the arc is
treated as the unit of measurement. The observing procedure
in this case is to change the circle setting only after the

completion of each full arc.

3.4 Factors Affecting Precision

(a) Non-Verticality of the Vertical Axis.

If it is assumed that there are no manufacturing
flaws in the theodolite, and that any non-verticality of the
vertical axis is due to dislevelment of the instrument, then
the efror in horizontal circle reading caused by the vertical
axis not being vertical can be shown (Clark, 1969, p.78;

Cocper, 1971, p.56~57) to be:
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e =31 tan h sin O ... (3.1)
v v

where e is the. error in horizontal circle reading, expressed in
seconds,
i is the dislevelment, also in seconds
h is the angle of elevation to the target being sighted, and
a is the difference in direction between the target and the
line of intersection of the horizontal plane and the plane

defined by the perpendicular to the vertical axis.

It seems reasonable to make the following assumptions:-

1. That with careful levelling, the non-verticality
of the vertical axis will not be greater than
half a division of the plate bubble.

2. That even in mountainous regions, h for geodetic

work would seldom be more than 10 degrees.

Given the plate bubble sensitivity of a particular
theodolite, it is possible to estimate the maximum likely error in circle
reading due to dislevelment. If this estimate is considered to be
three standard deviations, then the standard deviation of horizontal
circle reading due to this cause may easily be calculated. This

was done for two typical theodolites;

wild T2 - o 0.6 sec

v

wild T3 - OV 0.2 sec

It must be emphasised that this error is not cancelled by

taking the mean of face left and face right semi-directions.

(b) The Line of Collimation not being Perpendicular to the

Trunnion Axis.

The error in horizontal circle reading due to this cause

may be shown, (Clark, 1969, p.73; Cooper, 1971, p.58-60), to be:-

®
il

i sec h cee (3.2)
c ,



where e is the error in horizontal circle reading, expressed
c

i is thes inclination of the line of collimation of
the telescope to the normal to the trunnion axis,
also in seconds, and

h is the elevation angle to the target being sighted.

ic will depend on the position of the intersection of the cross-

hairs with respect to the optical axis of the telescope.

The error e will be equal and opposite in sign
for a face left and a face right pointing'to the same target,
and therefore can be eliminated by taking the mean of the two

pointings.
(c) Lack of Precision in Manufacture.

Errors due to lack of precision in the manufacture
of the theodolite, such as the trunnion axis not being
perpendicular to the vertical axis, could be examined at this
stage. However, theodolites used for geodetic and other
precise work have reached such a standard that these errors
tend to be negligible in the vast majority of instruments.
This being so, it would seem invalid to analyse observations
taken with an arbitary theodolite and attribute some of.
the estimated variance to errors caused by manufacturing
inaccuracies. Further, simple field checks can be employed
to verify that particular instruments are significantly free

from such defects.
{d) Circle Graduation Errors.

Circle graduation errors may be divided into two

classes; periodic errors and accidental errors. There are
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two types of periodic errors; long period and short period
errors. The long period error is caused by irregularities

in the spur gear of the circle dividing machine. In a
theodolite such as the Wild T2, where two diametrically opposed
graduations are used in reading the position of the circle, the
period of this error is 180 degrees, or half the circumference
of the circle. The short period errors arise from irregularities
in the concave screw, (globoid worm), and in the cog wheel of
the circle dividing machine to which it connects. The length
of the period depends on the number of teeth on the spur gear
of the dividing machine and on the smallest interval of

division to be produced on the circle,

Accidental errors of circle graduation are caused
by momentary changes in the circle dividing machine, which may
be due to a speck of dust or oil, a small change in temperature,
etc. The accidental errors do not repeat themselves in the

same way as the periodic errors.

The wave form of the periodic errors is rather
complex and, mathematically, is best represented by a Fourier
series. It may be shown, (see Appendix A), that the

periodic error in the mean result of four arcs, observed at

O

zeros of OO, 450, 907, and 1350, is free from the fundamental

term and the first six harmonics of this series.

In early work, (e.g. Ackerl, 1926), it was considered
unecessary to go beyond this, on the basis that periodic errors
were of long enough a period to be eliminated at this stage.
Evidence to the contrary has been found by Jochmann (1956) who
has examined terms up to the twelfth harmonic. However, the
general opinion is that these systematic errors are negligible
after the sixth harmonic. Accepting this, the implication
is that four arcs is sufficient to remove systematic errors
of circle graduation, and that the mean of four arcs, is free
of such errors. However, accidental efrors still remain.
Heuvelink (1925) gives a formula to calculate the variance of
accidental errors, assuming that all systematic errors have

been removed by the sixth harmonic.
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Over the years, this formula has been evaluated
for a2 nurber of instruments in a nuwber of different tests.

Zeiss Jena obtain a standard deviation of 0.18 seconds for

their Theo 010. Lovell (1964) obtained 0.35 seconds for
a similar instrument. Ackerl (1826) obtained 0.07 seconds
for a wild T2. Fondelli (1956) obtained values of 0.05, 0.09

and 0.08 for three Kern DKM3 theodolites.

It is difficult to make any reasonable estimates,
using only these few results, but it would appear that for a
single second thesodolite of the Wild T2 or Theo QlQ type, the
standard deviation of accidental circle graduation errors is
of the order 0.1 to 0.2 seconds, and for a geodetic theodolite

of the Kern DKM3 type, of the order 0.1 seconds.

Systematic or periodic circle graduation errors
should not have any affect on mean directions as long as at
least four arcs are observed on zeros increasing by 180/ n for

each zero, where n 1is the number of arcs to be cbserved.
(e) Other Systematic Errors Due to Instrumental Factors.

Factors such as drag and backlash in the thecdolite,
and twist in the tripod, can cause systematic errors in direction
observations. = Fortunately, these syétematic errors can nearly
always be eliminated or minimised by proper observing techniques,
such as always taking the mean of face left and face right
observations and always approaching targets from a clockwise
direction in the first semi-arc and an anticlockwise direction

in the second.

On the part of the target, factors such as
assymmetry of the target and of its background can cause
systematic errors. Surveying targets are usually symmetrical
in shape, but the apparent centre of the target may move due
to the phenomonon of phase. This occurs when the sun

illuminates different parts of the target as it moves across
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the sky. The observer will tend to bisect the iliuminated
portion, (the portion he can see), and not obscrve to the
prhysical centre of the target. However, this error will

not be significant in the vast majority of cases,

(f) Pointing Error

Pointing errors are of two types, accidental and
systematic. The accidental pointing errors arise partly from
the atmospheric conditions prevailing along the optical path,
and partly from limitations on the part of the observer and the
instrument. Errors due to atmospheric conditions are, under
most condiﬁions, greater than those due to the observer and
the instrument. The exrors due to the instrument are partly
a function of the optical conditions of the telescope (viz.
Magnification and aperture), and are partly dependent on the

efficiency and manufacture of the clamps and tangent screws.

Systematic errors in pointing will not, in
general, show up>in an analysis of internal variance (see
Chapter 5). The reason being that most systematic errors
due to instrumental factors are effectively cancelled by the
use of a proper observing procedure and that those due to
atmospheric factors will not be detectible, as in the short
time ovar which the obhservations are made, the atmospheric

conditions will not'significantly change,

Investigations on pointing accuracy fall into
two groups. Firstly, those dealing with indoor pointing
i.e. free cof atmospheric effects, and secondly, those dealing

with outdoor pointing.

The investigation of Washer (1947) is representative
of the first group. Recognising that the principal variables
alfecting the procision of telescope pointing at indoor targets
are magnification, aperture and vernier acuity of the observer's
eve, ne performed a series of experiments in which magnification

was varied, aperture and target brightness being held constant.
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As the experiwments were done by one observer, the variation in
vernier acuity was kept to a minimun, He arrived at the

relationship:

= 0.058 ... (3.3)

where PES is the probable error of a single pointing in seconds,

and M is the magnification of the telescope in diameters.

Richardus (1966, pp.51-58) solves the probability

equation for the norxmal distribution.

x
1 2 2 N
prob (x <x<x,) = 20° dx =% ... (3.4)
ovaw %, €
where X, = -PE
and X, = *PE

to give

PE = 0,67450

D cummtmane SRS P
or ¢ = —=_ ... (3.5)

0.6745

Using this relationship, equation (3.3) may be expressed as a

standard deviation:

- 3 ( 4.962 + 0.068 )
9%.o0. = T.6745 N -ee (3.6)
. + .
or g - 7.357 0.101 o 3T)
S.0o M

where 'Os o is the standard deviation of a single pointing.

The constant 7.357 is the vernier acuity of the
cbserver's eye. This figure is within the range of values

obtained by different observers listed in a discussion of vernier
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actuity by Walls (1943). Washer is of the opinion that the
constant 0.101 is almost entirely due to turbulence in the
short air column separating the telescope objective and the

target.

If equation (3.7) is accepted, the standard deviation
of a single pointing under indoor conditions with an experienced
cbserver may be calculated for different instruments. For
example the Wild T2 and T3 theodolites may be assessed as

follows:

The Wild T2 has a magnification of 28 diameters,

there fore

o] = 0,364

The Wild T3 has three alternative eyepieces with magnification

of 24, 30 and 40 diameters, therefore

o] = 0.408 (x24)
S.0.

g = 0,346 (X30)
S.0.

¢ = 0,285 (X40)
S.0.

The investigations of Washer and Williams (1946
&1347) and Washer and Scott (1947) are fairly representative
of work done on outdoor pointing accuracy. The work is of
prime interest in surveying. In their investigation, the
precision of a single pointing was measured for a single
telescope with a variety of targets over distances ranging
from 100 to 13,500 metres. A total sample of 4,700 pointings
was taken by two observers on several different days, under a
variety of weather conditions. Their results give the
standard deviation of a single pointing as 0.92 sec.
Washer and Williams (1947) also give a table of results of
earlier investigations, Some of these results are so
optimistic that it seems certain they have been obtained under

indoor conditions. If such results are not considered then the
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average standard deviation calculated from the apparantely valid
results is 0,89 sec, a figure not significantly difterent from
Washer and Williams' own result. The fact that all the earlier
formulae are a function of magnification and that their formula
is independent of magnification, adds strength to the argument
that, over geodetic distances and for magnifications in excess

of twenty diameters, there is no significant correlation between
magnification and outdoor pointing accuracy. (Also found by
Fasher and Scott, 1947).  This conclusion could have been
anticipated due to the dominant influence of atmospheric

effects.

In addition, there seems. to be no significant
correlation between aperture and outdoor pointing accuracy.
The results of Washer and Williams show some increase in
standard deviation with decrease in aperture. However, it
is quite possible that this effect may be caused by the
decrease in illumination and contrast that accompanies a

decrease in aperture.

Washer and Williams (1946 and 1347) also
attempted to obtain some relationship between pointing
accuracy and distance. The relationship obtained seems
fairly meaningless when the scatter of the observations is
considered and also when the greater influence of factors such
as weather and visibility conditions are considered. It
therefore seems reasonable to assume that there is no
significant correlation between pointing accuracy and distance,

once the atmospheric effects are taken into account.

It is of interest that, in this experiment, no
appreciable difference in standard deviation between observers
was found, and that the standard deviation fluctuated considerably
from day to day, depending on the weather (atmospheric)
conditions. The implication is that,'under outdoor conditions,
which are the conditions that prevail in surveying, the standard
deviation of pointing should be reasonably constant for all

experienced observers under similar atmospheric conditions.
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The experiments previously mentioned (Washer
& Williams, 1946 & 1947; Washer, 1947, and Washer and Scott,
1347) were virtually free from mechanical errors such as
inefficiéncy of the clamps and tangent screws of the telescope,
as the telescope was rigidly fixed and pointing was accomplished
by the rotation of aweak prism in front of the telescope.
A mirror was attached to this prism to reflect a beam of
light on to a scale which was placed so that a small angular
rotation of the prism would produce quite a large shift of
the beam on the scale. This system effectively eliminated
the mechanical part of pointing error. In the case of a
theodolite, it is important to achieve the correct gearing
relationship between the tangent screw and the reactions of

the observer. (4non, 1947, p.29).

Other sources of error would be faulty clamps
and loose bearings in the theodolite. However, the art of
the instrument designer and manufacturer has advanced to the
extent that the influence of all these mechanical sources of
error should be negligible, providing the instrument is

properly maintained and adjusted.

It is worthy of note that Washer and Williams (1946)
found a long period error or drift, which was usually
superimposed over the short period errors. This drift was
apparently due to changing atmospheric conditicns (lateral
refraction) as it was not found in the indoor pointing studies.
The presence of such a drift emphasises the need for the
pointings in individual sets of directions to be taken over a
reasonably short period of time so that the individual means are
not affected, and for the sets to be taken at intervals over
a fairly long period of time to obtain a sample under as wide

a range of conditions as possible.

The standard deviations of pointing, obtained
by Washer and Williams (1947) and by the authors to whom they refer
have been obtained under idealised conditions. Although

their observations are under outdoor conditions in that the
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line of sight passes through varying atmospheric conditions,
they are not subject to the full rigors of field conditions

in that the observer is seated indoors and thus much more
comfortable than the field surveyor would normally be. In
addition, the telescape is not subjebt to the effects of sun
and wind, and the targets used in the experiment are probably
superior to the average surveying target. Further, an observer
pointing to the same targets, thousands of times, will become

more consistent than an observer under normal field conditions.

Therefore, while the experimental result is of
interest in that it is a good indication of the possible
precision of pointing, it cannot be assumed to be representative
of the pointing precision that will be achieved under surveying
field conditions. The figure 0 = 0.9 sec will therefore
be adopted as the standard deviation of a single pointing

undary idealised conditions.
(g) Reading Error

Reading error is an observer error and is the
error made in reading the circles of a theodolite. For a
given theodolite, this error will vary from observer to
observer. As the purpose of this study is to make an
estimate of the precision that the field surveyvor is likely
to obtain, experienced observers should be used as subjects.
In the following analyses, two of the four observers are very
experienced, while the other two have only a limited amount
of experience. A field surveyor would probably fall somewhere
between these two groups, so that a standard deviation derived

from consideration of both these groups is probably representative.

The precision of reading is of course dependent
on the type of instrument used as the different reading systems
vary in accuracy, and for this .reason the analysis was carried
out for two instruments, the Wild T2 and T3 theodolites.

The analysis consisted of each observer aligning the circle
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graduation marks and reading the micrometer fifty times. To
eliminate the effects of backlash, the circle graduation marks

were always aligned from the same direction.
Y g

The choice of fifty as the number of observations
to be taken was rather arbitrary. It was necessary that the
number of observations be large enough to give a statistically
meaningful sample, yet not so large as to induce observer
fatique. In order to test for fatigue, it was decided to
calculate the standard deviation of the first and second twenty
five observations as well as the standard deviation of the total
fifty observations. The standard deviation of the first
twenty five observations was not consistently lower than that
of the second twenty five, and therefore gave no definite
evidence of fatigue. However, in some cases the differences
between the three calculated standard deviations suggested

that further analysis was warranted.

A programme was written, for a keyboard programmable
calculator, to calculate and plot the progressive standard
deviation as each dbservation was entered. in other words,
when the n-th observation was entered, the standard deviation
of the first n observations was calculated and plotted. Plots
of standard deviation against number of observations were run
for each set of observations. These are shown in figs. 3.1.

to 3.8.
(i) WwWild T3 Analysis

Four observers were tested in this analysis.
The standard deviation plots for these observers are given
in Figs. 3.1 to 3.4. The standard deviation of the total

fifty observations is given, for each observer, in Table 3.1.

Observer Standard Deviation (sec)
A. C. 0.28
H. M. 0.26
G. H. 0.35
A. K. 0.22

TABLE 3.1
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In the cases of observers A. C. and A. K. this
standard deviation does not seem to be valid. The plots for
these observers (Figs, 3.1 and 3.4) level off fairly early and
then after running level for a number of observations begin
to rise again. This rise would appear to be due to observer
fatigue and therefore the value of standard deviation where the
plot is level would seem to be the more valid figure. This
point may indicate the onset of fatigue, but the small number

of sets taken does not allow any measure of certainty.

The plot of the observations taken by observer
H. M. (Fig. 3.2) is fairly level from about observation twenty
right through to the end. In this case the standard deviation

of observation fifty appears to be the valid figure.
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The observations of observer G. H. (Fig., 3.3)
show a different pattern again. There are two level periods,
one between observations twenty two and thirty four and the
other between observations forty and fifty. In this case,
it may have been warranted to take more than fifty observations
to see if the plot started to rise again oxr remained level,
This plot is rather hard to interpret aé one is. not sure
which of these level periods indicates the more valid standard
deviation. The first level period could be interpreted as
the valid indicator, and the rise after observation thrity
four interpreted as due to fatigue. It is of interest that
this rise, thought to be due to fatigue, occurs at observations
thirty nine and thirty for observers A. C. and A. K. (Figs. 3,1
and 3.4) respectively. If this is assumed to indicate a
pattern, the rise in the plot for observer G. H. at observation
thirty four, would seem to fit this pattern. On this basis,
the level period between observation twenty two and thirty four,
will be taken as indicating the more valid value of standard
deviation for observer G. H. Even if the level period between
observations forty and fifty is the true indicator, it will
not cause a significant error in the final result as the
difference in standard deviation between the two level periods

is only about 0.04 sec.

The adopted standard deviations are given in

Table 3.2.
Observer Standard Deviation (sec)
A. C. 0.10
H. M. 0.26
G. H. 0.32
A. K. 0.17
TABLE 3,2
The problem of finding an estimate of the standard
deviation of reading for the Wild T3 still remains. A "mean"

standard deviation may be obtained from the standard deviations

given in Table 3.2 using the Law of Propagation of Variances.
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2 2 2 2 5
(02, + o2, +oi, +0.) /4)

YReading AC HM = CGH
ero (3.8)
Substituting the values of Table 3.2 into 3.8

o = ((0.10% + 0.26% + 0.32% + 0.17%) / 4)&

Reading

= (0.052)!5

o] . = 0,23 sec

Reading

Rounding to the nearest 0.05 of a second,

o] . = 0,25 sec
Reading
The standard deviation of reading a Wild T3

theodolite, (or similar), is therefore estimated to be 0.25 sec.
(ii) wild T2 Analysis

A similar analysis was carried out for the Wild
T2 theodolite. Once again four observers were used. The
standard deviations of the total fifty observations are given
in Table 3.3. The plots for these observations are given

in Figs. 3.5 to 3.8.

Qbsexver Standard Deviation (sec)
G. H. 0.74
L. B. 0.56
A. C. 0.61
H. M. 1.05
TABLE 3.3

Unlike the Wild T3 observations, there was no
evidence of fatigue in these observations. The plots had a
general pattern of initial fluctuations followed by a level
period which extended to the end of the observations. The

figures given in Table 3.3 with one exception were very close



40
to those adopted. The plot of observations by observer H. M.
(see Fig. 3.8) departed from the general pattern described

above. After some initial fluctuations there was a drop

followed by a steady rise that shows no real indication of

levelling off. The standard deviation of these observations

was rather arbitarily taken as 0.9 sec, This was. the value

of the standard deviation about half way along the steady rise.
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The adopted standard deviation for each observer

is given in Table 3.4.

Observer Standard Déviation (sac)
G. H. 0.75
L. B. 0.58
A. C. 0.61
H. M. 0.90
TABLE 3.4

The values of Table 3.4 were substituted into

equation 3.22 to give the estimate of standard deviation.

oReading = 0,72 sec

Rounding off to the nearest 0.05 of a second;

GReading = Q,70 sec

Therefore, the standard deviation of reading
a Wild T2 theodolite, (or similar), given by this investigation

is 0.70 sec.

This result may be compared with the results of
a previous investigation by Watt (1963) . Watt gives standard

deviations due to reading error, for a number of single second

theodolites. His results are set out in Table 3.5.
Theodolite Standard Deviation (sec)
Kern 1.05
Askania 0.40
Wild 0.56
Tavistock 0.43
Watts 0.42

TABLE 3.5
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- His standard deviation of 0.56 sec compares
favourably with the figure of 0.70 sec obtained in this
investigation. Undoubtedly his figure would have been
obtained by an experienced observer, (or observers). In
"the present investigation only two of the observers (L. B. and
A. C.) could be regarded as really experienced ohservers.

The observers G. H. and H. M. are research workers with a
limited amount of field experience. One would expect a
standard deviation obtained from the observations of observers
L. B. and A. C. to compare more closely with the figure obtained
by Watt than the standard deviations of G. H. and H. M.

This standard deviation was calculated by means of formula
(3.22)as 0.58 sec. This is so remarkably close to the result
obtained by Watt that it tends to confirm the method of

interpretation (of the plots) used to obtain it.

The results obtained in both the T2 and the T3
analysis as well as those of Watt (7963) are not iepresentative
of the precision likely to be obtained in the field as they are
obtained in laboratory tests under idealised conditions.

They are more a measure of the best possible precision obtainable
using the particular reading systen. _The significant

differences between laboratory and field conditions are

discussed in the previous section on pointing exror.

3.5 Summary and Conclusions

It was stated in Section 3.2 that a direction
observation is considered to be the mean of a face left and a
face right semi-direction. This being the case, some of the
factors discussed in the preceeding sections will not affect
the precision of such an observation, as the effect of these
factors 1is cancelled by taking the mean of the face left and
face right pointings. " Only the factors which affect the

mean direction are summarized below.
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The effect of errors in levelling, (non-verticality
of the vertical axis), is not eliminated by taking the mean of
face left and face right pointings. The error in the mean

direction will be the same as the error in the individual

pointing.

e = iv Tan h Sin ¢ ceo (3.1)

This formula was evaluated in the form of a standard deviation
as OV = 0.6 seconds for a single second theodolite of the
Wild T2 type, and as OV = 0.2 sec for a geodetic theodolite of

the Wild T3 type.

It should be noted that errors due to dislevelment
are components of external variance while the other errors given
below are components of internal variance. (See Chapter 5 for

definitions of internal and external variance).

The periodic or systematic part of circle
graduation error was shown to be negligible when at least
four arcs at zeros increasing in steps of 180/n degrees, where
n is the number of arcs, were taken, Random errors still
remain. The standard deviations of these random errors for
single second and geodetic theodolites were estimated from
the results of experiments found in a literature search.
For a single second theodolite, Og was estimated as 0.2 sec,

and for a geodetic theodolite, Gg was estimated as 0.1 sec.

The pointing error in outdoor conditions, was
seen to be independent of distance and of magnification, as
long as the magnification was in excess of twenty diameters.
Theodolite designer's and manufacturer's expertise appears.
to have reached the stage where mechanical sources of pointing

error, such as inefficient clamps and the inappropriate
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relationship between tangent screw gearing and the reactions
of the observer, produce negligible errors. There seems no
reason to assume that geodetic theodolites have a smaller
pointing error than single second theodolites, and the
standard deviation of both, under ideal conditions, is
estimated as ¢ = 0.9 sec. As a direction observation
consists of a gace left and a face right pointing, the

standard deviation of a direction due to pointing will be

taken as;
_g; = ((@:2)% + (0.2)%)/4 = 0.41
g = 0.64 sec
P
Reading error is the error made in reading the
circles of the theodolite. This error seems to be reasonably

constant for experienced observers on a given instrument under
ideal conditions. It will vary from instrument to instrument
depending on the precision of the reading system of the
instrument. The results of the tests carried out and their
agreement with the results found in the literature led to the
estimation of the standard deviations due to reading error

of the Wild T2 and T3 theodolites of 0.7 and 0.25 sec
respectively. As two readings are taken for each direction
observation, the standard deviation of a direction due to

reading error may be calculated as follows;

((0.7% + (0.7M%)/4 = 0.25

wild T2: o2
X

]
X

0.50 sec

I

((0.25)% + (9,25)%)/4 = 0.03

wild T3: 2
: r

g = 0,18 sec
An estimate of the internal standard deviation of a

direction observation under idealised conditions may be calculated

using the law of propagation of variances.



where 0% is the variance of a direction observation, and

02,‘02, 02 are as defined above.
g p r

For a theodolite of the Wild T2 type,

0.04 + 0.41 + 0.25 = 0.70

o N

0.84 sec

o

For a theodolite of the Wild T3 type,

i

0.01 + 0,41 + 0,03 = 0.45

Q
I

0.67 sec

The estimates of internal variance, calculated
above, will tend to be quite optimistic as the component
variances of pointing and reading are derived from laboratory
experiments carried out under idealised conditions. It is
not really possible to derive the component. variances. of
field precision in an experimental environment as many of the
more nebulous contributing influences are not likely to be
taken into account. However, such experimental results are
still important in that they indicate the proportiornal influences
of the various contributing factors of observational variance,
An analysis of actual field observations will give a more valid
estimate of the total magnitude of internal variance but will

not give the proportional influence of the contributing factors.

The results given above, Will be discussed further
in Chapter 8 when the results of analyses of field observations

are given.
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CHAPTER 4

FACTORS AFFECTING THE PRECISION
OF LINEAR OBSERVATIONS

4.1 Introduction

The contempory surveyor has many tools and methods
available to him for the measurement of distances. Only those
systems which are in common use for geoaetic surveys, the more
précise types of engineering surveys and cadastral surveYs will
be considered in this report, Therefore, distance measurement
by steel band and by short and medium range electronic equipment
will be considered, whilst systems that are not in common use
such as stadia, subtense bar, Loran, Shoran, Hiran, Aerodist

and Hydrodist will not.

Factors affecting the precision of distance

measurement arise from three sources:—
1., The instrument.
2. The observer.
3. The atmosphere.
Each of these sources will be considered in the following

discussion.

L,2 Measurements by Steel Bands

(a) Introduction

"According to the Law of Propagation of Errors,

the cumulative effect of constant errors will be proporticnal

to the length of the line, while that of variable errors will
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be proportional to the square root of the length of the line."
(Clark, 1966, p.166). Biesheuvel (1962} gives a formula for
the standard deviation of a single span measurement by steel
tape which is in agreement with the above statement, viz.

o = (as + bs?)® e. (A1)

where a is the coefficient representing the variable or
accidental errors of measurement,

b is the coefficient representing the constant or

systematic errors of measurement, and

I

S is the length of the span.

Formula 4.1 may be modified using the Law of
Propagation of Errors, to give the standard deviation for a

distance, d, measured in n spans.

Y 2 2 2. %
Gd = 031 +j62 +.a3 T seese + an) ces (4.2)
where On is the standard deviation of the n-th span.
If all spans are of equal length, then
01 = O'Z = 03 = ee0eo™ C}'IJ
and = (n(o$))”
04 = (n(oy)
- g .
g, = (n)°.0o cee (4.3)
a 1
or 0y = [n(as + sz)]% oee (4.4)
If the lengths of the spans, Si’ are not equal,
then ‘

: 2.2 2, 1%
o. = +S +.ueeot ceo
4 [a(sl's2 sn) + b(sl+sz+ +sn)]

ee. (4.5)
The constant or systematic errors of measurement

include those due to alignment, to the band not being stretched

straight, either horizontally or vertically, and those due to
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standardisation errxors, errors in tension and temperature due
to faulty or non-calibration of the spring balance and the
thermometer. The variable or accidental errors include
those due to the cbserver, the weather conditions such as wind
and those due to random errors in tension and temperature

measurements,

(b} Exrror Due to Alignment

These errors are always of one sign and will
always tend to make the measured length too long. If 4 is
the error in alignment of the end of the tape, (distance perpendicular
to the line being measured), then the error in measured length,
e, is

a°
= - .-e (4.

© " 25 (4.6]
where S is the length of the band. Johnson (1954) points
out that for a 100 metre band, with one end off line by
1 metre and the other end off line by 0.5 metres on opposite

sides of the true line, an error of measurement of 11 mm will
result. Exrors due to this source should therefore be

negligible if reasonable care is taken.
(c) Error Due to Horizontal Deformation

This error is due to the band not lying in a
vertical plane between the end points, Once again this
error is always of the same sign and will always make the
measured length too long. If the error is due to the
middle of the band (of length S) being D off line, then the
error in the measured distance, e, is

2
e=3—’;-— | ee. (4.7)

If catenary measurement is being used, so that the band is off
the ground for the whole of the length being measured, then
errors due to this source will only arise if wind deforms the

band.
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(d) Error Due to Vertical Deformation

This error is due to the band not lying in a
"straight line in the vertical plane between the end points

because of bumps and irregularities in the ground. Once

again the error is always of the same sign and always making
the measured length too long. If the error is due to a

rise h at the centre of every 100 m length, the error, e, in
a single band length measured by a band s.metres long will be

_ 2sh? .
e = W PR (4.8)_

This error will not apply if catenary measurement is used.
(e) Error Due to Slope Measurement Errors

Errors from this source are of two kinds.
Firstly, those of a systematic nature due to the maladjustment
of the measuring instrument, and the consistent bisection and
reading errors of a particular observer, These errors should

be negligible if reasonable carxre is taken, if the slope is

measured with a theodolite and if the Slope does not exceed

about 5 degrees. Secondly, there will be errors of an
accidental nature. If a theodolite is used, these errors
will be due to the factors discussed in Chapter 3. The

error, e, in measured lengths, s, due to these errors may be

expressed as:

e = %rsin 6.86 ce. (4.9)

where 60 is the error in slope measurement, in seconds,

and p is the number of seconds in one radian.
(f) Error Due to Error in Temperature Measurement

Temperature measurement for steel band chaining
is usually by mercury thermometer. This method of
measurement is unsatisfactory for two reasons, (Campbell,

1971, p(v) ):
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1. The mercury thermometer is not being used in
the manner for which it was designed. The object is to
measure the temperature of the band, but most thermometers.
are designed for total or partial immersion in a gas or

liquid to find the temperature of that gas or liquid.

2. The band and the thermometer will not have
identical heat capacities and therefore will reach different

temperatures in . a given period of time.

These factors can cause errors in measurement
of the band temperature up to lOOC. The error in length
measurement, e, due to an error 4T in temperature measurement
is:

e = s.c.8T co. (4.10)

where ¢ is the coefficient of thermal expansion of the band

and s is the measured length.

(g} Error Due to Error in Tension

Errors in length measurement due to errors in
tension are of two types. Systematic errors due to faulty
standardisation of the spring balance, and accidental
errors resulting from slight variations in tension from
bay to bay. The error in measured length, e, for an error

in ténsion GF may be expressed as:

ce- (4.11)

where A is the cross—sectional area of the band,
E is Young's modulus of elasticity, and s is the

measured length.

Another appreciable error caused by errors in
tension is the error in the sag correction. Once again this
may be either systematic or accidental or both. The error in
measured length due to the error in sag correction caused by

an error in tension OF is:
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e = 2.C.§§' ..o (4.12)

where C is the calculated sag correction for the particular

distance, number of bays and assumed tension.
(h) Errors Due to Faulty Standardisation

These errors will be constant and of the same
sign for the same length of the same band, but will be
different in sign and magnitude for different bands and for
different standardisations of the same band. The error is
proportional to the length of band used for a measurement.
If the standardisation error for the full length, S, of a

band is X, then the error in a measured length, s, is:

K eos (4.13)

(i) Errors Due to Centering and Reading

Systematic errors from this source should be
negligible, but there will be accidental errors, the magnitude

of which depend on the method used in setting and reading.

{(j) Evaluation of These Errors

Clark (1966, p.170) attempts to evaluate these
errors. In doing this he places, what may only be seen as
arbitary, values on the slope, temperature and tension

measurement, and on the standardisation and reading errors.

For . a 100 m steel band, 3.2 mm wide and 0.4 mm
thick weighing 0.0115 kg per metre, used in catenary and supported

at the 30 m and 60 m marks, he arrived at the formula:
p. E. = +((5.9 x 10~%)N% + (10.4 x 107°%) N)lz

-.. (4.14)

for the probable error of the measured length of a line, N tape

lengths long.
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For a single 100 m measurement this formula may

be evaluated by placing N equal to 1, then:

+(16.3 x 10”5)lz

el
3]
i

e
td
i
I+
o

A\
o
o
>
2|

or by using the relationship between probable error and standard

deviation, given in formula (3.9,
g = 0.006m

This value does not sound unreasonable for
cadastral and third or fourth order survey work. Experience
on a large adjustment, recently carried out by Dr. J.S. Allman
of the University of New South Wales, which involved
approximately 1000 distances measured by two surveyérs using
different bands over a six year period, has shown that a
standard deviation of 6 to 7 mm is a- satisfactory figure for
a measurement of this kind. This agreed very well with

Clark's estimate,

The agreement between thig estimate and Clark's
estimate is surprising when firstly, Clark's rather arbitary
estimation of the errors in slope, temperature, tension, etc.,
and secondly, the fact that Clark includes systematic errors
in those measurements in his estimate of standard deviation,

are taken into account.

In the normal course of events, the steel band
would be standardised with the same thermometer and spring
balance with which it will be used in the field. Therefore,
any systematics in the spring balance will have no effect
as the same reading is pulled during standardisation and in
the field. Most bands are standardised on a fully supported
base and in this case, the error in the sag correction of a
field measurement due to a systematic error in tension will

still remain. This error could be quite serious. In a



single span measurement of 100 m, where 67N tension is being
pulled on a 3.2 mm x 0.4 mm band, an error of 5N in tension

will result in an error in measured distance of 0.015 m.

Fortunately, the error would seldom be of this
magnitude as the vertical sag in an unsupported band of length
100 m, and of the same cross—section as above, will be 1.92 mn.
If the band was supported at every 30 m, as would more usually
be the case, then the error in sag correction due to an error

in tension of 5N will only be 1.5 mm.

The systematic errors in temperature measurement
are very hard to evaluate and are quite variable in nature.
Although. they are systematic errors by definition, the only
practical way to treat them is as random errors. Therefore,
as long as due care is taken and sound field procedures are
used, all temperature errors are best considered as accidental
errors and should not be included in consideration of

systematic error.

Sa, from a consideration of the factors affecting
the precision of distances measured by steel band, it seems
reasonable to suggest 40 mm® as a close approximation of the
variance of chained distances up to 100 . m, as long as sound

field procedures have been used in the measurement.

4.3 Electronic Distance Measurement

The intrcduction of electronic distance
measurement has had a very dramatic effect on the methods and
organisation of surveying practice. Take as an example, a
chain of geodetic triangulation. In the past, scale in
the chain would be obtained by the measurement of base lines
at intervals along the chain, using invar bands, This was
a very time consuming process if any reasonable precision was
to be obtained. With the advent of electronic distance
measurement, such a baseline can now be measured in a mattex

of minutes as opposed to the days or even weeks previously
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required. The same or better accuracy is being obtained
and because of the time saving, many more baselines may be

measured. A significantly stronger network results.

Similar gains in time and precision have been

made available to all other aspects of surveying.

The dependence of modern surveying on electronic
distance measurement is such that a knowledge of the factors

affecting its precision is vital.

Three classes of electronic distance measurement

instruments will be considered in the following sections.

1. Instruments with carrier frequencies in

the microwave portion of the elesctromagnetic spectrum.

2. Instruments with carrier frequencies in the

visible light portion of that spectrum,

3. Instruments with carrier frequencies ia the

infrared portion of that spectrum,
{a) fThe Variance of an Electronically Measured Distance

The variance of an electronic distance

measurement may be expressed, (Chrzanowski and Derenyi, 1967), as:
0? = (a+ bs)? coo (4.15)

The first term 'a' is the result of changes in
the electronic centre of the instrument, due to factors such
as zero error and ground swing, It also includes the effeci
of errors due to reading and to the limits of phase resolution

of the instrument.

The second term 'bs' is partly due to the uncertainty
in the knowledge of the atmospheric conditions, and party due
to the uncertainty in the value for the velocity of light.

In 1957, the XIIth General Assembly of the International
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Scientific Radio Union recommended that the best available
value for the velocity of light was 299792.5 #0.4 km/sec.
This value was also accepted by the International Union for
Geodesy and Geophysics., However, it now appears that
299792.46 km/seé may be a better value. (Anon, 1972).

The effect of the uncertainty in the velocity of light will
not usually show up in variance, although it is present as

a constant scale error in the measured distance.

Atmospheric measurements are normally taken at
each end of the line and are seldom representative of the
conditions along the whole length of the line. The longer
the line, the less representative the readings at the
terminals of the line will be, so the 'bs' term is therefore
dependent on the length of the line, and is usually expressed

as parts per million (ppm) of that length.
(b) Microwave Instruments

Microwave distance measurements use wavelengths
of the order of a few centimetres. This system of
measurement was first suggested by T.L. Wadley and is covered
in his paper, "Electronic Principles of the Tellurometer" (1958).
The first commercially produced instruments, the Tellurometer
models MRAl and MRA2 had a carrier wavelength of 10 cm. The
advantage of this wavelength was ifs ability to penetrate rain
fog eﬁc. and hence the MRAl and MRA2 had a very long range, to
the extent that the horizon tended to be the limiting factor.
Burnside (1971) quotes a range of 150 km, The disadvantages
of this wavelength were its very wide beam, (approximately
20o to the half power points) and ité consequent susceptibility
to ground reflection effects. While these instruments were
very good for long range work, their lack of accuracy as well
as their susceptibility to ground swing made them unsuitable

for short range work.

These problems were, to a large extent, overcome
by the "3 cm wavelength" generation of instruments.

Tellurometer firstly produced two models, the MRA3 and MRAlQl
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for military and commercial use respectively, and later another
model, the MRA301; Wild produced the DI-50 Distomat; Cubic
Corporation produced the DM-20 Electrotape; and Ertel produced
the Distameter. These instruments did not have the same
degree of fog and haze penetration and hence the range of the
10 cm instruments, but were quite superior in accuracy. The
higher carrier frequency and smaller beam width (approximately
6° to 8° to the half power points) made them less suscéptible
to ground swing. The increased accuracy made this type of
instrument suitable for all medium range distance measurement
and all but the most precise short range distance measurement.
This class of instrument was, and is, the most successful
of the microwave instruments as it filled a definite need,
that for a reasonably priced and accurate instrument, and has
not really been superseded by more recent instruments,

microwave or otherwise.

However, the demand for yet more accuracy led to
the production of the Tellurometer MRA4. This instrument
operates on an 8 mm carrier wa&e length and gives significantly
better accuracy than the 3 cm instruments. The higher
frequency and very narrow beam (l%o to the half power points)
virtually eliminate the effects of ground swing. The shorter
carrier wave length means a slightly shorter range and hence a
more specialised use. The instrument is not widely used
because of its specialisation, weight, bulk and cost. Its
use is for very accurate geodetic work, consisting of lines

of short to medium range.

The principles of operation of the microwave
system will not be discussed in this report but are readily
obtainable in a number of publications. (e.g. Saastamoinen
(1967), Wadley (1958)).

The factors affecting the precision of microwave
distance measurement will be discussed in two groups, according

to the two texrms in the variance formula, (4.15):

1. Those contributing to the 'a' term.
2, . Those contributing to the 'b' term.
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In essence, these are instrumental and propagation errors

respectively.
(i) Instrumental Errors
{(a) Errors in Crystal Frequencies

The modulation frequencies of a microwave distance
measurement instrument are produced by oscillating gquartz
crystals. An error of X parts per million (ppm) in the fine
frequency will give an error of X ppm in the distances. The
oscillation frequency of these crystals is dependent on

temperature and can vary as the crystals age.

A drift in frequency due to temperature change
will occur if the thermostat of the crystal oven fails to
maintain the working temperature within the necessary limits.
However, these ovens tend to be quite reliable and are capable

of maintaining the frequency to one ppm. (Marshall, 1967).

Burnside (1971, p.72) quotes the rate qf frequency
drift with time as approximately 50 cycles per year. The
results of the measurement of the modulation and carrier
frequencies of two MRAl0l Tellurometers are given in Hoar

(1969, p.183) together with the values set by the manufacturer.
It can be seen that the drift over two years is not more than
10 or 20 cycles away from the manufacturer's values. For
the MRA4 Tellurometer, Bobroff (1968, p.216) and Yaskowich
(1968, p.231) quote drifts of one to two cycles per month.

This drift with time tends to be fairly uniform
and if the frequency is measured from time to time, distances
measured between calibratiors can be corrected for the drift by

a linear interpolation depending on the date of measurement.

If the instruments are calibrated at fairly
regular intervals, then the error due to variations in crystal

frequencies must be considered negligible.
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(b) Zexo Error

Zero error is the variation of the difference
in position, along the length of the line, of the electrical
centre and the plumbing centre. The error is a composite
error and is variable over the available range of carrier
freguencies in the instrument and also over the cycle of the
phase resolver. Zero error is due to spurious phase shifts
from a number of sources. These sources can be placed into
two groups; those due to circuitry components and those due
to stray reflections from the small parabolic reflector in the
Cassegrain reflector system. (See Marshall (1967) for a

description of this system).

The phase shifts due to circuitry components
are of two types. Firstly, shifts due to contamination
between the AM and FM channels. The final phase resolution
is between two 1 or 1.5 Khz. signals. (Depending on the make
and model of the instrument.)  One of these signals is
amplitude modulated (AM) and the other is frequency modulated (FM).
Contaminaticn between these signals can occur and will result
in an erroneous phase comparison, the magnitude of which
Marshall (Zbid) quotes to be of the order,of a few centimetres
for the MRA3 Tellurometer. Fortunately, the error is virtually
eliminated by taking the mean of forward and reverse readings.
The presence of contamination is usually indicated by a
difference between forward and reverse readings. With

improved technology the error has been eliminated on the MRA4.

The second source of phase shifts because of circuitry
componehts is due to imperfections in the tuned circuits of the
instrument. This source of error has been eliminated in
Tellurometers {since and including the MRA3) by the addition of
an extra circuit to lock the frequency of the phase comparison
waves to their nominal values. If this had not been done,
the error, which is partly a function of temperature, could

amount to 30 mm in the MRA3 and 3 mm in the MRA4.

The phase shift due to antenna reflections would



be quite serious if it were not for the fact that it is
cyclic and is nearly cancelled out over the range of carrier

frequencies. According to Marshall ({b7d) this erroxr for

the MRA3 can vary from 50 mn up to, sometimes, 200 mm.
However, the mean appears to be consistently accurate to
within about 20 mm. With the improved antenna design of
the MRA4, the error is only of the order 6 or 7 mm, the mean

being correct to 1 oxr 2 mm.

Work by Robinson (19€8) and Yaskowich (1265, p.208)
on the model MRAID1 and MRA3 Tellurometers respectively, indicate
that the variations from the mean are of the order 15 wm, a figure
significantly the same as that suggested by Marshall (2bid).

This is also the figure given in the manufacturer's specifications.
Therefore, for instruments with a 30 mm carrier wave length,
the error due to zero correction will be taken as having a

standard deviation of 15 mm.

Both Burnside (1977) and Yaskowich (1968, p.230)
quote the error due to zero correction as having a standard
deviation of 3 mm for the Tellurometer MRA4. This seems reasonable
in comparison to the figure accepted for 30 mm carrier wave
instruments when it is considered that zero error decreases with an

increase in carrier frequency.
{(c) Error Due to the Limit of Phase Resolution

Tellurometers up to and including the early versions
of the MRA3 used a cathode ray tube readout system. The 1Khz.
frequency was displayed as a circle and the relative phase of
the returned signal as a break in this circle. This system suffered
from many possible sources of error and Marshall (7b7id) quotes the
obtainable phase resclution as of the order one part in one
hundred. For the MRAl and MRA2 this corresponded to one nano second,

or approximately 150 mm.



Later instruments used a phase resolver system.
Marshall (Zbid) describes the phase resolver as a device which
produces a linear shift in phase with rotation of the rotor.
In the Tellurometer system this resolver has been inserted in
the 1.5KHz. channel. The resolver is geared to a dial
or counter on the front panel of the instrument and can be
rotated until the two 1.5KHz. signals are in phase. This
condition is indicated by a null metre orf the front panel
of the instrument. Marshall (Zbid) quotes an accuracy of
one part per thousand for such resolvers. Burnside (ibid)

quotes the same figure.

For the 30 mm carrier wavelength instruments,
using a fine pattern frequsncy of 7.5KHz, one cycle of the
phase resolver is equivalent to 10 m in distance. Therefore,
phase resolution of one part per thousand is equivalent to
distance resolution of 10 mm. For the MRA4, with a pattern
frequency of 75K4z, one cycle of the resolver is only i m

and therefore the distance resolution is 1 mm.

(d) Reading Errcr

As was pointed out in the above section, the more
recent microwave distance measurement instruments have a
readout consisting of a null meter and a digital scale or
counter. There are two types of reading error that can be
made using these instruments: the error in zeroing the null

meter, and the error in reading the scale, or counter.
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the effects of

MRA101 Tellurometer on the measured distance are given in

Hoar (1989, p.Z4). The invesiigatlon indicated a change
in distance of approximately 20 wm for each scale division
of the null meter. In normal conditionsg, the null meter

is reasonably steady and the sensitivity of setting is such
that it can be set to an accuracy better than one division
with little difficulty. The error in a single reading
due to an error in zevoing the null meter was accepted as

having a standard deviation of 15 mm.

The error in reading the scale of this instrument

is negligible as there is vernier reading to 10 mm.

The figure of 15 mm is in agreement with the
figure quoted by Burnside (ibid). This being the case, it
would seem reascnable to accept Burnside's figure of 3 mm for

the standard deviation of reading the Tellurometer MRA4.

In a normal measurement, forward and reverse

readings would be taken on between 5 and 20 different carrier

frequencies. As these readings are all meaned, the effect

U

of reading error on & distance, measured with either a 30 mm

or 8 mm carrier wavelength instrument, will be negligible.

{(ii) Propagation Errors

(a) The Uncertainty in Refractive Index

It is normal practice in microwave distance
measurement to take metecorological readings at both ends of
the line, before and after measurement of the distance.

A mean refractive index for the measurement is calculated
from these values. The uncertainty in refractive index

is due to two factors.

Firstly, the errors in the actuzal meteorolegical

readings, and secondly the inability of the refractive index,
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sampled at the two ends of the line, to accurately represent
the mean refractive index along the whole length of the line,
Burnside (1971, p.73) says that to ensure an error of less
than 1 ppr from the first factor, the pressure reading should
be correct to * 2 milli-bars, the air temperatures should be
correct to + 0.1°C. These tolerances do not seem unreasonable
but a previous investigation (Hoar, 1969, p.26-28), suggests
that they will give an error in refractive index of the order

3 ppm.

The degree of non-representation of the mean
refractive index along the line, by meteorological readings
taken at the terminals, is much harder to evaluate. Studies
by Richards (1965) suggest that very little improvement is to
be obtained hv taking multiple meteorological readings along
the line, between the terminals. However, this conclusion is
for a particular line and cannot be extrapolated, as the
variation in refractive index between the two terminal
stations is very much dependent on the topographic nature
of, and the prevailing conditions along the new line.

My own experience on average lines tends to support Burnside's
(1971) estimate of 3 ppm of the distance, for the average

magnitude of this error.

Some work has been done on the use of atmospheric
dispersion as a means of measuring refractive index, (e.g.
Taompson and Wood, 1965 and Owens, 1968), but systems using
this technique are not yet available to the field surveyor and

will not be discussed here.

Considering all factors, the error in measured
distance, due to the uncertainty in refractive index, appears
to be 5 to 6 ppm of the distance, for microwave instruments

under average conditions.
{(b) Ground Swing

Ground swing is the term used to describe the
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error in measured distance caused by ground reflections of the
microwave beam between the two instruments. The signal

received is a vector combination of the direct signal and that

which is reflected from the ground or other objects which may
be in the path. The error is cyclic and variable. It
depends on the carrier and modulation frequencies, on the
length. of the line and the height of the instruments, and on
the reflectivity of the ground surface. The mechanics of
ground swing are explained in Poder (1962), Rupfer (1967)

and Hoar (1969).

The actual ground swing error is the difference
between the mean of distance readings taken over a range of
carrier frequencies and the true distance. The problem is
that the cyclic form of ground swing is frequently of quite
long wavelength and only a small part of the wave may be sampled
over the range of carrier frequencies. This is illustrated
in figure 4.1. The correct distance is the mean of the total
swing curve and is represented by the frequency axis in Fig.
4.1. The full line part of the swing curve, Ss, is the
part that is sampled over the range of carrier frequencies.

The measured distance is represented by the line DD. It can
be seen that if the swing is large, the mean of an incomplete

curve could introduce a considerable erxrror into the distance.

For 30 mm carrier wave instruments, this error
is usually taken as having a standard deviation of 15 mm.
This value is derived from numerous measdrements obtained
under varied conditions in all parts of the world. The
work done by Cabion (1965, p. 184) on prototype models of
the Tellurometer MRA4 included a theoretical examination
of the possible ground swing errors. The probable value
of the exror appears to be of the order, 3 mm. Yaskowich
(1968, p.226-230) found ground swings of the order 50 to
100 mm using the MRA4 on some very extreme lines. Thése
lines were extreme as ground swings of 7 m were being obtained
with MRA3 instruments. On less extreme lines, ranging in
length from 2 km to 9 km, Hall (1967) obsexrved swings of the

order + 9 mm. Of this, about half is due to "antenna swing”
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and about half i

O antenna rel =
Aue to actual around swin Hall 'o findings are i Tine
aue toe actual ground swing. Hall's faindings are in iine

with more general experience which has shown the figure of

3 am to be what is normally expected for the MRA4,

Ground swing errors have been included in this
section on Propagation Errors as ground swing is actually a
propagation problem, i.e. the problem of propagating the beam
directly betwesen the two instruments. It is dependent on tha
length of the line as this is a contributing factor to the excess

path digra~<e of the reflected beam as referred to the direct

beam. This excess path distance is also dependent on
instrument height, and can be altered by changing instrument
height alone. Hence, ground swing error should not be

a
included in the 'b' term of the variance formula (4.15) as

this term is reserved for factors dependent mainly on distance.
Therefore, this error will be considered with the instrumental

errors that comprise the 'a' term of the variance formula.
(iii) Summary

In the foregoing discussion estimates were made
of the magnitudes of the various errors affecting the precision
of 30 mm and 8 mm carrier wavelength microwave instruments.
These estimates may be combined, using the Laws of Propagation

of Variancses, to evaluate the 'a' and 'b' terms of the variance

formula for these instruments.

The ‘a' texm will be made up of zero error, the

error due to phase resolver limitations and ground swing errors.

2 2 2 2
gt = 0., + 0 + C ... (4.16
s ZE PR GS ¢ )
. 2 . . .
where U?E ig the variance due to zero error,
a . . . .
pr IS the variance due to the limitations of the phase
resolver, and
Ués is the variance due to ground swing errors.

In the previous discussion these variances were estimated to be;
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30mm: Carrier (mm ) 8 mm Carrier (mm }
2
OZE 225 | 9
o? 100 1
PR
2
GGS 225 9
By formula(4.l@,
”
a 550 19
s
and Os 23 mn 4.4 mn

Therefore, the estimates of the 'a’ term are
23 mm and 4.4 mm for the 30 mm and 8 mm carrier wave instruments

regspectively.

The 'b' term for microwave distance measurement
is the uncertainty in refractive index, and will not vary
significantly between 30 mm and 8 mm carrier wave instruments
as they both use microwaves. Therefore, from the previous

discussion, b = 6 ppm.

Hence, the estimates of the variance formulae

for a single measurement are:

G° = (23 mm + 6 ppm)2 mm? Lo (4.17)
s

for microwave distance measurement instruments using a 30 mm
carrier wave, and

.o: = (4.4 mm + 6 ppm)? mm? cv. (4.18)

for an instrument using an 8 mm carrier wave.

The manufacturers (1966) claim a standard

deviation of 0: = (15 mm + 3 ppm)2 mm? for a single measurement

using MRA101 Tellurometers under favourable conditions and
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subject to zero error calibration. Webley (1965 points out

that "favourable conditions” implies:

1. Instruments which have been specially calibrated.
2. Optimum line conditions, i.e. a line which
has minimum reflections and uniform refractive index along its
length.
3. Optimum adjustment and performance of the

instruments.

To obtain more realistic estimates of accuracy,
Webley (1bid) carried out a series of tests under average field
conditions, using instruments that were neither zero calibrated
nor specially aligned or adjusted. For medium and long line
traverses, he obtained the variance Ui = (25 mm + 4 ppm)2 mm?.
However, as Jones (1968) points out, this result is far from
conclusive because of the rather invalid way in which it was
obtained. Robinson (1971) obtained the same value for the
'a' term, (25 mm), in a study involving many measurements of
a short line, under a variety of conditions., Such research
indicates that the result obtained from the present analysis

is probably fairly close to the correct variance.

The manufacturer’s estimate of the variance of

the Tellurometer MRA4 is GZ = (5 mm + 3 ppm)2 mm? . The

" "

a
term of this expression agrees well with the same term of
formula (4.18). Field tests carried out by Hall (1967)

11

indicate that the value of the "a" term is approximately 7 mm
and is virtually independent of the number of fine readings
taken and of whether the line was measured in both directions
or not. Hall's findings werc not based on a large numberx
of determinations (15) and, hence, do not warrant any
modification of the "a" term of eguation (4.18). However,

the value of the term must be regarded with caution as the

above does indicate that it could be slightly optimistic.
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{(¢) Instruments Using Visible Light as a Carrier Wave

Chronologically, distance measuring instruments
using visible light as a carrier wave preceeded those using
microwaves. Bergstrand designed the first experimental
instruments in the nineteen-forties, and the first survey
orientated instrument, the Geodimeter NASM-2 became available
in 1950. This instrument was intended for the measurement
of base lines to a very high order of accuracy. It is of
interest to note that the accuracy obtained by this instrument
is yet to bé bettered.  The range of the NASM-2 in darkness
and under good conditions was up to 50 km, However, the
instrument suffered from a number of problems, in that it was
extremely heavy and bulky and required a truck to transport
it, it was not designed for use with a tripod and had to be
mounted on a bench type arrangement, making accurate plumbing
extremely difficult. It's powexr consumption, (around 150
Watts), was high and a generator was required to run the

instrument.

The NASM-4 series of Geodimeter followed. These
were much more practical instruments as far as surveying was
concerned. They were of a more practical size and weight and
could be mounted on a tripod. The manufacturer's lack of under-
standing of surveying problems was still in evidence, as the
NASM-4 mounting system was not really of good design and much
time was wasted in centering and pointing the instrument. The
accuracy of the NASM-4 was inferior to that of the NASM-2, but
still was better than any other contempory means of distance
measurement. The range of the standard NASM-4 was approximately
1500 m in daylight and up to 15 km at night in good conditions.
The optional mercury lamp extended the range in darkness to

about 35 km,

The NASM-4 series was superceded by the NASM-6
series, introduced in 1965. This series was a vast improvement
from every point of view. With the standard tungsten lamp,
the NASM-6 had a range of up to 5 km in daylight and up to
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15 km in darkness. The optional mercury lamp extended the
daylight range to 10 km and the darkness range to 25 km.

The NASM—-6 series was improved over a pericd of time with the
introduction of the NASM-6A and the NASM-~6B. The latest
model in the series is the NASM-GBL. The light source in
this instrument is a laser instead of the tungsten and mercury
lamps used in previous models. The main advantage of the
laser is that the daylight and darkness ranges are practically
the same at about 25 km.

In an attempt to cater for long range geodetic
work, the NASM~8 Geodimeter was introduced. Like the 6BL,
a laser is used as the light source. However, this laser is
considerably more powerful than that used in the 6BL and the
range of the NASM~8 is extended to approximately 60 km. in good
conditions. The accuracy of the instrument is the same

as that of the NASM-6 series.

A model 700 Geodimeter has also been introduced.
This model is a combined theodolite and distance meter giving
readouts of horizontal circle, vertical circle and distance.
The precision of angle measurement is similar to that of a
single second theodolite, and the precision of distance
measurement is the same as that of the other recent
Geodimeter models. This instrument is designed for engineering
type work and the range at 3 km is relatively short. The

light source used is once again a laser.

The quantitative information contained in this
section has been taken from a number of pamphlets, put out by
the manufacturers of Geodimeter, the AGA Company of Sweden.
These pamphlets are too numerous to list and hence are not

included in the bibliography.

(i) BAdvantages and Disadvantages of the Geodimeter

System of Measurement

The visible light used as a carrier wave in
the Geodimeter instruments has a wavelength of the order

560 nm., The beam is therefore able to be collimated closely.
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Ground reflections are uncommon because of the narrow bean
and because of the fact that there are very few natural
surfaces that will give a strong reflection at this wavelength.

Hence ground-swing is not a significant source of error.

The optical system of the Geocdimeter allows
the internal path of the light beam to be more closely defined
than the microwave beam of the Tellurometer system. Hence,
the instrumental zero error of Geodimeter instruments is only
a few millimetres. This small zero error is also partly due
to the passive reflector used at the remote end of the line.
Retro-reflective prisms, as their name implies, return the light
beam along the same path that the incident beam followed.
They are designed so that their calibration constant is not
depéndent on the angle of incidence of the beam. Hence, no

zero error is introduced by the reflector.

The range of this type of instrument is limited
by the fact that visible light tends to be absorbed by the
atmosphere and by the fact that under daylight conditions,
unwanted light may enter the receiving optics and give rise
to considerable noise which reduces the sensitivity of the
measurement process, Therefore, with the exception of the
laser NASM-8, the range of Geodimeter instruments is very much
less than that of microwave instruments, Even with the
NASM~-8, it is impossible to measure a line longer than about

35 km, if there is the slightest haze present.

The refractive index of visible light waves is
relatively insensitive to atmospheric conditions. Because of
this, the 'b' term of the variance formula is usually stated as
1l ppm if meteorclogical readings are taken at one end of the

line.

The insensitivity of refractive index, the low
zero error and the virtual lack of ground swing make the Geodimeter
system extremely accurate, For most models, the manufacturers

quote a standard deviation of a single measurement of

0 = 5mm+ 1 ppm eeo (4.19)



It will be seen in Chapter 7 that although this

figure may be slightly optimistic, it is significantly correct.

{(ii) Factors Affecting the Precision of Instruments Using

Visible Light Carrier Waves

The factors that were shown to affect the
precision of microwave distance measurement systems also affect
the precision of instruments using Qisible light carrier
waves. The nature and properties of these factors were
discussed in detail in the microwave section and this section
will therefore be confined to a brief discussion of their

effect on visible light carrier wave instruments.

The errors in crystal frequencies have the same
effect as in microwave instruments, Once again, the crystals
are kept at constant temperature by means of an oven, and the
variation of frequency with age is not a source of error as

long as this variation is monitored at fairly regular intervals,

It was pointed out above, that the zero error
of visible light instruments is much smaller than that of microwave
instruments as, by virtue of the optical system used, the
geometric path of the beam is more closely defined. It is

only of the order of a few millimetres.

Errors due to the limit of accuracy of the phase

resolver, in this case a delay line system, still apply.

The readout system in the later modsls is the digital tumbler
system. Burnside (1971, p.72) points out that this system
seems to be capable of better than one thousandth of a cycle
resolution. As the delay line system operates over half a
wavelength, a full wavelength of the fine frequency being

10 m, this phase resolution is equivalent to a distance

resolution of better than 5 mm.

Reading errors in the Geodimeter are of the
order 1 or 2 mm, but as each measurement consists of several
phase readings on several frequencies, the effect of reading

errors on the mean distance is negligible.
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The refractive index of visible light waves is
not as sensitive as the refractive index of microwaves to
variations in atmospheric conditions. For the same errors
in meteorological readings as were used in the microwave
discussion, the error in refractive index is about 1 ppm.

I1f, as was done in the microwave discussion, a similar error

is added for the uncertainty in refractive index along the
line, it may be estimated that the total effect of errors

in refractive index is probably less than 2 ppm of the distance

measured.

It was pointed out above that ground swing
errors do not have a significant effect on measurements by

this system.

Therefore, from a rather cursory examination of
the errors. affecting visible light distance measurement, the
manufacturer's standard deviation of 5 mm + 1 ppm seems quite
reasonable for the Geodimeter instruments, The only
exception to this is the NASM~4 series which may be slightly
less accurate, For these instruments, the manufacturers
quote a standard deviation of "less than 10 mm + 5 ppm".
However, tests by Jones (1964, p.383), on the NASM-4D, indicated
a standard deviation of 4.5 mm + 0.5 ppm, for a single
observation using the short delay line technique of observing.
Therefore it seems reasonable to accept the one variance, of
(5 mm + 1 ppm)?, as being applicable to all Geodimeter

instruments.

(iv) Instruments Using Infra,-Red Light as a Carrier Wave.

The final class of electronic distance measuring
equipment to be considered is the class which uses infra-red
light as a carrier wave. These instruments are very accurate
and are designed for cadastral and precise engineering surveys.
In general, their range is short, seldom exceeding 3 or 4 km.
Most instruments in the class use a carrier wave that lies
in the portion of the infra-red spectrum adjacent to visible

light, and has a wavelength of approximately 0.9 nn.
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The chief reason for using infra-red light as
a carrier wave is the ease with which the Gallium—-Arsenide (Ga-&s)
diode, thch,is normally used as the source of radiation, can
- be modulated. Unlike incandescent or gas-discharge lamps,
the Ga-As diode can be directly modulated in the high frequency
range by varying its supply current. (McCullough, 1972].
As far as the effects of atmospheric absorbtion and dispersdion
are concerned, infra-red waves, in general, are only slightly
better than visible light waves, However, the wave-lengths
used for distance measurement are in the "infra-red window",

a band of wavelengths which have high atmospheric penetration

properties.

The first infra-red distance meters were released
in 1968. At the present time there are about a dozen types
of instrument available. A few typical instruments are the

Wild DI10, the Hewlett—Packard 3800B and the Tellurometer MA100.

Wild quote an accuracy of *1 cm, irrespective of
distance, for the DI10, This figure is acknowledged as being
pessimistic, as at ranges less than the maximum range, the
effects of crystal frequency variations and changes in
atmospheric conditions will be diminished. If the accuracy
was quoted in terms of the variance formula (4.15), then a
better knowledge of the actual precision would be available.
Indications are that the standard deviation of the instrument
is about (5mm + 5 ppm). The range is quoted as up to 2 km,
depending on the atmospheric conditions and the number of

prisms used.

Hewlett—-Packard quote a standard deviation of
(3 mm + 10 ppm) for the 3800 series. Once again this figure
is pessimistic, and trials by Robinson (1372) have shown
that a standard deviation of (3mm + 5 ppm) is more appropriate.
The range of the instrument is in excess of 3 km and in ideal
conditions, Robinson (7bid) states that measurements of over

4.5 km have been made.
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Telluwrometer quote a standard deviation of

(1.5 mm + 2ppm} for the MAlO0Q. This standard deviation seems
close to the correct figure. The range of the instrument
is quoted as of the order 2 km. However, the number of prisms

required to obtain this range is approximately nine,

Distances up to 1.5 km can be measured using 6 prisms.

(a) Factors Affecting the Precision of Instruments. Using

Infra-Red Light Carrier Waves.

As with. visible light instruments, these factors
will not be discussed in depth. as their effect on infra-red
instruments is very similar to their effect on microwave and

visible light instruments.

Errors in crystal frequencies are once again a
factor affecting precision. Most instruments in this class
do not incorporate an oven to keep the crystals at constant
temperature. Therefore, the variation of crystal frequency
with temperature is a significant source of error. This
error is usually taken to be of the order 3 ppm of the distance
measured. One exception is the Tellurometer MA1QO, which
dees incorporate an oven and errors in frequency due to
temperature variations in this instrument should be negligible.
The disadvantage of an oven is that a warm-up period is
required before any measurement can be made. Errors in
crystal frequency due to aging should be negligible as long

as the variation with age is monitored from time to time.

The zero error of these instruments is extremely
small. Most incorporate an internal path calibration system
by which the path distance inside the instrument may be nonitored.
This factor combined with the factors mentioned in the discussion
on visible light instruments, combine to give only a very small

zero error, usually of the order of a few millimetres.

Errors due to the limits of accuracy of the

phase resolver are in this case negligible, The phase
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resolvers used in this class of instrument are of such. a
quality that distance resolution better than 1 mm can be

obtained.

Many infra-red instruments use an automatic
readout system. In this case there is of course no reading
error. In the instruments using a manual system, the reading
mechanism tends to be sufficiently sensitive for reading

errors to be negligible.

.The error due to the uncertainty in refractive
index is the same as for visible light instruments. Gort
(1870) has analysed the refracti&e index formula and found
that errors of 10°F in temperature and 1 inch in pressure
cause an error in refractive index {(or distance) of about
15 ppm. Under field conditions it is fairly simple to obtain
temperature readings to 1% and pressure readings to 2mb.

The graphs given by Gort (7hid] may be used to show that
these accuracies in meteorological readings will give an
exror in refractive index of about 1.5 ppm. Burnside (1971)
quotes a different figure. He quotes an error in refractive
index of 1 ppm for an error in temperature reading of 1%

and an error in pressure reading of 2 mb, Averaging these
figures and making an allowance for the changes in conditions
along the line, the total effect on distance of uncertainty
in refractive index seems to be of the order 2 ppm. There
is provision on some instruments (for example the Hewlett-—
Packard) for the presetting of a refractive index factor, so
that the readout is corrected for atmospheric conditions.

The system simply changes the modulation fregquency slightly
to compensate for the difference between the nominal and the

measured refractive index.

As was the case with visible light instruments,
. ground swing has no significant effect on measurements with

infra—-red instruments.
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It is not possible to estimate a representative
variance for all infra-red instrumeants, as the range of
accuracies in this class is quite considerable. For example,
the Tellurometer MA100 has a resolution of 0.1 rm while the
Wild D110 has a resolution of 3 mm. From a consideration
of the factors above, in particular the ovened crystals,
the MA10Q manufacturer's claim of (1.5 mm + 2 ppm) 2 seems
‘realistic. For most other instruments in this class, a

variance of (b mm + 5 ppm)2 is not greatly in error.
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CHAPTER b

THE ANALYSIS OF ANGULAR PRECISION

5.1 Introduction and Definitions

The purpose of this Chapter is to examine methods
of analysing the precision of angular observations. Chapter 3
examined the factors contributing to angular precision and used
the results to predict the precision that is likely to be
achieved in the field. The present Chapter does the reverse,
in that it is concerned with the analysis of observations that
have already been made, in order to assess the precision that
was achieved. Distance observations will be similarly treated

in Chapter 6.

The total variance of an angular observation may

be broken up into internal variance and external variance.

Internal variance takes into account the random
errors due to the instrument, the observer using the instrument
and the sighting conditions. It does not take into account
errors due to discrepancies in levelling the instrument, and
in plumbing it over the ground station. The errors due to the
instrument include random circle graduation errors, (the
observing procedure should be such as will cancel out systematic
graduation errors, or at least reduce the final effect to the

magnitude of random errors), effect of residual errors after

adjustment of the instrument, and so on. The errors due to the
observer include pointing and reading errors. In summary,
internal variance is the variance found when the direction
observations at a station are analysed by examination of the

field books.
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External variance is due to random errors which
show up when the observations are used to form a network, as
is done in an adjustment. Such random errors include those
due to the plumbing and levelling of the instrument, random
changes in the deflections of the vertical, asymmetry of
opaque targets, and lateral refraction (Bomford, 1852).
0f these, the major contributing factor is lateral refraction.
A consideration of these errors will help clarify the

distinction between internal and external variance.

When an instrument is set up at a station, it is
plumbed over the station and levelled. . This initial plumbing

and levelling is usually not altered during the course of the

observations taken at that set-up. The deflection of the
vertical is a constant at any given station, The random
changes occur only from station to station. The error due to

erroneous intersection of asymmetric opaque targets will not
vary during observations taken at a single set-up except when
the influence of phase is present. However, as was pointed
out in Chapter 3, the influence of phase will not be significant
in the vast majority of cases. The only factor which can |
change is lateral refraction. Experience has shown that, in
nearly every case, as long as the observations are not spread
over too great an interval of time, lateral refraction will

not change significantly.

Therefore, the influence of these factors on
observations taken in one set-up at a given station will be
significantly constant. Hence, they will not show up when
the interxrnal variance or consistency of the observations is
calculated, but they are still present in the observations
as systematic errors of that set-up and station. When the
consistancy or variance of all observations at all stations
is considered, (as, in effect, is done in an adjustment), they
become randomized and therefore will show up in the calculation
of total variance, The external variance may then be found

by subtracting the internal variance from the total variance.



TOTAL VARIANCE = INTERNAL VARIANCE + EXTERNAL VARIANCE ... (5.1)

The methods of analysing variance considered
below are not consistent in that some test for total variance,
some for internal variance, and some for a variance between these
two. {(i.e. Internal variance plus the variance due to some of
the factors giving rise to external variance.) The nature

and properties of each method will be discussed.

A number of methods of analysing the precision
of angular observations have been put forward over the years.
As they apply mainly to angles and directions, these two types

of observation will be treated first.

5.2 Methods Based on Condition Closure

(a) Ferrero's Formula

This is probably the best known of the classical
methods for estimating the variance of angular observations.

The estimate of variance of an observed angle is given by:—

2 _ 2
Oy ,g.(A ) eoe (5.2)
3n
where A is the misclose of an individual triangle,

n -is the number of triangle miscloses considered,

and o] is the estimated variance of an observed angle.

This formula may be proved as follows (Ashkerazi,

1971 and Von Forstner, 1933):
Consider a triangle with angles o, B and Y.
a+B+y = (180 + ) + A

where € 1is the gpherical excess of the triangle.
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If the angles are not correlated and have the same estimated

variance Bé.

then T2 (180 + e+ A) =02 (0+ B+ ) = 363
=2 _ .2
SO OA 30&

If the individual triangleS are not correlated,

AN
=n__ "

n

o% (180 + £ + A)

2
52 (A) = %(A )
n
Therefore
2
cé = @0 eee (5.2)
3n

Similarly, the estimated variance of a direction Eé may be found.
The triangle condition now becomes: (See Fig., 5.1)

b-a+d-c+ f-e= (180+¢€) + A

In this case

2, 2
oN 60d
Therefore
o%a = ZA? eee (5.3)
on

by the same reasoning as given for the angle case above.

There are a number of disadvantages in Ferrero's

method of variance estimation,
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1, Each angle can only be used once., i.e, In
only one triangle. This presents no problem in networks of

the single c¢hain triangulation type as each angle occurs only

in one triangle. If the chain is formed by braced quadrilaterals,
as it more usually is, only half the triangle misclosures may

be used to calculate the angulaxr variance, This is no
disadvantage if angles have been observed, in that the same

LA will be obtained using different triangles, as the same

angles are being used. (Refer fig. 5.2).

Misclose A ABC = 2 + 3 + 4 + 5 -~ (180 + El) = Al
Misclose AARDC =1+ 6 + 7 + 8 - (180 + €2) = A2
R (5.4)
Misclose AABD = 1 + 3 + 2 + 8 — (180 + 63) = A.3
Misclose A BCD = 4 + 5 + 6 + 7 - (180 + €q) = Au
It may be easily shown that,
Ay + B, =40, + A, ... (5.5)

As all the angles are used to calculate both the left hand side
and right hand side of equation (5.5), it will make no
difference which two of these triangles are used to calculate
Ferrero's Formula. That is, there is no correlation between
A ABC and A ADC or between A ABD and A BCD, so either pair may

be used.

If directions are observed rather than angles,

the miscloses would be calculated as follows. (Refer Fig. 5.3).

Misclose A ABC = 42 - 41 + 32 - 31 + 39 - 37 - (180 + € ) = A))
Misclose A ACD = 41 - 40 + 36 - 34 + 33 ~ 32 - (180 + €2) = 4,

Misclose A ABD = 35 - 34 + 33 ~ 31 + 39 - 38 ~ (180 + g,) = A3+
Misclose A BCD = 38 - 37 + 42 - 40 + 36 - 35 - (180 + €,) = AuJ

.. (5.6}
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Once again, eguation (5.5) holds, but in this case A, and A2
are correlated as they both use directions 32 and 41.
Similarly, A, and A“ are correlated as they both use direction
35 and 38. Al is also correlated with A3 and with 4, .
Therefore, when directions are observed only one triangle
misclose from each braced quadrilateral can be used in the

calculation of variance by Ferrero's Formula.

Similarly, if a single chain triangulation is
being considered, only one triangle in every two can be used

in Ferrero's Formula without introdiucing correlation.

2. The method cannot be used in cases where
triangles are not formed. For example, traversing or where
not all angles of the triangle are observed, as is the case
in intersections, resections and radiations. This means
that in most networks, not all the observed angles are used
in the variance calculation, and hence, that the variance

obtained may not be representative of the whole network.

3. Spherical excesses or arc to chord corrections
may have to be calculated. This would normally not have to
be done if the recent generation of adjustment programmes are
used. These programmes usually accept field observations as

data.

4. 1In smaller surveys, spherical excess is not
needed to calculate the triangle misclose, It then becomes
a matter of mental arithmetic to find the misclose and the way
is open for the field surveyor to interfere with the
observations. Usually this would be by reobserving until the

misclose was inside an allowable limit. (Askenazi, 1971).

5. The method does not take differences in
viziance from angle to angle into account, For precise work,

this may be important.
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The method basically tests for total variance,
But, as individual triangles rather than'the whole network are
being tested, errors due to most of the errors contributing to
external variance will not have their full influence in the

estimated variance.
{b) Method Based on Side Equations

A method similar to Ferrero's method is one using
side equations in which the variance of the angular observations

is estimated using the formula:

M. o) 2
= 1
83 " n Z(Cotzai) ee 6.7

where M 1is the misclose term of the side equation,
p 1is the number of seconds in a radian,
c are the angles involved in the side equation,

and n is the number of side equations considered.

or in its logarithmic form,
52 . Lp [ o? (5.8)
o nn I, (CD,) : Tt )
i i

where CDi is the common difference for one second in the log

sine of o..
i

The method is totally unsuitable for networks
with observed directions as it is impossible to form side
equations using each direction only once. This may be seen

if fig. 5.3 is examined.

Regardless of the selection of the pole, the
directions toward the pole, along the lines radial to the pole,

will always occur twice in the side equation. For example,
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1. Pole at Centre

sin BDC  sin CAD  sin DBA  sin ACB _ 1
sin ACD °~ sin BDA ° sin CAB ° sin DBC

sin (36-35) sin {33-32) sin (39-38) sin (42-41) _

sin (41-40) ° sin (35-34) ° sin (32-31) ° sin (38-37] 1

oo (5.9)
The directions 32, 35, 41 and 38 occur twice in the side equation.

2. Pole at A

sin ACB sin ADC  'sin ABD -
sin ABC ° sin ACD °~ sin ADB

sin (42-41) sin (36-34)  sin (39-38) _ (5.10)
sin (39-37) °~ sin (41-40)] °~ sin (35-34) ‘

The directions 34, 41 and 39 occur twice in the side eguation.

This method of variance estimation, along with
the other condition closure methods, is dependent on the fact
that the directions are used only once. If this is not the
case, then the estimate of variance obtained is not valid.

An example of the invalid use of this method is the paper by
Watermeyer (1832). '

The method does not seem consistent as it does
not specify the pole to be used. If the pole is selected at
A or at one of the other corner stations, the sample or number
of directions being tested is smaller than if the centre is
selected as the pole. This means that the method gives a
number of different estimates depending on the pole chosen and

hence on the proportion of the total sample used.
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Even though it can be used with angles, it is still
not a suitable method. There is a considerable amount of work
involved in the calculation of the side equation misclosures
when they would not otherwise be calculated. The method
incorporates all the pitfalls of Ferrero's method, with the
added pitfall that the sample of observations considered in the

calculation is smaller.

5.3 Internal Variance from a Station Adjustment

(a) Introduction

A station adjustment is the adjustment of direction
observations from one station to a number of other stations.
A "station adjustment" is not to be confused with the least
squares adjustment of the observations and station coordinates
in a network. A station adjustment is a preliminary least
squares adjustment at one station that is carried out to provide
uncorrelated direction data for a network adjustment which

includes that station along with many others.

As the adjustment only deals with the directions
observed from one station, the variance obtained from it will
be the internal variance of those directions.

(b) Station Adjustment by the Parametric Method

Let n be the number of stations observed, and

s be the number of arcs read.
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The observation equation of the i-th direction

in the k-th arc is of the form,

D, =pr + v+ oF . (5.11)
1 1 1

where D, is the adjusted value of the i-th direction,

i
p? is the observed value of the i-th direction in
the k-th arc,
v? is the correction to the observed value of the
i-th direction in the k-th arc,
k
and G is the orientation unknown for the k—th arc.
The form of the normal equations is best seen
by consideration of Table 5.1. The normal equations have

been formed from the observation eqguations by the method given

in Richardus (1966, pp.126-127).

The number of observation equations is n.s, and
the number of unknowns is n+s-1. That is, the directions to
the observed stations {(n), and the orientation corrections to
all arcs except the first (s-1). Therefore, there will be

n+S-1 normal equations.

It can be seen from Table 5.1 that the first n

normal equations are of the form:

5
sD, - 1ZOk - lZpl =0

s s k
D, = 10 ~ )Ip, =0 ¢ o (5012)
sD - 550, - Sppf =0



Observation Equations

D D ceeeesdp | OF 0% | ...... 0" T
1 2
1
+1 -1 ~P
° 2
.. L] gl
+ P -
1 pn
+l "l —pf
+1 -1 -p2
.,, - .2
+ - -
o +1 1 pn
+1 . -1 —ps
+1 -1 -p°
.. . . o
. +1 -1 -
pn
Normal Equations
)
D D D o! 0? o®
1 2 n
' k
5 O ocono»-o "l "'l .-oooo—l E-pl
8 k
o.ooocQ -l —'l -l %"‘pz
.. s
.'s —l -l coono.—l z:"’pi
n
2
n O *e0ec e 0 ¥ p-
n 1
n ceseeo O I P2
1L
-.. » n. .
e n % pi
TABLE 5.1
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The remaining s-1 normal equations are of the form:

_n 2 Ne 2
1ZDi + n0* + 1Zpi =0
_n 3 n 3 > '
1ZDi + n0° + lZpi = 0 co- (5.13)
n s n. s
- -+ + =
1ZDi no lZpi 0 J

It will not affect the solution to impose the

condition

S
Lo =0 ... (5.14)
1

Substituting (5.14) into the first n normal equations, (5.12),

they simplify to:

sD_ - TZPT = Q
and hence:
D, = f"zp’l‘/s ‘
D, = pr];/s. , .. (5.15)
D = pri/s J
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The adjusted observations (5.15) are therefore
the means of the directions frém each arc, all reduced to a
common orientation. It should be noted that the orientation
unknowns are eliminated and that the adjusted values of the

directions are free of correlation.

It may be deduced from the observation equations

(5.11) that:

n k n. k n. k
1ZDi - n0 - 1Zpi 1Zvi = Q  ees (5.16)

and from the (n+k)-th normal equation: (See 5.13)

%5, + nd® + U5t = o | cee (5.17)
1 1 7

Comparing (5.16) and (5.17), it can be seen that:

Ik = eeo (5.18)
1

Or, in words, the sum of the corrections to all the observations

in the k-th arc is =zero.

This may be extended to show that the sum of the

corrections to all the directions in all the arcs is zero.

f’zn2v’? = 0 : ee. (5.19)
1 1 .

This result may be used to find the orientation

unknowns. From the observation equations of the k-th arc, .
(5.11) let
k k k
D - =v -0 = L
1B 1 9
k k k k.
D - =V -~ Q0 = g ) e .
2 P T2 9, _ ® 201,
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Addition of equations 5.20 gives:
n. k k n. k
Z - O = . - e o ’ -
Lvy - llql (5.21)

Substituting equation {5.18)into this enable the orientation

unknowns to be found.

k ne k ‘
0" = qui-/ n eeo (5.22)

Substituting these orientation unknowns back into their
observation equations (5.11), the individual corrections to
the observations may be found. The correction to the i-th

direction in the k-th arc is:

v, = q, — Ufgs / n eoe (5.23)

The variance of a single observation may then be found:

o2 =1tz (v}i()Z / (n-1) (s=1) ... (5.24)

S.0. 171

or in more conventional notation,

2 _ Lvv
Gs.o. T (n-1(s-1) ... (5.25)

and the variance of the mean:

2

CIS (@]
g2 = — cee (5.26)
m S

(c) Station Adjustment in Tabular Form

It is not necessary to go through the full
parametric method of adjustment, given in the preceeding
' section, each time a station adjustment is to be carried out.

A nurber of simplifications are apparent from that section.
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It was shown that the adjusted dircctions are
the means of the observations from each arc all reduced to a
common orientatibn, and that these adjusted directions are
independent of orientation unknowns. This is easily seen

from equation (5.15):

D. = TIp. e (5.27)

However, in the present discussion, the variance

of the observations is of more interest. Equation (5.20) gives:
k k :
qi = Di_ Pi‘ ’ .«s (5.28}

and from equation (5.23)

k k ne k
= - .. 5.29
vi q; REA / n (5.29)

Using equation (5.28) the "g" values may be
calculated by'subtracting each observed direction from the
adjusted direction to that station. Using equation (5.29),
the "v" values may be obtained by meaning the "g" value for
each arc, and subtracting the appropriate mean from each "g"
value. Once the "v" values have been found, equation (5.25)
and (5.26) may be used to find the variance of a single
observation and of the mean. The calculation of the "v"

values may be checked by use of the condition that the sum

of the "v's" in the k-th arc must be zero. (Equation 5.18).

~ The calculation is best organised in tabular
form as is given in Richardus (1966, p.167), and in many other
references. An example is given in Table 5.2 for the sake

of completeness.

This form of calculation is quite convenient and
can easily be done in the field. This 1s desirable, as the
observations may be checked before leaving the field. Other
usefui parameters may be obtained in the course of the

calculation. These will be discussed later in this section.



Station Face Face
Observed Left Right
Peveril 0 00 09 180 00
Springs 194 21 33 14 21
Borunge 293 36 06 113 36
Peveril .30 00 36 210 0O
Springs 224 22 01 44 22
Borunge 323 36 34 143 36
Peveril 60 Q0 54 240 0CG
Springs 254 22 19 74 22
Borunge 353 36 54 173 36
Peveril 90 00 2Q 270 00
Springs 284 21 44 104 21
Borunge 23 36 20 203 36
Peveril 120 00 29 300 00
Springs 314 21 55 134 21
Borunge 53 36 28 233 36
Peveril 150 00 53 330 0Q
Springs 344 22 18 164 22
Borunge 83 36 54 263 36
Mean Directions
Peveril ¢ 00 Q0.0
Springs 194 21 25.0
Borunge 293 36 00.3

09
35
16

37
01
38

53
18
54

19
45
20

30
56
30

52
19
57

97

Mean

194
293

30
224
323

60
254
353

90
284
23

120
314
53

150
344
83

TABLE 5.2

00
21
36

Qo
22
36

00
22
36

010]
21
36

00
21
36

oa
22
36

Reduced q v v
Mean
09 Q 00 00 0.0 0.4 Q.2
34 194 21 25 a.Q 0.4 0.2
08 293 35 59 -1.3 -0.9 0.8
Mean = -0.4 Z-0.1 £1.2
36 0 00 0Q 0.0 Q.1 0.0
Cl 194 21 25 0.0 0.1 0.0
36 293 36 00 -0.3 =0 2. 0.0
Mean = ~0.1 Z 0.0 Z0.1
54 0 00 00 Q.0 0.4 0.2
18 194 21 24 -1.0 ~0.6 0.4
54 293 36 0Q ~-0.3 0.1 0.0
Mean = -0.4 I-Q.1 L0.6
20 0 00 00 0.0 0.4 0.2
44 194 21 24 -1.0 -0.6 0.4
20 293 36 00 -0.3 0.1 0.0
: Mean = -0.4 ¥-0.1 Z0.6
30 0 00 00 0.0 0.1 0.0
56 194 21 26 1.0 1.1 1.2
29 293 35 59 -1.3 =-1.2 1.4
Mean = -0.1 ¥ 0.0 22.6
52 0 00 00 .0 -1.6 2.6
18 194 21 26 1.0 -~-0.6 0.4
56 293 36 04 3.7 2.1 4.4
Mean = 1.6 2-0.1 L7.4
12.5
_12.5 2
= 5% s 1.25 sec.
= —~—-———lé25 = 0.21 sec.?
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(d) Advantages of the Method

Sometimes the precision of direction measurement
will vary significantly from station to station in a network.
This is due to such factors as poor sighting conditions and
changes in lateral refraction. Other methods of variance

_analysis will fail to detect these varjiations and assign them
to a particular station, but will tend to distribute themn
throughout the network. This will not matter for normal
work, but for precise work, it may be important that these
discrepancies be located and if necessary the station be

reobserved.

The observations have to be reduced to mean
directions before entering them as data into the network
adjustment. Wnen this has been done, there is little extra
work involved in obtaining their variance. The method

therefore requires little effort.

The method is ideal for precise work such as damn
deflection surveys. Here, the variances of directions from
individual stations are of interest. Once found they can be
assigned to their respective observations in the network
adjustment. There are means by which an estimate of external
variance can be found (Seé Section 5.4), and if the internal
variance of each station can be found, quite a sound estimate
of variance for the observations at each station can be built up.
However, the variances obtained should be statistically tested
against past experience of the same equipment, technigues and
observing conditions by the Variance Ratio Test. (Hoel, 1965).
If this test is satisfied, then it is usually more valid to
adopt the variance from past experience as this value is obtained
from a number of redundancies which is infinite when compared
to the number of redundant observations. If there is
reasonable evidence that the observing conditions under which
the observations were taken are not significantly the same as

those on which the variance from past experience is based, then
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the variances calculated from the observations themselves are
probably more reliable and should be adopted. Such reasonable
evidence would include the case where the calculated variances
are either consistently larger or consistently smaller than

those from past experience.

The method uses every observation made, whereas

the condition methods only use a percentage of them,

(e) Other Information Obtained from the Station Adjustment

In the course of a station adjustment, useful
information may be obtained by taking out the differences between
the individual face left and face right semi-directions. The
errors affecting direction observations that are cancelled out
in the mean of face left and face right semi~directions will be
present in the difference between face left and face right
semi-directions. Conversely, errors not cancelled by the

mean may be cancelled by the difference.

Consider the observation of semi-directions on

face left and face right:

= ¢! + i . + i . .si + } 2
¢L ¢L i, sech + i_.tanh.sina (Observer Error)
... (5.30)
— [ . .
¢R ¢R 1c.sech + 1v.tanh.51na + (Observer Error)

... {5.31)

L

R
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where ¢ is the "true" semi-direction on face left,
¢ is the "true" semi-direction on face right,
¢! is the observed semi-direction on face left,
¢§ is the observed semi-direction on face right,

i is the inclination of the line of collimation of the

c
teléscope to the normal to the trunnion axis. (See
Chapter 3),

iv is the non-verticality of the vertical axis. (See

Chapter 3)

a is the difference in direction between the target and
the line of intersection of the horizontal plane and
the plane defined by the perpendicular to the vertical
axis

h is the elevation angle of the target being sighted.

Circle graduation errors will be neglected as these
equations would normally be used for a number of arcs, in which
case systematic circle graduation errors will be minimised.

The remaining random errors will be included in the "Observer
Error" term. Circle eccentricity can also be neglected if
the circle is read at two diametrically opposite points as is

the case with most single second and geodetic theodolites.

If the mean of the face left and face right

semi-directions is taken, equations (5.30) and (5.31) will give:

o ¥ 9p  Op * 9
2 B 2

+ iv tanh sing + f (Observer Error)

eeo (5.32)

Therefore, the mean of face left and face right semi~directions
(i.e. the direction obserxvation) is affected by errors in
levelling and by random errors due to the observer and the

atmosphere etc.
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Consider half the difference between the face

left and face right semi-directions. Using equations (5.30)
and (5.33):
- . ]
¢L ¢R ¢L ¢R

= + ic sech + f (Observer Error)

coe (5.33)

» It seems reasonable to assume that the instrument
is in adjustment and that the line of collimation will be
significantly perpendicular to the trunnion axis (i.e. ic close
to zero). Even if this is not the case, under normal geodetic
conditions, (i.e. fairly flat lines), the contribution of this
error to the difference (5.33) will be fairly small and nearly
constant. The third term on the right hand side of (5.33)
is a function of the random errors due to the observer etc.

As these errors are random they cannot be treated algebraically
and must be treated according to the Laws of Propagation of
Variance. These laws may be applied to show that the random
error term in the mean (5.32) should be of the same magnitude

as the random error term in the difference (5.33).

If the variance of the difference is taken out
for each station observed, then any variation in these should
be due to differences in the pointing conditions to the
individual stations. Such information is useful in precise
engineering work where different variances may be placed on

each direction.

As was pointed out above, the mean differences
for the individual stations should be very similar in magnitude.
If they are not and the stations are substantially different
in elevation, this indicates that collimation error may be

present. If the differences increase or decrease in the
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order the stations were observed, then it is possible that
"twist of the tripod" has occurred. (See Chapter 3).

Although these errors will not affect the mean direction,
evidence of their existence is of use as a monitor of instrument
adjustment and as an indication that all might not be right

with that particular set of observations.

It is also possible to calculate the moments
of the distribution of the observations in each set, and from
these moments calculate skewness and kurtosis parameters,
Y, and Yz' (Kendall and Stuart, 1958). These parameters
are of use in that they show differences between the
observational distribution and the standard normal distribution.
Sudden variations in these differences are indicative of
systematic effects in the observations. There is no strong
evidence that the distribution of the observations should be
normal, however the analysis of large samples, (See Chapter 7),
has shown that the distribution approaches normality.
Typically, the distribution of direction observations from a
single station is symmetrical but somewhat platykurtic,

that is, more flat-topped than the normal curve.

5.4 Total Variance from Variance Factor Analysis

(2a) Introduction

It was pointed out in Chapter 2 that the
nathematical model for an adjustment is formed by the
observations, their variances and the geometric configuration
of the points of the network. If this model is validly
chosen then the estimate of the variance factor after adjustment
(32) will approach the value of the variance factor before
adjustment (sz). (See Chapter 2 for a definition of variance

factor).

If the mathematical model is otherwise valid,
then the comparison of s and s? is a measure of the suitability

of the variances used,
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This approach will give an estimate of the total
variance of the observations as the components of external
variance, (See Section 5.1), as well as those of internal

variance will become evident when the network is adjusted.
{(b) The Method

This method of variance analysis is explained
by Ashkenazi (1970) but will be repeated here using the

terminology of this report.

In most survey work, s? is taken to be unity as
a matter of convenience. In this case, the weight coefficient
matrix of the observations will be identical with the variance-
covariance matrix. (See Chapter 2 for definitions of these

terms). Therefore, if the variance-~covariance matrix is

validly chosen, then s2 will approach unity.

if 57 is greater than unity then the variances
of the ohservations have, in general, been under estimated.
Similarly, an s? less than unity indjicates an overestimation
of the observational variances. If each element of the
variance-covariance matrix is multiplied by this 82 to give
a new variance~covariance matrix, then a readjustment using

this matrix will give an sof unity.

If all observations in the adjustment have the
same physical dimensions, {(in this case, all directions or
angles), then the multiplication of the variance-covariance
matrix by a constant will not affect the results of the
adjustment, i.e., the adjusted coordinates and the corrections
to the obse:yations will not be changed. The only change
will be in sZ2. If the observations are of differing
physical dimensions, (e.g. directions and distances), than
it may be necessary to multiply different elements of the

variance~covariance matrix by different constants to obtain
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estimates of the variance of each type of observation. Such
a procedure would change the results of the adjustment as the
elements of the variance~covariance matrix are being changed

relative to one another.

Therefore, if all the observations have the same
physical dimension, only one pass of the adjustment is required
to find an estimate of their variance. If the elements of
the variance-covariance matrix are multiplied by the 5% resulting
from this single pass, then these multiplied elements are the

estimated variances of the observations.

Difficulties are encountered when the common
physical dimension is distance. These difficulties will be

discussed fully in Chapter 6,

If the estimate of angular variance obtained by
this method is to be valid then the survey should be adjusted
as a free network, i.e. there should only be two fixed
stations, or one fixed station and an azimuth and a distance,
preferably from that station to an adjacent station. This
is the minimum information needed to fix the position of the
survey on the spheroid and to give it orientation and scale.
Any additional fixed stations or observations are likely to
cause distortions or tensions in the network, which will

influence the estimated variance of the angular observations.

The formula used to estimate the variance factor

after adjustment is:

52 = ‘—’—-;-3———2 ... (5.34)

where 82 is the estimate of the variance factor,
v is the column vector of corrections to the observations,
G  is the weight coefficient matrix of the observations,
and r is the number of redundant observations in the

adjustment.
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This formula may be expressed in the classical

notation:

2
z[‘éz} eeo (5.35)

It may be seen from (5.35) that s? is simply the sum of the
squares of the residuals divided by their variances, (i.e. sum
of the squares of the standard corrections), divided by the
number of redundancies. This is identical in form to the
standard formula for the variance of a single measurement of

a quantity that has been measured a number of times with.
different measurement variances, and is therefore quite
logical. A rigorous proof of formula (5.34) is given in

Appendix B.

The accuracy of the variances given by this method
depends heavily on the number of redundant observations in the
network. It is very difficult to say what is the minimum
number of redundancies required to give a valid estimate of
variance. However, statistical studies usually state that
a sample with twenty redundancies is the smallest sample that

can be validly analysed.

5.5 The Variance of Observed Azimuths

It was pointed out in Chapter 3 that an
astronomical azimuth is the difference between the direction
to a star and the direction to a reference object, and
therefore that the factors affecting the precision of a
direction observation will also affect the precision of an

astronomical azimuth,

However, because of the conditions under which
these observations are taken, there are additional factors
affecting the precision. Astronomical observations must be
carried out on a clear night. It is well known that a
temperature inversion effect occurs at night and that some

peculiar refraction problems are likely to be encountered.
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Ideal conditions for direction observations are the early
morning or late afternoon, and preferably with an overcast
sky. Additional errors are introduced in astronomical
observations by virtue of the fact that a moving object is
being sighted, and by virtue of the difference in elevation

between the star and the reference object.

Therefore, it is fairly clear that the precision
of astronomical azimuth. observations cannot be calculated
directly from the precision of the component direction

observations.

The Division of National Mapping (1970) carried
out comparisong of reciprocal Laplace azimuths on 136 lines and
found that a normal distribution with standard deviation of
2.41 seconds fitted as well. (See Fig. 5.4). This value
is in fact the standard deviation of the difference between

reciprocal Laplace azimuths.

For the reciprocal azimuths between a station

1l and a station 2:

Diff. Az, = Az1 - Az oso (5.36)

2 2
and g Diff. Az. = Q + .0 - 20 g
Azl,2 Azz'1 Azl,2 A22'1

ve (5.37)

The last term in (5.37) goes to zero as there is

no physical correlation between the two azimuths,
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HISTOGRAM OF DIFFERENCES
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Assuming that

Oy, = 0,, = 0, ee. (5.38)
1,2 2,1
Then
2 - 2 .
Opy, = L 0° Diff. Az, eeo (5.39)

Substituting the results of National Mapping (1970) into (5.39)

gives:

2 _ 2
OAZ L (2.41)
G;, = 2.89 seconds squared oo (5.40)
.. 0. = 1.7 seconds coe (5.41)
Az

The azimuth observations considered here were
observed mainly in flat country where very flat grazing rays
to the reference objects were quite common. Under these
conditions the effects of lateral refraction are often quite
significant.‘ In good geodetic conditions a significantly

lower standard deviation could be expected.
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CHAPTER 6

THE ANALYSIS OF LINEAR PRECISION

6.1 Introduction

It is only in the past few years that a valid
procedure for the 'weighting' of physically dissimilar quantities
in a least squares adjustment has been put forward. (Allman,
1967; Ashkenazi, 1970). Even now, most of the weighting
systems in common use are quite invalid and many are based on
assumptions such as, "a single second theodolite having the
same degree of accuracy as a 1/200,000 distance measuring
instrument". (Ashkenazi, 1bid). Examples of these weighting
systems are those suggested by Murphy (1258) and Rainsford
(1962). Methods such as this have gained such wide acceptance
that they have tended to obscure the need for a good estimate

of the precision of observations.

Where estimates of angular precision could be
obtained using forumlae such as Ferrero's, (see Chapter 5},
linear precision could not be estimated by any such condition
approach and was usually taken to be either, the figure obtained
from a rather dubious assessment of past experience, or more
simply, the manufacturer's specification. | In Chapter 4, it
was seen that, in many cases, manufacturer's specifications
appear to be rather optimistic, and not a good estimate of

the precision likely to be obtained in the field.

In addition, no valid optimiz ation can be carried
out unless a reasonable estimate of the precision of distance
measurements, as well as one of angular precision, is available.
Hence, a reasonable estimate of the precision of distance
measurements is required for both optimization and adjustment

studies.
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The methods of analysis to be discussed in this
chapter are both based on the results of a least squares.
adjustment. The first uses the variance factor technique and
the second uses a comparison of calculated variance with. the

least squares residuals.

6.2 Method One

This method is based on the theory that was
given in Section 5.4 for the variance factor analysis of angular
observations. The method is founded on the fact that when the
corrections to the observations in an adjustment are generally
in agreement with the attributed variances, the estimated
variance factor after adjustment, S2, will approach the

variance factor before adjustment, S2.

It is seldom that a network contains sufficient
measured distances to enable the network to be calculated
without using angular observations, as in most networks,
there are only a limited number of distances measured in
order to stabilise scale. Even when a substantial number
of distances is observed in the network, their configuration
is quite often such that they cannot be adjusted independently
of the angular observations. Therefore, to analyse
distance measurement variance by this method, it is usually
necessary to proceed in the manner suggested by Ashkenazi

(1970} :

1. Carry out a variance analysis of the angular
work, as described in Section 5.4, and assign variances so

that S? is unity.

2. Add the distances to the network data with
an estimated variance which will be replaced by successive

approximations until S? is once again unity.



As. was pointed out in Section 5.4, an iterative
procedure is not required where the network consists of one
type of observation only, as in this case, the variance-
covariance matrix is homogeneous and the variance factor is
purely an overall scaling number. The following example

clarifies this.

Assume a variance-—-covariance matrix,

o o o w
e oW o
P 0O o o
U o o o

and an initial variance factor of X, so that,

A 0 a o a 0 a 0
B Q 0 0 b 0

a aca %jlo o ¢ o --- (6.1l
a 0 D a o o 4d

where the matrix on the right hand side of (6.1) is the weight
coefficient matrix of the observations.

Assume that an 52

of Y is found. If the weight
coefficient matrix is multiplied by Y and the adjustment re-run
using the new matrix, an 5% of unity will result. Therefore

the estimated variance-covariance matrix of the cbservationg ig

a @ a Q A a0 0
0 b 0 Q O B 0o 0
1o a0 ¢ o Yo o ¢ a
0 0 0 4 0O 0 0 D
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In most surveying adjustment work, as a mattexr
of convenience, S° is taken as unity. (X=1). So on the
single pass through the adjustment, the estimate of the
variance~covariance matrix of the observations is simply found

by multiplying the original variance-covariance matrix by Y.

As the variance analysis of distance measurement
usually cannot be carried out independently of the angular work,
the variance-covariance matrix will contain both angular and
distance measurement variances. The angular variances will
be those that give an 52 equal to unity when only angular

measurements are adjusted.

The variance-covariance matrix will be of the form:

o 0o 0o O po W

0 P O e W o
D e P N0 O O
0 P U o o0 o
O ®H ©0 p o O
M0 P O O o

where A,B,C, and D are the estimated angular variances, and E
and F are the trial distance measurement variances, Suppose
that this variance—covariance matrix gives an 5% of Z.

If the complete matrix was multiplied by Z, the resulting matrix
would give an s2of unity. This cannot be done as the
direction variances are the accepted estimates and cannot be
altered. So, the problem is to decide the amount by which
the distance variances must be changed in order to obtain an
s? of unity. One obvious solution is to assign new values,
on largely a trial and error basis, until S? is sufficiently
close to unity. (Ashkenazi, 1970). The value of 2 will
give some indication of the direction in which the variances
must be altered. {Z less than unity - decrease variance,

Z greater than unity - increase variance), but this indication

will not always be correct.
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As the number of distances measured is usually
small in comparison to the number of angles or directions
observed, the influence of the distances on s? tends to be

swamped by the influence of the angles or directions.

One possible procedure to overcome this problem

is as follows:

1. From the adjustment run with angular

observations only, calculate [VTG_IV] using the formula,
- .
[v-eTlv] = S2.r coo (6.2)
where r is the number of redundant directions.

2. From the adjustment with both. directions and
distances, recalculate [VTG"JVJ using (6.2), but with r being

the total number of redundant observations.

3. The difference between the [VTG-lv]IS
obtained in 1 and in 2 will give an estimate of the [VTG'JV]
for distances alone. When this is divided by the number of
redundant distances, an "estimate of the variance factor" for
distances only will be obtained. Technically, this is not
a variance factor but is the second moment of the adjustment

for distance observations. (M")

o _ viemy)
) he

u cer (6.3)

where r is the number of redundant distances,

and [VTG_IV] is derived from the distances alone,

4. The distance measurement variances are then

multiplied by this second moment to obtain better estimates.
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It was mentioned in 3 that M" is only an estimate
of the factor by which. the variances should be multiplied.
One reason is that when the distances are introduced into the
adjustment, the [VTG‘IV] for directions only will change as
the distances will tend to distort the original network to some
extent, The magnitude of this change will depend on the
particular distance measurement variance being used. It is
therefore not valid to make the assumption that the
[VTG_IV} for directions alone remains constant when the

distances are added to the network.

The significance of this assumption was tested
using Network 4. (See Chapter 7). [VTG‘IV] from step 1
was calculated as 117.28, The same quantity for directions
only in the combined adjustment was calculated by dividing
the correction to each direction observation by its standard

deviation, squaring the dividend and summing.

[vig ly] = z[%} cee (6.4)

The result of this calculation was [V.G™'v] = 164.82.  This
is significantly different from the .figure obtained from the
directions only adjustment of 117.28, but the real significance
lies in the change that this difference makes to the estimate

of the factor by which the trial variances should be multiplied.

The [VTG‘IV] for all observations in the total
adjustment, (Step 2), is 254.53 and there are 102 redundant

distances. Therefore the two M" factors will be:

M" = 1.35

_ 254.53 - 117.28
T 102

and v = 254.53 - 164.82
- 102

0.88

These two values for M" are quite significantly different and
therefore, it cannot be assumed that the [VTG‘iv] for directions

remains constant in the total adjustment.
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Alsc, the fact that M" for distances, (0.88) is
significantly different from the variance factor after the total
adjustment, (1.15), is proof that the directions do actually
swamp the measured distances. in such an adjustment, and that
52 will sometimes not even indicate the correct direction of

change.

The valid M" (0.88) can be obtained in a more
direct manner than that outlined above. In the above method,
the contribution of the distances to the total [VTG"IV] is
found by calculating the difference between [VTG‘lv] for the
total adjustment and [VTG"IV] for the directions only adjustcment.
This contribution may be found directly from the trial variances
of, and the attributed corrections to the distances. With
this information, equation (6.4) may be used to find VTG—JV
for each distance and these summed to find the contribution
of the distances toward [VTG'JV] for the total adjustment.

This contribution is divided by the number of redundant

distances to give M" (formula 6.3).

In general, the method, as set out abave, will

not give a direct solution, but will require iteration. The
reason is twofold. Firstly, the trial variance will usually
be of the form (a + bs)z. As the distance, s, varies fram

observation to cobservation it is not possible to multiply the
expression directly by the resultant M" to obtain a new
variance expression which will give an M" of unity on
readjustment. A technique to overcome this problen is

described later in the present section.

The second factor that prevents a direct
solution being given is that the full effect of a variance
change is somewhat damped by the constraints placed on the
distances by the angular work. That this damping effect
does not exist may be shown by a numerical example taken once
again from Network 4 (See Chapter 7). To overcome the

problem caused by the two term variance expression mentioned
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above, for the purposes of this illustrative example, it was
assumed that the variances of the measured distances may be
expressed as a constant not dependent on the length of the
line. Therefore, failure to obtain a direct solution
cannot be attributed to this cause, The variances applied
to the angular observations were those which gave a variance
factor of unity when the angular work alone was. adjusted. N
The trial variance applied to the distances was (30.0 nm) 2,
The resulting M" was 0.409 and a new variance of (19.3 mml2

was calculated by multiplying the original variance by this

M". The adjustment, when rerun with this new variance, gave
an M" of 0.675. Further iteration would normally be required
to find a variance which will give an M" of unity. So, even

though a single term variance for measured distances is being

used, a direct solution cannot be obtained.

That this inability to obtain a direct solution
is, in fact, due to the damping influence of the angular work,
may be shown by relaxing the angular variances to the extent
that the measured distances are no longer influenced, The
angular observations were all given variances of lO"secz, while
the distance measurement variance was kept at (19.3 mm) %,

The M" given by this adjustment was 0.118, a figure very different
from the 0.675 cbtained above. A new distance measurement
variance of (6.7 mrq)2 was calculated by mﬁi%fgiyihg the initial
variance, (19.3 mm)?, by the M" of 0.118,  The adjustment

was rerun with this variance for the distances and, once again,

a variance of 10*sec? for the angular cbservations, The
resulting M" was unity. Therefore} a direct solution may

be obtained when the damping influence of the angular work

is eliminated.

Unfortunately, such a technique cannot be used
in practice. It was pointed out above, that in the majority
of networks, the number and configuration of the measured
distances will not allow the network to be calculated without

the use of angular observations. When the procedure of

relaxing angular variances is used, many of the distances
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are, in effect, free and will be given zero correction, and
therefore, do not contribute to the value of M", So,
although the network is fixed by the angular observations,

and all but one of the measured distances are, in the mathematical
sense of the term, redundant, many of these distances are not
directly contradicted by any other distance observations and
cannot be called redundant in the logical sense. They may,

and nearly always will, be contradicted by angular observations,
but the variances of these are so large that the contradiction

is in name only and has no effect on the distance.

Where the number of measured distances. is reasonably
large and the configuration of the network is sufficiently strong,
there is no reason why the distances cannot be assessed
independently cf the angular work. The solution will usually
not be direct because of the two term variance expression
for measured distances. However, if the trial variance is
altered after the first pass by the technique explained later
in this section, then only one or two iterations are required

to find the variance estimate.

In summary, the method of variance analysis put
forward by Ashkenazi (1970), using the variance factor after
adjustment as the estimation criterion, is valid and will
eventually lead to a valid variance estimate. However, it
is a tedious method as it requires considerable iteration.

The method described above, using M" as the criterion, is

faster and will give the same valid estimate.
(a) Alteration of the Trial Variance

When using a trial variance of the form (a + bs)zmmz,
(formula 4.15), where a and b are constants dependent on the type
and performance of the instrument, and s is the distance being
measured, the problem arises of how to alter the estimate when

an M" different from unity is. obtained. The only exact way
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would be to calculate the variance of each line being measured
and to multiply each of these variances by tha M" from the
previous run of the adjustment. Then the problem remains of
analysing the resultant variances to get back to an overall
variance of the form (a + bs)Z’. Unfortunately, it is not
possible to evaluate the variance expression for the adjustment
as a whole because of the variation n, the distance, s, fram

observation to observation.

However, it wags found that multiplying a’ and
b2 by M" and taking a square gzoot of the xesults, to give a
new a and b, usually gave a variance expression that, when
tested in an adjustment, gave an M" close to unity. An
example of this technique, is given below.

Trial variance = (25 mm + 6 ppm)z——+.M" = 0.66

"t

The new "a" term was given by J/(25)2.0°66 = 20,6 mm

and the new "b" term was given by ¥ 62.0,66 = 4.86 ppm

The variance adopted for the next run of the adjustment was
(20 mm + 5 ppm)z. This variance gave an M" of 0.98, which
is significantly unity.

The gbove procedure changes the "a" and "b" factors
by the same relative amount. However, this nmy~£at be valid
as it assumes that a and b are in the correct relationship to
each. other, In the majority of cases this assumption is
prcbably not correct and further steps must be taken to
establish the correct relationship.

One method of doing this is to plot the standard
corrections, (g&, to the distance obserxrvations against the
length of line measured. (See fig. 6.1). If the estimate
of varifance is correct, roughly one third of the plotted points

should be above the line drawn parallel to the distance axis



119

and througﬁ %;= 1 on the standard correction axis. If the

1 _ st

a" and "b" terms of the variance expression are in the correct
relationship to each other, this one third of points should be
evenly spread through the range of distances measured. If
the predominance of points above §:= 1l are in the shorter
distance section of the graph, this indicates that the "a"
term needs to be increased with respect to the "b" term.

Such action will increase 0 for the short line observations,
{and hence decreasé‘%ﬂ, and decrease O for the long line
ocbservations, (and hence increase %:for these observations).
Conversely, if the predominance of points above %ﬁare in the
longer distance section of the graph, then the "b" term should

be increased with respect to the "a" term.

While this method is of course only approximate,
it will give an indication of the validity of the "a" and "b"

values.

‘6.3 Method Two

This method of variance analysis was put forward
by Fryer (1970, pp.167-172) and uses a comparison of calculated
variance with least squares residuals. The variance is

calculated using formula (4.15).

,cr; = (a + bs)? e-o (6.5)

For a line made up of a number of sections, the general law
of propagation of variances is applied to (6.5) to give a
variance for the entire length between the terminal stations.
It is assumed that all n sections, of length s, that make up
the entire distance L are equal in length. Expressing this

in mathematical terms,

L = n.s e (6.6)
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The variance of the entire length is then,

UE = (a + bs)?.n veo (6.7)

Fryer (7bid)] evaluated (6.7] using estimates of a and b for
the MRA2 Tellurometer.

o? = (50mm + Sppm)Z.n .o (6.8]

For lines measured in both directions, he applies the law of
propagation of variances to (6.8) to give a variance of the
mean of the forward and back measurements. In effect, this
involved dividing the a and b terms by the square root of two.

Hence,

O, = (35mm + 3.5ppm)%.n ree (6.9)

The validity of this step is open to conjecture and will be

discussed later in this Section.

To test whether this variance was representative
of that actually encountered under field conditions, the results
of an adjustment were considered. To describe the adjustment
briefly, it consisted of 161 interlocking traverses of average
length 313 km. These interlocking traverses or sections
were adjusted as separate units in that each section was treated
as a single observation, even though each section contained, on
the average, eleven measurments. (i.e. n=11). The average
measured length was 28.5 km, (i.e. s = 28.5 kmj. This average

n and s were used to evaluate (6.9) so that,

GLm = 0.44 m e-e (6.10)

The average section residual given by the

adjustment was 0.45 m, In view of the very close agreement
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between (6.10) and this figure, Fryer (1bid) goes on to say
"one must presume the values of 3.5 for both a and b are

extremely good estimates of the actual errors present”.

However, this method of variance analysis may be

shown to be invalid for the following reasons:

1. It seems unreasonable to assume that multiple
measurements of a line will reduce the variance in accordance
with the law of propagation of errors, as was implied in going
from (6.8) to (6.9), Chrzanowski and Derenyi (1967) offer
the theory that practically no improvement in the accur;éy
of a distance can be expected if the measurement is repeated
after a short time lapse, since the conditions influencing
the "a" and "b" terms of (6.5) seldom change rapidly. They
dgo on to point out that the "b" term may be improved
by repeated measurements in a variety of atmospheric conditions
and that the "a" term can only decrease if the factors affecting
it have changed. These factors are usually independent of
time and are concerned with the gecmetry of the line. For
microwave instruments they include the reflecting surface along
the line. (See Chapter 4). Therefore the "a" term for
microwave instruments may possibly be reduced by changing
instryment.height or by hoving the instruments to eccentric

stations.

The procedures mentioned are usually not carried
out and the forward and reverse measurements of a line are
usually only separated by a short time lapse. As no mention
is made of special cbserving prccedures being used, it must be
assumed that they have not been used and therefore that the

reasoning used to derive (6.9) from (6.8) is invalid.
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2. In essence, the method consists of finding

an estimate of standard deviation by the formula,

—_ '
g = Z;‘ eoo (6.11)

where LV is the sum of the residuals, and n is the number of

residuals being considered.

Consider the standard deviation of a single

variate measured n times. (Spiegel, 1961, p.70).

coo (6.12)

Even though (6.12) is for the single variate case, the formula
is of similar form for the multi-variate case, as the sum of
the squares of the residuals is treated, rather than the sum

of the residuals themselves.

One of the basic properties of the standard
deviation is that 68.27% of the observations are included
between X+0 and X-C, In the single variate case, X is the
mean, but in the present case, it is the adjusted least squares

parameter. Consider the idealised case of (6.11). The

formula will give a true éétimate of standard deviation if all
the residuals (V's) are one standard deviation. In this case

(6.11) will become the valid identity,

'6'. = ZO’ eo 0 (_60131

But, if this is the case, then 100% of the observations are
included between X+0 and X-~0. Therefore, if the definition
of standard deviation is taken to be valid, then (6.11) must

be invalid.



It should be noted that this problem is not

encountered if the same test is applied to Method One.
Method Two is clearly invalid and it is Method One that will

be used in Chapter 7 to analyse the precision of distance

measurement.



125

CHAPTER 7

ILLUSTRATIVE STUDIES

7.1 _Introduction

This chapter gives the results and details of
the analysis of a number of observed networks for angular and

distance measurement variance.

Data for this type of analysis is often quite
difficult to obtain as the networks to be analysed should be
fairly large, be compbsed of observations of fairly uniform
quality, be well conditioned and have many redundant observations.
Networks possessing all or most of these qualities are not

readily obtainable,

The networks analysed below come from four
different survey authorities, working on different projections,
different spheroids and using different processing systems,
and thus all require slightly different treatment, The
diversity in data systems, together with the need to analyse
internal variance, necessitated the abstraction of angular
data direct from the field books — a very laboriocus and time
consuming prsééaafe. In network 5 alone, data preparation
for this phase analysis included the punching of over 1,500
computer cards. Once the internal variance has been obtained,
data decks for the network adjustment must be prepared,
verified, run and the results analysed. Hence, it may be
appreciated that the time involved in such. an analysis is very
considerable and that only five networks, involving three

different instruments were able to be analysed in this report.
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The analysis was carried out in accordance
with the theory and principles given in Section 5.4 of Chapter

5 and Section 6.2 of Chapter 6,
The networks were adjusted using a parametric

adjustment programme written by Dr. J.S. Allman of the School

of surveying, University of New South Wales.

7.2 The Distribution of Observations

It is of interest to look at the distribution
of the observations. There is no real reason to assume that
surveying observations are normally distributed, although it is
commonly accepted that they are. As a large sample of
observations are analysed in this Chapter, it was decided to
calculate parameters of the distribution of these observations,

as a by-product of the main analysis.

The usual parameters of a distribution are its

moments. These moments may be calculated using the following
formula.
(vi ) 1
=X — = ere (7.1
px i Oi n ¢ )

where U is the x—-th moment,
Y is the residual of the i-th observation,
a is the standard deviation of the i-—th. observation, and
n is the number of observations in the sample.

Theoretically, the divisor should be n-l rather than n, but for

a large sample these are significantly the same.

The first and second moments are the mean and

variance of a distribution, respectively, and do not give any
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information as to its shape. The third and fourth moments
of a distribution are more useful in that they are indicators
of the distributicn's skewness and kurtosis, respectively.

The first four moments of a standard normal distribution are:

W = 0
1
= 1
",
W =0
3
o= 3

Measures of skewness and kurtosis, Yl and YZ,
have been derived by Kendall and Stuart, (1958), and may be

calculated using the following formulae:

=

Yy, = —% ce. (7.2)
1
2
uh
Yz = """“—3 s e (.7-3)
2
H
2
For a symmetrical distribution, Y will be zero. Any
1
departure of Y from zero indicates skewness in the distribution.
1
In a normal distribution, Y will be zero. Such a distribution
2
is termed mesokurtic. If Yz is greater than zero, the

distribution is more sharply peaked than the normal distribution,
and is termed leptokurtic. Conversely, if v is less than

2
zero, the distribution is less sharply peaked, (more flat—topped),

than the normal distribution, and is termed platykurtic.

These parameters. will be calculated for the
aistribution of the direction observations at each station
and also for the mean directions and the measured distances

used as observation data in the least squares adjustments.
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7.3 Network One

This network, {see Fig. 7.1) is part of a First
order triangulation scheme which. was observed in steep terrain
using a Wild T3 theodolite for the direction observations.

The observations were always taken in the late afternoon oOr in

the early evening.

The observations were abstracted from the fieid
books and the mean directions, internal variances, along
with skewness and kurtosis parameters were calculated for
each set. An averége internal variance for all sets was

2

calculated as 0.09 sec”. The average number of arcs

observed in a set was 23. The average internal variance

for a single direction was then calculated using equation

(7.4), as 2.07 sec?.

2 2

internal for 1 arc Ointernal for the average number of arcs

X Average number of arcs eee (7.4}

The average Y and Y , considering all 23 sets,
1 2

were calculated to be:

0.004

<
I

Y = -0.290

These parameters show the distribution of the direction observations

to be symmetrical with a platykurtic tendency.

In order to eliminate the effect of any external
distortions, the survey was adjusted as a free network, with
station 4 held fixed to locate the survey on the spheroid, and

the azimuth from station 4 to station 11 included to give the

i
7
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survey orientation. Normally, in a free network, only one
distance is used to fix the scale of the survey, as any
additional distance or distances may cause distortions in the
angular work. However, in the present survey, the southern
section, (stations 5 and 6), cannot be fixed unless an additional
distance, either between stations 11 and 5 or 11 and 6 is
included. The reason is that there is no scale link between
the main network and this southern section. That this second
distance is necessary and not redundant is shown by the fact
that the adjustment gives corrections of zero to both distances.
A plot showing the observed directions (fig. 7.2) graphically
illustrates that stations 5 and 6 cannot be fixed without using

this additional distance.

In the first run of the adjustment, the direction
observations were given a variance of 0.29 sec?. This was
made up of the mean internal variance (0.09 secz) plus an
estimate of 0.2 sec? for external variance, The estimate
of the variance factor after adjustment (52) was 1l.7121.

This indicated a total variance of direction cbservations of

(Q.29 x 1.7121) = 0.50 sec?.

The parameters Yl and Yz were calculated for the

57 adjusted direction observations as:
Y, = 0.17

These parameters show the distribution to be slightly skewed
and to be leptokurtic,

The number of redundancies, 32, is sufficient
for the analysis to be statistically valid, but too small for
much confidence to be placed in the resulting estimates of
variance. These estimates should therefore only be considered

as an indication of magnitude.
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Summarising, the estimate variances for this

network are as follows:

2 _ a2
Ointernal for 23 args = 0.09 se¢

2 _ 2
(o for 1 are = 2.07 sec

internal

2 - 2
'Oexternal 0.41 sec
o2 for 23 arcs = Q.50 sec2

total * i

7.4 Network Two

This survey is a breakdown scheme cobserved in
an area of undulating to steep terrain, with the purpose of
fixing stations 4,5, 6 and 7 from stations 1,2 and 3. (See
fig. 7.3). The survey consists entirely of distances
measured with a set of Cubic Electrotape DM-20 instruments.

Distances were measured along all lines shown in fig. 7.3.

The survey was carried out in a period of
constant fog and haze when angular observations were impossible,
and is a good example of how breakdown surveys may be done by

measuring distances only.

A free net adjustment was used with station-l
held fixed, and a calculated bearing, from station 1 to station
2, included to give orientation. All disténces.were considered
to be of the same quality as they were measured with the same
set of instruments, and as thefe was no evidence of any
appreciable variation in observing conditions. The
observations were obtained as reduced sea-~level distances.

The method of distance reduction was checked and found to be
valid. The adjustment was run with a number of variances and
it was found that a variance of {20.2mm + 4;86;ppm)? gave an

§2 of unity. - In order to obtain a variance in round figures,
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FIG 7-3
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the variance of (20,0 mm + 5 ppm)’mm® was tested. This
run gave an S? of 0.98 which was accepted as being significantly

unity.

It was anticipated that the estimated variance
would be in this region as the variance for the MRA10l and
MRA3 Tellurometers has been estimated, Robinson (1971] and
others, to be (25 mm + 6 ppm)z. The Electrotape DM-2Q is
an ‘instrument very similar to the MRA101l and MRA3 Tellurometers

and therefore would be expected to have a similar variance.

The number of redundancies in the survey is
only 10, so the analysis is not statistically strong. However,
the variance obtained would be an indication of the trume figure
and tends to be confirmed by its similarity to the established
variance of the MRA3 and MRA101l Tellurometers. Therefore

2 2

the estimate, ¢° = (20 mm + 5 ppm)zmm can be accepted with. a

reasonable degree of confidence,

It may be seen from a graph. of standard correction
against distance for the observations in the network (fig. 7.4},

that the relationship between the estimated "a" and "b" terms

of the variance expression is close to being correct.

The skewness and kurtosis parareters, for the

distribution of the adjusted distances, were calculated to be:

Il

Y -0. 86

2

These parametefs show. the distribution to be slightly skew as

well as platykurtic.

7.5 Network Three

This survey (See Fig. 7.5) is very similar to
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network 2, (See Séction 7.4) in that it consists entirely of

measured distances, and that these distances were all measured
with a set of Cubic Electrotapce DM20 instruments. Distances
were measured along all lines shown in £ig. 7.5, and all thesge
are considered to be of equal quality for the same reasons as

were given in Section 7.4.

The survey was adjusted as a free net with
station 5 held fixed and a calculated bearing from station 5
to station 1, included to give the survey orientation.
Initially, the adjustment was iunvwith the estimated variance
of distance measurement cbtained from the analysis of network
2, (20 mm + 5 ppm)?mm?, giving an 5% of 0.90. It was found
that a variance of (19.5 mm % 4.7 ppm)zmm2 was more satisfactory
in that it gave an S %of unity. However,bit should be noted
that the variance of (20 mm + 5 ppm)*mm?® éatisfies.the variance
ratio test, at the 95% confidence level, in both network 2 and
network 3, indica;ing that the observations in both networks are
from the same population and that the above variance is a

satisfactory variance for that population.

A graph of the standard corrections to the
distances based on a variance of (20 mm + 5 ppm)zmm2 is given
in fig. 7.6. It may be seen, from this graph, that the
relative magnitude of the "a" and "b" terms of this variance

expression is close to being correct.

As the number of redundant measurements in the
network is only 14, the analysis is not statistically strong.
However, the agreement with the estimated variance found in
network 2, and with the established variance of the 30 mm
carrier wave Tellurometers, confirms that the estimate
(20 mm + 5 ppm)?mm? is quite a good estimate of the variance

of Cubic Electrotape DM20 measurements.
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The skewness and kurtosis parameters for the

observations, adjusted with. a variance of (1.95 mm + 4.67 ppm)zmmz,

were calculated to be:

These show the distribution to be slightly'skew‘and leptokurtic.

7.6 Network Four

This survey, (See fig. 7.7), consists of primary
triangulation designed to homogenously cover a large area.
The observations were taken over a number of years, using
Wild T3 theodolites for directions, and the various models of
Geodimeter for distance measurement. The terrain is undulating

to hilly.
(a) Angular Observations

The direction observations were obtained fram
field book abstracts. Mean directions at each station and
for each. set, with their variances, were calculated., The mean
internai variance for the network was calculated to be 0.07 sec .
For an average number of arcs of 18, the internal variance of a

2 .
single direction was calculated to be 1.26 sec , by use of equation

(7.4).

The average skewness and kurtosis parameters

(y and y ) for the distribution of the direction cobservations
1 2

were calculated to be:
Yy = 0.002

-0.327

-<
1l
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These parameters show the distribution to be significantly

‘'symmetrical and somewhat platykurtic.

The first adjustment was aimed at finding the
total direction variance and was therefore run as a free net
adjustment with angular cbservations only. Station 1 was
held fixed, the bearing from station 1 to station 7 was
included to give orientation and the distance from station 21
to 26 was included to give scale. In a number of cases where
only two stations were observed in a set, an angle was A
substituted for the two directions. This had the effect of
eliminating both an observation and a normal equation in each
instance and resulted in a significant saving of computer time
without any loss of useful information. These angles were
given double the variance of a direction. Two hundred and
forty seven angular observations were adjusted, and of these,

one hundred and sixteen were redundant.

The resulting estimate of total variance of a
direction observation was 0.31 sec?. The estimate of external
variance, 0.24 secz, was found by subtracting the estimate of

internal variance from the estimate of total variance.

Summarising,; the variance estimates for the angular

observations in Network 4 are as follows:

internal for 18 arcs 0.07 sec®
'Uinternal for 1 arc 1.26 sec”
O ternal = 0.24 sec?
'Giotal = Q.31 sec®

(b) Linear Measurements

The data was obtained in the form of distances
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reduced to a surface twh thousand feet above the Austraiian :
Geodetic pPatum, together with the information as to the model
of Geodimeter used and the number of measurements meaned to
obtain. each distance. The fact that these were not sea=level
 distances created no difficulty as a free net adjustment was
used and such an adjustment will not detect an overall scale
' change even though the mathematical model was calculated for

sea~level data.  The method of reduction was ¢hecked and-
found o be vakid. | | o

‘ . ‘ .
; Of the 104 l:.nea.r observations in the network,

71 were measured using the Mode!. 4 Geodimeter, 14 were observed
wsing the Model 6 Geodimeter, 16 were obsexved using the
.~ MOde} 8 Gepdimeter and 3 eccentric distances &ere measured
' by steel band. The lines in the network. menc:uréd using
the va.nous models of Geod:.metez are shawn in figs. 7.8 to
7.10.  The manufacturer's claims for, and general exper:.ence ‘
with these instrxuments, suggest that their var:.ances are very
~ simlaz-, if not 1dent:.cal., and this bemg the case, it sesmed
practigal to analyse all the distances in the same adjustment.
If the variances are s:.gniflcantly different frgm one another,
thi.s should be evident from the plot of étangiard‘ corrections:
to the dist;a,nces against length of line, l.f L‘Eig. 7.111. The
main advantage in such a‘>cou'rse of action is that, the total
sample Of measured dist;ances‘ constitytes a configuration sﬁrong
enough to £ix all stations with a considegable number of
redundanties, and does this wit.bout.ﬂrecour'se to the angular
cbservations. It was pointed out in Chapter & that where
the cbservations in the hétwork are all measured distances,

that tbe est;.mate of varjance can be obtaxned very easilyc

v
)

'rhe est::mate of variance was accepted to he
(5 mm + 1.5 ppm)z - This estimate gave an S of
sn.gnifz.cantly unity 'and a satisfactory dlstnbut:_ou of the
atandard correctlons to the dlstances. CSee fig. 7 J,.ll.
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There was no evidence of any significant difference in variance
between the instruments. This estimate is of the variance

of the reduced observations, each of which is the mean of more
than one measurement. It is of more interest to find an
estimate of the variance of a single measurement, and as the
nunber of measurements meaned in obtaining each observation
varied, it was decided to investigate the field procedures

and criteria used for distance measurement.

Normally each distance was measured twice, that
is, two sets of three frequencies were observed from the same
end of the line, with no shift of instrument set-up and with no
significant time lapse between the sets. After the second
set was taken, the two sets were compared to check that they
were consistent and that there was not a 5 metre difference
between them. If there was any doubt in either of the sets,
a third set was read immediately. It was not certain, from
the data supplied, how many measurements were meaned to obtain
the stated distance, though. in nearly all cases it was two or

three. (Wellspring, 1972).

The variance formula for an electronically measured

distance was given in Chapter 4 as:

g2 = (a + bs)? veo (4.15)

where the 'a' term for a Geodimeter is mainly the internal
accuracy of the instrument, and where the 'bs' term is mainly
due to the uncertainty in knowledge of the refractive index

along the line.

As the sets were taken consecutively, thus
under virtually the same atmospheric conditions, there was no
reason to assume that knowledge of the refractive index is
improved because three sets are taken, as to improve such
knowledge, measurements should be taken under a variety of
atmospheric conditions. Therefore the 'bs' term of the

variance equation is unlikely to be reduced.
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The 'a' term would probably be reduced somewhat,
as it incorporates reading errors which are reduced by repeated
measureflent in a manner according to the laws of propagation

of variances.

Taking the above reasoning into consideration,
the variance equation for a single distance measurement was

estimated to be

62 =1(a +bsg)? eo. (7.5)
0'8

where a and b in (7.5) are the estimates of the constants of
the variance equation for a mean distance as found in the
above analysis. Hence, it is assumed that taking the mean
of the repeated measurements reduces the "a" term of variance

by 20%, but does not alter the "bs" termn.

Therefore, given the estimate of the variance
of the mean distances. as (5 mm + 1.5 ppm}?, the estimate of
variance of a single measurement may be calculated as

(6.2 mm + 1.5 ppm)?.
(c) Combined Adjustment

The final adjustment was run with all
observations, both directions and distances, included with
the variances estimated above (in (a) and (b) ) attributed
to them. According to the theory given in Chapters 5 and 6,
the s? resulting from such an adjustment should be unity, however
the figure actually obtained was 1.15. This difference from
unity indicates some systematic error (s) in either, or both;
the angular or linear observations, that only becomes evident
when they are adjusted simultaneously. It should be noted,
that although.thése systematic errcrs are present, they are
not large as the adjustment still satisfies the variance ratio

test at the 95% confidence level.
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If the skewness and kurtosis parameters

CYl and Y21 for the two separate adjustments and the combined
adjustment are compared, (See Table 7.1), it may be seen that
the systematic effect is probably in the linear rather than

e angular observations. This is indicated by the fact
that Yl and Yz for the angular observations do not differ
significantly between the separate adjustment and the
combined adjustment, while the same parameters for the
linear observations change quite appreciably bhetween the
Separate and combined adjustments. Yl changes sign,
indicating that the peak of the distribution has shifted
from one side to the other, and Y2 is significantly greater
in the combined adjustment, indicating that the kurtosity or

"peakedness" of the distribution has increased.

This systematic effect cannot be due to scale
errors as a free net adjustment is still being used in the
combined adjustment, and therefore the overall scale is
determined by the observations themselves and not by the fit
between fixed stations. It is very difficult to postulate
just what is causing this systematic effect but it is of

interest to know it exists.

7.7 Network Five

This survey, {(see Fig. 7.£2) is basically a
chain of triangulation with extra bracing and several
centrepoints included, It was observed over a number of
years using Wild T3 theodolites and covers mainly f£lat to

undulating country.

The direction observations were obtained, in
the form of semi-directions, from the original field-books.
One hundred and thirty five sets of directions ere considered.
Mean directions with their variances, at each station and for
each set, along with skewness and kurtosis parameters for each

set were calculated. The average internal variance was calculated
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2
to be 0.11 sec”, for an average number of arcs of 12. The average
internal variance of a single direction was calculated, using

equation (7.4) as 1.32 sec2.

The average skewness and kurtosis parameters,

(y1 and Yz), with all sets considered were calculated to be:

Y 0.024

1

Y = -0.402

As in network 4, these parameters show the distribution of the
observed directions to be significantly symmetrical and somewhat

platykurtic.

The observations were subjected to a free net
adjustment with stations 13 and 24 being held fixed. As with
network 4, sets of directions with only two observed stations
were considered as angles with double the direction variance.
when the adjustment was first run it was found to be unstable.
This instability was due to problems in scale transfer through
two weak figures in thé eastern half of the network, and was
alleviated by the inclusion of distances, between stations 37
and 41, and between stations 44 and 47. The inclusion of
these distances should not effect the estimation of direction
measurement variance as their corrections will not be considered
in the calculation of s2. Apart from this they are necessary
rather than redundant observations and as such are not placing

constraints on the direction observations.

Two hundred and ninety angular observations were
adjusted, and of these, one hundred and sixty three were

redundant,
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The resulting estimate of total variance of a

. . . 2
direction observation was 0.51 sec™.

The estimate of external

variance for the survey, 0.40 secz, was found by subtracting

the estimate of internal variance from the estimate of total

variance.

The skewness and kurtosis parameters, (Y1 and

Yz), of the distribution of the adjusted observations were

‘calculated.

Y = -0.,78

Yy = 9.84

These parameters show the distribution to be somewhat skew and

markedly leptokurtic,

In summary, the variance estimates for the

angular observations in network 5 are as follows:

2
internal for 12 axcs

2
internal for 1 arc

2

external

(o3
total

7.8 Conclusions

{(a) Angular Observations

[}

0.11

1.32

0.40

0.51

secC

secC

2
sec

2
sec

The analysis of the internal variance of Wild T3

observations returned surprisingly consistent results. The

internal variances estimated for a single arc were:



Network i - o2 = 2,07 sec?
int

Network 4 - O% = 1,206 sec2
int

Network 5 - G% = 1,32 sec2
int

The variances estimated from networks 4 and 5, which both contain
a large number of redundancies, agrece very well with each other,
while the variance estimated from network 1, a much smaller
network, is not greatly different, As the estimates from
networks 4 and 5 were determined with a large number of
redundancies, a variance between these two estimates can be
accepted with confidence. The accepted estimate of the
internal variance of a single arc, observed with a wWild T3

theodolite, is 1,30 secz.

The estimate of external variance obtained from
networks 1, 4 and 5 also agree well with each other. The

estimates were:

Network 1 - g% = 0.41 sec?
ext

. 2 - 2

Network 4 - (O = 0.24 sec
ext

2 _ 2

Network 5 - @ = 0.,4Q sec
ext

As the number of redundancies in network 1 is very small, the
estimate obtained from it does not carry the same weight as the
estimates obtained in networks 4 and 5. It is significant
that network 4 is observed in undulating to hilly terrain,
while network 5 is observed in mainly flat terrain. Lateral
refraction effects will usually be more pronounced in flat
terrain, and this perhaps accounts for the difference between
the estimates of external variance from networks 4 and 5.

As it is very likely, if not certain, that external variance
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is dependent on terrain conditions, it is not rational to
combine these estimates to form a single estimate of external
variance that is independent of terrain. Therefore, the

following are the accepted estimates:
For undulating to hilly terrain:—

o = 0.25 sec?

For flat to slightly undulating terrain -

c° = 0.40 sec?

The accuracy of these estimates cannot be ascertained until
other networks, observed in similar types of terrain, have
been analysed, However, their agreement with each other
shows. that they are, at the very least, of the right order of

magnitude.
(b) Linear Observations

The variances estimated, in networks 2 and 3,
for measurements with Cubic Electrotape DM20 instruments agree
well with each other and also with the established variance
of 30 mm carrier wave length Tellurometers, which are very
similar to the Electrotape. Therefore, the variance estimate

of (20 mm + 5 ppm)%mm?

¢ Obtained in networks 2 and 3, is
probably very close to the true variance of Cubic Electrotape

DM20 instruments.

The estimated variance of Geodimeter measurements,
(6.2 mm + 1,5 ppm)zmmz, which was obtained from network 4,
appears to be a reliable estimate in that it was determined
using an adequate number of redundancies (35), and in that it

agrees. well with the manufacturer's specification.



CHAPTER 8

THE PREDICTION OF VARIANCE

8.1 Introduction

_ Chapter 7 was concerned with the analysis of
observed networks in order to obtain an estimate of the
variances of the observations forming the networks. Although
the networks were observed by different authorities, where
similar instruments were used, the analyses returned fairly
consistent results when the differing observing conditions
and techniques were taken into account. This suggests that,
using these estimates and given knowledge of the instrument,
the observing technique to be used and the conditions under
which the observations are to be taken, a reasonably accurate

variance may be predicted.

8.2 Prediction of Variance by Empirical or Experimental Means

In Chapters 3 and 4 an attempt was made to predict
variance from an empirical and experimental analysis of the
factors that contribute to it. In the case of angular
observations (See Chapter 3), this method of prediction is
unsatisfactory as many of the contributing factors cannot be
evaluated by empirical or experimental means. Angular
observations tend to be very dependent on the observer, who,
under field conditions, is subject to many nebulous influences,
the effects of which are usually impossible to evaluate in an
experimental environment. The variance of an observation taken
under field conditions always tends to be higher. The internal

variance estimated for the Wild T3 in Chapter 7, an estimate based
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on field conditions, is 1.30 sec® as opposed to the empirical/
experimental estimate, derived in Chapter 3, of 0.45 sec?.
Therefore, until more research is done on human factors. in
observational precision and on the simulation of field conditions
in laboratory experiments, the prediction of angular variance

by empirical and experimental means is not a practical technique.

Linear observations (see Chapter 4) tend to be
less dependent than angular observations are on the observer
and the prevailing conditions. This applies particularly to
electronic distance measurement, Instrumental sources of
error may be experimentally evaluated, and propagation errors
may be estimated by theoretical means and from past experience.
Hence, it seems logical that the results of Chapters 4 and 7,
for distance measurement do agree fairly well. However, in
view of the fact that actual field observations are being
assessed in Chapter 7, and that good agreement between different
networks using the same instruments was found, the estimates
obtained in Chapter 7 must be taken as being more reliable than

those obtained in Chapter 4.

8.3 Evaluation of Angular Variance Estimates from Chapter 7

In networks 1, 4 and 5 of Chapter 7, the estimates
of internal and external variance of angular cbservations, (See

Chapter 5 for definitions), were arrived at as follows:

1. The average internal variance of a mean
direction was found by averaging the internal variances of all
sets of directions in the network. This variance was the
average internal variance of a mean direction derived from the
average number of arcs. The average internal variance of a
S ingle direction, (i.e. derived from one arc), was found by

multiplying the above variance by the average number of arcs.

2. An estimate of the total variance of a mean

direction was found from the network adjustment. In this
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adjustment, all the cbservations (mean directions) were treated
as being of similar quality, and no regard was given to the

number of arcs observed to obtain each observation.

3. An estimate of the external variance of an
observation was calculated by subtracting the estimate of
internal variance of a mean direction, derived from the average

number of arcs, from the estimate of total variance.

The procedure described above is approximate in
that it assumes that all observations are of the same quality
when in fact they are not. This assumption will have an
effect on the adjustment and therefore on the S? obtained.
However, the question is whether or not this effect will be.
significant. Intuitively, one would not expect the effect
to be large as only internal variance is dependent on the
number of arcs observed, and when a reasonable number are
observed, the internal component is small compared to the
external component of variance. In other words, the effect
of the approximation on the value of total variance for a

given observation is usually not very great.

The significance of the approximation was tested
using Network 4 (see Chapter 7). This network was first
adjusted using the estimate of total variance, 0.31 secz,
found in Chapter 7, as a default variance that was applied to
all observations, regardless of the number of arcs observed.
Plumbing errors were not allowed for, so the 52 given was 1.02
instead of the unity obtained in Chapter 7, Individual
variances, calculated with regard to the number of arcs observed
were then applied to the observations. (See Section 8.4).

Once again no allowance was made for plumbing errors. The
adjustment was rerun with these individual variances and gave

an S2 of 1.17. Both adjustments satisfy the variance ratio
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test at the 95% confidence level, indicating that the variances
used in both adjustments are representative of the same
population, Therefore, if this finding can be extrapolated
to all cases, it appears that the approximation does not have
a significant effect and that the estimates of variance found
in Chapter 7 are valid. It does not seem uhreasonable to
extrapolate this finding to all networks where the number of
observations is fairly large and where the variation in number
of arcs observed is not much greater than the variation in

Network 4.

8.4 Prediction Based on Valid Variance Estimates

Once valid estimates of variance have been
obtained, these may be broken down into their basic components,
and these components categorized for type of instrument,
observing techniques and observing conditions. The components
may then be used to predict variances of cokservations taken, or
to be taken, using specified equipment and techniques and under

specified observing conditions,

(a) Angular Observations

The basic components of angular variances are

internal variance and external variance.

Internal variance is dependent on the number
of arcs observed while external variance is only dependent on
the number of different occasions over which the observations
were taken, Therefore, angular variances may be calculated

using the formula:

2 2 2
g° = .0; + .0°. coe (8.1
Tint.1l Gext G )
n
where Gint 1 is the internal variance of a single arc,
o2 is the external variance,
ext

and n is the number of arcs observed, or to be observed.
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The intexrnal variance of a single arc will have
been derived for a certain type of theodolite and for observations
taken using a certain observing technique. The observing
technique is not really a variable as it must be assumed that
the observer is experienced and that he will follow theoretically
sound observing procedures. This being the case, cbserving
technique may be taken to mean the number of arcs observed, as
this should be the only real variable in the observing

procedure.

It is very difficult to say whether or not the
external variance should be divided by the number of different
occasions over which the observations were taken. To the
best of the author's knowledge, no significant research has
been done on this question, although it is generally accepted
that the external variance can be reduced by taking the
cbservations over two or more different occasions. In
practice, and except for very precise work, it is seldom
that the observations are taken over more than two occasions.
The estimates for external variance found in Chapter 7 for
networks 4 and 5 represent the external variance of observations
taken on either one or two occasions, with the average number
of occasions closer to one than to two. It therefore seems
more reasonable to take the external component of variance
as being a constant until better knowledge is available.

The value of the component will depend on the observing
conditions under which the observations are to be taken.
Observations taken in good geodetic conditions will have a
lower external variance than those taken over flat country

with many grazing rays.

Observations taken with Wild T3 theodolites were
analysed in Chapter 7 and the resulting variance estimates may

be used to evaluate equation(S.l)for this instrument.
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For undulating to hilly terrain:

o? = (1;30 + 0.25) sec? ee. (8.2)

For flat to slightly undulating terrain:

1.30
g2 = ¢ ==+ 0,40) sec? oos (8,3)

(b) Linear Observations

The two components of the variance of an

electronically measured distance are:

l. The variance due to instrumental factors,

which depend on the make and model of the instrument used.

2. The variance due to propagaticn factors,

which depend chiefly on the carrier wave length being used.
The nature of these factors was discussed in Chapter 4.

The first component will be the same for all
lines, irrespective of lengths, while the second component
is dependent on distance. The first component will be
reduced somewhat by repeated measurements taken at the one
set-up, but the second component, being mainly due to the
uncertainty in refractive index along the line, will only
be reduced by repeated measurements on different occasions
under different atmospﬁeric conditions. (See Chrzanowski
and Derenyi, 1967, and the discussion of the linear observations
in Section 7.5(b) ). The total variance may be expressed

using formula (4.15).
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2 2

(o] = (a + bs) mm?

where a 1is the variance due to instrumental factors, in
millimetres.

b is the variance due to propagation errors, and is
usually expressed in parts per million (ppm)} of the
distance.

and s 1is the distance measured.

Electronic distance measurement is usually not
dependent on observing techniques as it must be assumed that
the instrument manufacturer's recommended procedure is being
used. Also it is generally not as dependent on observing
conditions as is angular work. Naturally, conditions may
be encountered that give rise to a variance higher than
usual, although such conditions tend to be rather exceptional,
but more significantly, it is usually very difficult to
identify and categorize these exceptional conditions.
Conditions that, by usual criteria, look average may 'give
rise fo an abnormal measurement. However, the converse is
more often true, that is, measurements in conditions which
one would expect to be troublesome will, more often than not,
give normal results. Therefore, only one variance formula,
based on average conditions, can logically be formulated for

a given instrument.

As meteorological observations are an integral
part of electronic distance measurement, the precision to which
they are assumed to have been measured must be stated when the
"a" and "b" components of formula (4.15) are evaluated for a

particular instrument.

Observations taken with two different types of
electronic distance measurement instruments were analysed in

Chapter 7.



163

1. Cubic Electrotape DM20.
0% = (20 mm + Sppm) mm? ee. (8.4)

This variance is applicable to all 30 mm carrier wave length
instruments, as they all tend to be very similar in type and

precision. (See discussion in Section 7.3 and 7.4).
2. Geodimeter

0> = (6 mm + 1.5 ppm) >mm? ... (8.5)
This variance is applicable to all Geodimeter models.

The above formulae (8.4 and 8.5) are for a

single measurement and assume meteorological measurements taken

to the following precisions:

Air temperature; 0.4 °C

Difference between wet and dry bulb temperatures;

+0.1%

Pressure; +2 mb

8.5 Conclusions

By using the methods of prediction given above,
it is feasible to build up a comprehensive list of variances for
observations taken using particular instruments, particular
observing techniques and under particular observing conditions,
These variances will be quite reliable if their components are
derived from large networks containing large numbers of redundant

observations.

They may be used in both optimization and
adjustment studies. When used in adjustment studies, a check

on their suitability is available, as if they are not the true

s
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variances of the observations, the variance factor after
adjustment, (5%), will not equal unity. The S? obtained may
be tested against unity by the variance ratio test. This is
in effect a comparison of the variances applied to the
observations, (the apriori values derived from a significantly
infinite number of redundancies), against the estimated
variances obtained from the adjustment, (derived using the
number of redundant observations in the survey). If the
test is satisfied at, say, the 95% confidence level, then it
is 95% probable that the sample of observations are from the
same population for which the apriori variances are derived.
Where the number of redundancies in the network is not large,
and the variance ratio test has been satisfied, it is more
valid to use the apriori variances, rather than the variances
estimated from the adjustment, by the methods of Chapters

5 and 6.



165

CHAPTER 9

OPTIMIZATION EXAMPLES

9.1 lIntroduction

Two examples of network optimization are given
below to demonstrate, firstly, the application of the theory
described in Chapter 2, secondly, the use of variances predicted
by means of Chapter 8, and thirdly, some of the practical
techniques involved in optimisation. The fact that the two
networks differ greatly in purpose and design demonstrates the

versatility and scope of the technique.

The data required to evaluate the optimization
formulae of Chapter 2 are the approximate coordinates of the
network stations, the types and positions of the observations
in the network, and the‘estimated precisions of the observations.
This Chapter deals with methods of determining this data as well
as the interpretation of the optimization results, but does
not deal with the evaluation of the optimization formulae to
obtain error ellipse parameters, This calculation is carried
out using a computer programme developed by Dr. J.S. Allman

of the University of New South Wales.

9.2 Geodetic Optimization

(a) Introduction

The purpose of this optimization is to design a
chain of triangulation to provide first order horizontal
control over a band of country. The chain is to be located

on the spheroid by one fixed Station (28), on the western end
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of the chain, and given orientation by an azimuth from that
station to an adjacent station (29). See Fig. 9.1 for the
location of these stations, and Table 9.1 for their approximate

coordinates.

The chain is to run over flat country and the
configuration will be dictated by the location of small rises
in the topography. The configuration shown in Fig. 9.1 is
the best that can be attained as all possible station sites
and all inter-visible lines between these station sites are
being used. As this is the maximum configuration, the
opﬁimization problem reduces to one of determining what type,
location and precision of observations will give the network
sufficient strength so that the error ellipses of all

stations are inside prescribed limits.

A plot of the error ellipses at each of the network
points tends to be of greater use than the simple numerical output
of major axes, minor axes and orientation. Although the
numerical output will tell if the desired positional accuracy
has been attained, the plot shows trends in scale and azimuth
in the network as well, Such information is very wvaluable
in deciding what changes to make in the proposed network for

the next run of the optimization.

In most cases, a plot of error ellipses from
all points in the network would tend to confuse,rather than
to illustrate, the relevant trends. The ellipses of a few
equally spaced points along the network will serve just as
well to show trends in scale and azimuth deterioration as
the network extends further from the origin (station 28).
Therefore, only the ellipses at stations 35, 42 and 47 will

be considered in the analysis below. (See Figs. 9.2 to 9.8).

Examination of the error ellipses resulting from
the selected scheme will thus allow the selection of an optimum
network. Further, where the network shows a weakness in scale
and/or orientation, the effect of additional observations may

also be analysed by their effect on the error ellipses.
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TABLE 9.1

Approximate Positions of Stations

Station Number Latitude Longitude
26 31° 44' 19" g 142° 41' 46" E
28 31 20 29 s 142 47 38 E
29 30 57 19 s 143 08 53 E
30 31 33 56 s 143 15 26 E
31 : 31 24 52 s 143 22 30 E
32 31 40 41 s 143 42 39 E
33 30 58 04 s 143 42 22 E
34 31 35 38 s 144 00 02 E
35 31 01 09 s 144 00 46 E
36 _ 31 29 46 s 144 11 05 E
37 31 22 20 s 144 27 37 E
38 30 52 06 s 144 24 45 E
39 30 36 20 s 144 30 47 E
41 31 26 14 s 144 36 50 E
42 31 14 34 s 145 09 18 E
43 30 48 26 s 145 04 00 E
44 31 11 22 s 145 19 26 E
45 31 05 15 s 145 18 37 E
46 30 35 44 s 145 41 06 E
47 31 10 51 s 145 51 11 E
48 31 33 38 s 145 52 392 E
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(b) Accuracy Specification

Before an optimisation is commenced some

specification for positional accuracy must be set.

Consider the specification that the true
coordinates of a point do not depart from the calculated
coordinates by more than 12 parts per million (ppm) of the
distance from the origin of the survey to the point in

question.

The probability that the true value of a quantity
falls. within a range of one standard deviation from the least
squéres estimate of that quantity is 68.3%. It follows that
the probability of the true coordinates of a point falling
inside the orthogonal rectangle about the error ellipse of the
point is (68.3 x 68.3)% or 46.6%. Richardus (1966) shows
that the probability of a point actually falling inside its
error ellipse is about 39%. The exact probability depends
on the number of redundancies in the network. The
probability will range from 35% for three redundancies to
39% for an infinite number of redundancies. Even with
minimurn data this network has a large number of redundancies
and the probability may be taken as 39%. Therefore, if the
length of the semi-major axis of the error ellipse is 12 ppm
of the distance from the origin, the probability that the
specification is being met is only 39u. This is far from
satisfactory. If however three standard deviations are
considered, the probability rises from 39% to about 98%.
(Patterson; 1973). This means that if the semi-major axes
of the error ellipses are no moce than 4 ppm of the distance
to the origin, there is a 98% probability that the specification
of 12 ppm is being met. This is the criterion used in the

example.

In terms of the present network, a specification
of 4 ppm limits the length of the semi-major axes of the error
ellipses at stations 35, 42 and 47 to 50 cm, 91 cm and 119 cm.

respectively.
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(¢} Variances of Observations

It was pointed out in Chapter 2 that the
precision of optimization depends almost entirely on the
precision of the observational variances used. In other
words, how closely the variances used in the optimization are
to those obtainable in the field. The results of the
analysis carried out in Chapter 7 provide variances based on
field observations which should be very close to those
obtainable under the conditions that the observations of this

network are proposed to be taken.

In actual fact, the variances used in this
optimization are those obtained from the analysis of the present
network after it was observed. (See Section 7.6). However,
the fact that these variances agree well with other results
obtained in Chapter 7 justifies the inclusion of the following

discussion on selection of variances as a general example.
(i) Angular Variances

The theodolite used in a scheme such as this
would be a Wild T3 or other instrument of the same order.
It is proposed that directions be observed using the procedure
set out in Section 3.1(c) and that these directions be observed

in twelve arcs.

As the network is to be observed over flat

country, the variance formula (8.3) of Chapter 8 will apply.

g% = (};§Q-+ 0.40} seconds squared

where n is the number of arcs to be ocbserved.

In the present case where n equals 12,

0% = 0.51 seconds squared

This is the total variance of twelve arcs and is the figure

to be used in the optimization.
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(i1) Distance Measurement Variance

The distance measurement instrument used in a
survey of this nature would be a microwave electronic distancer
such as the Tellurometer MRA101l, Tellurometer MRA3, Cubic
Electrotape DM~20, Wild DI50 or the Tellurometer MRA4. The
reasons for this choice are the distances jinvolved and the
accuracies required. There are some very long distances in
the network, the longest being 82 km between stations 38 and
42. There are no visible light carrier wave instruments
with this range available at the present time, so one is
restricted to a microwave instrument. 0Of the instruments
listed above, only one has a stated range of greater than
82 km, this being the Wild DI50, with a stated range of
150 km. The other manufacturers state ranges of the order
60 km. Experience under Australian conditions has shown
that distances considerably longer than this can be measured
by these instruments. However, if difficulty is encountered

with longer lines, such lines can always be measured in parts.

The instruments listed above, with the
exception of the Tellurometer MRA4, all fall into the class of
30 mm carrier wavelength microwave distance measurers.

Assume that a set of MRA4 Tellurometers is not available for

the survey and that 30 mm wavelength instruments are to be used.

The variance of measurements made by these

instruments. was estimated to be:

o = (25 mm + 6 ppm)zmm2
This estimate was:based on discussions with
A.J. Robinson (1971) and past experience, and was adopted for
the optimization. Subsequent investigations, (See Chapters
7 and 8), have indicated that the variance
2

g = (20 mm + 5 ppm)zmm2

is probably a better estimate.
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(iii) Variance of Observed azimuths

The variance of observed azimuths obtained in
Section 5.5 was for observations made in country similar to
that covered by the proposed network. The variance given in
formula (5.40) will therefore be used for the optimization.

That is

2
Az

2

o] = 2,89 sec

(d) Optimization Trials

(i) Network No. 1

In this network, it is proposed that distances
will be measured along all lines shown in Fig. 9.1, Combined
with the fixed coordinates and fixed azimuth at station 28, these
observations would enable the network to be solved, i.e. With
this data the coordinates of all points in the network could
be found. The error ellipse diagram for this configuration

is shown in Fig. 9.2 (Trial 1).

Examination of this diagram shows firstly the
trends existing in the network and secondly that these ellipses
do not meet the specification. As the network extends
away from the origin at station 28, the scale components of
the ellipses (those along the longitudinal axis of the network)
increase very slowly whilst the azimuth components of the
ellipses (those perpendicular to the longitudinal axis of the
network) increase very rapidly. This implies that scale is
held firm throughout the network and that azimuth deteriorates
rapidly as the distance from the fixed point increases,

This outcome is to be expected, as a network comprised solely

of distances will naturally tend to hold scale but not azimuth,
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The usual way to improve azimuth control in a
network is to include observed azimuths along the network.
Observed azimuths at stations 31, 35, 42 and 47 were included
in the data for trial 2. These stations were chosen
because of the availability of distant stations for use as
reference objects (R.O0.'s) and because they are fairly equally

spaced along the network.

The error ellipse diagram for this configuration
is shown in Fig. 9.3. Once again the specification is not
net although. the rate of azimuth deterioration is considerably
less. As would be expected the observed azimuths did not

have much effect on the scale in the network.

. The azimuth. components of the ellipses must still
be improved if the specification is to be met, To do this,
azimuths could possibly be observed at more stations, but this
would mean that extra stations have to be visited with a
theodolite. It would seem a more logical procedure if more
use could be made of the theodolite at the stations already
being occupied. Perhaps it would be of advantage o gbserve
directions to stations visible from these azimuth stations.

Such directions were included in the data set for trial 3.

The ellipses resulting from this trial are shown in Fig. 9.4.

These ellipses satisfy the specification.

It is of interest to note that scale as well as
azimuth is improved by the addition of the proposed directions,
This is due to the fact that the directions, unlike the proposed
azimuths, tend to brace the network for scale as well as for

azimuth.

Table 2.2 gives the parameters of the ellipses
shown in Fig. 9.2, 9.3 and 9.4 (Trials 1, 2 and 3].
(ii) Network No, 2

In this network, the coordinates of station 28

and the aximuth from station 28 to station 29 are fixed.
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TABLE 9.2

Ellipse Parameters

Trial
1 2 3
Station Component
Semi-Major Axis 96.59 cm 67.22 cm 50.12 cm
35 Semi-Minor Axis 41,57 cm 33.30 cm 26.11 cm
Orientation 177.49° 16.90° 2.80°
Semi—Major Axis | 224.23 115.74 86,30
42 Semi-Minor Axis 56.29 53.87 36.42
Orientation 1.19 178.98 4,21
Semi-Major Axis 318.48 142.03 109.22
47 Semi-Minor Axis 62.08 58.43 42,01

Orientation 0.50 177.26 1.24
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To give the network scale there would be a distance measured
between stations 28 and 29. Initially it is proposed that
directions are to be measured both ways along all the lines

shown in Fig. 9.1. The error ellipses for this network

(Trial 4) are shown in Fig. 9.5. The ellipses do not meet

the required specification. The azimuth components of the
ellipses are reasonably small but the scale components are

very large. This should be anticipated in a direction network and
the usual solution is to include a number of measured distances in the
network. Normally, at least one distance would be measured

at each end of the network and perhaps one in the centre.

To investigate the effect of three measured lines, the

distances between stations 35 and 41 and between stations 46

and 47 were taken as measured in addition to the distance

between stations 28 and 29. The error ellipses for this
configuration (Trial 5) are shown in Fig. 9.6. Once again
the ellipses do not meet the required specification. The

azimuth components are unchanged while the scale components

are significantly smaller than those of Trial 4. It would
appear that more measured distances are required if the ellipses
are to meet the specification. From a logistical point of
view, a traverse through the network would probably be the best

way of introducing these extra distances.

Consider a traverse through stations 28-31-35-
38-42-44-47, (Fig. 9.1). This is a traverse going from one
end of the network to the other, through the least possible
number of intermediate stations. The resultant error
ellipsés are shown in Fig. 9.7 (Trial 6)}. The scale
components are smaller than those of Fig, 9.6 while once again
the azimuth components remain unchanged, While these
ellipses satisfy’the required specification, it is of interest
to see what change is made if in addition all distances in the

network were to be measured (trial 7).
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The ellipses for this scheme are shown in Fig.
9.8. The scale components of the ellipses are reduced and
again the azimuth components remain significantly the same.
However, the improvement in scale seems most expensive when
the amount of extra work necessary to obtain it is considered.
The impravement in scale would require the measurement of 42
extra lines. This implies that there is an economic cut
off point after which further distance measurement does not
warrant the expense incurred. Significantly the same

result was found by Ashkenazi and Cross (1971).

Table 9.3 gives the parameters of the ellipses
shown in figures 9.5, 9.6, 9.7 and 9.8. (Trials 4, 5, 6 and
7).

(e) Conclusion

The examples of Section 8.2(d) have served as
a demonstration of the method of optimization. The advantage
of using such a procedure in selecting the field stations and
the number, type and location of observations is immediately

apparent.

It must be stressed that in both Networks 1 and
2, the only alteration to the basic model was to increase the
nurkber of, or to change the type of the observations. It
is also quite valid to investigate the effect of observing
with increased precision and to examine the effect of relocation

of some stations. and the introduction of additional stations.

In the present example, there was scme
justification in not investigating the effect of observing
with increased precision, In the case of the angular
observations, an inspection of the variance formula (8.3]
shows that the external part of variance is the predominant
part. If 12 arcs are observed, then the internal part of
the variance is 0.02 seconds squared compared with the external
part of 0.45 seconds squared. As the external variance Iis

not reduced by observing additional arcs, there is no
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TABLE 9.3

Ellipse Parameters

Station | Component 4 5 6 7
Semi-Major Axis | 92.44 cm } 65.73 cm | 48.93 cm] 29.47
35 Semi-Minor Axis | 33.62 cm | 33.50 cm | 33.26 ani 21.94 cm
Orientation 77.25° 79.33° 80.31° | 159.12°
Semi~Major Axis }188.86 106.14 79.32 68.05
42 Semi-Minor Axis 80.82 80.09 71.60 30.60
Orientation 91.80 84.15 19.14 1.61
[
| semi-Major Axis [257.73 126.04 113.40 98.70
47 Semi-Minor Axis }116.27 115.10 82.40 34.52.
Orientation 91.60 75.20 0.06 179.65
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significant gain to be had if more than 12 arcs are observed.
The external variance could be reduced by spreading the
observations over a number of days or nights, but in most
cases, it is more economical to improve the network by
additional measured distances. It would appear that, for
a theodolite with the variance formula (8.3) that 12 arcs

may be the optimum number of arcs to observe.

In the case of the distance observations, it was
pointed out in Section 7.5 that remeasurement of the distance
after a short period is only likely to affect the "a" term of
the variance formula, and not the "b" term, Over long
distances, such as those entailed in this network, the “B"
term is the predominant term and can only be reduced by
remeasurement under different atmospheric conditions. This
means that the stations have to be occupied more than once
and is therefore an uneconomical solution. Hence, the
variance adopted in this optimization is probably close to
the best or optimum variance that can be economically
obtained using a 30 mm carrier wave instrument. Increased
precision could be obtained using 8 mm carrier wave
instruments, but such instruments are very expensive and
are probably not an economical proposition in a network

such. as this where the specification can be reached using

30 mm instruments.

The configuration and number of network stations
was not altered since a reconnaissance had shown that the
only possible stations were those included in the optimization

already (See 9.2(a) ).

Of the trials described in Section 9.2(d), trials
3, 6 and 7 satisfy the specification. (See figs. 9.4, 9.7 and
9.8 respectively]. It was pointed out that trial 7 was
clearly an uneconomical solution because of the large number
of measured distances needed for a small gain in coordinate

precision. Therefore, the optimum solution would appear
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to be either trial 3 or trial 6. Further research would
need to be done to determine the cost of different types of

observations in order to choose between these two solutions.

9.3 Tunnel Optimization

(a) Introduction

The project is to build a tunnel between portals
at stations 12 and 13. (See fig. 9.9). Bore holes have
revealed a badly faulted zone along the proposed route of the
tunnel. It would be extremely expensive and slow to tunnel
through this fault zone, so it has been decided to route the

tunnel around the fault zone in the manner shown in fig. 9.9.

A curved tunnel creates interesting surveying
problems. In a straight tunnel, as most are, scale in the
network is not a serious consideration as it will not have a
great effect on breakthrough accuracy transverse to the
tunnel. Errors in scale will simply shift the breakthrough
point along the line of the tunnel. In a curved tunnel

errors both in scale and in azimuth can cause a shift in

breakthrough transverse to the tunnel. Such a shift is
usually very expensive to rectify. In a case like this,

the advantages of optimization are immediately apparent.

(b) Approximate Coordinates
(i} Tunnel Coordinates

Given an alignment plan of the tunnel, the first
step is to decide where to place control stations along the
tunnel. For the purposes of this example, intermediate align-—
ment stations around the curves will be neglected. It will

be assumed that these can be placed to a lower order of accuracy
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than the control stations. From an error propagation point
of view, it is advantageous to have the stations as widely
separated as possible. The maximum practical sight length
in tunnel conditions is about one kilometer. Sights longexr
than this are often not feasible because of dust etc.
Therefore, in the straight sections of the tunnel, stations.
will be placed at every kilometer. Stations will also be
placed on the tangent points of curves and as far apart as

possible around the curves.

The calculation for the placement of stations
around the curves is a problem in simple geometry requiring
knowledge of the tunnel width, the minimum distance from the
stations to the tunnel wall, and the minimum clearance between
the lines of sight and the walls. In the tunnel under
consideration, which is 5 m wide, and in which the stations and
lines of sight are at least 0.5 m from the walls, the following

maximum sight distances apply.

Curve 1 - Radius = 4030 — Maximum Sight = 359 n
Curve 2 — Radius = 2800 - Maximum Sight = 299 p

The traverse stations may then be plotted on a
large scale plot of the tunnel and their coordinates scaled off.

These coordinates are given in Table 9.4.

(ii) Control Network Coordinates

The control network is to consist of several
braced quadrilaterals with some centre point figures. (See

fig. 9.9).

The selection of the control network stations
"may be carried out in the following manner. After the
location of the tunnel has been decided upon, a preliminary
search. and reconnaisance is required to find suitable sites
for the stations. The criteria used in selection are

chiefly figure conditioning, location and accessibility.
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TABLE 9.4

Station Station Name North (m) East (m)
14 "E01 5190 12250
15 EO2 5120 11970
16 EQ3 5060 11680
17 EQ4 5040 11375
18 EOS 5050 11075
19 EO6 5095 10780
20 EQ7 5165 10485
21 EQ8 5280 10205
22 EQ9 5405 19940
23 E1Q 5580 9690
24 El1l 5750 9450
25 El2 5970 9240
26 E13 6200 2040
27 El4 6440 8895
28 E1l5 6710 8750
29 BT1 7210 8510
30 Wll 7710 8270
31 W10 7950 8140
32 woo 8205 7985
33 w08 8500 7750
34 wWQo7 8760 7510
35 Wo6 9000 7230
36 WQ5 9220 6950
37 w04 9420 6630
38 WQ3 9585 6310
39 W02 9720 5970
40 wol 9930 536Q
41 BT2 7210 8510
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Where a number of equal alternatives exist the actucl CORDUL O
optimization may be used to choose between them. Different
configurations of stations would be run as data for the
optimization to determine which configuration gave the most
satisfactory error ellipses at the portals, or if the tunnel
has been designed at this stage, at the breakthrough point.
Small scale maps are usually adequate to work out approximate
locations of the stations, lines of sight between them and to
gain some indication of their accessibility, Field
reconnaisance ‘is then necessary to check accessibility. . It
is usually desirable to have the project coordinates on the
national coordinate system, For this reason, one or two
trigonometrical stations are usually included in the network.
The coordinates of only one station are adopted with perhaps
the azimuth to a second if it is available. Information
adopted from the national system must not introduce any extra
constraints into the network, as this would cause distortions
or tensions, which in a precise network are extremely dangerous.
Therefore the maximum information that may be adopted from the
national system are the coordinates of one point and an
azimuth from that point, to locate the network on the spheroid
and to give it orientation. If distances are not to be
measured in the scheme, an adopted distance from the national

system will be necessaxy to fix scale.

In the present case, station 1 is assumed to
be the coordinated station, and the azimuth from station 1 to
station 13 is assumed to be the known azimuth. A list of
the control network stations and their coordinates is given

in Table 9.5.
(c) Proposed Observations
(i) The Tunnel
The tunnel stations are to be connected by
traverse using a short range electronic distance meter, and

a single second theodolite. Constrained centering is to

be used and centering errors in the tunnel will therefore
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TABLE 9.5

Control Network Stations

Station Station Name North East
1 NQ1 11321 177
2 NO2 7121 1786
3 NO3 12166 2655
4 NO4 12794 4828
5 NQ5 11080. 8408
6 NO6 7186 6276
7 NO7 7443 10605
8 NO8 5939 12834
9 NO9 3806 10404

10 N10 3862 15852
11 N1l 2704 13800
12 N12 5351 12593
13 N13 10138 4707
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be assumed to be negligible. Azimuth will be carried into
the tunnel by sets of directions observed at the two portals
to several stations of the control network and to the first
tunnel station. Distances will be measured from the portals

to the control network using a short range distance meter.

(ii) The Control Network

Direction measurements are to be made in both

directions along all lines shown in fig. 9.9, with a single

second theodolite. Some distances are to be measured using

a medium range electronic distance measurement instrument.

Centering will be by optical plummet,

(@) Variances

The variances adopted for the instruments

proposed to be used are as follows:

Single second theodolite;

Variance of a direction observed in n Arcs = (6.5 + 0.25) sec?
i n .
Short Range Electronic Distance Meter;
Variance of a single measurement = (3 mm + 5 ppm)zmm2
Medium Range Electronic Distance Meter;
Variance of a single measurement = (25 mm + 6 ppm)zmm2

The standard deviation of plumbing by means of optical plummet

will be taken as 1.5 mm,

These variances were estimated before the
investigations of Chapters 7 and 8 were finalised and hence

in some cases differ slightly from the values obtained in
those Chapters.
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(e) The Breakthrough Point

For the purposes of computation of the breakthrough
erxxror, the breakthrough station is includéd twice in the
optimization (See Table 9.4). Station 29 (BT1l) is fixed by
the traverse from the eastern portal and station 41 (BT2) is
fixed by the traverse from the western portal. Error
ellipses for both stations were obtained from each run of

the optimization.

(f) . The Breakthrough Criterion

The remaining problem was that of obtaining a
figure for the standard deviation of breakthrough perpendicular
to the tunnel at the breakthrough point from the two error
ellipses at this point. A graphical representation of the

situation is shown in fig, 9.10.

The components of the ellipses perpendicular to

the line of the tunnel can be found using the following formulae.

The transformation formula for a change in
orientation of a coordinate system can easily be derived and

are as follows:

X' =X cos ¢ + Y sin ¢ oo (2.5)

VA X sin ¢ + ¥ cos ¢

where ¢ is the angle through which the system is rotated,
X;Y are coordinates in the old system, and
X',¥' are coordinates in the new system.

Application of the laws of propagation of variance gives:
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QX' = QX cos ¢ + QY sin ¢ ce. (9.6)
QY" = -QX sin ¢ + QY cos kb eee (9.7)
and 0}2(, = cf( cos?¢ + ZOXY' sin ¢ coé o + o; sinch (9.8)
Oé, = O§ sin?® - Zcxy}sin & cos ¢ + O§'COSZ¢ (9.9)
‘ In the present case: Oy and OY are the semi-major
and semi-minor axes of the error ellipse. For an erxor

ellipse, by definition, 0 = 0, and therefore equations (9.8)

XY
and (9.9) can be reduced to the following:

2 2 2 2 .2
= , + ce. (92.10
Oge= Oy cOS o) o, sin o) ( )
2 2 .. 2 2 2 '
= + .en .
Gy, g, sin 0] GY cos“¢ (9.11)

where ¢ is the difference between the orientation of the ellipse
and the direction perpendicular to the tunnel at breakthrough,
0. and O, are the semi—axes of the ellipse at the breakthrough

X Y

point, and o_, is the component of the ellipse perpendicular to

the tunnel at that point.

When OX' has been obtained for both the breakthrough
ellipses, the two values may be combined using the laws of
propagation of variance to give a standard deviation of breakthrough

perpendicular to the tunnel.

%21 oo (9.12)

A programme was written for a keyboard programmable
calculator to calculate UB given the parameters of the two

breakthrough error ellipses and the azimuth of the tunnel.
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Discussions with tunnel and mining surveyors
indicate that the maximum permissible breakthrough error in
most tunnels is of the order 0.5 metres. This figure will
be accepted as the maximun for the tunnel under consideration.
If this maximum is taken to be three standard deviations of the

breakthrough error then:

0.50m

W
Q
It

Q
i

160 mm

If the criterion that OB < 160 mm is set, then
there is a 98% probability that the actual breakthrough error
will not exceed 0.5 m, {(Patterson, 1973).

The criterion used to assess the results of the

various trials will therefore be that

Og < 160 mm

{(g) Results

Ten trial networks were processed using the
coptimization procedure. Some data was common to all trials
and some was changed from trial to trial. The data common

to all trials was as follows:

1. The positions of all proposed stations,

both. outside and inside the tunnel, were retained throughout.

2. The coordinates of station 1 and the bearing

from station 1 to station 13 were held fixed throughout.

3. The proposed observations inside the tunnel

were not altered.

4. All proposed directions in the control

network (each way directions along all lines of the control
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network, shown in fig. 9.9) were common to all trials. The
directions proposed to connect the tunnel portals to the
control network were also common to all trials. They were
as follows: Eastern Portal (12) - Directions, both ways,
between stations 12 and 10, 12 and 11, 10 and 12 and 11 and
12, Western Portal (13) - Directions, both ways, between
stations 13 and 1, 13 and 3, 13 and 4, 1 and 13, 3 and 13 and
4 and 13.

The data varying from trial to trial together
with the standard deviation of breakthrough obtained for each

trial is given in Table 9.6,

Trial 1.
This trial has virtually the minimwn practical
amount of data that could be measured. There is only one

distance, from station 1 to station 3, measured in the control

network and no distances measured from control network stations

to the portals. The distance between stations 1 and 3 serves
only to give the control network scale. The directions in the
control network are observed in four arcs. As there is only

one distance measured, the fact that scale is weak in the
control network is to be expected. It is mainly this

weakness in scale that causes the large GB of 254 mm.

Trial 2.

Trial 2 is the same as trial 1 except that the
directions. of the control network are observed with. eight
arcs instead of four. The improvement in UB' (from 254 mm

to 229 mm), is certainly significant although not great.
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TABLE 9.6

Trial| Direction | Measured Distances Measured Distances o
No. Arcs (Control Network) (Portal Connections)| B
1 4 1 -3 None 25.42
2 8 1 -3 None 22.95
3 4 1 -3 12 11, 13 - 1 17.32
4 4 1 -3 12 10, 12 - 11, 117,22
13 1, 13 - 3,
13 4
5 4 1-3,1-2, 12 11, 13 - 1 16.43
2 -9, 9 ~-11
6 4 1-2,2-09, 12 10, 12 - 11, 15.78
9 -~ 11, 11 - 10 13 - 1, 13 - 3,
10 -7, 7 -5, 13 4
5~-4, 4 - 3,
3 -1
7 8 1-2,2-~-9, 12 10, 12 - 11, 15,25
9 - 11, 11 - 10, 13 i, 13 - 3,
i0 -7, 7 - 5, 13 4
5 -4, 4 - 3,
3-1
8 4 All 24 distances None 16.28
9 4 All 24 distances 12 11, 13 -1 16.00
10 8 All 24 distances None 15.50
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A further increase in the number of arcs would not give much
additional improvement. The improvement in OB is dependent
on the improvement in the variance of the observations together
with the increase in the number of these observations in the
network. For a single second instrument, the improvement

in variance from 8 arcs to 16 arcs is only half the improvement
from 4 arcs to 8 arcs. So at this stage, the measurement

of additional distances would seem the logical way to improve

g_.
B

Trial 3.

Trial 3 is the same as trial 1 except that a
distance is measured from each portal to a station of the
control network, (12 to 11 and 13 to 1). This trial gave
a GB of 173 mm, a very significant improvement on trial 1.
However, it is not sufficient to satisfy the criterion of
OB < 160 mm.. In an attempt. to satisfy this criterion,

more distances will be measured from the portals to stations

of the control network.

Trial 4.

Trial 4 is the same as trial 3 with the exception

that three extra distances are measured from the portals to the

control network. They are the distances between 12 and 10,
13 and 3 and between 13 and 4. This trial gave a GB of 172 mm,
an insignificant improvement on the result of trial 3. The

reason this improvement is so small is probably that the two
distances (from 12 to 11 and from 13 to 1) are providing
nearly maximum possible control of scale, with this precision
of distance measurement, in the areas of the control network
adjoining the portals and the additional distances are simply
adding more redundancies rather than improving the scheme.
This hypothesis points to a need for a more uniform

distribution of measured distances through the network.
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Trial 5.

Trial 5 is the same as trial 3 except that the
distances along the traverse from station 1 to station 2 to
station 9 to station 11 are measured. These distances should
have the effect of providing a scale link between the portals
as well as giving a more uniform distribution of measured
distances. through the network. The GB resulting from this
trial is 164 mm. This is just outside the criterion of

< .
OB 160 mm

It was. confirmed in trial 2 that the observation
of more precise directions would not give a great deal of

improvement in network strength even when there was little

scale control in the network. It will give even less improvement
now that the scale control is stronger. (This will be shown
in trial 7.) Therefore, the logical course would appear to

be to measure more distances.

Trial 6,

Trial 6 is the same as trial 1 except that the
distances along the traverse joining stations 1, 2, 9, 11, 10,
7, 5, 4, 3 and 1, as well as the portal distances 12 - 10,
12 --11, 13 - 11, 13 - 3 and 13 ~ 4 are measured. This trial
gave a GB of 158 mm. Although GB now satisfies the criterion,
it is of interest to note that the number of measured distances
in trial 5 had to be doubled to gain this very marginal
improvement in OB. In other words the scale control in the
network that can be gained by measuring distances of this

precision is reaching the limit.

Trial 7.

Trial 7 is the same as trial 6 except that the
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directions in the control network are measured in eight arcs
instead of in four, The OB obtained in this trial is

153 mm, a very swmall improvement over trial 6 when it is
considered that twice as many directions are being observed
throughout the control network. A similar situation to that
of trial © has arisen. That is, the improvement in network
strength that can be achieved by the more precise measurement
of the directions is very limited, regardless of how much more

precisely the directions are measured.

Trial 8.

Trial 8 has all directions of the control network
observed in four arcs, and all distances except those to the
portals obsexrved. The UB given by this trial is 163 mm,

The importance of the distances to the portals may now be seen.
The Oy of this trial is barely smaller than that of trial 5
(164 mm), yet in trial 5 there are only four distances
measured in the control network, contrasting to the twenty
four of this trial. Trial 5 includes one distance from each
portal to the control network, whereas trial 8 has no portal
distances measured, These two portal distances have nearly
the same effect as the additional twenty distances measured in
the network proper of trial 8. This is not because of

their superior precision (See (d) above), but is because of
their strategic positioning. The standard deviation of
breakthrough is heavily dependent on the precision to which
the portals are fixed, and distances measured to the portals
‘will be one of the most economical ways of improving this

precision.

Trial 9.

Trial 9 is the same as trial 8 except that the

portal distances 12 - 11 and 13 - 1 are measured. The OB

resulting from this trial is 160 mm.



202

Trials 8 and 9 may be compared with trials 1 and 3 respectively.
Trials 1 and 3 are similar in that all directions are measured in
four arcs and in that no portal distances are measured in trial 1 and the portal
distances measured in trial 9 are measured in trial 3.

where both trials 8 and 9 have all network distances measured,
trials 1 and 3 have only the one distance, (between stations

1 and 3), measured. The GB's for trials 1 and 3 are 254 and
173 pm, respectively. The difference between these two
results is far greater than the difference between the results
of trials 8 and 9, even though the addition of the same data
causes both differences. The reason is that the network of
trials 8 and 9 has reached a limiting or saturated condition

s0 Fhat little improvement is obtained by the addition of this
type of data. In trials 1 and 3, the network is quite weak
and the additional data gives quite a marked improvement.

That this saturated condition, which is due mainly to distance
measurement, will not be improved by more precise direction

measurement is. shown by the results of trial 10.

Trial 10.

Trial 10 is the same as trial 8 in that all distances

except those to the portals are measured, It differs fronm
trial 8 in that the directions are observed in 8 arcs instead
of in four. The.cB resylting from trial 10 is 155 mm, a very

small improv?ment for the double amount of effort involvgd in

gbserving eight ar¢s.

~{h) Conclusion

ThL standard deviations bf breakthrough, Uﬁ, for
all trials are suﬁmarised in Table 9.6, together with the
variable data used in the trials. Trials 6,7,9 and 10
satisfy the criterion of GB < 16 cm, and of these, trial 6

would seem the most economical solution. Apart from having
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only four arcs observed for direction observations, and the

least number of measured distances, the distances are measured

in the most economical manner. As they are in the form of

a traverse, a'“leap frog" technique may be used to measure them,
so that each station is only occupied once. If the
distances were not adjoining, man&-more stations would have

to be visited to measure the same number of diétances° The
distances to the portals ¢ould be measured in the same’

operation; as these are to be measured by a different insirumént,
a short range distanée meter as opposed to the microwa&e '
instruments to be used on the other lines of the network.

All that'would be required is for the microwave pafty to carry
the reflectors and to set them so that an observer at the

portal can measure the portal distance after the microwave

party has measured a network distance,

Trial 7 is clearly a less economical solution
as, although the same distances are being measured, the
directions are being observed in eight arcs as opposed to the

four arcs of trial 6.

Trial 10 is an even less economical solution
than trial 7. Like trial 7 it has directions observed in
eight arcs, but many more distances are observed. Therefore,

of the solutions tried, trial 6 appears to be the optimum,

It should be noted that trials 3,5 and 8 very

nearly satisfy the criterion,

In the analysis, three groups of observations
were varied, either in number or in the precision to which they
were to have been measured. The number of distances measured
in the control network were varied as were the number of

distances connecting the portals to the control network.
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Directions were taken to be measured both ways on all lines
of the network in all trials, but their precision was varied
from trial to trial. It became apparent that the stronger
the network was the more difficult it was to strengthen.

It would appear that a network of fizxed configuration has an

optimum strength which onece obtained is uneconomical to attempt

to improve. This is of course a very broad and sweeping
statement and must be qualified. It would depend on the
method tried to improve the network. The statement would

hold if the improvement was to be gained by the methods

used in the present analysis. That is, by adding observations
until there is no place for more to be added, and then by
improving the precision of these observations. An exception
to this statement could be improvement by the observation of

astronomical azimuths.
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CHAPTER 10

CONCLUSIQKS

10.1

An optimization procedure is available to
“estimate the precision to which points may be coordinated in

a planned network, It is also valid to estimate the
precision to which points have been coordinated in an existing
network. The procedure is based on the parametric adjustment

and requires knowledge of the following information.

1. The approximate coordinates of the network stations.
2. The type and position in the network of the observatiors.
3. The precision or anticipated precision of each

observation,

The measure used for point precision is the error
ellipse, its accuracy being nearly exclusively dependent on how

closely the observational variances are estimated.
10.2

Empirical and experimental means of estimating
angular variance are unsatisfactory because of the heavy dependencs
of angular observations on human factors and the extreme
difficulties involved in simulating field conditions in
laboratory experiments. Linear observations tend not to be
as dependent on human factors and field conditions as are
angular observations, and accordingly, empirical and
experimental means of estimating linear variance appear to

give relatively good results.
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10.3

The weaknessesin empiricai and experimental
means of variance estimation are overcome by methods of
estimation using analysis of field observations. Early
methods using this approach were based on condition closures
and were unsatisfactory in that they used only a percentage
of the observations, they could only be used with angular
observations and they required fairly extensive calculations

which would otherwise be unnecessary.

A more satisfactory method is based on the
fact that the variance factor after adjustment will reflect
the suitability of trial variances in an otherwise valid
mathematical model. This method overcomes all the
difficulties of the condition closure methods, as it uses
all observations, it is suitable for the estimation of both
angular and linear variances and it involves virtually no

superfluous calculation.

The reliability of variances estimated using
this method was indicated by the good agreement between the
results of variance analysis of several large networks, (vide
Chapter 7), when the differing equipment and techniques used,
and the differing conditions, under which the observations were

taken; were accounted for.

10.4

Variances obtained by this method may be broken
down into a number of basic components depending on the
parameters of equipment, techniques and observing conditions,
and by substituting these components into simple formulae,
variances. may be estimated for observations, taken or to be

taken, using a specified set of parameters.
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It is desirable that a comprehensive list of
variance components be compiled so that the variances of
observations using a wide range of equipment and techniques
and under a wide range of observing conditions may be

estimated.

10.5

In Chapter 7, the distributién of the corrections
to ohservations after adjustment was shown to be predominantly
leptokurtic. This is the expected result as although the
corrections will probably tend to be normally distributed, this
can only be achieved when there is no interplay between
adjacent cobservations. In general, large errors will receive
smaller corrections due to the "meaning out" of the error over
adjacent observations. Thus a leptokurtic form will result.
Therefore, the analysis carried out in Chapter 7 does not prove
or disprove the assertion that surveying observations are

normally distributed.
10.6

The two examples given in Chapter 9 demonstrate
the application of the optimization procedure described in
Chapter 2 using variances estimated by the means of Chapter 8.
The advantage of using such a procedure in selecting the field
stations and the number, type and location of observations
should be immediately apparent, and it is to be hoped that,
in future, all major networks will be analysed by an

optimization technigue.
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APPENDIX A

MATHEMATICAL ANALYSIS OF PERIODIC
CIRCLE GRADUATION ERRORS

The wave form of periodic circle graduation

errors is. best represented by a Fourier Series;

v=r +rsin(A + x) + ¢ sin(8 + 2x) + r sin(A +3x) + ....
o 1 1 2 2 3 3

cee (1)

where rO,r 1T 10000 are the amplitudes,
12
A ,A ,A ,...... are the phase angles,

1 2 3

x 1s the circle position, and

y 1is the circle graduation error.

Equation 1 is an infinite series of sine terms, the magnitudes

of these terms decreasing as the number of terms increases.

r sin{(A + x) is the fundamental term,
1 1

r sin(A + 2x) is the first harmonic,
2 2

r sin(A + 3%x) is the second harmonic, etc.
3 3

In modern theodolites, a single reading of the
circle is derived by taking the mean of two diametrically
opposite graduations. The error in the graduation on one

side of the circle may be expressed as;

y =r_ +r sin(A +x) + r sin(d + 2x) + r sin(A_+ 3x) + ...,
a Q 1 1 2 2 3 3

eeo (2)



and the error in the graduation diametrically opposite as;

. o
Yb = r0 + rlsin(A1 + x + 1800) + r251n(A2 + 2x + 3607) +

r sin(a + 3x + 180%) + .... e.. 3
3 3

Equation (3) may be simplified by use of the following relationships;

sin (¢ + 180°) = -sin ¢

sin (¢ + 360°) sin ¢

Substitution of these relationships into (3) gives;

y. =1xr_ - r sin(A + x} + r sin(A
b 1 2

+ 2x) - r sin(A + 3x) + ...
0 1 3 3

2

-0 (4)

As was mentioned above, the circle reading is the mean of the

two diametrically opposed graduations. Therxefore;
= + e
i Ya Yp ()
2

Substituting (2) and (4) into (5) gives;

y =y +xr sin{A + 2x) + r sin(A + 4x) + ...
m 0] 2 2 N 4

c.. (6)

Therefore, by taking the mean of the two diametrically opposite
graduations, the odd terms in the graduation error expression

cancel.

Suppose that two arcs were observed at zero

settings of Oo and 900, then for the first arc:

y =1r_ +r sin(A + 2x) + r sin{ada + 4x) + ...
1 0 2 2 4 y

eee (M)
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and for the second arc;
vy =1, +r sin(da + 2x + 180°) + r sin(a + 4x + 360°) + ...,
2 0 2 2 4 Y

«.. (8)

By the same reasoning as above, the circle graduation error of

the mean of these two arcs will be;

Yy =r,.+ r sin(A + 4x) + r sin{(a + 8x) + ...
m 0 4 4 8 8

... (9)

Similarly, observation of four arcs at zeros of

0®, 45%, 90° ana 135° will give;

v =r +r sin(A + 8x) +r sin(a + 16x) + ...
m 0 8 8 16 16

... (10}

Therefore, the periodic circle graduation error
in the mean result of four arcs, observed at the above zeros,

is free from the fundamental term and the first six harmonics.



APPENDIX B

FORMULA FOR ESTIMATED YARIANCE FACTOR
AFTER ADJUSTMENT

The following proof is based on that given by
Ashkenazi (1970). The same notation as that of Chapter 2

will be used.
Given the observation equations:

AX + C=p +V ... (1}

and AX + AX) = - + A ... 2}

where X are the true errors in the parameters X,
A are the true observational errors,
and T is the matrix of absolute terms such that T = C - p.

Pre-multiplication of equation 2 by VTG'1 gives:

vieTla(x + AX) = -viG i + vigTlA ... (3)
-~ -1 —

or VTG Liax + T} + VTG A AL = VTG Ip cee (4)
T -1

but VG 'A.AX = 0 oo (5)
T ~-3 T —1

as A'G 'V=AG "(AX + T) .eo (8)
T - -

or A ¢ v = AT lax + alg Ly cee (D
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The right hand side of equation 7 is the matrix of normal

equations and therefore is egual to zero.

Therefore ae-v = vigTla = o

Substituting equation 5 into equation 4 gives
vierlax + 1) = vigia

Substituting T = C - p into equation 1 gives:
AX + T =V

Substituting this result into equation 9 gives:

vieTly = vigTia

or VGl = A6y

I
>

X T -
Similarly, pre-multiplication of equation 2 by A

AT la(x + M%) = ~ATeir + ATGA
or ATe  (ax + T) + ATeTta.Ax = ATGTlA

Substituting equation 10 into equation 14
- - T -~
ATety + ATeTlaLax = AT6TA
Substituting equation 12 into eguation 15
T -
vigTlv + ATe™la.ax = ATGTMA
. . T -1 .
Pre-multiplication of equation 2 by A G~ gives:
aTe™la(x + Ax) = -aTG™iT + ATGTA
But, by equations 7 and 8

T
ATG-la.x = -aTg-lT

gives:

©

(8)

)]

(10)

(11)

(12)

(13)

(14)

(15)

(le]

(17)

(18)
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T . T -
Therefore A G 'A.AX = A" G N ... (19)
or Ax = [ (2t ta)~tatel].a ... (20)
T
The matrix A G™'A.AX of equation 19 then becomes

ATe1a.ax = ATea. (aTe~tay~t.ate A ... (21)

trace [ ATG T A). (47G'A). ATGtA)"t]

... (22)
For a very large number of observations,
. —1,47T 2 .
expectation [GT'AAT] = s°[1] ... (23)
T — -
Hence, AT 1. Ax = S2.trace[ (a7 'a). (AT~ 1A) )] ... (24)
= s?.trace[1] ... (25)
2
ol S ok - e (26)-
e s T -1 2
By definition, A'GT'A = S°.n ce. (27}

Substituting equations 26 and 27 into equation 16 gives:

T

velv + s2.x 2.n ... (28)

i
0

2 _ yTg-ly

n—k

or S

where n is the number of ocbservations,

and k is the number of necessary observations.

Therefore s?2 = v g ly as. r = n-k .e. (29)
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