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ABSTRACT

The theory for the determination of the deflection of the vertical is explored using the concept
of the telluroid in order to circumvent the theoretical shortcomings of the traditional

approach brought about by the problem of the reduction of observed gravity to the geoid. Two
main approaches investigated are the method developed by Molodensky using a surface-layer
technique and the approach derived from the application of Green's Third ldentity at the Earth's
surface. The behaviour of these solutions under extreme topographic conditions is of particular
interest. It is noted that the Molodensky solution breaks down when ground slopes near the
computation point exceed 45°.  The development from Green's Third ldentity shows no such
theoretical weakness and in its simplified form appears simpler to evaluate than Molodensky's

correction term.

To test the various gravimetric methods evaluations of the deflections of deflections of the
vertical were made at 12 stations in north-western NSW. The stations were chosen because a value
for the deflection had already been found for them astro-geodetically and because they are situated
in a variety of terrain types. This latter factor provides some control on the influence of the
terrain effects on the evaluation, whilst the former allows some estimates of the precision and
systematic errors of the gravimetric determination to be made. It was decided to concentrate
attention on the region bounded by a radius of 1?5 and to accept the values obtained from the 1970
geoid solution Australia for the region beyond this radius. Eventual incorporation of these values

in the solution meant that the deflection value could then be obtained in an absolute sense.

Before any meaningful determination could be made it was necessary to supplement the existing
gravity coverage with about 200 gravity stations. These were located so as to provide full
representation of the gravity field in the critical region immediately surrounding the test stations,
and to increase the general coverage where the density was considered inadequate. Computer routines
were then developed to evaluate the deflection from the discrete gravity data. A modified Rice

Rings approach was simulated on the computer, it being felt that this technique had the advantage

of strength and flexibility over traditional computer techniques. Various methods were developed

to provide extension of the gravity and height field from the discrete data. After testing it was
found that the techniques used in topographic routines for the derivation of contours from spot

heights proved most satisfactory for the purpose.

The results of the investigation show in general that the precision of the gravimetric determination
is largely dependent upon the accurate assessment of the gravity field within a radius of 1?5 of

the computation point. For some of the test stations situated in the more mountainous terrain up

to 90% of the signal comes from this region. For stations on the plains the improvement in the
definition of the gravity field increases the precision from about #1.5 (the precision achieved
before density of the gravity stations was increased) to about %071 to #0%2. The improvement for stations
situated in the mountainous terrain is not as dramatic {0 {#0"5} ), an indication of the terrain
effects not yet unaccounted for. When the terrain corrections as calculated by the Molodensky
approach are applied the precision of the deflections at these stations approaches that obtained

at the stations.only slightly affected by terrain. The evaluation of the terrain effect by the
Green's Third ldentity approach is found to be unsatisfactory in areas of rugged terrain. The
correction term seems oversensitive to errors in the ground slope values. Some damping effect will

have to be applied in future determinations if this approach is to be successful.

The high precision obtainable by the gravimetric determination can be achieved for a comparatively
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low cost in countries which have medium scale topographic maps and reasonable gravity coverage.
A cost-benefit analysis shows that the gravimetric method, when compared with the astro-geodetic
approach, is capable of producing a higher precision in the deflection value for approximately
one quarter the cost. |t has the added advantage that the determination can be sited in areas

likely to give more representative values of the tilt of the equipotential surfaces.

With doppler techniques having such an impact on methods of geodetic survey it is suggested that
gravimetrically determined deflections used in conjunction with astronomically determined azimuths
can he used to provide azimuth control in geodetic networks. The need for orienting local geodetic
datums onto a geocentric ellipsoid is also increased with the advent of doppler. Here again
comparisons of geocentrically-based deflections computed gravimetrically with astro-geodetic
deflections determined with respect to a local ellipsoid can be used to find the values of the

parameters needed for this orientation.
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e, Mechanics is so distinguished from geometry in that what is perfectly accurate is called

geometrical; what is less so is called mechanical. However, the errors are not in the art, but

in the artificers. He that works with less accuracy is an imperfect mechanic.'

Sir Isaac Newton in Preface to
'Mathematical Principles of Natural

Philosophy'’

1. INTRODUCTION

1.1 Historical Perspective

The chain of activities involved in explaining a natural phenomonon in terms of a scientific "law'

is often long and tcrtuous. It is hampered by imprecise or biased observations and poor modelling
of the law involved. In the quotation above Newton perceives the division between the geometrical
(the scientific law) and the mechanical (the observations), and seems to suggest that the fault
lies with the practical side of the process. However it should be recognised that this process is
an interactive one. The scientific law is based in the first instance on the examination of the
observations. Failure in correspondence between new observations and the accepted law results in

an alteration of this law.

The development of the science of geodesy gives a good illustration of this process. Newton (1686)
had hypothesised the shape of the earth to be an oblate spheroid by at least 1666. This was at

the time contradicted by the French whose measurements indicated the shape to be a prolate spheroid.
It was not until 1736 that, under the auspices of the French Academy of Sciences, a series of
expeditions measured meridional arcs near the equator and the North Pole and the resultant lengths
indicated the Newtonian model to be correct. Even so, it has since been discovered that the arc
measurement in Lapland was about 430 m too long. It is ironic to consider that, had the errors in
measurement accumulated negatively, the deductions would have been reversed and conflict between

theory and measurement remained. Not for the last time would errors in measurement help to verify

a mathematical model.

Thus the difference existing between theory and observation, the geometrical and the mechanical,

has been resolved and refined to the present day.

The field science of physical geodesy is much younger but has had a similar experience in its
development. In 1849 G.G. Stokes laid down a mathematical basis in the form of Stokes' integral
(STOKES, 1849). By postulating a mathematical figure of the earth which also held certain physical
properties of mass and rotation he could compute the potential at the surface of this model.
Comparisons of this theoretical value of gravity with a measured value produced an anomalous
gravity field. Stokes' integral holds that the departure of the bounding equipotential surface

of a spherical approximation of the Earth (the geoid) away from the theoretical surface can be
determined if the gravity anomalies near the point being investigated are well known, and if the
anomaly field for the rest of the worid is fairly well represented. This theory was extended by
F.A. Vening Meinesz (VENING MEINESZ 1928), whose formulae stated that, if the above conditions

satisfied, then the tilt of the geoid with respect to the theoretical surface also be computed.
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However, it was well into the middle of the 20th century before technology produced an instrument
which enabled gravity to be measured easily, accurately and quickly. Prior to this gravity was
measured more or less as in the time of Newton, that is by observing the period of a simple
pendulum (NEWTON 1686, pp 288-294). This approach lacked accuracy and was very time-consuming
and since the late 1930's, when the gravimeters were developed, gravity surveys over land
surfaces of the Earth flourished. Two decades or so later the gravity field over the vast
unsurveyed regions of the earth could be estimated by analysing the orbits of artificial
satellites and by the mid-1960s numerical solutions to the Stokes and Vening Meinesz problems

were being obtained to a limited degree of accuracy.

This improvement in gravity measuring techniques renewed interest in the gravimetric solutions to
the geodetic boundary value problem. At first particular attention was directed toward the basic
assumptions in the Stokes' solution which were known to be faulty. Strictly speaking the Stokes'

(and thus the Vening Meinesz) integral cannot be used to find the shape of the Earth as

(i) gravity is measured at the surface of the Earth and not, as is assumed in the theoretical

development, on the geoid; and
(ii) attracting matter lies outside the geoid

(BROVAR ET AL 1964, p 83). Various mathematical devices have been used in an attempt to overcome
these problems. However these require a knowledge of the stratification of matter between the surface
and the geoid and as this is a practical impossibility, the problem is not solved satisfactorily

by these approaches.

In 1945 Molodensky (MOLODENSKII ET AL 1962, pp 76-81) proposed a simple but effective alternative
approach which bypassed the above difficulty. He introduced a new theoretical surface which

depended on the continuation of the normal gravity upward to the surface rather than the

reduction of the measured gravity downward. At no stage therefore was a hypothesis of the nature

of the sub-surface density distribution invoked. The separation between the theoretical surface
(whose normal potential equalled that of the equivalent point on the Earth's surface) and the Earth's
surface itself became known as the 'height anomaly'. It substituted for the geoid-ellipsoid

separation in mapping what is called the 'quasi-geoid'.

The height anomaly is now firmly established in the geodetic world and a number of methods have
been devised to solve for both it and its derivatives. One of the most interesting of these has
been developed by BJERHAMMAR (1964). He postulated a sphere, internal to the surface, on which
fictitious gravity anomalies were found such that, upon upward continuation of these anomalies,
the actual gravitational field of the earth was generated. These fictitious anomalies were used

in the generalised Stokes' integral to get the height anomalies at the surface.

The improvement in the observation of gravity has made the measurement of the second-order effects
a practicality. PICK (1973) investigated the influence which these terms have on the geoidal
parameters in a test area in the High Tatras of Czechoslovakia. By measuring the gravity gradient
at 2 points per 1 km? in this region he found corrections of up to 04 to the deflections of the
vertical from this source. Unfortunately the density and accuracy (#0.02 to *0.05 mGal/m)
requirements suggested for Pick's investigation could not be matched in the present study because
of the lack of manpower and the relative unsophistication of the equipment. Obviously this

effect is shown to be significant in areas of particularly rugged terrain, and should be taken

into account for precise evaluations in such areas.
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Recently many writers have reformulated the geodetic boundary value problem using comtemporary
mathematical tools. For example, ARNOLD (1975), having recourse to some of the techniques of
tensor analysis (eg. HOTINE 1969) has proved the important quality of uniqueness in the solution
to the boundary value problem of physical geodesy. This qualfty has also been shown by NEDOMA
(1973) using the principles of variational calculus, and by HORMANDER (1975, p 57) using
functional analysis techniques (eg. MEISSL 1975). The conditions for uniqueness have been

found in terms of classical potential theory (eg. BROVAT ET AL 1964, pp 164-167), but it is of
interest to see its formulation in terms of the more powerful modern techniques mentioned above.
However these formulations are of more theoretical than practical interest at this stage, and
the present investigation will use the more classical approach in order to state the problems

and to seektheir solutions.

1.2 Explanation of the Problem

In descriptive terms, one can state that the geodetic problem being dealt with here is the
definition or delineation of the earth's surface, either over some limited region or the entire
globe. This is traditionally done by first approximating the surface by a methematical model

(an ellipse of resolution), and then studying departures of the real surface from this model.

As mentioned in the section above it is usual to introduce a third surface, namely the geoid,

as an intermediate step as it is to this equipotential surface that measurements on the earth's
surface can be related. By mapping the departures of the earth's topography from the geoid, and
also the departures of the geoid from the ellpsoid one is able to fully define the surface of the

earth, thus solving the geodetic problem.

In the older branch of geodesy, geometrical geodesy, one can find the tilt of the surface geop
with respect to the adopted model (also known as the astro-geodetic deflection of the vertical)

by comparing of the geodetic position of a point projected onto the model with the position of

this point determined astronomically. The separation of the geoid from the ellipsoid (N) can not
be found by this means, and it is usual to assume a value for the separation at the Fundamental
Station or 'Origin' of the geodetic survey, and by astro-geodetic levelling through the network

to compute relative values for N at the astro-geodetic stations. This should be contrasted with
method of finding N in physical geodesy where, by applying Stokes' integral to the anomalous
gravity field one can compute N directly. The solution of N by this method is described in general

terms as a gravimetric solution.

The astro-geodetic deflection of the vertical in geometrical geodesy is therefore shown to be an
important step in obtaining a value of N. It is obviously one of the basic parameters used in
solving the geodetic problem. Since the deflection can also be computed directly in physical geodesy

it forms a very important bridge between these two branches of geodesy.

This fact - that deflections can be found independently from both the astro-geodetic and gravimetric
approaches - has a very important application in geodesy. Comparisons are used in 'astro-
gravimetric levelling' to assist in the extension of the deflections throughout a subject area.

(For a general description of this technique see MOLODENSK!1 ET AL 1962, pp 125-129); for more
detailed applications, see BURSA 1965a; BURSA 1970; also HONKASALO 1974) . Astro-geodetic
deflections have traditionally been used to determine the model of best fit for particular continents
or regions, using either straightforward averaging techniques (eg. BOMFORD 1967) or least squares
surface fitting techniques (VANICEK AND MERRY 1973). By extending this approach and comparing

gravimetrically computed deflections against astro-geodetic deflections at selected points through
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a region or a continent it is possible to determine the orientation corrections to bring the
locally adopted ellipsoid into coincidence with an absolute (geocentric) reference model

(gg. MATHER 1970b; GROTEN 1974). In fact in all cases where 'natural' observations or their
by-products are to be related to their geometrical equivalents the deflections of the vertical

have an important role to play (MUELLER 1974, p 516).

Whereas the astro-geodetic approach is limited only by the accuracy of observation, the solutions
obtained from both the Stokes and Vening-Meinesz formulae are subject to many more different kinds
of uncertainties. In general it is fair to say that the limitations on the Vening-Meinesz
solution are due, at least in part, to the paucity of gravity data in the vicinity of the
computation point. This may not always be critical of course. For instance, if the anomalous
gravity field in the immediate vicinity is featureless and can therefore be well represented by

a few gravity stations, then the difficulty mentioned above no longer exists. |n areas of

rugged terrain the anomalous gravity field is bound to be disturbed and the number of points

needed to properly describe the field will need to be greatly increased.

The aim of this work is to investigate the theory and practice of the computation of the
deflections of the vertical from gravimetry as applied to a particular area of New Sputh Wales,

in order to assess the accuracy of this computation and to define the factors responsible for

any remaining limitations of the method. Deflections at selected astro-geodetic stations in this
test area will be computed gravimetrically. Because each of these stations has a position fixed
both astronomically and geodetically, astro-geodetic deflections to observing accuracy can be
determined and used as a means of providing absolute control on the stations. It is hoped that

by looking at the discrepancies between the two types of deflections insight will be gained into
gravimetric solutions of the deflections, and that the techniques of the computation of the
deflection of the vertical and of their application in the solution to the geodetic boundary value

problem will be enhanced.

1.3 Achievements to Date

It is instructive to review the results currently being achieved throughout the world for
gravimetric determinations of the deflection. The number of cases where studies have been done

to investigate exactly this problem are limited, and it will be necessary to review the literature
on general geoid solutions of various continents or countries. It is also helpful to look at
results achieved by astro-gravimetric techniques where, in order to interpolate deflections
between control stations, comparisons of deflections found by both astro-geodetic (hereafter
denoted as A/G) and gravimetric methods are used. This should provide a status report on the

‘state of the art' in this field.

A good picture of the achievements in Australia can be found by reference to MATHER 1970a; MATHER
1970b; FRYER 1970; MATHER BARLOW AND FRYER 1971; and FRYER 1971 (wherein the results of the
1970 geoid 'solution of Australia are discussed). The fourth-mentioned reference gives a summary

of the results of comparisons of gravimetric with astro-geodetic deflections after orientation
parameters are applied to bring the regional ellipsoid onto the gravimetric ellipsoid. Comparisons
at 38 stations, chosen because of their even spacing throughout Australia and because their

inner zone gravity fields were well represented, showed the r.m.s. residuals M{o1l) tobe

+1U0 for & and £1'8 for n. When the analysis is extended to include all 1084 stations included
in the solution these values increase to 20 for £ and#2.6 for n. An interesting breakdown

of the frequency of the differences (A/G - gravimetric) is given in the form of a histogram, showing
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normal! distribution tendencies, but with large differences (> 4 arcsec) occurring at over 60 of
the stations compared. As mentioned later in this investigation (section 8.2.1) the comparisons
at the twelve test stations in the 1970 adjustment fell with the two extremes suggested above,
showing a M {o} in & of =2U5 and in n of =%1'5. This, as will be shown in section
8.2.1 is significantly improved by densification of the gravity and height data in the Inner

Zone (ie. the area within 1° of the computation point) and it appears realistic to assume from
this report that the M {o} generally obtainable under average conditions is of the order of

1.5 to 2.0 arcsec in both components. This is borne out by FRYER (1970, p 78) who used the value
of 1.5 arcsec in the weighting of gravimetric deflections when computing an orientation of the
Australian Geodetic Datum. 1t should also be remembered that the A/G deflections could have

standard errors of the order of 0.3 to 0.6 arcsec themselves.

This figure also accords with that quoted by NAGY AND PAUL (1973), who comment that when using a
constant value to represent a %0 area the sensitivity of the resultant geoid would be dampened

to the extent that local changes in the deflection of the order of 2 arcsecs would not be
detected. [n fact, a more recent study on the North American Datum comments that, if a constant
anomaly is assumed over the area within a radius of 10 km from the computation point, and if
terrain correction effects are not computed the expected M{c} of £ and n in this continent

is of the order of 2% arcsec (MATHER 1975, p 39).

Another recent study states tHat, when comparing the deflections of the vertical computed by A/G
and gravimetric means at 235 stations throughout Finland, a 'gquadratic mean of differences'

(= M {0} ) of %0.7 arcsec were found (HONKASALO 1974). Using 21 stations with denser gravity
cover gave the difference of #0.35 arcsec. These figures are surprisingly good, particularly when
the general gravity density used for the computation is considered; mean anomalies for 10 km x

10 km squares were computed and used. The good agreement must certainly be a reflection of the

comparatively low topographic relief of that country.

Some very extensive and detailed studies have been carried out in Czechoslovakia by Bursa, among
others. One of the purposes of the studies was to produce interpolated vaiues of £, n at
approximately 800 points on a 10' x 15' grid spacing by means of astro-gravimetric levelling. In
the earlier studies, relative differences between astro-geodetic and gravimetric deflections
ranged up to 1.1 arcsec in the mountainous regions to the east of the region (BURSA 1965a, p 7)
whilst later studies which included the G, correction for topography improved the relative
difference to the order of 0.6 arcsec (BURSA 1970, pp 19-21, especially p 20) in mountainous areas.
Whilst these statements of accuracy are not, strictly speaking, in absolute terms (the computation
for deflections from gravimetry were not taken beyond about 200 km, and there is no attempt to
correct for differences of ellipsoid (1BiD, p 2)) the results nevertheless indicate that the
gravimetric deflections have been computed to quite a high degree of accuracy. As stated by

BURSA (1968, p 9), the spacing of the gravity stations was 1 per 5 km?, and this was further
densified around the 37 astro stations used for control. This intensive coverage must be largely

responsible for the very good average discrepancy for the relative differences of about 0.3 arcsec.

Unfortunately neither the report by HONKASALO nor those by BURSA referred to above give an estimate
of the expected accuracy of the astro-geodetic deflections against which the gravimetric values

are compared. A proper estimate of the accuracy of the gravimetric deflection should account for
this factor (see section 8.2.4) so it is difficult to estimate what is to be stated as the actual

accuracy of the gravimetric solutions from these two sources.

It can be tentatively concluded from this brief survey, however,that the precision of gravimetric



-6-

defiections is limited to the order of 1.5 arcsec in areas where there is limited gravity information,
whilst in fairly flat to undulating areas of good gravity cover this precision can be increased to

that of astronomical position determination.

In mountainous areas, however, the best results are of the order of double this figure, indicating
that the methods of computation of the terrain correction term are not sensitive enough to pick

up all the topographic effects. |t is hoped that in this study more light will be shed on the
particular problems inherent in these difficult areas, so that some idea of optimum methods of

solution may be obtained.

1.4 Outline of this Investigation

The astro-geodetic stations which were chosen for control for this study lie on the Narrabri and
Manilla 1:250 000 map sheets, which cover a large area about 600 km north-west of Sydney and 300 km
inland from the east coast of Australia (see figure 1 for locality). The stations themselves fall
within the boundaries defined approximately by -30°07' to -30°52' in latitude and 149°30' to
150%45" in longitude. It is here that four sections of the national astro-geodetic levelling
network meet, and so distributed through this area are 12 stations roughly 30 km apart (see

figure 2).

There were a number of reasons for choosing this area. One was the abundance and distribution of
control stations mentioned above, but it was chosen mainly because the computations for the 1970
geoid solution of Australia (see MATHER 1970a) had shown poor agreement between the gravimetric
deflection and that defined astro-geodetically (see column 1, table 12). Also, because of the wide
range of topographical types it provided to a certain extent some control on the degree of the

terrain disturbance for purposes of testing terrain correction formulae.

The terrain varies from plains to the west, through undulating country with symmetrical and
isolated hills to the east and south, and finally quite rugged and broken mountain ranges to

the north. Three stations (Culgoora and Beelera to the west and Somerton South Base to the

south east) are situated in areas of little or no relief about 700 to 1000 feet (200 to 300 m)
above sea level. Willalla, Binalong, Goonbri, and Newry are in a second category, being on the
tops of hills or ranges surrounded by flat to undulating country and Baldwin, B8yar, Blue Mountain,
Gulf Creek are set in more mountainous terrain. The last station, Kaputar is set on the top of

a spectacular range of mountains nearly 5000 feet (1500 m) above sea level and is of particular
interest in this study. Fortunately the area east of 150000' which contained the stations in this
last category was well mapped at a scale of 1:31 680 (2 inches to a mile). The area west of
150000' was mapped at 1:100 000 which was considered quite adequate for the stations lying in this
area. For details of the relief in the vicinity of the stations, see figures 10 to 21. Control
stations for gravity were located at Narrabri and Tamworth, and these provided the terminal stations
for the gravity traverses needed for the intensification of the gravity data. Details of the

gravity coverage are found in section 4.1.

Having chosen the test stations suitable for the purposes of the investigation it is necessary to
develop the theory which gives the deflection of the vertical from gravimetry and which defines

the effect which the topography has on this parameter. The basic theory for these determinations
is given in chapter 2, and this theory is developed for practical evaluation in chapter 3. The
assembly of the data needed for the evaluation is described in chapter 4. Also in this chapter the

data-handling techniques found to be most-suited to the task of the accurate determination of the

deflection are outlined.
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An important aspect in the evaluation process is the extension of the gravity field from discrete
data points to a continuous field. This must accurately reflect the actual field around the
computation point and in chapter 5 different methods of field extension are investigated; The
technique chosen for the purpose of extension is an adaptation of a method used for contouring

from discrete data. The evaluation is then performed at each of the test stations, and the results
of the computation are presented in chapter 6. The terrain corrections which are evaluated using
technigues similar to those used in the deflection determination are also presented in this chapter.
Inherent in the computed values are errors due both to the errors in the data itself and to the
approximations in the method of evaluation. The results of a theoretical analysis showing the

effect which these errors have on the deflection values are presented in chapter 7.

The comparisons between the gravimetric values and the astro-geodetic values of the deflections

of the vertical are presented in chapter 8. The comparisons are made before and after the terrain
corrections have been applied so that some insight into the effectiveness of these corrections

can be gained. Finally in chapter 9 the findings of the investigation are summarised and the
applications of the gravimetrically determined deflection in the world of contemporary geodesy are

explored.

1.5 Definitions and Notation

1.5.1 Notation

a equatorial radius of ellipsoid of revolution
c{r) covariance function (see equation 5.4)
d separation vector from point on surface to the associated point on the telluroid

(see equation 2.29)

dm point mass

ds element of distance along surface of the ellipsoid

ds element of surface area $

ds? dS projected onto the local horizontal plane

dz element of orthometric elevation é

do element of surface area dS measured in steradians

E{x}, Ex expected value, error of x

f flattening of merﬁdian ellipse

£(yp) Stokes' function (see equation 2.2k)

F general term for force in vector analysis (see equation 2.12)

g gravity observed on Earth's surface

gi1s 92 1st and 2nd order terms in Moritz' recursive formula for terrain correction (see 3.5)
G gravitational constant (see equation 2.11)

G' terrain correction term developed by Pellinen (see equation 3.3)
G, G, parameters used to solve Molodensky's boundary value problem (equation 2.95)
hO ellipsoidal height of general point on Earth's surface

hp ellipsoidal height of P on Earth's surface

k Molodensky's small parameter (equation 2.83)

k! Bouguer correction factor (see equation 3.4)

M mass of the Earth (including atmosphere)

M {x} global mean value of x

n normal at a point

N height of geoid above reference ellipsoid
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N unit normal vector to the surface of the earth

o{X} terms of the order of magnitude of X are neglected

r distance between two points (eg. P and element of surface area)

o r projected onto the surface of a sphere of radius R

R mean radius of the Earth

R radius vector of transformed surface S (see equation 2.23)

Ro radius vector of Bjerhammar sphere (see equation 2.105)

Rp radius vector of P on the Earth's surface

S surface of the Earth

T disturbing potential at P (equation 2.17)

] spheropotential (equation 2.3)

UO spheropotential on the reference ellipsoid

v general term for potential

Vi) ( mass internal to § )

Ve ) contribution to total geopotential from( mass external to S ) {equatiQn 2.15)

Vr ) ( rotational of the Earth)

W geopotential of the Earth

WO potential of the geoid

x ) local rectangular Cartesian coordinate system, with z along the local normal n

Y ; and xy defining the local horizon, x north and y east.

X )

Y ) projection of distance r onto the xyz axes at Q' (see equation 2.35)

Z)

ggﬁéwll Vening Meinesz function (equation 2.27)

o azimuth

a' reverse azimuth

o a

o2 90 - o

op azimuth of dip of the telluroid

B ground slope; subscripts ; and , refer to components north and east
normal gravity

Yo Y on the reference ellipsoid

Ye Y at the equator

Ag gravity anomaly at the Earth's surface (see equation 2.5)

Ag' predicted gravity anomaly

Ag* Ag continued downward to the Bjerhammar sphere (see equation 2.105)

Ag. Ag corrected for topography (see section 3.2.1)

Agt contribution to Ag of the topography (see section 3.2.1)

AE , An difference in £,n of gravimetric value from the A/G value (see equation 8.1)

AE ¢ effect on £ of topography (see equation 3.1)

4 height anomaly (see section 2.2.1)

€ deflection if the vertical, positive of the outward vertical lies north, east of
the normal (see equation 2.4)

g component of & in the north

n component of € in the east

&1 13

g2 n
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El, nl corrections to £, N due to terrain effects (see equations 2.72, 2.73)

o} density of the gravitating body at the surface

¢f standard deviation or mean square error

T volume external to S

[ density of surface layer (see equation 2.76)

¢ latitude, positive north

A longitude, positive east

. mean value of x

X density parameter (see equation 2.84)

V] angular distance at the geocentre between two points (eg. computation point P and
element of surface area of S)

w angular velocity of rotation of the Earth

1) (x)

2) unit vectors along the ( y )axis of the local coordinate system

3) X \ (z)

v = l+g 2+ 333

] partial differential

Note: In some instances there is duplication of the above symbols. In these cases the meaning is

clearly defined and unambiguous, and holds only for the section in which the duplicated symbol

OoCccurs.

1.5.2 Abbreviations

ACIC - Aeronautical Chart and Information Center (now the Defence Mapping Agency

Aerospace Centre), St. Louis, Mo.

AGD - Australian Geodetic Datum

ANS - Australian National Spheroid

A/G - Astro-geodetic

BMR - Bureau of Mineral Resources, Geology and Geophysics, Canberra, Australia.
1AG - International Association of Geodesy
-UNSW - University of New South Wales

USC&GS - United States Coast and Geodetic Survey
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2.  FUNDAMENTAL CONCEPTS AND RELATIONSHIPS

2.1 Introduction

In geometrical geodesy the mathematical figure of an ellipsoid of revolution is adopted as a
convenient model on which to reduce and compute geodetic positions of points on the earth's surface.
In a similar way, the physical geodesist adopts an ellipsoidal model with particular physical
characteristics which fairly well represents these constants of the real earth. (For example, the
International Ellipsoid was adopted by the International Association of Geodesy (IAG) in 1930 with
the following constants: (see HEISKANEN & MORITZ 1967, p 79)

a = 6 378 388 m

f = 1/297.000 (2.1).
Ye = 978.049 000 Gal

w = 0.729 211 51x10" " sec”’

All other parameters, such as potential and mass, can be computed from these fundamental constants.

In particular, the International Gravity Formula based on the above ellipsoid is found to be

Y = ve(l + 5.2884 x 10°°  sin® ¢ - 5.9 x10°  sin? 20) (2.1a).
The advantage of having such an approximation in physical geodesy is that, whereas the potential
of earth is very large (W = 6.3 x 10°kGal metres), the differences between the potential of the
earth and that of the model are relatively much smaller (= f2 xW). This, as will be shown later
in the development, allows linearization to be carried out in the solution of the problem to
acceptable orders of accuracy, greatly simplifying the treatment.

(i) Equipotential Surfaces (see figure 3)

The geoid is the equipotential surface of the real earth at mean sea level said to have a potential

of W= VWo. In conjunction with this specific surface is a family of 'geops’ (geopotential surfaces)
W = constant (2.2).

The ellipsoid taken to model the earth is also an equipotential surface, having a potential

U= Uo (=Wo). Associated with this is a family of spherops, (spheropotential surfaces),
U = constant (2.3).

It is one of the tasks of physical geodesy to use the relationships between the equipotentials in

each system to relate the position of a point on one surface to its position on the other surface.

The vertical distance between the geoid and the ellipsoid is known as the N, the geoid-ellipsoid

separation. It will obviously be a function of the ellipsoid chosen to model the earth.

1t should be remarked that the deflection of the vertical from the normal to the ellipsoid {(g) can

be defined as the small change in N for a small change in distance along the surface of the ellipsoid

i.e. € = a—S- (24)
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This parameter as well as N must be evaluated if the point on the earth's surface is to be fully

described in terms of the theoretical model.
(ii) Relationships between N, vy, T and g

The gravity at P (figure 4) is a vector of magnitude g directed along the vertical, whilst the normal
gravity at the point P on the ellipsoid is magnitude y directed along the normal through P. The

difference is the gravity anomaly of magnitude
bg = gp - Yp! (2.5},
the difference in direction between Yp! and 9p being the deflection of the vertical.
By inspection of figure 4 it can be seen that
Up = U+ (G, N (2.6).

Now by definition the differential of normal gravity along the normal is -y, the force of gravity,

hence (2.6) becomes
U = U = N . .
P p' Y (2.7)

if we now define the disturbing potential (T) as the difference between the geopotential and

spheropotential at a point P.

(2.8) becomes

But Wp = Up, and hence
T = N or N = T/y (2.9).

This is Brun's formula and is important because it converts disturbing potential to the separation

along the normal between the geop and the spherop of the same potential.

Following on from this, differentiating 2.7 with respect to z

%;’ = gg— - %g—, where 2z is measured along the normal ( 3z = 3n).
By definition
oW _ .o9u o
B_Z = gp + O{ng} ’ 3z - Yp

and thus



- g
YP - Ypl + 3z N
oT _ _ 3y
So oz gp * (Yp' * 3z N)
a . . oy T
or 5z - T8ty oy (2.10).

This is also an important relationship, connecting the surface gravity anomaly to the disturbing
potentiai. It has been called the '"fundamental equation of physical geodesy' (HEISKANEN & MORITZ
1967, p 86).

(ii1) Computation of the Disturbing Potential

Relating (2.9) back to (2.4), it is seen that in order to find the deflection of the vertical
gravimetrically, it will be necessary to compute the disturbing potential Tp. The value of the
normal gravity at U,' can be found, for example, on the International Gravity Formula in (2.1a),
the approximate latitude of P' being easily determined. But to find Up we apparently need to

know N (see 2.7), the very quantity we are seeking.

We cannot evaluate the geopotential at P wusing the usual Newtonian relationships of gravitational
force and potential. By definition, the potential at a point P distance r from attracting point

mass dm is

_1 -1 -
where G, the gravitational constant is 6.672 x 10 m® g Vg? (see MORITZ 1965a).

The total effect at the point from an infinite number of such point masses would be

v = &6 /J/S dm (2.11)
A\ r

which requires knowledge of the mass distribution in the earth's interior, This is not known and
even if it were, (2.11) would present difficulties in solution. To solve the problem it is necessary
to use the theorems of potential theory and vector analysis developed last century by mathematicians

such as Laplace, Gauss, Green and Stokes.
(iv) Green's Third Identity

Probably the greatest aid to solving the geodetic boundary value problem, i.e. evaluating N and
its derivatives, comes from the Divergence theorem (which is also known as Ostrogradskii's theorem),
and expressions which develop therefrom. These effectively express total potential resultant from

a body in terms of the normal components of the potential over the whole surface of that body.

For example, this theorem states that

S5 U dv o= g FNdS (2.12)

G —

where V , F & N are defined in Section 1.4 above.

KELLOGG expresses this descriptively as (KELLOGG 1929, p 39), ... ''the integral of the divergence

of a vector field over a region of space is equal to the integral of the surface of that region of
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the component of the field in the outward directed normal to the surface."

The significance of this to gravimetric solutions in geodesy is that it enables one to use observed

surface gravity in the place of unobservable earth's potential to solve the geodetic problem.

As shown in MORITZ 1965, pp 7-9, Green's ldentities are derived from (2.12) by introducing the two
functions U = U(x, y, z) and V =V(x,y, z).

If U becomes the function 1/r, and V the potential defined in (2.11) above, it can be easily

shown that

1 g2 = - - 1 - 1
JIfoz - VEvdr o=-pV - Sl [- TNV VINZ] ds (2.13)
where p = 471 ) if P is (inside S
27 ) (on surface of $
0o ) (outside S

and T is the volume exterior of surface S.

N is the outer normal of S.

(v) Laplace's Equation and Poisson's Equation

Another theorem of importance is Laplace's equation, which states that for an harmonic function
(i.e. one which is continuous through space and approaches 0 as 1/r ), and the potential V

fulfils this requirement outside the earth's surface S,

2 32\/ 2
I ——gz‘z’ =0 (2.14).

However, it must be stressed that this only holds if there is no attracting matter outside S.

If the potential becomes discontinuous (eg. at the density discontinuity of the surface) then

Poisson's equation holds at points occupied by matter
i.e. v2 V = - h7mGop

where G is the gravitational constant

and p is the density of the gravitating body at the surface.

(vi) Application to the Geoid

If the masses lying within surface S contribute amount V; to the total potential W, and masses

external to S contribute V, and the potential due to the rotation of the earth is V_, then

W = V. + V., + V (2.15).

Applying Green's Third ldentity to Vi , Vo and V. in turn, under circumstances where (2.14) holds

it can be shown that the total earth's potential at P can be expressed as



. 2
- . W’ 1 2 1 _ 1
W, 2Ve, *+ 2V, + D /If o odT g JICUNW-WTND) G (2.1-6)
where Wp = total potential of the earth at P on the surfage, and
w = angular velocity of the earth about its rotatiopal axis.

A similar expression in normal potential at P (Up) is achieved if (2.16) is applied to the gravity
model rather than actual earth, The assumptions which must be made about the model generating U

are

(1) it has the same rotational characteristics as the earth;
(2) it has the same volume as the earth;
(3) it should have the potential U, = W, at the reference surface.

This last assumption is difficult to achieve, since Wy is not really known, However UQ =W, is
implied in subsequent development by making the zero and 1st order harmonic in the harmonic series,
set up to represent the gravity anomaly surface, equal to zgro.

we find, by differencing (2.16) and its equivalent in U,

By taking wp - Up = Tp

- - - 1
T, = 2Ve, =g [Jlx INT-TUNZ] ds (2.7,

(vii) Evaluation of Disturbing Potential on the Geoid

(a) The geoid is, by definition, an equipotential surface. This allows a fairly simple evaluation
of the first term in the kernel of (2.17). Any components of T along the surface of the gepid

must be zero, i.e.

3T _ 9T _
" % " 0 (2.18)
- 9T . T
ane put = - 4
From (2.10), g} = -Agp+ g} L

Using a spherical model of the earth (which will be correct to the order of the flattening 3 x 10_3 ),

we have
GM .
Y = ® where M is the mass of the earth.

a ooy o,
So Zz - W - IF

Yy _ .2y
or Tl Tt o{fl (2.19)

o _ .2y I
Thus 3% " Agp, Ry (2.20).

(b) The second term is evaluated by assuming a spherical model for the earth, where Rp is the
geocentric radial distance to P, R is this same distance to the general point Q, and 1 the

angle at the geocentre subtended by PQ.

Thus r? = Rp +R? - 2RpRcosy
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and VN % = E)B—R ]? = - # (2.21).
(c} Substituting (2.20) and (2.21) into (2.17), we get
s lre s D T ]
= L lee+d D1 ®
or T = u—;ff l—(ZAg+3—RT—) ds ’ (2.22).
The solution of this expression will not be developed here, as it has no direct interest in the

investigation as such. A full treatment can be found in (eg. HEISKANEN & MORITZ 1967, p. 92ff).

It can be shown that

_ R
Tp = ﬂE'ff f(Y) Ag do
and N, {-:Wfff(w) rg do (2.23)
where f(y) = 1+ cosectp-6sinty-5cosy -
- 3cos ¢y In {sinty (1 + sin ¥} (2.24)

is known as Stokes' function and ¢ is the angular distance from P to the element of surface

area,

Ag is the gravity anomaly at do , and

do is the element of surface area in steradians.
The assumptions and approximations made to date are as follows:
A. With respect to the Model

(i) The adopted ellipsoid has the same mass and centre of mass as the earth;
(i) it has the same surface potential as the geoid;
(iii) there is no mass outside the surface;

(iv) it has the same rotational potential as the earth.

The adoption of these characteristics allows us to solve the otherwise insoluble (2.16). By
differencing the W in (2.16) with the U resulting from the model (2.16) is in effect made

linear, as is shown in (2.17).
B. With respect to the Geoid

The main assumption is that there is no matter outside the geoid's surface. This is a faulty
assumption and if left unresolved must only produce approximations to the geoid. One device which
is used is to correct the surface gravity anomaly for the amount of attracting material between the
geoid and the surface i.e. use the Bouguer anomaly in Stokes' formula (2.23). This will produce

a value for N which will differ from the true geoid-ellipsoid separation (as the model is obviously
still not a true reflection of reality) and the indirect effect of this correction should be

considered. In some cases isostatic reductions have been considered. (MOR1TZ 1965, p 27), or a
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surface layer introduced onto the geoid in order to account for the mass exterior to it. However, a
number of writers since Stokes have produced solutions which circumvent the problem presented here

completely.

.

(viii) Computation of the Deflection of the Vertical
The angle between the vertical and the normal through a point P on the geoid is defined as the
deflection of the vertical. Usage and convenience have created the convention of resolving € into

two components:

along the meridian and

along the prime vertical at P, where

is considered +ve if the vertical is north of the normal and

n is considered +ve if the vertical is east of the normal.

By considering figure 4 we see that

E = - % ; n = - 3y (2.25)
where N is defined in (2.23).
Now
Ix = -R 3 seca
3y = =-R 3y cosec o
where a = azimuth of 3y from P.
Since
= - 9N 9y = - 3N 3y
2 5% 9x and n 3y
¥y _ _cosga . My _ _sing
and 3% R > 3y R
. () . . o
therefore Ei T Ty Jfhg 50 cos a; do ; i=1, 2 (2.26)
where & = & €2 =n
and 0y = a o, = 90 - o

Differentiating Stokes' function (2.24) with respect to ¢ gives
égéil = - %t cosec? F Y cos Y+ 5 sind - 3 cos 3+ 3sing In[ sin & (1+sindy) J-

_3cos ¥ 3 [cos 3¢ + 2 sin 3P cos 3]
sin 2P (1 + sin 2P ) (2.27).

Equations (2.26) are known as the Vening Meinesz formulae for deflection of the vertical.

The comments on the assumptions inherent in the Stokes' integral made at the end of the previous

section apply also to the Vening Meinesz formulae.
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In the next sections methods adopted to circumvent the short-comings in the Stokes & Vening-Meinesz

formulae will be outlined and developed.

2.2 Contemporary Solutions
2.2.1 The Telluroid

In 1960 Molodensky published a solution which by-passed the need to reduce information to the geoid.
. To appreciate his approach, and methods associated with it, it is necessary to explain new concepts

on which this method depends.

The surface of the earth (S) is referred to a second surface known as the telluroid. This was

initially defined by HIRVONEN {1960, p 39) as the locus of points whose positions were given by the

geodetic ¢ and A of the surface point P and whose spheropotential was equal to the geopotential

at the point P. (see figure 3). This is the intersection of the normal through P with the

spherod U = Wp. Definition in this way is inconclusive and a modification was suggested by DE GRAAFF-HUNTER
(1960, p 193). In'his system the 'Terroid' became the locus of associated points defined by the
astronomically determined values of ¢, and A, for P on the spherop U = Wp (see point Q, fig. 3 Y,

i.e. 0 = P, > N = )\PA » Ug = U+ (wp-wo) (2.28).

I'n terms of location and derivation this change makes little difference, but it did provide a more
absolute definition of the position of the reference surface (hereafter called the ‘telluroid') as
its planimetric location was no longer dependent on the ellipsoid chosen for the geodetic model. It
can be seen that the telluroid is a reflection of the terrain but displaced from it by the vector d,

where this is defined as
d = REXT + RN2 +C 3 (2.29)
where 1, 2 and 3 are defined in section 1.4.

The normal to the spherop through Q (N' in figure 3 ) will have the same spatial orientation as
the vertical through P. The x and y axes, which together with N'(z) will define a rectangular
coordinate system at Q, will point north and east respectively. (See MORITZ 1965, pp 13, 1k
MATHER 1968a, pp 34 and 42).

As can be seen from figure 3, ¢ is the distance measured along the vertical between geop Wp and
spherop Uq . Z and n are the components of the deflection of the vertical at the surface, ie. of
the angle between PV and PN(c). Thus it can be seen that the task presented by this more recent
postulation of the problem is to evaluate 7 . The development in 2.1(ii) can be repeated for ¢,
with T substituting for N, and with P, P' now becoming the surface point and associated
telluroid point respectively (ie. P and Q in figure 3). PICK(1973, pp 174-175) shows this
development and extends it to include second-order effects. A summary of this is given below. The

disturbing potential (Tp = Wp - Up) is differentiated in the direction of normal gravity, vy ,

to give

3Tp _ dWp _ 0U
3z 3z ?EE

N

T .
or = gEE' - Yp (assuming -g, cose = -gp for smait e ).
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3T
533 s Y, are expanded by a Taylor's expansion to give
aT aT 32T
P - _9 r 4+
3z 9z 5z°
and
o, 8%y,
= ——e 1 2
b Yq fogg b tE o o0 F
Thus
oT 32T y 3%y
- = 9 g . _494 . g L
gp * Yq 3z * 327 9z 3z2 2
which on expansion, gives
3T IE. 3y Tp aqu
R el Yq 5z 3q az?
T 3%T
Comparison with equation (2.10) show that a second-order term ;B- -§E§
q

has been applied to this original expression. The effects of this correction on the evaluatian

of £ and n are referred to later (see section 8.4.2).

As 7 is analogous to N in (2.26) and indeed substitutes for it when mapping a surface known as
the quasi-geoid on the reference ellipsoid (see HEISKANEN & MORITZ 1967, p 293 and MOLODENSKI1 ET AL
1962, p 76); it must obviously be evaluated as a first step to determining the & and n at the

surface.

2.2.2 The Deflection at the Surface

’

The deflection of the vertical at P can now be defined as the angle produced by the smal] ghange
in the separation between Up and Wq (dz ) for an increment in the distance along the surface

Wp (ds). The two components at the surface in the meridian and the prime vertical are therefpre
£ = - g ; N T dss (2.30)

The variable 1z is calculated at the telluroid, hence it is necessary to account for the fact that

the reference surface is no longer a level surface, as it was in the case of the geoid.

Using the axis system as defined in (2.2.1) above, and remembering that ¢ itself is a function of

¢, r for x,y), we get

dg = g + 9L 9z
I [ y=u ™ [ e ez
Now %% = tan B, H where B, is the slope of the telluroid in the northerly direction
and
8 .y J L1 2,1 3y = - M
-2 T s XD - (2.30a).

by equation 2.10

It follows that
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= -4 _ ez 49
£ = i ( %ot * 5 tan By (2.31).
Similarly,
dz, (BC) Ag
n = - %52 = - [2& + == tan B, (2.32)
dy Y J1en ¥

where B, is the slope of the telluroid in the easterly direction.

2.2.3 Evaluation of ¢z and & , n

There are two main ways of evaluating ¢ , & and n in the telluroid-earth's surface system, and

a review of these will be stated here. The first approach was developed by Molodensky (as reported
in MOLODENSKI| ET AL 1962, pp 118-124) who devised a method which expresses the anomalous potential
T as the potential of a surface layer on the telluroid. The mathematical derivation is outlined in
section 2.4 However the solution which evolves contains two parts; a 'first-order' contribution
which is merely the standard Stokesian {(or Vening Meinesz) solution for the non-regularised geoid;
and a second order term which is a correction for the fact that the telluroid departs from a level

surface, and is therefore a function of height and gravity differences.

The second approach has been mentioned by BROVAR (BROVAR ET AL 1964, pp 154-157) and MORITZ (1965

pp 16018) but has not achieved wide acceptance as a method of solution. It applies the linearised
form of Green's Third Identity (2.17), to the telluroid, ie. tries to evaluate term by term the
quantities which eventuate from this application. |Its full development is shown in section 2.3, and
it will be seen that its solution again consists of two components, a Stokesian term and a correction

for the departure of the topographic surface from a level surface.

Both of these methods of correction are evaluated and used in the computation of deflections in the

test area. The results of these computations and interpretations are given in chapter 8.

2.2.4 Bjerhammar's Sphere

In 1964 BJERHAMMAR (1964) introduced a completely different approach to the solution of the boundary
value problem. He postulated the model of a sphere on which fictitious gravity anomalies ( Ag*)
would be located such that, upon upward continuation of these anomalies, the actual gravitational
field on the earth's surface (Ag) was generated. The task of finding the values of Ag® contains
certain problems of a philosophical nature (eg. the difficulty of downward continuation through

a non-continuous medium from the surface) but once the concept is accepted, the boundary value
problem is solved on the surface of the Bjerhammar sphere using spherical formulae. A further

discussion of this method is given in section 2.5.

2.3 Direct Evaluation of Green's Third Identity

2.3.1 Introduction

The approach which is developed below is substantially that given in (MATHER 1970a) although it can
also be found to a lesser stage of development in (MORITZ 1965) . Brovar's treatment (BROVAR ET AL
1964, pp 154-157) whilst starting from the same premise develops along different lines.
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The general idea is to evalupte the linearised form of Green's Third ldentity at the earth's surface
and then apply this to deflections at the surface. To do this it is necessary to consider in detail

the expression (2,17), particylarly relating it to the present test region,

Thus,

=

1
To= TN

1
o T UNT) ds from (2.17)

where r  is the distance from dS to the computation point P
dS is the element of surface area on the earth
T is the disturbing potential (in the integral, this refers to the T at dS ; Tp is T
at P)

N is the unit normal vector to dS.
The disturbing potential at P is given by
Tp = (W, -u) + v ¢
as can be seen directly from figure 3,
For copvenience we will assume Wo = Uo throughout. This condition is effectively forced by
ignoring zero-degree harmonics in the Stokes' solution and since it is in the nature of a datum

shift, will pnot in any case have an effect on & or n.

The vertical gradient of the disturbing potential is therefopre

oT 3
= v(Ag+]§%|z;) from (2.10).

Note that in the following development the letter Q will be used to denote the general point on
the earth's surface and Q' will be the equivalent point on the telluroid. P will be reserved
specifically for the point at which the computation takes place, and P' its corresponding point

on the telluroid.

2.3.2 Unit Normal Vector N

To evaluate (2.17) we must first find the unit normal vector at each point of the telluroid's surface
in terms of known or measurable parameters. (The definition of the telluroid has been given above
(section 2.2.1) as the locus of points Q' which have the same astronomical latitude and longitude

as the surface points Q and with normal potential Uq = U, + AW, using the revised notation.

At each discrete point Q' a local cartesian coordinate system ( x, y, z ) is adopted, such that
z lies along the normal to the spherop at Q', with the x y plane tangential to the spherop at Q',

x oriented to the north and y eastward.

We define ap as the azimuth of the 'dip' of the telluroid at T (the dip being the line of greatest
slope in a plane). This closely approximates the dip of the ground surface at Q, the slope of which

is taken to be B

If the ground slope is positive to the north and east, the direction cosines of the telluroid normal

can be seen from figure 5 to be

- sin B cos{m + ap) , - sin B sin{r + ap) , cos B (2.33).



~25-

Normal

Vertical

Z
Normal
d
Ta\\uro@
Vertical
i .
/2 2
/ -
/11
- —x
\ N ,
' SIERN A
\ ' N
| o
\ ~
o f
N4
\
N *
\
Dip Line |
'Lamp1 Unﬁ

FIG.5 TOPOGRAPHICAL GRADIENTS IN THE LOQCAL CARTESIAN

FRAME ON THE TELLUROID




-26~

Reference Surface

Fig. 6

The topographical effect for a spherical
approximation of the earth,



-27-

Taking B, B, to be the ground (and telluroid) slopes to the north and east respectively, then
tan B, = tan B cos ap (2.33a) and tan B, = tan B sin ap (2.33b).

Thus we can also express the unit normal vector purely in terms of the terrain slope by substituting

for cos ap , sinap to get

N = - cos B tan B;1 - cos B tan B,2 + cos B 3 (2.34).

(i) Term VN ]F
The distance r is measurea from the element of area dS to the computation point P',
r2 = x*+y?+72°

where X, Y, Z are the projection of r onto the x, y, z axes at Q', respectively.
Now v%= -%3 (X1+Y2+7173) (2.35).
So compounding this with N from (2.34) above, we get

VN % = %— (cos B tan B1X + cos B tan 82Y - cos B Z) (2.36).
Q' rather than Q is used here as the surface point because it can be fixed spatially by means

of the definition in section 2.2.1. |In other words, because the telluroid can be exactly defined

and yet so closely resembles the ground surface, all development relates to the telluroid.

(ii) Term VYNT

.. . . oT  _ 9L _ 9T
In a similar fashion, remembering X Y = and 3 "
3T
VNT = cos B(y [£ tan B + n tan B] + 5;) (2.37)

(iii) Combining to find Tp

Substituting (2.36) and (2.37) into (2.17) we get

1 T
o =-i—1T—ff[E%;L—(X tan g, + Y tang, - Z) -

T
€28 (v (g tan gy notan B) + 23] s,
Collecting terms,
- cos B . BT _ ¢ L
T, e O L

X Y
+ T (Ff tan B+ pry tang,) - ygtang, -yn tan R,] dS  (2.38).
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The term cos £ dS can be thought of as the plane elemental area on the telluroid dS projected

on to the associated spherop, as the slope of telluroid is B, dS cos B can be replaced by horizontal
elemental area dS'. This can in turn be expressed in terms of the solid angle subtended at the earth's
centre by dS (or dS'). Taking R as mean earth radius, and h as the general expression for the

normal height of dS, we get that
cos B dS = (R+h)? do (2.39)

where do is in steradians.

2.3.3 Evaluation of Spatial Elements
(i) r
r is the general distance in space between P' and Q'. It is convenient to express this in terms
of the distance projected onto the reference surface by P'Q' and the radial displacements of P!
and Q' from this surface. »
From figure 6,

r = 2Rsin}y (2.40)
using a sphere as the mathematical model.
Now if h, hp are the normal heights of Q' and P' respectively, we get by the cos rule

r? = (R+h)2+(R+hp)2—2(R+h)(R+hp) cos P

where ¢ Iis the angle subtended by r, at the earth's centre.

Expanding this,

2 2 2 .21 22 3 s 201
r = r2+ (h-h +2h Rsin?sp +2h_ Rsin® 3y +2hh sin® 3
o ( p) 3P o Y b T Y
or (h=h )2
r2 = r? [ 1 +—--——-P~ + ... ] s (2_1,\])
o] ré

as it can be easily shown that the last three terms can be ignored as contributing insignificantly

to the value of r.

- 2
Also % - :~[ syt oL (2.42)
o]

for l(h-hp)/ro | o< 1

Because of the sensitivity of the deflection computation to the gravity field in the immediate
vicinity of the computation point, it is important to evaluate accurately the spatial elements
when r-=>0. Ignoring the height dependent terms altogether will lead to large errors in the
estimation of r for small r. In the extreme case in the test region this could introduce up to

a 40% error, although in flat regions its contribution is negligible.
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(i1) Z
P
As 72 was defined as the component of r along the 2z axis at Q' it can be seen from figure 6
that
-2 = (R + hp) cos ¢y = (R + h),
thus 7 (R + hp) cos Y - (R + h)
P ré [] +( h - hp)*] 3/2
i
r
{ o
h - h - ré/ZR
= P - (2.43).
.
f (h - hp)/r0< 1 and ¢ is small (< 1 50), it follows from (2.42) that
7 h -h-ré/ZR 3 fh-h 2
- 1- 2 P (2. 44)
3 3 2
r r r
o o
which reduces to
h = h
S P fz
= SRY + ; + 0{ ; }
o r r
o [
. -2
if | (h hp)/ro] 3 5x 10
The problem posed by terrain slopes of > 45°  (i.e. | (h- hp)/ro| > 1) forces use of the form

expressed in (2.43), to avoid the divergent series which is otherwise introduced if (2.h44) is

adopted.
(iii) Terms in LS s r
ré r?

From figure 6 ,

X = (R + hp) sin ¥ cos a' (2.45)
where o' = o & .
So, if |(h - hy)/rg [ <t

h-h ? h-h *
X _X 4. P4+ o Py (2.46) .
rd rs r r
[ o o

Using the analogous expressions for

tan B,

r3

+

tan By
r

Nfw

h-h 2
p

Y, by routine substitution it is shown that

(R + hp) sin ¢ (cos o' tan B; + sin o' tan B2 ).

h-h
+ 0{ —EB 1}

r r
o]

(2.47).

o
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If the computation point is located in a steep mountainous area, the assumption for (h - h )/ro
P

may break down and it will then be necessary ta evaluate r in its undeveloped form (2.41).

MATHER (1970a, p 22) shows it is possible to interpret the term cos a' tan B; + sin a' tan B,
dh

as =2 , hence (2.47) becomes
drg

X tan B; + Y tan B, =
3

rd r
(R+h) siny h - h ¥
- P dh .3 P
- : dhopi-2 (2.48).
r [s] r
[¢] (o)
{(iv) Collecting Terms (i) - (iifi)
Substituting (2.48), (2.44) and (2.42) into (2.38), and applying Bruns formula gives
1 T 1 h-hY 1 h, ~ h
Cp = 75? 7l - 2z T G1-3 r b1 (- 2Rr * 3 )+
Qo o] [o] r
o
(R+h) siny h-h}Y
£ T p jh {1 - 3{_—=» }o- Y (¢ tan 8; + n tan 8,)] dS*
3 r 2 r r
r o o
o
(2.49).

It is interesting to observe that the last term is not expressed in the approximate form
r = f(rg, h, hp). It will be shown later that this is the most significant term in the correction

terms, and it is noteworthy that it has not yet been affected by the instability of the expanded

formof r as B~ 45°,

The expression (2.49) can be reorganised for convenience to take the form

LI {1y + 1o + 13 ) dS!

Y
I

p o 2my
where
- 1 oot o T
b= ( 7z 7R ) (2.50)
o]
i d
Y TRsiny d—h—- Y (; tan B+ 1 tan Bz ) {2.51)
3 r r
r o]
o
(h, = h) 3 h - h\ 3R siny dh [h-hY
and by —E— T+ e ) TS rrd G IR
r o o 2r o
[o] [e]
h-h ¥ h - h Y
- 3 1 -77-—J3 + 01 ——7;—J1 } (2.52).
o o]

I, fis seen to be equivalent to the kernel of Stokes' integral (see equation (2.22) and the development

]eading up to t iS). his term will therefore give the Stokesian contributio to CP s i.e.
1 '
- 2.53).
N 5 Y ff |1 ds ( 3)

The second term takes into account the slope of the telluroid at all points Q', and can be considered
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to be a correction for the fact that the subject surface is no longer level, viz.

- !
oto= gy SO 1z dsh

The remaining terms in |3 are corrections for the departure of the subject surface from the spherop

through P'. They will be insignificant except in cases of small r. Also, according to the
development in 3.3 this term will also be diminished because T » Tp as ry > 0. Thus only the first
term, being the most significant term, will be included in |I,.
Hence = N + 7' 2.54
% ot tp (2.54)
R2
where Np = 7%§-ff I, do (2.55)
2 . hy=h
gt o= i‘ff Rsinyg dh P ) yp. X (¢ tan By + n tan By) do (2.56).
P 2my N dr0 Pl r
o o

(v} r not approximated

The advantage of expanding r = f(rg, h, hp) is that it permits the splitting of the resultant

expression for 7z (2.49) into a Stokesian term and terrain corrections to this term.

If r is not expanded, (2.49) becomes

- - r2
= _Ef,ff -T a 1 4 fEE___E___:_izil +

p 2my dz r i

(R+h) siny dh 1

- p & _ 2
+ T { - ar . (y £tan By + yn tan B,) }]ds' (2.57).

r
For evaluation it is necessary to express %} in terms of the gravity anomaly Ag in a manner

similar to the development in (iv) above. This can be accomplished by an iterative procedure developed

by MATHER (1973 , pp 30-34).

(vi) Comments

Confirmation of the major elements of the expression derived in equation (2.57) can be seen from the
"Arnold" type solutions, as summarised in (MORITZ 1966, pp 71-74; 91-92). Starting from a simple

gradient formula, viz.

To= oS fee- 3 h-n)]f ) do (2.58)

a solution is achieved, making some 'planar' approximations in the process, whereby the correction
, 9 P PP p

to the disturbing height is expressed as

R2 1,
9 = = Iy i) F;'(g tan B, + n tan B,) do +
R h-h
+ Iny i —;7;—-— vy (£cos o + nsina) do.
o
Rememberihg that %2— = (cos o' tan B + sin o' tan B,)

[¢]
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and approximating R sin ¥ = s for small ¢ then (2.56) becomes, after rearranging terms
R? N hph
S f/L ™ (cos a' tan B, + sina' tan 8,) + —2— 1] do
™Y r2 3
r
o ' o
R2

SIL (g tan g+ notan By) do .

The difference hetween the less significant terms are due to the basic difference in the derivational
approach {(ie. by use of upward continuation of the anomaly from sphere to ground instead of the
evaluation of V N ~I1_- on the telluraid).

2.3.4 The Evaluation of £ , n

Recalling (2.31) and (2.32), we see that

= - % _ _faz Ag
£ = Folli (X)Te]] + ™ tan B, from (2.31)

. A k1 Ag
n & (By)re]l + Y tan B, from (2.32)

with the sign convention as shown in section 2.3.2.

Now 7, as evaluated in (2.54) to (2.56), is seen to be a function of %, a and z, all of which

are variables related to the x and y above.

(g_g) ..

Using the fact that

i

Slx
—
N

.59)

eI

I (-1 I R 14
(By) R cos¢p  9A (2.60)
we can express the &£ and n in the following manner
3L 1 3L Y + 3¢  da ?r 0z
- vl = - =] = = - o 2.61
(Bx ) Tell R { oy 3¢ 3o 3¢ 3z 3x ( )
ot _ooo1 lowoew , dzaa | | ooz
(ay) T Reos o | v ar ' 3aox 52 By (2.62).
ell
This, when substituted into (2.31) and (2.32) produces
- . 1 {3 W 3t do
Ey= A R T * 3 3% (2.63)
oot ez oo, 3 o2 (2.64)
My=w R cos ¢ | 30 BA 3¢ BA

as the last term in (2.61, (2.62) cancels.
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That part of the expression (2.49) which is denoted as the Stokesian contribution will, on

differentiation according to the above, produce the Vening Meinesz integrals (2.26a) and (2.26b).

We must now try to evaluate the correction terms to see how departures from the level surface

U= Wp

Remember ing that

affect the deflection at the surface.

L .
WoT, o R o= RUZ
3 1 _ -4 _ __3
w F‘g‘ = 3r R = R3wu >
then
I dh - - R4 3 -
W (rog— + h -h = ra{ 2 r(hp h) } (2.65)
o o
h -h
2 { T ¢, p - T (- sin o' tan B, + cos a' tan B;) (2.66)
piled , dr r 2
r o r
o o
é%} _}_ ( £ tan B+ 1 tan By) = %—; ( £ tan B+ n tan B) (2.67)
W
where Y is the angular distance subtended by r at the geocentre.
Also by reference to figures 7(a) to 7(c) it can be shown from triangles PLP;, , PLQ and PMP: ,
PQM
g—$ = - cos o (2.68)
da'  _  sin a
a—d) = sTn U (2.69)
—g% = - sin acos ¢ (2.70)
and
9’ _  _ cos dcos o
A sin ¥ (2.71).

Substituting (2.65) to (2.71) into (2.

terrain effects, viz.

63), (2.64) produces the corrections to the deflections for the

.o cos o N dh hp™h .3 dh
g = ﬂff[wz ( & tanB; + 1 tan By) -W{ (ZE'_ + 3 ) cosa + sino = o do
o ) o
(2.72)
1 sin o dh hah 3 dh do
no= o= IS ——~ (£ tan Byt n tan 82)-R—1P3{(23—r—0— +3 ro)S'nOL_COSOLB_ocHF;]

(2.73)
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d dh

with E?; 'y oa EF; defined in (2.50), (2.66) respectively, and U is defined in (2.67).

In mountainous regions close to the computation point it is critical that § be computed in full
and not approximated by 1 . As explained in 2.3.3(i) large errors will result if ¢ 1is used,
and this will be particularly detrimental in the computation of the deflection which is so sensitive

to errors in this immediate vicinity.

Further comments with respect to the modification of expressions (2.72) and (2.73) can be found in

section 3.2.3.

2.4 Molodensky's Solution by Surface Layer Techniques
2.4.1 Introduction

The theory was first developed by Molodensky in 1945 and can be found in (MOLODENSKII ET AL 1962,
pp 78-81, pp 118-124). The derivation, with slight variations, can also be found in (BROVAR ET AL
1964, pp 157-163, pp 167-171 and HEISKANEN AND MORITZ 1967, pp 300-307, pp 312-315). The outline

given here will follow the derivation given by Molodensky.

Molodensky's solution is founded on the idea expressed in Chasle's theorem, that the potential of a
body can be expresses in terms of an attracting layer on the surface of that body. This is extended
so that the disturbing potential of the earth is expressed in terms of a surface layer, the component

of normal potential being computed on the telluroid.

Thus

To= 2o (2.76)

where & is related to the density of the surface layer on S which is producing the disturbing

potential Tp at P and r is the distance between the computation point P and the element of

surface area dS.
The outward derivative along the normal can be than expressed by

_V_ﬁTp=—2W®cosB+ff§_y__li1F ds (2.77)

(see HEISKANEN AND MORITZ 1967, p 6 and p 301) where all symbols retain their meanings as defined

in section 1.4, and used throughout chapter 2. The first term on the right is due to the discontinuity

of the derivative at the surface.

We now substitute this into the boundary condition (2.10) to find

- o x LAGEE =
2m ¢ cosB Ir _YN_F ds + Y I = T ds Ag (2.78).
As already derived in (2.20)
oy o o2
Y o0z R (2.79)

Also, since ? =R +R -2R R cos¥
p g P q
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using a spherical model of the earth,iwe find

R =R cos y
1 9 1 p q
7 — = —_— — = - —_—_—
YN r or r 3 +o {f}
-
1 "R
= 'ZRpr * T r#0 (2.80).

Substituting (2.79) and (2.80) into (2.78), we get

RZ - R2
27T 9 cos B = Ag+ 3 I @ ds + . jr34 P 5 s (2.81)
2Rp r Rp r3

which, when terms are gathered, becomes what Molodensky terms the Fundamental Equation, viz.

RZ - R2
3+ 9P} o5 g5 = g (2.82).

2mdcos B - SS SR KT
p p

The problem now is to solve this linear integral equation in ® obtain T from (3.1), thence
z and &£, 7n in the usual way.
2.4.2 Solution of the Fundamental Equation
The general solution of (2.82) involves the introduction of a small parameter relating the radius
vector of the surface to that of a spherical model, expanding the expression in terms of this small

parameter and then the matching of powers of the parameter to achieve a series of equalities.

The physical surface of the earth S is related to an intermediate surface § (see figure 8)

such that
R = R+k (R =R = R+kh (2.83)
p P
where R = radius vector of the general transformed surface S
Rp = radius vector of the point on the surface S at P
R = radius of the spherical model
k = a constant coefficient, 0 < k < 1,

Also, the fundamental equation (2.82) is amended by introducing the function ¥ such that

R2
X = E%— d sec B (2.84)
and remembering do = 5§—§$§—§
then (2.82) becomes
R2 R -R
2mycos® 8= zb Ag + % Ry SrE doo+ R ff——q——a-f— X do (2.85) .

r

A similar expression can be written for analogous terms on the transformed surface,
—os?E = P 35 X% IR
2wxcos®B = gF Ag + 7 RO Sf2 do + 3Ry q p o dg (2.86)

where a new disturbing potential T can be expressed in terms of the new density X



-37-

~v]|
~

\i’ 3¢oc¢n4r¢ .

FIG.8 MODEL FOR MOLODENSKY'S SOLUTION.

S

EARTH'S
SURFACE

Rererence
SURFALE .




1
A
e

T = RYJS do (2.87)

S|

and
r = distance between elemental area dS with radius vector R = R + k hq

and the fixed point on S with radius vector ﬁ; = R+ k hp

angle between the normal to S and the radius vector R at the computation

w|
I

point.

The quantities T and X are functions of k and can be explicitly expressed as a power series

in k, wviz

X = Xo * X1k + LS (2.88)

3
8 Ite~18
(=
>
P
3
]

3

(2.89)

o

e}
it

3

Il ™~
—
~

whilst r and B can be expressed as

r o= [r; + k% (h - hp)z]% +0 {%5 (2.90)
tan B = k tan B (2.91).
So if B < ASO we find for all k between 0 and 1 the convergent series
cos? B = (1+k?tan? 8)7' = 1 -k? tan?8 + k" tan* 8 - . . . (2.92).

Expanding the left and right hand sides of (2.86) in terms of (2.88) to (2.92) and dropping the

subscript q for the general point, we get

ZH(XO + 31 k+x k2 + .00) (1 - k2 tan? B8 + k* tan* B...) =

Ag + %-R Ir

1

;;-(xo thoa t K e ) {1 - 2 KB )P+ 3Kk (heh )t L) do

+R2 ff :—2 O *+ ki *+ K X2 o) (heh )k {1 -2 e (h-h )2+ ...} o (2.93).
o]

By matching coefficients of kn, we find a general expression for each value of n, viz:

2 - 3R %n dv = G (2.94)
Xn 2 r n .
[o]
where Go = g- Yy = Ag
h-h
G = szf~3—R X, do (2.95)
rO
h-h (h-h )2
Gz = R2 7 —PF i, do -3RJS 3p X, o+ 21 x tan® B
rd r
(e} o]

and so on.

The problem now is to solve for surface density Xn and then by applying (2.87) we can compute T

(and ¢ , £ andn ).
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Let us concentrate on the solution of (2.94) for n = 0. From this
3 /‘O
R Y V- Y (2.96).
o]
Also, from the expanded form of (2.87)
X
= 2 o
T, = RO do (2.97)
o
3T _ 3R ., £
or ﬁ = TIJ 'r— do
o
Hence we can write (2.96) as
3To
2w X = ot Go (2.98).
But To’ considered to be the first approximation for T on the sphere, is given by Stokes' integral
(2.23) as
1= Ry f (y) do (2.99)
o L o -93).
So (2.98) may be expressed as
2y = 2= [ & U G fF(Y) do}t+ A (2.100)
o 2R Ly o ¢ . .
Now, substituting (2.99) into (2.98) we obtain
S Ur6 fy) do + ag = 2o+ g (2.101)
T o
2R
or T o= & e fy) do
o Tm [o) :
In like manner, by operating on (2.94) for n =1, we find
T, = R JroGy f (y) do
1 gl 1 .
Since T = T0 + T + ... at the earth's surface where k =1, we can say z = Co + oy t+ ...
thus
R R
r = W” 6, f () do + SN 6 f () do + ... (2.102),
where G, G, are defined in (2.95), X, being expressed as a function of T = and G in (2.98).

This expression (2.102) can be interpreted as providing a solution for ¢

in a series of approximations,

where the first approximation is provided by Stokes' integral (= N) and the remaining terms are

the terms

The

corrections to this due to the irregularities of the earth's surface. For this reason,

G; and higher are often referred to as terrain corrections to the basic Stokesian solution.

greatest correction will come from the G; term, which accounts for the departure of the earth's

surface from a level surface. The slope of the terrain is corrected for in the second and higher

order terms.

Some general comments should be made on this approach. The solution requires (in theory) the Gi

integration to be taken over the earth's surface. In practice (see section 4.3.2), it is only

required to compute G, out to a distance of about 40 km from the (G ) computation point.

in

Nevertheless,
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in common with (2,57), it contains the term %2- and therefore suffers from the same shortcomings
as were mentioned in section 2.3.3(iii) for this term. The problem is likely to be worse for G,
because, whereas in (2.57) the weakness only made its presence felt in the vicinity of the

computation point for G; it is critical throughout the region for which it is computed.

That is, there is no guarantee of stability if terrain slopes in the immediate vicinity are
greater than 450. If the slopes exceed 45° anywhere within the computational limit of G; then,
in theory at least, the G; term again becomes unstable. This situation will lead to a general
instability of the solution depending on the extent of the topography thus tilted, and on the

nearness of the topography to the computation point.

According to (2.95) and (2.98),
h - h
" - B (ag +

v
(o]

MORITZ (HEISKANEN AND MORITZ 1967, pp 307-312) proves that this can be split into two parts, G

R2

Gl:ﬁ

TO) do

N
T

and Gi; , where

611 = —h§§-9~
is the free-air reduction, so that this part of the Gi term in (2.102) produces the height anomaly

at sea level, the 3, resulting from G,, is in effect

Ag

= - 24
Ci2 Y

which on addition reduces the sea level ¢ wupward to the ground level, and that

R2 h-h h
G = o [J —F2 a9 do +o0{ 3}
m r3 R
o]

Other developments of this terrain correction term are discussed in section 3.1.

2.4.3 Deflections of the Vertical
As in section 2.3.7, the expressions (2.31) and (2.32) are applied to % to get £ and n.

Thus, it follows directly that

1 df (y) A9
- I + gy Slw do - t (2.103)
£ Wy (Aq 1 3y cos o do » an B,
N e s U sing g - 8w g, (2.104)
where 9££$l = Vening Meinesz function defined in (2.27).

As MORITZ shows, (HEISKANEN AND MORITZ 1967, p 314) this can be further developed by again splitting

the G, term into the two components G,,; and G,, mentioned in the preceding section.

Thus the G: contribution to £ ( &' ) can be expressed as

. 1 A df (v) _0C12
E = - IE-TY— Sf a—h—g h de cos O do R3¢



= 1 3Ag df () 13 3
= - Jro22 h = =2
Ty 5 i cos o do + Ry 99 (h Ag) + 0 {8¢ }
o1 8hg |, df(v) bg h 34 '
W o S cosads + % tan 8 + 2 ﬁ% (2.105),
It can be seen that the term containing the ground slope will cancel when (2.105) is substituted
into (2.103), producing
oo ] dAg df (y) h 9Ag

£ Ty I e h @ cos a do + T e (2.106) .

This forms has the practical advantage that the potentially large term %% tan B, is now

compensated before enumeration of the terms takes place. Unremoved the term is evaluated twice
by two different methods and unltikely to compensate exactly in the evaluation, especially in steep

mountain regions.

The expression can be further modified by using a device suggested by Pellinen (see also section
3.2.1(b)) wherein the equipotential through the point P, instead of the mean sea level, is made

the 'datum' for heights.

The last term in (2.106) now drops out (again removing a source of error in the computation), and
when the correction term ' is combined with the first approximation from the Vening Meinesz

formulae this gives

3 _ 1 _ ~ cos o
{n} = Ty I7 [Ag - 3Ag (h hp)]{ Ydo (2.107)

sin a

the development for 1 being analogous to that for & .

2.5 Bjerhammar's Discrete Point Solution

In the solutions to the boundary value problem given above in sections 2.3 and 2.4, the assumption
is made that the gravity is known at all points on the earth's surface. In reality we know gravity
at discrete points only, and to evaluate these solutions some interpolation or prediction of the

field is necessary.

BJERHAMMAR (1964) redefined the geodetic problem in terms of the known gravity points in the following
way: 'A finite number of gravity stations are known on an irregular surface, and it is required to

find a solution such that the boundary values for the gravity data are satisfied in all given points."

The surface gravity (Ag) is thought to be generated by a set of fictitious gravity anomalies Ag¥
on a reference sphere at mean sea level. The problem then is to find the g* on the sphere which,

by upward continuation from the sphere to the surface, will produce the measured quantities Ag on

this surface (see figure 9).

The theory is developed in full by BJERHAMMAR (1969), and will only be outlined here. The basic

relationship is developed from Poissons' integral for harmonic functions which when applied to RAg,
RoAg* produces
RZ- R2

- o sy lg*
Ag = e S " ds (2.108)

where Ag , Ag* are defined above
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R is radius vector of the computation point Q
Ro is the radius of the Bjerhammar sphere
r is the distance from Q to elemental area dS,

The solution for this, as shown in (BJERHAMMAR 1969, p 179), is

2 R?- R? Ag* - Ag*
Agh = Ry [ ag + o s 1 ds (2.109)
gq Ro gq [m-R r3 . .

The numerical solution can be found in a number of ways {(BJERHAMMAR 1973, pp 481-486). One approach
is to use successive approximations (HEISKANEN AND MORITZ 1967, p 318), where qu and Ag are
used initially as the best estimates of Agg and Ag* on the right hand side, to achieve a second
estimate of Ag*. (This procedure can continue until the change in Agg becomes insignificant).

As a first approximation, (R2- Ré)/ZR ~ h , and thus

. - h 29" %9
Aga = qu + o I __——7T;_~— ds (2.110).
Alternately observation equations can be set up from (2.108) for each point Q which will give
a set of linear equations, viz.
RZ - R2
BG, = Ag, - = S/ Bg¥ dS ,  i=1ton (2.111).

A least squares solution can now be used and values of Ag* are then chosen to give minimum sum of

the squares of AGi in the classical manner.

Once the values for Ag* have been computed, a solution to the boundary value problem can be carried

out by substitution of Ag* into the generalised Stokes' integral, to obtain at the surface
T('q = 1—R Ifoagx F(Ruy) do (2.112)
2
where  F(R,¥) = Ro 4o I Ro L Ro cogy(s 4 3an Aifocos iy,

r r R? R

This expression leads, on substitution of the surface radius vector for R and application of Brun's
theorem (equation 2.9), to a height anomaly which is equivalent to that in equation (2.56). in
other words, equation 2.112 will result in the surface-telluroid separation when applied to the

Earth's surface.

The formulae for the deflections of the vertical at the surface can be found in the usual way (see

equation 2.25), gives

t . of (R, .
A Agx————éw—w-)— cos o do =1, 2 (2.113)
where
&1 = £ ) & = n
0 = o4 , 0 = 90 - a

and
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F(RLW) L2 s 2 6 o _ ., 1-t cos ¥y -D 1-t cos ¢ + D
By T Tt VT v 5 -8 -3 v e
where D= %

(see HEISKANEN AND MORITZ 1967, p 235; BJERHAMMAR 1969, p 183).

This approach has been questioned by a number of writers (eg. see BJERHAMMAR 1973, p 475), a major
misgiving being that it is not possible to downwards continue an harmonic function through material
likely to contain discontinuities (see MOLODENSKI| ET AL 1962, p 120). BJERHAMMAR (1968, p 178),
in answer to this, points out that the purpose is not to create a sphere with some direct physical
meaning, but rather to use the sphere as an intermediate step in the recreation of the potential
field which exists at the Earth's surface and beyond. The fact that the analytical continuation
does not reflect the actual field inside the Earth is not considered to be a problem as this is

not in any case the subject of the determination.

However, although this method is called the '"discrete-point approach', implicit in the computation
is the assumption that the Ag is representative of a square or block on the Earth's surface
(BJERHAMMAR 1969, p 175). This infers an interpolation or prediction from the original data prior
to computation. Because of the deterioration of downward continuation (2.110) in mountainous

terrain, it is necessary to limit the minimum value which r can take, BJERHAMMAR (1969, p 194)

mentions a block size of 10 km x 10 km as a feasible area which will provide a convergent solution
on iteration. As will be shown later (eg. sections 7.3.1, 7.3.2) the assumption that a gravity
anomaly can adequately represent such a large area will break down in mountainous terrain. |If this

assumption is maintained in the immediate vicinity of the deflection computation point it will
smooth all the short wave length signal in this critical region, and place severe limitations on

the accuracy which could be expected from this method (see also section 6.2.2).

For ¢ > 20 km this will no longer be a problem and there is no doubt that the method could be used
effectively for middle to outer zone computations for & and 1. Also, because the N computation

is not as sensitive for Y - 0 it would be a suitable method for the evaluation of this parameter.

This approach has now been accepted as an important contribution to the solution of the boundary
value problem, though not widely used. Reference will be made below (section 3.4) to a study which
does use this method for computing &£ and n. This investigation compares a number of different
ways of evaluating these parameters and it is interesting to see how this method compares in both

accuracy and computing effort with the more generally used methods.
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3. MODIFICATION TO THE ORIGINAL EXPRESSIONS
3.1 Introduction

The solution to the boundary value problem in pureiy theoretical terms was given in Chapter 2. This
chapter deals with the various developments which have taken place from these original expressions
in order to simplify or stabilise them, or simply to assist in evaluation. From this it is desired

to find the most suitablie expressions for the present test.

A number of authors have reviewed the developments of the basic expressions. Of these probably the
most exhaustive work has been done by MORITZ (1966, 1968a, 1968b, 1969) who has done valuable work
in the comparative analysis, as well as the physical interpretation and the modification, of the
various approaches. PELLINEN (1968) has also given us a summary of some of the methods which have
developed from MOLODENSKY'S AND BJERHAMMAR'S approach. More general summaries can also be found in
(EMRICK 1973, pp 21-39) and (KEARSLEY 1973).

3.2 Modifications of Molodensky's Expression

Of the three different approaches outlined in Chapter 2, the method which has received the lion's
share of attention is the Surface Layer Technique developed by Molodensky. Many writers have
investigated ways of improving or simplifying the original statement (2.102), in particular PELLINEN
(1962, 1964 and 1968), MORITZ (1966, 1968a and BROVAR 1964). Others have carried out tests on
models, computing deflections by means of (2.102) to the first and in some cases higher order
corrections (eg. G1 , G ) and compared the result with a value derived by theoretical analysis

of the postulated model. For examples, see YEREMEEV in (MOLODENSKII ET AL 1962, pp 217-230),
YEREMEEV (1970), VELKOBORSKY (1970), PICK (1970) and PICK AND JAKUBCOVA (1973). The second last
study tests a modified version of Molodensky's method on a model with side slopes up to 500, with
some success although the convergence of the solution was very slow. The result of these computations
proved the approach capable of producing accurate results is of the order of 0.1 to 0.2 arcsec (these
being the differences achieved when corrected deflections and compared with theoretically derived
values), and this certainly helps to show that the approach is feasible. However the conditions

of the test are idealised and one can never expect them to be reproduced in a real-life situation.

3.2.1 Modifications by Pellinen

(a) In 1962, Pellinen suggested an approach which aims at removing the effect of the topography from
the general solution and independently evaluating the effect the ‘removed' topography will have on
the deflection. This method as originally developed is given in (PELLINEN 1962) and is also

outlined in (MORITZ 1969, pp 27-30).

The free-air anomaly at the surface is adjusted to account for the contribution made to this anomaly

by the topography above a stated reference surface.

i.e. A9, = A9~ A9T
where Agc is the anomaly corrected for topography
Ag is the free-air anomaly at the surface
and Agy is the contribution to Ag of the topography.

Ag. s substituted for Ag in the equations (2.102 to 2.104) to find the parameters defining the
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anomalous field at the reference surface. Thus, to a first order approximation, we find

. A df (y)
& = T If [Agc +6 ] o o8 9 do + AEJT (3.1)
where
h=h
GoR® p s R
AE.. = == [f sin cos a, do , =1, 2 ;
5T Y o v % ’
o
G = the gravitational constant
e = Gy with AgC substituted for Ag, and
g1 = & & =1 ;o ap = o a = 90 -a.
As mentioned by Moritz, an advantage in this approach is that the AgC values will be smaller and
smoother than the Ag values in the original expression (8). However, G may attain large

1c
values being in essence the Bouguer anomaly, as might the corrections AE.T. This state of

affairs (ie. large effects being compensated by large corrections) should be avoided if at all
possible because of the increase in the size of the errors likely to result. Also, (3.1) presents

quite a large computational task which seems unnecessarily onerous.

(b) A device to decrease the magnitudes of Glc and the corrections ‘to £ ,n has been
suggested by PELLINEN (1962, p 346) and is also described in (MORITZ 1969, pp 30-33).

A spherical surface, concentric with the original reference surface at sea level and passing through
the computation point P, is held to have a surface layer of density ph which produces an
anomalous potential field. The gravity anomaly resuylting from this surface layer will have a
compensating influence on the mass of the topography removed in the afarementioned approach. If

the anomaly accumulating in this way {(which is shown to be the Faye anomaly; the free-air anomaly
plus the terrain correction only) is now used in place of Agc in the earlier expression (3.1), and

due consideration given to the correction term which results, it is found that (MPRITZ 1969, p 31)

1 d f(P)
Ej Eﬁ§-ff (g + C) - s do
7o = dfW) -
+ n£1 Ty N 9, @ cos o do + & gj =1, 2
where Ag + C is the Fay anomaly.

5; are the correction terms computed using the Bouguer anomalies and

3 h - h
seg. = SR o b L1y Giny cosa. do
J Y 2ty T ]
o
2 1 1
C = GpR* f/ (— - =) do (3.2).
r ™

(o]

By using this device the gravity anomalies and the correction term ¢ % are both reduced in size.
Also, as with the first approach, the uncertainty of the density of the sub-surface is overcome
because it is compensated when the correction term is added. The adoption of the reference surface
passing through the computation point (as in the second approach) should also improve the convergence

of the higher order terms, and improve the accuracy of the first order approximation.

(¢) A very important development is given by PELLINEN (1964). Here he adopts a correction term

G' which is equivalent in function to the Gi1 of Molodensky, where



> (h-h ) (4g-4g )

- R p p y

¢ = gy NP 4o+ 0 {f} (3.3).
This will help to stabilise the solution because the term containing Ag is now referred to the

gravity anomaly at the point of computation.

A development from (3.3) (IBID, p 330) makes use of the general assumption

Ag = Ag" 4+ k' h
Ag" being the Bouguer anomaly and k' s the Bouguer correction factor.
(3.3) then becomes
o = KR g ), (3.4).
T .3

Some writers {eg. MATHER 1975, p22) have expressed doubt as to the validity of this latter expression,

particularly if the summation is carried out over extensive areas. In this situation the assumption
that the Bouguer anomaly, and perhaps also that k' is constant throughout the region is weak and
likely to lead to systematic errors in the value of G'. (See EMRICK 1973, p 106 for comments on

the use of (3.3) as opposed to (3.4) ).

(d) MORITZ (1968b) has shown the equivalence between equation (3.4) and the expression for the
terrain correction to the deflection derived from the "Arnold-type'' expression (equation 2.58) using
the assumptions in (c) above. Hence, indirectly, one can see the connection between the G' term

in equation (3.3) and the correction term from Green's third identity (equations 2.72 and 2.73).

3.2.2 Moritz' Developments

Another type of approach used in solving Molodensky's expression employs mathematical devices in
order to simplify them. |In this respect it is worth mentioning a method developed by MORITZ (1969,
1971) who uses analytical continuation of the gravity anomaly from surface to sea Tevel and thus
achieves a solution by means of successive approximations. While some doubts about the validity
of this approach (ie. continuation below the surface of the attracting body) are expressed, it is
felt to be justified by the equivalence gained with matched terms of the modified Molodensky

approach. In this way, MORITZ (1969, pp 35-37) derives to second-order accuracy

£ = E%§' Sr (Ag + g1 + g2) Eaféil, cos o do
where g = - (h'hp) L, (Ag)
gs = - ;—(h-hp)z L, { Ly (Ag)} - (h-hp) L (gy)
R2 f-f
with L, (F) = = IS P 4o (3.5)
M r3
[o]

Moritz claims that, though for all practical purposes this is identical with Molodensky's original
expressions, it is an easier statement to evaluate. A big advantage from the computing viewpoint

is that successive terms of the series are evaluated recursively, although it is probable that the
2nd order is as high an order as is needed for most cases. Nevertheless their expressions do appear

simpler to evaluate than those in (2.95), although care must be taken to ensure the terms converge
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significantly. To assist in this, as Moritz states, it is possible to substitute the Faye anomaly
for the free-air anomaly in (3.5) and apply the corrections as per (3.2). Now the g; and g

terms being computed from the Bouguer anomalies will be smaller and this should aid convergence.

3.3 HModification of Green's Identity Approach

i) The expressions for &' , n' in {2.57), (2.58) are modified by introducing a datum shift of
the geoid into the system, relating the height of the geoid at the points Q to this height at P.
This will not affect the tilt of the equipotential surface; as already mentioned in section 2.3.1
the effect of Wy - U, can be ignored as it has no influence on deflections.

N ~ . N -N
The terms in KE? (N = Nq) in equations (2.72) and (2.73) are therefore amended to —%EQE ,
helping to dampen the oversensitivity of this term in the practical evaluation in areas of large
N (eg. 30 m). This device also greatly assists the convergence of the affected part of the
expressions as the points Q approach P thus helping to bring about a situation which is known should

exist i.e. that the correction term should approach zero as y->0.

ii) An expression for z in terms of, as opposed to r = r(r0 , h, hp ) has been developed
by Mather (see MATHER 1973, pp 34-36, pp 102-105, pp 117-120). The aim is to develop an expression
such as the one in (2.57) which contains the Stokesian solution as a first approximation and the
remainder as the correction for topography. As can be appreciated from (2.46) the series expansion
for é% becomes a diverging one when ground slopes in the vicinity of P exceed 450. As the
nature of all the stations used for testing is for the computation to be located on the tops of the
hills, with plateaus to a lesser or greater extent surrounding them (see figure 28 for analysis of

innermost zone heights) it was safely assumed that the approximation for was adequate.

It should be pointed out that no approximation exists when the slopes of the surrounding topography
are taken into account. These enter the expression directly as the tan of the slope and are thus
fully accounted for. |In fact, the problem under discussion will only have an effect in the unusual
situation when the deflection is being computed on, or on the edge of, extremely steep topography

of considerable extent.

3.4 Practical Evaluation of the Modified Correction Term

a) In an investigation completed recently, EMRICK (1973) compared the deflections at two points
(+38%50 , -105°00 and +38°50'37U5 , -105°02'375) in the region of Pike's Peak, U.S.A. He also
evaluated the various correction terms resulting from the expressions discussed in section 3.1

above.

-

Terrain corrected anomalies were found on a 5' grid throughout a 3o X 30 area centred on the two
computation points, the free-air anomalies being predicted by means of a covariance function (see
section 5.3), and terrain information taken from the i:Zh 000 map sheets for the area. The
deflections were evaluated only to a distance of 1.50 from the computation station and so cannot

be regarded as having any absolute significance. Nevertheless, the results do certainly give insight

into the relative merits of the different approaches of determining the effect of the terrain in a

fairly mountainous region.

The main correction terms tested were as follows: the G' derived by Pellinen in (3.3); Pellinen's

terrain correction term A %1. in (3.1); Moritz's recursive formula, described in (3.5) to order 3;
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and Bjerhammar's iterative expression (2.111) modified by Moritz (1966, pp 60-61) to become

Agxl = Ag
2 (i) « (1)
P+ % -
Ag*(I R Ag -~ Ah %— I Agt " - Agq do (3.6)
™ r3
o
In this test, 6 iterations were used. Ag*® is then substituted for Ag in the Vening Meinesz

formulae to produce & , n.

Emrick also computed by hand the Hayford terrain correction using the Hayford zone systems at two

of the grid points to provide checks on the computations.

The results of the deflection computations at two stations are tabulated in (IBID, p 97) and are
interesting to consider. Out to a distance of 1.25 minutes ( = 2.25 km) there is little difference
between the methods, and in fact the contribution of the correction terms are quite small, the
largest computing at 0.1 arcsec in & and 0.2 arcsec in n , with a range in computed values

"of the order of 0.1 arcsec in both components. The area from 1!25 to 10' (2.25 km to 18 km )
showed about a 04 correction for the terrain in & and 0Y2 in n , with a range in the
correction computed using different approaches of 0.25 in & and n . The contribution coming

from terrain corrections between 10' and 1?5 was small, of the order of 005 on average.

The point to be noticed is that there is little improvement achieved by calculating the relatively
long process of the iterative or recursive procedures, (3.5) and (3.6) compared with the simpler
Pellinen correction shown in (3.3),particularly in the close zones of the computation. Emrick
summaries his results (IBID, p 99) as follows "'Assuming the iterative solution to give the best
results for the data sample used, the results of the computations show that a maximum error of

108 may occur by neglecting all correction terms as of 0!53 by using only linear correction terms.'

In his conclusions (IBID, pp 106-109), Emrick recommends the use of the linear correction term in
less rugged terrain, as the iterative solution makes large demands on a computer and the refinement

gained is only felt in mountainous regions.

(b) BURSA (1969), in his investigation of the terrain effects on deflections in Czechoslovakia,
used the Pellinen correction described in (3.2). This resulted in some improvements in the relative
accuracies of the gravimetric deflections (IBID, p 56). In view of the similarity of this approach
with the simpler terrain correction expression (3.3), and the suitability of this expression to
programming, it was decided to compute this G' correction term at all gravity stations in the

test region and include it in the computation of deflections computed in this region.

(c) DIMITRIJEVICH (1972) computed the correction term (3.4) in order to find the effect the &'
terms have on the gravimetrically determined deflections at 23 stations spread through the U.S.A.
The reasons given for choosing this form (IBID, p 3)were "It is a very simple solution, requiring
only that the terrain corrected free-air gravity anomaly ( Ag + G') be used in place of the free-air

gravity anomaly (Ag).

Using the assumption that the free-air gravity anomalies are linearly correlated with elevation,
Moritz has shown that this solution is equivalent to several other linear solutions which have been

developed...."

This latter comment, whilst borne out by Emrick's results is nevertheless based on an assumption



_50_
introduced to simplify the Pellinen correction (3.2). Since (3.2) is quite simple to evaluate on
the computer in any case, and also has the advantage of ease of application mentioned first by
Dimitryevich, it was preferred to use the form of Pellinen correction which was free from the

assumption of linear correlation. This would then circumvent any breakdown in the assumption

which, according to recent studies in North America by MATHER (1975, p 22) was found to happen

over distances in excess of 50 km.
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4. PRACTICAL EVALUATION
4.1 Assembly of Data
4.1.1 Gravity Data

The Australian continent has been systematically surveyed for gravity anomaly maps by the Australian
Government's Bureau of Mineral Resources, Geology and Geophysics (hereafter referred to as the BMR).
The gravity surveys for these are based on a gravity control network established throughout Australia
known as the Isogal network, so called becauée the routes followed by the gravimeters between
successive control stations were along the isogals, ie. the small circles of latitude. Roughly

230 lIsogal stations (gravity control stations) have been established throughout Australia, and two
of these were used as datums for densification surveys undertaken in the region, Narrabri 6491-1108
and Tamworth 6491-9109. (See MATHER, BARLOW AND FRYER 1971, pp 6-10 for more details of the lsogal
network) . .

The density of gravity stations in the test area existing at the start of the project varied from
about 1 station per 20 km?> in the flat areas to the west to 1 station per 16 km® in the mountainous
regions .to the east. The bulk of this work was done using helicopters for transport with a pattern
of loops with common junction points established to provide a link between adjoining loops. Gravity
measurements were taken with Worden grayimeters (or instruments capable of similar accuracy), whilst
height was fixed barometrically. (See BARLOW 1967 and MATHER, BARLOW AND FRYER 1371, pp 6-10 for
more details of the techniques used in survey.) The accuracy stated for the resultant anomalies

is <1 mGal, and certainly provides a good background of gravity information for the purposes of this

study.

The density of.the gravity stations in the vicinity of the computation point which is required for
precise determinations of the deflection of the vertical is obviously a function of the wave length
of the gravity field itself and this will generally be much higher in rugged areas than on the plains.

Some writers have expressed opinions on this topic and they are quoted below.

PELLINEN (1968, p 352) has claimed a need for ''1 point every 0.5 km to 1 km within several kilometres

of the control station."

Mather has decided on "a 0°.05 (=5 km) grid within 50 km of the control point, with a 0°.01 ( =1 km)
grid within 10 km of the point when evaluating using a computer' (MATHER, BARLOW AND FRYER 1971,

p 27). Bursa in his investigations used a very dense network of 1 gravity station per 5 km? , and
this was further densified around the computation point (BURSA 1968, p6). Brovar (BROVAR ET AL

1964, p 290) in an optimisation for a gravity survey around a deflection point shows a need for 1
point within 2 km of the computation point P, 6 points within 8 km of P measured with a © of

$0.9 mGal, a further 7 points within the next region out to 21 km with a o of #1.3 mGal and

another 8 points out to 48 km measured to 1.9 mGal.

These estimates of densities are higher than the existing gravity station pattern in the test area,
particularly in the immediate vicinity of the computation point. It was therefore necessary to
intensify the gravity data before a proper investigation could take place. To this end five field
trips, each of five to ten days duration, were made to the test region. The two prime tasks were

to (i) define the gravity field in the vicinity of each of the twelve computation stations to an order
of accuracy thought to be sufficiently accurate for the purpose of the investigation (estimated at

0.3 mGal) and (ii) to fill in the gaps of the existing gravity survey.
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The pattern of close gravity stations for the stations are shown in figures 10 to 21 . The

survey of Willalla was never satisfactorily completed for a variety of logistical reasons. The
detailed aim of the survey was to (i) determine gravity at the A/G station itself then (ii) encircle
it with a network of 6 to 8 gravity stations at about a 0.5 to 1 km radius, and with similar pattern

of gravity stations 5 to 10 km radius from the A/G station.

It was not always possible to fulfil these specifications as at times the terrain made access difficult.
Often it was not possible to get the line of sight conditions desired particularly for the closer

ring of gravity stations (see below for methods used to fix height and position of these stations).

(a) Gravity Measurement

A Worden gravimeter (W 140) on loan from the Bureau of Mineral Resources was used for gravity
determination on four of the field trips. Worden gravimeter A.G. No. 2 belonging to the School of

Geophysics at the University of NSW was employed on the fifth.

The main gravity traverse would start and finish at an l|sogal Station located at Narrabri (6491-1108)
or Tamworth (6491-9109) and extended over a period of 3 to 4 days. In some cases when gravity
closure exceeded expectations this main gravity traverse was broken into smaller traverses, using

as terminal data the gravity values at the base station established at the camp. This value was
determined from the series of short runs between the lsogal station and the base station. In all
cases misclosures were adjusted proportionately with respect to elapsed time through the traverse

(see table 2 for summary of traverse misclosures).

Drift checks were also made each morning and evening at base camp, as the rigoroys field method
usually adopted for this was not feasible (eg. DOBRIN 1960, pp 220-223), Access to some gravity
stations took more than half a day's walk in rugged terrain and reyisiting these stations would
have enormously increased time requirements for the job. Figures 22a to 22e illustrate these
drifts and encourage the device of using the shorter traverses on a day to day basis because of

apparent irregularities.

Calibration runs were done before or after each field trip on the calibration line Fuller's Bridge
(6091.0105) to Wahroonga (6091.0305) in Sydney or by carrying gravity from Wahroonga to the local
!sogal Station en route to the test area, which provided a check calibration (although not as precise
because of the period of elapsed time and the necessity to reset the gravimeter at Muswel 1brook) .

See table 2 for calibration details. Because of field methods adopted it is expected the standard
errors of gravity measurement to be of the order of #0.3 mGal. Check determinations at stations

measured on different traverses confirm this estimate.

(b) Height and Position Determination

The method of survey used to fix the gravity stations depended on the location and accessibility of

the station. EDM radiations or subtense methods were used for points close to the computation

point.

These were estimated to give a precision in height (on) of = 20.01 m and 0.3 m respectively.
For more distant stations barometric levelling was used to fix heights and positions were scaled
of f medium scale maps (1:31 680). The precision for the height of these stations is estimated as

*1 m, care being taken to limit the distance between field and base station. This estimate is
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Trip Traverse Starting Finishing Misclose| Elapsed
: Gravimeter
No. No. Station Time | Station Time (mGa) Time
(hrs)
K. t K t
1 1 poputar | z/0815 | paputar 3/0800 1.6 24 Worden W140(BMR)
2 " 3/0800 ' 3/2030 0.0 12%
3 g 4/0800 | " 4/1705 -0.5 9
N'Bri N'Bri
4 lsoGal 5/0930 lsoGal 8/0910 -0.3 96
2 1 sunnedah | 27605 Gunnedah |5 /9020 -0.1 12 "
ase Base
2 " 3/0810 H 3/1905 ~-0.1 11
3 " L/0745 ' 471920 -0.3 12
4 " 5/0845 " 5/1755 -0.8 9
' N'Bri _
5 ! 6/0905 lsoGal 6/1720 1.4 8
N'Bri N'Bri N
3 1 lsoGal 1/1630 1soGal 2/1920 +0.2 27
2 " 2/1920 H 3/1745 -0.1 22
3 " 3/1745 " 472030 -1.1 27
Barraba Barraba ,
L 1 Base 2/0600 Base 2/1945 0.2 1h !
2 " 3/0625 " 3/2130 -0.7 15
3 X 470815 | TaMOTEh 1y /1500 -0.6 7
4 Tamworth | 4, /1500 'spee! 8/1940 +1.3 100
IsoGal :
Tamworth Tamwor th
5 1 IsoGal 1/1700 IsoGal 3/1830 +0.4 49 Worden A G 2(UNSW
2 X 371830 | NrretTi i 6/0800 0.4 62
s |t eronon | Tomerth | gioss |07 |27
NOTE: (i) Narrabri lsoGal is lsoGal Station No. 6491-1108 located near Narrabri Post Office

(ii) Tamworth IsoGal is lIsoGal Station No. 6491-9109 located at Tamworth Air Port

TABLE 1 SUMMARY OF GRAVITY TRAVERSE MISCLOSES
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supported by check determinations (eg. simple trig heighting) and comparisons with heights

interpolated from contours.

The positions of the gravity stations are not critical and need only be known to *20 m in each
direction. This could be achieved by scaling off medium scale maps, although for radiated stations

the position was computed directly to a much higher precision.

(c) Collation and Storage of Gravity Data

The field measurements were punched onto data cards and processed to produce a file containing the
latitude, longitude (expressed in decimal degrees to the fourth place), height in feet and free-air
gravity anomaly. This file was combined with the BMR gravity data organised in the same fashion in
the region bounded by -28°5 to -32200 in latitude and +148%5 to +152%0 in longitude. Together
they created a file of 1550 points which was called GRAVBNK, and which was ordered according to
longitude to assist in computer searching operations. Each station file was subsequently expanded
when the G' values for each of the gravity stations within certain limits of the A/G stations were

computed. The reason and methods for this will be described in detail in section 4.4,

4.1.2 Auxiliary Height Points

As was shown in Chapters 2 and 3 the full solution takes into account terms which are topography
dependent. The gravity stations alone do not give an adequate description of the terrain. Quite
apart from their spacing, which is far greater in rugged areas than the wave length of the main
trends of the topography, they are likely to systematically underestimate the terrain heights, as
most ground based (cf. helicopter borne) surveys are limited to areas accessible by L-wheel drive
vehicles. For these reasons it was felt essential to augment the gravity data with extra height data

from the maps.

The aim of this "height bank'' was to give a faithful picture of the terrain. The general trends were
recorded by taking heights at 3' x 13' grid intersections (6 x 3 km) grid intersection, with any
notable differences from this (eg. large uplifts or deep valleys) also being digitised. As was

found in the earlier computations it was necessary to further intensify the height field in the
vicinity of the computation points. Otherwise the computational technique employed tended to over=

smoothen the topography in this critical area.

The height file, which was initially called HTBIN, consisted of roughly 1200 points defined in
latitude, longitude and height, and was organised as a function of longitude to assist computer

searching.
4.1.3 Geoidal Information
The solution derived from Green's Third ldentity requires geoidal information &, n &N as

well as terrain parameters h and B. The values of N were obtained from the 1970 geoid solution

for Australia by Mather (see MATHER 1970a; MATHER 1970b) .

(a) N

This was calculated on the Australian Geodetic Datum (AGD) for each A/G station as well as for a
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number of interpolation stations to the north and west of the region (see fig. 23 ). Subsequently
N was transformed to the International Ellipsoid to conform with the datum adopted throughout the

gravimetric computations.

(b} £, n

The values of £ , n computed in the 1970 geoid solution mentioned above were likely to have large
errors of short wavelength owing to the relative lack of gravity data in the innermost region of
computation. So the usual method of taking the first approximations of & , n computed in this
solution from the Vening Meinesz formulae was not used for the purposes of this exercise, mainly
because it was felt that the A/G deflections would be less likely to introduce uncertainties into

the evaluation.

Diagrams of the geoidal parameters can be found in figures 23 to 25 . The final input data
consisted of latitude, longitude, N, & and n for each of the A/G stations and for interpolated
stations needed to provide information beyond the limits of the area described by the A/G stations.
In all 17 stations were used to describe the geoid throughout the region. See section 6.4 for
details of methods used to compute geoidal parameters at discrete points in the solution of the

correction terms.

4.2 Computational Methods
4.2.1 The Traditional Approach

The method originally postulated to compute the deflection of the vertical was a purely graphical
approach (STOKES 1843, p 170), deriving deflections from geoid elevations. The Vening Meinesz
integral enables us to evaluate deflections analytically, using the gravity anomalies themselves as
data. The computational approach used in this evaluation will be discussed here as they will have

an important bearing on the techniques developed in this investigation.

'n 1947 SOLLINS (g.v.) published tables to be used in the computation of deflections. Recognising
the fact that the Vening Meinesz integral was a continuous summation over the whole earth's surface,
and that the kernel of the integral did not solve as a closed analytic function, he used the standard
technique of breaking the surface up into small discrete areas. The contribution from each area to
the deflection was then computed and accumulated through the whole surface to find the sum total

value for & and 1N .
The tables of Sollins (IBID, pp 286-300) give values of i(%i’l siny  and S d—fj-él"-)- siny dp

starting from a value of ¥ equivalent to 10 m and incrementing by 10 m out to 5560 m. With such

small steps it was felt that almost any type of areal subdivision could be used for the evaluation

of the Vening Meinesz expression.
We shall look briefly at the approach taken by Sollins to prepare these tables.
Sollins expressed the Vening Meinesz integral thus

g, = - s Ag Egéﬂl siny cos o, dy da ; i=1, 2 (4.1), [ from (2.26) ]

where
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FI1G.23 GEOQID-ELLIPSOID SEPARATIONS IN THE TEST AREA
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siny dy da =
&r = &, & =
a; = O Og =

and the Vening Meinesz function as

af(y) _ ; r_ cosiy
av = 4 Zsin’3y
_ 2_(1+25inéy)
2 ‘+sin¥y

The series expansion of d2$ ) sinv ,

df ()
@

sin y
J Egé&l_ sin ¢ dy

which, upon substitution for ¥ 1is the

-3 cos 3P+ 5siny + 3siny

-7h4-
do

90 - «

In(sinky + sin?Ly) -

(4.2)

cot 3 cos ¢ ]

will be seep to be

I ggéwl sin Y dy

_.l o3 M
= a 5 v o+
- sy -3y g e

basis for Spllins tables.

[cf(2.27)]

Rice used the Sollins' tables to develop his well-known ring pattern for computation of deflections

of the vertical (RICE 1952).
(do)

given mean gravity anomaly for the area

constant apex angle

the vertical at the computation point.

known) give a radial deflection of 0.001 arcsec for a 1 mGal anomaly, and a 10° step between successive

radii

So the values of ¢

If we restate (2.26) as

They can also be derived in the following manner,

dp

If we accept a
it is possible to use (4.3) to develop a series of radii which, for a
sin Y do will give a constant radial deflection of

Rice's Rings (as the concentric circles thus generated are

could be found from (4.3) in this way.

gT = C; J/f Ag E%%il sin ¢ cos o dy do H i=1,2
where C; = Egﬁsg—l: da
Then for da = 10° ,
Y = 979770 -
C; = 0.005 858.

We can now impose the condition that an

a 1 mGal anomaly i.e.
O R

where j =1 +1

J-]=C1['1n¢i'%w-"[;g i

increment in 1y give a deflection of

49 v2] - 0.001

(4.5)

(4.6)

0.001 arcsec for

(4.7)
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The first approximation of ¥, (¢}) is found by

J
_ 0.001
In wj = 1in v, * o
or pio= 7' (in oy, + 22000 (4.8)
] i Cy

This expression could be substituted back into (4.6) and a more exact value for wj found. However,
with modern computing technology it is easier to evaluate the first approximation of wj, substitute

the value itself into the smaller terms in wj and re-evaluate 1In wj in this new circumstance.

Thus a series of rings intersected by radii with 10° apex angles are generated from a minimum radius
of (in Rice's case, IBID, p 288) 100 m to a maximum of 1094.3 km in 56 steps. Each 'compartment'
has an area which will contribute 0.001 arcsec to the radial deflection of the vertical at the

computation point for a mean anomaly of 1 mGal.

The rings are used in a way which is directly comparable to the computation of the terrain correction
using Hayford zones. Plotted on a transparent sheet, they are overlayed on gravime:ric and
hypsometric maps with the centre of the circles on the point of computation. The mean gravity
anomaly and height for each compartment is then extracted and combined to get the compartmental

mean free-air anomaly. The resultant deflection is then split into its two components and these

accumulated through the entire template of rings.

A similar technique was developed in Russia, as reported in (MOLODENSKII ET AL 1962, pp 168-171).

These templates computed the influence of 1 mGal producing a radial deflection which varied in four
stages depending on the distance of the compartment from the computation point starting from 0005

for an initial radius of 5 km to 09000 371 for very distant zones (2000 km). The apex angle was

not kept fixed at 100, but was also varied in the stepping process. The aim of this presumably was

to introduce a certain correspondence between the compartment size and the density of data usually
available at various distances away from the computation point. Certainly, as is shown in section 6.3,
the original Rice Rings subdivision is too fine for the density of the data being used and some

re-organisation of the rings pattern can improve the efficiency of computation by this method.

Whether modified or not, the Rice Rings approach possesses a certain strength in solution coupled
with flexibility of application which is not easily obtained in the grid pattern approach usually
adopted for computer solutions. This will be discussed more fully in section 4.3 after the approaches
to computer solutions have been reviewed. Nonetheless, the ease in application of the Rice Rings
approach can be appreciated when one considers computations with incomplete data, or even error
analyses using this method. For an error analysis one simply substitutes the error in the gravity
anomaly for the gravity anomaly itself and then finds the resultant error in the deflection. If the
gravity field is augmented after a first approximation is computed, one can compute the radial
deflection resulting from the new data and accumulate the result with the earlier value. But
probably the most valuable aspect from the point of view of maintaining accuracy in computation is
that the changing sizes of the compartments gives one insight into the density requirements of data
for the maintenance of accuracy in solution. In this respect it could be compared with optimising
techniques in survey networks which ensure that survey methods are employed to produce values

satisfying the accuracy requirements of the task.
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4.2.2 Contemporary Methods of Computation

The contemporary approach to evaluation is greatly influenced by the coming of electronic computers,
now the sine qua non of calculation and data handling tools. This has led to the evolution of new
techniques for data manipulation and storage in order to increase the efficiency of computations.

It has also led to the re-formulation of the solutions to suit the methods of data handling dictated

by computer techniques.

The earliest attempts at solving geophysical problems on the digital computer were in the late 1950s.
For example, BOTT (1959) reports on a method of evaluating gravimetric terrain corrections out to
Hayford Zone E using a combination of graphical and computer approaches. This was not a direct
simulation of the Hayford Zone system on the computer, however.Mean height and gravity values were
found and stored for squares resulting from a grid placed over the area around the computation point.
The correction was then evaluated for each square in turn and accumulated through the area. In
other words, there was a trend away from the system which eased the computational load in the manual
evaluation and towards methods which enhanced the data handling aspects of the computation. Even

so, the use of the grid pattern meant that some processing of the data had to occur before it could

be presented in this form.

This approach established itself in the geophysical world. In 1962, KANE (q.v.) published a paper
describing techniques for the computation of the terrain correction done completely on the digital
computer. Data was again stored in matrix form, and the paper underlines the problem associated
with storing data in a grid system, particularly as the calculations approach the central point.

The general inflexibility of this approach is such that, if too large a size is adopted as the
basic unit for terrain representation, it is too coarse to reflect the actual situation. |If on the
other hand too small a square size is taken, the amount of computer storage is increased greatly,
and as a result so also is the time of computation of the terrain correction. The end result is a
compromise; square sizes are varied according to distance from the computation paint and in general

their magnitudes and made comparable with the compartment sizes of the Hayford Zones.
This again shows the need for some pre-processing of data before a computation can be carried out.

In 1962 CAMPBELL (g.v.) investigated the computation contribution of the central area to the
deflection of the vertical using 'square storage areas'. In this development the element of surface
area in the Vening Meinesz formulae do is expressed in terms of the parallels and meridians

defining the square, viz:
do = cos ¢ dp dxr (4.9)

The system of successive subdivision of the grid pattern was as follows. Firstly the given area is
subdivided into a 9 x 9 grid, giving 81 squares, from which the innermost (3 x 4) 9 squares are
further subdivided to give 81 squares. This process is repeated until a sufficiently small 3 x 3
pattern of squares are obtained at the centre to assume constant gradient of the anomalous gravity
field. Because of the nature of the subdivision a simple algorithm for evaluation can be derived.

Tests on theoretical and actual fields compared well with the Rice Rings solution.

Campbell concludes that the Rice method gives good results for minimum effort, but that for a

completely automated procedure on an electronic computer the 'square method' approach is best.

Among the first to employ computers in the solution of the geodetic problem was Fischer from the US
Army Map Service and the concept of storing data in a grid pattern was employed by her (FISCHER 1966a;

FISCHER 1966b). This was due not only to reasons of storage but also because deflections were being
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computed at the grid intersections themselves in order to facilitate interpotation of A/G deflections.
Each computation point (P) is surrounded by a set of belts. The first belt (By) consists of four
rectangles (a x b) having a common vertex at P, The second belt (B,) consists, of 12 rectangles, B;
of 20 rectangles and so on. With a subdivisional technique analogous to that mentioned by Campbell
above, a simple algorithm can be derived and the Vening Meinesz integral evaluated. Again there is

a need for organising the data before the computation can take place.

There are a few real shortcomings in the grid approach which will be mentioned here. The first
relates to the wavelength of the gravity data or height data which must be faithfully reflected in
the nearest zones for deflection computations if precision is not to be lost. There seems little

O, 0.5° or even 0.1° squares for general

doubt that the storage of gravity anomaly means of 50, 1
geoidal computations is the most convenient and efficient approach to take (COLOMBO 1976) but to

carry this approach right up to the computation point itself, as is needed in deflection computations,
creates difficulties on the detailed analysis of results. It is useless simply to continue subdividing
existing square sizes in the hope that this will increase the sensitivity of the computation. It is,
of course, necessary to actually evaluate the mean value of these smaller squares by observation,

and this is what is done in most cases. For example, EMRICK (1973, pp 75-82) adopting the Fischer

idea of subbelts, found the mean terrain heights of the innermost 7.5 squares from the 1:24 000
topographical map series, and the gravity anomalies were interpolated from the United States Coast

and Geodetic Survey (USC and GS) Bouguer anomaly map of the area.

A second and important shortcoming is of a practical nature. It is pure coincidence if the computation
point sits on a grid intersection formed by one of the subdivisional techniques. In fact both

Fischer and Emrick computed deflections at the intersections of grid lines, and then used an
interpolation method to find the deflection at the actual A/G station for which the comparison was
needed. This must certainly introduce errors in areas of disturbed gravity as the model for
interpolation could never properly reflect the short wavelength signals of the immediate gravity

field to which the deflection is so sensitive.

The third point relates to the strength of the function in the kernel of the Vening Meinesz integral
which is used for the grid system. The form of the elemental area used in the grid approach is given
in equation 4.9 and is compounded with the Vening Meinesz function (4.2) to evaluate the integral.

It can be seen on inspection that the kernel approaches infinity for ¢ » 0 as a function of

cosec? ¥ y. On the other hand, if the polar coordinate form is used (equation 4.1) the Vening
Meinesz function is multiplied by sin Yy (= 2 sindy costy ) and the kernels approach to infinity

for % >0 is a function of cosecty . This significantly strengthens the function as errors in
Ag now have the coefficient coseciy instead of cosec?yPp . For a detailed investigation such an

improvement must be considered significant.

There is no doubt that for general geoid solutions the efficiency of the programming system is
greatly assisted if the data is stored in a grid pattern. This has generated research into such
areas as the storage and retrieval aspects of data (eg. BUCK AND TANNER 1972) and also into the
optimum grid to be adopted for gravimetric solutions. In this regard, for example, PAUL 1973 has
devised a scheme which attempts to maintain equal surface areas for the square sizes used for the

storage of data, in order to overcome problems of inequalities of sample sizes posed by a straight

geographical grid.

At this stage the subdivisional approach adopted by MATHER (1969, p 501; 1970a, pp 83, 84) for the
1970 geoid solution of Australia will be described as this will form the basis for the 'outer!'
zone computations in this present investigation. A consistent set of 0.1° x 0.10, %o X &0, and

5o X 50 area means were obtained from a combination of satellite data and surface gravimetry.
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The computation was performed in discrete stages, as illustrated in figure 26. The four 0.1°
squares containing the computation point (P) forms the basic starting point for the pattern of
squares which develops. The 3.0° square centred on the 1° square containing P using 0.1° means

taken from surface gravimetry is the next unit of computation.

Then the 150 square centred on the SO square containing P is computed using 0.5o sguare means,
and omitting the area already computed in IN. This is the Near (NE)} zone computation. The Mid
(MD) zone is the 45° x 45° zone centred on (and omitting in computation) NE, and is computed using

1° means. Beyond this (UT) 5° means are used.

Because of the relatively long wave length nature of the contribution to & , n of the NE

to UT zones, and since there had been no significant change to this data, it was decided to accept
the 1970 computations for contributions to £, n from these zones for each of the 12 test
stations. The results of this computation are presented in section 6.2.3, The present investigation
concentrated on the crucial inner zone of computation and its contribution to the deflections

(fe. 0<y< 1.59.

4.3 Techniques adopted for Solutions
4.3.1 Computation of the Deflection

Because of the bulk and intricacy of the computational work involved in the investigation, not only
in the computation of & and n but also the evaluation of G' and the other terrain correction
terms resulting from the solution by Green's Third ldentity, it was necessary to set up a computing
system on the CYBER 70 (model 72) at the University of New South Wales. This system had to provide
the maximum in accuracy, flexibility and detailed analysis. The shortcomings of the 'traditional’
approach explained in section 4.2.1 can be summarised as (i) the need to preprocess the data,
forcing some smoothing into the data which may interfere with its faithful reflection of the real
situation; (ii) the asymmetry of the grid representing the terrain/gravity model with respect to

the position of the computation point.
On the other hand, the Rice Ring approach contains some attractive features, such as

(M the relative strength of the kernel of the Vening Meinesz integrals when expressed in the

polar form;

(i) the fact that the asymmetry now rests in the transition between the outer-most ring and
the inner boundary of the NE computation: at this distance ( ¢ = 1.50), the asymmetry is no

Tonger critical;

(iii) an increase in the flexibility of the approach, particularly if the rings are computer
generated. It is much simpler to refine or coarsen subdivisions (compartment sizes) as density

of data demands;

(iv) there is no preprocessing of data, ie. analysis is carried out on the data in its raw state.
This is important as it allows for a detailed analysis to be undertaken on discrete parts of the

solution directly from the actual data.

There is some precedent for using a Rice Rings approach in a computer solution for deflection
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computations: DIMITRIJEVICH (1972, p 4) states 'The contribution of the gravity anomalies in the
innermost zone . . . is computed using the circle ring method of Rice, using the ACIC computer program
CIRC.'", although no further details are given. Referring back to equations (4.7) and (4.8) one can
see how simple it is to generate rings with 10° apex angles giving a 0001 radial deflection for a

1 mGal anomaly. To a first approximation
! =
wj In = (In ¢, + o ) from (4.8)
where j=i+1

A simple substitution for the 0.001 of a more suitable radial contribution per compartment (say 0.005)

generates a new set of rings for use (for example) in a less disturbed area.

The subroutine developed for use in this investigation (see flow chart for RICERNG, appendix A simply
computes the coordinates of the mid compartment points and nominates the starting and finishing

radius of the set of rings called. Experiment showed it was usually sufficient to start at 100 m,

and generates compartments giving a 0002 deflection out to a distance of 130 km (see table 3 for
details). Experience also taught that it was possible to combine adjacent compartments (and effectively
change the apex angle by a whole number of 10° units), particularly in the rings nearest the computation.

This greatly speeded up computation without significant loss of accuracy.

Using the new data from GRAVBNK it is possible to compute the mean anomaly for each compartment or
combination thereof. The deflection resulting from this can then be split into its two components

and added into accumulators for & and n.

The main problem posed in this approach is how to extend the gravity field from the discrete
gravity stations in order to get the best estimate of Ag for each compartment. This problem will

be looked at in Chapter 5.

4.3.2 Computation of G'

In theory it is necessary to find the correction term G' at every point on the earth's surface (or
at least at every point within the range of the computation point which will significantly affect
the solution). In this respect it is analogous to the Ag itself, and thus techniques for
prediction and extension of the Ag field can also be applied to the G' field. For this reason
it was considered best to compute G' at every point at which gravity had been measured (rather
than on some arbitrary grid) and, because of the fairly long wave length of the field, it was
considered feasible to apply the same extension techniques to the G' field as were applied to the

Ag field (see chapter 5).

The fact that the data was maintained in its unprocessed state meant that, for the computation of
G' at any one point, it was again possible to use some system of rings. It is possible, of course,
to find the contribution to the G' for each compartment of the Rice Rings pattern which could be
generated around the G' computation point. However these rings have no real relationship to the
parameter being evaluated, and it was decided to develop a new set of rings (called for

convenience KSRINGS) which would properly reflect the sensitivity of the computation.

The aim, therefore, was to derive a function giving equal contributions of G' per compartment to

G' at point P, for a stated difference in height and gravity anomaly.
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Ring No. RADLUS (m) ¥y (Radians)
Inner Outer Mean
2 100.0 140.8 120.4 0.000 022
3 140.8 198.3 169.6 0.000 031
4 198.3 279.3 238.3 0.000 Okk
5 279.3 393.4 336.3 0.000 062
6 393.4 554.0 473.7 0.000 087
7 554.0 780.1 667.0 0.000 123
8 780.1 1 098.6 939.4 0.000 173
9 1 098.6 1 547.0 1 .322.8 0.000 243
10 1 547.0 2 178.4 1862.7 0.000 342
11 2 178.4 3 067.3 2 622.8 0.000 482
12 3 067.3 4 318.5 3 692.9 0.000 678
13 4 318.5 6 079.3 5 198.9 0.000 955
14 6 079.3 8 556.7 7 318.0 0.001 3h4
15 8 556.7 12 040.7 10 298.7 0.001 891
16 12 040.7 16 937.6 14 489.2 0.002 660
17 16 937.6 23 814.9 20 376.3 0.003 740
18 23 814.9 33 462.1 28 638.5 0.005 255
19 33 462.1 46 973.0 Lo 217.5 0.007 377
20 46 973.0 65 851.9 56 412.5 0.010 342
21 65 851.9 92 146.2 78 999.1 0.014 471
22 92 146.2 128 600.9 110 373.6 0.020 196
TABLE 3: RICE RINGS FOR 0Y002 RADIAL DEFLECTION

for

1 mGal per compartment with 10" apex angle
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HAMMER ZONES

Ring G' Inner Quter No. of Hammer | Zone Details No. of
No. | Contribution Radius Radius Compartments Zone | Radius | Range Compartments
Inner | Outer

2 [7.5x10° 100 137 6 D 53 170 6

3 " 137 217 6 E 170 390 8

4 " 217 526 6 F 390 890 8

5 1.5 x 10° 526 734 9 G 890 | 1 530 12

6 " 734 1 218 9 H 1 530 2 615 12

7 ' 1218 3 556 9 I 2 615 L 469 12

8 |4x10° 3 556 7 287 9 J |4 hes | 6653 16

9 {1x10° 7 287 9 878 12 K 6 653 |9 900 16
10 " 9 878 15 330 12 L 9 900 |14 740 16
1 " 15 330 34 210 12 M 4 740 |21 944 16
All distances are in metres.

TABLE 4 KSRINGS

Difference in height of 100 m and Difference in gravity anomaly
of 1 mGal gives contribution to G' at subject point as listed.
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Consider the expression

Rz Q2 ¢2d0
¢ =7 L (4.10)

where r = 2R sint y

do

siny dy do

So (4.10) becomes

RZ % V2 Siny 4y do

¢ = 2r &1 §, B R3sin’% Y
oy Yo .
_ 1 2 sinty cost ¢
= TR 4 &1 Sin’s ¥ d da
_ Oy - o1 yz cos 3y b
16mR " sin?ty
c o= Yoo 1 _ 1
8mR sint Uy, siny P,

But o = 2R sint ¢

To generate compartments with 10° apex angles which give equal contributions to G' at the computation
point of (say) .001 mGal for a height difference of (say) 100 m and gravity anomaly difference of

1 mGal, we know from equation 3.3 that

2 (h=h ) (Ag - Ag ) do
C = 6 - G = & gf P P G=1i+1)
j] i 2n P?
= %2 - O (_l_. - _l_) Sh SA
“w T 9
i 0]
o 0. 001 _ 1om IV B I (100x1)
: 180 Tm v ro.
0i 0]
If we take rg, as-minimum radius, then
_ 100 T 1
0.001 = g Gy Ry
1 0.001
and oo = 1/ [F;:' - 777773;7677]
or
Foa = 1/ [—— - 0.036 ] (4.11).

Fo1

It becomes obvious that r,; cannot exceed 27.8 m (the inverse of 0.036) which indicates the figure
chosen as the contribution per compartment is unrealistic. Moreover it shows that from time to time
the right-hand side of (4.11) becomes negative and it is necessary to choose a fresh value of C

to overcome this problem.

After some practical experimentation, and by comparing resultant sets of ring radii with the Hammer
Zones (see DOBRIN 1960, pp 231-234) it was decided to choose the following set of C values:
7.5x10°°, 1.5x10°°, 4x107°, 1x107° 7

, 2x10 . This generates the set of rings shown in table 4,
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It is interesting to note that beyond about 35 km the value of C must be very small in order to
generate a ring of any meaningful size. As a result &§Ag and S8h must attain large values to
contribute significantly to G'. This emphasises the point that beyond about 40 km the contribution
to G' is extremely small. This point is supported in practice by a number of investigations,
including HAGIWARA (1973, pp 305-311; 1974, pp L4L46-448), who computed G' out to 20 km in the
rugged Tanzawa Mountain region of Japan, and BURSA (1965b, p 145) who estimates a limit of 50 to
80 km on this computation. 1In the actual G' computations in Czechoslovakia, BURSA (1969, p 10)
comments that it is sufficient to restrict the computation to within about 43 km of the computation

point.

A real advantage in using this ring technique is that it adapts easily to the system developed to

compute the deflections.

A flow chart of the subroutine to compute G' is shown in appendixB and the way in which it is used
to compute G' at every gravity station within 1?5 of any of the subject A/G test stations using
discrete data is shown by way of flow chart in appendix C . The results of the computations

evaluating the effect of the G' term on the deflection are shown in section 6.4.1.

4.3.3 Computation of Ground Slopes

The correction terms (2.72, 2.73) resulting from an evaluation of Green's Third ldentity contains
parameters for the ground slopes B; and B, . This term does not lend itself to the kind of
development carried out above, and so it was decided to estimate the slope for a compartment or

set of compartments of Rice Rings by computing the maximum slope and its azimuth from the three
points from GRAVBNK and HTBIN which form the closest circumscribing triangle. This suits the method
used to interpolate gravity anomalies and heights of midcompartment points, and a small subroutine
GRSLP was developed (see appendix D ). The expression used to compute these basic parameters

is derived below.

Let the vertices of the corners of the circumscribing triangle of Q be 1, 2 & 3 (where 1 happens
to be the point closest to Q, 2 the 2nd closest point). The slopes of the sides 1-2 and 1-3

(61_2 » Bi_s )} can be easily found, as can the azimuths Ay, s Qs (see figure 27 ).

Projecting 1 ~ 2 and 1 ~ 3 onto a sphere, centre at 1, zenith Z we can construct great circles

Z11', 222" where 1' and 2' is the intersection of Z1 and Z2 with the horizontal plane

through 1.

Now, following the development given in (MAUGHAN 1975, pp 88-89), we see the problem is to calculate
the shortest distance from the pole (Z) to the great circle passing through 2 and 3. This will be
the distance ZX, where X is the intersection of the great circle 2-3 and the polar great circle

perpendicular to that great circle.

Hence, by applying Napier's Analogies to spherical triangle 3ZX
cos (3ZX) = tan ZX tan B3

Also, in spherical triangle 2ZX

cos (2ZX) tan ZX tan B2
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Dividing the second equation by the first gives

cos {22X) _ tan Bi»

cos (3ZX) tan Bia
But 2ZX = Q12- Qi3+t 3ZX = Ao + 3ZX
Substituting and expanding

cos Ao cos(3ZX). - sin Aa sin(3ZX) _  tan Bi»
cos (3ZX) " tan B;s
cos Aa - tanfip/tanfis

or tan (3ZX) i (4.12)

3ZX can now be evaluated and we can see that

OL.IX = 033 - 3ZX (4-13)

where o is the azimuth of the line of greatest slope in the plane 123,

1X

Substitution of the angle 3ZX back into the first expression above gives

ZX = tan ' [ tan B13/cos(37X)] (b.15)
where the greatest slope B is given by

B = 90 - X (4.15)

Given the azimuth and slope for the line of maximum slope we can find, from (2.33a) and (2.33b),

the values of the ground slope in the meridian and prime vertical directions B; and B2

ATl other parameters in the correction term under consideration are not functions of the surface
topography and must be found by some interpolation process. The computing system developed for
the evaluation of this expression, along with the results of the computations, can be found in

section 6.4.2.
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5. PREDICTION AND EXTENSION OF THE GRAVITY FIELD

5.1 Introduction

One of the chief tasks which must be undertaken before attempting a solution of the geodetic
boundary value problem, although it in itself is an issue quite independent of this problem, is
the extension of the gravity field beyond the discrete points of observation. The Stokes or
Vening Meinesz formulae assume a surface summation over a continuous field, and thus an important
step in the course of their solution is the presentation of the field in a continuous form.

(This is what is effectively done to gravity data when it is processed and sorted into the grid

patterns described in section 4.2),

The aim of this chapter is to review the techniques which have been used to extend the gravity
field from its discrete form to a continuous one, particularly with a view to its suitability to
a ring type solution on computers. Since some form of the ring system is used for the evaluation
of the G' and ', n' terms, as well as for £, n , the method of gravity extension will

obviously have direct influence on all facets of the computation.

This problem is barely recognised as such in a manual computation of (say) deflections by the
Rice Rings. There the ring pattern is overlayed on the anomaly or topographic map, and mean

values of gravity or height abstracted by eye.

One might not appreciate the number of complex decisions being made in this process, and indeed,
it is difficult to see the compiexity of the problem until the steps are written up in a logical
sequence for programming purposes. Admittedly, on maps provided with isogal lines or contours the
data has already been converted from a discrete to a continuous field. Nevertheless, even when
working from discrete data, the mind can intuitively carry out a number of logical steps in an
interpolative process which, when programmed, show themselves as answers to problems which are

both intricate and complex.

Because of the volume of data analysis to be carried out for these computations it was decided that
manual computation would be prohibitive except for checking purposes. A method which supplied the

most accurate means of field extension by computer was therefore sought.

It should be mentioned that in all prediction it was felt essential to use the two elements of the
free-air anomaly, the Bouguer anomaly and the height in two separate phases of the prediction
process. This technique has long been accepted practice (eg. RAPP 1964, p 143) as it separates
the relatively long wave length Bouguer anomaly field from the higher frequency of the topography.
The height information can be intensified separately in critical regions by abstracting heights

from medium scale topographic maps.

The question of how best to find the mean anomaly of a compartment is another point which must be
considered at this stage. Various schemes can be devised, such as taking the mean of the four
corners of the compartment or using some other selection of points through the compartment as a
representative sample of the field therein. Again this task is fairly readily resolved by eye
using template overlays on charts as trends and dominant features can be easily detected and
assimilated. In an automated process this would require detailed sampling, which for the present
task is prohibitive. It was decided after testing that prediction of the mid-compartment point
was adequate for the purpose. In cases where this gave unrealistically high contributions to the
element currently being evaluated the compartment was broken into more discrete units, and the

contribution for each unit accumulated into the total. This again shows the advantage of computing
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with the versatile ring system using the raw data.

Tests of this approach under the more extreme conditions encountered gave quite reasonable results
when compared with hand computations by ring overlays on maps. The results of these comparisons
will be referred to when consideration is given to error propagation in chapter 7. For the
purpose of this chapter it will be assumed that the mid-compartment value represents the
compartment itself, and so the problem is how best to predict anomalies and heights at discrete

points.

5.2 Surface Fitting

5.2.1 Second Order Three Dimensional Functions

This technique was suggested by KIRKPATRICK (1975) and appeared attractive because the surface

undulates and in that respect has a similar form to Bouguer anomaly surface and to the terrain.

Say a function fi is known at n points, (= Agi s hi ) whose positions are defined on a
plane by the cartesian coordinates Xi s Yy i=1 n.
Let 8g, = f. - f1

X, = x. - x

and assume that the general relationship
§f, = aX. + bY, + CX? +dX, Y, + e Y? (i =2, n) (5.1)
represents the surface.

The coefficients a to e can be solved uniquely if 6 points are known (producing 5 simultaneous
equations). The position of the prediction point (Q) is then applied to (5.1), and f for this

point deduced.

For the best results, the point 1 should be the closest point to Q, and the 6 known points chosen

so that they surround Q (ie. to obviate extrapo]ation).

The above approach was extended slightly to seven known points and the solutions for the

coefficients done by least squares using matrix algebra.

The observation equations can be expressed as

Fi = Jlab c d e} X1 Yy X} Xyvp  v:
Fa X2 Y2 .. . Y3
F X ¥ Y2
n n n

or more briefly as
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The solution is given by

)7 XU F (5.2)

A program POLYFIT (see appendix E ) was developed which was capable of searchipg through data for
seven points and having solved (5.2) resubstituted the matrix A back into (5.1) to find the gravity
anomaly and height for Q. The seven points had a particular configuration whereby the three closest
points to Q were found irrespective of their location with respect to Q and then four more points,
one in each quadrant defined by the axis system at Q, were chosen. The closest station was denoted

point 1 in expression (5.1).

POLYFIT was tested using generated data and found to work well. However, when applied to real data
it was found that the amplitudes of the surface resulting from the 2nd order terms produced highly
irregular results. Fairly severe weighting systems were introduced (the inverse of the squared
distance between Q and the ith point) but this had little impact on the result. The number of
points involved in the surface fit was progressively increased to about 14 points, at which stage

the effect of the higher order terms was dampened.

However, the real advantage in an approach like this is its relative simplicity in searching through
the data for the points needed for the analysis. The first three points are chosen only on
distance, the next four according to quadrant and distance; but at no stage does the actual

geometr ic configuration described by the chosen points have to be tested or limited in any form.

5.2.2 Least Squares Plane Fitting

Almost in reaction to the over-amplification of the undulations of the real surface which was
produced by the above technique it was decided to try fitting a plane to the 7 points chosen for
that technique. This meant a very simple modification to 5.1, viz. the deletion of all terms in

X and Y of second order. This results in the expression

where a, b are solve by way of (5.2).

This technique, whilst giving favourable results in the flatter regions of sparse data, was insensitive
in regions of high anomaly or topographic disturbance. Weighting according to the inverse of the
distance, and even the square of the distance, from Q had little effect. The net result was that

in the vicinity of the computation point, where the location of the mid-compartment point

changed very little with respect to the 7 points chosen for the purpose of prediction, there was

practically no change in the predicted value when one moved from compartment to compartment.
Obviously, if prediction in rugged areas was to be made using some surface fitting technique, one

had to find the happy medium between the least squares plane fit just described and the oversensitive

least squares polynomial fit outlined in section 5.2.1.

5.2.3 Simple Plane Fitting

Prediction of gravity in a field described by discrete points has much in common with the inter-
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polation of contours from spot heights. The data in both cases is a field of discrete points

fixed in three dimensions. In the former case, the problem is to find the function 2z = z(x,y)

in the region x; < x< X2 , yi < ¥y <y, whereas in the contouring situation it is the
determination of the x & y coordinates of a point (or series of points) whose z has been nominated.
Many mapping organisations have automated the process of drawing contours in an area defined by
discrete points, and valuable insights can be gained from consideration of some of the techniques

they adopt.

The simplest geometrical figure which can be used for an interpolative process is a plane. The
method used in a topographic package of computer programs and the NSW Department of Lands is to
form a network of adjoining and plane triangles through the area using the planimetric coordinates
of all points in the field, such that no one triangle overlaps another. The contour lines are

then found by linear interpolation of the heights along the sides of successive triangles.

This is a system which uses smoothing only in the interpolating process, ie. the figures themselves
are fitted uniquely to the raw data. This concept had attractive features, for if the 'spot heights'
or gravity anomalies are properly chosen then a series of planar interpolations are completely

adequate for the representation of the field.

Consideration must be given to the fields on which interpolation is to be performed. Firstly consider
the gravity anomaly field, which is fairly smooth even in areas of rugged terrain. One of the

factors influencing the location of gravity stations was the definition of likely changes in grade
(such as around the base of a mountain). Secondly, consider how the height field is described.

This was defined partly by the gravity stations, but augmented by spot heights read from maps. These
were not necessarily on a strict grid pattern but, with the rules of linear interpolation in mind,
radical changes in the grade of the topography were also recorded. It was felt that the simple plane

fit to this data should be tested as a means of extending the gravity field.

For a number of reasons it was decided not to set up a bank of triangles as is done for contouring.
It must be appreciated that in the contouring problem the interpolation is only a first step - the
next step is to describe the contour line itself and for this purpose the triangles are again
useful. By contrast, in prediction, once the triangle has been formed the information required
from it can be computed and stored in an accumulator. There is also the problem of having to
reform the triangles in any area which may have additional data included at any stage of the
computation. For these and other 'logistical' reasons it was decided to form the triangles as

required at any particular stage of a computation.

The next question is which triangle is the most suitable for the purposes of prediction. The
answer is obvious. The most accurate interpolation will occur if it is performed between the
points which are closest to the subject point. For this reason it was necessary to find the

smallest triangle which circumscribed the point in question.

The subroutine which performed this operation (SORT3) is described by means of flow chart in

appendix F , but the approach adopted will be briefly outlined here (where the point to be predicted
is denoted as Q). The first step searches through the data file to find the point closest to Q (1),
and then the second closest point (2), such that the angle Q12 # 100° (this is to try and ensure

that the resultant triangle is fairly well conditioned). The search is then performed on the data

file to find the next closest point which, with the first two points, circumscribes Q. The

algorithm to find this was suggested by TEOH (1975), and simpiy tests the sines of the angles

1Q2, 2Q3, and 3Q1 to ensure that they are all of the same sign.
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The expression used in the interpolation can be found in(HEISKANEN AND MORITZ 1967, p 265) and is

as follows

(xp - X)(Ya‘ Yz) - (Yz - Y)(Xs hd Xz) z
(x> - Xl)(ys - y2) - yz = yid {xs - x2) !

o Ixa = X lys = ys) = (ys = y)(xy - x3) 7
(x5 - Xz)(YI - Ya) - (Ya = Y27(X1 - X3) 2
b o Sxam ) ly2 - ya) = va - y)(xe - xi) Z: (5.3)

Oa = x3)lyz = y1) = Tyr - va){xz - x1)

where x, y, z are the coordinates of the prediction point and Xj y;j z; are the coordinates of

the ith point, i = 1->3.

The prediction of the free-air anomaly is done in a number of steps. First the Bouguer anomaly

is predicted by SORT3 using the GRAVBNK as the data file. The prediction of the height has two
phases, remembering that HTBIN only augments GRAVBNK in the description of the terrain and is not
meant to represent it in its own right. The smallest circumscribing triangle in HTBIN is found by
SORT3, and these 3 points combined with the 3 points from GRAVBNK to form a small file of 6 close
points. The SORT3 search is then performed on these 6 points to find the best possible triangle

of height points from the two data files. The predicted height is then combined with the predicted

Bouguer anomaly to find the free-air anomaly for the point.

This system showed itself to be sensitive to the changes in terrain, particularly in the immediate
vicinity of the computation point. Comparative results between computer and hand computations
are given in section 7.2.2. It was also very simple to compute ground slopes by the method

described in section 4.3.3.

5.2.4 Surface of Minimum Curvature

The problem encountered when using the second order surface (section 5.2.1) prompted the thought
that a system of surfaces should have some kind of constraint placed on the curvature in order to
restrain the enormous departures of the generated surfaces from reality. The use of adjoining
planes will obviously underrate the curvature of the terrain. The question is how to find a

satisfactory compromise.

A system for contouring has been developed in the Bureau of Mineral Resources by BRIGGS (1974) in
which the system of plane surfaces has been replaced by fitting a third-order spline in two
dimensions to the data. The differential equation used in the solution ''describes the displacement
of a thin sheet under the influence of point forces. The boundary conditions are not only at the
ends of the boundary, but within the region of interest. The solution is forced to take up the
value of the observation at the point of observation" (IBID, p 39). Having determined the
parameters of the cubic spline z values are found on a grid pattern to assist the ensuing contouring
process. |t is, of course, possible to find the z of any nominated point within the region of

observation, and thus to apply this scheme to the prediction of free-air anomalies.

This technique contains many attractive features, but a difficulty still remains of amending the
surface should it be necessary to add points to the height data file. It was felt that, for the
purpose of this investigation, it was essential to maintain flexibility in case of possible up-

grading of the surface. It could be used in discrete sections as was the plane fitting method.
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For this at least 7points would be required in the vicinity of the prediction point, and the
solution of the parameters, being iterative, would be quite expensive timewise when carried right

through the complete range of points to be predicted.

5.2.5 Solids of Revolution

A method of simulating parts of the Earth's surface by the surface of revolution which most
closely resembled it was suggested by PICK ET AL (1962). One of a selection of surfaces was
used to represent one zone in the Hayford system of rings, and the terrain correction for this
zone computed using this surface rather than the usual practice of assuming a horizontal plane

at the average height of the terrain.
The surfaces suggested as possibilities were as follows:

(i) a conical surface with its axis horizontal and the apex on the z axis passing through the

computation point Q. This is represented by the expression
z = h+r tan B

where h is the height of the apex above Q measured along the z axis through Q
r is the radius of the sector body being considered

B is the slope of the side of the cone on the edge of the sector.

(ii) a rotational paraboloid, where the upper surface of the sector is limited by part of a
rotational paraboloid produced by the rotation of a paraboloid Z = kr? + h about the z axis

through Q (the notation being defined above).

(iii) an hyperbolic paraboloid, where the upper surface of the sector is limited by the rotation

of a parabola
ro= k2 +gq

about the z axis, and q is the radial distance from Q to the intersection of the surface with the

horizon.

(iv) an oblique plane, where the upper side of the sector is limited by an oblique plane

represented by

i = arctan (I cos ap)
where i is the inclination of an arbitrary line lying in the oblique plane

ap the azimuth of the dip of the plane, and
| the dip of the plane.

This last surface has already been effectively treated in sections 5.2.2 and 5.2.3. The other
three surfaces have some similarities with the second order surface in section 5.2.1 and must
suffer the same shortcomings, such as the inflexibility of the shape imposed to take any large
discrepancies in topography into account. It must be noted that each zone is represented by one

of these surfaces and experience of geomorphological shapes makes one sceptical of the
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suitability of representing such large areas by such regular and distinctive shapes. Also the
axis of the surface generated is always through the computation point, and it is doubtful that
the terrain will always be so organised and that this will be a realistic simu]étion. Obviously
this could be overcome by relocating the axis in the most suitable place to best simulate the
terrain, but this will then introduce problems in the calculation of the terrain correction.
Further, the computer time needed to search through the terrain models to find which best fits

the data for each particular zone in the computation would be prohibitive in this study.

An appreciation of the problems which may come from this approach when dealing with irregular and
broken terrain reinforces the opinion that the terrain is best simulated by a series of planes
which can be varied in number according to the nature of the topography and the sensitivity of

the computation to that part of the topography.

5.3 Statistical Methods
5.3.1 Introduction

A method of extending the gravity field which is based on the statistical characteristics of
that field has received a great deal of attention in physical geodesy. In this technique, known
as covariance analysis, the gravity field is analysed to define what is known as the covariance
function for the field. This function is then applied to the known field to predice the gravity
in the unknown region of the field. This approach has more recently been extended for use in
predicting all parameters of the geoid solution (eg. N, € ), the general solution being knpwn as
Collocation. |In this study it is the prediction of the gravity anomalies which is’'of most

interest.

The technique has been used mainly to extend the gravity data for large (eg. 5% x 50) square means
in the largely unmapped ocean areas of the Earth and for the study of the effect of errors in
distant gravity fields on the geoid solutions at particular points. This emphasis is obvious

when one considers the earlier literature on this subject, reviews of which can be found in

(RAPP 1964, pp 2-5), and the paper by Rapp in (ORLIN 1966, pp 49-52).

For example KAULA (1957), in an investigation to find the expected errors in gravimetrically

determined geoid heights and deflections, used estimates for the accuracies of the mean gravity
o

of 1

States and Central Europe. Two years later, KAULA (1959) used a more extensive analysis of the

y 50 and 10o squares which were based on covariance functions derived for central United

Earth's gravity field, and predicted the mean free-air anomalies for 10° x 10° squares throughout

the world from available 1° x 1° mean anomalies.

The most extensive report on prediction by covariance methods is that produced by RAPP in 1964
(g.v.). This study, based on the theory of least squares prediction developed by MOR{TZ (eg. see
HE | SKANEN AND MORITZ 1967, chapter 7) uses covariance techniques to predict point anomalies, as
well as 5' and 30' mean square anomalies in two well-defined areas of the USA. This was a much
finer subdivision of the gravity field than any of the earlier studies mentioned above and
provided empirical comparisons of results which enabled some external estimates of accuracies

as well as giving an appreciation of the most suitable techniques for the method. [t was found,
for example, that the best prediction of point anomalies was made by using the ten closest known
points to the prediction point, and an increase in the number of points used in the

prediction gave no significant increase in accuracy (IBID, p 141). The mean square error

for the prediction of point Bouguer anomalies in this way, in a field whichhad a range of 41 mGal,
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was quoted as *3 mGal (7BID, p 105). The investigation also concluded that the prediction of

height (for the free-air reduction) in this way was unsatisfactory (IBID, p 104).

As mentioned earlier, covariance functions have been used mainly to predict 1° (or larger) square
mean anomalies for global geoid solutions. However EMRICK (1974, p 43) used a degree 10 polynomial
representing the covariance function in the area being investigated to generate gravity date on a
5' and 37Y5 grid in his recent study on deflection compytations. The method is well suited to
predicting data on a grid pattern and as this was the form in which many investigators organise
their data it fits easily into a computing system being designed for geoid solutions. However,
there are some shortcomings in the accuracy of prediction which, in the critical inner zone of

the gravity field could introduce uncertainties into deflection computations which may not be

tolerable.

5.3.2 Analysis of the Theory

A complete development of the theory is given in HEISKANEN AND MORITZ (1967, pp 249-286) and will
be outlined here so that an analysis of the basic assumptions can be undertaken. Particular
emphasis will be placed on the suitability of the method for the prediction of the local field

in the vicinity of the computation point.
Motitz describes the underlying philosophy as follows (IBID, p 253):

'"The covariance characterizes the statistical correlation of the gravity anomalies Ag and Ag,,
which is their tendency to have about the same size and sign. |f the covariance is zero, then
the anomalies Ag and Ag, are uncorrelated, in other words, the size and sign of Ag has no

influence on the size and sign of Agx.

If we consider the covariance as a function of r = PQ, then we get the covariance function C(r},

whereby

M {Ag Ag, } (5.4)

(]
—
-
~—
L]

For r = 0, we have

M { Ag%} = var {Ag} (5.5)

o
—_
o
~
fi

Here the M {Ag} = 0, which, if not the case in the first instance can be enforced by centering the

gravity anomalies.

One can immediately see a similarity between this approach and the theory of errors, where the
Ag above is analogous to the residuals or random errors in observations. Two very impartant

properties of the anomalous gravity field are inferred from the above expressions:-

(i) The field is isotropic (ie. the covariance function is a function of distance only and not

also of direction) as inferred from (5.4).

(ii) The field is homogeneous (ie. the covariance function is independent of the location of the

field being analysed).

The accuracy of the covariance function, and hence of its ability to predict accurately, will depend
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on how well the anomalous gravity field is described by these two statements. Unfortunately, the
basis for the whole of the development rests on a qualitative statement (that the closer a point
is to a given point the more likely is its Ag to be similar to the Ag of that given point) and
it is a great 'leap' to then infer the two properties of the field which then form the starting
point of the mathematical development. {n particular, the condition of isotropy does not really
reflect the nature of many local gravity fields, where ridges of high and low values are extensive
and correlation between Ag values is quite definitely a function of direction as well as
separation. The condition thus imposed will surely weaken the accuracy of the predicted points and
in fact may introduce a systematic error into extensive parts of the local field which will in turn

adversely affect the accuracy of the deflection computation.

The importance of the basic assumptions becomes clearer when the method of prediction is shown in

detail.

Denoting the predicted value of the gravity anomaly at Q by Aga the gravity anomaly at the known
points i (i = 1, n) as Ag; and the coefficient related to the correlation between Agé and

Ag; as  agi then
Agé = I o, Ag. (i =1, n) (5.6)
i
To find the most probable value for 0qj the standard least squares approach is adopted, viz.,
€ = Ag - Ag! = Ag - Lo, A
q 9 9 9 i o

where € here refers to the error in the prediction of q.

Squaring € (qu -Ia Agi) (Ag - T o, Agj)

qi qj

= z -2 . A L+ % F . - . . i=1,n; j=
qu ? g5 gq A9| A g4 an Ag. AgJ (i=1,n; j=1,n)

Averaging this for all points Q over the area being considered,

m2 = M 2
{eq}

2} - 2 .M L} oF - .M . .
. Mo agd ) Loy MUAgy b9k + X Doagy ogy MU A9 A9 }

i J
Now, M{ Agé } and M{ Agi Agj } are not known (if they were then there would be no need for
the prediction, ie. all Agq would already be known) and their values are estimated from an

analysis of the known field by means of (5.4) and (5.5).

2 - = =
Hence M{ b9g I= G , M{ A9 Ag;l o (rqi) qu

and (5.5) becomes

24 = -
m?q = Co 23 o Cq'

o T % a. o, C.. (5.7).
i

; St ey Tid
(C being the covariance matrix) mé is minimised, giving

n
= P - (5.8)
OLqi iZ1 CIJ qu

It can be seen from this development that the conditions of isotropy and homogeneity are assumed
a priori. |If the field is not well represented by these descriptions then these conditions are

forced (by way of 5.8) onto the predicted field, the covariance coefficients Cij and qu taking
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up the mean values for the entire field analysed. This again may not be an accurate description of

the true position in the area of prediction.

In fact for local prediction it is preferable to avoid the smoothing effect of regional covariances,

and perhaps even to avoid as many of the a prior: assumptions as possible about the field.
Suppose, for example, the four points lay at the corners of a square and it was desired to find
the best possible coefficients for this particular field, ie. to find the a's which gave the least

sum of squares in the errors of the prediction.

The observation equations will be

€1 = Mgy - (@12 Bgs +ays Ags + ayy Ags)
€2 = Agz - (@21 Agy + 023 Ags + Gy Agw)
£3 = Agy - {ag1 Ogy + asz Ags + 0gun Agu)
€y = Agy - (as1 Agi + a2 Og + ous Ags)

where the only unknowns will be the coefficients aij' This array cannot be solved (6 unknowns,

4 equations), so some assumptions will have to be made vis-a-vis the local field
eg. (i) Assume the coefficients to be similar for a similar diregtion

ie. Qi1 = Ogy = a' iy = Oz3 = al!

azy = o't ayz = o'V

This assumption is likely to be a fair representation in a smooth field, and will give a unique

solution for all o. |If the grid is extended a least squares value for a' to a'V can be
found which will be superior only if the anomalous field still exhibits the same characteristics
over the extended grid. Other a's can be found for the longer sides of the enlarged grid and

a local 'covariance' function found for the field.

(i) Extend the assumptions that a relationship is set up between the o' , o' and the a
o'V coefficients
¥

12 4 OL"Z)

eg. a = o'V o= (a
This makes the number of unknowns 2, and so a least squares solution would have to be performed on
the original 4 equations. This assumption may still not be an unfaithful reflection of the true

position, particularly if the field exhibits symmetry.

(iii) It is of interest to note the effect of the basic assumptions for the covariance analysis.
This assumes a' = o' , and that o' = a'V , which values are found by analysis of Ag's
outside the immediate area of prediction. In fact the more data included in the analysis the less

likely it will be that the analysis reflects the fine details of the local field.

Perhaps the most striking feature of the above development when compared with the standard approach
is that the Ag's are treated more as observations than as errors. This difference is also stressed

when one compares the approaches to the error analysis of the predicted quantities.
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The accepted method of error analysis (HEISKANEN AND MORITZ 1967, pp 269-270) is to substitute
the a's found in (5.8) into (5.7), ie.

-1 -1 -1

2
m* =¢-23* % C,., C. C.+2 ¢ I I G.. €.C C,
[¢) P ij qi qj Pkoj ol ij qi k1 "j]
which on multiplication becomes
2 -1
= Cc -|C_ ¢C ... C o P
"q o I G, qn | o G Cin Car
€y Coz2 v . Czn qu
' c R ¢
ni n2 nn qn

m; is the mean square error of the predicted value Ag&.

This in my opinion is far too idealised an analysis to provide any proper assessment of the expected
error in qu. It is based on the assumption that the elements of the covariance function Cij

are error-free, which must be questioned. In fact, an estimate of these errors can be easily
determined by a simple analysis of the data which is processed to develop the cqvariance funpction

(see section 5.3.3)

Returning to the original statement (5.6). then

1= P =
Agq % o; Ag; (i =1,n)
then QAg = ; %4 QAg * ; Agi Qui
q i i i
and
o2 = I I o o . a. +% To 0 Ag, Ag, +
qu i Agi Agj i i o, qj i j
+ 2 X Zg.. 0O a. Ag.
i o Agj i J
where Oa is found by analysis of the field for C; and cAg is found by analysing the observational

techniqueé used in finding Ag. f
This should give a more realistic appraisal of the error in the predicted anomaly based on the
errors in the given data and on the technique adopted to go from that given data to the predicted

value.

It should be emphasised that the technique of prediction from covariance functions is being appraised
here as a tool for field extension in very limited regions, especially in the critical region in the
immediate vicinity of the computation point. The fear expressed is that the covariance function
derived by the analysis of (say) a 1° x 1° data set will not reflect the short wave length signal

of the field where the typical separations are of the order of 2 to 5 km. This will be detrimental

to the accuracy of the £ and n computed therefrom. See also section 5.5 for further comment.



_98_
5.3.3 Statistical Analysis of the Test Region

It was decided to carry out a simple covariance analysis in the test region to gauge the applicability

of this theory to a local region. Ta this end the program COVFN was developed (see appendix G)

As has already been mentioned above (section 5.3.1) the most convenient distribution of data

for this analysis is on a grid pattern. This would need some interpolation or prediction as a first
step to come from the points of observation onto the grid, and this would obviously defeat the
purpose of the exercise. It was decided therefore to use the raw data, and to organise the cross-
producted data into 'cells' using distance between the data points as the argument. These arguments
are fairly arbitrarily chosen (see tables 5a to 5b )}, but should nevertheless give some idea of

the behaviour of the covariance function in this very limited and specific test area.

It was also decided that thée field should be subdivided on the basis of topography, The field in
the undulating to mountainous areas was analysed separately from the field in the flatter country
of the test region and 'prediction' of the gravity anomaly of selected points done by applying the
relevant covariance coefficients to the seven closest paints, This is not the optimum of ten
suggested by Rapp, but is certainly of that order. Nor, as is commonly practised (eg. HEISKANEN
AND MORITZ 1967, p 255) is a function fitted to the covariance elements and the covariance value
for a particular separation extracted from this function. Rather the covariance for the separation
for each of the 7 selected points is taken directly from the relevant table. In fact, the
'prediction' is not really a serious attempt to use this technique, as the erratic nature of the
‘covariance' values and the standard errors of the cells make this an unreglistic proposition for
prediction. The main purpose of the analysis is to discover how the gravity fie]ds behave and how

their behaviour varies from region to region.

As can be seen by reference to the tables, neither covariance pattern follows the shape of the
idealised covariance function (eg. see HIRVONEN 1962) for the smaller separations, although the
trend toward this shape is evident as distance between points increases. The standard deviations
of the covariances are large, particularly for the smaller distances and this must be due in part
to the relatively small samples in these cells. However this fact underlines the danger of
applying the mean covariances for the short distances likely to be encountered in the critical
region near the deflection point. (In fact the standard error quoted for the predicted qu does
not include the errors in the covariance values used in prediction. It is found by simple analysis
of the seven different values predicted for this point. Inclusion of the errors in the covariance

coefficients will only deteriorate this expected accuracy further).

One can also see a marked difference between the two covariance patterns, underlining the danger in
using the covariance function derived for one local region of a particular topographical type for
prediction in a different terrain. The analysis in the mountain region suggests that there is no
correlation between anomalies at 30 km whilst for the flat area this condition is reached at
(apparently) about 50 km. This implies that the high frequency signal from the terrain dominates
the signal in the first case while in the second the influence of topography is absent and the

broader regional trend dominates the field.

As a tentative conclusion it does appear that for limited data and for short distances the conditions
of isotropy and homogeneity are absent and the use of this technique for prediction under these

conditions is not considered justifiable.
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Terrain: Flat
Limits of Region Analysed -30° To -31° ; 149° to 150°
No. included in analysis is 149; Mean Anomaly -17.67

Co = 111.45
Cell No. Dist (m)' to Dist (m) Mean Cvfn Sigma Popn
1 0 2000 81.92 23.2 37
2 2000 4000 94.13 12.4 60
3 4000 6000 109.15 13.3 71
4 6000 8000 83.46 23.3 93
5 8000 10000 89.94 7.4 151
6 10000 12000 91.04 7.2 152
7 12000 14000 67.97 5.2 174
8 14000 16000 77.95 6.3 148
9 16000 18000 68.12 7.4 223
10 18000 20000 57.61 .7 187
11 20000 22000 32.25 1.9 194
12 22000 24000 53.50 3.8 204
13 24000 26000 44 .30 2.3 234
14 26000 28000 41.18 2.7 273
15 28000 30000 17.99 6.0 270
16 30000 32000 20.24 .5 261
17 32000 34000 25.81 1.6 255
18 34000 36000 30.17 4 261
19 36000 38000 15.20 .6 288
20 38000 40000 11.18 2.8 255

Predicted Value of Q (¢q = 30°5 , Aq = 149°5) -48.69 Standard Error 25.48 mGal
cf. -22.9 from map.

TABLE 5A  ANALYSIS OF COVARIANCE FUNCTION
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Terrain: Undulating to Mountainous
Limits of Region Analysed -3021 to -3099 ; 150°1 to 15079
No. included in Analysis is 238; Mean Anomaly -13.23

Co = 83.21
Ce1l No. Dist (m) to Dist (m) Mean Cvfn Sigma Popn
1 0 2000 85.97 21.2 138
2 2000 ’ 4000 91.14 5.7 263
3 Looo 6000 75.52 3.1 334
4 6000 8000 64.98 2.8 364
5 8000 10000 60.79 3.0 400
6 10000 12000 66.27 1.1 400
7 12000 14000 72.10 3.6 400
8 14000 16000 61.07 1.3 400
9 16000 18000 59.58 .7 400
10 18000 20000 51.41 N 400
11 20000 22000 45.69 .5 400
12 22000 24000 35.29 3.1 400
13 24000 26000 34.13 .7 400
14 26000 28000 30.14 1.2 400
15 28000 30000 9.60 1.3 400
16 30000 32000 -5.81 .8 400
17 32000 34000 ~24 .42 4.0 400
18 34000 36000 -36.65 3.0 400
19 36000 38000 -51.05 8.5 400
20 38000 L0000 -23.01 3.1 400

Predicted Value of Q ( 6Q = -30% , A = 15095) -3.47 Standard Error 0,95 mGal
cf. -4.9 from map

TABLE 58  ANALYSIS OF COVARIANCE FUNCTION
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5.3.4 Comments

It must be concluded that the covariance approach to prediction is unsuited in local areas such as
the test area wherein the density of discrete observations is relatively high and wavelengths of
small amplitudes which are reflected in the data are also expected to be reproduced in the
predicted information. The analysis of a large region in order to predict point anomalies
introduces a smoothing effect to a far greater extent than is tolerable. In fact from the

limited data samples it is questionable whether the assumptions on which the theory is based do in
fact hold at the level of local predictions. This thought is echoed by other writers concerned
with much larger regions than are involved here. For instance, GAPOSHKIN (1973, pp 197-208) used
covariance analysis techniques to obtain 50 X SO means from 1° X 1° mean gravity anomalies.
Separate covariance functions were found for the ocean and continental regions, assuming isotropy.
He found (ZBID, p 208) 'the differences between the covariances are significant, and one must
conclude that gravity is not stationary (homogeneous). Any estimation procedure that assumes

stationarity (homogeneity) must be carefully examined."

Similarly, in a statistical analysis of the anomalous gravity field of Czechoslovakia, VYSKOCIL
(1970) analysed the covariance function for Ag means of 10' x 15' blocks, and concluded ''the
theoretical assumption of the homogeneity and isotropy of fields Agp and hp is basically

only forced and in reality it will probably not always be satisfied."

The amendments to the approach, suggested in section 5.3.2, which concentrates on analysis in the
locality of the point of prediction, becomes more complicated if the points are not regularly
spaced. The fact that the test data is not spaced in this fashion and that this solution will
apparently tend towards a simple plane fit in any case, obviated the need to experiment any
further with this approach., This observation, ie. the tendency of the solution to a plane, is
supported by a theoretical analysis done by MORITZ (1975b, p 3-11), who shows that if a
continuous covariance function is used to predict a point from three circumscribing points close
by, then this prediction is equivalent to the unique plane fit described in section 5.2.3.

This is because, for small distances, the covariance function can be approximated linearly, and

the 'prediction' function becomes a simple linear ratio.

The approximation will deteriorate if more than the minimum number of points is involved and an
adjustment is then required to achieve the 'most probable' value. Conditions of isotropy must

then be invoked with the consequent deterioration in the faithfulness of the model to reality.

Also the prediction once more becomes dependent on the particular covariance function adopted for
the field. Obviously it is preferable that the area in which the prediction is to take place should
also provide the data for the covariance analysis. For example the covariance function resulting
from analysis of the combination of the fields used in the above tests would differ from each of

the individual functions. |If this combined function were used it would deteriorate the resultant
prediction in both of the component fields. |t is necessary to ensure that only that data which

is representative of the area of prediction is included in the analysis. See also section 5.3.3

for further comments on this matter.

5.4 Series Fitting

The gravity field has been described using terms such as 'wave length' and ‘amplitude' and it is

therefore not unnatural to employ trigonometric series to define it mathematically and to help in

the extension process.
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In an extension of the gravity field in South Australia (expressed in terms of %, 1 and 2 degree
square means), MATHER used a two-dimensional trigonometrical series (see MATHER 1967, p 9 and

MATHER 1968a, pp 183-197). This was expressed in the following way

a 2a
gt = ) A, cos {mle= og) 11+ 7 Acsin { m(e- o) (i - a)}
i=0 i=a+l :
3a
+ 7 A, cos { m(x- Ag) (i-2a) }
j=da+l
ha
+ ) A, sin { m(A- A ) (i-3a)}
i=3a+1 ! e
where ¢o , AO are the coordinates of the SW corner of a 2° x 2° area
¢ , A are the coordinates of the 0.1° x 0.1° square corner which is represented by the

gravity anomaly Ag( ¢, A) and Ag' s predicted gravity anomaly at point ¢q , Aq' ba is the

number of known gravity stations in the area. .

The coefficients Ai are determined by setting up an observation equation for each known point in

the area of prediction

ha
[ ote e 0 oA f Ce)
i=1

where rj is the residual of the jth gravity station which will form an array (in matrix form)
FA-G = R
For a least squares determination of the coefficients A

1 RTWR = minimum (W being the matrix of weight coefficients)

and A= FTwrR T

This technique was used to extend the anomaly field into unsurveyed 2° x 2° areas of South Australia,
the differences between predicted and observed values at 154 known stations being normally
distributed with a standard error of *7 mGal. This must be due, at least in part, to the

sparseness of the data used in the prediction and to the fact that methods of spectral

analysis are not reliable when applied in the general case to irregularly spaced data.

5.5 Conclusions

The field is well represented with density ranging from 1 point per 1 km? near computation stations
to about 1 point per 20 km? in areas 50 to 100 km from the computation station. It was found that
techniques which are used to predict mean gravity anomalies for large blocks are not suited to
the present task. The least squares techniques discussed in 5.2.1 and 5.2.2 above also proved

unsatisfactory by placing unrealistic constraints upon the modelling for the gravity field.

The task in hand is much more comparable to problems confronted when contouring from discrete data.
As a result the techniques used by mapping agencies involved in automatic contouring were adopted
with certain refinements to suit the peculiarities of the task. As a general rule, plane fitting

techniques were used, with unique planes being used to describe terrain when the three data points
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straddled the compartment whose mid-compartment point was being sought, and least squares plane
fitting on 7 properly selected points when the compartment size exceeded the closest three

circumscribing points.

In the next chapter it will be shown how the prediction technique adopted becomes an integral

part of the system used to evaluate £ , n and their various corrections.
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6. COMPUTATION OF DEFLECTION AND CORRECTION TERMS
6.1 Introduction

Techniques for computing deflections and of handling data for this computation were discussed
in chapter 4. It was decided, for the reasons given in section 4.4, to use a ring pattern for
all inner zone computations. Because it is so adaptable a similar approach was used to compute
the correction terms. Methods of extending the anomalous gravity field were investigated in
chapter 5. The technique chosen as most suitable for the computational approach and data
organisation was that of interpolation from simple triangles formed about the prediction point.
In this chapter a description is given of how the system is operated, and of its combination
with other phases of the gravimetric computation to achieve a total gravimetric solution at

each station.

The scheme for computation of the deflection was as follows. An innermost zone, for radii (r)

in the range 0 < r < r, was chosen such that conditions listed in section 6.2.1 were
effectively fulfilled. The inner zone was then computed for the region ro < r < 130 km using
a basic Rice Rings approach, with refinements explained in section 6.2.2. The zones beyond 1.5°
of the computation point had already been evaluated in the 1970 geoid solution by MATHER (1970a).
The system adopted for this solution is explained in section 6.2.3 and the results extracted.

The transition from the outermost Rice Ring is considered also and its effect evaluated. Thus

the full Vening Meinesz solution is presented for each station in section 6.2.

The final section deals with the computation of the G' term using the KSRINGS approach. The

results of some examples of the computation are presented and compared with hand computed values.

6.2 Evaluation of the Vening Meinesz Formulae
6.2.1 The Innermost Zone

Because of the insolubility of the Vening Meinesz formulae as the computation nears the computation
point (¥ »0) it is necessary to define a small zone about this point wherein the anomalous field
can be assumed planar, allowing for a relatively simple geometrical evaluation of the contribution
of this zone. The theory for this evaluation is developed in (SOLLINS 1947, p 282). |In this

development if x and y are north and east respectively the Ag s expressed as

SAg Shg

Ag = A9p+x(c5_x)o + Y((Sy )0
SA . SA
= Ag + rg cos a (75340 +r sin a(jﬁg)o (6.1)

which is obviously based on an assumption that Ag varies linearly within the region 0> rg4

SAg Shg
(hence the use of the terms 757)0 , -5700 ).
How equation (4.3) expressed
df (y)  _. _o_1 .3 _k
g sin Y o= 7 o 55 o+ from (4.3)
By substituting ~© for Y and dro dy
Y I ® &
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dzu(,y) sinp dy = - (%_J, 2_3R) dr_ (6.2)
o

Substituting (6.2) in the Vening Meinesz equations (2.26 )

r_2m
[ Shg . SAg
e e gl ey cos o (G rgsinay (]
i ™Y
0 0
cos o, [ — + —1—] do  dr i=1, 2
r 2R ’
o
which gives upon integration,
-8 (SA
g = [0.105 rg + 0 {rZ x 107 }] (gxi )y (6.3a),
and ‘ n = [0.105 ro + 0 {rd x 107°}] (% )o (6,3b)

assuming mean values for y and R.

The values chosen for o in various solutions vary greatly, and must be largely determined by
the nature of the anomalous gravity field near the computation point. For example, Rice adopted
values which ranged from 279 m to 4320 m, depending on the intensity of the survey in this
innermost region (RICE 1952, pp 289-290). In a comparative study carried out by Szabo in 1962
(g.v.) ro was chosen as 4320 m again (this value is the outer limit of zone 21 of the original
Rice Rings pattern). MATHER (1970a, p 94) used 3 km as the outer radius of the innermost zone

for computation at 38 stations, the bulk of which were located on small hills on extensive plains.

Bursa recognising this problem in the ''central zone' (BURSA 1967), investigated methods of
improving the solution which is based on the planar assumption in the region 200 m to 5 km, and
instead fitted various polynomials or quadrature expressions to the field in this zone, The
solutions were achieved using ''(i) mechanical quadrature formulae of the highest algebraic degree
of accuracy, introducing a weight function p(r) = r*' and (ii) the Gauss mechanical quadrature
formula and interpolation polynomials in an analogical form'' (IBID, p 14). These methods were
tested on models consisting of high mountain massifs, and on two real terrain models, with the
result that each of the methods tested gave the same theoretical accuracy (181D, p 32). The
Gauss quadrature formulae were also tested for the innermost region (0 to 1 km) for three test
models and compared with the gradient method (6.3a and 6.3b) and the theoretical value. The
gradient method suffered by comparison, giving results which were up to 10 in error. This must
be largely due to the inaccuracy of the planar assumption inherent in the gradient solution,

whereas higher order surfaces are 'fitted' in the quadratures approach.

A number of the computation stations in the present test are located in regions of rugged terrain
(see figures 10 to 21 )} and it would be unsafe to assume planar conditions out to 1 km.
Because of the ability of the computing system to start the inner zone computations at any nominated
value, and because of the simplicity of (6.3a) and (6.3b), it was decided to limit the value of

ro to 100 m wherein it was considered safe to assume planar variations of the anomaly field.

The actual contribution for the innermnst zone was computed using the method suggested by RICE
(1952, p. 290) whereby a mean gradient for this innermost circle was evaluated by establishing a
grid of spacing 0.707 r,. The mean gradient in the prime directions were found by giving a weight
of 2 to 1 in favour of the line through the computation point as compared with the two flanking

gradients in each case.
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Figure 28. INNERMOST ANOMALIES AND HEIGHTS
1620 1700 1640 1575 1600 1625
+ + + + + +
45 4 47.6 5.9 16.2 16.8 17.5
1640 1709 1620 1640 1790 1775
+ + + + + +
45.9 47.9 45 4 T 17.9 21.0 21.6
71 m
1660 1680 1600 l 1725 1775 1760
+ + + + + +
46.5 47.1 L4y, 8 20.3 21.5 21.1
a. BINALONG b. GOONBRI
2675 2680 2670 4800 4650 4625
+ + + + + +
48.2 47.5 47.5 108.4 104.4 104.0
2725 2797 2690 4800 4ok 4775
+ + + + + +
49.8 50.8 48.9 108.2 112.1 109.4
2675 2725 2675 4850 4900 4825
+ + + + + +
48 .1 49,5 48,1 109.8 110.9 112.3
c. BYAR d. KAPUTAR
3010 2975 2875 2975 2950 2950
+ + + + + +
81.1 77.8 744 68.7 68.5 69.4
3020 3047 2975 3000 3063 3025
+ + + + + +
80.7 80.9 79.2 69.5 71.2 71.0
3000 3030 3025 2900 2960 2975
+ + + + + +
80.8 80.8 80.5 66.7 69.1 70.2
e. BLUE NOBBY f. GULF CREEK
2275 2330 2325 2900 2800 2830
+ + + + + +
57.1 59.0 58.6 71.8 71.2 72.5
2250 2371 2345 2800 2920 2750
+ + + + + +
54,7 59.7 58.7 71.1 7h .4 70.1
2200 2300 2320 2800 2825 2750
+ + + + + +
53.0 56.5 58.7 71.3 72.0 69.9
g. NEWRY h. BALDWIN

Height (feet)

Legend :

Free-Air Anomaly {(mGal)
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The height values were scaled of f the medium scale maps (1:31 680) and the Bouguer anomalies from
the detailed gravimetric survey of the stations. Details of these innermost values can be found

in figures 28a to 28h , and results of the computation tabulated in row 6, table 6.

As can be seen from these results the contribution of this innermost zone can be most significant

in terms of the order of accuracy being sought (% 0Y3). It was for this reason that the computation
was carried out manually despite the fact that it could be easily programmed and inserted into the
system for computing the deflection. Heights for the eight cardinal points were in fact included
into HTBIN to assist in the height prediction of the mid-compartment points of the close inner

zone rings.

The error analysis for this zone, along with comments of a practical nature, can be found in section

7.3.1.

6.2.2 Computations of the Inner Zone

As investigated in chapter 4, and concluded in section 4.4.1 it was decided to compute the inner
zone of the deflection computation (100 m < y < 130 km) by means of Rice Rings, suitably modified

to suit both the solution by computer and the density of data. The modifications were as follows.

(a) The contribution of each compartment was changed from the 0.001 radial deflection for a 1 mGal
anomaly suggested by Rice to 0.002 deflection for the same anomaly. This halved the number of rings
and significantly reduced the memory requirements of the programme wi thout loss of accuracy in the

evaluation. The rings progressed from 100 m to 130 km in 21 steps (see, table 3 and section 4.3.1).

(b) A multiple of 10° which was also a real fraction of 360° (eg. 90, 60, 40, 30 or 20) was used
for the apex angle instead of the usual 10° throughout the computation. This was necessary in order
to optimise the efficiency of the evaluation. For the nearest rings in particular there was little
to be gained by computing each basic compartment as the data used for a number of the compartments
(say n) would be the same. Hence the sum of these compartments would give the same result as the
contribution of the middle compartment times 'n'. This assisted in cutting the time by 1/6 to 1/4

without significant loss of accuracy.

(c) The starting position of the compartment count was staggered between adjoining rings. This was

to ensure that all available data was used in prediction.

All data likely to be needed for the inner zone computation (eg. out to § = 1?5) was read from
GRAVBNK (see section 4.1.1) into a local file for speedier processing. This placed certain
constraints on the programme as memory requirements { = 100 K bytes ) now approached the limit

for efficient operation on the CYBER 70 (Model 72) at UNSW.

The general flow of the computation can be seen in Appendix H, where a flow chart for CONTRL2 is
presented. CONTRL is the generic name given to the programmes developed to manipulate data and
sub-routines in the computation of deflections, G' or other deflection correction terms. Because
of a standardised 'ring' approach in each of these computations it was possible to use the same
basic versions of CONTRL and of the sub-routines in each computation with only slight modifications

to suit the particular variables of computation, memory requirement etc.

The subroutine SORT3 was used to find the mid-compartment values for Ag out to about 10 km. Thence

the subroutine SORT7 (Appendix 1) and PLNFIT (Appendix J) were used for this purpose. [If the
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mid-compartment point is within an area covered by both GRAVBNK and HTBIN, then the height points

as well as the gravity stations are used in the prediction of the height of the prediction point.

The effect of this predicted value on the deflection at P is computed, split into the two
components and accumulated throughout the whole pattern of rings. |f at any stage the value of
the deflection contribution appears excessive (taken as Ae > 0V3 i.e. the magnitude of the
desired accuracy for the purpose of this investigation) the compartment unit is subdivided into
the basic 10° and the sum total of each small compartment summed into the accumulator of the

contribution to the deflection.

Al predicted quantities were printed out together with the values which were used in the prediction
itself. This facilitated graphical checking for abnormal values as it made for easy and direct
comparisons of the computation against 'true' values from the medium scale maps. The values at
each of the stations are listed in row 5, table 6. The expected accuracy of this computation is
not listed here, but will be given in section 7.3.2, where an error analysis of the approach is

undertaken.

Even a superficial analysis of table 6 shows that the final value of the deflection of the vertical
can be largely dependent upon an accurate evaluation of the inner zone contribution. This is
illustrated clearly by analysing this contribution to the deflection at Kaputar. In table 7 the
contributions per ring to each component (df , dn ) are tabulated. The squares of these parameters
are also tabulated and accumulated through the rings to give an indication of the strength of the

'signal' being received at the computation point at each step in the evaluation.

The accumulation of the contribution from d& s rapid, and reaches 0.8 only 400 m from the computation
point. By contrast dn has reached only 0V2 in this distance. This difference reflects the

asymmetry of the free-air anomaly field about Kaputar. The reverse situation exists in the outer

rings. The prime vertical component receives a large contribution in the rings beyond ring 16

(r > 24 km) whilst the meridian component is affected relatively slightly by the contributions from

these rings.

The above comments are illustrated more graphically when one analyses the signals received per ring

(d 82, dn?). In this regard it is important to note that, by analysis of table 6, the INNER

zone contributes over 60% of the total signal in the & component and almost 90% in the n component.
This latter percentage is an overestimate in view of the findings in section 8.2.1 which shows that

the outer zone contribution is systematically under-estimated by about 1V5. |f this amount is

included in the total signal the INNER xone is found to contribute about 80% of the total signal

and is obviously still highly significant.

The £ value accumulates at a steady rate ( = O4 per ring) and by ring 12{ r = 4.3 km) 75% of the
whole inner zone signal has been received. This is approximately 50% of the total signal in this
component. On the other hand the n component has received about 25% of the whole inner zone
signal. In fact 50% of the signal for this component comes from the rings beyond ring number 17

(r > 24 km), compared with the 6% contribution toward the & component from these rings. This

region is therefore of significance for the N component as approximately 40% of the total signal

comes from this area.

The above comments emphasize the importance the inner zone can have in the evaluation of the
deflection of the vertical. In some cases the bulk of the signal comes from this zone and

significant contributions can be missed if a detailed survey and computation of this zone is not

carried out.
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Ring Outer CONTRIBUTION STGNAL SIGNAL
No. Radius [Per Ring | Accumul Per §ing Accgm. Per Ring |Accum.
de [de?] dn? | [dn’]
(km) de [de] [de?] | Tde? zdg dn [dn] [[dn®] | Tdn*  [Zdn®
2 0.14 +0. 0.06 0.004 - - 0.02 0.02 - - -
3 0.2 +0. 0.29 0.06 0.03 0.03 ~-0.01 0.0t - - -
4 0.3 +0. 0.50 0.10 0.02 0.05 -0.04 -0.03 - - -
5 0.4 +0.34 0.84 0.22 0.06 0.11 -0.14 -0.17 .02 .01 0.01
6 0.6 +0.39 1.23 0.37 0.07 0.18 -0.18 -0.35 .05 .01 0.02
7 0.8 +0.49 1.72 0.61 0.12 0.30 -0.26 ~0.61 .12 .02 0.04
8 1.1 +0. 2.22 0.86 0.12 0.42 -0.44 -1.05 .32 ,06 0.10
9 1.5 +0. 2.66 1.05 0.09 0.51 -0.48 -1.53 .56 .07 0.17
10 2.2 +0.39 3.07 1.20 0.07 0.58 -0.49 -2.04 .79 .07 0.24
11 3.1 +0.47 3.54 1.42 0.1 0.69 -0.28 -2.32 .86 .02 0.26
12 4.3 +0. 3.83 1.51 0.04 0.73 -0.13 -2.45 .88 .01 0.27
13 6.1 +0.18 4.01 1.54 0.02 0.75 -0.46 -2.91 1.09 ,06 0.33
14 8.6 ~-0.12 3.89 1.56 0.01 0.76 -0.L44 ~3.35 1.29 .06 0.39
15 12.0 -0. 3.37 1.77 0.10 0.86 -0.31 -3.66 1.38 .03 0.43
16 16.9 -0. 3.20 1.80 0.01 0.87 | -0.36 -4.02 1.51 .04 0.47
17 23.8 -0. 2.81 1.95 0.07 0.94 -0.43 ~4.45 1.70 .06 0.53
18 33.5 -0 2.66 1.97 0.01 0.95 ~0.55 ~-5.00 2.00 .09 0.62
19 46.9 -0.17 2.49 2.00 0.01 0.96 -0.70 -5.70 2.49 .14 0.76
20 65.8 +0. 2.58 2.01 - 0.96 -0.56 -6.26 2.80 .09 0.85
21 92.1 +0 2.72 2.03 0.01 0.97 -0.52 -6.78 3.07 .08 0.93
22 128.6 +0.17 2.89 2.06 0.01 1.00 -0.60 -7.38 3.43 .10 1.00
Legend:
dg , dn Contribution to £, n for a ring
[de] , [an] Accumulated contribution to & , n up to and including the subject ring.
[ee2] , [dn?] Accumulation of dg? , dn? up to and including the subject ring.
_d§2T )
Zdg ) . . R . . 2 2
Proportion which the subject ring contributes to the total d§ , dn® of
E%%; ; the whole inner zone.
[ )
Zdg ) R . . . R .
2] ) Accumulation of the above proportion up to and including that subject ring.
%3_%7_ )
NOTE : For this station the inner zone contributes about 60% of the total signal in the & component,

and about 80% of the total signal in the n component.

TABLE 7

ANALYSIS OF INNER ZONE CONTRIBUTION TO THE DEFLECTION COMPONENTS AT KAPUTAR
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6.2.3 Outer Zones Contribution

The contribution of the outer zones (ie. the area beyond the radius of the outer-most ring used

to compute the INNER contribution were determined, in the main, by MATHER (1970) in the 1970 geoid
solution of Australia. As described in section 4.2 the inner zone in this solution was the 1.50 X
1.50 area centred on the 1° square containing the computation point. The bulk of the contribution
now sought will come from the outer zones exterior to the above regions. The values were computed
for the twelve test stations, with the contribution for the transition from the outermost ring
(approximately 128 km radius from the computation point) to the inner boundary of the 1970 geoid

outer zone being evaluated as a separate unit.

This '"'transition' zone was computed using data held in GRAVBNK and HTBIN by a program denoted MELD,
the results of which are listed in row & of table 6. As can be seen from the values, this zone makes
a significant contribution to the deflection both in terms of the absolute quantity (of the order

of 05 in & and 1" in 1 ) and in terms of the relative difference in the contributions to each
station. The contribution to & ranges from +0"74 for Blue Nobby in the north to -0'20 for

Somerton in the south-east, and to n from ~1.6 for Blue Nobby to -0'54 Willalla in the south-west.
These ranges, of approximately 1! and 0.6 respectively are considerable when viewed against an
expected accuracy of *0V3, and reflect the asymmetry of the gravity field at angular distances from

the 1.0° to 1.50 radius from the region.

The approach adopted in evaluating all outer zone contributions was described in section 4.2, the

data sets used in this evaluation being compiled as follows (see MATHER 1970a, p 73). The 0.5° x
o o) o

0.57, and 17 x 1

region by the BMR, with extra information (particularly in the ocean areas) being obtained from such

area means were based on gravity surveys carried out throughout the Australian

bodies as private researchers or geophysical exploration companies, or the gravity holdings of

the Aeronautical Chart and Information Center, St. Louis, Mo. (now the Defence Mapping Agency
Aerospace Center) for regions within 25 degrees of the continental margins. The 5o x 5% area means
were compiled from both surface and satellite gravimetry such that, where necessary, these mean
values were consistent with the smaller area means derived above. A summary of the techniques

used to achieve consistency can be found in (MATHER 1970a, pp 83-84).

The contributions of the outer zone was computed as that due to three regions NE, MD and UT. These
results are shown respectively in rows 1, 2 and 3 of table 6. As can be seen, the contribution

of the field 15° distance from the region changes slowly from station to station, contribution
approximately -20 to the values of & and n , and varying only by the expected order of

accuracy of the computed result. The NE zone (1.5° < Y < 7.50) varies considerably, whilst adding
something of the order of 15 to 20 in £, and -1'7 to -2V9 in n. This difference in n is
a further reflection of the asymmetry of the field at the ¢ = 1%5 level remembering in particular
that the starting data used for stations west of 150°E will differ from that used for stations east

of 150°%E as a result of the method of square selection used.

6.3 Astro-Geodetic Deflections

6.3.1 Evaluation Techniques

As mentioned above in section 1.4 the computation stations were chosen because they were part of the
astro-geodetic levelling network of Australia, and as such were fixed both by astronomical

observation and by geodetic survey on the Australian Geodetic Datum.
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a) Astronomical Position

The astronomical positions were fixed by observers from the Division of National Mapping, Australia
using in the main Kern DKM 3A theodolites (the only exception being at Somerton where a Wild Tk

was used). Latitude was usually fixed by observing circum-meridian altitudes on o octantis,

whilst longitude was fixed by means of a 350 impersonal almucantar, transits being recorded on

a FAVAG chronograph, with time signals originating from the radio station Lyndhurst VNG time service.
The values obtained, along with their estimated accuracies (LEPPERT 1976) are listed in columns 2
and 3 of table 8. [t should be noted that these accuracies are based on the analysis of the
observations alone, and must be considered as estimates of the internal accuracy of the observation
rather than as a statement of absolute accuracy. In fact absolute positional accuracy as estimated
from an overall analysis of the Australian network (FRYER 1970, p 50) appears to be more of the

order of #0425 in latitude and *QY45 in longitude.

b) Geodetic Position

The geodetic positions at these stations are based on the geodetic control network in the region,
observed to 1st order specifications and computed on the Australian Geodetic Datum (see equations
6.5, 6.6 in section 6.3.2 for details). The values obtained are listed in column 4 of table 8 and
can, for the purposes of this investigation, be assumed error free. This means that the deflections
obtained astro-geodetically should be of the same accuracy as the astronomical position fixes

ie. 20725 in & and #0V45 in 7.

6.3.2 Corrections for Model Differences
(a) Correction for elevation of ground point above the ellipsoid

The gravimetric values of the deflection are being computed at the point P on the surface. The
astronomical position is determined at this same point, but its geodetic position is computed on
the ellipsoid. 1t will be necessary to correct for the curvature of the normal in the meridian

plane through P in order to achieve a proper A/G deflection at the surface.

The derivation for this correction is well-known (eg. BROVAR ET AL 1964, p 228; HEISKANEN AND
MORITZ 1967, p 196; MATHER 1968, p 216-221) and will not be repeated here.

The correction is found from the expression

C€ = =-0.17 hsin 29

where h = height of the P in km

and ¢ = Esurface - EA-G

In other words,

g = - 0.17 hsin2¢ (6.4)

surface

Neurface —  Na-G (because the rotational symmetry of the ellipsoid

of revolution introduces no differential curvature into the prime vertical component of the normal) .
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This correction is tabulated in column 7 of table 8. (it is assumed that the geaidal height is
equivalent to the ellipsoidal elevation for this purpose as the difference (= 40 m) will have
insignificant effect). It can be seen that the maximum correction of -022 for Kaputar is not
insignificant and that for stations of 2500 ft (= 750 m) and higher in this latitude this correction

should be applied,

(b) Correction for changes in model dimensions

The values for the gravity anomalies computed from equation (2.5) are based on the normal gravity
computed from the International Ellipsoid whose parameters are stated in equation (2.1). The
geodetic values of the control stations are computed on the Australian Geodetic Datum (AGD), details
of which are as follows (see LAMBERT 1968, p 95).

The model used is known as the Australian National Spheroid (ANS), with

6 378 160 m

[]
]

1/298.25 (6.5),

-
]

whose orientation is determined by adopting geodetic coordinates and ellipsoidal elevation at the

Johnston Origin of

= -25% 56" 54u5515

%0
- o )
Agg = 1337 12" 30u077
h = 571.2m (6.6)
SO

It can be seen on comparing (6.5) with (2.1) that the changes in the model parameters are

da = -228m

df = -1.41 x 107 (= 2.5 arcsec)
to correct from the ANS to the International Ellipsoid.
The expression which gives the effect of these changes on the meridional deflection (as again the
value of n is unaffected) to a significant order of accuracy is derived in (HEISKANEN AND MORITZ
1967, pp 206-208; MATHER 1968, pp 281-285). It can be stated as

. dag . h .
AE' = -df sin 2 ¢ - fF - sin 2 ¢ + df 5 sin 29 -

-2 f df sin 2 ¢ cos® ¢ (6.7)

The first term in this expression is the predominating one (the remaining three being of the order
of %), and this changes slowly throughout the extremes of the test area, ranging from AgZ' = +252
for ¢ = —300 to Ag!' = +2U57 for ¢ = -310.

The values as computed are shown in column 8 of table 8.
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(c) Change in orientation of ellipsoidal model

The effect on the deflections of the vertical due to a change in the orientation of the reference

ellipsoid, as derived in (MATHER 1968a, pp 281-285, and FRYER 1970, pp 30-34) are given as

- A" (p+h) = - AEO (pO + ho) [ cos ¢, cos & + sin 9 sin ¢ cos AX]
+ Aﬂo (v + ho) sin ¢ sin AX
+ AN [sin ¢ cos ¢ - cos & sin $ cos AL] (6.8)
o o o
and
- " = - B B
An't (v + h) Ago (po + ho) sin ¢ sin AX
- Ano (vo + ho) cos AL - ANO cos ¢O sin AX (6.9),
where A = A=A,
0

oo, v radius of curvature in the meridian, prime vertical respectively and the

subscript o refers to values at the origin (see equation 6.6).

The values for AEO . Ano and ANO were found in 1970 as part of the 1970 geoid solution of
Australia. These values were computed from a least squares fit of 38 well-distributed A-G stations

onto a geocentric ellipsoid, and were found to be (MATHER 1970, p 117)

AEO = -4.2 £ 0.2 sec
Ano = -4.5 % 0.2 sec
ANO = 10.0 £ 0.2 m (6.10)

These values are substituted into (6.8) and (6.9) for each of the 12 control stations and the

results listed in column 9 of table 8.

Consideration of the expressions used to compute each of these three corrections shows that the
values resulting can be assumed error-free. For the same reasons the order in which the computations

are carried out will have no significant effect on the results.

6.4 Correction Terms
6.4.1 The Effect of G' on & and n

The method adopted to compute G' was discussed in section 4.3.2 wherein it was decided to use a ring
technique similar to Rice's Rings, to evaluate G' at every gravity station in GRAVBNK (see section
4.1.1) and store this value with all other information for the point in GRAVBNK. It was then
possible to interpolate G' in exactly the same manner as Ag s interpolated in order to extend the
G' field beyond the discrete points. In this way maximum advantage could be taken of the subroutine

and systems set up to compute the deflections of the vertical.
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It is neither practicable nor desirable to present the results of the G' evaluatien at each station
in this context. It is worth pointing out that the computer techpique was tested against a hand
computation at three of the test stations (Kaputar, Baldwin and Newry). These stations provided a
range of terrain types and showed the computer system tp have very good agreement with the hand
computation (0 {* 1-2 mGal} ) for Kaputar, whose total G' correction is =~ 34 mGal and free-air
anomaly = 112 mGal). This afforded confidence in not only the ring system used to evaluate G'

but also in the prediction technique.

The G' values as computed are shown, together with the free-air anomalies and heights, for the
gravity stations in the immediate vicinity of the relevant test stations in figures 13 to 20. It
should be noted that the greater the distance of the gravity station from the computation station
(P) the weaker will be the evaluation of G' because of the lower density of auxjliary height
points away from the test station. This is not considered serious, hpwever, because the inflyence
of errors in G' at such distances from P will be much less, and in general Ip this region the
value of G' will also be lower because of the less rugged nature of the topography as one maves
away from the computation point. As will be shown in section 7.3,2, the error is further diminished
if the over- or under- estimation of G' is symmetrical about the computatjon point. |t is
reasonable to assume that this will in fact happen, as the density of the height points is a
function of distance from the computation point, and the choice of height paint and the method of

interpolation should ensure that the errors in G' are symmetrically located about P.

The effect of the correction G' on the deflections of the vertical was computed as a separate stage
of the computation in CONTRL2 (Appendix H). In this way, the Vening Meinesz effect and the terrain
correction effects could be easily compared at each stage of the computation. Because of the flatness
of the terrain around Culgoora, Beelera, Willalla and Somerton it was not necessary to compute this
correction at these stations. The corrections to & and n for the remaining stations are listed

in columns 1 and 2 of table 9.

Further comments will be made on the significance of these corrections in chapter 8.

6.4.2 Correction Terms for Green's Third Identity

The computational techniques for finding the ground slopes are described in section h.3.4 and are
needed to evaluate the terrain correction term as expressed in equations (2.72), (2.73). Other
necessary parameters are the geoidal components £, n and N at each mid-compartment poipt (Q) in
the Rice Rings solution. These are obtained by applying a special version of SORT3 (Appendix F )
to the geoidal data described in section 4.1.3. The values of h and ¥ are found as a matter of
course during the Rice Rings solution of the Vening Meinesz expression, and thus equipped, it is a
simple matter to evaluate the ¥ needed, keeping in mind the comments made at the end of section

2.3.4 on the necessity to use E' rather than ¢ in this term.

It is now possible to evaluate (2.72) and (2.73) as modified in section (3.3.3), viz.

- . dh -h
g = 21_“ U[*—c%sz % ( Etan B, + n tan By ) + (Nq—Np){ (2ﬁ+3h§—o—)cos o
- é% gb— sin ui} ] do i=1,2 (6.11)
‘o
where &, = & , £2 = n
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Because of the slow-changing nature of the N value in the test region (see figure 23) the terms in
(Nq - Np) were very small, making negligible contribytions to the correction. The values of the
corrections, which are in effect the evaluation of the first term, are listed for all relevant

stations in columns 3 and 4 of table 9.

It is interesting to compare these values with the values which result had not the datum shift in
N been adopted in the second term, ie, if the full geoid-ellipsoid separation had been used as the
coefficient in this term. The values of the corrections evaluated thus are listed in columns 5 and

6 of table 9.

It is also of interest to note the effect of using the value for ¢ (as opposed to ¥ )} in the above
expression using (Nq-Np) as the coefficient for the second term. These values for the relevant

computation points are listed in columns 7 and 8 of table 9.

For further discussion of these results refer to chapter 8.
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MOLODESKY 'S USING ARNOLD-TYPE EXPRESSIONS(equation 6.11)
CORRECTION 7 "
Contribution
From G' Using Ng - Np Using Ng Using Ng-Np Using Ng
NAME g! n' 8E 8n 8& Sn §E 8n §€ 8n
1 2 3 4 5 6 7 8 9 10
5. Goonbri -0.20 (-0.16 -0.31 +0.04 -4.59 [-1.46 [+0.01 |-0.70 | -8.44 [-1.00
6. Byar -0.38 |-0.06 | -1.06 | -1.04 |-6.48 |-5.34 |-3.16 |-2.00 F12.76 F11.05
{(Cont” to Ring5) (-0.80) | (-0.53)
7. Kaputar -0.64 {+0.19 -0.05 -1.03 14.00 }-4.30 |~1.40 {-1.01 F20.05 |- 3.62
{(cont” to Ring5) (-0.84) | (-0.14)
8. Blue Nobby -0.53 |+0.25 -1.86 +2.16 18,49 (-5.58 |-2.17 {-0.65 }30.52 7.36
(Cont” to Ring5) (-1.72) | (+1.91)
9. Gulf Creek +0.13 |+0.13 +0.45 -0.41 -3.32 {-3.55 |+0.11 }+0.13}-1.22 {-2.19
(cont™ to Ring 5) (+0.39) | (-0.26)
10. Newry .00 {+0.14 +0.12 .00 -0.66 [-1.80 |-0.01 {-0.01]-0.66 |~-0.82
(Cont" to Ring 5) (+0.20) | (+ .23)
11. Baldwin - .20 |+ .10 -1.88 +1.90 +5.14 |+7.11 |+0.64 }-0.82 ] -3.16 | -6.05
(Cont? to Ring 5) (-1.74) | (+1.60)
TABLE 9  TERRAIN CORRECTIONS TO £ , n
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7. ERROR ANALYSIS

7.1 Introduction

It is a common and a valuable practice to make a theoretical estimate of the accuracy of derived
quantities based on the expected accuracy of the data and the method of evaluation adopted. This
assists in comparing values derived'in a similar fashion at different stations, or in placing the
method of solution in perspective when comparing that particular technique against a different means
of obtaining the same quantity. For example, in the present study it is of interest to compare the
gravimetrically derived deflections at different stations throughout the region and also to compare
the expected accuracies of the gravimetric deflections with those of the astro-geodetically derived

values.

There are two problems which must be considered in the present analysis. The first is the problem of
estimating the faithfulness with which the data value used in the solution represents the mean value
for the compartment (referred to as the 'error of representation' by de Graaff-Hunter (see MOLODENSKI
ET AL 1962, p 172)). This itself will be a function of both the accuracy of the original data used
in the estimation and the technique adopted to predict the mean compartment value. The second
problem is to estimate the error introduced by the evaluation technique itself ie. by the fact that
that the integral is approximated by a summation of mean values throughout the computational surface.
This error is known as the 'numerical process error' by HENRICKSON AND NASH (1970, p 4017) and
applies mainly to methods which use a grid approach in the evaluation. It will vary in the present
study according to which zone is being treated (see section 6.2), but because a Rice Rings approach

is used to evaluate the critical zone of the computation it need not be considered in this analysis.

Because of a general lack of observational data and the problems mentioned above, error analyses

have been concentrated on different approaches to the method of analysis, the numerical error of
evaluation on adopting the grid approach, or the evaluation of the error in deflections due to
failure to account for the gravity field in the middle to outer zones. For example, KAULA 1957 (in
what is basically a covariance analysis of the accuracy of gravimetrically computed deflections) used
rms values of the mean anomalies of certain sized areas and the cross-correlation between these areas
which were derived from analyses of two long gravity profiles in south-central United States. To
assume that such an analysis is applicable in all other regions has already been shown to be
doubtful, particularly for localised regions (see section 5.3.3), but nevertheless the paper gives
important insight into the errors resulting in deflections due to either the stated uncertainties or
the neglect of the gravity field beyond certain radii. HENRICKSON AND NASH (1970), in a similar
approach to the analysis based their theoretical estimate of the error in the gravity anomaly on the
drift pattern of the gravimeter and the pattern of the gravity survey (the work is mainly applicable
to gravimetric surveys at sea) and a particular discrete sum algorithm for the Vening Meinesz integral
based on a grid subdivision of the surface. OBENSON (1970; 1973) uses estimates of accuracy based on
covariance functions for the gravity anomalies, and finds the induced error in the deflection using

a rectangular grid in the evaluation of the Vening Meinesz integral similar to that developed by
Fischer (section 4.2.2). WROBEL (1967) is more concerned at finding the errors in the differences

of deflections in order to improve on astro-gravimetric interpolations of these deflections. NAGY
AND PAUL(1973) experiment with different combinations of errors for surveyed and unsurveyed regions
to find the resultant error in the geoid height at various locations on the Earth's surface. Thus

it can be seen that the bulk of the papers written on this subject whilst giving insight into the
techniques which can be used in error analysis, are not directly related to this particular study

because of the differences in computational and prediction techniques.

The effects of errors in data and of the interpolation method on the mean compartmental value are
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considered in section 7.2, whilst the actual effect these errors have on the computed deflection are

evaluated in section 7.3. An estimate of the accuracies in the correction terms is presented in

section 7.4,

7.2 Errors in the Data
7.2.1 Point Free-Air Anomalies

The usual method of gauging the accuracy of an observation, ie. by repetition and subsequent analysis
of the discrepancies of the individual observations from some superior estimate of the observation
such as the mean value, is not available in this case as repeated and independent determinations of
gravity and height for each gravity station was not practicable. |t is therefore necessary to rely

on experience, a priori determinations and check readings to provide this estimate of accuracy.

As described in section 4.1.1 the techniques adopted for fixing the height of a gravity station varied
from precise EDM trig. levelling for some stations close to the computation point to the less rigid
method of barometric levelling for more distant points. This means that errors in the differences

in the free air anomalies as a result of uncertainties in height will vary from negligible amounts

to about 20.3 mGal, depending on, in general, the situation of the gravity station. The errors in
the observed gravity itself may be larger than this, although because of the organisation of the
gravity traverses (see table 1, section 4.1.1) it seems reasonable to assume a standard error in

the gravity reading of less than #0.3 mGal. (Certainly this figure is borne out from the checks
taken on stations from different field trips. Values are also in general agreement with the Bouguer
anomalies interpolated from the BMR gravity maps). |t appears justified therefore (as the gravity
model can be taken as error-free) to assume a standard error in the free-air anomaly to range from
about %0.2 mGal to about #0.4 mGal. As stated in section 4.1.1, the accuracy quoted for the BMR
Bouguer anomalies is } +1 mGal, and this data was used in the more distant compartments of the inner

zone computation, with extra observations to intensify the field where necessary.

Correlation will exist between errors in the anomaly values at some gravity stations, eg. stations
fixed in gravity on the same gravity traverse or in height on the same barometric levelling run. In
the critical area, however, the heights of the gravity stations will have been independently fixed
(the only connection being the height of the computation point which is, in any case, assumed error
free). Although correlation will exist in the gravity values, it can be shown that the relative
accuracies of anomaly values at successive stations is in fact higher than the values for the
standard error quoted above. Zero correlation is assumed in the absence of any definitive estimate

of correlation. It is felt unwarranted in view of the comments in section 5.3.4 to invoke covariance

methods for this purpose.

7.2.2 Mean Compartmental Anomaly

In the computational technique adopted the predicted value for the mid-point of a compartment was
used as an estimate of the mean anomaly of that compartment. The accuracy of this estimate depends
on two main factors; (i) the interpolation procedure and the relationship of the circumscribing
triangle (see section 5.2.3) to the compartment, (ii) the nature of the topographic and the

anomaly surface and the size of the compartment. These aspects will now be treated in turn.

(i) The accuracy of the interpolated point will be dependent on 2 factors, firstly the errors in

the data discussed in 7.2.1 above and secondly the nature of the interpolation. This latter effect
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is known as the 'pure interpolation error' and is considered in detail in (MOLODENSKII ET AL 1962,

p 171) and (BROVAR ET AL 1964, pp 280-282). For a survey of normal density (ie. about 1 point per
1000 km? ) the pure error of interpolation of free air anomalies for plain areas amounts to *7.0 mGal,
whilst in mountain areas this error reaches #28 mGal for free-air anomalies and *11 mGal for

Bouguer anomalies (IBID, p 281). In the present study point density is higher than this, particularly
in the closer compartments. In fact for these close compartments the interpolation error must be
almost negligible and the error in the interpolated value(s) must approach that of the standard

error of the closest gravity stations.

It is, of course, possible to find the error in the interpolated station by means of an error

analysis of the interpolation formula (equation 5.3).

I f
) (x; - x)ly, = yj)-(yj - ) x, - Xj)
R CHREI | (ST B (U N R b3
i K VK T Y TN i TN
where J = P , unless J > 3, where J = P+1-3
k i+ 2 3 k i+2-3
then z, = ? a, z, s i=1,3 (7.1) .
By the law of the combination of variances,
2 L L2 2 2 42 2 2
o} af o 4 af ol o+ af of) (7.2) .

Now this expression can be used to estimate the error in the Bouguer anomaly and the height at the
interpolated station, where the coefficients o, will differ for the anomaly and height prediction
in areas with height augmentation. In areas defined only by the anomaly points, the z, in

equation 7.1 are the free-air anomalies.

(ii) 1t is also necessary to gauge the accuracy of the value interpolated as a representative value
for the compartment. This 'pure' error of representation will obviously be a function of the anomaly
or terrain smoothness in the region of representation. For example, investigations reported in
(BROVAR ET AL 1964, pp 278-279) show that for fairly flat regions and ‘normal' survey density (1 point
per 1000 km? )} the error of representation of the free air anomaly is %7 mGal, whilst in mountainous

regions the same error is %25 mGal and about %13 mGal for the Bouguer anomaly.

In fact, if the pure error of representation of the anomaly ( 8g') is assumed to be a function of the
dimensions x and y of the rectangle the anomaly is meant to represent, it has been found by

empirical means that

o = ol (x4 yP) (7.3)

where x , y are the dimensions of the rectangle being represented in km, and in regions of
-1
average disturbance, c¢' = #0.54 mGal km 2. When the density of the gravity stations is increased

the pure error of representation may be expressed by

op = #0.24x mGal (7.4)
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where x is the distance between gravity stations in km.

The magnitudes of the errors of representation for flat areas, with a single station every 3 to

4 km® is found to be (IBID, p 280)

Square side %
(km) (mGat)
5 1.5 £ 0.1
10 2.8 £0.2
20 L. £ 0.4
30 7.0 £ 0.6

By combining the measurement error with the pure error of representation it is possible to
estimate the total representation error of each predicted point. It is found, on an actual
compar ison of the predicted values against mean values obtained graphically, that this error is
of the order of 0.5 to 3.0 mGal (depending on terrain) for compartments predicted by means of a
plane triangle fit. Good agreement is obtained partly because the gravity stations (and, where
applicable, the height points) were chosen points of change of grade on the surface so that the
mid point value will indeed give a good estimate of the mean value if the circumscribing triangle
used in the interpolation process contain the compartment. This was achieved by varying the
compartment sizes at different stages of the computation. In fact, in the outer rings where a
least squares plane was fitted to seven points (see section 5.2.2) the compartmental contribution
dropped to a third that of the earlier stages of the computation, helping to control the pure

errors of representation in these rings.

It is impossible to obtain an exact estimate of the error of representation without a fully
digitised terrain or anomaly model. In fact, even the comparisons above contain the errors in
the graphical interpretation estimated by Rice to vary from of the order %0.2 mGal for distances
up to 500 m, to *5 mGal for the outermost rings (RICE 1962, p 293). In the circumstances it is
obvious that the graphical analysis must achieve a higher order of accuracy than the computerised
approach, and one could use the error of representation quoted above as the figure for the
subsequent error analysis. However, this would not reflect the different pattern of gravity and
height points used in the deflection computation for each computation point. It seems more
realistic to use an expression combining the error in the value of the midpoint as found from the

geometry of the interpolating triangle with the pure error of representation (see equation 7.7).

7.3 Errors in the Gravimetrically Determined Deflections of the Vertical

7.3.1 The Innermost Zone

From expressions (6.3a), (6.3b) the error relationships for the innermost zone can be derived,

namely

SAg

3 = 0M105 r_ 3 T (7.5} ,

with an analogous expression for an.
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As a consequence of the manner in which the gravity gradient is determined, it is seen that

. & ( S84gi . 0Ag 3
ag 7 (g fbgr o+ ),
where dAg; = the error in the gravity gradient determined for the
line in this zone,
and c = 0.105 ro/6x arcsec.

On assuming zero correlation between successive gradient lines,

2 c?

th

N-S gradient

= 0.2 2 + g2 + 0. 2

og T (0.25 OAg; hgh 0.25 g} ) (7.6)
Since in the present evaluation the o value is small (100 m), the Bouguer anomaly can be
assumed constant and the free air anomalies will be a reflection of the terrain heights. |If the
heights at the cardinal points were taken from the 1;31 680 maps with 25 ft ( = 6.5 m) contours
they will be accurate to about 10 ft (~ 3.0 m} ( = 1 mGal) and the ng‘ will be of the order of
2 mGal?. Substitution of these values in equation (7.6) produces a error in the deflection of
about 0.1 arcsec. This is not insignificant and shows the potentially critical nature of the
computation in this innermost zone.
The following comments should be made concerning this phase of the computation,
(i) The effect of the error of representation on the gravity gradient will be very small because

of the local nature of the computation (see equation 7.4).

However, for central zones extending

up to 4 km from the computation point this will increase the standard error in the gravity

gradient markedly, particularly in broken terrain.

(ii)

gradient will

increase and the innermost zone should be fixed by field survey.

If reliable large to medium scale maps are not available, the uncertainty of the gravity

In the absence

of a proper survey it would be of value to obtain an estimate of the gravity gradient in the field

by using the gravimeter as an altimeter.

Over such small distance it

is feasible to assume the

Bouguer anomaly constant and hence any changes in gravity will be due mainly to changes in height.

(iii)
about 0.01 arcsecs over a radius of about 280 m.

of the values obtained from the three cardinal lines used

RICE (1962, p 293) estimates the effect of the innermost zone for station computed to

in the evaluation and reflects the

This estimate is apparently based on a comparison

relatively smooth nature of the anomaly field in this area particularly when compared to the more

difficult stations in the present test.

7.3.2 The Inner Zone

One advantage of the rings approach to the computation of the deflection is the relative simplicity

of the error analysis of values evaluated by this method.

For example Rice (IBID, p 293)

adopted a value for the probable error for the mean anomaly of each compartment which was a

function of the radius of that compartment. Using the average

value of

cos

2

o

and

sin? o

for all sectors in one ring as 0.5, the expression for the expected error ‘in the deflection ( Et )

is given as

Ei = 18 z(Er x 0.001)% arcsec? ,

E =

where r

expected error of the mean anomaly per compartment.
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Rice deduces that the 'precision' (apparently the probable error) for the contribution of gravimentric

. o R . . .
deflection up to Y = 5 as determined in this manner is of the order of 0.1 arcsec.

Molodensky (MOLODENSKII ET AL 1962, pp 174~177) in a formal development assuming a uniformly

accurate gravity map for the entire Earth shows that the resultant error in the deflection is

sg0 = + - sg' = 2015 &g j=1,2
J VZy

where 8g' is the error of representation in mGal.

Using a mean distance between gravity stations of 2X and a template of rings whose radii are
(2n £ 1) X, n being the number of the ring, the error in the deflection owing to the n-th fing

may be written as

[

sgt = 1 on (2n+1)

2 2
Ty Fo7) L cos a(Aa) 8g'

where Ao is the step in the azimuth or apex angle for a compartment. This expression leads to
the conclusion that, for this particular array of points the standard error in the deflection
introduced by errors in the gravity field beyond the radius X is 20V063 &g'. |f the data field
in the present study is idealised to give an X and &g' (as averaged for the inner zone region)
of 5 km and #2 mGal the error in the deflection due to the contribution of this region would still

only be 0 {20.15} .

For the technique adopted in the present study it is possible to compute the expected error of
representation { op). The error in measurement (o4) is derived from equation (7.2), where
oAg = $0.3 mGal if a surveyed point, OAg = +1 mGal if a height from the map (the OAg of
the Bouguer anomaly is assumed to be swamped by the errors in the height). The pure error of
representation (op) is based on equation (7.3) where the compartment is approximated as a

trapezium, x being the base and y its height.

Hence

+ o (7.7)

This error is then split into its two components and standard deviations obtained for both

components of the deflection.

The results of the initial analysis, using a value of OY54 for <¢' in equation (7.3) for all

predicted points, are listed in colums 1 and 2 of table 10. It can be seen that

(i) the error is very small ( = .06); and

(ii) there is little change at different computation stations.

In an attempt to make the analysis reflect more accurately the influence of terrain types on the

a2 , a value for c¢' of 3.0 mGal km_% was used in hilly to mountainous areas as opposed to the
value of 0.54 for the flatter regions. The resultant estimate is felt to be too high, but relative
accuracies do now reflect the type of terrain in the computation region (see columns 3 and 4 table 10).
(It is interesting that the values in the flatter areas approximate the OV15 estimated from
Molodensky's approach mentioned above). The exception to this comment is Willalla where

neither the accuracy of the gravity nor the density of the station are properly reflected by the

estimates obtained.
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ANALYSIS 1 ANALYSIS 2 ANALYSIS 3

1 2 3 4 5 6

% °n % n % n
1. Culgoora 0.06 |0.06 |0.10 |{0.19 [0.10 [0.19
2. Beelera 0.06 0.06 0.13 0.24 0.14 0.24

3. Willalla 0.06 {0.06 |0.14 [0.19 [0.14 J0.19

4. Binalong 0.06 | 0.06 [0.17 {0.21 |0.18 [0.22
5. Goonbri 0.08 | 0.08 |0.31 0.30 }{0.31 0.30
6. Byar 0.08 0.08 0.32 0.33 0.32 0.33
7. Kaputar 0.07 0.07 10.29 0.31 0.29 {0.31

8. Blue Nobby | 0.08 [ 0.08 {0.31 0.32 |0.32 }0.33

9. Guif Creek| 0.07 | 0.07 |0.30 }0.29 [0.30 |0.29

10. Newry 0.07 0.07 0.33 0.32 0.34 0.33
11. Baldwin 0.09 0.08 0.32 0.31 0.33 0.31
12. Somerton 0.06 | 0.06 | 0.31 0.27 {0.31 0.28

TABLE 10  EXPECTED ERROR FOR INNER ZONE COMPUTATIONS

Analysis 1: g2 = oé + o; where c¢' = 0.54 throughout

. . . Voo . R
Analysis 2: As above ; ¢ 0.54 in plains in equation (7.3)

3.00 in hilly country )

1 1
Analysis 3: As for 2, except 0; = ¢'2(xZ +y?)?% + (0.24)2 m?* ; m = minimum distance

in equation (7.4).



-126-

In an attempt to make the estimates more sensitive to the differences in gravity density, a third
analysis was performed which included a factor for the distance of the prediction point from the
nearest known point in Op. Equation 7.4 was used for this, x being the minimum distance in km
in this case. However, as can be seen from columns 5 and 6 of table 10, this new factor had little

impact on the results.

For a proper analysis each height and gravity point should have an independent estimate of accuracy
based on the factors mentioned in section 7.2.1. However, the data error is only effective out to
about ring 12 (4.5 km), the op adding little to the total error thus far. Beyond this the pure
error of representation dominates because of the larger compartmental sizes. Because of this it ic
felt reasonable to adopt a general value for errors in data for these closer points, noting that,

because of the survey methods used, they are likely to be overestimates of the real values.

It is a feature of computation of the deflections that systematic error will cancel provided, of
course, it is symmetrical about the computation point. As symmetry is likely to be present in the
systematic errors (eg. in the heights of points extracted from maps based on the same control system,
in gravity data based upon a common datum point and even in the interpolation technique adopted for
prediction) it is reasonable to assume for the inner zone computations that systematic errors have

little effect on the precision of the computation.

7.3.3 The Outer Zone

The values for the outer zone contribution to the deflection had, as explained in section 6.2.3, been
computed as part of the 1970 geoid solution for Australia by MATHER (1970a) and it is interesting to
consider the estimates of accuracy for this contribution. As the outset the following points should

be made.

(i) The random errors in data must be large to have any great impact on the accuracy of the

computed values of the deflections.

(ii) Because of the asymmetry of the test area with respect to the Australian continent and hence
the distribution of observed gravity data, similar asymmetry is expected in the accuracy of the data.
It should be noted that the field to the west which is based on land survey extends for about 360,
whilst to the east the relatively sparse ocean gravity surveys as supplemented by predictions for
completion of representation start at about ¢ = 30. Accuracy of data in the north-south direction

is roughly symmetrical, the coast being about 5 to 6 degrees away in both cases.

(iii) Whilst it is possible to obtain realistic assessments of accuracy when data is plentiful,
such assessments become more formal in sparsely populated areas such as ocean regions, and
accuracy assessment becomes far less meaningful due to the inability to realistically estimate

the correlated components of the error of prediction.

MATHER (1968, pp 173-198) shows in full the method he used to estimate the accuracies of representation

for various square sizes, and this is not repeated in the present development.

't is interesting to note that an expression similar to that in equation (7.7) is used to get the

final statement of accuracy, viz.

2 = g2 + g2

e’ = e e
P rep ext
where e; = the error in the prediction
2 = the error due to the 'extension'! of the field and

e
ext
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e? = the error of representation (equivalent to the 'pure' error of representation above) .

rep
eéxt depends on the method used to interpolate/extrapolate from the known field to the 'predicted'
field and the accuracy of the known data and is determined by experiment (181D, pp 194-196). The

e? is estimated by analysis of the amount of known data in the represented area (IBID, p 192) .

rep
This method of estimating errors fails because

where esys is the systematic component in ep whose magnitude cannot be estimated.
The final computations included a statement of the expected standard error and these proved, at least
by formal analysis to be negligible for each of the outer, middle and near zones, being of the order

of .002 arcsec in each case.

7.4 Errors in Terrain Correction Terms

Because of the similarity in the technique developed to evaluate G' with that used in the inner
zone computations, the error analysis developed for the deflection evaluation were adapted to obtain

estimates of errors in G'.
From section (4.3.2),
G' = X ¢ Ah. Ag y where i = compartment number
i

so that ol = % c? (Ah? Ozg_+ Ag, @?.) (7.8)
i i

An expression similar to equation (7.7) is used to find oi , except that the error in gravity and

height are analysed separately. The error in the gravity value is taken as 0.3 mGal, and the error

in the height data is taken to be either *1 m {for a gravity station) or #3.3 m (for a height value

from a map). This means that separate errors of interpolation and 'pure' representation are found

for both gravity and height (assuming no error in either parameter at the computation station).

Variances in each predicted value of G' can be estimated according to (7.8) and summed through the

whole G' computation.

It is not feasible to quote the estimates of errors for all values of G' computed for they are very

. -4
small. For example the values around Kaputar (where the error would be largest) is only 4 x 10~ mGal.
Differences between manual and computer determined values were certainly larger than this ( =1-2 mGal),

but this theoretical estimate does demonstrate the stability of the approach.

Because of the difficulties encountered in accurately evaluating the 'Arnold' type correction terms
it was considered impracticable to carry out an analysis on this computation. It would be possible
to do this by using the errors in the heights as determined above to find the errors in the ground
slopes and then the effect these have on the correction term, but the discrepancies apparent in

this technique rendered the effort of such an exercise to be of limited value.
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8. ANALYSIS OF RESULTS
8.1 Introduction

In a comparative analysis which follows the parameters which are of interest are

88 = G S

An "6 T Yo

ie. the difference in each component between the astro~geodetic and the gravimetric deflections of
the vertical (EG y nG). These differences are listed for each station in column 6 of table 11,
and are found by subtraction of the column 2 values (of this table) (transferred from row 7 of table

6) from the column 5 values (transferred from column 11 of table 3).
The quantities which result from a statistical analysis of Af , An are

(i)  their mean values ), which will show any systematic errors in the differences,

( Mg+ Map
and

(ii) the standard errors ( OAE s GAn ) which will enable an estimation of the accuracy of the

gravimetrically determined deflections.
*

As a first step the astro-geodetic deflections will be assumed error-free (sections 8.2 & 8.3),
Estimates of the errors in these parameters will be included in the subsequent analysis ip section
8.4,

A superficial review of the discrepancies shows that it is reasonable to separate the analysis of
the & component from that of the n component. The & components are generally in good
agreement whereas the n components are more discrepant and a detailed review of these values must
be undertaken. It is also valuable to separate those stations only marginally affected by terrain
effects from those which are apparently subject to these corrections. For this purpose the stations

were divided into two categories as follows:-

Category Description Stations
1 Stations marginally effected Culgoora, Beelera,
by terrain effects. Binalong, Somerton.
2 Stations apparently subject Goonbri, Byar,
to terrain effects Kaputar, Blue Nobby
Gulf Creek, Newry,
Baldwin

As will be demonstrated, Willalla, with large discrepancies in both & and n which fail the 30
test for acceptance, will be deleted from consideration. It will be remembered that the survey at
this station was never completed satisfactorily and no confidence was placed in the gravimetric

value at this station (see section L.1).
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AL I8 9
] 2 3 4 5 6 an 7 AE ) p ©.06
0 systemati
swneric | con oo | || ez @ T
NAME ” £ Eg /6 W/0 WITH W/0 WITH
(Category) s n' s /G CORRECTION CORRECTION
1. Culgoora +1.14 - +1.14 +1.27 +0.13 | +0.13 +0.07 +0.07
(1) (i) -9.84 - -9.84 (-9.56) | (+0.28) {(+0.28)
(i) " - " ~8.40 w144 | +1.44 -0.03 -0.03
2. Beelera -0.13 - -0.13 -0.19 - .06 |- .06 -0.12 -0.12
(1) -9.41 - -9.47 -9.38 | (+ .03) [(+ .03)() - -
3. Willalla +1.36 - +1.36 +0.20 | (-1.16) [(-1.16)() - -
- -7.62 - -7.62 -4.76 | (+2.86) [(+2.86)() - -
4. Binalong +1.51 - +1.51 +1.77 +0.26 | +0.26 +0.20 +0.20
(1) -5.38 - -5.38 -4.02 +1.36 | +1.36 -0.11 -0.11
5. Goonbri -1.50 -0.20 -1.70 -1.62 -0.12 | +0.08 -0.18 +0.02
(2) -8.93 -0.16 -9.09 -7.56 +1.37 [ +1.53 -0.10 | +0.06
6. Byar -5.60 -0.38 -5.98 -5.67 -0.07 | +0.31 -0.13 +0.25
(2) -11.85 -0.06 -11.91 -10.94 +0.91 | +0.97 -0.56 -0.50
7. Kaputar +3.15 -0.64 +2.51 +2.32 ¥0.83 -0.19 -0.77 -0.13
(2) -12.27 +0.19 -12.08 -10.26 +2.01 | +1.82 +0.54 +0.35
8. Blue Nobby +5.25 -0.53 4.72 +4.73 -0.52 | +0.01 -0.58 -0.07
(2) -3.96 +0.25 -3.71 -4.47 | (-0.51) [(-0.76)3 - -
9. Gulf Creek 1.54 +0.13 1.67 +1.54 0.00 | -0.13 -0.06 -0.19
(2) (1) -6.93 +0.13 -6.80 -5.54 +1.39 | +1.26 ~0.08 -0.21
(ii) o " " (-4.30) | (+2.50) |(+2.37)0)
10.Newry -1.20 0.00 -1.20 -1.30 -0.10 | -0.10 -0.16 -0.16
(2) -5.19 +0.14 -5.05 +2.89 +2.30 | +2.16 +0.83 +0.69
11.Baldwin -5.57 -0.20 -5.77 -5.47 +0.10 | +0.30 +0.04 +0.24
(2) -7.20 +0.10 -7.10 -5.83 +1.37 | +1.27 -0.10 -0.20
12.Somerton -1.82 - -1.82 -1.75 +0.07 | +0.07 +0.01 +0.01
(1) -8.80 - -8.80 -7.36 1. 44 | +1.44 -0.03 -0.03

TABLE 1

COMPARISON OF GRAVIMETRIC AND ASTRO-GEODETIC DEFLECTIONS OF THE VERTICAL
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g i No. in Sample| 12 12 1 4 7 M 7
E(uAE ) -0.11[-0.19 [-0.10 +0.10 [-0.22 [+0.06 | 0.0k
E(oAE ) % 2.5 | 0.43[0.31]0.13/0.33|0.18]0.20
BéA/G + N.A. [ N.A. | 0.17] 0.18| 0.16|0.17]0.16
ECogg) ¢ 0.26{ 0 0.29| - |o0.12

n | No. in Sample| 12 12 9 3 6 9 6
E(uAn) 1.20] 1.33] 1.51] 1.41] 1.56] 1.47] 1.50
E(oAn) + 1.44 1 0.91] 0.41] 0.05| 0.50{ 0.34 | 0.43
EHA/G t N.A.| N.A.| 0.21]0.19( 0.22| 0.2k} 0.22
E( OUG) * 0.35] 0 0.45] 0.26 | 0.37

Legend

Column 1: Comparison A/G with 1970 Gravimetric Geoid Solution Values

i

~NONUT W N

"

"' All Stations included

' Stations Failing 30 test rejected

"' Category One Stations

"' Category Two Stations without Terrain Corrections

" All accepted stations - after applying terrain corrections

"' Category Two stations - after applying terrain corrections

TABLE 12  COMPARISON OF DIFFERENCES - MEANS AND STANDARD ERRORS
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8.2 Comparison of Gravimetric and Astro-Geodetic Deflections befare Applying Terrain Correction
8.2.1 A1l Stations included in the Analysis

In the first instance all stations will be considered without reference to their categories. A

statistical analysis of A& , shows the following:-

E (UAE) E (OAg)
(i) with Willalla -0"19 +0'143
(ii) without Willalla -0t10 +0\'31
The A& for Willalla differs from E<UAE) above by 0 {#1!0} . This difference increases to
1726 when the better estimate for E (UAE) of +0"1 , found in section 8.2.2(a), is used. This

shows the AF for this station to be unreliable as its difference equals the 3¢ limit which is
set by the above analysis. A similar analysis of the n component is not possible at this stage
due to the larger discrepancies which exist in An . A study of these elements now follows for

the problem values.

(M) It will be noted that there are two values for An at Culgoora resulting from two

determinations of at this station. The first value {-9'56) which results from 7 pairs on

/e
one night's determination of A gives good apparent agreement with the - g whilst the second
value (-8'40), the product of 3 nights' observations(26 pairs)for X , produces a discrepancy of

+1044. Because this is more precise and because the general disagreement ( An) in the

*aze
region appears to be of the order of +1.5 it was felt from all viewpoints that the second value

was the most reasonable one to choose.

(i1) The n at Beelera, whilst in apparent good agreement with the nA/G , does not reflect

G
the general systematic difference of +1.5 in this component. There is no apparent reason for
this (eg. terrain effects will be negligible) and the An will be treated with caution.
(ii i) On the basis of earlier remarks Willalla will be dropped from the analysis.
(iv) The value of An at Blue Nobby is also greatly discrepant, being about 20 less than the
mean difference in n . There is no apparent reason for this, the corrections for terrain to the
n. not being expected to exceed 205 and the internal precision of the nA/G being quoted as

G
+0"2. The value easily fails the 30 test and it is reasonable to delete it from the consideration.

(v) There are two values given fro the nA/G on Gulf Creek which, as for Culgoora, are the
result of different determinations of AA/G for this station. The -4'30 value which was determined
in 1969 from 18 pairs has an internal precision of *0V32, whilst the -5154 value determined in 1968
from 28 pairs has an internal precision of *0V19. Whilst this second value is apparently more
precise it is not significantly so, but since the difference of the earlier value (+1'39) compares
much more favourably with the average than the later it appears reasonable to accept this earlier

determination as the Na/6 for this station. Otherwise the station would have to be dropped

altogether from the analysis.
In the cases above where two values have been lTisted for Na/G the value rejected has been bracketed

in the table. Using the values accepted, an analysis of the 9 stations remaining gives an E(uAn)

of 151 and an Efs, )} = 041 (see column 3 of table 12).

An

It should be noted at this stage that whereas the E(UAE) is small and all well-surveyed stations
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are in reasonably good agreement. On allowing that the gravimetric deflections may receive corrections
for terrain effects of up to 05, the E(uAn) is large ( =1U5). Analysis of the gravity field
suggests that this is probably due to the weakness of the gravity field about 3Q east of the test
area (see section 7.3) which is introducing a systematic effect into the nG; A similar effect

was found by FRYER (1970, p 82) where computation of the orientation parameters for the AGD onto the
geocentric ellipsoid using only stations in or near NSW revealed a value for Ano of =552 instead
of the -3"'97 value obtained on the basis of comparisons for the whole of Australia. Use of the NSW-
derived parameters in fact produces agreement of g with nA/G‘ On the other hand this does not
explain the large discrepancies existing at some of the stations in this prime vertical component.
The astro-geodetic values for n  must be treated with caution, partjcularly when differences such

as those cited at Culgoora and Gulf Creek occur. This argument is strengthened when it is remembered
that the gravimetric determinations for 1 uses exactly the same inner zone data and computational
technique as the determinations for £ . However, the determinations for ¢A/G and AA/G (and
hence EA/G and nA/G ) involve distinctly different observational techniques, it being widely
recognised that the ¢A/G determination is of higher accuracy than that of AA/G (BOMFORD ET AL
1970, p 1). Since agreement in & is good this tends to confirm the accuracy of the
gravimetric approach. It appears likely therefore that discrepancies in An from the mean are due

to errors in the values of nA/G'

Whether or not this is the case, it is certainly feasible and desirable to continue the analysis for
£ and n separately. This will allow a proper estimate of the systematic error in the two
components to be made. Finally, because of the different variances for the astro-geodetic £ and

n, two separate estimates of the precision of the gravimetric calculation can be made.

It is also of interest to compare these values with equivalent values taken from the 1970 geoid
solution (listed in column 1 of table 12). They are found to be E(UA&) = =017 #2"5 and E(uAn)

= +1'57 144, |t appears from these values that without an accurate definition of the inner zone
gravity field, an accuracy of only 15 to #2!5 for the gravimetric computation can be expected.
This accords generally with the value quoted by Fryer for the continent-wide comparisons of #2.0
and 25 for AE and An (FRYER 1970, p 79). On the other hand, these 'errors' do appear to be
random, producing quite good agreement in the E(UAg)' E(uAn) values which differ from those

computed from the more precise determination by approximately *Q.2 to *0V3.

It can be tentatively concluded that proper field definition and computational techniques introduces
significant improvement in the accuracy of the deflections computed gravimetrically (from say
+2''0 to *0Y5), and that the discrepancies in the less accurate determination appear to be random,

producing reasonable agreement in the mean differences.

8.2.2 Comparisons according to category

(a) The AE , An for stations in category 1 (ie. those unaffected by terrain) can be anlysed using
only those values accepted in section 8.2.1 above. These are listed in column L of table 12 and show
values of +010 and #0'13 for E(UAE) E(OAE) respectively for the 4 stations involved, whilst
E(uAn) s E(OAn) for the 3 stations used are +1'41 and #0"05. Although the sample is small this
provides an estimate of the accuracy attainable for computation stations located in well-surveyed
areas of low topographic relief. These values also provide an unbiased estimate for the systematic
differences. |t appears as if the mean difference should be +0%1 in & and +1'4 in n , compared

with the values obtained in 8.2.1 above of -0V1 and 15 respectively.

(b) An analysis for stations in category 2 is shown in column 5 table 12. For a population of 7 in
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AE the expected mean with standard error is -0Y22 #0.33, whilst in An (population 6), these

parameters are +1U56 *0U50. A number of points should be noted with these figures.

(i) It appears that in areas of hilly to mountainous terrain, provided the free-air gravity field

is well defined, an accuracy of about 05 can be achieved without applying terrain corrections.

(i) This comment must be qualified by the remark that many of the stations in this category

eg. Goonbri, Gulf Creek, Newry and Baldwin are located on hills which are both symmetrical and
isolated (see figs. 14, 18, 19, 20) giving values of -0v03 %010 and 1'61 2046 for AZ and An
respectively. On the other hand the stations which are located in more mountainous and complex
terrains, ie. Byar, Kaputar and Blue Nobby (see figs. 15, 16 and 17) produce values of -0'47 +0''33
and 146 +0''78 respectively. The populations are small in both cases, so definite conclusions
cannot be drawn. However it is obvious that the accuracy of the second set of stations is inferior.
Furthermore, whilst the standard error of the & component is quite good, the mean difference of
~ -0Y5 differs significantly from the expected value of +0.1, suggesting that the terrain effects
for these three stations have acted in the same direction. This contrasts with the n component
which implies the terrain corrections are more random, although the sample here (2) is too small

to allow meaningful deduction.

(iii) This systematic difference in the mean of Af is reflected in the analysis of all category
2 stations, where E(UAg) = -0"22 (see (b) above), and the same comments apply. It should be
realised therefore that the improvements sought in applying the terrain correction will result in

E(u) tending toward 010, ie. the value obtained from category 1, and a decrease in the E(“Ag)'

8.3 Comparisons After Application of Terrain Corrections Computed from G’

The effects on £ , n resulting from G' computed throughout the inner zone field were computed
in section 6.4.1, and the results are transferred from columns 1 and 2 of table 9 to column 3 of
table 11 for convenience. The AZ , An resulting from subtracting the corrected gG s Mg from

the are listed in column 7 of table 11,

Easc > Tasc

8.3.1 A1l Stations Analysed

Analysis of all stations acceptable for analysis shows that the values for E(UAg) s E(OAg) are
+0'106 %0''18 and for E(uAn) R E(GAn) are 147 +0'34 as shown in column 6 of table 12. Comparing this
with the equivalent analysis before applying terrain corrections (column 3, table 12)the following

observations are made.

(i) The standard error in Af has decreased from 0.3 to #0.2 and the mean difference has increased
from -0"'10 to +0%06. The mean difference has thus moved closer to the expected value of +0'10 and

at the same time the discrepancies have decreased. The improvement in the standard error can be tested
by means of an F test, wherein the expected ratio of variances F0‘95‘10’10 = 2.98, and the actual
ratio is 2.97. In other words the null hypothesis that the samples before and after correction belong

to the same population is sorely tested at the 95% confidence level.

(ii) The An exhibits a less striking improvement from 1V51 to +0.41 to 147 £0.34. There is a
slight shift in the mean difference toward the estimate of this parameter from the unaffected values,

je. toward 1"41, but this is hardly significant. There is also an improvement in the standard error,
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but this, in itself, would not have any statistical significance. It is felt that the small change
in E(UAH) reflects the random effect of the terrain corrections on this component, whilst the
comparatively small improvement in the E(oAn) may reflect the errors present in the Na/6 which

have been ignored to date.

8.3.2 The Analysis of Stations in Category 2

The stations in category 2, after correction produce an E(UAE)’ E(oAg) of +00L4 %0.20 and E(uAn),

E(OAn)
obtained before the terrain correction was applied (column 5, table 12).

of 1.50 #0.43 (see column 7 of table 12). These should be compared with the same parameters

(i) In the case of Af it will be seen that the move toward the estimate of the mean difference
(-0v22 to 0.04) is even more striking than in 8.3.1 whereas the improvement in the standard error is
roughly the same (#0.33 to *0.20) as in that comparison. Again the F-test only just succeeds, which
again casts doubt on the validity of the null hypothesis mentioned in 8.3.1(i) above. The fact that
the absolute value of E(OAg) and of E(oAn) is smaller when all stations are included for

analysis reflects the damping effect of the category 1 stations.

(ii) The comparison in An reveals a shift toward the estimatedmean difference, but it is fairly
small (0Y06). Again there is an improvement in the standard error, but the value after correction
is still quite large (#0'43), possibly reflecting the uncertainty in the NA/G which has yet to be

accounted for.

(iii) It is also of interest to consider separately the two classes of stations in category 2, viz.
those on regular isolated hills and those in more rugged mountain areas. The first-mentioned class
produce statistical parameters of 0.04 *0.20 for AL , 154 20.44 for An (cf. -0Y03 % 10 and

1.61 = .46 respectively), (see 8.2.2(ii)), whilst the second group give 0V04 20.25 for AE , 1.40 %0.60
for An (cf. -0U47 £0V33, 1.46 2078 respectively). The most striking improvement appears in the AL
components of the second class, whilst the standard errors in the An components of both classes

are barely affected by the correction. The standard error in Af of the first group actually
deteriorates slightly after correction. This suggests that the errors in the gravimetric deflections
have attained such low proportions that the errors in the astro-geodetic deflections are now dominating

the analysis. It is necessary, therefore, to extend the analysis to include the estimate of errors in

the astrogeodetic deflections.

8.4 Standard Errors in Astrogeodetic Deflections included in the Analysis

8.4.1 Estimates of Accuracies of Gravimetric Deflections

The parameter which has been the basis of the analysis to date is Agi , where
88y = &z T Eig =12

and &1 = & €2 = n .

By applying the law of combination of variances to this equation, remembering that the covariance

between astrogeodetic and gravimetric deflection is zero,

2 = 2 2
OAL; Eac i
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In the analysis so far %;A/G has been assumed zero and thus ng put equal to ngi . However
the basic assumption is known to be wrong and it is valuable to include the qu/G in further
ai

analysis.

Estimates of GgA/G and OnA/G have been made in earlier studies. For example, Fryer, after
consultation with A.G. Bomford of the Division of National Mapping and G.G. Bennett of the School
of Surveying, UNSW, used values of OEA/G = *0Y25 and OnA/G = 2045 for observations made on an
Kern DKM 3A with impersonal micrometer (FRYER 1970, pp 49-50). The estimates in the standard

errors of the means resulting from analysis of the actual observations for ¢ and X in the test

area are quoted in column 3 of table 8. Taking the mean of these quoted errors it is found that

+
GnA/G + 0V21

- + oY

OEA/G + 017 and
using all stations in obtaining the mean. The values for these parameters used in the subsequent
analysis will be the mean of the UEA/G , GnA/G quoted for the stations used in the various

analyses. These are listed in table 12 in the rows containing E(OEA/a’ E(OnA/e respectively.

It is of interest to review all the comparisons above, and obtain new estimates of the standard

errors for the gravimetric deflections.

(1) Taking all stations taken without reference to category and without terrain corrections a

EbEG), E@ﬁG) of %026 , *0V'35 respectively, (column 3, table 12) is obtained.

(ii) Stations in category 1 {column 4), give zero (in fact, negative!) variances, implying the
errors in the gravimetric deflections at these stations are relatively small or perhaps even that

the © , O are too high for these stations. However the sample is small, and little
EA/G nA/G

weight can be placed on this comparison.

(i1i) The category 2 stations before correction (column 5) show poorer accuracy as would be

expected (E(OEG) = 10v29 , EbnG) = £0'45).

(iv) After terrain corrections are applied, an analysis of all stations in the test region shows
that the OAE = OEA/G , implying that the EG are subject to much smaller error whilst
E(jnG) appears to be 20Y26. It is tempting to suggest that, because E@JEG) appears to be very

small and because of the probable under-estimation of the OnA/G , that the E(On G) should in

fact also approach zero (there being no apparent reason why OEG should be more accurate than

o_.) and that the o© should be increased slightly.

nG nA/G
(v) Some damping occurs in column 6 to the terrain corrected terms, because when only category

2 stations are used the OEG now appears to be #0.12 and the OnG +0'37 (see column 7).

Again, however, for no apparent reason the Ng calculates to be less accurate than the EG ,

and again attention should be given to the value of EﬁA/G adopted. In fact, if a value of
aﬁA/G is adopted to make the OnG = O&G , then this value would be £0"'41, which approaches
the value quoted by Fryer (IBID) for this quantity.

(vi) It is interesting to note that if the values arrived at by Fryer had been used, it would

have been necessary to conclude the correct gravimetric deflections were comparatively error-free

because in each case the OAE , oAn is less than the #0.25, *0.45 quoted for the GEA/G ,

OnA/G by him.
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(vii) The estimates of above appear to be smaller than those obtained by error

o} , O
£G nG
analysis in section 7.3. This is to be expected because, owing to the difficulty in obtaining
good estimates of the errors of representation, this analysis was performed to provide the
relative accuracies of the gravimetric evaluations rather than their absolute estimates. It
does now appear certain however that the values used in the error analysis for the errors of

representation are overstated and would need to be reviewed in future analyses.

8.4.2 ANALYSIS OF INDIVIDUAL STATIONS

It is also of interest to look at values of AfZ , An of those stations which receive large
corrections from the G' term. For this analysis the systematic effects, as evaluated in
column 6 of table 12, are removed and the resultant discrepancies listed in columns 8 and 9 of

table 11.

a) Kaputar

This station is situated on a sharp drop which falls 500 m in about 600 m to the North, with a
high ridge running west from the station and a high plateau extending some 3 km south (see
figure 16). As a result the greatest correction is to be expected in the £ component and
this is in fact the case on evaluation, where application of the correction reduced the
discrepancy from -0.77 to -0"13. The discrepancy in n is large (0"5) and is not explained

in the same way, the terrain correction apparently accounting for about 0.2 of this. The GA/G

for this station is large (*0%45) and this could well be causing the large An

Second-order effects could also be present. Pick has calculated these effects (PICK 1973) in
terrain similar to that around Kaputar (except that the axis of the ridge now runs north-south),
and found corrections of about 0Y2 in & and -0V4 in n. These corrections could also be
present in the opposite components at Kaputar except, judging from the map of the topography,
they would attain smaller absolute values at Kaputar. Without the direct measurement of %%;
it is not possible to estimate this effect precisely. According to Pick an accuracy of 20 to
50 E (.02 to .05 mGal/m) is needed in this parameter, and it is felt that the equipment used in

the present survey could not produce this desired accuracy.
b) Byar

Byar is situated on a mountain which exhibits symmetry along the north-south axis, but the ground
drops away fairly steeply to the west (= 1:3) (see figure 15). Surprisingly, the terrain correction
in & is larger in absolute terms than that in n , brought about partly by the steepness of the
terrain to the north and south of the computation point and the comparatively small slope to the
east. The terrain correction in & in fact increases the AE from -0V13 to +0.'25 which in terms
of the GgA/G is hardly significant. The absolute value of An is large and is only slightly
improved after terrain correction (-0''56 to -0.50). There are three possible reasons for this:

(i) The nG is poor. This is apparently supported by the fact that the An of Newry appears
too large by +0''8, suggesting an error in the gravity field between these two stations. Checks of
the predicted field against the map do not show any significant discrepancy. Also, if this field
is poor it should also be reflected in the EG at Blue Nobby but the Af at this station is

small. It is concluded that this is not the reason.

(i) The terrain correction may be too small. Judging from the magnitudes of the corrections at
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Kaputar it appears most unlikely that the correction would account for this discrepancy.

(iii) The astro-geodetic 1 may be in error. The stated precision for this station is 0.2,
However this value may not be a realistic estimate of absolute accuracy and it could conceivably

reach a magnitude which could explain much of the discrepancy.
c) Blue Nobby

The ground at this station drops away sharply ( 1:2) to the north-east with a plateau to the west
(see figure 17) producing surprisingly large corrections in both & and n . The correction in
£ appears to account for the discrepancy in this component. However, because An has been

rejected from the analysis for the reasons given in section 8.2.1(iv), it is not possible to judge

the quality of the correction in this component.
d) Newry

The large discrepancy in the n at this station(and a possible reason for it) was mentioned in
the discussion on Byar. It certainly could not be due to the terrain correction as the station

is situated on a relatively low hill which is almost symmetrical along the east-west axis. Newry
is the one station whose geodetic coordinates were not obtained by observation ie. it was not
included in the recent re-observation of the network. |t was in fact obtained by Lauf
transformation (LAUF 1961) from original geodetic coordinates and these must be open to suspicion.
As a result, although the AZ is small, which apparently confirms the geodetic latitude, it is

difficult to place much confidence in the nA/G at this station.

It appears that, for the rest of the stations in category 2, the terrain corrections are at the
level of the expected error in the astro-geodetic deflections. The full analysis does appear to
show that these corrections do improve agreement significantly. This is particularly the case in

the values of & which are the more reliable of the two indicators of accuracy.

8.5 Arnold-Type Corrections

The correction values computed from the Arnold-type expressions (equation 6.11) show large
discrepancies from the expected corrections (see columns 3 and 4 in table 9). These discrepancies
cannot be explained in terms of errors in the astro-geodetic or gravimetric deflections. As has
already been stated, the indirect connection between this form of the correction and the G' form
(see section 3.2.1(d)) shows that the theory is sound. Therefore the discrepancies must be due
mainly to the inaccuracies in the evaluation of the parameters in this correction term, particularly

in the ground slope in the northerly and easterly directions.

1t will be remembered from section 6.4.2 that the ground slope is estimated from the three points
in the circumscribing triangle used to predict the height of the midcompartment point. Whilst this
technique is successful in the height prediction it is apparently inaccurate in finding the ground
slope from the same data. Inspection of table 13 shows that, for the stations most affected the
corrections attain very large values ( >1'") within only 0.5 km of the computation point. Beyond
this radius the changes are relatively small (072), the exception being Kaputar which continues to
reflect the steep drop to the north from the ridge which bears west from this station. The obvious
reason for these large corrections so close to the station is that the errors in the estimate of
the slope are greatly magnified when multiplied by the 'E_Z factor. Such errors are not

compensating as the computation proceeds around the ring.
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Further investigation into the evaluation of these terms should concentrate on either better
representation of the ground slope or in reorganising the terms such that some damping effect is
introduced (eg. in a way similar to the devise used in the development of Si at ground level in

section 2.3.4, where the é%— tan B term cancels before evaluation).

An advantage of the Arnold approach is that it avoids the two distinct stages in the computation
which are inherent in the G' approach. On the other hand, estimates of £ and n must be obtained,
which suggests that a Vening Meinesz solution is a prerequisite to determining terrain corrections.
However it is apparent that for most stations the deflections will change slowly in the critical

region of computation and it would be quite adequate to assume & and 1n to be constant in this

region.

tt will be recalled that the terrain correction was evaluated for each compartment and the effects
accumulated through the ring. This is in contrast to the evaluation of the correction from the

G' term, wherein G' was computed at each gravity station and the G' value for the compartment found
by intérpolation between the gravity stations. This method is theoretically more correct in that
the correction is only found at points at which terrain-affected gravity has been measured. To
apply corrections to gravity values which were themselves obtained only by interpolation is to
correct for an effect which is strictly speaking not there. The computation was repeated at
Kaputar using the proper technique but without improvement. Again the difficulty in estimating
ground slope and the magnification of this problem at stations near the computation station

appeared to be the source of error.

In an attempt to dampen the corrections the ground slopes were computed using only the height data
at the gravity points (ie. HTBIN was ignored). This completely oversmoothened the terrain and

produced nil results for all computation points.

This approach is simpler to evaluate and is not subject to the theoretical limitations as B - bSO
which hampers the G' correction. Disappointingly, however, it is oversensitive to ground slope
errors in the critical area close to the computation station. By contrast G' requires much more
computation and must be cautiously applied in steep country, but evaluation of the correction from

this parameter though tedious, is fairly straightforward and accurate.
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Ring Outer GOONBRI BYAR KAPUTAR BLUE NOBBY GULF CREEK NEWRY BALDWIN

No. | Radius(m) 3 n £ n 3 n £ n £ n g n £ n

2 141 +0.10 | +0.15 | -0.31] -0.13 [ -0.32|-0.27 | -0.91 | +0.65 | +0.06 -0.09 | -0.01 | -0.08 F0.50(+0.02
3 200 -0.01 | +0.09 | -0.37|-0.50|-0.82|+0.24 | -1.58 | +1.66 | +0.17 -0.12| 0.00}-0.11 F0.59|+0.15
4 280 -0205 | 0.00 | -0.45|-0.71]-0.83|+0.26 | -1.67 [ +1.70 | +0.32 -0.23 | +0.01 | -0.12 }1.07[+0.62
5 390 -0.06 | -0.05 | -0.80|-0.53{-0.84 | -0.14 | -1.72 | +1.91 | +0.39 -0.26 | +0.01 | -0.11 F1.74 |+1.60
6 550 -0.08 | -0.09 | -1.14{ -0.63|-0.76 | +0.22 | -1.91 | +2.09 | +0.38 -0.31{+0.06 | -0.10 F1.90|+1.75
7 780 -0.20 | -0.15 | -1.41| -0.66] -0.57 ~1.26 | -2.03 | +2.16 | +0.38 -0.31 | +0.12 | -0.11 F2.00 |+1.71
8 1100 -0.26 | -0.12 | -1.25| -0.84 [ -0.79| -1.56 | -1.88 | +2.13 | +0.39 -0.32 | +0.15 | -0.10 |1.95 |+1.74
9 1550 -0.22 | +0.05 | -1.35| -0.96| -0.32 -1.14 | -1.92 | +2.08 | +0.43 -0.40 | +0.18 | -0.09 |-1.93 |+1.87
10 2180 -0.28 | +0.05 | -1.18| -1.00) -0.15 -0.78 | -1.83 | +2.23 | +0.44 -0.41 | +0.15 | -0.05 [-2.04 |+1.94
1 3070 -0.29 | +0.05 | =1.16] -0.98| -0.09| -0.85 | -1.85 | +2.25 | +0.45 -0.41 { +0.12 | -0.02 +-1.95|+1.88
12 4320 -0.29 | +0.06 | -1.13| -1.04| -0.10{ -1.10 | -1.83 | +2.19 | +0.45 -0.41 [ +0.12| 0.00 |1.93(+1.91
13 6080 -0.31 | +0.04 | -1.06| -1.04| -0.05{-1.03 | -1.86 | +2.16 | +0.45 -0.41 1} +0.121 0.00 |-1.88{+1.90

TABLE 13  ARNOLD TYPE CORRECTIONS - CUMULATIVE CONTRIBUTIONS
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9. CONCLUSIONS
9.1 Introduction

The primary purpose of this investigation is to test the practicality of determining the deflection
of the vertical using gravimetry. To this end field expeditions were undertaken to define the
anomalous gravity field in the area immediately surrounding the test stations. The various
theories concerning this approach have been analysed for their feasibility and strength in
solution. Computational techniques have been developed and tested for the realistic extension of
the gravity field and the accurate evaluation of the parameters and of their expected errors.

The end products are the gravimetric deflections of the vertical which are compared against
deflection values found independently by astro-geodetic means. The analysis of the differences

of the two values gives insight into the strengths and weaknesses of the gravimetric approach,

this fulfilling the purpose outlined above.

The stations chosen for the investigation adequately filled their chosen role. The twelve stations
are situated in a variety of topographic environments ranging from featureless plains to rugged
mountain regions. The departure of the topography around the computation point from a level

surface can introduce significant corrections to the gravimetric deflection. Thus having the

test stations situated in different types of terrain enabled some control to be placed on this factor
in the gravimetric computation. The effects of the corrections for the topographic effects on the
comparison between gravimetric and astro-geodetic deflection values are summarised in section 9.2.
Also in this section estimates of the precision and of the systematic error of the gravimetric
evaluation of the systematic error derived by the comparisons with the astro-geodetic value are

discussed.

As a result of the investigation some comments can be made about the problems associated with the
evaluation process. In particular, difficulties associated with the extension of the gravity field
and also with the evaluation of the parameters describing the terrain will be reviewed. This is

the subject matter of section 9.3.

It is valuable to examine the role which the deflection of the vertical could play in contemporary
geodesy. The relevance of this parameter and a comparison of the various techniques available for

its determination are discussed in section 9.4.

Finally recommendations based on the findings of this investigation are made in section 9.5.

9.2 The Precision and Systematic Error of the Deflection of the Vertical determined Gravimetrically
9.2.1 The Importance of the Inner Zone in the Evaluation

It is apparent that the inner zone gravity field (0 <y < 1?5) has a large influence on the
gravimetrically determined value of the deflection of the vertical. This is to be expected from
consideration of equations 2.26 and 2.27, but it is graphically illustrated by an analysis of the
'signal' received at the computation point from various parts of the entire gravity field. For
example it is found that for stations situated in a disturbed free-air gravity anomaly region, as
much as 50% of the total 'signal' (ie. the signal from all zones where 'signal' is defined in
section 6.2.2) can be received from the anomaly field within 4.3 km of the computation point. (See

table 6 and section 6.2.2). This is of interest because in some investigations (eg. SZABO 1962)



-1h41-

this distance is the radius of the innermost zone. The assumptions of planarity usually made in
the evaluation of this zone will not be adequate in mountain areas and the precision of such a
computation will suffer. The results of the present study also show that for a station sited

as above as much as 80% of the total signal can come from the INNER zone (see section 6.2.2).

By contrast, a point located on the plains in this general area receives only about 20% of the
total signal for the & component from this zone, reflecting the relatively similar and
undisturbed nature of the field to the north and south of this point. However about 70% of the
signal in the n component at such a point is received from the INNER zone, contrasting with
the & component and reflecting the differences in the outer reaches of the INNER zone in the

field to the east and that to the west of the point.

The above comments emphasize the need for a full and accurate representation of the gravity field
within the INNER zone. Particularly is this so for stations situated in broken terrain, where the
immediate vicinity (0 < w<0%1) of the computation point needs full description. This may take
the form of a fairly dense gravity survey {eg. 1 point per 1 km?)but of more importance is an
adequate description of the terrain. This may be gained from large to medium scale map of the
area (eg. 1:50 000), or even more conveniently from data banks of the terrain data stored on
magnetic tape if such are availahle. It appears that a representation with an accuracy of about
10 m to #20 m is adequate for the task. Obviously for rugged terrain this would only be feasible
in areas which have already been mapped. To obtain this data by field survey in such areas would
be costly and prohibitive if it was only for the purpose of the gravimetric data. However for
computation points situated on plains or on isolated hills the height data from the gravity stations

gives an adequate description of the terrain.

It is possible to estimate the improvement in the gravimetric evaluation brought about by the
densification of the gravity data at the test stations. This can be done by comparing the results
of this investigation with those obtained by MATHER (1970a) for the same points in the 1970 geoid
solution of Australia (see columns 2 and 3 of table 12 and column 1 of the same table). This
comparison shows that whilst the mean of the differences between gravimetric and A/G values of

the 1970 solution are within 0.3 of the mean value obtained in the present study, the standard errors
of the mean of the 1970 study are #2.5 in the & component and %*1'4 in the n component. The
evaluation technique used in this study was fairly insensitive to short wave-length signals, relying
on 091 square means throughout the INNER zone. The values for these means were obtained from the
BMR gravity coverage and did not include any special data surveyed around the computation points.
Also planar conditions for an 'innermost' zone were assumed over a 3 km radius from the computation

point. Two points of interest emerge from this comparison

(i) The timitation of the accuracy of a gravimetrically determined deflection of the vertical

is about *2'" if the inner zone computation is performed as described above.

(ii) The errors in individual stations compensate to produce a reasonable mean of differences in
this region. This effect is not necessarily accidental. The deficiency in the value at one station
due to a poorly represented area will show as an excess in the value at a station on the opposite
side of this field. This phenomenon has already been mentioned as a possible reason for
discrepancies in the 1 components of two stations which lie in the same latitude (see section
8.4.2(d)). It could be used for precision computations of deflections for (say) datum orientations

and this suggestion is enlarged in section 9.4.
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9.2.2 Systematic Differences in the Gravimetric Deflection Values

The comparison of the gravimetric deflection values after terrain corrections are applied with the
A/G values gives the best estimate of the means of the differences in both & and n . These are
found to be +0'06 and 147 respectively (see column 6, table 12). Whilst the mean of the differences
in the & component approaches zero, this value in the n component is surprisingly large. The
most probable reason for this is that the gravity field off the east coast of Australia in the
latitude of the test area is inadequately surveyed and the inaccuracy in the predicted values

used in the evaluation introduces a systematic error in the n value. This problem demonstrates

the danger of trying to determine absolute values of the deflections from gravimetry if a poorly
represented area lies within the 30 < P < 6° region. On the other hand good estimates of this
systematic error can be obtained if precise gravimetric evaluations are made at suitably corrected
astro-geodetic stations (see section 6.3.2) along the edge of the poorly surveyed region. These
differences found at a network of points thus located can be used to correct gravimetric determinations
made subsequently in the affected region by a simple linear interpolation of the correction. Such

a scheme is recommended as a possibility for Australian use in section 9.5.

It is also of interest to consider the systematic errors which may result from the omission of
different parts of the outer zone data in the evaluation process. For example if the contribution
from the UT zone (ie. the field beyond ¢ = 150) is neglected, a systematic error of about OV3 in
£ and 048 in n will result (see table 6, row 1). However, because of the long wavelength of
the signal from this region relative changes of only 0Y1 in & and 0V2 in n will occur at the
test stations. |If the region ¢ > 7?5 is excluded (ie. both zones UT and MD, in table 6, rows 1
and 2}, the magnitudes of the relative changes are still of this order whilst the systematic error
increases to about =21 in both components. However exclusion of the field beyond ¢ = 1?5 introduces
relative errors of about 1Y0 in both £ and n (see table 6, row 3). Thus for precise relative
determinations this zone must be included although in view of the discovery of the systematic error
in n above it may be possible to exclude the region beyond 30 without introducing significant

relative differences.

Another source of systematic errors in the differences between the gravimetric and A/G deflection
values is the non-coincidence of the two models (ie. the gravimetric ellipsoid and the geodetic
ellipsoid; see section 6.3.2). As can be seen from column 10 of table 8 the difference in the
models used in this investigation introduces a systematic error of about =20 in £ and -3 in

n . However the range of the corrections through the test area is insignificant and this effect
could be applied as a systematic correction to deflection differences over a region such as the
test area. Conversely this shows that providing all other systematic effects are corrected for,
precise gravimetric comparisons at a small number of well fixed astro-geodetic stations can provide

valuable information about the orientation of one datum with respect to the other.

9.2.3 The Precision of the Gravimetrically Determined Deflection of the Vertical

The combined effect of the improvement in the inner zone data and the strengthening of the evaluation
procedure appears to improve the precision of the gravimetric value of the deflection from the *2"
obtained in the 1970 gecid solution to about +0.5 (see table 12, column 3). The sample used to
obtain this value includes both stations minimally affected by terrain effects (category 1 stations)
and those significantly affected by these effects (category 2 stations). Comparison of the values

according to category shows a greater improvement for the precision of stations in category 1 ie. to

about 01 (table 12, column 4), whilst the precision of the category 2 stations appears to be
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40”3 in £ and #0"5 in n. This value is probably too low because in this sample there are a
number of stations at which the terrain effects are small. Nevertheless it appears that the
improved data and evaluation techniques increases the precision of the gravimetric deflection

from about #2U0 to at least *0.5.

The above analysis was performed using the differences in the gravimetric from the A/G deflection
values. These differences are due to errors in the A/G as well as the gravimetric values, and in
order to get a realistic picture of. the precision of the gravimetric evaluation it is necessary

to include an estimate of the error in the A/G values of the deflections in the analysis. This
error is difficult to estimate with confidence. |If the standard errors obtained from the actual
astronomical observations at the test stations are used, the error in the gravimetric values become
quite small at the category 1 stations (see section 8.4.1 and column 4, table 12). For category 2
stations after applying the terrain corrections this error is about *0YV1 in the & component and
044 in the n component {see column 7 table 12). A few comments should be made concerning these

values.

(i) The precision of the gravimetric value of & is apparently inferior than that of n . The
most reasonable explanation for this is that the value of %0%2 used as the standard error for the
A/G values of 1 was too low (see section 8.4.1). |If the more realistic value of *04 is used

for this parameter the precision of the gravimetric value for n approaches that for § ie, *0U1.

(i) It is apparent that even after correction the category 2 stations do not reach the precision

of the category 2 stations suggesting that the terrain effects have not been fully removed or

even that second-order effects such as those mentioned in section 8.4.2(a) may be present. Nevertheless
the application of the corrections does significantly improve the precision of the gravimetric

deflection (see section 8.3.2).

(iii) It does appear possible to obtain a precision of 01 to %0"2 for a value of the deflection of
the vertical computed gravimetrically. In rugged, mountainous regions a good representation of both
the gravity field and the topography will be needed. Terrain effects are best computed using
Molodensky's G' correction term (see equation 3.3) providing ground slopes in the vicinity of the

computation point do not exceed 45° (see section 2.4.2).

(iv) These estimates of precision are quite similar to those resulting from a theoretical error
analysis of the evaluation (see section 7.3.2 and table 10, solumns 1 to 4). This fact lends credence
to the analysis itself although it must be remembered that such an analysis can never correctly
estimate the systematic errors in the evaluation. However, because of the higher precision of
category 1 stations over category 2 stations mentioned in (ii) above, the analysis which
differentiates between.plain and hilly country (see results in columns 3 and 4, table 10) seems to
reflect the actual results more accurately than the analysis which assumes a constant error of

representation regardless of terrain (columns 1 and 2, table 10).

9.3 Review of Evaluation Techniques
9.3.1 Computer Methods used in the Evaluation of the Deflection of the Vertical

The apparent success of the gravimetric evaluation justifies the decision to use a Rice Rings

technique in the evaluation procedure (see section 4.3.1). This technique showed itself to be
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completely adaptable to programming (see Appendix A) and lent the computer evaluation strength

and flexibility not readily achievable from the usual routines adopted for such evaluations.

A real advantage of the method used in this investigation was that the data did not have to be
pre-processed in order to obtain area means. Such processing would have seriously dampened the
signal in the vicinity of the computation point unless very small squares were used for the areas.
The problems associated with the manipulation of the data from station to station and with the
augmentation of the data Would also have been increased. The rings approach using discrete data
was used in the computation of the G' term and the Arnold-type corrections, the original technique
for deflection computation being easily adapted for these purposes {see sections 4.3.2 and 4.3.3

respectively).

9.3.2 Field Extension and Prediction

The problem of field extension is inherent in any approach which uses discrete data for the
representation of a continuous field. This is a standard problem in topographic surveying where

it is necessary to derive contour diagrams of the topography from discrete points which have been
fixed in three dimensions. Experimentation proved that suitably modified computer techniques
developed for contouring were best suited to the problem of gravity and height field extension

(see section 5.2.3). Techniques which fitted second order or plane surfaces to a sampling of
points in the area of extension proved to be too coarse for the purpose of this study {see sections
5.2.1 and 5.2.2). Similarly the technique of covariance analysis which is widely used for gravity
field prediction in largely unsurveyed regions of the Earth was found to be unreliable for the
purposes of this study. In fact, at the risk of including erroneous data it seemed preferable to
limit the data points used for the interpolation process to those immediately surrounding the point
of interpolation. This ensured that maximum sensitivity to the actual data field was maintained

in the process of interpolation. This technique was applied within a radius of = 10 km from the
test station which meant that the gravity field in the critical region near the computation point

was reflected accurately in the evaluation process.

The density requirements for the gravity stations as stated in section hk.1.1 were not always
fulfilled (see figures 10-21). The results of the computations are nevertheless quite satisfactory
and it is felt that these requirements may be unnecessarily demanding for most of the test stations.
On the other hand it was found that the original density of height points chosen at major changes
of grade (see section 4.1.2) was inadequate in the immediate area of the test station and that this
needed further augmentation. The final density reflected the pattern of the modified Rice Rings
(section L4.3.1) generated at the computation point with heights taken at the mid-point of the
compartments of every third ring out to about 5 km. Altogether the data requirements indicate a
shift in effort away from the field survey toward an office task. This is beneficial from a cost-
benefit viewpoint as the compilation of the height data requires little skill. In some areas where
topographic information has been stored on tape as part of the mapping process the compilation
process in unnecessary and height data extraction could be made a routine part of the whole

computation.

9.3.3 Evaluation of Terrain Effects
(a) The G' Correction Term.

A 'rings' system was devised to compute G' which meant that with a minimum of modification it was
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possible’to adapt the system developed for the deflection computation for the evaluation of this
term (see Appendix C and section 4.3.2). The expected error in this term is found to be very
small by formal analysis (see section 7.4). Although this does not seem to be matched in
practice, there do not appear to be significant errors in these values. Consideration of
equation 3.3 indicates that the contribution to G' falls away according to the third power of r
(the distance between computation point and elemental area). For.the magnitudes of height and
gravity anomaly likely to occur, this evaluation does not have to continue beyond a radius of

40 km from the computation point.

The G' value was found at about 600 gravity stations with the region affected by the terrain. This
value is then stored in the data bank with the other information about the gravity station. This
enables the effect on the deflection of the vertical from this terrain correction to be evaluated

separately (see table 9, columns 1 and 2).

It is found that the correction to the deflection for the terrain effects significantly improves

the precision of the gravimetric deflection from about #0'5 to #0Y2. However the workload to bring
about this improvement is quite high. For example a total of 1 hour's computing time on a CYBER 70/72
were needed to evaluate G' at all relevant gravity stations. This time excludes the time taken for
development and testing of the programmes (see Appendix C), and the recomputations at some critical
stations when extra height data was added to this data file. On the other hand the computation

time was minimised by terminating evaluation once the contribution per ring dropped below a certain
value (0.3 mGal in this study). Also once computed, there should be no need to change this value

so it can be stored with other data for the gravity station in the data file and used in all

subsequent evaluations.

(b) Computation of 'Arnold‘-type Correction Terms

It is of interest to recall that the correction term developed from the application of Green's Third
Identity to the Earth's surface (section 2.3, section 3.3 and section 6.4.2) does not suffer the

same theoretical disadvantage that is noted for the G' term (compare the comments in section 3.3(i1)
with those made at the end of section 2.4.2). Nonetheless the evaluation of the Arnold-type terms
proved quite unstable, due mainly to the oversensitivity of this term to errors in the ground slope
(see equation 6.11). This was particularly so in the evaluation of these terms within a radius of
500 m of the computation point (see table 13, particularly the columns for Byar, Kaputar, Blue Nobby
and Baldwin). The corrections computed at stations sited in less broken terrain were more acceptable
(see columns for Goonbri and Newry in table 13 and listings for Goonbri and Newry in table 9).

Overall the evaluation was unreliable (see table 9) and the following comments should be made.

(i) The computer technique used successfully for the interpolation of heights proved unreliable
when modified to compute ground slopes. It is thought that an estimate of B should be submitted

as separate data for this computation. This may involve the user in laborious graphical interpretation
from maps or require survey parties to obtain estimates of ground slope as part of the necessary

field observation at a gravity station.

(i) It is possible that the computation could be improved by introducing some damping into the
evaluation procedure. It is felt that the modified Rice Rings (see section 4.3.1) may be too fine
a subdivision for the slope computation. It could even be that the data is too dense and gives too

discrete a description of the topography for this purpose.
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(iii) 1t should be remembered that some knowledge of & and n is needed. This infers that

a first estimate of these two parameters must be obtained, possibly from a solution of the Vening
Meinesz integral. This increases the work load of the evaluation by a factor of about 3.
Obviously the computation of the terrain effect by this method must be improved if the extra
effort involved in its evaluation is to be justified. The need for a value of & and n also
means that a special file of deflection values needs to be created, further increasing the work
load. In regions where the values of these parameters change little it is possible to assume a
constant value throughout the computation. Even in disturbed regions, this assumption can be
made within a radius of 500 to 1000 m from the computation point, but beyond this it is necessary

to draw on the data bank and find the value for & and n by some method of interpolation.

9.4 The Deflection of the Vertical in Contemporary Geodesy
9.4.1 The Role of the Deflection of the Vertical

The advent of position fixing techniques which use the doppler effect from artificial satellites

is being a profound impact on modern geodesy. 'Translocation' techniques are claimed to be capable
of producing a positional accuracy of better than *2 m in each of the 3 principal directions

(see KOUBA 1974, p L4B4). Geodetic networks have traditionally been based on a reference system
which uses precise positional astronomy to assist in its definition. The superior accuracy of
doppler will inevitably mean that this technique will displace positional astronomy from its
traditional role. It is against this background that the role of the deflection of the vertical

must be analysed.

(a) Datum Orientation

Probably the greatest difference in approach which results from the use of doppler for planimetric
control arises from the fact that the control will now be based on a geometric rather than a
geopotential reference frame. The coordinates of the position are fixed with respect a three
dimensional axis system with origin at the geocentre whilst astronomical positions are related

to the local vertical. This latter fact has influenced some geodetic networks (eg the AGD) to be
computed on an ellipsoid chosen to 'fit' the local geoid (see section 1.2). In order to transform
this geodetic network onto a geocentric system one must establish the geocentric orientation vector
of the local system with respect to the geocentric system. This can be done either by fitting the
existing geodetic network onto the doppler-based control {eg. see PETERSON 1974) or by comparing

the geoid-ellipsoid separation and deflections of the vertical derived astro-geodetically with

these same parameters derived gravimetrically using for the gravimetric model a geocentric ellipsoid
(eg. MATHER 1970b). It has been shown that systematic errors in scale can significantly affect a
wide area of the geodetic network, placing constraints on the use of the former approach (ROELSE 1976) .
Judicious choice of stations for comparison makes the second approach quite feasible, particularly
if the gravimetric deflections are evaluated using the techniques as adopted in this study. This
decreases the need to control accidental errors by taking comparisons at a large number of stations
(MATHER 1970b, p 69). Conversely, use of the same number of stations evaluated as suggested would

increase the accuracy of the value of the geocentric orientation vector.

If the former approach is used it is necessary in any case to ensure that the existing geodetic
coordinates are reduced to the ellipsoid. Failure to do this could introduce inconsistencies into

the geodetic coordinates which would show as large systematic errors when comparing them with the
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geocentric (doppler) coordinates. For this reason it is necessary to know the geocid-ellipsoid
separation to at least #6 m. This accuracy is for the most part available from existing geoid
maps of the Earth. It may be that in some particularly disturbed regions (eg. high mountainous
regions) these geoid solutions do not include the high frequency fluctuations of the geoid and
in these areas available global determinations will have to be supplemented by local geoid
studies. Again the techniques presented in this study will prove useful in so far as they are

particularly sensitive to local variations of the geoid.

(b) Azimuth Control

Although, through its superior positional accuracy, doppler techniques will supersede positional
astronomy in the provision of a reference frame for present-day geodetic networks, the state-of=-
the-art of this approach does not improve astronomical techniques in the determination of azimuth.
This is particularly so if lines of sight ( < 120 km) are used for azimuth control_in the
geodetic networks. For such lines the present achievable directional accuracy is 0 {£7"} from
doppler if one assumes the *2 m positional accuracy quoted above. This must be compared with

the precision obtainable by astronomical azimuths of 0 {#0'5} (BOMFORD ET AL 1970). The
positional accuracy in the two primary directions at both ends of the line for a 120 km line

must be 0 {0.3 m} to equal this precision. There will obviously need to be a great improvement
in the positional accuracy of doppler before it can achieve such precision and supersede astronomy

in the provision of azimuth control.

This means that the meridian defiﬁed by the vertical at a point on the Earth's surface must be
related to the meridian defined by the normal by means of Laplace equation. This immediately
involves the prime vertical component of the deflection of the vertical, n (eg. see HEISKANEN
AND MORITZ 1967, p 197). The error in n enters into the correction tp the astronomical azimyth
as the tan of the latitude. It is therefore important in mid- and high latitudes te minimise
such errors. It is conceivable in countries such as Australia which have good gravity coverage
and little topographic relief that this parameter could be determined gravimetrically to increase
the accuracy of n. Thus it is possible in the near future for geodetic networks to be an
amalgam of doppler, astronomic, geodetic and gravimetric surveys with each method giving strength

where the others are weak to provide a superior control system.

(c¢) Civil Engineering Purposes

Hydrographers, hydraulic engineers and construction engineers are concerned with relating their
designs which are based on energy calculations to the geopotential surface. To them a survey
network defined purely in terms of a geometric framework has limited use and it is necessary

to show the relationship which exists between this framework and the 'naturail' or geopotential
system. This is provided by means of the deflection of the vertical which is effectively
transforming the geocentric coordinates from an artificially induced horizontal onto a truly
horizontal or level surface. In fact the majority of map users require contours to relate to a
dynamic level rather than to some level surface generated by geometrical considerations. For
this reason it will always be necessary to map with respect to the geoid rather than the ellipsoid
and thus deflections of the vertical or geoid-ellipsoid separations will need to be evaluated.
For most purposes existing geoid maps will be adequate but for precise local determinations
particularly in mountainous areas it is apparent that deflections will provide a more sensitive

register of this relationship than will the separation.
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9.4.2 Comparison of Methods of Evaluating the Deflection of the Vertical

A number of different methods can be used to determine the deflection of the vertical. These

are now reviewed and analysed from a cost-benefit viewpoint.

(a) Astro-geodetic Methods

The astro-geodetic method has traditionally been the technique used to provide horizontal and
azimuth control in geodetic surveys. The deflections of the vertical resulting from comparisons
of astronomic and geodetic positions throughout a network enabled the computation of geoid -
ellipsoid profiles. As mentioned in section 9.4.1(b) above,positional astronomy will be
superseded by doppler techniques in the provision of reference frame for geodetic purposes.

It could still be used in order to obtain deflections of the vertical to provide information
needed in the items mentioned above (section 9.4.1). The deflection values will be relative to

a local ellipsoid unless a datum orientation has been performed (see section 9.4.1(a)). The
precision of the deflection determined in this way is about #0Y2 in £ and about #0Y5 in n (see
section 8.4.1), the dominant contribution towards the error being due to inaccuracies in the

astronomical data.

The cost of establishing an astro-geodetic station (in 1976 Australian dollars) is quite high,
being between $900 - $1100 (LEPPERT 1976). This is because the observations require a skilled
observer and a well-trained party of two assistants. The station is usually occupied for at
least three nights, the observations being subject to favourable weather conditions. (The
figure quoted above includes 2 nights lost due to poor weather conditions). The estimated cost
of computing and documenting the data is $250 - $300 giving a total cost of between $1150 and
$1400.

As the astronomical observations must be made at a station whose geodetic coordinates are known
this often means that the deflection is determined at trig stations on the tops of mountains.
The level surfaces in these situations are subject to strong local effects and the deflection
evaluated here is likely to give a poor estimate of the slopes of the geops in the general

vicinity.

It is apparent that the astro-geodetic values for the deflection components may contain large
systematic effects. Whilst any systematic error in the meridian component appears small and in fact
seems to be masked out by the accidental errors in the observations used in this particular study,
this is not the case with the prime vertical component. It has been noted in section 8.2.1 that

the na/g can contain large systematic errors, of the order of 2", even though the precision of

the  Ap/g is estimated to be *0Y2. That such errors may be present in the prime vertical
component is of particular significance as it is this component which is used in the Laplace
equation (see section 9.4.1(b)) to provide azimuth control. Errors of such magnitude would
seriously weaken the confidence which could be placed in azimuth misclosures derived using the

Laplace equation particularly in countries in middle to high latitudes.

(b) ‘'Approximate' Gravimetric Determinations

It appears from section 9.2.1 that a gravimetric solution for the deflection which does not include

. . o
data from special surveys around the computation point and which uses mean anomalies for (say) 0:1
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squares is capable of producing a value which is accurate to about #1'5 to %20, If a number
of such values are computed at properly situated stations within an area the mean value may be
improved to about +0'5. This computation will be quite cheap provided that the data files are

already compiled, the programmes for this computation having already been developed and tested.

(c) Collocation Techniques

Recent studies (eg. TSCHERNING 1973, p 13; LACHAPELLE 1975, p 106) indicate that collocation
techniques are capable of producing results with an accuracy of about *1"5 to #2''0. This is to
be expected as in this technique much of the high frequency signal in the critical region near
the computation point is likely to be filtered out. In this sense it is similar to the technique
in (b) above and for this reason it gives a comparable accuracy. No cost has been found by the
author for this technique, but it is expected to be quite inexpensive providing the data is

compiled and presented in a suitable form.

(d) Inertial Surveying Systems

The Inertial Surveying System (1SS) is a highly sophisticated inertial navigation system with an
extremely high accuracy, developed especially for surveying. |t is basically a precise inertial
platform with gyroscopes keeping its three orthogonal axes oriented in space. Each axis contains
a very sensitive accelerometer which defines the accelerationinthe direction of each axis. These,
when integrated over short periods of time enable changes in the latitude, longitude elevation

and deflection of the vertical to be determined (GREGERSON ET AL 1975, pp 1-3). The method of
evaluating the deflection which is needed to correct the ‘astronomic' to a geodetic azimuth is of
particular interest here. ''The system keeps track of the amount of torque needed to relevel the
platform to the local vertical whenever it is stopped, The levelment occurs by driving the
standing platform into a position where the two horizontal accelerometers do not sense the gravity
components any more. This can only occur when the sensitive axes of the accelerometer are exactly
perpendicular to the direction of gravity. Thus the system describes the change in the deviation

of the vertical with respect to the origin' (I1BID, p 4).

The 1SS can be mounted in a truck or a helicopter which is of advantage in areas inaccesible by
road. The results of test runs to data suggest that the precision of the deflection is about

+15 in mountainous terrain with a slight improvement in flat country (IBID, pp 43-45). The cost
of the equipment is high (0 {$100,000} ) being still in the experimental stage. In addition to
this capital cost the operators must be skilled, with training in electronics, inertial navigation
systems and computer science. Consequently the 1SS is not yet a feasible proposition for general
production purposes. On the other hand it promises to be of great benefit in the future

particularly for countries with difficult terrain which are as yet unmapped.

(e) Precise Gravimetric Determination

As mentioned above (section 9.2) it appears that a precision in the two components of the deflection
of the vertical 01 to *0V'2 is attainable. This is provided there is adequate representation of
the gravity field and the topography within a radius of about 1% from the computation point and

that the remaining field is well represented to a radius of about 6°. 1f a good gravity coverage

(say 1 point per 20 km?) already exists it is likely that this gravity field need only be supplemented
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by a further 10 to 15 gravity stations in the vicinity of the computation point to provide
sufficient coverage. Medium scale maps (1:25 000 to 1:100 000) should be available for areas

of broken terrain to provide the topographic information.

The cost of the extra gravity stations is a function of the terrain in which the computation

point is located. |If road access is available and heights are already provided or can be
determined by altimetry the current cost per station is $25. If the gravimeters are helicopter-
borne this cost increases to $35 per station. 1In the case where heights have to be obtained by

actual field survey the cost per station increases to about $60 per station (BARLOW 1976). These
costs cover all normal losses of time including time lost due to unsuitable weather which is
practically negligible. The computations needed to obtain the principal facts for the data bank
adds about $1.20 to the cost of a station. It can be seen therefore that the cost of the total
survey may range from $260 to $900 depending on the terrain access and the number of gravity
stations needed. To these costs should be added the cost of abstracting the height information
from the topographic maps and of computing the actual deflection value. However these will not be

high and in any case each of these processes can be easily automated.

It should be noted that the location of the computation point is not restricted as it is in the
case of an astro-geodetic station (see 9.4.2(a) above). This will not only have the advantage

of siting stations in locations likely to give a more representative value for the tilt of the
geopotential but will assist in cutting costs. The gravity survey will only take 1 to 2 days
field work in contrast to a minimum of 3 nights needed for the astronomical observations. Also
the gravity survey is only slightly inconvenienced by poor weather whereas the astronomical work
requires clear skies for the observations. Obviously the gravimetric approach will benefit
countries which suffer from less temperate climatic conditions. To this comparison must be added
the factor of the relative precisions of the two methods. As has been mentioned above it appears
that the gravimetric technique is capable of producing a higher precision than can be obtained by
astro-geodetic means, particularly in the prime vertical component. This may be dependent on good
gravity and map coverage, but most developed countries of the world are adequately provided with
these two requirements. It therefore appears that for about % the cost the gravimetric method is
capable of obtaining a value of the deflection of the vertical which is about twice as accurate as

its astro-geodetic counterpart.

9.5 RECOMMENDATIONS

It appears that the future role of the deflection of the vertical lies in its ability to relate
dynamical and geometrical elements of a geodetic network. In particular it is essential to relate
astronomically determined azimuths to the geodetic meridian and thus provide precise azimuth control
for first-order geodetic systems. From the foregoing study it is apparent that gravimetric methods

can produce superior results for this parameter.

For computation points located on plains or isolated hills gravity should be measured at the point
itself and at about 6 stations within a radius of 1 km of the point. Additional measurements are
required at 6 or more points within a radius of 5 to 10 km. For computation points located in
rugged country this density of stations may need to be increased and it will be necessary to have
medium scale topographic maps or their equivalent (eg. height data banks) of the area. It is felt
that the heights of the cardinal points of the innermost zone at a radius of (say) 100 m should be
determined in the field. The location for these points is not critical and can be fixed by

approximate survey methods (eg. pace and compass) but their heights need to be known more accurately

(to £1 m). There is a problem with systematic errors in the gravimetric determination. To
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establish the magnitude of this error it is necessary to establish a network of stations, about

1° apart and within about 1° of the poorly defined gravity field, at which comparisons of gravimetrig
and astro-geodetic deflections can be made. Systematic errors at points between these stations can
be obtained by linear interpolation due to the slow changing nature of this effect. Gravimetric
determinations can then be corrected and absolute values of the deflections obtained. The

corrected values will also eliminate any residual errors due to an inadequate orientation of the

geodetic datum.

Because of the possibility of errors it is wise to take these comparisons at more than one station.
ldeally three or four stations should be positioned in a triangular or cross pattern (about areas
of poorer gravity definition if such exist) and roughly 30 km apart. This helps to control small

local systematic effects and greatly strengthens the value of the comparison derived.

This study also shows the benefit which would accrue if data banks of hejght information stored in
a computer compatible form were available. Such data would benefit many scientific users of

maps, as it would save the expense and effort which each individual user currently "expends in
extracting the topographic information needed for their purpose for the available maps. Much of
this information is already available, as such data is gathered and stored on magnetic tape by
mapping authorities as part of the mapping process (FRYER 1976). The existence of such tapes is
not widely publicised, and there is a need for some policy on the collation and distribution of

such data both on a national and international level,
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NOTES ON APPENDICES

The appendices A to | contain flow charts for some of the main programs and subroutines
developed for this investigation. These flow charts illustrate the main concepts involved
in the programs. Many of the details and devices (eg. for saving computer time and space)

have been omitted as they unnecessarily confuse the general picture being presented.

Data files for gravity (GRAVBNK) and height (HTBIN) were stored on permanent files in the

manner described in sections 4.1.1(c) and 4.1.2.
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APPENDIX A. FLOW CHART FOR SUBROUTINE RICERNG
Description: Computes Mid-points of Compartments generated to give a nominated radial

deflection of the vertical at the computation point for a nominated gravity

anomaly .

From M/Prog

Argument list contains:-

Position of Computation point,

CUE for particular rings to be gengrated [ = ICUE ]
Starting Radius, Limiting Index [ILIM]

Apex Angle of Sector Unit (100)

Set Deflection Unit

of contribution

1

Set Start Radius,
Apex Angle & No. of Rings based on[ ICUE ]

1

[Counter (1) Set to 1]

**————9———*{ Advance | by 1!
Y

Compute Outer Radius [ R(i)]
Mean Radius of Current Ring[ R (1)]

Increase | by 1]

—*>—*4 Increase J by 10]

Compute Position of Mid-Point

Compartment Store in PHIR(I,J)
LAMR (1,J)

f- .

Details of Coordinates

of Mid-Points of compartments:
b
LnTransferred in common. _

I
I
: and of Radii of Rings

¥
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APPENDIX B - FLOWCHART FOR SUBROUTINE KSRINGS
Description: Computes Mid-points of compartments giving predetermined contributions of G°'
at the computation point for nominated difference in gravity anomaly and height
(see also Table 4).
rem e ()
From M/Prog
Contrl 1 il
Argument List Containing:-
Position of Computation Point
Start Radius for Rings [rR11]
{ Counter [1] Set to 0 ]
“—4>—~{ Counter Advanced by 1]
Contribution for Ring |
P [ct (1)1 Nominated
T
F
Initial Radius Set [R(1) = R1]
Counter (1) Set to 1
Index (K) Set to 1
Counter Advanced by 1
B
[ =1+1]
o Quter Radius of Current Ring
Computed using contribution CI1(K)
.S
Index Advanced T OUTER' RAD
by 1 :
4 Y INNER RAD
Mporaite o pos o 7
' Details of Coordinates of |
| Mid-points or compartments i Compute Position of Mid-points
: and Radii of Rings transferred : of all compartments(see appendix A)
" in common !
L - = = — =

LT .
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APPENDIX C - FLOW CHART FOR PROGRAM CONTRLI

Description:  Computes the terrain correction G' at all gravity stations within certain
predefined limits. See also Sectign 4.3.2.

Read limits, point numbers
at which computation and
data reading is to start

¥

Set all counters
to zero
Read atl Read all

relevant relevant Call $/R
gravity datal®—iheight data| | KSRINGS

A

Read Gravity

Station value
from GRAVBNK

¥

QsAgs AgQ from GRAVBNK from HTBIN ¥
HtQ into local into local Midpoints of
file file compartments
< No=1C No=1H [or,*r] PHIR(1,J)
K/J LAMR (1,J)
[ < < < ]
Advance Advance
Counter Counter inRar T Indicator Call S/R
[IMAIN] B>——1[J COUNT] covered b [IND] = 1 SORT7 on
HIBLY GRAVBNK
by 1 by 10
Y by f I
Indicator Call S/R
IND =0 Call S/R PLNFIT
I
SORT3 on Bouguer Anomaly
GRAVBNK of R
I
call SR Bouguer Anomaly ST SR
fR
SORT7 on ° SORT?7 on
GRAVBNK Call S/R HTBH\]I
? Call SORT3 SORT3 on Create file of
Call S/R on GRAE’BNK HTBIN 14 points for
PLNFIT Gives Height & [ height interp”
. Form file of 6 T
anomaly of R T
I height points a
Compute Free-Air ST SR polyfit on
Anomaly of R subsidiary
SORT3 on .
file
subsidiary fite
Height of R
v Height of R ConpuTe
Comiute Free-Air anomaly
Free-Air anomaly of R
of R v
< P v D
[ N < <
Compute

Contribution

Print Value

1
to G' from of

compartment
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APPENDIX D - FLOW CHART FOR SUBROUTINE GRSLP

Description:  Computes maximum slope (ﬁmax) and azimuth (dhax) of line of maximum slope

from plane defined by three points

—_— = = P
From M/Prog

Argument list contains

X,Y & Z of 3 points(1,3 )

defining plane

y
LSet counter [1] = fw

———%'Advance counter by 1]
I

Compute Bearing, Distance & Slope

& From Point 1 to Point |

Compute angle between

bearing 1+2 & Bearing 1+3

~_q<//Slope
F. 251 <]10> T.——  IPrint 'Slope 2~1

Y less than 10 min'

Compute Slope Ratiagw

Compute o , zenith distance
max
of tine of maximum slope
y4) 5
max
¥ =0
Convert ZD to -
max
maximum slope [Bmax]

3 ?
Compute o
max

<
-

JER U
Compute Bmax

-}

A
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APPENDIX E - FLOW CHART FOR SUBROUTINE POLYFIT

Description: Fits by least-squares a second-order surface to a maximum of 14 points, and

interpolates the height of a nominated point on this surface (see equation 5.1)

_ — .> — E
From M/Prog
!

Argument list contains:-

Position of point Q whose height is being sought -9
i
No. of points to which surface is to be fitted [IBZ]

_____ 4 - =
k !

etails of Points

Find point closest to Q

= Poi '
Set lndex+KLEAST = Pmnt‘ No. Lin common __ _ _

f
tare transferred
|
-l

l§§t Counter N = 0]

] Advance counter by 1]

Compute coefficients for
current qbservation equation
& stqre in ARRAY X2(N,1) to X2(N,5)

Compute constant Term for

current observation equation

— e e — = —
Lis counter<No. of points,
F

Compute by least squares

the parameters of the surface

(see equation 5.2)

1

Calculate Height
of Q

........... o

-
:Height of Q transferred

:to M/Prog in argument |
. |
! list ]

| DO S ——
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Description:

FLOW CHART FOR SUBROUTINE SORT3

From an unordered array of points whose positions are known, finds the

3 points which form the smallest triangle about a nominated point Q,

then uses this triangle to interpolate value of height/gravity for Q.

—_ —
From M/Prog

Compute
Distances Q to

all pts. in

Coordinates of Nominated Point

Argumént list contains:- Indicator [IND

(o,

No. of Points in the Array [IC ]

Compute distance
from Q to all

points in sub-

~

~
~~
— e e e TS e e e o
tDetails of points in :
:the array are transferred
'in common, Points could be
|

Gravity File sidiary File jeither gravity stations
Compute Distance {[IND]= 0 or height stations|
from Q@ to all |[[IND]=2 or a subsidiary file

v points in Height v lof 6 pts [IND]= 3
File 'containing the 3 HT points
> Y < ;and the 3 gravity points
, < Y [selected by SORT3 _ _ _ _ .
Find closest point Find 2nd closest
to Q(see routine A Point to Q
in SORT7, App.|)
Y !
No. of closest No. of 2nd closest
Point *N3(1) > Point > N3(2)
[ <
Set Counter Advance Compute Angles Take sines of
(kl=o0 & Counter 102, 203, 301 B> angles
TSHD = IEIO by 192, 203, 3Q1
1
R S ‘

TSHD =

DISTQK

p: %

F
K< IC B
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SUBROUTINE SORT3 (cont)

IND= 0 or 1

Test IND

v IND=2 Y

Get Details of Get details of Get Details of

3 selected points 3 selected points 3 se)ected points

from Gravity File from Height File from subsidiary file

T

I >

A

¥

By Interpolation
(see equation 5.3),

find parameter

value for Q

¥

F— — — — — — — < — {RETURN
——— el
eight and/or Bouguer |

Anomaly transferred to

Th

M/Prog in argument !

|
|
|
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APPENDIX G - FLOW CHART FOR PROGRAM COVFN

Description: From an unordered array of points whose positions and gravity anomalies are
known computes the covariance relationships for all points in the field,
and separates the cross-products according to separation and takes a simple
statistical analysis of data in each cell so produced.

(Read Coords of

Prediction Pt(Q)

and limits of

field to be
included in
analysis
Seti;ll
-« counters to
¥ zero
—
Advance Counter 4>_2:::B;;Om Place point in Add Bpuguer
[y Iby 1 5 % and local file +Anomaly intol
B;uguer Laccumulator

anomaly of] Total No. of
Points stored
in [ic]

gravity
statioz{/J i

; <

Compute Mean Advance Centralise
Bouguer > Counter - Bouguer
Anomaly [17 by 1 Anomaly
‘L [BouGc (1) ]
¥
Advance Advance
Counter ko Counter Compute Distance i»_Compute Index Compute product
K> L ID = DIST/2E3[ > |BOUGC (K) with

Klby 1 [L]by 1

BOUGC (L)

¥

Counter [ NCNT(ID) ]

Increased by 1

Compute and store Compute current

product BOUG(K)xBOUGC(L)r®{mean and stand.

in accumulator dev? of product Product added

into accumulator
[acc(1p)]

Current mean and

A

Standard Error

computed

&

A




Call S/R
SORT7
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FLOW CHART FOR PROGRAM COVFN (contd)

1

Increment
counter
[1X] by 1

Y

Find Bouguer

amomaly of

Q[BOUGQ] from
point IX

\'4

Compute current
mean and
standard error
of BOUGQ

A




APPENDIX H -

Description:

whose position is specified.
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FLOW CHART FOR PROGRAM CONTRL2

Computes the components of the deflection of the vertical (

See also sectio

£,
n6.2.2

Read Latitude, & Longitude
height and free-air anomaly
of computation point (P}

also cue and limits for

rings to be generated

¥

Set all counters

Compute Geographical

limits for data

needed for computation

A

and accumulators

to zero

T TN

v

Read all
relevant B
gravity data
from GRAVBNK
into local

file No. of

Read all

relevant
height data
from HTBIN
into local

file.No. of

DATA = IC

DATA = IH

n ) at a point

Call S/R
RICERNG

N4
Yy

Mid-points of
compartments [ 5,2 g ]
stored in PHIR(I,J);
LAMR(1,J)

Advance counter

[IMAINT by 1

Advance counter

Set counter

Licountd by 10 | D] = Jcountsio
Indicator
< IND =0

Call S/R
SORT7 on

Gravit

data |

Call S/R

Call S/R
SORT3 on
gravity data

)

PLNFIT

Bouguer anomaly

and height of R

Compute free-air

anomaly of R

Call S/R
SORT3 on

gravity data

I

Bouguer anomaly

of R

.

Call S/R
SORT3 on
height data

Form file of 6 height

points

Call S/R
SORT3 on

subsidiary file
I

Compute height & free-

air anomaly of R

3

Indicator

&

Call S/R
SORT7 on

gravity

Call S/R FLNFIT

Bouguer anomaly
of R

I
call S/R

SORT7 on

height data
I
Form file of

14 height

points
L
Call S/R

POLYFIT

on subsidiary

file
I

A

Height of R

Compute free-air

anomaly of R




Compute
Contribution
to &, n
from

compartment
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FLOW CHART FOR PROGRAM CONTRL2 (contd)

Print value of

£, n at P

S )
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APPENDIX I - FLOW CHART FOR SUBROUTINE SORT7

Description:

points close to a nominated point Q.

From an unordered array of points whose positions are known finds the seven
The 7 points are made up of the three

closest points without regard to direction thence the next closest point in

each of the four quadrants from Q.

|GRAVBNK or HTBIN |
Itransferred in
|

Advance counter
[J] by 1

SHD = DIST Q—J

+—~ A
!

—_—

—_ = — P — A |
From M/Prog

Argument list contains:-~

T Coordinates of Point 0Q;

Total number of points in array [IC]

[Set all counters =

—B—EI:A

A
from Q to point |

Compute bearing and distance

[set shortest dist [SHD] =

1TE 8]

<t
<

7}

Set 2nd shortest dist
[sSHD] = 1E8

—Advance counter [K] by 1]

SSHD = DIST Q> K
N7CL(1) =

i
K<1C

Set 3rd shortest
DIST[TSHD] = 1E10

i

Advance counter

fL] by 1

TSHD = DIST Q~>1L
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SUBROUTINE SORT7 (contd)

Set counter

M] =0

Advance counter

y

Find shortest
distance in

1st Quadrant

Y

by 1

Bearing

Bearing i
M <

Q

y

Find shortest
distance in

2nd Quadrant

Find shortest
distance in
3rd Quadrant

y

Fihd shortest
distance in
hkth Quadrant

N7GL(6)=M

N7CL(3)=M N7CL (L4)=M N7CL(5)=M
T o< m<ic
F
- — — — — — — 4 — — —{RETURN
lIndices of 7 chosen

I
{points are transferred

:to M/Prog in argument

S

i ljst
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APPENDIX J - FLOW CHART FOR SUBROUTINE PLNFIT

Description: Fits by Least-Squares a plane surface to 7 points, and finds the Bouguer anomaly

or height of a nominated point on this plane.

-
From M/Prog

T GRAVBNK and HTBIN |

t~ — 5. _| Argument list contains:-
Indicator [IND] : = O(Anomaly); = 1(Height),

| transferred in

LCQNTPQ. P |
Indices of 7 points to which plane is to be fitted,

position of Point Q whose height/anomaly is being sought

l Set counter [N] = 0 ]

—“’“"ﬁ”‘ﬁ Advance counter byAT]

Compute coefficients for
current observation equation
A & store in Arrays X(N,1)
X(N,2)

Y

Compute constant term for

current observation equation

D

Compute by Least Squares

the parameters' values

for the plane

Compute Height
of Q

]

Compute Bouguer

Anomaly of Q

[

- - e — — RETURN
{—Height and/or | <+

|
I Bouguer anomaly,

! .
y transferred in
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Publications from

THE SCHOOL OF SURVEYING, THE UNTVERSITY OF NEW SOUTH WALES
P.0. Box I, Kensington, N.S.W. 2033
AUSTRALIA
Reports
The discrimination of radioktime signals in Australia
G.G, Bennett Unieiv Rep. Dr1

A comparator for the accurate measurement of differential barometric pressure
J.S. Allman Spp Unictv Rep. D-3

The establishment of geodetic gravity networks in South Australia .
R.S. Mather 26pp Uniciv Rep. R-17

The extension-of the gravity field in South Australia
R.S. Mather 26pp Uniciv Rep. R-19

An analysis of the reliability of barometric elevations
J.S. Allman 335pp Unisurv Rep. 5

The free air geoid for South Australia and its relation to the equipotential
surfaces of the earth's gravitational field

R.S. Mather 491pp Unisury Rep. 6
Control for mapping (Proceedings of Conference, May 1967)

P.V. Angus-Leppan (Editor) 329pp Unisurv Rep, 7
The teaching of field astronomy

G.G. Bennett & J.G. Freislich 30pp Unigurv Rep. 8
Photogrammetric pointing accuracy as a function of properties of the visual

image

J.C. Trinder 64pp Unisurv Rep. 9
An experimental determination of refraction over an icefield

P.V. Angus-Leppan 23pp Unisurv Rep. 10
The non-regularised geoid and its relation to the telluroid and regularised geoids
R.S. Mather 49pp misurv Rep. 11
The least squares adjustment of gyro-theodolite observations

G.G. Bennett 53pp misurv Rep. 12
The free air geoid for Australia from gravity data available in 1968

R.S. Mather 38pp Unisurv Rep, 13

Verification of geoidal solutions by the adjustment of control networks using
geocentric Cartesian co-ordinate systems

R.S. Mather 42pp Unisurv Rep. 14
New methods of observation with the Wild GAKI gyro-theodolite

G.G. Bennett 68pp - Umisurv Rep. 15
Theoretical and practical study of a gyroscopic attachment for a theodolite

G.G. Bennett 343pp Untsuryv Rep. 16
Accuracy of monocular pointing to blurred photogrammetric singals

J.C. Trinder 231pp Unigurv Rep. 17

The computation of three dimensional Cartesian co-ordinates of terrestrial networks
by the use of local astronomic vector systems

A. Stolz L7pp Unisurv Rep. 18
The Australian geodetic datum in earth space

R.S. Mather 130pp Unisurv Rep. 19
The effect of the geoid on the Australian geodetic network

J.G. Fryer 221pp Unisurv Rep. 20

The registration and cadastral survey of native-held rural land in the Territory
of Papua and New Guinea

G.F. Toft hhipp Unisurv Rep. 21
Communications from Australia to Section V, International Association of

Geodesy, XV General Assembly, International Union of Geodesy & Geophysics,

Moscow 1971

R.S. Mather et al 72pp Unisurv Rep. 22
The dynamics of temperature in surveying steel and invar measuring bqnds
A.H. Campbell 195pp Unisurv Rep. S 7

% Qut of print
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" Publications from the School of Surveying
(contd.)

Reports (contd)

Three-D Cartesian co-ordinates of part of the Australian geodetic network by the

use of local astronomic vector systems

A. Stolz - 182pp misurv Rep. S 8

Papers on Four-dimensional Geodesy, Network Adjustments and Sea Surface Topography
R.S. Mather, H.L. Mitchell, A. Stolz  73pp Unisury G 17

Papers on photogrammetry, co-ordinate systems for survey integration, geopotential

networks and linear measurement
L. Berlin, G.J.F. Holden, P.V. Angus-Leppan, H.L. Mitchell

Anomaly Data Banks for Australia, Recovery of Tidal Signals from Satellite
Altimetry, Meteorological Parameters for Modelling Terrestrial Refraction,
Crustal Motion Studies in Australia

S.M. Nakiboglu, B. Ducarme, P. Melchior, R.S. Mather, B.C. Barlow,

G 18

and A. Campbell 80pp Unisury
Aspects of Four-dimensional Geodesy
R.S. Mather, P.V. Angus-Leppan,
A. Stolz and I. Lloyd 100pp Unisurv G 19
Relations between MSL & Geodetic Levelling in Australia
H.L. Mitchell 264pp Unisurv Rep. S 9
Study of Zero Error & Ground Swing of the Model MRAI01 Tellurometer
A.J. Robinson 200pp Unisurv Rep. S 10
Papers on Network Adjustments, Photogrammetry and 4-Dimensional Geodesy
J.5. Allman, R.D. Lister, J.C. Trinder and R.S. Mather  133pp Unisurv G 20
An Evaluation of Orthophotography in an integrated Mapping System
G.J.F. Holden 232pp misurv Rep. S 12
The Analysis Precision and Optimization of Control Surveys
G.J. Hoar 200pp Unisurv Rep. S 13
Papers on Mathematical Geodesy, Coastal Geodesy and Refraction
E. Grafarend, R.S. Mather
and P.V. Angus-Leppan 100pp Untsurv G 21
Papers on Gravity, Levelling, Refraction, ERTS Imagery, Tidal Effects on
Satellite Orbits & Photogrammetry
R.S. Mather, J.R. Gilliland, F.K. Brunner, J.C. Trinder,
K. Bretreger and G. Halsey 96pp Unisurv G 22
Papers on Earth Tides, Sea Surface Topography, Atmospheric effects in
physical geodesy, Mean sea level, Systematic errors in levelling
R.S. Mather, E.G. Anderson, C. Rizos, K. Bretreger, K. Leppert,
B.V. Hamon, P.V. Angus-Leppan 96pp Unisury G 23
t
Papers on Adjustment theory, Sea surface topography determinations,
applications of Landsat imagery, Ocean loading of Earth tides,
physical geodesy, photogrammetry and oceanographic applications
of satellites
R. Patterson, R.S. Mather, R.C. Coleman, O0.L. Colombo,
J.C. Trinder, S.U. Nasca, T.L. Duyet, K. Bretreger Unisurv G 24
The Effect of Topography on Solutions of Stokes' Problem
E.G. Anderson 252pp Unisurv Rep. S th
The Computation of Deflections of the Vertical from Gravity Anomalies
A.H.W. Kearsley 161 pp Unigurv Rep. S 15
Papers on Hydrostatic Equilibrium Figures of the Earth, Earth Tides, Gravity

C. Rizos, B, Hirsch, K. Bretreger, F.K. Brunner, P.V. Angus-Leppan Unisurp G 25

Prices

G. General Serfes

Subscription for 1976 Postfree
To Libraries $11.00
To Individuals $8.00

S. Special Series (Limited Printing)

Postfree
To Libraries $11.00 each copy.
To Individuals $8.00 each copy.



Publications from the School of Surveying (contd.)
Proceedings

Proceedings of conferences on refraction effects in geodesy & electronic distance

measurement
P.V. Angus-Leppan (Editor) 26bpp

Price:

Australian Academy of Science/International Association of Geodesy Symposium on

Earth's Gravitational Field & Secular Variations in Position

R.S. Mather & P.V. Angus-Leppan (eds) 76kpp

(A) Price to Libraries, etc.

or, to individuals

Monographs
The theory and geodetic use of some common projections (2nd edition)
R.S. Mather 125pp
The analysis of the earth's gravity field
R.S. Mather 172pp
Tables for Prediction of Daylight Stars
G.G. Bennett 24pp
Star Prediction Tables for the fixing of position
G.G. Bennett; J.G. Freislich & M. Maughan 200pp

Survey Computations
M. Maughan 98pp

Adjustment of Observations by Least Squares
M. Maughan 57pp

*% Including postage

Price:

Price:

Price:

Price:

Price:

Price:

Price:

$10.00%*

§ b,50wx
§ b.50mx
$ 2.00%%
$ 7.50%%
$ 3.00%%

$ 3.00%%












	s15a
	s15b
	s15c
	s15d
	s15e



