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ABSTRACT

This study examines the application of Landsat multispectral data
to the analysis of urban residential quality in the Sydney (Australia)
metropolitan area. A historical review of the use of remotely sensed data
in urban areas indicates a number of scene and sensor related limitations
to the clustering techniques currently used for classifying land use from
Landsat data.

Linear models are developed relating the proportion of various
surface cover types to the spectral response from a single pixel area while
accounting for the degrading effects of the atmosphere and the integrating
effect of the sensor point spread function. The atmospheric effects are
modelled for the conditions prevailing at the time of the selected Landsat
Sydney scene and include the effect of spatially varying background
reflectance. Two models are developed to account for the effect of the
point spread function, one using the deconvolved reflectance at the target
pixel, the other incorporating the convolved sampled cover from a 3 x 3
pixel array.

Data for the study wasobtained from seventy ground truth sites over
the study area and from the Landsat computer compatible tapes of the Sydney
scene of December 1972. The coefficients of the developed linear equations
are calculated from the sampled data using multiple Iihear regression
techniques. These coefficients allow the prediction of the reflectance
of a number of residential cover types and the prediction of the proportion
of individual cover types contained within a pixel and an extended 5 x 8
pixel block. Of a number of transformations examined, ratio type variables
incorporated into the linear equations are found to be more significant
than reflectance only variables and for extended areas, variables based
on reflectance standard deviation are also found to be significant.

The potential fo predict the average number of houses per pixel over a
ground truth area is an important result of this work. The mul tidimensional
structure of the reflectance data is examined using factor analysis and

is found to be essentially represented by two overlaid orthogonal systems,

one representing a grass/tree structure, the other a vegetative/non-vegetative

structure.
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(iii)

The equations relating cover proportions and housing density to
the Landsat derived reflectance data are applied to the analysis of
average relative house values, as one measure of residential quality.
House size is found to be the primary predictive variable for house value
and it is shown that this variable can also be predicted from Landsat data.
A best multiple correlation coefficient of 0.73 between house value and
Landsat derived data shows that residential areas can be simply disag-
gregated on the basis of value. A residential quality index based on
house size and cover proportions is developed and related to Landsat
derived reflectance data at the pixel level with a multiple correlation
of 0.87. It is concluded, in part, that the potential of Landsat data as
a tool in urban analysis is considerable, particularly when used

in association with other readily available data.
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1. REMOTE SENSING IN URBAN LAND CLASSIFICATION

1.1 Introduction

Remote sensing is the science of collecting information about an
object or area without visiting it. A number of sensing devices can be used
including photographic cameras, multispectral scanners, thermal scanners and
microwave instruments; which when mounted on a balloon, aircraft, rocket or
satellite can provide a great deal of information about the earth - its
surface, environment and resources.

Crowded into less than one percent of the exposed land surface of the
earth, urban areas are the focus and ultimate expression of human activities.
They are the most modified portion of the earth's surface and their physical
expression in the landscape is both complex and diverse. The benefits of
remote sensing in urban planning, urban land inventory, urban management and
urban research have been reported elsewhere, particularly by BRANCH (1948
and 1971) and BOWDEN (1975) and will not be considered further.

With the launching of the Landsat series of satellites in 1972, 1975
and 1978 a new remote sensing toof became available for urban analysis.
While the multispectral scanners of Landsat were primarily developed for
agricultural and resource studies, a considerable amount of research has
recently been directed towards urban land classification.

The purpose of the research which is the basis of this thesis is to
extend the current application of Landsat data in the classification of
urban residential areas and to test the potential of Landsat derived
variables as a surrogate for determining urban residential quality. The
selective but detailed review of previous research which follows will point
out past achievements, stress changes in methodology and sensors, indicate

current problems and provide a foundation for the chapters that follow.

1.2 Historical Overview - Nadar to Landsat

1.2.1 Conventional Black and White Photographic Sensors

The use of remote sensing in urban areas dates back to 1858 when
Tournachon (later known as''Nadar'') used a camera carried aloft in a balloon
to study parts of the city of Paris. |In his photographs of the village of
Petit Bicetre the houses could be clearly seen (AM. SOC. of PHOTO, 1975, 27).
Increasingly since then the imaged morphology or form of the urban space

has been used directly or as a surrogate for functional identification and

classification.



Until the second world war remote sensing techniques had remained
basically the same since the acquisition of the first aerial photographs.
Either a single photograph or stereo pair was used for each portion of the
area of interest. Photography was essentially black and white and was of
medium to large scale because of flying height limitations. Documented use
of this conventional aerial photography for urban area analysis dates from
the period immediately following the first world war. BRANCH (1948) makes
reference to a number of early writings on the use of aerial photography in
urban planning. These include PICK (1920), BRITTENDEN (1920), HAYLER (1920),
LEWIS (1922) and MATTHES (1927). Other early writers include LEE (1920) and
JOERG (1923).

The second world war brought about a dramatic increase in the awareness
of the potential of remote sensing in urban areas. A textbook by BRANCH
published in 1948 was the first attempt to examine the full potential of
aerial photography in urban analysis. This book has recently been revised
(BRANCH, 1971). \

Various papers and articles followed which attempted to develop or
explore in greater depth the applications and methods originally suggested
by BRANCH. WITENSTEIN (1954, 1955, 1956) and WRAY (1960) dealt with the
planning use of aerial photography. WITENSTEIN elaborated some of BRANCH's
concepts concerning the role of aerial photography in programmes of urban
planning and administration. He gave examples which showed that most of the
measurements involved in the quantitative analysis of an urban area could be
made directly from the imagery. WRAY developed methodology for implementing
part of the analytical process outlined by WITENSTEIN. A photomosaic of
Peoria, Illinois was used for extensive statistical analysis, involving many
physical parameters of the urban area. These included residential and non-
residential building and floor space. As a consequence of these studies,
areas were grouped to form functional units or urban districts of related
land use, function, age and characteristics of development. This work laid
the foundations for later contributions to the USGS Census Cities Project
(WRAY, 1970). Other studies involving dwelling unit estimation include
HADFIELD (1963) and BINSELL (1967).

The relationship between land use classification systems and photo
interpreted data was examined by GWYNN (1968). Both GWYNN's work and the
work by NUNNALLY et al (1968) and NUNNALLY (1970) suggested that classifi-
cation systems based on conventional concepts of land use required
modification if the full potential of remote sensing as a source of land use

data was to be achieved.



The use of conventional black and white photography in socio-economic
and demographic studies, as suggested by BRANCH, was further extended by
GREEN (1957) and GREEN and MONIER (1959). The goal of these studies was to
predict socio-economic variables from photo interpreted data. Extensive
literature was cited as evidence for social values attached to housing and
residential communities and, by extension, that observable physical data
have meaningful sociological correlates. Four photo data items were used -
concentric zonal location, housing density, number of single family homes
and residential desirability. This latter measure was determined from’
internal and adjacent land uses, each sub-area being classified as having
favourable, neutral or unfavourable attributes. Socio-economic data included
medium income, rental value, racial composition, educational and occupational
status and crime rates. High correlations were found to exist between
selected items. The generality of GREEN's approach, his aggregate treatment
of data and the choice of data items have been criticized by WITENSTEIN
(1957, 97) and WELLAR (1968a). Nevertheless it is still significant that
GREEN's scale of residential desirability accounted for 78% of the variation
in his socio-economic status scale.

MUMBOWER and DONOGHUE (1967) substantially revised GREEN's approach.
Their investigation to determine photographic means of upgrading census
type data and defining poverty areas was more correct statistically, in that
disaggregated units were first examined - where verified evidence of poverty
existed - and these were later aggregated to make more general statements.
Photo interpreted surrogates for poverty included residential location,
structure type, density, adjacent land use and transportation routes,
presence of litter, absence of landscaping and off-street parking.

A further study involving the mapping of urban poverty areas was
that by METIVIER and McCOY (1971). Using large scale (1:6000) black and
white photographs two methods were employed. The first delimited substandard
housing on the basis of the visual appearances of single family residential
areas on the photographs. Similar variables to those used by MUMBOWER and
DONOGHUE (1967) were identified. Housing density was considered the most
effective variable for identifying substandard housing areas. The second
approach was to map measured values of single family housing density to
determine whether a single quantifiable index obtained from aerial photographs
could be used as a surrogate for income and house value. A high negative
correlation was found between housing density and both median income and

average house values, while density and percent non-white population were



positively correlated. WESTERLUND (1972, 39) suggests that this one
variable approach, using housing density, has value for initial analysis
in areas where these correlations have been verified. A technique for
automated interpretation of housing density using the spacing component
to produce diffraction patterns, was further suggested.

The use of aerial photographs as auxilliary census data was studied
by EYRE et al (1970) and SHIN - YI HSU (1970). Although a number of
difficulties were encountered, the techniques devised were considered most
useful for intercensal extrapolation of census data.

Work in Britain by COLLINS and BUSH (1969), COLLINS and EL - BEIK
(1971) and GIBSON (1976) has further extended the use of conventional
aerial photographs in the acquisition of urban land use information and for
derelict land studies, by applying previously researched techniques to real
world problems.

Research at the International Institute for Aerial Survey and Earth
Science (1.T.C.), Netherlands, has led to some interesting applications of
conventional black and white photography, particularly since the establish-
ment in 11968 of a new department for research and training in urban survey
with aerial photography. DE BRUIJN (1976, 185 - 186) suggests however that
techniques developed elsewhere, especially for American cities, have not
been particularly applicable to the more compact and varied urban areas of
Europe.

All of the previously cited works relied exclusively on visual
interpretation using contextual clues of site and association, no trend
towards the computerized pattern recognition techniques of today being
apparent. This was to be expected, as at large scales and in a recognisable
one dimensional intensity mode the eye/brain combination was a superior
analyser of aerial photographs. Nevertheless over the same period initial,
theoretical statements of the problem were offered by LATHAM (1959),
ROSENFELD (1962a, 1965, f966) and COLWELL (1965). ROSENFELD (1962b) also
confirmed the utility of classifying land use by automatic visual texture
measurements. Large scale black and white photographs were spot scanned
and the density information converted to time-varying video signals. From
these ROSENFELD extracted a measure of contrast frequency which allowed
differentiation between urban residential areas, industrial areas,

cultivated fields and woods.



1.2.2 Advanced Photographic Techniques

The sixties and early seventies saw a gradual change in the
conventional approach to remote sensing with the introduction of colour,
colour infrared, multiband , small scale and space photography. This was
due to the increasing availability of this type of data, many of the
techniques having been wartime and post-war military developments which
were only declassified in the early sixties. Declassification provided a
major stimulus to the investigation of non-military applications.

A further stimulus was the increasing involvement of the United States
National Aeronautics and Space Administration (NASA). NASA accepted a major
responsibility for developing civilian applications of remote sensing. The
Earth Resources Program, initiated in 1965, involved the development of
aircraft and spacecraft sensing systems, and the investigation of earth
sciences/geographic applications in conjunction with many other Federal
agencies and contractors.

Most American research in urban and regional applications of advanced
photographic techniques have however been sponsored by the Department of the
Interior, through the Earth Resources Observation System Program (EROS) .
This program is administered by the U.S. Geological Survey. Their Geographic
Applications Program (GAP), a component of EROS, has produced a very
extensive collection of studies related to urban applications of remote
sensing.

The advent of advanced techniques broughtabout changes in emphasis
in urban applications research. There appeared to be fewer studies that
dealt specifically with the use of these types of data in the traditional
urban comprehensive planning situation than was the case with conventional
aerial photography (WESTERLUND, 1972, 56). Also as a natural result of the
trend towards smaller scales and greater coverage, advanced technique
research has emphasized regional rather than intra-city application, with
the exception of housing quality studies (WESTERLUND, 1972, 57).

Application of multiband and colour infrared photography to the
evaluation of housing quality, neighbourhood environment, and socio-
economic criteria was pursued by the Universities of Northwestern and
California - Riverside in a joint research program during 1968-1970.

Much of this work built directly upon the earlier studies of GREEN (1957)
and MUMBOWER and DONOGHUE (1967). WELLAR (1968a) used large scale aerial

photography in nine spectral bands to evaluate the quality of housing and



neighbourhood environment. Residential blocks in five neighbourhoods of
Chicago and immediate suburbs were examined. Over twenty variables
extracted from the imagery were used in the housing quality studies. It
was found that twenty of the twenty four items used by the American Public
Health Association as criteria for housing environment appraisal, could be
consistently interpreted from the photography.

A study using estimated income, house value, and other socio-economic
criteria, based on correlated surrogates observed on colour infrared
imagery, was described by MOORE (1969a) and THROWER, MULLENS and SENGER
(1968) . Three Los Angeles County neighbourhoods were studied. These
areas were characterized by low to lower-middle income residents and poor
housing. The imagery ranged in scale from 1:6000 to 1:60 000. Eighteen
data items were interpreted and verified by reference to an extensive file
of ground truth areas. A condensed variable set of nine categories was
ranked on a quality scale and census tracts were ranked according to the
quality of each variable. Tracts were also ranked according to a selected
set of socio-economic variables. Various significant correlatians were
found between each data set; for example the results indicated a satisfactory
ability to differentiate between income levels using interpreted surrogates.

In a related study, MOORE (1969b, 1970) used existing documentary
data on housing characteristics for the same three residential areas in Los
Angeles. Remote sensing data was not used in the study, however a reduced
set of seven environmental variables, determined using discriminant analysis
of the documented data, satisfactorily assigned housing at the block level
to quality classes. |t was argued that based on the work of WELLAR (1968a)
these environmental variables could be interpreted from large scale multi-
band aerial photography. The possibility of assigning quality classes at
the parcel level from environmental characteristics alone, was however
rejected.

HORTON and MARBLE (1969) using infrared photography tested MOORE's
seven environmental variables by estimating their values for several 10%
block samples in a number of areas of Los Angeles County. They concluded
that for quick look surveys of blight and decay an acceptable error level
was achieved. BOWDEN '(1970) further reviewed and analysed the results of
these residential studies.

In a study of metropolitan Boston LINDGREN (1971) used colour
infrared imagery at a scale of 1:20 000. Objectives of the study were to

determine whether dwelling unit estimates could be made from medium scale



imagery and further whether at this scale colour infrared offered

advantages over panchromatic or normal colour photography. As in previous
studies residential structure counts were highly accurate (99.5%).

Dwelling unit estimates were less accurate giving a 3.1% underestimation
overall and up to 10% in given blocks. This result was to be expected since
areas were primarily multi-family. These estimates compared well with
previous work at larger scales. LINDGREN concludes that accurate dwelling
unit estimates can be made from imagery at a much smaller scale than have
been used previously and that colour infrared imagery is more effective than
panchromatic or colour because of its haze penetration capabilities and
because of the greater contrast achieved between vegetation and buildings.
He recommended still further tests at smaller scales. EYRE (1971) in a

more comprehensive regional study, indicates that the type and density of
residential development can be estimated within reasonable limits from

1:60 000 scale colour and colour infrared photography.

The ability to evaluate dwelling units counts from smaller scale
photography was demonstrated by DUEKER and HORTON (1972) using colour
infrared photography at a scale of 1:50 000. They found that the average
error in the suburban single family dwelling unit count when compared to
census data was 15%. This compares favourably with the earlier results of
HADFIELD (1963) and BINSELL (1967) using much larger scale imagery.
Regression models were developed to estimate population from dwelling unit
counts.

In a report by BOWDEN (1968) a study is cited using 1:60 000 colour
infrared photography. Visual interpretation techniques were used to
demonstrate that a hierarchy of residential patterns could be categorized,
ranging from category one being widely spaced homes of large size and much
vegetation, to category twelve being of poorest quality. It was concluded
that better socio-economic areas were easier to dissect than the poorer
areas because vegetation was better developed and aided greatly in
classification. Delimitation of low socio-economic status areas was found
to be a much more difficult task using only image derived information.

In a later study by TUYAHOV et al (1973) various levels of housing
and environmental quality were assessed and mapped using conventional black
and white photography at a scale of 1:23 000 and sub-orbital colour infrared
photography at a scale of 1:190 000. Eighteen indicators or image
signatures of different socio-economic classes were identified. Those

considered potentially observable from satellite imagery included housing
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density, geographic pattern and uniformity, surrounding amounts of
vegetation, and percentage of roof cover. Using census tract data the
authors carried out a factor analysis, the results of which were used to
verify the delimitation of socio-economic classes as determined from the
imagery. They concluded in part that the location, spatial arrangement,
dénsity and character of the housing units have ecological meaning in that
exterior characteristics are surrogate measures for interior conditions -
a statement not unlike that used as a premise for the work of GREEN (1957),
sixteen years before.

In the broader area of urban land use classification a number of
studies were also carried out in this period. Typical of urban land use
interpretation experiments using low altitude colour photography was a study
by HANNAH (1969). This study prepared a land use map of a portion of
Ashevillie, North Carolina from 1:8000 normal colour and colour infrared
photography, comparing the results with a similar map prepared from field
investigation. Only 1.5% of interpreted land uses, of 1713 parcels, were
misrepresented on the photo derived map. Using smaller scale imagery
(1:120 000) over Boston SIMPSON (1970) was able to identify eleven major
land use classes and thirteen subclasses of features. Using imagery at
1:500 000 GRIFFITHS et al (1971) report that only generalized land use
information can be interpreted. TUELLER and LORAIN (1971) in a study of
the Lake Tahoe basin indicate that urban cover - primarily housing - could
be readily distinguished on 1:108 000 colour infrared photography but with
greater difficulty at a scale of 1:432 000. For combined analysis with
colour, colour infrared and one or more multispectral bands, they conclude
that the red band gives the optimum contrast between cultural and natural
features.

Increasingly, research in the land use area was being directed to
sub-orbital and satellite imagery. WRAY (1970) describes the objectives
of the U.S. Geological Survey Census Cities Program which in part was to
determine the capability of high altitude and satellite imagery. WELLAR
(1968b, 1969) discusses the applied aspects of hyperaltitude photography
in urban and transportation research based on detailed analysis of Gemini
photographs over various urban centres at scales of 1:283 000 to 1:1 000 000.
From observation he suggests that automatic methods of urban signature
discrimination of urban boundaries, central business districts, residential
areas,transportation systems and areas of new construction might provide

a means of monitoring gross changes in urban and regional land use. Work



by RUSHTON and HULTQUIST (1970) and HULTQUIST et al (1971) at the University
of lowa describe the application of Apollo imagery for monitoring the
Tocation and extent of built up areas.

Typical of several efforts at regional land use analysis from manned
spacecraft photography, was a study by MACPHAIL and CAMPBELL (1970). They
analyzed 17 frames of Gemini 5, Apollo 6 and Apollo 9 photography of the
El Paso region of Texas - New Mexico. Imagery was normal colour film at
print scales of approximately 1:800 000. Four thematic maps were prepared
based on interpretation of the photography. The broad classes of features
identified were transportation, drainage pattern, land forms and gross land
use. Various subclasses within each were also identified. In the urban
land use context only urban irrigated and suburban irrigated were separated.

A similar regional project was undertaken at the University of
California, Los Angeles by THROWER et al (1970) using photography from four
Gemini and Apollo missions over the south western area of the United States.
Objectives of the study were :

(i) to determine what land uses were visible on satellite

photography,

(ii) to devise a land use classification system compatible

with data obtainable from such photography, and

(iii) to construct land use maps at scales of 1:250 000 and

1:1 000 000
Using visual interpretation a number of land uses and colour textural
associations were identified. Included in these were large urban centres
which were discernible from the overall shape and size, the presence of
street patterns and their greyish coarse textured signature. No sub-
classification below this class was indicated. An extensive verification
procedure was followed, the results of which indicated in part that while
agricultural patterns checked well, large urban centres were somewhat
less reliable and further that overlap in the range of reflectance
characteristics associated with different land uses varied from place to
place making consistent interpretation difficult. In the second part of the
study a classification scheme was developed that limited urban areas to one
class, settlements, with no sub-classes.

THROWER et al conclude that satellite photography has utility for
small scale generalized land use mapping. The use of automated techniques
for high reliability categories is suggested but they also indicate that

other categories require a greater man-machine interface. The essential
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problem of extracting land use data from space imagery was well stated by

the authors "...... at orbital altitudes a single photographic resolution

cell represents the integration of a variety of spectral responses associated
with a number of phenomena and their condition .... consequently, generalising
a variety of such cells into land use categories requires sophisticated
interpretation and inference.” This was one of the first statements of

this important problem.
In a similar vein SIMONETT (1969) suggests that major land use

categories within urban areas, such as newer versus older residential areas,
can only be interpreted with imagery of resolution 100 feet or less and
further (SIMONETT and COINER, 1971) that the ability of a remote sensor to
provide a given informational element from within the context of a specific
environment is related to the spatial (and temporal) complexity of that

environment judged by land use mix. Discussing the expected resolution of

320 feet for the Landsat satellite sensor systems, they suggested that in
heterogeneous or urban areas its value would be limited.

Other researchers have also developed urban land use classification
schemes for thematic mapping from orbital imagery that suggest the level
to which satellite imagery can be interpreted. These include WRAY (1971)
who gave a gross category of residential and subcategories of single family
and multifamily dwellings and ANDERSON et al (1972) who defined residential,
strip and clustered settlement and mixed level Il categories, among others,

within a level 1 category of urban and built up land.

1.2.3 Non-Photographic Sensors

The development of non-photographic remote sensing systems, primarily
thermal infrared, multispectral scanners and radar, and research into their
application has generally paralleled that of advanced photographic techniques.
However the amount of research into urban applications using these new
sensors had, until the early 1970's been comparatively small. This was due
to the reduced availability of the data and the lower quality of the
earlier unc]assffied systems. Research with these tools was mainly in the
investigation of earth science and natural resource applications.

Identification of rural and urban cultural features, usually
transportation and settlement features of a fairly gross nature were the
principal research application of thermal infrared and side looking
airborne radar (SLAR). Two papers, WELLAR (1968c) and MOORE (1968) offer

preliminary examinations of the potential utility of both these sensors
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systems for urban analysis. Later work by LEWIS (1968), SIMPSON (1969),
LEWIS et al (1969) and BRYAN (1974) have further developed application of
radar type sensors. All papers point out the strong returns observed from
urban linear features caused by multiple reflections. This results when
the radar beam is perpendicular to the surfaces of a line or group of
buildings on the ground. BRYAN (1974) lists several types of urban land
use that were easily and accurately identified. These included residential
areas, linear transportation features, large water features and some
commercial districts. All were identified at a 5% level of confidence.
Wavelengths used were X and L Band and polarizations HH and HV. LEWIS (1968)
concluded that multiple-polarized radar imagery was superior to any single
polarization scheme for detection of cultural features.

The Willow Run Laboratories (now ERIM) pioneered development of
multi-channel imagery systems that spanned the visible to the far infrared
spectrum. Together with the Laboratory for Agricultural Remote Sensing
(LARS) at Purdue University, they applied these systems to the investigation
of crops and soils with some of the first applications of automatic
discrimination procedures based on spectral signature, for example see
HOFFER (1967), WIEGAND et al (1968), HOFFER and GOODRICK (1971). Work by
COLWELL (1971) extended this procedure to urban features. Data was recorded
in two separate sets using medium altitude multispectral scanning. Ten
bands were used in the 0.4 um to 1.0 um region of the spectrum for the first
data set and three infrared bands for the second. The prediction of surface
cover type for urban watershed management was the main aim of the study.
Using training site data, automated recognition procedures were applied to
give a recognition rate of 85% for non-vegetated surfaces using the ten
channel data set. Most of the non-recognitions were dark toned rooftops not
included in the training sets. A high level of recognition was also achieved
for such categories as bare soil, gravel, asphalt, a variety of roofing
material, lawn, trees and water. However a slightly lower level of

recognition was achieved with the three channel infrared data.

1.2.4 Landsat MSS Applications

The greatest advance in non-photographic Earth orbital imagery was
undoubtedly the launch of the first Earth Resources Technology Satellite,
ERTS 1 (now renamed Landsat 1) on July 23rd 1972. The concept and
specifications of this general purpose earth observation satellite were

developed within the Earth Resources Observation Satellite Program, now
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the Earth Resources Observation Systems (EROS) Program of the U.S. Department
of the Interior. Using two independent imagery systems - three vidicon
cameras and a four channel multispectral scanner - the satellite began
returning pictures within three days. However, following the failure of

the vidicon system, research has concentrated on the application of the
multispectral scanner system. Wavelength ranges covered by the four channels
are 0.5 - 0.6 um (green) 0.6 - 0.7 um (red), 0.7 - 0.8 um (infrared),

0.8 - 1.1 um (infrared). Two further Landsat satellites were launched in
1975 and 1978. (See Appendix 2 for a more detailed decription of the Landsat
system) .

The repetitive, synoptic, regional overview of Landsat stimulated
much research into urban and regional applications. Many studies
particularly in the United States were commenced with great expectation,
broad land use classes were mapped and urban boundary change detection was
attempted. While visual interpretation of Landsat imagery can be used for
classification purposes, the complexity of the urban landscape and the vast
amounts of data has led to a greater use of computerized pattern recognition
techniques. In general the methods used were essentially those developed
for agricultural studies where the spectral and spatial responses were
considered sufficiently simple and consistent to encourage their develop-
ment (WESTERLUND, 1972, 137).

Basically two approaches have been used, supervised and unsupervised
training. Each assumes that a number of classes exist in the scene that
will each give a unique spectral signature. The response vectors from
the same type of area will tend nearly to be the same and will form a cloud
or cluster in n-dimensional space (n = 4 for Landsat spectral data), each
cluster being contained in one region and representing a particular class.
During the classification process unknown data points are tested to see into
which cluster and therefore which class they fall. In the case of
unsupervised methods there is no prior knowledge of the identity of the
classes, and clusters are not forced. Following complete classification,
training areas are ground truthed to determine the true identities of the
different classes. With supervised methods the classes are defined before-
hand and cluster statistics are determined from responses sampled over
ground truth areas within each class.

Early research using Landsat data in urban areas was reported by
ERB (1974). Imagery over Houston, U.S.A., for August 1972 was supported by

aerial photographs as collateral ground truth data. Both unsupervised and



supervised clustering techniques were used to derive a number of land use
cover classes. Considerable effort was expanded in an attempt to develop
distinct spectral signatures for residential areas in four general categories:
(i) single family - with dense cover of trees,
(ii) single family - with less dense cover of treecs,
larger lots, many open fields,
(iii) new single family - with very small or no trees,
small lots and over all highly reflective,
(iv) multi-family apartments - with extensive paved or

roof covered surfaces.
ERB reports that separating these categories spectrally with a reasonable
degree of accuracy proved almost impossible, because of confusion with other
uses. One example of confusion given was where a pixel (picture element)
straddled a bright paved surface and adjacent dark vegetation, giving an
integrated response similar to the residential response. It was concluded
that the best accuracies for classifying residential areas would be achieved
using only two level 1l categories, single family residential and mixed
urban. The latter category included all other land uses not included in
the commercial/industrial/transport category and by necessity included some
residential areas that could not be separated from adjacent non-residential
areas. ZOBRIST et al (1976) report a more detailed breakdown having large
buildings, strip cluster development, single family residential and multiple
family trailer courts as separate classes. Other categories defined by
ERB (1974) were vegetation (woody) being predominantly trees, vegetation
(non-woody) including grasses and shrubs, and water. Overall accuracies
obtained using an unsupervised classification technique when compared to

ground truth data obtained from high altitude aircraft photography were:

Commercial etc. 94 . 2%
Residential 66.8%
Mixed 51.1%
Vegetation (woody) 95.1%
Vegetation (non-woody) 56.2%
Water 87.7%

Based on ERB's figures however, if the residential and mixed urban were
combined into one category, those mixed urban areas would have a 71.9%

correct classification in this combined category and residential areas

89.8% accuracy.
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Using supervised training techniques with four classes of ground
truth sites, a further analysis was carried out by ERB. Eighteen training
sites were aggregated into four general urban land use categories,
vegetation, residential, commercial/industrial and water. Thirty-five
randomly located sample areas were classified on the basis of the response
statistics derived from the training sites. These results were compared via
regression analysis with conventionally interpreted data. Correlation
coefficients computed were, for commercial/industrial 0.75, vegetation 0.73,
residential 0.72 and water 0.80. Generally vegetation and residential
classes were over classified when low percentages occurred and were under
classified when high percentages occurred.

ERB (1974) suggests that the residential land use category is one of
the most complex and least consistent categories to be delineated by spectral
classification, because of the spectrally heterogeneous inter-mixing of small
vegetated and non-vegetated surfaces. He concludes that urban classification
is difficult because of the integrated response from pixels of mixed surface
cover proportions and more particularly where vegetation is a major component
of the urban scene. He further concludes that Landsat data is only capable
of providing generalized classifications that would have only limited
application in urban land use studies. The solution of the mixed pixel
problem has been considered by a number of researchers, including HORWITZ
et al (1971), SMEDES et al (1975) and JENSEN (1978), however none of these
studies were undertaken primarily in an urban situation and generally only
dealt with simple mixtures of two surfaces.

ELLEFSEN et al (1973) in a study over the San Francisco Bay area
supported ERB's (1974) contention when they suggested that integrated
response from different ground cover classes in a single land use class was
a significant factor affecting urban classification results. In addition
they suggested that regional environmental characteristics affecting
landscaping, differential weathering of man-made surface materials and
local varieties of building and paving materials tend to reduce identification
reliability. However they conclude that for ninety percent of the urban
area mapped, broad land use classifications were correct.

Improved techniques were adopted by TODD et al (1973) and TODD and
BAUMGARDNER (1973) in an attempt to overcome some of the urban classification
problems. In the former study over Milwaukee County, Wisconsin, U.S.A.,

two types of spectral response were .defined - homogeneous and heterogeneous.



They hypothesized that there were at least three basic homogeneous
groupings of earth phenomena and that the predominantly heterogeneous
urban classes of land use comprised various proportions of a minimum of two
or three spectrally diverse groups of phenomena. The broad classes of
urban phenomena were then defined on the basis of the relative proportions
contained in each, rather than specifically being based on land use or
function. Classes defined were roads/central business district (C.B.D.),
inner city, zone of transition, industrial, suburban, wooded suburban and
grass. Using supervised clustering methods overall identification accuracy
was reported as greater than 90%, with most misclassifications occurring
on the rural fringe.

In the latter study over Marion County, Indiana, TODD and BAUMGARNER
(1973) considered a number of new approaches. Response data was averaged
over a number of contiguous picture elements prior to classification.
This procedure reduced the variance of clusters and made spectral
characteristics more representative. Stratification of the data set into
urban and rural land uses prior to classification also improved the analysis.
However the most innovative technique introduced was the inclusion of
numerical spectral characteristics, other than single spectral class, into
the clustering process. Parameters such as mean, range, standard deviation
and correlation coefficients (between spectral bands) were considered.
Classes considered were commercial/industrial, multifamily (older)
residential, single family (newer) residential, wooded areas, grassy areas,
water,clouds and cloud shadow. While all of these classes were separable
using only spectral data, another two residential classes could be separated
using additional parameters. These were a transitional residential area
located between areas of multifamily and single family classes and a
vegetative residential class consisting of scattered residential developments
built after the second world war and housing upper income families. Most
useful parameters in this separation were the means and standard deviations
in the infrared bands. Of the other parameters only one, the coefficients
of correlation between bands 6 and 7, proved helpful. Its value was
reported as being 0.95 or greater for grassy areas whereas for other land
use areas it was 0.83 or less. By evaluation of these additional parameters
the authors claimed that recognition over all classes was virtually 100%
correct.

SWAIN (1976) also tested a number of auxiliary techniques with less

positive results, for application in land use classification. Prior to



cluster analysis a processor was applied to the Landsat data to group
homogeneous data sets and hold them as such in the clustering procedure.
Parameters allowed for variation of the number of pixels grouped in a block,
the degree of homogenity, and for further groups aggregation. Non-grouped
pixels were treated singularly in the clustering procedure. Use of this
processor improved overall classification from 85.7% to 92.8% in one case
and 80.8% to 92.5% in another case. However only four basic classes were
defined, these being rural, urban, water and forest. Two sets of texture
features were also tested by SWAIN. The first set derived from grey tone
angular spatial relationships, the grey tones being defined by quantifying
the data range into eight equally occurring levels. These included measures
of homogenity, linear dependencies, and randomness over a 15 x 15 pixel sub-
image, and averaged over a number of angular directions. The second set of
texture measures were derived by generating a discrete power spectrum for a
16 x 16 pixel data set. Seven sampling rings were used and the average
power spectrum value in each ring was determined and scaled to a 0 - 255
range. This procedure effectively gave the average power of the spectral
response in seven different frequency ranges. Thus a total of 15 dimensions
could be used in the clustering process (4 spectral, 4 grey tone, and 7
power spectrum). Virtually no improvement in classification occurred using
any of the combinations when compared to the use of spectral data alone.

In the case of the power spectrum texture measures, used in conjunction with
spectral data, overall accuracies were upwards of 15% less accurate. The
grey tone texture features were considered least effective when the number of
boundaries increased and field sizes decreased. This would suggest that
these methods would have least application in urban areas.

An extensive study by CARTER (1977), over selected urban areas in
England, also applied a number of processing algorithms prior to a supervised
clustering procedure. Normalisation was carried out by dividing each
individual intensity value of a pixel by the sum of the intensity values in
all four channels. This procedure was introduced as a first order correction
to reduce varia;ions due to shadowing and atmospheric effects. Ratioing
techniques were also applied. |t was considered that this procedure would
give enhanced output for healthy vegetation using the ratio of Landsat
bands 7 and 5 (infrared and red) but in addition would also reduce signal
fluctuations caused by source noise and atmospheric conditions. A low pass
filtering technique was also applied to the data, consisting of a simple

digital filter which replaced the intensity value of a pixel by a weighted
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average value obtained from the eight surrounding pixels. To improve
separability of clusters that overlapped in the four dimensional Landsat
space, a principal component transformation was applied. This technique
essentially rotates and shifts the axes so that a new set of mutually
orthogonal axes is created with the origin at the mean of the data set

and having the property that the variance is maximised along the first

new axis and decreases along each subsequent axis. Finally a simple
density slicing technique was applied to an infrared band as a means of
separating urban and rural classes.

Results given by CARTER show a 7% increase in the accuracy of
recognition of urban areas using normalised data when compared to
classification using original data, however the accuracy of classifying
rural areas was reduced. Using the principal component transformation
of the normalised data practically all the class separation was evident
on the first principal component axis, thus the dimensionality of the
problem was reduced without loss of classification accuracy.

The reported results of including two ratio channels (Band 7/Band 5
and Band 4/Band 5) with the four original channels reduced the accuracy of
classification of the urban areas by 5% and increased that of the rural
areas by 2%. When the two ratio channels were included with the four
normalised channels results almost identical to that using only the four
normalized channels were obtained. A reduced classification of 75% was
reported for the density slicing tests, while pre-smoothing or low pass
filtering of the data before classification caused a very high
misclassification rate. CARTER reports that urban areas were typically
classified with 80% accuracy compared to the ground truth data, but
guestions in some cases the appropriateness of the ground truth
classifications, which were derived from other sources.

Rectification errors (i.e. between ground data and satellite data)
were considered a further problem affecting classification accuracy.
Residual coordinate errors ranged from 34 metres to 218 metres along scan,
and from 55 metres to 261 metres across scan. The requirement of high
spatial relationship between ground truth and satellite data in urban areas
has also been stressed by FORSTER (1980a). |

FRIEDMAN et al (1979) have also used ratioing techniques and a form
of principal component transformation for a binary classification of land
cover into urban and non-urban classes. They constructed a ratio trans-

formation of Landsat data by dividing Band 5 by Band 7 but suggested, on
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the basis of previous work by FRIEDMAN (1978), that a better ratio would be
Band 5 divided by Band 6. Severe striping in Band 6 prevented their use of
this ratio. Using a histogram of the Band 5/Band 7 ratio the distinction
between urban and non-urban surfaces was reported as not particularly
effective. From examination of the principal component analysis they
determined that the land-water interface was highlighted by the first
transformed axis while urban and non-urban surfaces were more distinguish-
able on the second axis. Because the transformations were used to classify
data, essentially for urban change detection, no absolute measure of
accuracy was given.

Following on work by SWAIN et al (1975), JENSEN (1978) applied
layered classification logic to a primarily urban scene. Basic pattern
recognition essentially used a clustering type algorithm, however the
layered classifier filtered the unknown data points through a sequence of
tests, each of which were dependent on the outcome of previous tests.
JENSEN considered that such a decision tree type approach would define a
more logical classification procedure than a single stage analysis. The

layered classification logic was given as follows for development of urban

classes -

Liquid (water)

Mixture Solid/liquid Orchard
\Solid (Land) —Organic —

———— Scrub and brush rangeland

Scene

\\\M;xture ////,Low density residential

?rganlc( T—High density residential/
norganic \ .

Institutional
Inorganic Commercial complex/barren.

Using conventional classification methods the percentage identification
accuracy for low density residential, high density residential/
institutional and commercial complex/barren were reported as 82%, 94%
and 87% respectively. After application of the layered classification
these improved to 90%, 98% and 90%.

An alternative approach to the inclusion of transformed spectral
data was reported by ELLEFSEN et al (1974). In this study pattern
recognition techniques were applied to a combined multispectral and
multitemporal data set. In a first test application, over the Phoenix

metropolitan area, results using data from October 1972 and May 1973 showed



a marked improvement in rural-urban separation over a single date
classification. The authors reported that unintentionally this procedure
also resulted in the uncovering of a number of sub-classes, for example,
older and newer residential areas, a level of discreteness beyond some
earlier studies. They suggested that Landsat data held promise for such
distinctions as the quality of housing and the nature of open space.

In a recent, extensive study of the Sydney metropolitan area
BAILEY (1979) makes a clear distinction between land use and land cover or
landscape. A number of urban ''landscape' classes were defined, a total of
fourteen in all, which included for example, houses with many trees,
separate houses/small factories, units/factories/terraces/bare earth, short
grass, beaches, inner city/shopping/commercial, among others. She suggests
that it is the ratio between the elements of the urban landscape which
causes groupings, chiefly the ratio of the size of the buildings and/or
other man-made surfaces, and a ratio of vegetation to building and other
man-made surfaces. A total of eight hundred sites were classified.

Careful scrutiny of each of the site classifications showed that 65.5% had
been absolutely correctly classified, a further 18.4% cells were mislocated
due to registration errors, although the landscape classifications were
correct. Thus a total of 83.9% were correctly classified. As the results
of the study were for a larger study to quantify the variations within the
urban micro-climate, which in part are caused by urban landscape, there

was no specific need to define urban land use classes per se.

Another study over the Sydney metropolitan area by FORSTER (1980b)
also attempted to disaggregate urban residential cover classes and include
the effects of atmosphere and sensor point spread function. This latter
effect causes localized scene degradation and has been theoretically
examined by DYE(1975). While being of little consequence in agricultural
areas, single pixel classification in heterogeneous areas can be markedly
affected.

While CARTER (1977) attempted to reduce atmospheric effects by
normalising, very few studies up to date have attempted to quantify these
effects and apply them in an urban situation, a necessary requirement for
signature extension. A number of researchers have however examined the
theoretical problems notably TURNER et al (1971), TURNER et al (1972) and
TURNER (1975). One recent example of the application of atmospheric
corrections to an urban scene is given by KAWATA et al (1978), however only

a qualitative expression of the improvement in pattern recognition and
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image interpretation was reported. Corrected images included the city of
Kanazawa (Japan) and improvements could be seen particularly for small or
thin structures such as rivers and roads.

Since the launching of the first Landsat satellite virtually all
research in urban areas has been directed towards urban land use or land
cover classification, which is in marked contrast to the studies of housing
density, housing quality, poverty areas, demography and other socio-economic
factors, which were so apparent with larger scale aerial photographs. A
number of researchers have however pointed to the potential of Landsat for
image surrogate application. ERB (1974) suggests that a measure of
vegetative cover can be used to determine density and age. TODD et al
(1973) discuss associations between the classified imagery and published
socio-economic data. One association suggested was that between medium
family income and various land use classes. Inner city classification
compared well with the distribution of low income areas, while wooded
suburb classification was essentially correlated with high income areas.
They suggest extension of these concepts to developing countries where
many urban areas have little or no census data.

A more extensive study of the relationship between Landsat data and
socio-economic data was carried out by LANDINI and MCLEOD (1979). Basic
data for the study was twofold. Land use data over the city of Los Angeles
had been derived from Landsat classification. This data was in a form
compatible with the city's land use and population files. The seven
classes of land use were single family residential, multi-family
residential, commercial/industrial, open space, open vacant, other and no
data (cloud). The Landsat data was merged with the estimated population
and housing data.

The Landsat data items were used as independent variables in a
multiple regression analysis to predict each of the socio-economic
variables. On a city wide basis correlations were found to be very low
ranging from multiple correlation coefficients of 0.27 to 0.46. A sub-area
was selected for further analysis, this being the urban/rural fringe,
operationally defined as containing those census tracts with less than
1.56 person per acre, based on the U.S. Census Bureau's definition of urban-
place. The same multiple regression analysis was applied to this reduced
area. The relationship between nine population and housing items and the
Landsat land use data was shown to have considerably improved. Multiple

correlation coefficients ranged from a low of 0.87 for estimated occupied
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multi-family dwelling units to a high of 0.97 for total estimated
population. Single family land use and open vacant use were shown to be
the most significant Landsat data items in predicting total population.
The authors conclude in part, that one of the major difficulties to be
overcome in the use of Landsat data for socio-economic studies is the
development of techniques to increase the number of land use categories.
They suggest that it would be more useful to focus on one particular land
use type, and further "that the discrimination of more categories of
residential land use would hold the greatest benefit, particularly if this
could be expanded to encompass an envirommental quality and housing quality
index" (LANDIN| et al, 1979, 104).

Results given by MORRISON (1978) confirm the difficulties of
population estimation from Landsat data. However good results over Tokyo
have been reported by MURAI (1974) who concludes that Landsat Band 7

correlates with high population density and Band 5 with lower population

density.

1.3 Summary and Overview

It is quite apparent from the historical background that the regional
overview and availability of Landsat imagery has stimulated much research
into urban and regional applications. Many studies, particularly in the
United States, have been completed that show that broad land use classes
can be mapped with better than 80% reliability. However, only limited
success has been reported in breaking the residential general class into
subclasses, and as suggested by LANDINI et al (1979) this is the area where
greatest benefit would derive. Where successes have been reported they
have generally been simple dichotomous divisions, such as newer and older
housing classes and these generally are land cover classes rather than
land use classes. Earlier work with photographic sensors at large scales
indicates, however, that residential areas contain a much broader spect rum
of classes.

Associated with the greater use of Landsat data has been the
increasing application of computerized methods compared with the virtually
exclusive use of visual interpretation methods with large scale photographic
sensors. In developing urban classes from Landsat data, researchers have
relied on the assumption that the area of study is comprised of a number
of unique internally homogeneous classes and that cluster or some other

form of grouped analysis can be used to identify these unique classes via
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ground truth areas. A number of researchers have begun to question this
approach which essentially was developed for the recognition of homogeneous
agricultural land use classes. BILLINGSLEY (1972) referring to geologic
applications suggests that clustering methods "may prove to be of less
value where the data forms a relatively unclustered contimuum."” Many
writers have pointed out the problem of classifying responses which have
derived from a varying mixture of urban surfaces. While a number of
attempts have been made to overcome this problem, in general, a marked
improvement in classification accuracy has not been forthcoming.

Unlike earlier work with large to medium scale photographic sensors
very little progress has been made using Landsat data in image surrogate
applications to socio-economic differentiation of urban areas. A number
of researchers have inferred or shown for selected areas that a relation-
ship between Landsat data and socio-economic variables does exist, a
relationship proved conclusively in pre-Landsat research, for aerial
photographs.

Using data derived from larger scale imagery there was little need
to account for the effects of the atmosphere through which the reflected
energy passed. However for data derived from orbital sensors atmospheric
effects are significant, yet there is very little evidence to suggest that
these effects have been considered important in urban area studies. A
related problem that also causes a degradation of image quality is the
effect of the sensor point spread function. While this effect was
examined by DYE (1975) for the Landsat multispectral scanner sensors, no
evidence exists that it has been accounted for in any urban studies apart
from a recent paper by FORSTER (1980b). The effects of low registration
accuracy between ground truth areas and Landsat data, an insignificant
problem with larger scale photographic sensors or homogeneous agricul tural
areas, would also appear to be a source of classification error.

There appear therefore to be limitations to the current methods
being used to analyse Landsat data over urban areas, leading to a
restriction in its potential to distinguish sub-classes of the residential
class and its application to socio-economic problems. These limitations

are due to a number of interrelated causes:

(i) As the sensor becomes further removed from the scene
the interpreter becomes further removed from the

contextual clues of site and association so essential
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in manual interpretation, with the result that only cover
classes and not use classes can be inferred.

(ii) Urban areas are heterogeneous. In such areas the radiation
received from a single ground element will comprise radiation
from a number of objects or areas which individually may have
distinct spectral signatures. Their additive response may not
be representative of ény one class and a single pixel classification
may be incorrect. Urban residential areas typically exhibit
this problem.

(iii) The point spread function of the sensor integrates the response
from the observed and surrounding pixels. While the recorded
response derives predominantly from the observed pixel it is also
partially derived from the surrounding pixels. Over homogeneous
agricultural areas this is not a problem, except at the interface
of two separate classes, but in urban areas it can significantly
affect the signature from a single cover class if the surrounding
cover is dissimilar.

(iv) Within broad general urban land use classes particularly
residential, a continuum of cover classes exist which cannot
be easily broken into discrete nominal classes. For example,
in one area residential density may be low with few established
large trees, another may have a similar density but mature
vegetation, while a third may be of high density with little or
no vegetation. Between each of these, intermediate examples
occur. Thus the response from these areas is not amenable to
cluster or similar analysis, because either clusters will have
considerable overlap or be extended linear clusters making
it extremely difficult or impossible to determine the
probability of a feature value being part of one or other
classification.

(v) As the altitude of a sensor increase, the effects of the
atmosphere on the energy transmitted from the ground to the
sensor became more pronounced. The radiation reflected by
the surface will be attenuated by the atmosphere as it passes
through it to the sensor and an extraneous component of
scattered radiation will be added to the transmitted component.

This additive component is also dependent on background
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reflectance which is relatively constant from

homogeneous areas but is not so from spatially heterogeneous
areas. In urban areas therefore the degradation

of the recorded response due to atmospheric

effects will be spatially variable increas.ing

the difficulties of classification.

(vi) The low resolution of the Landsat sensors is the
primary or a contributing factor in most of the
above. |f the sensor resolution was greater the
amount of mixing of surface cover in each pixel
would be reduced, contextual clues would be enhanced,
control point selection would be more accurate allowing
for more accurate data registration, and the relative

effect of the point spread function would be reduced.

Based on the preceding comments it is considered that a more
detailed analysis of the effects of mixed cover response in residential

areas and the relationship of cover variables to socio-economic data is a

significant area of research.

1.4 Aims and Description of the Research

The aims of this research were:

(i) To determine the reflectance of various urban
residential cover surfaces using Landsat digital
response data.

(ii) To develop equations to predict the percentage
area of particular urban residential cover surfaces
contributing to the total reflectance of a pixel.
(iii) To determine the relationship between cover
percentages as predicted from Landsat data and
average residential house price as one measure of

urban residential quality.

These aims necessitated the sampling of ground cover and satellite
response from a number of ground truth sites distributed over an urban
area; the city of Sydney, Australia, was chosen for this purpose.
Residential cover was sampled at the pixel level from seventy areas each

containing a block of forty pixels. ‘The equivalent Landsat response was



_25..

also determined for each of these pixels. Details of the data collection
procedures are given in Chapter 5. The three chapters prior to Chapter 5
examine the theoretical basis for the research. Chapter 2 determines the
relationship between satellite response, ground reflectance and ground
cover, accounting for the effects of the atmosphere. Chapter 3 details
the necessary multivariate statistical procedures required to relate the
ground and satellite data sets and Chapter 4 examines various trans-
formations, including band on band ratios, that can be applied to the
satellite derived data to improve the satellite/ground relationship.

In Chapter 6 the coefficients necessary to convert percentage cover
to reflectance are determined and the derived reflectances are compared with
those from other sources. Likely combinations of bands for the prediction
of percentage cover are also examined in Chapter 6. The various ratios
and transformations examined in Chapter 4 are applied to the prediction
of cover percentages in Chapter 7 and these results are then used in
Chapter 8 to examine the relationships between reflectance derived variables

and residential quality. Final conclusions are given in Chapter 9.
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2. REFLECTED RADIANCE FROM MIXED SURFACES

2.1 lIntroduction

In this chapter the mathematical relationship between mixed cover
reflectance and the radiation received at the sensor are examined. A
simple model is developed initially, with the more complex effects of
atmosphere and sensor point spread function being added to it.

An individual Landsat pixel is approximately 57 x 79 metres, that is
about 0.4 ha. Contained within such an area for a typical residential
neighbourhdod are five houses more or less, depending on the housing density,
with associated areas covered by concrete, road, grass, trees etc. The
total radiation at a given wavelength, reflected from such an area, is
dependent upon the amount of each surface cover contained within it, and the
nature of the reflectance of each surface.

in different areas of a city the cover mixture changes due to higher
or lower housing density, smaller or larger houses, wider or narrower roads,
more or less vegetation and presence or absence of concrete driveways and
footpaths, and consequently the reflected radiation also varies. Therefore
when the relationship between reflected radiance and cover mixtures is

determined, statements about the residential physical space can be made.

2.2 Definition of Basic Radiation Quantities

Radiant Energy, Q. The energy carried by electromagnetic radiation.

Unit is the joule, J.
Radiant Flux, ®. The time rate of flow of radiant energy. Unit is the

watt, W.
)
LANT:
Incident Flux, @i. The radiant flux incident on a surface.

Reflected Flux, @r. The radiant flux reflected by a surface.
|rradiance, E. Radiant flux incident upon a surface per unit area of

that surface. Unit is watt per square metre, Wm >

Exitance, M. Radiant flux leaving a surface per unit area of that surface.

Unit is watt per square metre, Wm™ 2
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Radiant Intensity, |. Radiant flux leaving a small source per unit solid

angle in a specified direction. Unit is watt per steradian, Wsr™!

-
dw

Radiance L. The radiant flux per unit solid angle leaving an extended

source in a specified direction per unit projected source area in that

direction. Unit is watt per steradian per square metre, wm=2 sr-!,

d?o B dl
dw(dAcosb) =~ dAcosH

where 6 = angle between the line of sight and the normal to the surface
considered.
2.3 Reflectance

The hemispheral reflectance, Rh’ is defined by the dimensionless
ratio of the reflected exitance, M, of a surface to the irradiance, E, on

that surface i.e.

mjx

Rh =

As E and M both have units of Wm™2, Rh is therefore a dimensionless quantity.
Typically, reflectance varies with wavelength for a particular surface
material to produce a characteristic spectral signature. For example, see
figure 2.1 for typical earth surfaces (ENTRES, 1974, 43).

The surface of the earth can be considered either smooth or rough.
If it is smooth specular reflection is said to occur, if it is rough then
scattered or diffuse reflection occurs. Surface roughness is a function of
the wavelength of the incident electromagnetic radiation. Rayleigh's

criterion of surface roughness is given as

A
h 8cosb
where h = variations above a plane, in wavelengths.
A = wavelength

incident angle

When the wavelength of the incident electromagnetic radiation is smaller
than the height variations on the surface, the surface is a diffuse
reflector and reflects energy in accordance with Lambert's cosine law of

radiation. This states that the intensity of the reflected electromagnetic
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radiation is directly proportional to the intensity of radiation incident
on the surface, times the cosine of the angle of incidence. In addition
the reflected radiation is unpolarized, phase incoherent and its amplitude
fluctuates in a random manner. When the wavelength is greater than the
height variations of the surface, the surface is a specular refiector and
reflects in accordance with Snell's Law. Here the angle of the incident
plane electromagnetic wave equals the angle of the reflected wave. The
radiation reflected is phase coherent, polarized and the amplitude
fluctuations are small (AM. SOC. of PHOTO., 1975, 80-81).

A mirror is a typical example of a specular reflector and matte
white paper that of a diffuse reflector. A surface is usually neither
completely smooth or rough and reflection between these two extremes can
occur, for example see figure 2.2,

For a Lambertian surface the radiance measured by a sensor will be
constant for any angle of reflectance 6, to the surface normal. Radiance
depends upon the projected area viewed and for a constant solid viewing
angle, the surface area is the projected area divided by cos 6.

However from Lambert's cosine law of radiation, reflected intensity varies
directly as cos 6, therefore the signal at any viewing angle is constant.

Consider an elemental Lambertian surface dA (see figure 2.3) irradiated

by E Wm™?. The radiant flux reflected from dA in any direction 6 to the
surface normal is given by
d@r = L cos 6 dA dw

Because the elementary solid angle subtended by the area dA is given by

2mr sin 0 (r do)

r2

do =

then the total radiant flux in watts reflected into the hemisphere is

therefore ™
2

do_ 2m J L dA cos B.sin 6 dO (2.1)

o

L dA

The radiant flux incident at the surface is given by

d@i = E dA
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Radiance=L

FIGURE 2.3: Geometry of hemispherical interception of radiant flux
from alLambertian surface dA of radiance L.
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The ratio of the total reflected radiant flux to the radiant flux incident

at the surface, defines the diffuse reflectance of the surface, therefore

- = R = IT.L_ (2.2)

Wavelength dependence is indicated mathematically by
TTL>\

W

This is an important relationship because if irradiance can be
determined and radiance measured by the sensor, then reflectance can be
simply calculated for a diffusely reflecting surface.

If a surface is not a perfect diffuse reflector then the radiance
will vary with angle of view and will be greatest in the direction of the
specular reflectance component. Assuming the total radiant energy
reflected into the hemisphere is the same as for a comparable diffuse
surface, then the radiance in any other direction, significantly different
to the specular -direction will be less than that calculated given
Lambertian conditions. Thus the calculated hemispherical reflectance
based on this radiance value will be less than the true hemispherical
reflectance. For surfaces typically found in residential areas how much
specular component exists and how will this affect the calculated
hemispherical reflectance? It is generally considered that "....
reflectances of natural surfaces at high solar - elevation angles .....
approximate those of diffuse reflectors.” (AM. SOC. of PHOTO., 1975, 90).
Very little data for both the visible and infrared portions of the spectrum
exists, however the reflectance at various receiving angles for a number
of surfaces in the visible portion of the spectrum have been tabulated
(AM. SOC. of PHOTO., 1975, 254-255). Values for selected surfaces are
given in Table 2.1. These surfaces were considered likely to occur in
residential areas.

For a nadir viewing sensor the radiance measured is proportional to
the reflectance in that direction. For aged white concrete, for example,
this is 26.6% from Table 2.1.

For constant irradiance E

R, E

6
Le = p

where the subscript 6 indicates directional dependence. From equation
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(2.1), approximating and substituting for Le

m

2
A® = 2 E L R, cos OB.sin 6 AD AA
h o 0

This equation was used to calculate an approximate value of total
radiance reflected into the hemisphere. An approximate value of hemi-
spherical reflectance Rh was then calculated from

R = _.E.?b__

h EdA

As the calculated value of cos O.sin O AO is constant for constant

B, for any azimuth from the nadir, and assuming R900 = R27O°’ then an

average value of Re was calculated from

Rgo + 2Rg00 * Ryggo

Re = l{

When only ROo and R180° are given Re was taken as the mean. The value of
AB used in the calculations was 0.2619C (150 in radians). Reflectance
values for 80° and 85° nadir view were not used in the calculations.
Grass, dry, was averaged over four azimuths.

Calculated values of Rh are compared with Roo in Table 2.2.
Neglecting atmospheric effects, Roo would be the calculated value determined
from the radiance measured at a nadir sensor.

In all cases nadir reflectance was less than hemispherical reflect-
ance although only by a few percentage points and manmade surfaces were not
markedly different in this regard when compared to natural surfaces. One
exception must however be metal surfaces (no data available) which from
observation reflects with a large specular component. This type of surface
can be considered to have a similar reflectance distribution as water in

Table 2.1. A number of further comments can be made.

(1) For infrared radiation, which has a longer wavelength
than visible light, there is an increased probability
that the specular component would increase, based on
Rayleigh's criterion of roughness.

(2) At high solar elevations, for either visible or
infrared radiation, surfaces more closely
approximate diffuse reflectors, again based on

Rayleigh's criterion.
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TABLE 2.2: Comparison of hemispherical and

nadir reflectance of urban type

surfaces.

Surface Hemispherical

Description Reflectance (%) Nadir (%)

1. Asphalt, oily with 8.6 6.1
dust film blown onto
oil.

2. '"White'" concrete, aged. 30.0 26.6

3. Calm water, infinite k.2 2.2
optical depth.

4, Grass, lush green, 11.7 10.0
closely mowed thick lawn.

5. Macadam, washed off and 12.9 11.3
scrubbed.

6. Dirt, hard packed, 28.0 24.3
vellowish.

7. Mixed green forest, 5.4 3.6
deciduous (oak) and
evergreen (pine).

8. Grass, dry meadow, 12.0 9.6

dense, midsummer.

Reflectance at
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(3) tn urban areas, manmade surfaces are generally
weathered which should reduce the specular reflectance
component.

(4) For a constant solar elevation angle, the measured
radiance and calculated reflectance should also be
constant for the same surface material, albeit a lower
value than hemispherical reflectance, within the

imaged scene.

It was considered that no evidence substantially precluded adopting
the Lambertian assumption for all urban materials. In view of the advant-
ages to be gained by the use of this simplified assumption, reflectance of
a particular surface material was assumed to depend only on wavelength.

In all further sections the symbol R is used for hemispherical reflectance,

unless specifically stated.

2.4 Reflectance from Heterogeneous Surfaces

If within one pixel, response is derived from a number of surface
types, then each can be considered as the source of separate wave fronts.
Suppose two such waves are incident upon a detector so that the total
radiant flux, ®, received due to these waves can be measured. If the
time variation of amplitude of one wave can be expressed by the function
f,(t) and the other by f,(t) then the radiant flux delivered by the first

will be,
- 2
o (t) = KFf, (t)
and by the second,

o, (t) = Kf£,2(t)

where K is a constant.
Because of the quantitised nature of electromagnetic energy it is necessary

to average the radiant flux delivered over a period of time, T, to obtain

a reading, therefore

- F 2(+)
®1 = K Fl (t)

and
o, = K fzz(t)
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The combined wave at the detector has an amplitude of fl(t) + fz(t).

Therefore the radiant flux delivered is,

]

o(t) = K [F () + £ (1

L]

K [F 2(e) + 2f () f (0) + f,2 (0],

with an average flux after time T of

¢ total = K [ f Z(c) +2f (¢v) f,(t) + f,7(t) ]

which is equivalent to

¢ total = K f 7(t) + Kf,>(t) + 2Kf (£)f (¢)
therefore
d total = & + &, + 2kKf (t)f (t) (2.3)
1 2 1 2

wWhen the two waves are incoherent their amplitudes are randomly
related and the final term in equation (2.3) is insignificantly small or
zero, so that the radiant flux of the combined wave equals the sum of the
radiant flux of the two separate waves. Alternatively if the two waves
are coherent and a regular or systematic relationship exists between the
two amplitudes, then the received radiant flux may be greater or less than
the sum of the individual radiant flux separately incident on the detector.
As diffusely reflected solar radiation is incoherent then the measured
radiant flux received is the simple sum. This conclusion also applies to
more than two surface types contributing to the total radiant flux received
at the detector.

Consider a heterogeneous surface of area A in the instantaneous
field of view of a sensor, comprised of n different surfaces each of area
AA

reflecting surfaces the radiant flux reflected into an infinitely large

i i =1 ton, with an incident radiant flux density, E. For diffusely

hemisphere by each individual surface is given by
A@i = T Li A Ai

The total radiant flux is therefore
i=n
o] = mw,I. L. AA,
i=1"1 i
and the diffuse reflectance of the total surface, R, is given by
Tz Li A Ai
EA
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R.E
But L. = —— from (2.2)
i T
therefore
Z R, AA,
R = — ! (2.4%)

A

In addition, L, the total radiance from the surface is
EX Ri A Ai

— (2.5)

L =

Therefore the contribution of individual surface reflectance to the hemi-
spherical reflectance and the contribution of measured radiance to the total
radiance at a detector is directly proportional to the percentage of area
covered by each surface.

In a recent field study by MILTON (1978) the mixed reflectance of
two surface types was analysed. The first surface, A, had an incomplete
grass cover and significant amounts of bare surface were visible when viewed
vertically. The second surface, B, had a complete vegetative cover, but the
data was collected as the growing season was ending and a significant
proportion of the vegetation was brown and dry.

When measured reflectance was plotted against sampled percentage
green cover, there was an initial decline followed by a levelling off for
surface A, as percentage grass increased. This was apparent for all Landsat
equivalent spectral ranges, suggesting a non-linear response with respect
to percentage area. Surface B however, gave results that closely approx-
imated those expected from a simple, linear response. MILTON (1978)
explained the non-linear effect as being partly due to the initial masking
of a highly reflective background by a low reflecting green vegetation and
partly to the effect of increasing amounts of low reflecting shadow falling
on the exposed surface. With surface B the influence of shadows was largely
removed due to the almost complete cover, and so the total reflectance was
due to only two surface types. It is suggested that had MILTON measured
the percentage cover of a third surface, 'shadow', results would have
conformed to a simple proportions model. Laboratory results given by
TUCKER (1977), for a mixture of dead and live grass, also support the theory.

2.5 Atmospheric Effects

2.5.1 lintroduction
Up to this point the effects of the atmosphere between scene and

detector have not been considered. With the advent of satellite remote



_39_

sensing systems the atmospheric contribution to the measured ground
response has come under increasing examination (SABATINI et al, 1970,
TURNER et al, 1971, TURNER et al, 1972, SHARMA, 1972, TURNER, 1975,
DANA, 1975, HERZ0OG et al, 1975, KAWATA et al, 1978).

It is only recently that computer programs have been developed that
adequately deal with realistic vertical distribution profiles for molecular
and particulate constituents in the framework of CHANDRASEKHAR's (1960)
radiative transfer theory. One such physical model has been developed by
TURNER et al (1972). Quantifying the contribution of background surface
reflectance (albedo) in increasing path radiance was an important result of
this study. This arises from the scattering of radiation emanating from
areas outside the instantaneous field of view of the sensor and was first
noted by NALEPKA et al (1971) for the case of multispectral remote sensing
by aircraft over agricultural areas. With the diversity of surfaces found
in urban and closely adjoining areas the effect of a spatially varying
albedo and its varying contribution to path radiance are clearly of
importance if subtle changes are to be observed.

The apparent radiance of ground materials, as measured by a remote
sensor, differs from the intrinsic surface radiance because of the presence
of the intervening atmosphere. The surface characteristics and the
atmospheric conditions will determine, in general, the radiance measured at
a given solar position.

The atmosphere affects the visible and near infrared remote sensor
signals in a number of ways. Firstly it modifies the spectral and spatial
distribution of the radiation incident on the surfaces being observed. In
addition the radiation reflected by the surface is attenuated by the
atmosphere as it passes through it to the sensor and an extraneous component
of scattered radiation called path radiance is added to the transmitted
component.

The characteristics of the surface determine the specular or diffuse
nature of the surface reflectance and the amount of incident global
irradiance that is reflected by the surface. The surface characteristics
also modify the amount of sky irradiance which augments the incident
global irradiance and the amount of upwelling path radiance adding to the
intrinsic surface radiance.

The two dimensional model of figure 2.4 schematically shows the
parameters and interactions which ultimately determine the radiance

reaching a satellite sensor, where Eek = spectral solar irradiance at the
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FIGURE 2.4:

Parameters and interactions which determine the
radiance reaching a satellite sensor.
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top of the atmosphere, Wm™2 um~!,

Eo = splar irradiance at the top of the atmosphere, Wm=2,

EDA = spectral diffuse sky irradiance, Wn™2 um~ ',

ED = diffuse sky irradiance, Wm™2.

EGA = sgpectral global irradiance incident on the surface, Wm~ 2 um=t.
EG = global irradiance incident on the surface, wm~2,

T = normal atmospheric optical thickness.

Te = atmospheric transmittance at an angle O to the zenith,

60 = solar zenith angle.

ev = nadir view angle of the satellite sensor (or scan angle).

U = cos 8.

R = average target reflectance.

Ri = reflectance of an individual component of the target.

RB = average background reflectance.

Ls = total radiance at the sensor, Wm™? sr-?.

Lg = total radiance received by the sensor, Wm™2 sr™t,

LI = intrinsic radiance of the target, Wm™2 sr~!.

LP = path radiance resulting from multiple scattering, Wm™ 2 srl.
K = radiance per bit of sensor count rate.

C = sensor count rate.

In a given spectral interval the solar irradiance reaching the

earth's surface is
A

E = T (Ee)\ Teo cos eo + ED}\)CD\ [Wm™2] (2.6)

A

A fraction of the irradiance is reflected by the surface in the direction
of the satellite sensor. For a Lambertian surface the ratio of the radiation
reflected in the direction of the satellite sensor to the total radiation
reflected into the whole upper hemisphere, above the reflecting surface,
is given by (T)~'from (2.2). Thus the reflected radiance at the sensor
from the surface alone is
A2

T %— J R To, (Eo, Tg, cos O + Ep,) di [Wm™®sr™'] (2.7)

A

L =

1

and the total radiance at the sensor can be expressed as

L = (L. +L.) = CK [wmn™2 sr™!] (2.8)

S T p
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(strictly speaking Li = CK, but this is considered further in section 2.6).
Of the variables determining the radiance received by the
sensor, only R is associated with the target itself. Hence in order to
quantitatively evaluate reflectance, the atmospheric transmittance, the
path radiance, the absolute amount of radiance at the satellite and the
global irradiance incident on the surface must be known.
In practice the integration indicated in the equations is replaced
by summation of finite differences, and the wavelength dependences of the
parameters in the equations are replaced by mean values averaged over the

spectral interval of the particular sensor. Therefore from (2.6) and (2.7)

- -2
Eq (EOA Tg, cos 8 + EDA) Ax [wm™?]

and
R To, (EOA Tp, cos O+ Epy) X

= —2_ -1
L - [Wm™%sr™*]

which reduce to

EG = Eo Teo cos 60 + ED (2.9)
- and
) R Tev (EO Teo cos 60 + ED)
LT = - (2.10)

when EO and ED are calculated over the narrow band wavelength interval.

2.5.2 Transmittance
The atmospheric transmittance TS’ can be given as

-T 6
Te = e sec

where T = normal atmospheric optical thickness and 6 can represent 80 or
ev.‘ The normal optical thickness equals the sum of all the attenuating
constituents. The optical thickness is made up of components due to
molecular (Rayleigh) scattering by the permanent gases, T » aerosol (Mie)
scattering due to particulates, Tp, and selective absorption, T, all of

which are wavelength dependent, hence

T()) T +71T + 7T
m p a

where T = Tyt Toa ¥ Toz3 t Teo
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Molecular scattering attenuation has a 1/A” dependence. Aerosol
scattering is also wavelength dependent however the relationship is not
constant and depends on the size and vertical distribution of particulates.
ANGSTROM (1961) suggests a '/A'*? dependence and this is supported by
ROBINSON (1966) for continental regions. Generally aerosol scattering occurs
within the first few kilometres of the earth's surface. Absorption
attenuation by atmospheric constituents such as water, oxygen, ozone and
carbon dioxide is highly wavelength dependent. Except for a narrow oxygen
absorption band at 0.76 um the spectral range 0.5 to 1.0 um is dominated by

water and ozone absorption attenuation.
2.5.3 Path Radiance

The detector above the atmosphere measures the upward radiance in
the direction of its line of sight. Since the nadir scan angle of the
Landsat satellite is small only the upward normal radiance is usually con-
sidered. As a further consequence of this the angle between the solar
azimuth angle and the nadir scan azimuth angle need not be considered.

When the sensor ''sees' a target against a background surface the

following three types of radiant energy reach the detector -

(i) radiant energy reflected by the target and then directly
transmitted by the atmosphere,
(ii) radiant energy scattered diffusely by the atmosphere,
after having interacted with the background, and

(iii) radiant energy scattered diffusely by the atmosphere.

It is the radiant energy (i) which carries the direct information
on the target, and the combined effect of (ii) and (iii) is the path
radiance.

The details of radiative transfer theory, developed over the past
70 years, are much too involved to be presented here. Usually the major
difficulties of solving the equation of radiative transfer involves
essentially two functions, the single scattering albedo, which simply
indicates the amount of scattering that takes place, and equals unity if
no absorption attentuation occurs, and the single scattering phase function
which denotes the fraction of radiation which is scattered from its initial
forward direction to some other direction. For Rayleigh scattering the
phase function is a simple dipole-like distribution, but for scattering. by

aerosol particles the energy is usually distributed heavily in the forward
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direction, that is, it is highly anisotropic. |If there is very little
haze present the scattering approximates Rayleigh scattering and 50% of
the total scattered radiation is in the forward direction. However for
heavy haze 95% of total scattered radiation is in the forward direction
(TURNER et al 1972, 898-899).

At a wavelength of 0.55 Um a haze free atmosphere scatters approx-
imately 10% of incident radiation, but for a reduced visual range the
scattered radiation is a greater proportion of incident radiation. Thus
forward scattering is dominated by aerosol scattering, and back scattering
is mainly due to Rayleigh scattering.

TURNER et al (1972) have derived a number of correction algorithms
for determining path radiance in various atmospheres, and for varying solar

elevation and background reflectance. For a nadir view angle these are of

the form
L
EE = Flug,7) + 6(u_,7 ) H(T ,R)) (2.12)
where
1
F(UO’TO) = lnr[uo_'_(]_n),ro] (]'n) (TO_]) [P (UO)+P ('Uo)]
+ uOP(-uo) + (1-?) {P(uo)+P(-UO)J e "o
- uP(-u) e'o
G(u ,T ) = o 1+ 4(1-n) - [1+4(1-n) (T +1)]e ‘o
Horle! 7 anho+11-n)TéTf + N + AT, €
_ Rg
H(Rg» T,) T+2(1-n) (1-RgI T_
T = T + 1T
o m p
; ) 0.5 Tm + 0.95 Tp

T
(o]
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RB = average background reflectance.

uo = COS 60.

P(po) = single scattering phase function at 60.

P(-uo) = single scattering phase function at (180° - 60).

These equations do not account for the absorption effects of water and
ozone. These effects are approximately accounted for by substituting
Eoe —(T03 * THZO) for EO, since the scattering and absorbing processes
can be treated as independent events (TURNER et al, 1972, 896) .

The single scattering phase function, P(Uo), is the combined effect
of scattering by aerosol particles and Rayleigh scattering. Letting
Pp(uo) and Pm(uo) be the phase functions for aerosol and Rayleigh scatter-
ing respectively and assuming Rayleigh scattering occurs first then

P(uo) can be approximately given by

P_) (17 m4p_ (1) (e M-e"0)

P(n) = ~
o) e To
where
b b
d _ do _
f Pm (]Jo) I - [ PP(UO) I 1
o o

The value of Pm(uo) can be determined from

Pm(uo) = %‘(1 + coszeo)

derived first by Rayleigh and Pp(uo) can be determined from figure 2.5

(after TURNER et al, 1971) for Deirmendjian's continental type aerosol.

As the aerosol scattering phase function changes only a small amount

with wavelength, the function for A = 0.7 um was used for all wavelengths.
The average background reflectance, ﬁé,is usually obtained by

collecting ground truth information for the region considered and weighting

the reflectance according to their respective areas (TURNER et al 1972).

TURNER (1975) considers that a 3km square grid surrounding a central

target pixel will contribute 90% of the path radiance due to background

reflectance.
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Strictly speaking the contribution to path radiance of a pixel of
reflectance R, a distance r from the target, is reduced as r increases.
Radiation which originates outside the field of view is attenuated as it
propogates to a scattering point on the nadir line of the sensor. It is
scattered toward the sensor in accordance with the characteristics of the
single scattering phase function and is then further attenuated by the
atmosphere along the path to the sensor. The radiance which results from
an integration over all pixels and all scattering points along the path,
target to sensor, is the path radiance due to background reflectance. Such

a calculation has been carried out by TURNER (1975) for simulated data and

KAWATA et al (1978) for actual data.

2.5.4 Global Irradiance

The attenuated solar irradiance reaching the earth's surface is
augmented by downwelling sky irradiance. This results from similar
scattering effects that give rise to path radiance. The total down-

welling normalized irradiance can be written as (TURNER et al 1972)

E

G _ —
1 ligrTy) (MR 7))
where
2
u
I(u_,T) = 2
o’ o u0+21-niro‘
J(TO) = 2(1-n)To

and n and H are as for path radiance. When haze increases or visual range
decreases the relative contribution of the direct solar irradiance is
reduced. This reduced contribution also occurs as the background reflect-
ance increases and the solar zenith angle increases.

As for path radiance, these equations do not account for the
absorption effects of water and ozone. Thus the contribution of down-

welling sky irradiance to global irradiance can be given by

- = (TH20*T03) o _
Ep = Ege 07037y (u,t ) (149 (t JH (R, 1 ) 1-E T cosb (2.13)
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2.5.5 Target Reflectance

From (2.9) and (2.10)

RTev(E0 Teocoseo+ED)

m

m

R Tev EG

and LT + LP = CK from (2.8) therefore

T (CK-L )
R = ___T___R_
EG ev
But
X Ri
R = ry from (2.4)
therefore
ZRi AAi T (CK-L )
- P

A

\

From Appendix 1 this equation was solved for each band giving

Z R, AA,
i i

( )

Where R, and R
i B

]

0.634 c, (1-0.00105 Rp,)-6.5-0.236Rp,,
0.578 ¢, (1-0.00072 ﬁgS)-h.h-o.195§55
0.604 C, (1-0.00050 Rpy)-2.6-0.151Rg,

0.769 €, (1-0.00026 Rz,)-1.2-0.109Rp,

are given as percentages.

(2.14)

(2.15)
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Differentiating average target reflectance, R, with respect to
average background reflectance, Rg, and assuming a high value for C of
100, it can be seen that the accuracy of determination of‘ﬁé is sub-
stantially less than that required for R. |In the worst case of band 4
an error in th of * 10% would only cause an error of £ 3% in Rh' The
effect in the other bands would be smaller, for example, a similar error
of £10% in Eb7 would cause an error of #1.3% in R7. In most urban scenes
C is considerably less than 100 and so the difference in the accuracy

requi rements of background and target reflectance are further accentuated.

2.6 Sensor Point Spread Function

An individual Landsat pixel is a radiometric measurement arising
from a two dimensional, spatially extended region of the field of view.
The contribution from each portion of the region is proportional to the
product of the point spread function (psf) and the radiance, and the psf
is continuously shifted relative to the scene by the scanning process
using both mirror and spacecraft motion (DYE, 1975). The continuous
video signal prior to sampling is the result of a convolution of the psf
with the scene, and after sampling is the result of a discrete convolution.

Convolution can be described (JENNISON, 1961, 6) as "the operation
whereby a structure under observation is smeared or spread out by the
response or resolution of an instrument or mathematical operation.” In
the case of Lansat imagery the "structure'' is the radiance profile of the
ground scene, and the ”instru&ent“ the onboard multispectral scanner.

The formula for the convolution of an object and a two dimensional

point spread function is

400 400

Kix,y) = | f(x-z, y-w)g(z,w)dzdw

-0 =00

where K(x,y) is the ordinate at point x, y after convolution and f and

g are the two functions to be convolved. Thus the convolution can extend
beyond the bounds of one function taken singly due to the product of the
overlap in the first function. Each elemental area dz dw of the function
g must be multiplied by the relevant value of f, i.e. f(x-z, y-w), and
the total effects then added. By the law of conservation of energy the

influence of each element is proportional to its volume, where 'volume'
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is the product of radiance and area. That is, the volume of each element
after spreading must equal the volume of the element before spreading.

To obtain the correct relative influence of each element the evaluated
ordinate of the psf is multiplied by the volume of the element

(TRINDER, 1970, 40-41).

The Landsat psf is determined by the blur circle and detector size
in the across-scan direction, and the effect of a bandpass filter is added
in the along-scan direction (DYE, 1975). The two dimensional psf's are
shown in figure 2.6 after DYE and have as their product the joint two
dimensional psf of the Landsat multispectral scanner.

I f the radiance distribution of the scene, including atmospheric
effects, can be described by Ls (x-z, y-w), where x is the along scan
direction and y the across scan direction, then the total radiance

received by the sensor is

+ 00 40

L = L (x-z,y-w) G(z,w) dz dw
s s
(x,y)

-00 =00

3

where G(z,w) is the two dimensional Landsat psf and L: is the total
radiance received by the sensor.
Dividing a Landsat pixel into a 3 x 3 segment array, and limiting

the convolution effects to a 3 x 3 pixel array, as ‘an appfroximation to the

psf, L; can be given by (from Appendix 1)

ate

L, = 0.03 Ls(x_1’y_1)+0.07 Ls(x,y~1)+o'02 LS(X+1,y-])
+ 0.‘]8 Ls(x_1’y)+0."'5 LS(X,y)+O.13 LS(X+‘]

y+1) y+1)+°'02 LS(x+1,y+1) (2.16)
The family of curves represented by (2.16) were solved for L, of the central
pixel in terms of L; values, assuming adjoining pixel values were equal to their
nearest neighbour in the array and pixel values outside this modified 4 x 4
array were zero, to gLve (from Appendix 1) .

Ls(x,y) = 0.09 Ls(x-1,y-1)—0'35 Ls(x’y_1)+0.07 LS(X+1,y-1)

ate
«

- 0.78 Li(x ,)t2-76 L

_1: ’Y)

* 009 bs e g,y-1) 7035 Ls (,ya) PO Bs (rtyet) (217)
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FIGURE 2.6: Landsat point spread function (after DYE, 1975).
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Because L; is directly porportional to C, the sensor count rate, then the

value of C that would have been measured had convolution not occurred, Ca,
can be given by

= 0.09 C + 2.76 C(X y) +...0.07C

(x+1,y+l)
(2.18)

“a(x,y) (x=1,y-1)" =0

Alternatively C can be given as a function of reflectance values by
(x,y)

substituting

1 EG Tev X Ri AAi L
K m A
for Lg in (2.16) and C for Lz. The atmospheric effects are essentially

the same for adjoining pixels and so

E. Tp L R, AA.y

G \Y i i
C ==Y |o. R — +...
(x,y) = K 03 ( A

(x-],y-l)

T R, MA,
+0.02 | ——1 (2.19)

A
(x+1,y+|)J

All equations (2.15) to (2.19) are wavelength dependent.

2.7 Summary

The various factors affeciing reflected radiance from mixed
surfaces can now be brought together. The count values of equations (2.15)
do not allow for the effects of psf convolution given in equations (2.18).
This can be achieved by substituting band dependent values of Cah, Cas, Ca6’
and Ca7 for Ch’ C5, C6 and C7 in (2.15).

As Ca for each band can be calculated from the measured count values
at the sensor and assuming a satisfactory value for ﬁé can be determined,
then four linear equations of the form

(z R, A.) =8B m=4 to 7 (2.20)

- m
can be derived for each pixel, where Ai is the percentage area of a
particular surface and B is the solution of the right hand side of (2.15)

with C5 substituted for C, and the whole multiplied by 100.
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From (2.19) and letting W (ZRi Ai) equal the weighted sum of the

reflectance from the 3 x 3 pixel array and

( c b 100 KT
(x,y) K Eg TO,

o
[

which can be solved using (2.15), then a further set of four linear

equations can be given
W (2 R, A) = D m= h to 7 (2.21)
'
The essential difference between (2.20) and (2.21) is that for
(2.20) the actual reflectance of the central pixel is related to the
deconvolved sensor count of that pixel, whereas for (2.21) the measured
sensor count is related to the weighted reflectance of the central and

surrounding pixels. It is from these pixels that the convolved response

originated.
Both (2.20) and (2.21) are equivalent in form to

y = a+t blx1 + box, + ... # bkxk
The theoretical background for the solution of this type of

equation for the coefficients a to bk when x and y have many sampled

values is considered in Chapter 3.
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3. MULTIPLE REGRESSION ANALYSIS FOR THE PREDICTION OF REFLECTANCE AND
COVER PERCENTAGES

3.1 Introduction

Both of the models developed in Chapter 2 (2.20) and (2.21) are of
a basic linear form relating a function of band response to cover percent-
age variables. Linear equations of this form are suitable for analysis
by multiple linear regression techniques. This is a general statistical
technique through which the relationship between a dependent or criterion
variable and a set of independent or predictor variables can be analysed.
The regression strategy involves the selection of equation coefficients in
such a way that the sum of the squared residuals is smaller than any
possible alternative values.

This method has been used in a number of other remote sensing
applications where the energy response from a surface has been related to
various attributes of that surface. Studies relating various water quality
parameters to sensor response or between - band response ratios have been
reported (WHITLOCK, 1977, JOHNSON, 1975 and 1978, ROGERS et al, 1975,
RITCHIE et al, 1974, SCARPACE et al, 1979, KHORRAM , 1979). In general
these studies treated sensor response or response ratios as the independ-
ent variables to predict water quality as the dependent variable. Other
researchers have used regression analysis in vegetation and soil studies
to predict, for example, tree stress,green biomass, soil salinity or soil
moisture content (RICHARDSON et al, 1977, TUCKER et al, 1977, THOMAS et
al, 1977, TUCKER, 1978, PETERSON et al, 1979, LILLESAND et al, 1979).

In the present study multiple linear regression techniques were
used to estimate reflectance values for various urban surface types and
to predict the percentage cover of individual surfaces within a picture
element. This chapter briefly reviews the method, the data requirements

and the various measures of precision.

3.2 Multiple Linear Regression

3.2.1 Basic Theory

Consider the following linear equation
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For a multiple regression analysis the task is to estimate the a
and bi coefficients. Because of observation error and a limited number
of sample pairs drawn from a larger population, a precise estimate of the
coefficients is usually not possible. A stochastic disturbance must be
introduced and hence the problem of estimating the coefficients is a
statistical and not merely a mathematical problem. In this case the
multiple regression equation is represented by

i=k
y' = a+ _Z bixi
i=1
where y' is the estimated value of the dependent variable. The difference
between the actual and the estimated value of y for each case is termed
the residual, i.e. the error in prediction, which may be interpreted as
resulting from the effect of unspecified independent variables and/or a
fotally random element. The y intercept is given by a, and bi’ i=1 to k,
are the partial regression coefficients.

I f there are n sample pairs the sum of the squares of the residuals
(SS) is given by

SS = ; (y. -y.')2

i=t
The a and bi coefficients are selected in such a way that the sum
of the squared residuals is minimized. The least squares criterion implies
that any other values for a and bi would yield a larger Z(yi - y;)z.
Selection of the optimum a and bi coefficients using the least squares
criterion also implies that the correlation between the actual y values
and the y' estimated values is maximized while the correlation between the
independent variables and the residual values (yi - y;) is reduced to zero.

The actual calculation of a and bi requiges a set of simultaneous
equations derived by differentiating Z(yi - y;) and equating the partial

derivatives to zero. This can be shown in matrix form as

B = (X'X) “x'Y, from the normal equations X'XB = X'Y



where

and

o _ V. -
b1 Y,
b2 :

B = . Y =
L X1 X1 xkl
1 X1 .

X = )

1 X X . . X
L n 2n kn ]
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Thus values for the a and bi coefficients can be estimated using matrix

transpose, multiplication, and inversion procedures.

The partial regression coefficients, bi’ have specific meanings,

for example b1 represents the expected change in y with a change of one

unit

in X, when X, through x, are held constant. Equally important is

k

that the combined effects are additive. For a one unit change on each of

two variables, x

3.2.2

, and x_, the expected change in y would be (b1 + bz).

Data Assumptions

To obtain the best unbiased estimates of the coefficients at least

six assumptions should be satisfied.

(i) Errorless Observations.

Each value of X; and y is observed without error. This is a

very difficult assumption to satisfy. However the bias introduced
into the model is small provided that the residual error or
variance is small. For most purpose it is frequently assumed

that measurement error is much less significant than errors
resulting from incorrect equation specification, so the former

is generally ignored (MALINVAND, 1966, 362).
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(ii) Variable Linearity.

The relationship between y and each of the independent
variables x, are linear in the parameters of the specific
functional form chosen. If it is assumed that the linearity
assumption is not satisfied in a particular instance the
input data are generally transformed to yield new data which
satisfy this assumption more closely. Ordinary linear
regression can then be applied to these transformed data.
(iii) Zero Residual Mean.

The distribution of (y-y') has a mean of zero. This means that
positive and negative variations are equally likely to occur
around the regression line. It implies that no important
explanatory variable has been omitted in the specification

of the regression model and that the chosen x's represent the
major control on the variability of y  (MATHER, 1976, 43).
The bias introduced into the model when this assumption is
not satisfied is small, provided that the residual variance
is small (MALINVAND, 258-260).

(iv) Residual Homocedasticity.

The variance of the residuals is constant and independent

of X . This condition is called homocedasticity, and

assumes that the dispersion of the residual terms around
their zero mean is of the same order irrespective of the size
of X | f the variance is not constant, but independent

of X the estimates of the regression coefficients are still
unbiased. However, if the variance is not constant and is
also correlated with X, then the estimates of the coefficients
are seriously biased. For both cases the usual methods of
statistical inference are invalid (Ibid, 254-257).

(v) Serially Independent Residuals

The residual values are serially independent. |If this
assumpfion is not satisfied autocorrelation is said to be
present and either the form of the model is incorrect, one

or more relevant variables have been omitted or the residuals
are truly autocorrelated. The presence of autocorrelation

in one dimensional data, such as the values corresponding

to a time series, may be tested by the Durbin - Watson d

statistic. Testing for autocorrelation in the case of two
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dimensional spatial data is more difficult. The effects of
autocorrelated residuals on the least squares estimate are
the same whether the pattern is one or two dimensional.

The estimates of bi will not be efficient, that is will not
have minimum variance, and the variance will be biased,
resulting in confidence intervals that are too narrow and
giving incorrect values for significance tests. Even if the
residuals are autocorrelated, the estimates of bi will still
be unbiased and consistent, although it is likely that their
numerical values for a given sample will be incorrect

(MATHER, 84).

(vi) Uncorrelated Independent Variables.

The independent variables x, are linearly independent of each
other. |If this assumption is not satisfied and the independent
variables are correlated, the individual coefficients for each
variable are not identifiable. The imprecision in the estimates
of the regression coefficients is generally revealed by the
occurrence of high standard errors. This assumption becomes
particularly critical when it is desired to obtain explanation
in contrast to prediction from the independent variables.

If the independent variables are generally correlated then

", this makes 1t difficult if not impossible to untangle

the variance accounted for in the dependent variable and to
attribute portions of it to individual independent variables.”
(KERLINGER et al, 1973, 296). It should be noted further

that if one of the independent variables is a perfect linear
function of one or more of the other variables the normal
equations become unsolvable, because the determinant,

[X'X|, will equal zero. However see section 3.3.5 when the

regression is forced through the origin.

To make inference from a sample to a population then a further

assumption is also necessary.

(vii) Normally Distributed Variables.

For a fixed X model the dependent variable, should have a normal
distribution. A random . model requires that all variables

are normally distributed which implies that the residuals

should be normally distributed. This assumption may however
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be frequently relaxed because the statistical tests for
significance are relatively insensitive to departures
from normality, particularly so when the sample is large,

of the order of thirty samples or more.

3.2.3 Discussion of data assumptions with respect to Landsat response

data and sampled cover data
Assumption (i) - Errorless Observations.

Landsat count values can have an error of the order of *1 count and
can be assumed to be randomly distributed. Cover data sampled over a pixel
will also be in error and the size of the error will depend on the number
of samples taken in each pixel. The percentage standard error of the
sampled proportion of a particular cover type can be given by ( %g-)% where
p is the percentage of the cover type being sampled, q is the percentage
remaining and not of that cover type and n is the number of samples taken.
It can be seen from this formula that the maximum error will occur when
p=gq=50%. For 20 samples this would give a standard error of *11% when
p = 50%, and *7% when p = 10%. These sampling errors will be randomly
distributed about the true value of a particular percentage when a large
number of pixels are sampled.

For the purpose of this research it was assumed that both
Landsat and cover related measurement errors wereless significant than

errors resulting from incorrect equation speciffcation.
Assumption (ii) - Variable Linearity.

From equations (2.20) and (2.21) it has been shown that a function
of sensor response will be linearly related to the percentage of surface
area of a particular reflectance. Thus (ii) will be satisfied when sensor
response is taken as the dependent variable and percentage area as the
independent variable. From a physical viewpoint Ai is the independent
variable and C (or a function of C) is the dependent variable, however in
many cases Ai must be treated as the dependent variable.

Consider the following family of linear equations.

k

yi = a, + iE1 bi_j Xi
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If j also ranges from 1 to k then the equations can be considered as k
equations in k unknowns and these can be solved simultaneously to give

equations of the form
* k %
X, = a, + % b,,vy,
i i =1 jioTi
which in terms of multiple linear regression is
% k *
x!' = a,+ I b, vy,
i i =1 jioi
where x; is the estimated value of X . Therefore for this form of the
equation the independent variables will also be linearly dependent on the
dependent variable. Landsat provides only four independent measures, the
response in bands 4, 5, 6 and 7 so it would seem that for exact equation
specification only four cover types should be sampled. However the condition
that all cover percentages must sum to 100% provides the means for the
estimation of a fifth cover type and further the inclusion of additional
cover variables when these represent only a small percentage of the total
cover, can be considered as unspecified independent variables adding to
the residual when a particular cover variable is treated as the dependent

variable. Other procedures for inclusion of non-linear variables are

considered in Chapter 4.
Assumption (iii) - Zero Residual Mean.

As the equations relating Landsat response and cover percentages
were theoretically derived in Chapter 2, it is known that no important
explanatory variables have been omitted. |In addition because both
Landsat response and cover data are measured values with an assumed
random error distribution, it can be concluded that the distribution of
the residuals should have a mean of zero. This will apply whether
Landsat response (or reflectance) or a cover percentage is the dependent

variable.
Assumption (iv) - Residual Homocedasticity

The assumption of homocedasticity is not satisfied when one cover
variable is treated as the independent variable. When an individual cover
variable comprises a sampled 100% then the residuals at that percentage

will only be due to small sampling and measurement errors about
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the regression. However when the same variable is sampled at 0%, the
dependent response variable can take on any values determined by the
respective proportions of all the other cover variables and so the
residuals will be of an equivalent order. The residuals will reduce

as the percentage of the particular cover variable increases and so will
be linearly dependent on the cover percentage, (see figure 3.1). As
additional cover variables are included in the regression equation these
will contribute explanation to the total regression by reducing the
initially observed residual distribution until ultimately with all cover

variables in the equation the assumption of homocedasticity would be valid.
Assumption (v) - Serially Independent Residuals.

The serial independence of Landsat MSS data has been examined by
a number of writers (TUBBS et al, 1978 and CRAIG, 1979) who show that
significant autocorrelation exists. |t follows that as the dependent
variable of a regression equation is linearly related to the residuals,
that the residuals from using Landsat response data as the dependent
variable would also be autocorrelated. CRAIG concludes that Landsat
response data sampled at a spacing closer than every 10th pixel would
yield dependent and therefore redundant samples. Any denser sampling
would not increase the degrees of freedom of the sample. He suggest
therefore, that in general, a sample size of N x M will only yield
approximately

N xM
F—EE—J + 2

degrees of freedom, since this is the number of pixels spaced at 10 steps
which can be located in the sample. These conclusions are partially
supported by STEINER et al (1975) who indicate that for typical imaged
scenes there is an overwhelming probability that two neighbouring points
will have the same response.

A great deal of the autocorrelation however, will be due to the
spreading caused by the point spread function of the imaging system.
DYE (1975) uses a total of seven along and five across scan pixels to
contain this effect for Landsat data. It is considered that the use of
the approximately deconvolved response data of equation (2.18) would
considerably reduce autocorrelation effects. For the reverse case of

equation (2.19) where measured response is a function of the weighted
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FIGURE 3.1: Residual distribution about a computed regression line
for one cover variable entering the regression equation.



reflectance of the central and surrounding pixels, autocorrelation effects
will also be reduced. Consider the simple situation of a low reflectance
surface S1’ surrounded by a high reflectance surface, Sz, having measured
response counts of C1 and C2 and actual response counts of Ca1 and Ca2
respectively. For surface S1 the measured C1 value would be higher than
generally predicted resulting in a negative residual whilst for the
immediately surrounding surface, Sz, the opposite would apply and a
positive residual would result. Thus the residuals would be serially
dependent. If however the weighted percentage cover was related to the
measured response count, C1’ the percentage of surface, 51’ related ta it
as a data pair would be reduced, effectively reducing the residual,
and the effects of autocorrelation (see figure 3.2). This concept can
be considered to apply irrespective of the number of dependent variables.
I f cover variables are treated as the dependent variables then it
might be expected, due to the regular nature of urban residential
development, that autocorrelation would exist. However this would be
purely spatial autocorrelation, appearing as groups of positive and
negative residuals around a trend surface patterning, unlike the response
data which is due to the measurement system. |If the surface data is
sampled independently then there would be no reason to suspect that the

data was serially dependent.
Assumption (vi) - Uncorrelated Independent Variables.

The linear independence of the independent variables can be tested
using bivariate correlation analysis. Earlier unpublished research by
the writer using sampled cover data indicated very little correlation
between individual cover variables, the highest correlation found being
of the order of 0.4, however this is not the case for Landsat MSS data.
Typically, high correlations exist between bands 4 and 5, and bands 6 and
7, the two visible and the two infrared bands respectively.

Although predictionwas the primary aim of this study it is never-
theless undesirable to eliminate independent variables,which may have
some explanatory value, solely.because their significance is reduced
by intervariable correlation. Various transformations can be applied
that reddce this effect while still retaining the information content
of the data. One such simple transformation would create two new

difference and sum variables e.g. (Band 4 - Band 5) and (Band 4 + Band 5).
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FIGURE 3.2: Schematlic diagram of the relationship between the calculated
regression line using uncorrected observed percentage cover
and observed Landsat response, and the regression line using
weighted percentage cover and observed Landsat response, for
two adjoining cover surfaces, S, and S,. The serially depend-
ent residuals will be reduced and approach the true regression
line when the weighted percentage cover is used.
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More complex procedures such as principal component analysis could also
be used to create an identical number, n, of linearly independent new
variables (orthogonal in n dimensional space) onto which the original
data are transformed. This procedure has been used by LODWICK (1979)
for comparing multi-temporal Landsat data, and DONKER et al (1976) and
AUSTIN et al (1978) for rural land cover classification.

Assumption (vii) - Normally Distributed Variables.

The underlying statistical nature of Landsat MSS data is not known.
The data is generally accepted to be approximately normally distributed
however MCCLOY (1978) "is not aware of any definitive work that has shown
that this hypothesis is valid". The normality or otherwise of percentage
cover data is also unknown. It might be expected that cover types
generally occupying a small percentage of the residental surface would
have a skewed distribution due to the infrequent occurrence of higher
percentage values. However for both response and cover variables a large
number of independent causes would be contributing small effects to the
residuals and so it could be argued from the central limit theorem that
the assumption of normality was justified. Nevertheless givena sufficiently
large sample the effects of non-normality are reduced.

It can be concluded that response data and percentage cover data
are satisfactory data for analysis by multiple regression analysis,

provided

(i) the use of correlated independent variables are
restricted to transformed linearly independent
combinations or an approximation thereof when
explanation in contrast to prediction is required.

(ii) the data samples are sufficiently large.

3.3 Measures of Precision

3.3.1 Multiple Correlation coefficient, r and r?

The total variation or sums of squares in y can be partitioned
into two independent components, one that is explained by the regression

and another that is unexplained

SS =SS + SS
y reg res

-2 —2 _ 2
Iy -y) = Zly'-y) +EZy-y")
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where SSr and SSres are the sum of squares of the regression and the

residuals respectively.
The ratio r? is defined as
SSreg
r? =

~SS
Y

therefore as r> approaches 1.0, then SSre must approach zero. Thus r?

is a statistical measure of the adequacy Zf the least squares fitting
process. |t measures the proportion of total variation about the mean
value of y that is explained by the regression. Often it is expressed
as a percentage after multiplication by 100, and referred to as percentage
explanation or simply as explanation.

The sample r? given above is a biased estimator of the population
r2 if n is small. An unbiased estimator is given by T2 the adjusted r

square,
Poe 2l (1- )
(nh-k-1)
where

k the number of partial regression coefficients.

The square root of r2, r is defined as the correlation coefficient
or multiple correlation coefficient for a multiple regression equation and
is also a statistical parameter used as a measure of adequacy. A
correlation coefficient of 0.9 means that 81 percent of the total variation
about the mean value is explained by the regression equation. Care must
be taken when using r as a measure of equation precision. When the number
of estimated coefficients in the regression equation equals the number of
experimental observations, an exact solution for the number of coefficients
is obtained. In this case r will equal one yet the coefficients will be
in error unless the experimental data is without error. Therefore r is
not a good measure of precision when the number of estimated coefficients
approaches the number of experimental observations.

The signifiﬁance of the correlation, r, between the two variables
can be tested by the use of the student's t distribution, using the

following formula,

rn-2
JT=F?



where n = the number of data pairs studied and where the degrees of
freedom are (n-2). The null hypothesis postulated is that there is no
correlation between the variables. For regression analysis the two
variables can be considered as the observed and calculated value of the

dependent variable, and r as the multiple correlation coefficient.
3.3.2 Standard Error of the regression and coefficients

The variance of the regression, S , may be expressed as

2
Zly-y"')
n-5k+l)

where k+1 equals the number of estimated coefficients (k partial regression

w

coefficients plus the y intercept coefficient). The variance is a measure
of the deviation between the predicted values and the measured values.
The square root of the variance is the standard error, S.E., and is
a second measure of the least squares estimation process. The smaller
the value, the more precise the fitted equation.
The variance, and thus the standard error of the coefficients
is determined from the variance covariance matrix which can be given
by

var(a) cov(a,bl) cov(a,bz) ...... cov(a,bk)
cov(b ,a) var(b ) covib ,b ) ..... cov(b ,b,)
1 1 172 1k
cov(b ,a) cov(b ,b ) var(b )
2 2’71 2
i cov(bk,a) cov(bk,bk_l) ................ var(bk)
3
and SE . = (var bi)
3.3.3 F-Test

The F-test is a third method of evaluating the adequacy of the least
squares estimation process. The F-ratio is defined as
ssreg (n-k=-1)
SsresTk)
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or
r? (n-k-1)

(1-r2) k

The F ratio is distributed approximately as the F distribution
with degrees of freedom k and (n-k-1). This allows a critical F value to
be determined based on the degrees of freedom as well as the desired
confidence limits. The F-test requires that the F value calculated from
the regression must be greater than the critical F value if the regression
process is to be judged significant within the confidence limits.
Obtaining a statistically significant regression does not necessarily mean
that the resulting equation will be useful for predictive purposes
(DRAPER et al, 1966, 64). A calculated F value four times the critical
F value is suggested if the regression equation is to be regarded as a

satisfactory predictor.
3.3.4 F-test for the coefficients

The most common strategy used in testing the coefficients involves
a decomposition of the explained sum of squares due to regression, the
SSre , into components attributable to each independent variable in the
equation (NIE et al, 1975, 336). The increment in r? (or in the
explained sum of squares)due to the addition of a given variable is taken
as the component or variation attributable to that variable. |[If the
variables entered into the equation are considered to have a non-causal
relationship, each variable is treated as if it had been added to the
regression equation in a separate step after all variables had been

included. The F ratio is then given by

incremental SS due to Xi
SSres/(n—k-1)

or

incremental r2 (n-k-1)
(1 - r?)

The degrees of freedom for each F ratio are 1 and (n-k-1), and given the

confidence limits, a critical F value can be determined.
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3.3.5 Effect of forcing the regression through the origin

When it is known a priori that the constant term in the regression

equation is zero, the regression may be forced through the origin where
y = 0, x; = 0, x%x, = 0 .... X, = 0

Here in the normal equations

X e X
11 ki .
X = ) . and | X'X |
Xln xkn

will not equal zero if x,  + X, + ...+ xk = G, where G is a non-zero constant.

1
In these circumstances there are two alternative ways of computing
r2. The first method computes r2 unadjusted for the mean of the dependent

variable, and was proposed by THEIL (1971, 176), therefore

P2 = Z(yn?
u 2
Z(y)

SSregu

SSyu

2 n-1

- - -2
and ry = m (1 ru)

where
SSregu sum of squares of the regression unadjusted for
the mean of vy,
and
SSyu = total sum of squares unadjusted for the mean of y.
The second method is the standard approach given previously, that is
SS
r2 = e
SSy

where both SSreg and SSy are adjusted for the mean.

The choice between r? and ri depends upon whether the measured
performance of the regression is desired in terms of the variance of vy
or the second moment around zero of y. In some cases when the regression

is forced through the origin, the computed value of r? can be negative.



- 70 -

This means that a better prediction of y is obtained by using the
mean, ;} as the estimate, and the assumption that y = 0, x; = 0,

x. =0, ..... > X = 0 would therefore be suspect.

3.3.6 Selection of the most significant variables

Particularly in the case of predicting percentage cover as the
dependent variable with various combinations of response as the
independent variables, it is necessary to isolate a subset of available
variables that will yield an optimal prediction equation with as few

terms as possible. There are several approaches to this problem (NIE et

al, 345).

(i) Forward (stepwise) inclusion - independent variables
are entered only if they meet certain statistical
criteria.

(ii) Backward elimination - independent variables are
eliminated one by one from a regression equation
that initially includes all variables.

(iii) Stepwise solution - in addition to forward inclusion
variables are deleted that no longer meet the pre-
established statistical criteria.

(iv) Combinatorial solution - all possible combinations

are examined.

3.3.7 Recommended regression procedure and tests

0f the four methods given in 3.3.6 for variable inclusion only
the first three were available to the writer in an existing statistical
package. Of these, (iii), stepwise solution, was considered the most
flexible. Here the variable selected is that which explains the greatest
amount of variance unexplained by those variables already in the equation.
The selection process is based solely upon the F ratio which each variable
would have if it was the only variable added to the regression at that
step. After each step the variables in the equation are re-examined and
any variable with an F ratio less than a minimum value is considered
eligible for removal. A minimum F value of 3.85 was chosen when the
degrees of freedom of the residuals was greater than 1000, and 4.00 when
they were between 50 and 1000, these being the 5% confidence limits. For

the regression as a whole four times the F ratio at the 1% confidence
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limits (for the number of degrees of freedom of the particular equation)
was chosen as the limiting criterion.

In all further regression calculations, the adjusted r sguare,
?2, multiple correlation coefficient, r, standard error, S.E., and

F-ratio of the total regression are given. Where the regression is forced

z 3 are provided. For the coefficients,

through the origin both r? and r

the standard errors are given.
The stepwise regression procedure and all statistical tests were

available on an existing statistical package, SPSS - 6000 version 70,

(NIE et al, 1975) and this was used for all multiple linear regression

analysis.
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L4, AN EXAMINATION OF REFLECTANCE RATIOS, TRANSFORMATIONS AND
TEXTURAL VARIABLES

k.1 Introduction

Various ratios are routinely used as a first order correction to
reduce brightness variations due to atmospheric effects, change in solar
zenith angle, shadowing and also variations due to source noise. It is
considered that ratioing will result in the cancellation of in-phase
fluctuations of the original response variables (MAXWELL, 1976) .
Particularly in vegetation studies ratios are also used to improve the
correlation between vegetation parameters such as biomass and independent
response variables. Other transformations in addition to ratios are used
to obtain new orthogonal independent variables and to maximize the
separation of classes along new coordinate axes. A reduction in the
number of variables can also result from these transformations.

Typical ratios and transformations include

. . Band 5
(i) Band on band ratios e.g. Band 7

. . . Band 7 - Band 5
(ii) Band difference on band sum ratios e.g. Band 7 + Band 5

(iii) Individual band on the sum of all band ratios e.g.

Band 6
Bands (L+5+6+7) °’

(iv) Band difference, band sum transformation.

termed normalisation.

(v) Kauth-Thomas transformation.

(vi) Principal component transformations.

In this chapter the results of an examination of each ratio and
transformation are given. Typical vegetation and soil data were used
to examine their characteristics and their inclusion as wvariables in
multiple regression models.

The use of textural variables over extended areas, as an aid to
classification, was mentioned in Chapter 1. A simple variance (or
standard deviation) measure was examined with respect to its application
to the prediction of cover or cover related related variables in

residential areas. Details of this examination are also given in this

chapter.
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4,2 Band on Band Ratios

Chlorophyll absorbs electromagnetic energy most efficiently at
wavelengths of 0.4 to 0.5 um and 0.65 to 0.69 um. Green vegetation
also has a very high reflectance in the near infrared from 0.75 to 1.2 um.
Using these unique absorption and reflectance characteristics MILLER and
PEARSON (1971) and TUCKER (1973) have shown that a ratio of the near
infrared and chlorophyll absorption bands is well correlated with the
amount of green biomass within a scene (MAXWELL, 1976). The second of
the two absorption bands and the high reflectance bands are closely
approximated by Landsat bands 5 and 7, respectively. The ratio of band
7 to band 5 was therefore considered as a potential predictor of heal thy
vegetation. MAXWELL (1976) and CARTER (1977) have also suggested the
ratio band 5 to band 4 as a good predictor of vegetation because band 4
contains neither of the primary clorophyll absorption bands. CARTER
considered that these ratios would give an enhanced output for healthy
vegetation and hence better discrimination against urban areas.
RICHARDSON et al (1977) used band 5 on band 7, as one of eight vegetation
indices in a comparison to determine their ability to distinguish vegetation
from a soil background. Using skylab colour imagery, PIECH et al (1978),
have used a blue to green reflectance ratio to determine lake water
quality.

Essentially the band on band ratio is a transformation from

rectangular to polar coordinates, therefore

V.. R..
B. = ——'-L__I-L._.

i 2 %
(Rij + 1)

and
Vi'
B. = ——-L____
TR
i

where

(B.2 + B.2)
[ J

B.
i EL , and Bi’ Bj are the response in bands i and j respectively.
J

=
]
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Each of Bi and Bj can be approximated by a nth order polynomial.

B, = a +aV,, +aR,.,+aV, R ,+aVv® +.....
i o 1 1] 2 1) 3 1) 1] 41

The four Landsat bands can be represented by a number of different

but equivalent functions of V,. and Rij' These are

i]
V R v
B, = 45 45 - 54
(RZ + 1)4" (RZ + 1)%
45 54
V R v
= 46 46 - 6 U
(RZ + 1)’1‘ (RZ + 1)4"
L6 6L
V R v
= b7 b7 = 74
(R2 + 1) (RZ + 1)%
47 74
vV R v
B = 54__ 55U - 45
5 (R2 + 1)% (RZ + 1)%
54 45
V R v
= 56 _56 - 65
(R2 + 1)% (R2 + 1)%
56 65
V R v
= 57 57 = 75
(R2 + 1)% (R2 + 1)%
57 75
V R v
B = 67 67 - 76
6 (R? + 1)% (RZ + 1)4"
67 76
V R Vv
= 65 65 = 56
65 56
V R v
= 64 64 = 46
(R2 + 1)? (R2 + 1)*
64 46
V R Vv
B = 76 76 = 6.7
7 (R2 + ])% (R2 + 1)%
76 67
V R v
- 75 175 - 57
R2 + 1) Rz + 1)}

75 57
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) R v
74 74 4

7
(RZ + 1)% (RZ + 1)£
74 w7 (4.1)

and each of these can be represented by a polynomial expression.

Which form of the function is used to represent Bi in terms of
Vij and Ri" is dependent upon the spectral characteristics of the target
being examined. When choosing an appropriate combination for each band,
the fourth combination must include i and j values previously used,
otherwise the Vij’ and Rij values of that function will be redundant
i.e. predictable from the other Vij and Rij values. |f for the case of
predicting percentage vegetated cover the ratios of bands 5 and 4, and
bands 7 and 5 are considered statistically significant then the folliowing

combinations are appropriate.

B = — 5

1
[ (RZ + ])I
54
V7
B = ——t3 ,
75

for Bs any combination can be taken for example

') R
B = 76 76 %
° (R2 + 1)
76
and for B7
v R
B = ——li——li—; must be chosen.
T w e

These functions, in polynomial form, can then be used in a

predictive equation of the form

A(vegetation) = K + KV +KR +KV R +KVZ + .
o 1 54 2 54 3 54 54 4y 54

+ K'V +K'R +K'V R +K'VZ + ...

1 75 2 75 3 75 75 4 75
+ KW  + K'R + K'W R + KWZ + .
1 76 2 76 3 76 76 4 76

However for a vegetated surface it was assumed that VSI+ and V75
varied only with atmospheric and other effects, and were relatively
constant for a particular scene and independent of A (vegetation),

whereas Rsu and R7 were considered to vary only with percentage
5
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change in vegetation. Because bands 6 and 7 are highly correlated, the
. value of R76 was assumed to be relatively constant. The term V7e also
varies with scene brightness effects such as atmosphere and shadowing,
and is normally neglected, however as both are infrared bands it was
expected that the value of Vyg would increase with increasing vegetation
and therefore should remain in the predictive equation. Given these
assumptions the percentage of vegetation within a target area can be

approximately given by

A(vegetation) = K. + KR +KR +KUV
o 1 54 2 75 3 76

+ KR +KR +KV2 + .....
4 54 5 75 6 76

(4.2)
which is in the linear form required for multiple linear regression.

From figure 2.1 vegetation has approximate reflectances of 15%,
10%, 30% and 50% in bands 4, 5, 6, and 7 respectively and soil has
approximate reflectances of 27%, 32%, 30% and 27% in the same bands.

The response in each band was calculated from (2.15) for the known
atmospheric conditions (Sydney, Dec 12th 1972 - approximately 15 km
visibility) with an assumed background reflectance equal to the target
reflectance, and also for no atmospheric conditions, both at a solar
zenith angle of 380. These response count values are shown in Table 4.1.
Figure 4.1 illustrates the relationship between bands 7 and 5, and shows
that R7 is relatively constant for different atmospheric conditions

and varies significantly as vegetation percentage changes. In addition
V75 is relatively constant for constant atmospheric conditions and is
independent of vegetation percentage.

The band 5 and band 4 relationship is shown in figure 4.2 and that
of bands 6 and 7 in figure 4.3. On examination of these diagrams it can
be seen that some of the assumptions used to derive (4.2) are not valid.
While Rsu is relatively stable with varying atmospheric conditions, Vsu
is not constant for constant atmospheric conditions and appears as an
equally good prédictor of vegetation percentage. For bands 7 and 6 the
assumption of high correlation is not borne out and V76 is no more
significant a predictor than R76 or band 7 alone. Thus for the target
surfaces of vegetation and soil only the R75 value is a good predictor
of percentage vegetation, and may be used alone in a regression analysis

with other non-specified terms contributing to the residual. Alternatively
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TABLE 4.1: Approximate Landsat response count
values for vegetation and soil, for no
atmosphere at 38° solar zenith angle and
for a 15 km visibility atmosphere at 38°
solar zenith angle.

100% Vegetation 100% Soil
Band No Wi th No | With
Atmosphere Atmosphere Atmosphere Atmosphere
4 38 4o 68 65
5 27 28 86 76
6 72 62 72 62
7" 99 73 54 39

(Doubled band 7 values).
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other Ri' and vij values could be added to a regression analysis and their
significance tested at each step. For surfaces other than vegetation and
soil the appropriate Vi. and Rij terms should be determined from a similar
analysis.

The change in the values of Vij and Rij can be generalised further,
and are predominantly due to change in solar zenith angle and increasing
haze. To a first order of correction, the radiance incident at the
Landsat sensor changes directly as the cosine of the solar zenith angle,
and affects the response from each band equally. Therefore no change in
R.. occurs for otherwise constant atmospheric conditions, while Vij is
reduced with increasing solar zenith angle. However for increasing haze
the changes in Vij and Rij are not so simple. Consider the response Bi
from a surface of reflectance R. |f there were no atmosphere the amount
of irradiance reflected and received at the sensor would be a simple
proportion of Eo cos 60. If atmosphere was then introduced there would
be an initial reduction in the amount of radiance received from the same
surface, but eventually as path radiance increased due to haze the
received radiance would approach that due to clouds which can be thought
of as thick haze. Theoretically for the extreme of an infinitely thick
atmosphere all irradiance at the top of the atmosphere would be reflected.
These effects are shown in figure 4.4 for a‘;egetated surface, a soil
surface, a surface with zero reflectance in both bands, a surface with
zero reflectance in one band and 100% reflectance in the other (and
vice versa), and for a surface of 100% reflectance in each band. The
values shown were calculated for a solar zenith angle of 380 in bands
5 and 7 of Landsat, although similar diagrams could be determined for
other conditions. Note that for a soil surface, R75 has little variation
over a wide range of atmospheric conditions whereas for vegetation, R75
changes considerably as haze»increases. For both soil and vegetation
cover, V75 increases rapidly as haze increases, and their individual

V75 and R75 values approach equality i.e. a complete lack of contrast.

4.3 Band Difference, Band Sum Ratios and Transformations

Both the ratios and the transformations using band difference
and band sum are considered together because of their common features.
RICHARDSON et al (1977) have used both the ratio and transformation in
modified form. The ratios used by RICHARDSON et al were
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and

B, - B, 3
5+ + 02
6 5

and were first suggested by ROUSE et al (1973). Each was considered to
be a transformed vegetation index, the (B, + B.) and (B  + B.) being
considered as normalizing terms, while the 0.5 term was added to eliminate
negative values (DEERING et al, 1975).

RICHARDSON et al (1977) also suggested a vegetation index model
using the perpendicular distance of a vegetation candidate signature from
a constant R57 soil backgrourd line, but considered the same measure could

"be achieved by a modified band difference transformation
(2.408 - B )
7 5

where 2.40 was the assumed slope of the soil background line.

It can be shown that the basic band difference, band sum transform-

ation is an affine transformation of the form

B,. . cos 8 -sin B§ B.
(i - j) ’ i
= K

B,. . in 6 .

(i + ) sin » cos O BJ
= - For the

where B . _ i) (8, Bj) and B, i) (Bi + Bj).

most commonly used transformation 6 = 45° and K = 1.4142

and for the example quoted by RICHARDSON et al (1977) i.e. (2.40 B7 - Bs)’
6 = 22° 37" and K = 2.6. Each band response, Bi’ can be represented
by equations in terms of B(

0 and B( + ) and for the simple case
of 6 = 45° and K = 1.4142

i =] i

By = 2 BG ) T B )

Substituting Bi's in this form into a predictive percentage cover
equation will not alter the linearity of the model, and percentage area
as the dependent variable will still be linearly related to the independent

B .vs B, .y variables. Similar to the case of band on band ratios,
( i)y G+ )
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a number of combinations of B .» and B, .y can be used to
( ) (i +j)

represent the individual Bi's,lwhich combination chosen being dependent
on the spectral nature of the cover being predicted, and the avoidance
of redundant combinations.

Using the count value data of Table 4.1, for bands 7 and 5, the
basic relationship between the transformed values is shown in figure 4.5
with the dotted lines schematically showing the effect of increasing haze
and the solid lines that of increasing solar zenith angle. It can be seen
that virtually all of the change in vegetation cover can be linearly
predicted by B(7 - 5)° however unlike the ratio B, B(7 - s5) varies more
under changing haze (or brightness) conditions.

The iBi - Bj) on (Bi + B.) ratios are now seen as a ratio of the
new variables B(

1) and B e and represent one of the polar

co-ordinate termg implied by(éh;t ratio. They are approximately constant
for varying brightness effects and have the added advantage over the simple
B7 on B5 ratio for vegetation cover prediction, of having an essentially
linear response to percentage vegetation change. Again the choice of which
ratios to include in a multiple regression analysis for predicting various
cover percentages will depend on the spectral characteristics of the cover

in question.

4.4 Band on the Sum of All Band Ratios

CARTER (1977) considers this to be a normaliaing ratio, where each
individual intensity value of a pixel is divided by the sum of the intensity
values in all four Landsat bands. He considers that if the overall light
intensity changes due to shadowing, haze etc, then as a first order
correction normalisation should reduce variations in the overall light
intensity. The correction assumes that the reduction in the received
signal is a similar fraction for all bands which is not always true.
After normalisation only three of the normalised bands are necessary to
carry all the information (CARTER, 1977, 28-29).

The sum . of all bands were considered as a fifth band, S, with
wavelength interval 0.5 - 1.1 um, the concept of polar coordinates being
applied in the same way as for ratios under section 4.2. Letting Vié
and RiS be the band on band sum equivalent of Vij and Rij and using
bands 5, 6 and 7, then percentage area of a particular surface can be

given by
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A = K +K V +K R +K V + 2 4
o} 1 s5S 2 s5S 3 58S R5$ Kq Vss

+K'V_+K' R _+K' VvV R +K V24 ..
1 6S 2 6S 3 65 65 4 gS

+ K'Y + K" R + K' v R +K”V2+
I “7s 2 7s 3 78 7s L 7S

Essentially the argument for the use of the normalised band values
Ris’ is that they are more likely to be invariant under varying atmospheric
conditions than the standard band values. The invariance of Ris was
tested using the data given in Table 4.1. The four normalised values
were computed for each band, for vegetation and soil and for the two
atmospheric conditions. These computed values are shown in Table 4.2.

To test the relative stability of the ratios with that of the
measured band values, the difference between the various values with and
without atmospheric effects and divided by their mean value was calculated.
Each was converted to a percentage value which represents the average
change due to atmospheric effects. If the change in a ratio value is
less than that of its corresponding unnormalised band value then the
argument given for their use would be valid for the given set of conditions.

These average changes are shown in Table 4.3. It can be seen that
in general the ratio variation is substantially less, however in the case
of vegetation in the non-infrared bands the variation is virtually
equivalent. This is due to the low reflectance of vegetation in bands 4
and 5, with path radiance contributing a substantial proportion of the
observed response. Here the sum of all band responses will have a
relatively smaller change in the denominator when compared to B‘+ or B5
in the numerator. For the surface covers examined and the given range
of atmospheric conditions, it would be breferable to use the normalised
bands 5, 6 and 7 as the non-redundant variable set in a multiple regression
analysis, in order to reduce atmospheric effects.

In addition to the ratio variables, Ris’ in the predictive equation,
terms involving the variables, Vis’ are also included. Which of these
variables should remain in the regression analysis will depend on their
significance in predicting cover percentage and their invariance to
atmospheric change.

Diagrams illustrating the relationships between each band and the
new band § are shown in figure 4.6, for 100% vegetation and 100% soil cover
for the two given atmospheric conditions. For the purpose of these

diagrams Bs’ the sum of all bands, has been divided by four and the
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Normalised Landsat band response for 100%

vegetation and 100% Soil cover under varying

atmospheric conditions (38° Solar zenith angle,

no atmosphere and 15 km visibility)

Normalised Vegetation Soil
Band No Atmos. Atmos. No Atmos. Atmos.
Y 0.160 0.196 0.243 0.269
5 0.114 0.137 0.307 0.314
6 0.305 0.304 0.257 0.256
7" 0.420 0.358 0.193 0.161
“  Doubled Band 7 values
TABLE 4.3: Average percentage change of normalised band
response and band response under two atmospheric
conditians for 100% vegetation and 100% soil cover.
Vegetation Soil
Band 3 5 3
% change % change % change % change
Normalised Band Band Normalised band band
4 20.2 18.4 10.2 27.8
5 18.4 19.4 4.6 35.6
6 0.4 39.0 0.4 39.0
7 16.0 52.6 18.0 54.2

" Doubled band 7 values
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approximate response of cloud is shown to indicate the direction of
change of the ratios due to increasing haze. It can be seen that neither
V__or RGS are particularly useful in predicting cover percentage, and

6S
R“s appears only marginally better. The other variables Vus’ Vss, Rss’
V7s and R}s however all appear reasonably effective variables for predicting
vegetation percentage, although the latter variable, R7s’ appears least so

and in addition is significantly affected by atmospheric effects.

4.5 Kauth-Thomas Transformation

The Kauth-Thomas transformation is based on the assumption that the
ratio Ri' of soils is relatively invariant to changes in solar zenith
angle, haze or type of soil, and when various mixtures of soil and
vegetation are plotted in the visible and near infrared Landsat space
they will form a roughly triangular shape above a constant soil brightness
line. It is considered that location within this triangular shape
represents to a degree, vegetative state of development as modified by
such factors as soil reflectance, stress of various kinds, mixtures of
vegetation and so on (HENDERSON et al, 1975).

Such considerations led KAUTH (1975) to define axes of maximum
variation in the Landsat data and to ascribe physical interpretation to
these axes. Four orthogonal axes were defined in the four dimensional
Landsat space describing brightness, greeness, yellowness and mon-such,
this latter direction containing primarily noise variation. The
relationship of the first three axes to Landsat bands 4, 5 and 6 are
shown schematically in figure 4.7.

Figure 4.8 after KAUTH et al (1978) expands the illustration to
three dimensions termed the tasseled cap. Soil samples fall near a line
and in a predominantly planar region surrounding that line. Plants start
out on bare soil and grow towards the maximum greeness point. Some plant
canopies have large amounts of shadow shifting the observation towards
the origin. Trees, with a reasonable proportion of shadow are shown in
figure 4.8 as the badge of trees. Different amounts of shadowing in
various canopies creates a region called the green arm or green fold.
When a plant canopy reaches its maximum green development, it will
eventually return to the soil by yellowing, withering or removal. "The
various return paths in the Landsat signal space are the tasse?s of the

cap (Ibid, 707). For most purposes the response information from
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agricultural areas is substantially contained in a plane defined by unit
vectors in the brightness and greeness directions but with a small amount
in the yellowness direction perpendicular to the plane. The unit vectors
describing these direction and the non-such direction together form an
orthogonal (rotation) matrix called the Kauth-Thomas or Tasseled Cap
transform.

If X is the Landsat response vector, and Z the transformed vector

then (KAUTH and THOMAS, 1976)
Z = RX

where

0.433 0.632 0.586 0.264
-0.290 -0.562 0.600 0.491
-0.824 0.533 -0.050 0.185

0.223 0.012  -0.543 0.809

4

and a transformed vegetation index can be given by (RICHARDSON et al, 1977)

GVl = -0.290 Bu - 0.562 B5
+0.600 B6 + 0.491 B7

and soil background index by

SBI = 0.433 Bq + 0.632 B5
+0.586 B6 + 0.264 B7

(Note B, is not the doubled band 7 count range referred to in earlier
sections, use of these values would require the last column of R to be
divided by 2). ,

It can be seen that this transformation is very similar to the
(B5 + B7), (B7'- Bs) transformation considered previously. The new
variables are linear functions of the Landsat MSS response and can be
used in a predictive multiple linear regression without any further
transformation. For a mixed vegetation and soil surface response the
indices should be uncorrelated but as for (B5 + B7) and (B7 - Bs)
the response values will be affected by atmospheric and solar zenith angle
changes. A plot of the first two transformed axes equivalent to SBI and
GVl are shown in figure 4.9 with vegetation and soil from Table 4.1

transformed into the two dimensional space.
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The Kauth-Thomas transformation has been used by RICHARDSON et al
(1977) for distinguishing vegetation from soil background information, by
THOMPSON et al (1979) to detect and monitor agricultural vegetative
water stress over large areas and in LACIE (Large Area Crop Inventory
Experiment) to enhance crop growth characteristics (HEYDORN et al 1978,
KAUTH et al, 1978). How such a transformation could be applied to urban
data has not yet been investigated, but reflectance data on urban
residential surfaces (FORSTER, 1980b) suggests that manmade materials
could have similar response properties to soil and an urban brightness
axis and an orthogonal greeness axis could be defined. It was also
shown by FORSTER (1980b) that the band 5, band 4 difference was
correlated with percentage concrete cover. This suggested an equivalence
of concrete percentage to the yellowness axis of the Kauth-Thomas

transformation.

4.6 Principal Component Transformation

The principal component transformation is essentially the same as
the Kauth-Thomas transformation in that four new orthogonal axes are
defined. Unlike the latter transformation, however, the principal
component method allows natural axes to evolve from the underlying data
set without a priori conditions, such as the defined soil brightness axis,
being imposed and provides new variables which are pairwise uncorrelated.
Each principal component is a linear combination of the observed variables
and these linear functions are chosen to be orthogonal. An infinite
number of orthogonal bases of a vector space can exist, so in order to
provide a unique set of coefficients the first principal component is
defined as that linear combination of variables which has the maximum
variance of all linear functions derivable from the given variables.

The second principal component is the linear combination of variables
having the maximum variance of all linear functions of the given variables
that are orthogonal to the first principal component, continuing to as
many principal components as there are independent variables (MATHER 1976,
215-216). The principal components themselves are the eigenvectors of

the variance - covariance matrix of the variables observed.

The Landsat response data consists of measurements which are
correlated with each other. Principal component analysis allows this

data set to be transformed into one where the variables are mutually
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uncorrelated. |In addition the method allows the determination of the
number of linearly independent sources of variation within the Landsat
data set that can effectively summarize the data without a significant
loss of information. Because of correlation this will be génerally less
than the number of variables.

A number of researchers have used principal component analysis,
for example DONKER and MULDER (1976), AUSTIN and MAYO (1978) and LODWICK
(1979) . Generally it has been found that the first two principal
components of a Landsat data set contribute of the order of 98% of the
total variance. The first principal component, PCI, is seen as
representing a general brightness component, and the second, PCZ, a
general greenness component or as DONKER et al suggest "the designation

colour is a better one. "

It was of interest to compare the matrix of eigenvectors from

DONKER et al (1976) and AUSTIN et al (1978), and these are as follows

Eigenvectors

1. 2, 3. L,
L 0.186 0.524 0.827 0.083
MSS 5 0.360 0.735 -0.560 0.129
Bands 6 0.766 -0.241 0.040 -0.594
7 0.499 -0.356 0.035 0.789

(from DONKER et al) and

1. 2. 3. b,
L 0.135 0.538 0.831 -0.049
5 0.281 0.757 -0.519 0.281
6 0.831 -0.157 -0.065 -0.529
7 0.460 -0.336 0.190 0.799

(from AUSTIN et al)

- It can be seen that the matrices are very similar and realizing
that the first is based on a data set from the south east region of the
Netherlands and the second from the south coast of New South Wales, Australia,
the underlying locational invariance of the data sets is even more
remarkable. LODWICK (1980) considers that it is preferable to use

standardized variables to derive the eigenvectors which then results
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in the following matrix

Eigenvectors

1 2 3
4 0.5 0.5 0.7 0
MSS 5 0.5 0.5 -0.7 0
Bands 6 0.5 -0.5 0 -0.7
7 0.5 -0.5 0 0.7

which in terms of signs and structure is the same as the previous
matrices, a band summation, visible minus infrared, difference of

the visible, difference of the infrared. This structure is also
essentially in the same form as the Kauth-Thomas transform. The loadings
of the four spectral bands on the principal components from each of
DONKER et al (1976), AUSTIN et al (1978) and LODWICK (1980) and the
loadings of the Kauth-Thomas transform on its transformed axes are
compared in figure 4.10. Apart from a sign reversal on axes Il and ||
of the Kauth-Thomas transform the essential characteristics of the four
examples is the same. As for the Kauth-Thomas trahsform, the principal
component transformed variables will not be invariant under changing
atmospheric conditions or changing solar zenith angle.

A1l of the principal component examples come from predominantly
rural areas, but it might be expected, as suggested in section 4.5 for
the Kauth-Thomas transform axes, that similar principal components could
be found in the four dimensional Landsat response space from urban

residential areas.

4.7 Standard Deviation or Variance over Extended Areas as a Measure

of Texture

In certain circumstances cover information over extended areas may
be preferable to that in individual pixels. It could be expected that
the variance would reduce by using average reflectance and average cover
data, so that higher multiple correlations would be achieved in multiple
regression analysis. The application to extended areas also raises the
possibility of using textural type variables to predict surface cover.
TODD and BAUMGARDNER (1973) have found that the standard deviations in

the infrared bands aid in separating residential areas.
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I f a homogeneous, extended vegetative surface was viewed by the

sensor there would be little variance expected in the response signal.
A similar situation would exist for a total manmade surface. When a
mixture of the two was viewed, the distribution of the various surfaces
in an urban residential situation would not be random but would tend to
form linear, block ofiented clusters. The variance from such an
extended surface would therefore tend to be greater than from a homogeneous
surface. The variance (or standard deviation) over the extended area
would be small for a homogeneous surface, rise to a high depending on the
patterning of the residential mixture and fall to a low value from another
homogeneous surface, suggesting that in addition to the reflectance data
from each band, that variance and a quadratic term in variance (or standard
deviation) would also give additional information as to the percentage
amounts of various cover.

" A cover related variable that is useful in urban studies is housing
density, where housing density is the number of houses per unit area.
This variable cannot be predicted in a single pixel situation except via
its correlation with housing cover, as there is no reflectance measure
than can discriminate whether the amount of house cover is due to a small
number of large houses or a large number of small houses. However over
an extended areait might be expected that the variance of the reflectance
in each band, and particularly in the infrared bands, might be greater
the lower the number of houses per unit area. The increase in variance
can be explained as follows. The reflectance from a pixel containing
a large number of small houses with associated vegetation, roads and
concrete, will not vary greatly from adjoining pixels containing
substantially the same mixture, and so the variance will be small.
However with a small number of larger houses with larger rear yards and
greater separation the houses might predominantly cause the reflectance
from one pixel, and the reflectance from adjoining pixels might be
substantially due to vegetation which separates the houses, producing
a larger variance.

It is suggested then that a mixed residential surface, where

the component surface are small relative to the pixel dimensions, will
tend to have a small variance over an extended area, but higher than a
completely homogeneous surface. A mixed residential surface, where the
component surfaces are relatively large, will tend to have an overall

higher variance.
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Apart from the work of TODD et al (1973) there is little evidence
to suggest the combinations of these textural variables that are significant.
However following upon the analysis of ratios and transformations, given
previously, a visible infrared difference and also a measure of brightness
variation, could be applicable. For these reasons it was considered that
the standard deviation in each band, the square of the standard deviation
in each band (variance), the difference in the visible and infrared standard
deviation and the average standard deviation in all bands, were potential
predictor variables. Although these variables are not primary predictors
they can nevertheless be used as additional independent variables to the
band ratios and transformations in multiple linear regression analysis with

cover related dependent variables.

L.8 Summary and Conclusions

Essentially all of the ratios and transformations attempt to distinguish
between a measure of relative colour and a measure of ?ntensity or bright-
ness. Each has particularly advantageous characteristics. The various
ratios are relatively invariant under varying atmospheric or sun angle
conditions and also reduce noise effects. Others vary in a linear manner
with vegetation response, as do the(band 7 - band 5), (band 7 + band 5)
transform and ratio, or provide uncorrelated variables for further analysis.
As the radiation response from various residential surfaces are reduced to
their respective spectral reflectance, with the effects of atmosphere
accounted for, the advantage of invariance under varying atmospheric
conditions is not of itself advantageous to this study. Two advantages of
a ratio or a transformation, when being used in a multiple regression analysis
to predict percentage cover, are their linear response to a change in that
percentage and their ability to create essentially uncorrelated variables.
This suggested that the (band - band), (band + band) transformation and the
principal component transformation were those to be preferred, although
a transformation similar to the Kauth-Thomas transformation but with urban
axes defined was also considered to be useful. Neither of these, however,
will reduce noise effects unlike the various ratios.

Because the (band on band) or (band on sum of band) ratios are not
linearly related to cover percentage change these appeared less useful
(with the exception of the (band 7 - band 5) on (band 7 + band 7) ratio

which is essentially linearly related to vegetation change). With these
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ratios a number of polynomial terms is needed to linearise a relationship
which in other transformations is accomplished with fewer variables.

In addition, to have an exactly defined predictive model, each ratio,
which essentially measures the direction of an observation vector,

should be used in conjunction with the magnitude of that vector, the Vij
term previously defined, which with atmospheric changes accounted for can
act as a predictor variable in its own right. It seemed preferable to use
the minimum number of variables for example (Bi - Bj)’ (Bi + Bj)’ type
variables rather than Vi" Rij and polynomial terms in a predictive
equation. Nevertheless stepwise multiple regression analysis can isolate
those variables of greatest significance, and with only limited previous
research in urban areas available to point to particular combinations it
was decided to test all ratios and transformations previously examined,
bearing in mind their limitations and further to attempt to derive other
empirical relationships. For extended areas, the use of standard deviation
or variance as additional predictor variables appeared feasible. It was
considered that these values, calculated for each band, should be tested

for significance. All results are given in Chapter 7.
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5. DATA COLLECTION AND PREPROCESSING

5.1 Introduction

The aims of the research, given previously in Chapter 1, section 1.4,

necessitated the collection of four separate sets of data.

(i) Ground control points were required for the calculation
of the transformation parameters between ground and Landsat
coordinates. These parameters allowed the registration of
selected ground truth areas and equivalent partsof the
Landsat scene.

(ii) Percentage cover data sampled over each ground truth

area were required to be related via regression analysis
to the measured Landsat MSS response.

(iii) Landsat digital response data over the selected ground truth
and surrounding areas were required to determine background
reflectance and to be related via regression analysis to
the percentage cover data.

(iv) House value data, as one measure of environmental quality,
were required to be related via percentage cover data to

Landsat response.

Seventy residential ground truth areas were selected over the Sydney
metropolitan area. Each ground truth area contained forty Landsat pixels,
in a block of eight along scan pixels and five across scan pixels.

Ground control points were selected around each ground truth area and
their coordinates in both the Landsat coordinate system and ground
coordinate system were determined.

The calculated transformation parameters allowed the registration
of the selected ground truth areas with the Landsat response data on a
pixel by pixel basis. Ground truth areas needed to be spatially related
to the Landsat data at the sub-pixel level if the correlation between
ground and satellite data was to be fruitfully examined. Ground and
Landsat coordinates were related using a fifth order polynomial interpolation
formulae, resulting in standard errors of the order of 30 metres. These
transformation procedures however were considered peripheral to the main

study and for this reason are given in Appendix 3.
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The percentages of various urban cover surfaces, contained in each
ground equivalent pixel area, were sampled from large scale aerial photo-
graphs. Twenty sampling points were used per pixel. The sampling
procedure is illustrated in figure 5.1 and further details and the

justification for the sampling design are given in the next section-

5.2 Sample Design

One aim of the research was to determine whether variables derived
from Landsat digital data can be used to predict the percentage of various
cover classes over an extended area. The relationships between the
various data sets must first be determined from samples which can then
be used as predictors for the whole population.

When two variablesare studied a simple measure of the relationship
is the correlation coefficient. For this study it was considered that
a correlation of less than 0.3 was of limited value and that its
significance should be such as to be able to reject the null hypothesis
at the 1% level. From section 3.3.1 a calculated value of n of approx-
imately 60 is required to achieve this significance. Any relationships
having higher correlations than 0.3 or determined from more samples would
necessarily be significant at the 1% level or better.

A systematic distribution of these samples was decided upon so
as to obtain an adequate representation of the population. There is
little chance with this method that a large contiguous part of the
population would fail to be represented, a number of studies also report
other advantages in addition to its convenience. COCHRAN (1963, 223-224)
reports a number of studies which indicate that systematic sampling shows
a consistent gain in precision over stratified random sampling particularly
for data where variation would be nearest to continuous. HOWARD (1970,
227-228) considers for photo-ecological studies, that systematic sampling
can provide as good or sometimes a better estimate of the mean for a
specified number of samples when compared to random sampling.

It was found that seventy sample areas at approximately four
kilometre intervals adequately covered the Sydney metropolitan area.
Samples were taken as being those residential areas at or nearest the four
kilometre grid intersections. Although this was ten more samples than
previously considered necessary on the basis of significance, the figure
of seventy was adopted because of the administrative convenience of

whole number grid intervals, and to provide a margin of safety particularly
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FIGURE 5.1: Schematic diagram of the sampling procedure.



- 103 -

when more than two variables were being related with a subsequent
loss of degrees of freedom.

Because the relationship between cover percentages as sampled
from aerial photographs and Landsat digital response was to be initially
determined at the pixel level, sampled cover characteristics at this level
had to be obtained. It was considered that a maximum standard error of the
estimate of the percentage cover of approximately 10% would be adequate when
an individual cover comprised 50% of the pixel. This figure can be approx-
imately obtained when twenty sample points are used per pixel. Increasing
the number of samples to say 50 would only marginally improve the standard
error to 7%, and for the additional work involved this was considered
uneconomic. In addition the error will not bias the computed regression
coefficients although it will increase the variance and so reduce the
explanation of the regression.

A stratified unaligned systematic sample with a pixel divided into
20 grid cells was considered appropriate because this method shows the best
results when used on cyclic phenomena (BERRY, 1962) and so should tend to
reduce the systematic effects of a regular urban pattern. An overall cover
of sample points is achieved with each points position in its cell being
essentially random (see figure 5.2).

A cluster of forty such pixels, at each sampling site, was selected
so that the effects of the point spread function of the sensor could be
contained within the sampling area. DYE (1975) suggested a 7 x 5 array of
pixels would adequately contain this effect, although for more approximate
work a 3 x 3 array was considered sufficient. The slightly larger array of
eight pixels along scan and five across scan was selected to compensate for
any positional error of the sampled array relative to the Landsat response

array and also to increase the number of possible 3 x 3 arrays within each

sample area.

5.3 Sampling of Cover Data

Seventy residential areas at approximately four kilometre
intervals were selected for study. An area of approximately 400 x 500
metres was sampled for cover percentages around each point. These areas
contained forty Landsat pixels, five across scan and eight along scan.

Data relating to cover characteristics were sampledfrom black and
white panchromatic aerial photographs taken in 1971. These were at a
scale of 1:15 000 and were enlarged to a scale of 1:2 D00 over each

sample area, to act as a sampling base. Large scale colour or colour
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infrared photographs were preferred, but were not available. A sampling
cverlay at a scale of 1:2 000 was prepared. This consisted of an eight
pixel along scan by five pixel across scan grid, with each row of the
grid stepped four metres along scan to approximately account for sensor
delay inherent in the Landsat system, as illustrated in figure 5.3.

In each pixel twenty sampling points were marked.

/ Sample Points

12

fervs
jeas 3

step_ I 11l _]_]_]_]Sca
Direction

FIGURE 5.3: Sampling grid used to estimate ground cover
percentages showing step for sensor delay.
Each cell represents one Landsat pixel.

The centroid coordinates of each of the sample areas were
transformed into their Landsat equivalents using the deriwed transformation
parameters (see Appendix 3) and the small distances to the nearest pixel
centre (across scan) and midway between pixels (along scan) were determined
i.e. the centre of a 5 x 8 block of pixels. These adjusted centroids and
the direction of the across scan track were marked up on 1:10 000
planimetric maps covering each sample area, and then transferred to each
enlarged photograph by comparison of map and photo detail.

The sampling overlay was registered with each photo and the following

data were sampled over each pixel.

House percentage cover (H)

Other Building percentage cover (0)
Road percentage cover (R)

Concrete percentage cover (C)

Tree percentage cover (T)

Grass percentage cover (G)

Water percentage cover (W)

Soil percentage cover (S)

Number of houses per pixel (N)
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House roofs in Sydney are predominantly red/brown tile and should
have similar reflectance characteristics. Other buildings separate from
the main dwellings, consisted of small buildings, predominantly with
weathered iron roofs. |In addition this class of cover also included a
small percentage of commercial, industrial, and multi-family units that
encroached on the predominantly single family dwelling areas. Roads were
of asphalt construction, and concrete included footpaths, drives, parking
areas etc. Tree and grass percentages are self explanatory, however grass
at the time of overflight (southern summer) is relatively dry and trees
are predominantly native with relatively few deciduous trees. Water
percentage included swimming pools, and in coastal areas sea water where
the sampling grid extended slightly over the sea.

Soil percentage was a catch-all class for any area that was not
covered with vegetation or man-made structures and included soil, exposed
rock and sand. These cover types have quite separable signatures
normally, but in this study they amounted to only a few percent of the
total cover and could be considered together,

The number of houses per pixel was sampled so that housing density
could be tested for its correlation with band response and also to allow
the calculation of house size, house percentage divided by the number of
houses, which from previous experience is known to be a significant

variable for predicting house value (FORSTER, 1975).

5.4 Landsat Digital Data

The equivalent Landsat response in each band and for each individual
pixel was obtained from the computer compatible tapes of Landsat scene
No. 1141 - 23140, the Sydney Scene of December 12th 1972, using the line
and pixel coordinates of each to access the data. Pixel and line values
have their origin in the northwest corner of the Landsat frame, positively
increasing west to east for pixel values and north to south for line
values. The Sydney sub-scene begins at approximately line 1500 and pixel
1300 and covers a square of approximately 35 km sides, or approximately
600 pixels east/west by 450 pixels north/south. A computer card deck
listing each pixel in blocks of forty was prepared, with the appropriate

cover and response data related to it, forming a total data file of 2800

pixels.
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Where an interswath discontinuity occurred, care had to be taken
in selecting the appropriate pixel responses to relate to the sampled
cover data. While the ground and Landsat coordinates were registered
at the centroid the occurrence of the discontinuity within the sampling
frame of 5 x 8 pixels meantthat the appopriate pixel response selected
on the opposite side of the discontinuity to the centroid had to be
stepped 50m (or approximately onepixel width) west when the discontinuity

was south of the centroid and 50m east when it was north of the centroid.

5.5 Background Reflectance Data

The average background reflectance, ﬁbi’ i =154 to7, required to
calculate target reflectance(see section 2.5.5), can be obtained by
collecting surface cover information over an area surrounding a central
target pixel and weighting the reflectance according to the respective
relative areas of each cover type (TURNER et al, 1972, TURNER, 1975).

These sampled proportions and the known reflectance of each cover type
are then used to obtain the average background reflectance. This procedure

was rejected for a number of reasons -

(i) The reflectance of individual cover surfaces was
unknown prior to the calculation of the background
reflectances.

(ii) The sampling of cover surfaces around each individual
pixel would be very time consuming.

(iii) The method was not particularly suitable for use with
a computer because each pixel would require a resampled

and recalculated background.

An alternative approach can be suggested from an examination of
the nature of background reflectance. The effect of the reflectance of
a background pixel on the path radiance at a target pixel reduces the
further the pixel is from the target pixel, due to the increasing length
of path travelled by the energy from the background pixel to the sensor,
which produces increased scattering and absorption. |Increasing the angle
made between the energy path and the sensor nadir also means that less
energy is scattered in the direction of the sensor due to the effect of
the single scattering phase function. Thus the major effect of background

reflectance is due to those areas immediately surrounding the target pixel.
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It was therefore considered that little error would result if
the average reflectance over each ground truth area was used as the
background reflectance for each pixel within that ground truth area.
It was further considered that the average response count over each
ground truth area, converted to reflectance, should be used in preference
to determining the background reflectance from sampled cover percentages.
The average response count over a ground truth area was easily derived
from the computer stored digital data and it therefore required only the
calculation of the relationship between count value and reflectance to
effect the conversion.

When average reflectance over each ground truth area is used the
target and background reflectance can be considered equal and (A 1.3)
which relates target reflectance to response count and background
reflectance, can be inverted to give background reflectance, Rbi’ as a

function of response count, Ci. The following equations can therefore

be derived
C - 10.25
Rp = 4
B, (1.950 + 0.00105(:4)
3 C_- 7.6
RB, = 127067 + 0.00072C )
_ C - 4.30
Rg = 8 ,
6 (1.907 + o.ooosocp
_ C_ - 1.56
RB, = i Bhz + 0.00026C ) (5.1)

It is suggested for use in an operational mode that the background
reflectance be precomputed at ten pixel intervals (along or across scan)
and these be held in a look up table form against Landsat line and pixel
coordinates. In the present study, however, background reflectance was

calculated only for each ground truth area.

5.6 Determination of Corrected Data Sets

Using the background reflectances calculated for each band for
each ground truth area, the raw Landsat response counts from each pixel
were converted to reflectance values using (A 1.3). A new data file
relating cover percentages to pixel reflectance was then created, contain-

ing data for each of the 2800 (70 x 40) pixels sampled.
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Two further data files were prepared which accounted for the
effects of the sensor point spread function. Reflectance values for
each pixel were deconvolved using (2.18) and substituting reflectance
for sensor count rate. Because this calculation uses the reflectance
values of the eight surrounding pixels, pixels on the edge of a ground
truth area cannot be converted and so the final file contained only data
for 1260 (70 x 18) pixels (see figure 5.4). This file related cover
values to the deconvolved reflectance values for each pixel. A second
file was created by convolving the percentage cover data of each pixel
with its neighbours in the same manner as given in (2.19). Again the file
contained 1260 pixels but now related convolved percentage cover values
to each pixel's reflectance value.

These three files, atmospherically corrected reflectance only
data, deconvolved reflectance and convolved cover data, related to their
respective cover or reflectance, are the main data files used in Chapters
6 and 7. A further file relating average cover and average reflectance

variables, over each ground truth area, was also used in Chapter 7.
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FIGURE 5.4: Relationship between edge pixels used in convolution
calculations and remaining central pixels.
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6. REFLECTANCE PREDICTION

6.1 Introduction

The theoretical relationship between reflectance and surface
cover was described in Chapter 2, where it was shown that the reflectance
from a mixed cover surface was a function of the proportionate amounts
of individual cover contained in that mixture. The results of using this
theoretical relationship and the sampled data to determine the coefficients
necessary to convert percentage cover to reflectance, are déscribed in
this chapter. From these coefficients the reflectance from a surface
containing 100% of an individual cover were extrapolated, and are
compared with reflectance values from other sources in the latter half
of the chapter.

Three models were studied, using reflectance in each band as the
dependent variables and percentage cover as the independent variables
in a multiple regression analysis. The first related count values
(converted to reflectance) to percentage cover without accounting for
the effects of point spread convolution. The latter two models firstly
related deconvolved reflectance to cover data, and then reflectance to
convolved cover data.

For each, both the standard regression procedure and the forced
origin regression procedure were used. Essentially these are the same
except that for one the constant is unrestricted in value and for the
other the constant is forced to a value of zero. Stepwise regression
was used so that the best subset of variables was output at each stage.
All cover variables were allowed to freely enter the equations, provided
they satisfied the minimum F ratio criteria given in section 3.3.7, and
for the standard regression procedure, the least significant variable
was not included.

The change in average reflectance due to a small change in the
percentage of ‘a particular cover surface was examined, and used to
determine likely band combinations for predicting the percentage amounts
of cover contributing to an observed reflectance. The results of this

examination are also contained in this chapter.
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6.2 Results of Calculations

The coefficients computed for each band, each model and the two
regression procedures are shown in Tables 6.1 through 6.6. Cover
variables are listed in order of their entry into the regression equation.
Previously defined statistical parameters are also tabulated.

For an individual model and band the two regression procedures
gave the same multiple correlation coefficient, r. The multiple
correlation coefficients for different models and different bands within
those models, however, were not the same. The convolved percentage cover
model gave the highest multiple correlation coefficient in all four
bands ranging from an r value of 0.72 for band 5 to 0.56 for band 6.
Lowest multiple correlation coefficient of all three models came from the
deconvolved model for band 6 with a low r value of 0.39. The deconvolved
model had lower r values in all four bands when compared to the other two
models. However it can be seen from the F ratios that the regressions
for all models and each procedure were highly significant being well within
four times the 1% confidence limits chosen as the limiting criterion in
3.37.

Some cover variables, particularly with the standard regression
procedure, were not significant, the F - ratio for them to enter the
equation falling below the stated criterion. It should be noted however,
that when the regression is forced through the origin, the coefficients,
which represent the absolute change from zero, will be statistically
insignificant if the coefficient approaches zero. For the standard
regression procedure a variable causing a change in the dependenf
variable approximately equal to the equation constant will have a
relative coefficient approaching zero, and it will also be statistically
insignificant. In addition the convolved and deconvolved models had a
reduced data set (as the perimeter values of each ground truth area are
not included) which caused a reduction in the number of pixels containing
soil and water cover, as these covers predominantly occurred within the
perimeter zone. Using a reduced data set would limit the significance
of these variables.

Estimates of the 100% reflectance for each variable in each band
were calculated by substituting for the appropriate variable. Where the
coefficient was insignificant a zero value was assumed. Estimates of

the reflectance for various mixtures can also be calculated by inserting
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TABLE 6.1

Reflectance in each band as a function of percentage

cover (standard regression procedure)

Band Variable  Coefficient S.E. r 2 S.E. F

Tree -0.061 0.002
Other 0.045 0.004
Concrete 0.051 0.007
Road 0.015 0.003

4 Water -0.029 0.007 0.61 0.37 1.7 335
Grass * *
House * *
Soil I *
Constant 14.7 0.1
Tree -0.127 0.005
Grass -0.059 0.005
Water -0.120 0.009
Concrete 0.042 0.009

5 Road -0.037 0.006 0.65 0.42 2.2 341
House -0.018 0.005
Soil % ES
Other % *
Constant 18.1 0.4
Grass 0.092 0.004
Water -0.128 0.010
House 0.051 0.005
Concrete 0.108 0.010

6 Tree 0.019 0.004 0.54 0.29 2.6 224
Soil % *
Other * *
Road % b
Constant 18.3 0.3
Grass 0.185 0.006
Tree 0.095 0.007
Water -0.170 0.016

7 House 0.073 0.008 0.63 0.40 3.8 309
Concrete 0.125 0.016
Other -0.037 0.010
Road % *
Soil % %
Constant 22.2 0.5

ate
w

not

significant




- 1b -

TABLE 6.2
Reflectance in each band as a function of percentage

cover (forced origin regression procedure)

Band Variable Coefficient S.E. r r 2 ru2 S.E. F
Grass 0.143 0.001
House 0.154 0.002
Road 0.160 0.003
4 Other 0.191 0.004 0.61 0.37 0.99 1.7 208
Tree 0.085 0.002
Concrete 0.193 0.006
Soil 0.177 0.010
Water 0.115 0.007
House 0.162 0.003
Grass 0.122 0.002
Road 0.144 0.003
5 Other 0.182 0.004 0.65 0.42 0.97 2.2 252
Concrete 0.222 0.008
Tree 0.054 0.002
Soil 0.175 0.012
Water 0.062 0.008
Grass 0.275 0.002
House 0.234 0.003
Tree 0.202 0.003
6 Road 0.183 0.004 0.53 0.28 0.99 2.6 137
Other 0.182 0.005
Concrete 0.290 0.009
Soil 0.191 0.014
Water 0.054 0.010
Grass 0.407 0.003
House 0.296 0.005
Tree 0.317 0.004
7 Road 0.222 0.006 0.63 0.4 0.99 3.8 229
Concrete 0.346 0.014
Other 0.185 0.008
Soil 0.221 0.021
Water 0.052 0.015

Not significant
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TABLE 6.3

Deconvolved reflectance in each band as a function

of percentage cover (standard regression procadure).

Band Variable Coefficient S.E. r r2 S.E. F

Tree -0.096 0.006
Grass ~0.024 0.006
Concrete 0.052 0.017
Soil 0.163 0.059

4 House * * 0.4k4 0.19 3.0 75
Water * *
Other * *
Road % *
Constant 16.4 0.3
Tree -0.134 0.009
Grass ~0.039 0.009
Concrete 0.116 0.022
Soil 0.237 0.073

5 Water -0.163 0.060 0.54 0.29 3.6 88
House 0.027 0.012
Other * *
Road % %
Constant 15.4 0.7
Grass 0.137 0.010
House 0.092 0.013
Concrete 0.150 0.025
Tree 0.046 0.011

6 Water -0.274 0.067 0.39 0.15 4.0 38
Soil 0.319 0.082
Other * %
Road * %
Constant 15.0 0.8
Grass 0.092 0.014
Road -0.181 0.017
Water -0.562 0.095
Other -0.147 0.024

7 House -0.046 0.016 0.52 0.27 5.7 92
Concrete * *
Tree * *
Soil % %
Constant 33.9 1.0

N

" Not significant
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TABLE 6.4

of percentage cover (forced origin

band as a function

regression procedure)

Band Variable Coefficient S.E. r r2 ry S.E. F
House 0.168 0.005
Grass 0.140 0.003
Road 0.161 0.007
4 Concrete 0.215 0.016 0.44 0.19 0.96 3.0 36
Other 0.158 0.012
Tree 0.067 0.005
Soil 0.333 0.059
Water 0.134 0.049
House 0.182 0.007
Grass 0.115 0.004
Road 0.155 0.009
5 Concrete 0.269 0.019 0.54 0.29 0.93 3.6 64
Other 0.154 0.014
Soil 0.391 0.072
Tree 0.020 0.007
Water % *
Grass 0.287 0.005
House 0.242 0.008
Tree 0.197 0.007
6 Road 0.152 0.010 0.39 0.15 0.97 4.0 27
Concrete 0.297 0.022
Other 0.150 0.016
Soil 0.465 0.081
Water % ok
Grass 0.431 0.007
House 0.293 0.011
Tree 0.339 0.010
7 Road 0.161 0.014 0.51 0.26 0.97 5.7 55
Concrete 0.318 0.031
Other 0.193 0.022
Soil 0.424 0.114
- Water * *

Not significant.
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TABLE 6.5

Reflectance in each band as a function of convolved

percentage cover (standard regression procedure)

Band Variable Coefficient S.E. r r S.E F

Tree -0.103 0.004
Concrete 0.065 0.012
Grass -0.016 0.003

4 Soil 0.133 0.037 0.66 0.43 1.4 243
Other * *
Water * *
Road * *
HO use % %
Constant 16.1 0.2
Tree -0.159 0.006
Grass -0.055 0.006
Concrete 0.109 0.017
Road -0.034 0.011

5 Water -0.120 0.036 0.72 0.52 1.8 224
Soil 0.139 0.048
Other * *
House * x
Constant 17.6 0.4
Grass 0.098 0.007
Road -0.082 0.010
Concrete 0.151 0.019
House 0.057 0.009

6 Water -0.221 0.044 0.56 0.30 2.2 80
Soil 0.258 0.061
Other -0.047 0.013
Tree * %
Constant 19.3 0.5
Grass 0.096 0.010
‘Road -0.230 0.015
Other -0.183 0.019
Water -0.384 0.063

7 House -0.032 0.012 0.68 0.47 3.2 221
Tree % *
Concrete *
Soil % %
Constant 34,1 0.7

" Not significant
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TABLE 6.6
Reflectance in each band as a function of convolved

percentage cover (forced origin regression procedure)

Band | Variable Coefficient S.E. r T2 ‘r’u2 S.E. F
House 0.160 0.004
Grass 0.146 0.002
- Road 0.159 0.006

4 Concrete 0.226 0.012 0.66 0.43 0.99 1.4 119
Other 0.169 0.008
Tree 0.059 0.003
Soi l 0.295 0.038
Water 0.149 0.028
House 0.180 0.005
Grass 0.120 0.003
Road 0.142 0.007

5 Concrete 0.283 0.015 0.72 0.52 0.98 1.8 166
Other 0.161 0.010
Soil 0.338 0.048
Tree 0.015 0.004
Water * ®
Grass 0.291 0.003
House 0.250 0.006
Tree 0.193 0.005

6 Concrete 0.343 0.018 0.55 0.30 0.99 2.2 68
Road 0.111 0.009
Other 0.147 0.013
Soil 0. 444 0.059
Water * %
Grass 0.438 0.005
House 0.305 0.009
Tree 0.333 0.007 v

7 Concrete 0.386 0.026 0.69 0.47 0.99 3.2 138
Other 0.150 0.019
Road 0.107 0.013
Soil 0.483 0.085
Water * *

al.
v

Not significant
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the appropriate cover percentages. Calculated reflectance values for the

various bands, models and procedures are given in Table 6.7.

6.3 Comparison of Results

The difference in coefficients for the standard regression
procedure and the forced origin regression procedure can be seen as a
di fference between a relative change model and an absolute change model.
The relative change model can be considered as a closed ground cell
response, that is whenever the percentage cover of a variable is zero there
will always be a response from 100% of the cell due to the remaining cover
variables. Because of the inter-dependence of the variables, an increase
of one percent in one variable must result in the loss of one percent from
the combined sum of the other variables. This will be different for
different variables and for different values of that variable. The
resultant measured change would therefore be due to the combined effect.
In comparison the absolute change model can be considered as an
open ground cell response, that is, when all cover variables are zero the
cell is effectively transparent and can be considered as a black cell
from which no radiance emanates. As individual cover variables occupy
an increasing proportion of the ground cell the response will therefore
be due to the summation of the responses from each individual cover,
weighted by the proportion of the cell that it occupies.
Theoretically the deconvolved reflectance model should have
achieved a higher multiple correlation than the atmospherically
corrected only model, because the relationship between ground cover
and reflectance was more correctly represented. The lower correlation
actually obtained is considered to be due to the deconvolution procedure
enchancing not only the reflectance but noise effects as well, leading
to larger residuals and hence a reduced correlation. This will not be
the case for the convolved cover model which is effectively the result
of a smoothing operation. In addition limiting the deconvolution
calculétion to a 3 x 3 array will also introduce some error. A number
of noise suppression techniques were applied and while these marginally
improved the correlation it was considered that they so altered the
theoretically correct deconvolution procedure as to make their application

inappropriate.
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TABLE 6.7

urban cover

Estimated Reflectance for various types of

Band House Other Road Concrete Tree Grass Water Soil
b (a) | 14.77] 19.2 | 16.2 19.8 8.6 | 145.7°] 11.8 | 14.7%
) | 15.4 | 19.1 16.0 19.3 8.5 | 145.3 | 1.5 | 17.7
() | 16.5" | 16.6° | 16.4° | 21.6 6.8 | 14.0 | 16.4" | 32.7
(d) | 16.8 | 15.8 | 16.1 21.5 6.7 | 1h.0 | 13.4 | 33.3
) | 16.17 | 16.17 | 16.17 | 2.6 5.8 | th.5 | 16.17 | 29.4
(f) | 16.0 | 16.9 | 15.9 22.6 5.9 | 14.6 | 14.9 | 29.5
5 (a) | 16.3 | 18.17 | 4.4 22.3 5.4 | 12.2 6.1 18.1"
) | 16.2 | 18.2 | 14.4 22.2 5.4 | 12.2 6.2 | 17.5
(c) | 18.1 5.8 | 15,8 | 27.0 2.0 | 11.5 | -0.9 | 39.1
(d) | 18.2 | 15.5 | 15.4 26.9 2.0 | 11.5 0.0 | 39.1
) | 17.6" | 17.6" | 14.2 28.5 1.7 | 12.1 5.6 | 31.5
(F) | 18.0 | 16.1 14.2 28.3 1.5 | 12.0 .0 | 33.8
6 (a) | 23.4 | 18.3° | 18.3 | 29.1 20.2 | 27.5 5.5 | 18.3"
(b) 23.4 18.2 18.3 29.0 20.2 27.5 5.4 19.1
() | 24.2 | 15.0° | 15.0° | 30.0 19.6 | 28.7 |-12.4 | 46.9
(d) | 24.2 | 15.0 | 15.2 29.7 19.7 | 28.7 0.0 | 46.5
(e) | 25.0 | 14.6 | 11.1 344 19.3° | 29.1 | -2.8 | 45.1
(f) | 25.0 | 14.7 | 11.1 34.3 19.3 | 29.1 0.0 | 4k.4
7 @) | 29.5 | 18.5 | 22.2" | 34.7 31.7 | 40.7 5.2 | 22.2"
) | 29.6 | 18.5 | 22.2 34.6 31.7 | 40.7 5.2 | 22.1
(c) | 29.3 | 19.2 | 15.8 | 33.9° | 33.97| 43.1 |-22.3 | 33.9"
(d) | 29.3 | 19.3 | 16.1 31.8 33.9 | 43.1 0.0 | 42.4
() | 30.9 | 15.8 | 11.1 3.1 31| 43,7 | -h. 341"
(f) | 30.5 15.0 10.7 38.6 33.3 43.8 0. 48.3

(a)

Coefficient assumed to be zero.

Reflectance and cover, standard regression procedure, (b) Reflectance

and cover, forced origin procedure, (c) Deconvolved reflectance and cover,
standard regression procedure, (d) Deconvolved reflectance and cover, forced
origin procedure, (e) Reflectance and convolved cover, standard regression
procedure, (f) Reflectance and convolved cover, forced origin procedure.
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The equivalence of the overall multiple correlation coefficients
for each model for the two different regression procedures indicates that
the assumption of a zero constant for the forced regression procedure was
valid, that is the additive effect of path radiance had been eliminated.
Had this assumption not been valid, then the correlation coefficient would
have been somewhat less for the forced origin procedure or could have
taken a negative value.

A comparison of the reflectance values of Table 6.7 show essentially
the same result for either the standard or the forced origin regression
procedure, except for soil and water cover variables which show some
marked variation due to the limited nature of the data. The forced origin
regression procedure however allows the calculation of all cover reflect-
ances (apart from soil and water) without the need to assume that an
insignificant coefficient has a zero value. For this reason this procedure
is to be preferred. ‘

A subtle but marked difference exists between the reflectance values
calculated from the two models accounting for sensor point spread and the
atmospherically corrected only model. In almost all cases the reflectance
using the former two models are significantly more similar than either of
them is with the latter model. For example in band 4 the standard error
of the difference for the reflectance values were found to be significantly
different at the 5% level on each of four occasions, when comparing the
atmospherically corrected reflectance values with the reflectance values
of each of the other two models, yet no values of these latter two models
were significantly different at the same level. This similarity indicates
that while these two models used different approaches to the sensor point

spread problem, the underlying theory was correct. In all further work
described in this chapter the results of the convolved cover ‘model using the

forced origin regression procedure are used.

A comparison of the spectral signatures of each of the covers,
grass, trees, house, concrete, road and other is given in figure 6.1.
Most immediately obvious is that the discrimination of the individual
covers is greatest in the infrared bands and also the typical vegetative
signatures of grass and trees. On closer examination of -figure 6.1 it
can be seen that grass and trees, house and concrete, and other and road
reflectances closely parallel each other indicating three distinct
surface classes with subclasses being differentiated by brightness only.

These three classes might be considered as vegetation, urban residential
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and non-residential. These classes and subclasses were examined further.
The results of this examination are given in Chapter 7.

Very little urban reflectance data was available to make an
external comparison of the results shown in Table 6.7. BAILEY (1979)
however had used Landsat data over the Sydney area to define a number of
different landscape types. Although many of these types or classes
included a mixture of surface covers some were sufficiently homogeneous
to allow a comparison. Additionally, because the data derived from
homogeneous areas, the effects of the sensor point spread function
and incorrect pixel positioning were minimal. The response counts of the
training set categories of bush, units, large expanses of concrete and
short grass, from BAILEY (1979), are shown in Table 6.8. Units are the
Australian equivalent of flats, condominiums, apartments etc and
typically have large tiled roof areas with little open space between them
and are here considered as equivalent to a homogeneous cover of house as
defined for this study. Bush refers to large expanses of Australian

native trees, mainly eucalyptus.

TABLE 6.8

Landsat response count values of various homogeneous urban
cover (after BAILEY, 1979)

Cover Band 4 Band 5 Band 6 Band 7
Bush 25.8 18.4 34,2 37.2
Units 4s 4 43.8 50.8 46.8
Concrete 87.2 90.8 75.8 60.0
Grass 4o.o 33.6 62.3 65.6

“Doubled Band 7 values

The count values of Table 6.8 were approximately converted to
reflectance values using (5.1). The Sydney scene used by BAILEY was the
same as used for this study so that atmospheric conditions were also the
same. In addition the cover was sufficiently extensive to assume a back-
ground reflectance equivalent to the target reflectance. These computed
reflectance values and the reflectance values derived from Table 6.6 and

indicated by the letter (f) in Table 6.7, are given in Table 6.9.
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TABLE 6.9

Comparison of percentage reflectance of various urban cover
with those derived from BAILEY (1979)

Band 4 Band 5 Band 6 Band 7
Cover - - - -
Bush 5.9 7.9 1.5 10.8 | 19.3 15.5 | 33.3 24.6
Units 16.0 17.6 18.0 17.2 25.0 24,1 30.5 31.1
Concrete | 22.6 37.7 | 28.3 39.0 | 34.3 36.8 | 38.6 40.1
Grass 14.6 14.9 12.0 12.4 29.1 29.9 43.8 43.9

Derived from BAILEY (1979)

Tree cover of the present study has a lower reflectance than bush
in the visible bands but is higher in the near infrared bands. It is
considered that this is due to the increased shadow from an extensive
stand of trees as represented by bush as compared to the single or
smaller groups of trees found in residential areas. The overall effect
of shadow is to flatten or average out the typical vegetative signature
of trees. Shadow strongly reduces the response from the infrared and so
bush would also tend to have lower values in these bands due to this
effect.

Both results show that the reflectance of concrete is quite high
across all bands, BAILEY's results however show even higher reflectances
than those of the present study, particularly in bands 4 and 5. Her
results show a relatively constant reflectance across all bands compared
to a steadily increasing reflectance as indicated by this study. The
average cover of concrete in the present study was approximately 5% with
a standard deviation of 5%, indicating that any additive response from
concrete was due to very small areas of that cover. It is assumed that
the reflectance of such small amounts of cover are still substantially
affected by the average background reflectance and so the measured
reflectance is seen as being approximately the average of the true
reflectance of concrete from an extended surface and the background average
reflectance. 1t could also be further suggested that differences will

arise from extrapolating from regression coefficients derived from a small
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percentage of concrete cover to a 1004 equivalent total cover value.

For the two surfaces, grass and house, where neither shadow nor
proportion of cover can cause any adverse reflectance changes, the results
compare extremelywell with BAILEY's grass and units. Average differences
across all bands being 0.4 percent reflectance for grass cover, and 1.0
percent reflectance for house (units) cover.

The results of the present study are also compared with those
given in Table 2.2 which showed the hemispherical and nadir reflectance
of urban type surfaces in the visible portion of the spectrum. Assuming
the surface description of Table 2.2, of concrete, macadam, forest and
grass (dry) are approximately equivalent to the present study cover
classes of concrete, road, bush and grass, and further that their
reflectances are averaged for hemispherical and nadir reflectances then
the following comparison with the average 'visible' reflectance (average
of band 4 and band 5 reflectance for convolved cover, forced regression

procedure)‘from 4 (f) and 5 (f) of Table 6.7 can be made:-

From Table 2.2 From Table 6.7
concrete 28.3% concrete 25.5%
macadam 12.1% road 15.0%
forest 4 5% bush 3.9%
grass (dry) 10.8% grass 13.3%

The results are clearly in good agreement even given their diverse
sources. The marginally lower reflectance for concrete of the present

study was also noted in the BAILEY (1979) comparison.

6.4 Cover Change and |ts Effect

While all models gave reasonable estimates of the total reflectance
when each cover comprised 100% of the ground cell, it was difficult to
visualize the effect on reflectance of a small change in any individual
cover variable because of the interdependence of the total variable set.

Each individual ground cell can be considered as being comprised of
one hundred one percent cells. |f each of these smaller cells contained
the sampled average proportion of cover variables, then the reflectance
from the total cell would equal the sample average reflectance. |f now
one of these smaller cells was completely replaced by an individual cover,

the subsequent change in reflectancevwould give a measure of the combined
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change from an average background reflectance due to an increase of one

unit in a particular variable and the corresponding decrease of one unit

of average reflectance.

The average response count in each band over all sampled areas

were as follows :-

Band 4 38.8
Band 5 35.0
Band 6 49.8
Band 7 48.8 (Doubled)

These were converted to average reflectance values using (5.1)
to give 14.3, 13.1, 23.6, 32.5 percentage reflectance for each of bands

L, 5, 6 and 7 respectively.

Using the coefficients of Table 6.6, new coefficients can be
determined that represent the combined change from an average background
reflectance. For band 4 the average reflectance is 14.3%, so that as the
average background reduces by one percent the reflectance will reduce by
0.143%. However if this reduction in average background is now replaced
by one percent of house cover for example, then the reflectance will be
increased by 0.160 percent. The combined effects will therefore produce
an increase in reflectance of 0.017 percent. Similarly, coefficients for
all bands and all cover variables were derived. These coefficients are

shown for all cover variables, apart from soil and water, in Table 6.10.

TABLE 6.10
Coefficients,of various urban cover types, representing the
change in reflectance due to a change of 1% in that cover

from a surface containing the average of all cover percentages.

Band | Average House Other Road Concrete Tree Grass
Reflectance
4 14.3 +0.017 +0.026 +0.016 +0.083 -0.084  +0.003
5 13.1 +0.049 +40.030 +0.011 +0.152 -0.116 -0.011
6 23.6 +0.014 -0.089 -0.125 +0.107 -0.043  +0.055
7 32.5 -0.020 -0.175 -0.218 +0.061 +0.008 +0.113
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These new equations gave insight into the desirable band combinations
required to predict particular cover characteristics. For example, band &
or band 5 reflectance should be a good predictor of the change in tree
percentage from average, because all other cover variables cause a
relatively small change or are in the opposite direction. A similar
suggestion can be made for the grass percentage in band 7.

Possible support for these findings comes from RICHARDSON et al
(1977) who found higher correlations between crop cover and band 4 and 5
individually than any vegetation index model tested. Crop cover and
these bands were negatively correlated, as are tree cover and bands 4 and
5 as indicated by the large negative coefficient of tree cover in Table 6.10.
RICHARDSON et al also tabulated results showing that band 6 had a higher
positive correlation with leaf area index than all vegetation index models,
and that band 7 by itself was only marginally less significant. As they
point out, individual Landsat bands may sometimes correlate better with
various vegetation parameters than transformed composite bands used as
vegetation indices.

The band 7, band 5 difference should be a good predictor of green
content (i.e. the sum of grass and tree percentages), a result indicated
by a number of researchers and discussed in Chapter 4, and is due to the
high reflectance of vegetation in band 7 and the low reflectance in band 5.

The following equation was determined from the results of Table 6.10,

R, - R = 19.4 - 0.069H - 0.2050 - 0.229R - 0.091C

+ 0.124T + 0.124¢g

where Ri = reflectance inBand i, i = 4 to 7.

The equation shows that any increase in tree and grass percentages
over their average values will increase the difference between the band 7

and band 5 reflectances, whereas an increase in any non-vegetated surface

will cause a decrease. _
Less obvious effects can also be seen, as noted by FORSTER (1980b).

The difference between bands 4 and 5 should correlate with concrete

percentage. The equation of difference is given by

Rq - R5 = 1.2 - 0.032H - 0.004 0+ 0.005R - 0.069C + 0.032T

+ 0.014G
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In this equation concrete percentage has the largest coefficient,
with all other large changes (apart from house percentage) being negligible
or in the opposite direction. As each house has associated with it concrete
driveways and footpaths, the house and concrete combined percentage might
be considered as a residential percentage, with the difference in reflect-
ance between bands 4 and 5 acting as a significant measure. Normally these
two bands are considered so highly correlated that little information is
contained in them, although the yellowness axis of the Kauth-Thomas
transform derived for rural (mainly agricultural) areas also correlates
well with this difference. The sum of these two bands should also
positively correlate with concrete percentage and negatively correlate
with tree percentage. |

The other two highly correlated bands are band 6 and band 7.

Their difference also produced interesting results and is given by

R7 - R6 = 8.9 - 0.034H - 0.086 0- 0.093R - 0.046C + 0.051T

+ 0.058G

Although not as effective as the band 7 minus band 5 relationship the
opposite effect of vegetated and non-vegetated surfaces is equally
apparent and could be considered as an additional predictor variable for
determining their respective cover percentages.

Care must be taken in using equations derived from Table 6.10
because the probability of seemingly insignificant coefficients having an

effect will depend on the variance of their cover percentages.

6.5 Summary and Conclusions

A1l of the models proved to be very significant when tested using
multiple linear regression analysis, however the convolved percentage
cover model had the highest overall correlation with reflectance in each
of the four bands. For all models the forced origin regression procedure
gave more significant estimates of the coefficients, which allowed for more
reliable estimates of the reflectance of individual cover types. Further,
because the form of the linear function connecting all cover variables
did not affect the solution of the normal equations when the regression
was forced through the origin, all cover variables could be entered into
the regression. For these reasons the convolved percentage cover model
using the forced origin regression procedure is to be preferred whén

predicting individual cover reflectance.
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The calculated reflectances of grass and trees, in each band,
indicated a signature typical of vegetated surfaces. The individual
grass andtree signatures were of the same general form but could be
distinguished by the level of brightness in each band, which was also the
case for the surface cover types of road and other, and house and concrete.
A comparison of reflectance values with two external sources showed very
similar results and where differences did occur these were satisfactorily
explained.

It was found that equations relating reflectance to changes in
surface cover percentages from their average amounts were more explanatory
than those using total cover percentages and gave insight into the
combined variables needed to predict individual cover percentages.
Predictably the (band 7 - band 5) difference was closely related to
percentage of vegetative cover, however the possible significance of
bands 4 or 5 or their sum for determining tree percentage, band 7 for
determining grass percentage and the difference of the infrared bands
for determining vegetative content, were unexpected results. The
(band 4 - band 5) difference and (band 4 + band 5) sum were suggested
as possible predictors for concrete percentage, however this tentative
conclusion was placed in some doubt by the difference in 100% concrete
reflectance with that indicated by BAILEY (1979). Nevertheless this
band difference and sum and their relationshipsto concrete percentage
and also house plus concrete percentage were considered to be worth
further examination.

The work described in this chapter was extended by testing the
various ratios and transformations discussed in Chapter 4 for their
ability to predict individual cover percentages and by examining the
suggested combined cover percentages of vegetation, urban residential

and urban non-residential surfaces. These results are given in Chapter 7.
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7. DERIVATION OF PREDICTIVE EQUATIONS FOR COVER PERCENTAGES FROM
REFLECTANCE DATA

7.1 Introduction

in Chapter 4 various ratios and transformations were examined.
This chapter describes the application of these variables to the
prediction of cover percentages. Initially the reflectance and cover
data of the atmospherically corrected only model, the deconvolved
reflectance model and the convolved cover model were tested via regression
analysis for multiple correlation. The most predictive model was sub-
sequently used to determine the coefficients of the most significant ratio
and transformation variables. For each cover variable the results are
compared. Conclusions are reached as to the optimum combination of
predictive variables on the basis of level of correlation and the number
of variables required.

The underlying structure of the reflectance data is described using
results obtained from factor analysis (essentially equivalent to
principal component analysis). Various factors and rotated factors were
determined and correlated with cover data to give them meaning.

This chapter also describes the application of multiple regression
analysis to the data from extended areas, including textural data.
Derived equations relate cover percentages and a measure of housing

density to the independent reflectance variables.

7.2 Definitions of Variables

This section defines all the cover wariables, reflectance ratios

and transformations, and textural variables that are used in subsequent

sections.
H = House percentage per pixel
0 = QOther building percentage per pixel
R "= Road percentage per pixel
C = (Concrete percentage per pixel
T = Tree percentage per pixel
G = Grass percentage per pixel
GREEN = T+ G
NONRESID = R + 0
RESID = H+C



NONGREEN
Ri

Di j

Sij

Ri j

Rij2
Vij

Vij2
RVij

DS j

DSij2
DSVi j

RiS
Vis
Vis2
RViS
Fi
FRi
Ai

SDi

SDi2
SUMSD
SDvr

Ha to Ga

AGREEN
ARESID
ANONRESID
ANONGREEN
Na
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H+C+R+0
Ri’ pixel reflectance in bands i = 4 to 7
Ri - Rj

Ri + Rj

Ri

Rj

(Rij)?

(Ri% + Rj2)

(vij)®

(Rij)(Vij)

Ri - Rj

Ri + Rj

(DSij)?

(DSij) (Vij)

L Ri

Ri.

S

(Ri% + 52)

(vis)?

(RiS)(Vis)

Fi’ unrotated factor i, i =1 to 4
FRi’ rotated factor i, i = 1 to &4

Ai’ Average reflectance over ground truth area,
bands i = 4 to 7

SDi’ standard deviation of reflectance over ground
truth area in bands i = 4 to 7

(spi)?

% SDi

(SD4 + sSD5) - (SD6 + SD7)

Average cover percentage over ground truth .area,
house to grass.

Ta + Ga

Ha + Ca

ODa + Ra

Ha + Ca + Ra + 0Oa

Average number of houses per pixel over ground

truth area.
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7.3 Comparison of Predictive Models

Cover percentage of house, other, road, concrete, tree and grass
were predicted using reflectance only, band difference and band sum,
band on band ratios (with polynomials) and normalised ratios with
polynomials. Each of these was determined for the atmospherically
corrected reflectance model, the deconvolved reflectance model and the
convolved cover model. The variables entered into the regression were
restricted to four so that the degrees of freedom would be equivalent,
allowing a more genuine comparison of their level of explanation.

Multiple correlation (r), explanation (r?), F - ratio and equation
standard error are shown for each of the covers and models in Tables
7.1 to 7.5.

In all cases the convolved cover percentage model has larger
correlation coefficients for each band than the other two models. In
general the atmospherically corrected only model has larger correlation
coefficients than the deconvolved reflectance model, however the results
for these two models are comparable for the cover types, house, road and
concrete.

Of the ratios and transformations used, the band on band reflectance
ratios in particular and the normalised and the difference on sum reflect-
ance ratios generally, are shown to be more predictive for all three
models. All the regressions using reflectances, reflectance ratios and
transformations were however highly significant, the F-ratios being well
within four times the 1% confidence limits for each model.

Conclusions based on the results of this section may be stated
as follows. The most significant cover predictions are achieved using
the convolved cover model and ratio type transformations, indicating the
superiority of this combination. The better results for the various ratios,
for all models, follows from the study made in Chapter 4 where these were
considered to reduce noise and brightness effects, so reducing the variance
of the data. The lower correlations for the deconvolved response model
again, as in Chapter 6, indicate the enhanced effects of noise. The
comparable results for house, road and concrete prediction using the
atmospherically corrected only model suggests however that the noise
effects are not as significant when dealing with linear or grouped cover
where rapid changes in reflectance, significantly greater than noise,

occur across boundaries. Because of the significantly better results
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TABLE 7.1

Regression statistics of equations predicting cover percentage

using reflectance only as the dependent variables

(a) Atmospherically Corrected Data

House Other Road Concrete Tree Grass
r 0.36 0.42 0.44 0.33 0.59 0.52
T2 0.13 0.17 0.19 0.11 0.34 0.27
F-ratio 102 294 225 86 490 354
S.E. 11.7% 8.1% 19.6% L, o% 13.5% 14.7%
(b) Deconvolved Reflectance Data
House Other Road Concrete Tree Grass
r 0.34 0.21 0.46 0.29 0.49 0.43
2 0.12 0.04 0.20 0.09 0.24 0.19
F-ratio 83 29 104 60 135 146
S.E. 11.4% 6.8% 9.9% 4, 9% 12.1% 14.1%
(c) Convolved Cover Data
House Other Road Concrete Tree Grass
r 0.55 0.49 0.62 0.39 0.68 0.57
r? 0.30 0.23 0.39 0.15 0.46 0.33
F-ratio 137 129 201 58 357 206
S.E. 7.3% L 4% 5.3% 3.1% 8.1% 10.0%
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TABLE 7.2

Regression statistics of equations predicting cover percentage
using band difference and band sum reflectance as the independent

variables

(a) Atmospherically Corrected Data

House Other Road Concrete Tree Grass
r 0.36 0.42 0.4h 0.33 0.59 0.52
r? 0.13 0.17 0.19 0.11 0.34 0.27
F-ratio 135 294 330 114 736 266
S.E. 11.7% 8.1% 10.8% L.9% 13.5% 14.7%
(b) Deconvolved Reflectance Data
House Other Road Concrete Tree Grass
r 0.34 0.22 0.45 0.30 0.49 0.44
T ? 0.12 0.05 0.20 0.09 0.24 0.19
F-ratio 83 33 157 Lo 202 148
S.E. 11.4% 6.8% 9.9% 4. 9% 12.1% 14.1%
(¢) Convolved Cover Data
House Other Road Concrete Tree Grass
r 0.55 0.49 0.62 0.39 0.68 0.57
r? 0.30 0.23 0.39 0.15 0.46 0.33
F-ratio 182 129 268 74 536 207
S.E. 7.3% 4. 4% 5.3% 3.1% 8.1% 10.0%
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TABLE 7.3

Regression statistics of equations for predicting cover
percentage using band on band reflectance ratios as the

independent variables

(a) Atmospherically Corrected Data

House Other Road Concrete Tree Grass

r 0.40 0.45 0.46 0.34 0.67 0.55
r? 0.16 0.20 0.21 0.11 0.45 0.30
F-ratio 137 176 184 92 580 307
S.E. 11.4% 8.0% 10.7% 4, 9% 12.4% 14. 4%

(b) Deconvolved Reflectance Data

House Other Road Concrete Tree Grass
r 0.38 0.29 0.45 0. 31 0.56 0.46
r2 0.1k 0.08 0.20 0.09 0.31 0.21
F-ratio 51 39 81 65 144 83
S.E. 11.2% 6.7% 9.9.% L.9% 11.5% 14.0%
(c) Cconvolved Cover
House Other Road Concrete Tree Grass
r 0.57 0.53 0.65 0.42 0.73 0.61
r2 0.32 0.28 0.42 0.17 0.53 0.37
F-ratio 150 251 302 67 355 245

S.E. 72 b2 5.2% 3.1% 7.6 9.7
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TABLE 7.4

Regression statistics of equations for predicting cover
percentage using band difference on sum reflectance

ratios as the independent variables

(a) Atmospherically Corrected Data

House Other Road Concrete Tree Grass

r 0.38 0.42 0.45 0.33 0.67 0.55
r? 0.15 0.18 0.20 0.1 0.45 0.30
F-ratio 120 149 181 88 566 300
S.E. 11.5% 8.1% 10.7% 4.9% 12.4% 14.5%

(b) Deconvolved Reflectance Data

House Other ‘ Road Concrete Tree Grass

r 0.37 0.30 0.45 0.29 0.54 0.46
r2 0.13 0.09 0.20 0.08 0.29 0.21
F-ratio 97 32 106 59 172 83
S.E. 11.3% 6.6% 9.9% L, 9% 11.7% 13.9%

(c) Convolved cover Data

House Other Road Concrete Tree Grass

r 0.58 0.53 0.65 0.40 0.73 0.61

r? 0.33 0.28 0.42 0.16 0.54 0.37
F-ratio 158 167 228 60 368 189

S.E. - 7.1% L.2% 5.2% 3.1% 7.5% 9.7%
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TABLE 7.5

Regression statistics of equations for predicting cover
percentage using normalised reflectance ratios as the

independent variables

(a) Atmospherically Corrected Data

House Other Road Concrete Tree Grass
r 0.38 0.45 0.47 0.34 0.68 0.54
r? 0.15 0.20 0.22 0.11 0.46 0.30
F-ratio 121 176 194 89 586 295
S.E. 11.5% 8.0% 10.6% 4, 9% 12.3% 14.5%
(b) Deconvolved Reflectance Data
House Other Road Concrete Tree Grass
r 0.36 0.27 0.45 0.29 0.56 0.45
r? 0.13 0.07 0.20 0.09 0.31 0.20
F-ratio 95 26 159 60 140 104
S.E. 11.3% 6.7% 9.9% 4. 9% 11.5% 14.0%
(c) Convolved Cover Data
House Other Road Concrete Tree Grass
r 0.57 0.53 0.65 0.41 0.70 0.61
e 0.32 0.28 0.42 0.17 0.49 0.37
F-ratio 298 125 300 65 300 188
S.E. 7.2% L.3% 5.2% 3.1% 7.9% 9.7%
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using the convolved cover data, only this model was considered further.
It should be noted that cover percentages predicted from the convolved
cover model represent a weighted value of the target pixel and adjoining

pixels and so can be considered as a smoothing effect.

7.4 More Detailed Examination of Cover Variable Prediction Using the

Convolved Cover Model

Significant variables of reflectance only, band difference, band
sum reflectance, band on band reflectance ratios, band difference on sum
reflectance ratios and normalised reflectance ratios are shown in Tables
7.6 to 7.10 for the convolved cover model data. Significant coefficients
were again limited to a maximum of four as in section 7.3. While in some
cases additional significant coefficients could have been extracted only
a marginal increase in the multiple correlation coefficient would have
resulted due to variable intercorrelation. Various statistics are given
in the tables and the order of entry of each variable into the regression
is shown in roman numerals after the coefficient. Little difference in
predictability separated the various ratios for each of the dependent
cover variables although all were better predictors than the reflectance
only and band difference, band sum reflectance variables.

House cover percentage is predictable mainly from the difference
in reflectance between bands 5 and 7, indicated by R5 and R7 having
opposite signs and being the first two variables to enter the equation,
and the primary influence of D57, R57 and DS57 in their respective
equations. Brightness type variables are not influential in the prediction
as indicated by the equal number of positive and negative signs in the
reflectance variables, the opposite signs of $56 and SL6, the lower
significance of V452 and V45, and the absence of any significant V
variables in the normalised reflectance regression.

~As suggested in the previous chapter the prediction of concrete
percentage is strongly influencedby the sum and difference of
reflectance in bands 4 and 5 and this is supported by R4 and R5 having
opposite signs, S45 and D45 being the two most significant variables
in their respective equation, and RV54 and V45 being the primary
variables in their respective equations. |t should be noted that the
product variable RV54, being the product of the ratio of reflectances

5 and 4 and the polar length coordinate V54, is a measure of the
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TABLE 7.6

Coefficients for predicting residential cover percentages from
the convolved cover model using reflectance data only as the
independent variables.

Variables House Other Road Concrete Tree Grass
RL -0.88 +0.35 +0.73 -0.18 -1.90 +1.60
(iii) (iii) (ii) (iv) (ii) (iii)
(S.E.) (0.22) (0.13) (0.16) (0.09) (0.24) (0.30)
R5 +1.79 +0. 30 +0.45 +0.51 -1.55 -1.49
(i) (ii) (iii) (1) (i) (ii
(S.E.) (0.16) (0.09) (0.12) (0.07) (0.17) (0.21)
R6 +0. 61 -0.34 +0.26
(iv) (iv) (iii)
(S.E.) (0.18) (0.14) (0.08)
R7 -0.87 -0.43 -0.63 -0.18 +0.37 +1.50
(ii i) (i) (ii) (iii) (i)
(S.E.) (0.11) (0.03) (0.08) (0.05) (0.05) (0.07)
Constant +27.5 +9.9 +25.8 +0.2 +50.5 -15.2
(S.E.) (2.4) (1.4) (1.7) (1.0) (2.6) (3.3)
Correlation
(r) 0.55 0.49 0.62 0.39 0.68 0.57
Explanation
(F2) 0.30 0.23 0.39 0.15 0.46 0.33
F-ratio 137 129 201 58 357 206
S.E. 7.3% L, 4y 5.3% 3.1% 8.1% 10.0%
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TABLE 7.7

Coefficients for predicting residential cover percentages
from the convolved cover model using band difference and
band sum reflectances as the independent variables

Variables House Other Road Concrete Tree Grass
D45 -0.35
(ii)
(S.E.) (0.08)
D46 +0.54
(ii)
(S.E.) (0.11)
D47 -0.37 +0.80
(ii) (iii)
(S.E.) (0.05) (0.25)
D56
(S.E.)
D5 +0.72 +0.54 +0.56 -2.30
(i) (i) (i) (i)
(S.E.) (0.05) (0.04) (0.06) (0.24)
D6 +0.12
(iii)
(s.E.) (0.04)
Sks +0.19 -1.54 +0.80
(i) (i) (ii)
(s.E.) (0.03) (0.06) (0.09)
Sk -0.78 0.10
(iii) (iii)
(S.E.) (0.20) (0.05)
SL47 +0.35
(ii)
(S.E.) (0.13)
$56 +1.13
(ii)
(s.E.) (0.18)
S57 -0.24
(iii)
(S.E.) (0.11)
S67
(S.E.)

Constant +26.5 +9.9 +25.8 +1.0 +50.6 -15.2
(S.E.) (2.3) (1.4) (1.7) (0.9) (2.3) (3.3)
r 0.55 0.49 0.62 0.39 0.68 0.57
r? 0.30 0.23 0.39 0.15 0.46 0.33

F-ratio 182 129 268 74 536 207

S.E. 7.3% L . b% 5.3% 3.1% 8.1% 10.0%
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TABLE 7.8

Coefficients for predicting residential cover percentages
from the convolved cover model using band on band reflectance
ratios as the independent variables.

House

Other

Road

Concrete

Tree

Grass

RL47

(S.E.)
R57

(S.E.)
R65

(S.E.)
R75

(s.E.)
RV45

(S.E.)
RV54

(S.E.)
RV75

(s.E.)
RV76

(S.E.)
RL62

(s.E.)
R472

(s.E.)
R572

(s.E.)
R742

(S.E.)
R762

(S.E.)
V452

(S.E.)
V572

(s.E.)
V672

(S.E.)

+93.7
(i)
(10.8)

-0.0083
(iv)
(0.0031)

+10.9
(ii)

(2.9)
+13 2

(2.9)

+42 .8
(i)
(2.4)

-1.42
Giii)
(0.53)

-0.394
(ii)
(0.067)

+0.424
(i)
(0.037)

-10.5
(iii)
(1.7)

-1.83
(ii)
(0.45)

-0.0017
(iv)
(0.0004)

+26.8
(i)
(2.6)

-0.581
(i)
(0.072)

+1.93
(iii)
(0.25)

+0.0094
(iv)
(0.0026)

+0.648
(i)
(0.051)

-hh 4
(ii)

(4.2)
-1.93
(iii)
(0.20)
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TABLE 7.8 contd.

House Other Road Concrete Tree Grass

Constant +1.0 0.0 +5.4 +5.4 -23.4 +19.8

(S.E.) (2.2) (0.3) (2.1) (1.2) (3.3) (3.3)
r 0.57 0.53 0.65 0.42 0.73 0.61
T2 0.32 0.28 0.42 0.17 0.53 0.37
F-ratio 150 251 302 67 355 245
S.E. 7.2% L.,2% 5.2% 3.1% 7.6% 9.7%
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TABLE 7.9

Coefficients for predicting residential cover percentages
from the convolved cover model using band difference on
sum reflectance ratios as the independent variables.

Variables

House

Other

Road

Concrete

Tree

Grass

DSL6

(s.E.)
DSL7

(S.E.)
DS57

(S.E.)
V45

(S.E.)
V67

(S.E.)
DSV4S

(S.E.)
DSVL7

(S.E.)
DSV57

(S.E.)
DSV67

(S.E.)
V452

(s.E.)
V462

(S.E.)
vh72

(s.E.)
V562

(s.E.)
DSL52

(s.E.)
DS4L72

(S.E.)
DS572

(S.E.)

-31.5
(ii)
(5.2)

+63.9
(i)
(4.3)
+2.67
(iv)
(0.57)

-0.072
(iii)
(0.015)

+66 7
(5.8)

-0.54
(iii)
(0.13)

+69.8
(i)
(7.6)

-0.0058
(ii)
(0.0011)

-94.0
(iii)
(18.0)
+38.0
(iv)
(11.0)

-9.8
(iv)
(2.6)
+0 L

(0.06)

-0.69
(ii)
(0.12)

+0.47
(iii)
(0.10)

-71.1
Giii)
(7.1)

+4,.86
(ii)
(0.52)

+0.0175
(iv)
(0.0034)

+228
(17)

+5.47
(0.36)

+5.05
(iii)
(0.55)

-0.0717
(ii)
(0.0058)




- 1Y -

TABLE 7.9 contd.

House Other Road Concrete Tree Grass

Constant +19.9 +21.7 +39.,7 -4.3 -4.9 -89.3

(s.E.) (6.3) (1.0) (1.3) (1.7) (.7 (7.2)
r 0.58 0.53 0.65 0.40 0.73 0.61

2 0.33 0.28 0.42 0.16 0.54 0.37
F-ratio 158 167 228 60 368 189
S.E. 7.1% L. 2% 5.2% 3.1% 7.5% 9.7%




_]45_

TABLE 7.10

Coefficients for predicting residential cover percentages
from. the convolved cover model using normalised reflectance
ratios as the dependent variables.

Variables House Other Road Concrete Tree Grass
RL'S -186 +129
(i) (iv)
(S.E.) (20) (26)
R5'S +220 -268 +684
(i) (iv) (iii)
(S.E.) (11) (45) (79)
R6S -579 +30. 4
(iii) (ii)
(S.E.) (263) (9.6)
R7S -331
(i)
(S.E.) (51)
RV5S -0.65 +1.49 +0.83
(iii) (i) (i)
(S.E.) (0.11) | (0.18) (0.45)
RV6S -1.80
(iii)
(S.E.) (0.23)
RV7S +1.16
(i)
(S.E.) , (0.09)
V5S$2
(S.E.)
V7S2 -0.0010
(iii)
(S.E.) (0.0002)
R4S52 +251
(i)
(S.E.) (36 ,
R5S2 +4h47 -239 -2540
(ii) (iv) (ii)
(s.E.) (47) (51) (251)
R6S2 +227 +968
(ii) (iv)
(s.E.) (39) (463)
R7S2 +357
(ii)
(5.E.) (65)
Constant -28.3 +165.2 +3.5 -9.1 +122.2 -68.5
(S.E.) (4.5) (32.8) (1.2) (3.0) (7.2) (8.1)
r 0.57 0.53 0.65 0.41 0.70 0.61
T2 0.32 0.28 0.42 0.17 0.49 0.37
F-ratio 298 125 300 65 300 188
S.E. 7.2% L.3% 5.2% | 3.1% 7.9% 9.7%
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difference between bands 5 and 4 as indicated by figure 7.1. When
comparing the spectral signature of house and concrete in Chapter 6

their parallel nature was noted, this is also indicated by the signs

of the reflectance-only coefficients being the same. Concrete percentage
has somewhat lower coefficients than house percentage due to the higher
reflectance of concrete in all bands.

In the same manner as house percentage, other percentage is
primarily predicted by a difference between the visible and infrared
reflectances, R4 and R5 having positive coefficients and R7 a negative
coefficient, Additionally D57, R572 and DS47 are the first variables
to enter their respective equations. Little influence of brightness type
variables is seen, S47 and S57 having opposite signs in the band difference,
band sum equation with no other brightness type variables being significant.

The difference in visible and infrared reflectance primarily
contributes to the prediction of road percentage. R4 and R5 have opposite
signs to R6 and R7, DL6 and D57 are positive and are the first two
variables to enter the band difference, band sum equation, both R47 and
R65 are significantly represented and DS47 is a primary entering variable,
all indicating the visible infrared difference. Brightness variables are
marginally significant and suggest that the average low reflectance of
road, represented by V462 and Sh6, contributes to the prediction of
percentage cover. For reflectance only the equivalence of the coefficient
signs between road and other percentage support the parallel nature of
their spectral signatures as suggested in Chapter 6 (apart from, R6 which
is insignificant for other percentage). Because road surface has a lower
reflectance than other reflectance across all bands, the magnitude of
the reflectance coefficients are greater for road percentage.

Predictably, grass percentage is primarily determined by the
visible /infrared difference although having a sign reversal when compared
to other non-vegetative surfaces,R7 (positive) and R5 (negative) entering
the reflectance only model as the first two variables. In other regression
equations D57, R572 are significant variables. However in the regression
using difference on sum reflectance ratios the primary variable is V67,
representing a brightness measure in the infrared and RV76 is a primary
variable in the band on band reflectance ratios. The product variable,
RV76, essentially represents an infrared difference. This latter result

was predicted in Chapter 6 where it was suggested that the difference in
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FIGURE 7.1: Geometric relationship between V54, R54 and RV5k.



- 148 -

the infrared band reflectances may act as an additional predictor of
vegetative content. The emergence of infrared brightness as a grass
predictor variable had not been suggested previously. Such a result
would seem reasonable given the high reflectance of grass in the
infrared bands, however the two secondary coefficients to V67 both
reinforce a visible/infrared difference.

The suggested influence of the sum of the visible band reflectances
on tree percentage prediction is borne out by the reinforcing negative
effect of R4k and R5 and the primary influence of S45. In the ratio
type variables the typical visible/infrared difference also plays a
primary predictive role as indicated by the primary effect of R75 and
DS572, and the secondary effects of DSV57 and RV75. Of all cover variables,
tree percentage cover was most significantly predicted, which is probably
due to the low visible reflectance of tree cover and the substantial
difference between its visible and infrared reflectance. Such a result
may not be typical of all tree cover. Most trees in the Sydney area are
eucalyptus, which have a particularly dark foliage while still retaining
the high,typical vegetative response, in the infrared.

In the previous discussion of influential predictor variablesthe
normalised reflectance ratios, polynomials and products, were only
mentioned on one occasion. The addition of another spectral band i.e.
0.5 to 1.1 um, which is dependent on the other four bands, causes these
variables to have somewhat different effects to the equivalent variables
using only bands 4 to 7. As a general rule the most significant
normalised reflectance variable for predictihg a particular cover
percentage was found to be a variable that includes the reflectance in
the band where the greatest difference between the individual total cover
reflectance and the average reflectance for that band occurs. The only
exception was the primary predictor variable for road cover, which includes
the reflectance in a band with a very small difference from the average
in that band. The average reflectance for each band over all ground
truth areas was calculated as 14.4%, 13.2%, 23.8% and 32.9% for bands
4, 5, 6 and 7 respectively, and in band 4 road reflectance is only 1.5%
higher than the average. In this case the percentage of cover is
essentially being predicted by the variation in the summed denominator,
which for 100% road cover has its lowest value. The R4 numerator will

vary least of all because the road reflectance is close to the average
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in baﬁd L4 and the range of reflectance is least with a standard deviation
of 1.8 compared to the next lowest in band 5 of 2.5. Therefore the
numerator will have a small variation while the denominator has its
maximum variation from 0 to 100% road, making the ratio R45 (or R452) the
most significant predictor. Concrete cover which has the highest sum of
reflectance for 100% cover also displays somewhat unique results. Here
the brightness variable V552 is a significant secondary predictor,
whereas the equations for the other cover variables do not include
brightness type variables.

While one criterion for choosing a variable set to predict cover
percentages must be the level of prediction, a further criterion should
be the number of variables required for that prediction, given the large
data sets and the need to limit computations. The multiple correlation
coefficients of each of the regression equations were compared as each
significant variable entered the equation. The improved multiple
correlation coefficient (r) for each additional variable, for each ratio
and transformation variable set and for each cover variable are shown
in Tables 7.11 to 7.16. As each primary variable involved a computation
with at least two reflectance variables, except in the case of reflectance
only, this latter equation was compared only on the basis of its multiple

correlation after the entry of two reflectance variables.

On examination of these tables it can be seen that the band on
band ratios are generally superior to the other transformations, having
in most cases higher multiple correlations on the entry of the primary
predictor variable and the final variable. One particular exception in
this regard is the prediction of road percentage cover, where r is
relatively low on the entry of the first variable, having a value of 0.40
compared to the primary difference on sum variable which has a high of
0.63. Nevertheless on the entry of the second variable the position is
reversed, the band on band ratio variables then having a slightly increased
r value. In the case of road and concrete percentage cover prediction
the second level reflectance only model gives comparable results, and in
the case of grass cover gives better results than the other models at
the primary variable entry level. While the band on band ratios are
superior in most cases, this superiority is only marginal and was not

considered sufficient to give unreserved support for their adoption.
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TABLE 7.11

Multiple correlation coefficient for predicting House cover
for each variable entered into the regression equation.

Step Reflectance Diff. Band Diff.
Entered Only and Ratios on Normalised
Sum Sum
1 0.46 0.50 0.54 0.55 0.55
2 0.54 0.54 0.56 0.57 0.57
3 0.55 0.55 0.57 0.57
b 0.55 0.55 0.57 0.58
5 0.58 0.58
6 0.59 0.59
7
TABLE 7.12

Multiple correlation coefficient for predicting Other cover
for each variable entered into the regression equation.

Step Reflectance Diff. Band Diff.
Entered Only and Ratios on Normalised
Sum Sum
1 0.40 0.48 0.53 0.50 0.49
2 0.48 0.48 0.54 0.53 0.53
3 0.49 0.49 0.53 0.53
Ut 0.53
TABLE 7.13

Multiple correlation coefficients for predicting Road cover
for each variable entered into the regression equation.

Step Reflectance Diff. Band Diff.
Entered Only and Ratios on Normalised
Sum Sum
1 0.54 0.62 0.40 0.63 0.61
2 0.62 0.62 0.65 0.64 0.63
3 0.62 0.62 0.65 0.64 0.65
4 0.63 0.65
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TABLE 7.1k

Multiple correlation coefficient for predicting Concrete
cover for each variable entered into the regression equation.

Step Reflectance Diff. Band Diff.
Entered Only and Ratios on Normalised
Sum Sum
1 0.14 0.36 0.38 0.36 0.38
2 0.38 0.38 0.39 0.38 0.38
3 0.39 0.39 0.40 0.39 0.40
L 0.39 0.39 0.42 0.40 0.41
5 0.43 0.42
6 0.43
TABLE 7.15
Multiple correlation coefficients for predicting Tree cover
for each variable entered into the regression equation.
Step Reflectance Diff. Band Diff.
Entered Only and Ratios on Normalised
Sum Sum
1 0.65 0.66 0.68 0.67 0.65
2 0.66 0.68 0.71 0.71 0.68
3 0.68 0.73 0.69
4 0.73 0.70
5 0.73 0.72
6 0.73
7 0.7k
TABLE 7.16
Multiple correlation coefficients for predicting Grass cover
for each variable entered into the regression equation.
Step Reflectance Diff. Band Diff.
Entered Only and Ratios on Normalised
Sum Sum
1 0.55 0.54 0.55 0.53 0.55
2 0.56 0.57 0.57 0.57 0.57
3 0.58 0.58 0.61 0.60 0.60
h 0.61 0.61 0.61
5 0.62 0.62
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It can be seen from Tables 7.11 to 7.16 that in all cases one
variable primarily contributes to the total multiple correlation. On the
basis of significant correlation and simplicity of computation, it was
considered that the following equations could be used in future work

to adequately predict percentage cover from one variable.

H = L43.2 + 44.2 DS 57 (7.1)
0 = 0.5 + 23.3R572 C(7.2)
R = 32.1 + UL8.0 DS47 (7.3)
C = -3.1 + 0.29 S45 (7.4)
T = -11.9 + 10.3 R75 (7.5)
G = -14.0+ 1.56 R7 (7.6)

Where more accurate results are required the following equations
derived from Tables 7.6 to 7.10 and using a maximum of four significant
variables only, were found to be the most highly predictive for each

cover variable.

H = 19.9 - 31.5 DSL46 + 63.9 DS57 + 2.67 V45 - 0.072 V452 (7.7)
0 = 10.9 R472 + 13.2 R572 (7.8)
R = 39.7 + 69.8 DSL7 - 0.0058 V462 - 94,0 DS452 + 38.0 DS472
(7.9)
C = 5.4+ 0.424 Rv54 - 10.5 R572 - 1.83 R762 - 0.0017 V67
(7.10)
T = -23.4 + 26.8 R75 - 0.581 RV75 + 1.93 R742 + 0.0094 V572
(7.11)
G = -89.3 - 77.8 DS47 + 5.47 V67 + 5.05 DSV47 - 0.0717 V562
' (7.12)

Results published by RICHARDSON and WIEGAND (1977) show a range of
correlation coefficient values when predicting crop and shadow cover from
various single transformed response variables. These ranged from 0.564
to 0.716 for crop cover, and from 0.324 to 0.466 for shadow cover.
Untransformed response was correlated more highly in both cover cases having
r = -0.809 for crop cover and band 5, and r = -0.518 for shadow cover and
band 5. This is the reverse of the situation found in the present study.
The levels of correlation are comparable in both studies, however the data

used by RICHARDSON et al (1977) were from extended fieldswhich suggests
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that the correlations achieved for intrapixel cover prediction are in

comparison, very good.

7.5 Examination of Reflectances Using Factor Analysis

The reflectance data of the convolved percentage cover model
was subjected to a factor analysis without rotation, which is equivalent
to a principal components analysis when the communalities are set to one
i.e. all variables are retained in the analysis. The factor score
coefficient matrix was determined, with each factor nomalised to one.
These coefficients represent the weights to be given to each variable
so that composite scales can be built that represent the theoretical
dimensions associated with the respective factors. The coefficient
matrix, with the respective percentage of variance contributed by each

factor, is shown in Table 7.17.

TABLE 7.17

Unrotated normalised factor score coefficient
matrix for reflectance data

F1 F2 F3 Fl
RL 0.565  -0.397  0.723 -0.018
R5 0.548 -0.430 ~0.655 0.295
R6 0.529 0.473 -0.176 -0.683
R7 0.318 0.659 -0.135 -0.668
% Variance 50.7 43.3 3.8 2.2
C“m”;ative 50.7 9k. 0 97.8  100.0

Although not directly comparable to the results given in section
4.6, the basic band sum, visible/infrared difference, visible difference
and infrared difference are immediately apparent. AUSTIN et al (1978)
indicated that their first principal component represented approximately
90% ofthe variance and a similar proportion was determined by DONKER et al
(1976) . This represents a major difference from the results of this study
where, from Table 7.17, the first factor contributes to only 50.7% of the

variance while the second factor contributes 43.3%. In addition the final
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two factors contribute a larger percentage of the variance, a total of 6%,
compared to less than 1% for both AUSTIN et al and DONKER et al.

Each of these previous studies used data sets derived from rural
areas, essentially composed of grass, trees and crops, with limited non-
vegetative cover. The signatures of these various vegetative surfaces
basically parallel each other, as was the case for tree and grass cover
in this study, and are primarily different only on the basis of brightness,
and so brightness or the sum of all band responses was the predominant
contributor to variance. In an urban scene a large proportion of the cover
is non-vegetative which has a different visible/infrared signature to
vegetation. While brightness is still a major contributor to the variance,
visible/infrared difference is also important. Because of the great diversity
of an urban scene when compared to a rural scene the third and fourth
factors may also be marginally significant contributors to the variance.

The correlations between the four derived factors and the various
percentage cover variables were calculated to determine whether the factors
represented some underlying structure of the cover data. This correlation
matrix is given in Table 7.18. Immediately apparent is that non-vegetative
surfaces primarily correlate with the second factor, while the vegetative
surfaces, particularly tree cover, are relatively equally correlated with
the first two factors. This led to the hypothesis that the sum of the
vegetative surfaces would be positively correlated with F2. The
correlations between GREEN (where GREEN = T + G) and all factors were

calculated as follows

Fl F2 F3 Fh
GREEN -0.19 0.76 0.15 0.09
These results confirmed the hypothesis. It followed therefore that F2

represented a continuum from 100% GREEN to 100% NONGREEN.

TABLE 7.18

Correlation matrix of unrotated factors and cover variables

Fl F2 F3 Fl

House +0.20 -0.46 -0.22 -0.08
Other +0.05 -0.48 -0.02 -0.04
Road +0.01 -0.62 0.00 -0.0k4
Concrete +0.27 -0.24 -0.15 -0.05
Tree -0.47 +0.49 +0.01 +0.02
Grass +0.19 +0.51 +0.18 +0.10
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0f the non-vegetative surfaces both house and concrete percentage
show a small but significantly better correlation with F1 and F3 than the
other non-vegetative surfaces. This follows from their higher overall
brightness, essentially represented by Fl and their previously discussed
correlation with the difference of the visible bands essentially
represented by F3. The sum of these two surfaces was suggested, in Chapter
6, as a possible comparable axis of differentiation to yellowness of the
Kauth-Thomas transformation. A new variable RESID defined as being equal
to (H + C) was tested for correlation with the four factors with the following

results -

F1 F2 F3 Fl
RES 1D 0.27 -0.48 -0.24 -0.08

The summation of these two cover variables reinforced their negative
correlation with F2, which effectively discounted the possibility of RESID
acting as a completely separate orthogonal dimension in the same manner as
yellowness.

The negative and positive correlation of tree and grass cover
respectively with F1 and their positive correlation with F2 suggested
that these two variables were essentially orthogonal. A low correlation
of -0.13 between these two variables confirmed this. It followed therefore
that rotated factors could represent a tree and grass dimension. An
orthogonal varimax rotation was applied to the reflectance data. This
method of rotation is most widely used (NIE et al, 1975) and defines a
simple factor as one with only ones and zeros in the column. The rotated
matrix of the normalised factor scores is given in Table 7.19. It should
be noted that the rotated Rl will no longer contribute to the maximum
variance. Rotated factors are given the symbol FRi, i =1 to 4.

A quite different data structure resulted. As can be seen from Table
7.19 the first factor weighs heavily on the sum of the visible reflectance
or visible brightness, the second factor on the sum of the infrared or
infrared brightness, while the third and fourth factors represent a visible
and an infrared difference as was found for the unrotated factors. The
correlations between all cover variables and GREEN, NONGREEN and RESID and
rotated factors FR1, FR2, FR3 and FRA4 were calculated. The correlation

matrix is given in Table 7.20.
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TABLE 7.19

Varimax rotated normalised factor score coefficient
matrix for reflectance data.

FR1 FR2 FR3 FRL
R4 0.727 -0.036 -0.698 -0.080
R5 0.663 -0.002 0.714 -0.173
R6 -0.151 0.638 -0.017 0.707
R7 0.100 0.769 0.046 -0.682
% variance k7.7 45 .9 3.7 2.7
Cumugative 47.7 93.6 97.3 100.0
TABLE 7.20
Correlation matrix of rotated factors with cover variables
and derived cover variables
FR] FR2 FR3 FR4

House 0.42 -0.25 0.21 0.15

Other 0.32 -0.36 0.02 0.07

Road 0.37 -0.50 0.01 0.06

Concrete 0.34 -0.03 0.15 0.11

Tree -0.66 0.12 -0.03 -0.08

Grass -0.13 0.52 -0.16 -0.14

GREEN -0.58 0.50 -0.15 -0.16

RESID 0.48 -0.23 0.23 0.17
NONGREEN 0.58 -0.48 0.16 0.16
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Tree cover percentage has a correlation of -0.66 with FRl and grass
cover percentage a correlation of 0.52 with FR2. Both have low correlations
with all other factors. The first factor was therefore considered to
represent a tree cover dimension and the second factor a grass cover
dimension. All other non-vegetative surfaces and the derived cover
variables GREEN, RESID and NONGREEN are essentially equally correlated
with FR1 and FR2.

The variable GREEN has correlations of -0.58 and 0.50 with FR1 and
FRZ2 respectively. These results suggested that this total vegetative cover
variable could be represented by an axis at approximately 450 to the
orthogonal negative direction of FR1 and the positive direction of FR2.
That is ( (FR2) + (-FR1) ) should correlate highly with GREEN showing that
this direction parallels the original F2. A correlation coefficient of
0.76 was determined which is the same as previously calculated for GREEN
and F2.

The positive correlation of FR3 with house and concrete percentage
as opposed to the very low correlation with road and other percentage
suggested that this factor marginally represents RESID cover, although as
previously mentioned cannot be considered as a separate orthogonal RESID
axis. Grass cover is negatively correlated with FR3, with tree cover having
a very low correlation, so that the opposite direction of this dimension
could also marginally suggest amount of grass cover, however this cover is
adequately represented by FR2 and so this possible dimension was not
considered further. The fourth factor shows essentially the same
correlations with cover as FR3, however as this factor contains primarily
noise effects (DONKER et al 1976, KAUTH, 1975) it was not considered
further.

The total residential cover can now be represented by two overlaid
orthogonal systems each having a common dimension. The first system separates
GREEN and NONGREEN cover, and the second system separates grass and trees,
each having a common dimension marginally representing RESID cover,

Using the factor scores of Table 7.19 as weighting coefficients
and substituting for the 100% reflectance of each cover from Table 6.7 the
coordinates of each cover in the rotated FRl, FR2, system were calculated.
These values are plotted in fiqure 7.2. It can be seen that house cover
represents the reflectance of an average non-vegetative surface and that

the 100% non-vegetative surface reflectances define an axis approximately
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FIGURE 7.2: Location of various residential surfaces in the
rotated Factor | and Factor 2 system.
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at right angles to the GREEN dimension discussed previously and approximately
parallel to a line defining the 100% vegetative surfaces. Concrete lies at
one end of this axis and road and other surfaces at the opposite end.
Neglecting the cover surface 'other' for simplicity, all of these relationships
can be shown schematically in figure 7.3.

While this type of analysis gives insight into the underlying
structure, indices derived from the factor scores will be no more predictive
than the equations for individual cover derived previously, and will be less
predictive when compared to the ratio type variables. For this reason a
GREEN index, giving the predicted percentage of vegetative cover was determined
regressing GREEN as the dependent variable against band on band reflectance

ratios. This gave the following results -

GREEN = 72.6 - 110.2 R57 + 13.5 R76 + 0.452 RvV57 (7.13)
where
r = 0.82
T2 = 0.67
S.E. = 8.8%
F = 849

This represents the most predictive and significant equation derived for

single pixel areas given in this chapter.

7'6, Application to Extended Areas

In certain circumstances cover information over extended areas may
be preferable to that determined in individual pixels. |t would be
expected that variance would be reduced by using average reflectance data
so that higher multiple correlations could be achieved between average
cover and average reflectance. In addition as suggested in Chapter 4 the
use of textural variables may prove significant. The use of extended areas
means that the effects of the sensor point spread function can be neglected
and the effects of background reflectance are substantially reduced, because
the average reflectance is essentially its own background.

The average reflectance in each band and the reflectance standard
deviation over each ground truth area were determined. Average reflectances
were transformed to their band on band ratio equivalents. These reflectance
variables were regressed with various average cover variables as the

dependent variables, to give the results shown in equations 7.14 to 7.19.
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Statistical parameters are shown after each equation, and the order of

entry of each variable is given by their order in the equation.

Ha = 136.6 - 57.3 R76 - 105.5 RA46

- 0.643 SUMSD + 82.8 R57 , (7.14)
(r = 0.81, T2 = 0.63, S.E. = 3.9%, F = 28)
0a = -36.3 + 63.4 R47 + 4.11 SD72

- 11.3 SD7 + 12.1 R6L (7.15)
(r = 0.88, 2 = 0.76, S.E. = 2.2%, F = 50)
Ra = =-9.3 + 51.5 R47 (7.16)
(r = 0.89 7% = 0.79, S.E. = 2.5%, F = 234)
Ca = ~-17.7 + 2h.5 RS54 (7.17)
(r = 0.63, T2 = 0.39, S.E. = 1.7%, F = 42)
Ta = 70.8 - 3.80 RV46 + 7.20SDh (7.18)
(r = 091, r2= 0.8, S.E. = 4,23, F = 145)
Ga = -30.4 + 3.18 RV76 - 1.60 RV6L

-0.98 SD52 - 0.41 RV6L (7.19)
(r = 0.81, r2 = 0.63, S.E. = 6.5%, F = 27)

All equations are significant at four times the 1% level of confidence and
represent excellent results. All multiple correlation coefficients are
substantially greater than their single pixel equivalents. 1In all cases
apart from road and concrete cover, the standard deviation variables are
seen to be significant predictors, justifying their inclusion.

In addition to the basic cover variables a number of derived cover
variables were also used as the dependent variables. These results are

given in the following equations.

AGREEN = -315.0 + 282.1 R67 (7.20)
(r = 0.92, 2 = 0.84, S.E. = 5.7%, F = 337)
ARESID = =-77.9 + 143.5 R54 - 2.16 V47

+ 2.18 RV65 - 0.66 RV74 - 0.43 SD62 (7.21)

(r = 0.85, r 2= 0.70, S.E. = L.2%, F = 31)



- 162 -

ANONGREEN = =-22.2 + 92.0 R47 (7.22)
(r = 0.92, r2 = 0.84, S.E. = 3.7%, F = 340)
Na = -5.3 + 24,0 R57 -0.62 SD7 + 0.14 Rv6h

2.6 SDb + 0.64 SD42 - 0.23 RV56 (7.23)
(r = 0.91, v = 0.81, S.E. =0.6, F = 45)

These again represent highly significant equations. Both AGREEN and
ANONGREEN can now be predicted by a single variable.

An important result at this level of aggregation is that the
prediction of vegetative content is no longer dependent on the visible/
infrared comparison so apparent in single pixel analysis, but on the band 6,
band 7 reflectance ratio. The potential influence of these two bands had
been suggested in Chapter 6. The visible infrared influence on the
prediction of man made materials, represented by ANONGREEN, is nevertheless
still apparent. It is suggested that the strong slope of vegetation
reflectance as it increases through the infrared, more critically
differentiates it from man made materials. A further results of interest
is that the standard deviation is no longer a significant predictor
variable, except for a marginal influence on ARESID, and is due to the
surfaces represented by the composite variables being more irregularly
distributed throughout the ground truth area and not having the strong
patterning of individual cover variables.

The equation predicting the average number of houses per pixel
over the ground truth area is very significant but quite complex, as it
represents a number of interacting effects. It is strongly dependent on
the standard deviation in band 7 and a non-linear effect of the standard
deviation in band 4, as suggested in Chapter 4. The equation can be
simply modified to give the density of housing per hectare or per acre.
Because it is not a cover variable, the potential to predict such a

variable is an important result.

7.7 Summary and Conclusions

0f the three models examined relating cover percentage to reflect-
ance, it was found that the convolved percentage cover model gave superior
results for cover prediction, for all cover and for all reflectance ratios
and transformations. The ratio type transformed reflectance variables

were better predictors of cover percentage than the linearly related
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reflectance variables, and of these the band on band reflectance ratios

in terms of correlation and number of variables required, appeared

marginally superior, although this was not conclusive. All reflectance,
ratio and transformed variable regressions were however significant
predictors of cover percentage. Multiple correlations achieved ranged from
0.42 for concrete cover to 0.73 for tree cover. It is concluded that
significant single variable and multiple variable cover percentage predictive
equations can be derived using multiple regression methods, and that a GREEN
index representing percentage of total vegetative cover, with a multiple
correlation coefficient of 0.82, is most reliably predicted.

The multidimensional structure of the reflectance data was found to be
essentially represented by two overlaid orthogonal systems, one representing
a grass/tree structure, the other a vegetative/non-vegetative structure.
These systems illustrate the structure but do not improve cover prediction.

Multiple correlation coefficients were substantially improved between
cover and reflectance type variables when regression analysis was used with
extended data, and was due to the reduction of variance and the addition of
textural variables. The ability to predict the average number of houses per

pixel from reflectance data is considered an important result of the extended

data analysis.
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8. THE APPLICATION OF COVER RELATED VARIABLES AS SURROGATE
PREDICTORS OF RESIDENTIAL QUALITY

8.1 Introduction

The direct prediction of cover percentages at the pixel level, or
cover percentages and housing density at the extended area level, can
obviously have direct application in many urban studies. Of greater
interest is the ability to predict characteristics of residential areas
seemingly unrelated directly to these cover variables. The work of LANDINI
et al (1979) predicting socio-economic variables from urban cover and
MURAI (1974) and MORRISON (1978) estimating population density, are good
examples of surrogate variable application.

In this chapter the relationship between average house price, as
one measure of residential quality, and cover related variables are
examined. Initially the procedures for collecting price and other housing
characteristics data are briefly mentioned. Some background on the
determinants of house price is given, followed by a multiple regression
analysis of price and housing characteristics data which had not been
collected via remote sensing. The results of this analysis are compared
with a similar analysis using cover related variables determined from
aerial photographs and finally with an analysis using Landsat derived
data. Multiple correlations are compared and conclusions reached as to
the advantages or otherwise of the sensor related models.

The chapter concludes with a brief analysis of a total residential
quality index and a discussion of other potential applications of cover data

to urban residential analysis.

8.2 Determinants of House Price

In recent years the attention of researchers from many different
fields including economics, geography, sociology, and planning has been
directed-to examining from which attributes of housing the consumer derives
utility and whether these can be ranked in any meaningful way. It is
argued that if one house or group of houses has more desirable attributes
than another, this higher valuation by the consumer will be reflected in a
higher market price. Most of these studies can be grouped into one of

four areas (FORSTER, 1975).
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(i) Housing characteristic models are locationally insensitive
models and ignore the locational and environmental characteristics of a
neighbourhood. They assume that house prices are determined solely
by the characteristics of the house itself, such as number of rooms, age,
type etc. Although it is obvious that where a house is located should
make a considerable difference to its price, it can be a suitable approach
when analysing small areas of comparable housing stock.

(ii) The most common models are those predicting house price on the
basis of the trade off between housing costs and transport. These
accessibility models, of which ALONSO (1964) is the most well known, predict
that house prices decline with distance from the central business district
and also that house prices will be higher in areas having above average
accessibility. The predictions derived from these models however are
fairly general and are not particularly suitable for determining the price
of individual properties. Apart from this, the fact that many houses of
equal accessibility have widely differing prices indicates that many other
factors, in addition to accessibility influence the price.

(iii) Environmental or area preference models reflect researchers
attempts to explain house price differences in terms of neighbourhood
attractiveness. RICHARDSON (1971) and others have put forward the
hypothesis that the environmental atrributes of an area determine the
residential site choice. It follows that these attributes attract
competition for houses in a particular area and their prices are
increased. In a similar way unfavourable attributes tend to cause prices
to be lower.

Clearly the difficulty with these models is defining the variables
that measure environmental attractiveness. As GOODCHILD (1974) has shown,
preference towards environmental attributes varies by socio-economic class
and that which may be considered a favourable attribute by one group may
not be considered as such by another. This model would also infer either,
that in a given area houses are homogeneous or that differences between
houses are not reflected as a difference in price. Neither of these
inferences would be valid, and so while these environmental modeis may
reflect an underlying area price, they cannot predict individual prices.

(iv) Universal models incorporate all of these factors that
influence house price. These are usually disaggregated into locational
and environmental effects with some measure of the socio-economic nature

of the neighbourhood and housing characteristics.
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It should be noted that all of the models mentioned are static or
relative models, theoretically reflecting the conditions prevailing at any
one time. Dynamic models would in addition, have to include variables
that measured the changing influence of the economy, government decisions,
and demographic factors. However while it is considered that the absolute
relationship between property prices could vary quite quickly in times of
rapid price increases, the underlying relative relationships are not as
prone to rapid change (TIMMS, 1971, 120-121). What are considered as
'good' neighbourhoods or 'poor' neighbourhoods do not change quickly but
are subjected to historically quite long movements.

In this study the averaée house price level over each ground truth
area was only considered. These prices were examined using generalised
universal models, which include some measures of location, environment
and average housing characteristics. Data were derived essentially from
three main sources; actual house sales data, data sampled from aerial

photographs, and satellite derived data.

8.3 House Price Data Collection and Transformation

The streets included in each ground truth area were listed and the
records of the Valuer General's department were accessed using these
locational identifiers. The Valuer General's department is a government
instrumentality that collects property sales data and assesses property
value. For each area the recorded house sales were extracted for the
period from the beginning of 1968 until the end of 1972. The total data
set extracted for each house sold, comprised, sale price in Australian
dollars, date of sale, number of rooms, area of house block, building
material, either brick, timber or fibrocement, type of house, either
detached, semi-detached (attached on one side only) or terrace (attached
on both sides), presence or absence of swimming pool, number of stories,
and age of house.

For each ground truth area additional data were derived from avail-
able maps. These comprised distance to the central business district
(C.B.D.), distance to the nearest coast or major waterway, distance to the
nearest railway station, average height above sea level, and a measure of
terrain variability. This latter variable was taken as the sum of the
number of 20 metre contours crossed in an east-west and north-south direction

over a one kilometre square centred on the ground truth area.
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The house sales data extracted from the Valuer General's records
covered a period from January 1968 to December 1972, and so was not
comparable because of increasing sale prices, inflation over that period
ranging between 5% and 15%. A series of prices corrected to the beginning

of January 1973 were calculated for each property using

P13 = P (14 g) 73°1) (8.1)
where

P73 = Price 1st January 1973

PT = Price at time T

g = Average annual inflation rate, decimals of one.

and different values of g, ranging from 0.05 to 0.15 in steps of 0.01,

If the correct average annual inflation rate had been applied then
the regression between P73 and time would have a correlation of zero. Each
of the P73 values were correlated with time, the minimum zero value being

achieved when g = 0.12. These new set of prices were given the variable

name (P73)12.

While a value of g = 0.12 was the average correction to be applied
it was expected that some areas had increased in price at a different
annual rate, and at different rates within years. To test this the (P73)12
values in each area were used as the dependent variables in a multiple
regression analysis with age of property, number of rooms, area of house
block, type of house (1 for terrace, 2 for semi-detached and 3 for attached)
and building material (1 for fibro, 2 for timber and 3 for brick) and in
addition (73 - T) and (73 - T)2 to test for non-linear effects of time.
The former non-temporal variables were included to account for any price
differences due to individual property variations. |f the average annual
rate of g = 0.12 was applicable to a particular area then the time variables
would not be significant variables, and no further adjustment would be
required. If the time variables were significant indicating a variation
from the average g value, then each individual price in that particular
area was corrected by the appropriate amount using the coefficients of the
time variables. This occurred in about ten percent of all cases. The
adjusted (P73)12 values were then averaged for each area.

The average value of age (time before 1973), number of rooms, and

block size for each ground truth area were also determined. For each area
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the percentage of houses of each different material, different type, and
different number of stories was determined and as well the percentage of
properties with swimming pools. A data file was created containing the
average adjusted price, average house characteristics, Tocational and

terrain values for each ground truth area.

8.4 House Price Prediction

The average P73 values were used as the dependent variable in a
multiple regression analysis with housing characteristics, locational and
terrain data. Quadratic values of distance to the C.B.D. and number of
rooms were also included with the independent variables as it was considered
that these variables may not be linearly related to price. Stepwise
multiple regression was used with a minimum F-ratio criterion of 4.0 for each
variable to enter the regression.

The most significant variable predicting house price was found to be
the number of rooms squared followed by distance to the nearest railway
station. This latter variable was only marginally significant with the
multiple correlation coefficient, r, increasing from 0.86 to 0.88 as it
entered the regression. Overall F-ratio of the equation was 102, which is
highly significant, with a standard deviation of $A9, 600,

From a consideration of these results it was expected that a measure
of house dimensions derived from the photographically sampled variables
should also have been a good predictor of average price. Such a variable
can be derived by dividing Ha (average percentage of house cover per pixel)

by Na (average number of houses per pixel), therefore house size percentage,

Ha
HZ = & (8.2)
where HZ = the average percentage of pixel area covered by one house.

In addition to HZ and HZ?, all cover variables and jocational
variables were regressed with P73 as the dependent variable. These latter
variables were included because they can be determined from aerial
photographs or in some cases Landsat imagery, although in this case they
were determined from maps which were originally derived from aerial photographs.
Only three variables were significant HZ?2, HZ and Ra (average percentage of
road cover per pixel), the latter variable being only marginally significant.
Multiple correlation, r, was 0.88. The derived equation, with appropriate

statistics, was as follows
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P73 = 109.6 + 3.75 HZZ - 34.04 HZ - 0.51 Ra (8.3)
(r =0.88, r2 = 0.77, F =70, S.E. - 9.5)

where

P73 and S.E. are in thousands of dollars.
This is an equivalent result to that achieved using known house
characteristics. It is considered that Ra possibly represents a negative
environmental quality effect or may also represent a locational effect as
road percentage tends to be higher nearer the C.B.D.

The emergence of house size as the major predictor of house price
is an interesting result, as this variable should be predictable from
Landsat data. In Chapter 7 average house percentage was related to Landsat
derived variables with a multiple correlation of 0.81, and average house
numbers per pixel with a multiple correlation of 0.91. A new variable HZ!,

representing the Landsat equivalent of HZ, was determined using (7.14) and

(7.23) to give,
Hz! = (136.6 - 57.3 R76 - 105.5 Rk46
- 0.643 SUMSD + 82.8 R57) /
(-5.3 + 24.0 R57 - 0.62 SD7 + 0.1k4 RV6L
- 2.6 SD4 + 0.64 SDL2 - 0.23 RV56) (8.4)

The correlation between HZ and HZ! was found to be 0.70. While this
value was lower than expected it still represented a significant result.
The regression equation between HZ and HZ! (8.5) also shows that the
relationship is essentially correct because the constant is very close to

zero, and the coefficient is very close to one as follows-
HZ = 0.19 + 0.98 Hz! (8.5)

The new variable HZ!, (HZ!)? and locational variables were regressed
with P73 as the dependent variable. Once again house size was the most
explanétory variable with the average height above sea level of the ground
truth area and distance to water bodies being marginally significant
variables. A multiple correlation coefficient value of 0.62 was determined.
While the latter two variables are different from those determined previously
they still represent a measure of location, although somewhat more

environmentally related.
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It was considered that an alternative to using the calculated value
HZ!, which is a rather cumbersome combination of reflectance derijved
variables, was to use reflectance values directly in a regression with P73.
The band on band reflectance ratios and polynomial terms, the various
standard deviation variables defined in Chapter 7, and the various
locational variables were used as the independent variables. The

following equation resulted

P73 = + 167.6 - 5.84 RV45 - 0.86 CBD (8.6)
where

CBD = average distance in kilometres of a ground truth

area to the centralbusiness district

r = 0.60

T2 = 0.32

F = 16

S.E. = 16.2

Although not as predictive as other extended area equations, the equation
is still significant at four times the 1% confidence level.

An examination of the residuals revealed that two areas had
predicted prices substantially below their measured values. These
represented two unique areas within the data set. Average values for
each area were $%£116,000 and $A127,000, while the balance of areas
ranged in average price from $A14,000 to $A73,000. Equivalent values for
1980 would be approximately three times larger. The predicted prices still
indicated however, that both areas were at the top of the price range with
values of $A62,000 and $A75,000 respectively, but that many other undefined
factors apart from house size and location contributed to their average price.
Both areas are commonly known as two of the most exclusive areas in Sydney -
Bellevue Hill and Vaucluse.

When these two unique areas were removed from the data set, a
substantially higher multiple correlation of 0.73 was achieved, with distance
to waterways and average height above sea level re-entering the regression

equation as the secondary variables, the derived equation then being.
P73 = 82.1 - 2.69 RV45 + 0.12 RL - 0.58 CST (8.7)
where

RL = average height in metres above sea level of a ground truth

area, and
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CST = average distance in kilometres of a ground truth area

to the nearest coast or major waterway.

r = 0.73
r2 = 0.50
F = 21
S.E. = 7.7

House prices predicted from Landsat data cannot be considered as a
reliable source for detailed analysis as indicated by the standard errors
of the latter two equations, however as WESTERLUND (1972, 39) suggests of
MUMBOWER and DONOGHUE's (1967) photographically derived housing density,
it has benefit for initial analysis. |If five arbitrary classes of house
price are assumed 0 to $80,000 in steps of $20,000 and greater than $80,000,
then the following results can be arrived at. From the regression equation
(8.6) 62% of the areas would be correctly classified from the predicted
results, 33% would be one class either above or below their predicted
class and 5% would be removed by two class divisions. From equation (8.7)
75% would be correctly classified, and 25% would be classified either one
above or below their correct class. These results should generally

satisfy the need for more residential classes as expressed by LANDINI et al

(1979, 104).

8.5 A Total Residential Quality Index

As RICHARDSON (1971) suggests house price differences may be
explained in terms of environmental or area preference models. While
there are some reservations to this hypothesis it could be assumed that house
price or a measure thereof is an indicator of residential environmental
quality. In addition many studies have shown a relationship between house
price or rent and socio-economic status, classically represented by
Hoyt's sector theory (see for example TIMMS, 1971, for a discussion of
this theory). It could be suggested then that house size as a surrogate
for house price may be a measure of housing quality and social environment.
The percentage of grass and trees in an area can normally be
associated with environmental quality indicating open space and aesthetic
qualities. NARIGASAWA and FUCHIMOTO (1979) have used a vegetation cover
ratio determined from multispectral scanner data as one of a number of
environmental themes. GREEN (1957) and GREEN et al (1959) have also

suggested the prevalence of industrial land use as a negative residential
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quality measure. While there are other factors contributing to residential
quality, the purpose of this section is to demonstrate how a general quality
index might be achieved.
If it is assumed that
(i) house size is a measure of housing quality and social
environment and would be positively related to a
residential quality index,
(ii) the total vegetative content is a positive indicator
of quality, and
(iii) the sum of road and other building percentages represents
the negative influence of encroachment of non-residential
land use and likely high noise and pollutant levels, then
a residential quality index, RQl, might be represented by
Ryt = PEXAERERN (8.8)
This derived variable was used as the dependent variable in a

regression with various reflectance variables. The following results were

achieved
RQI = -129.8 + 674 R65 + 113.1 R56 - 1.78 RV45 (8.9)
r = 0.87
¥2 = 0.75
F = 64
S.E. = 6.7

which represents a highly significant result.

Equation (8.9) can be normalised to give a suitable scale, say
0 to 100. The means and standard deviation of AGREEN, HZ and ANONRESID
were 52 + 14, 5.4 £ 1.3 and 19 t 9.0 respectively. |If it is assumed that
the best and worst possible residential values of these variables were at
+ 2 SD, then the highest value of RQl would be 640 and the lowest 2. If
the above equation is then divided by 6.4, RQl would have a scale from zero

for worst quality to one hundred for best quality, therefore,

RQI = =-20.3 + 105 R65 + 17.7 R56 - 0.28 RV45 (8.10)
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8.4 Other Potential Applications

Very rarely can remotely sensed data be used as the sole source of
information about an area. Any survey of an area must draw on all available
data and then select a subset which in terms of cost, speed, and
reliability can satisfy the defined goals of the survey. It is with this

point in mind that potential applications are suggested.

(i) Urban catchment runoff studies require as input, data on rainfall,
slopes and surface characteristics. A typical urban drainage system is made
up of a number of elements which drain sub-catchment areas. Cover percentage
determined from Landsat data at either the single pixel or extended area
level could be used to derive aggregate coefficients of runoff. Over each
area these coefficients could be used with slope data, derived from
topographic maps or digitally held terrain models, and rainfall intensity

data to calculate the rate and magnitude of surface runoff.

(ii) A number of researchers have suggested the application of
Landsat data to population estimation. While predicted housing cover can
be used as a surrogate for population density, it is preferable to use
hous ing density as a measure of the number of families. Size of family
also tends to vary between socio-economic groupings. |If house size or
house price is a surrogate for socio-economic status and is used in
conjunction with housing density, both derivable from Landsat data, then
the potential exists for a better estimation of population and its areal

distribution.

Census data gives very accurate estimates of population within each
census district, but the boundaries of districts are generally not related
to any stratification within the community or the landscape and so can
contain mixtures of land use and housing types. In these circumstances the
population densities determined from the aggregated census district data
may bear little relationship to actual densities in particular sub-areas.

Landsat derived population estimates would help overcome this anomaly.

(iii) Rather than use predicted cover percentages at the pixel or
extended area level as a means of residential differentiation it would be
preferable to develop a set of simpler classes. Using G, T, RESID and
NONRESID as the primary cover classes a sixteen level classification scheme
could be developed with above and below average of each of the cover

classes acting as a dichotomous division. Further research would be
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required to give specific meaning to these classes in their residential

context. However it might be assumed that these classes could be used to

differentiate varying levels of residential development on the urban

fringe in contrast to attempting to define a single urban/rural interface.
(iv) Two major orthogonal factors that are cited from social

area analysis of western industrialized cities are family status and

social status. These factors appear to be reflected in the physical

environment of the Sydney urban area. Percentage grass cover and percentage

tree cover are uncorrelated and when combined with measured house size

and housing density might suggest themselves as surrogate variables for the

orthogonal, family and social status factors.

8.6 Summary and Conclusions

It has been demonstrated that the average area Sydney house price
can be substantially predicted from Landsat derived reflectance data with
readily available locational variables acting as secondary auxilliary
predictors. |t cannot be concluded that this type of analysis would be
directly applicable to other cities. Nevertheless, while Sydney has many
unique characteristics, it is not atypical of western industrialfzed cities
and in population, size, residential density, morphology and climate is
quite similar to the western seaboard North American cities of Los Angeles
and San Francisco. The emergence of the single variable house size as
the primary predictor of price would suggest that these general results
could be applicable in other similar cities.

The demonstration of the use of Landsat data for predicting a
residential quality index and the suggested applications of reflectance
derived cover and cover related data, indicates that the potential of
Landsat data as a tool in urban analysis is considerable, particularly

when it is used in association with other readily available data.
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9. FINAL CONCLUSIONS

9.1 The measured response at the Landsat sensor from urban residential
areas is complicated by the mixed nature of the cover surface, the effect
of background reflectance on path radiance and the convolving effect of

the sensor point spread function.

9.2 Appropriately processed Landsat response data from urban residential
areas of mixed surface cover, can be used to determine the reflectance of

individual surface cover types.

9.3 The percentage amounts of individual residential surface cover
types contributing to the response at the Landsat sensor can be significantly
predicted at the single pixel level. Better results are achieved using

data from extended areas (5 x 8 pixel block).

9.4 The use of a convolved cover model, where the measured sensor
response is related to the percentage of surface cover types in the central
and surrounding pixels, is to be preferred for predicting cover reflectance

and percentage cover at the pixel level.

9.5 Ratio type variables are significantly better than individual band

variables for predicting cover percentages.

9.6 Regression equations relating percentage of surface cover to
reflectance derived variables give the following best results (on the basis
of multiple correlation coefficient) for various surface types, and for

single pixel and extended (5 x 8 pixel block) areas.

Cover r (pixel) r (extended)
House 0.58 0.81
Other 0.53 0.88
Road 0.65 0.89
Concrete 0.42 0.63
Tree 0.73 0.91
Grass 0.61 0.81
Green 0.82 0.92
9.7 Variation of reflectance over an extended (5 x 8 pixel block)

area, as measured by the standard deviation, is a significant auxiliary

variable for predicting surface cover percentages.
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9.8 The total residential percentage cover data can be represented by
two overlaid orthogonal systems. The first system separates vegetative
and non-vegetative surface covers, and the second system separates grass

and tree surface covers.

9.9 Relative average house price over extended areas (of approximately
18ha) can be substantially predicted from the average size of houses

within that area, as interpreted from aerial photographs.

9.10 The average number of houses and the average house size within
a sampled area of approximately 18ha can be significantly predicted from

Landsat derived reflectance variables.

9.11 The relative average house price over extended areas of approximately
18ha can be significantly predicted from Landsat derived reflectance

variables.

9.12 A residential classification scheme can be developed using relative

house prices predicted from Landsat derived reflectance variables.

9.13 A residential quality index based on house size, percentage
vegetative cover and percentage road and other building cover can be

significantly predicted from Landsat derived reflectance variables. .

9.14 The potential of Landsat data as a tool in urban analysis is
considerable, particularly when it is used in association with other

readily available data.
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APPENDIX 1

Al. ATMOSPHERIC AND POINT SPREAD FUNCTION CALCULATIONS

A1.1 Sensor Response

The Landsat bands plotted in figure Al.1 represent averaged curves
for the four MSS sensors (HUGHES AIRCRAFT CO., 1972). MILTON (1978) has
questioned the validity of the half bandwidth points for MSS band 7 of
0.800 - 1.100 um as quoted by NASA (1972) as the nominal half band widths.
However to retain consistency with other results the published band width
of 0.800 - 1.100 um for band 7 and bandwidths of 0.500 - 0.600 um,

0.600 - 0.700 um, 0.700 - 0.800 um, respectively of bands 4, 5 and 6 were
used for interpolation and calculation.

The radiance per bit of count rate, K, is a constant determined by

the scanner system., For Landsat 1 the values of K in the four bands are -

KL+ = 0.1953 Wm™2 sr-1 bit™!
K = 0.1575

5

K = 0.1386

6

K = 0.3175

7

derived from the ERTS Data Users Handbook for Landsat 1 (National Aeronautics
and Space Administration (NASA), 1972) where K,> Kg, K, are the radiance
per bit of count rate for bands 4, 5 and 6 and K, is for a doubled band 7
scale. The measured count rates at the sensor were converted to radiance

values by using these expressions.

A1.2 Solar lrradiance at the Top of the Atmosphere, EO

A plot of solar spectral irradiance at the top of the atmosphere is
shown in figure A1.2. This was taken from SABATINI et al (1970) after
JOHNSON (1961) for an atmosphere with zero optical thickness. The values
shown in figure A1.2 were derived assuming the mean distance of the earth
from the sun. However at aphelion the distance of the earth from the sun
is appfoximately 1.034 times that at perihelion. Hence by simple geometry
this represents an increase in the solar irradiance between aphelion and

perihelion of approximately 6.8%, or a change from the mean of t 3.4%.
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Interpolated values for the four MSS bands are given in Table A1.1 at

monthly intervals from July 1st to January l1st.

A1.3 Atmospheric Transmittance

Available atmospheric data at the time of satellite overpass
(9.09 am local time, 12th December 1972) were obtained from the Bureau of

Meteorology for the Sydney area. These were as follows

Temperature 28.7°

Relative Humidity 4%

Wind North west at 3 knots
Pressure 1014 .4 mb

Visibility 15 km

Graphs by ELTERMAN (1968) allow estimates of atmospheric transmittance
for a Rayleigh type atmosphere at 0° solar zenith angle. For the mean
wavelength of the four Landsat bands the following transmittance astimates

were determined, with their equivalent optical thickness.

Band & T = 0.91 T, = 0.09
Band 5 T = 0.95 T 0.05
Band 6 T = 0.97 T, = 0.03
Band 7 T = 0.99 To = 0.01

These figures were given for a standard pressure, p, at sea level,
ho’ of 1013 mb. For any other pressure at elevation h, the following

relationship applies

For a pressure of 1014.4 mb at the time of overpass, the correction was
therefore negligible.

It is reasonable to assume that the haze level or visibility of the
atmosphere is in most cases determined by the aerosols, which are concentrated
heavily in the lower most portion of the atmosphere. Visibility or visual
range can be defined as the distance at which the contrast between a black
object with radiance L and sky background with radiance LB is reduced to
two percent which is assumed to be the limiting (daylight) contrast between

objects. Koschmieder's formula shows that visual range is inversely
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TABLE A1.1

atmosphere, July 1st (apehelion) through January

1st (perihelion) [Wm~2 pm=!]
Band | July 1st| Aug 1st | Sep 1st| Oct 1st | Nov 1st [ Dec 1st Jan 1st
b 1835 1857 1878 1900 1922 1943 1965
5 1579 1598 1606 1635 1654 1672 1691
6 1251 1266 1280 1295 1310 1324 1339
8 2 801 810 81 828 8
7 783 79 9 3?,J
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proportional to the volume extinction coefficient and hence visual range
is a measure of optical thickness for a particular vertical particulate
distribution, (MIDDLETON, 1952).

Using this definition of visual range TURNER et al (1972) have
graphed aerosol optical thickness as a function of visual range for a
number of wavelengths. However visual range is usually defined at a
wavelength of 0.55 um and the graphs do not account for spectral variations
in visibility. The observed visibility of 15 km, at the time of over
flight, could only be considered comparable in the visible part of the
spectrum. Band 4 of Landsat, centrally located in the visible spectrum,
was considered to approximate this condition. A value of Tp of 0.34, for
visual range 15km and wavelength 0.55 pm, was interpolated.

However from Chapter 2

Tp = 3 where K is a constant

Thus substituting for Tp = 0.34 at 1 = 0.55 um, K equals 0.16. Therefore

T_was calculated for bands 5, 6, and 7 giving

Tp (band 5) = 0.28
Tp (band 6) = 0.23
Tp (band 7) = 0.17

Since aerosol particulates have a negligible influence on pressure,
no pressure correction was required. While there seems to be a positive
correlation of scattering coefficient with relative humidity, the effects
are important only when the relative humidity exceeds 35% by one estimate
(ROSENBERG, 1967) or 60% by ancther estimate (PUESCHEL et al, 1969). For
an observed relative humidity of 41% it was considered negligible. Aerosol
optical thickness declines with altitude, however over Sydney with
approximately sea level terrain this effect was not considered.

The optical thickness of water vapour is very small for wavelengths
less than 0.7 um but must be accounted for at longer wavelengths. Values
of optical thickness are usually tabulated as a function of the mass of
liquid water equivalent (of the total vapour) in a vertical column of
atmosphere of unit area in cross section. Typical values are 0.5 to 1.0

gcm™? for a mid-latitude winter atmosphere and 2.5 to 3.0 gcm~2for a mid-

latitude sunmer atmosphere.
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For a relative humidity of 41% and temperature of 28.7OC a partial
pressure of water vapour of 12.7 mm of mercury was calculated. This
converted via the ideal gas law to 12.2 gm~3. It was assumed that water
vapour density decreased exponentially with height, and an equivalent
atmospheric height (scale height) of 2.5 km was used to give a liquid water
equivalent mass per unit area of 3.0 gcm 2(AM. SOC. of PHOTO, 1975, 183).

Bands 6 and 7 of Landsat have spectral response functions which span
the water vapour absorption bands. SABITINI et al (1970) tabulates the
percentage departure of expected radiances from a turbid atmosphere as
defined by ELTERMAN (1968) with 2.0 gcm™ 2 of moisture added. These
percentage departure values are based on expected radiances from a surface
with unit reflectance, neglecting the effects of atmospheric scattering.
These values are shown in Table A1.2, for no moisture and 3.0 gcm™2 moisture

content at 30° solar zenith angle.

TABLE A1.2

Percentage departure of expected radiance from a model

atmosphere with 2.0 gcm™?2 moisture added.

No Moisture 3.0 gem™2

Band (300 Solar Zenith (30° solar Zenith
angle) angle)

6 + 6% - 2%

7 +18% - 7%

From Table A1.2 for band 6

o
e-To sec 30 e_TO
-T., sec 300 e T 98 ’

3
WEG e 3

TE

where EG'is global irradiance and T and T, are normal optical thickness for
no moisture and 3.0 gcm 2 moisture content respectively. For ELTERMAN's (1968)
reference turbid atmosphere, transmittance is 0.88 at 0° zenith angle which
gave a value of T of 0.128. Substituting in (A1.0), gave T, = 0.165. But

T, = 0.128, therefore the optical thickness for 3.0 gcm™2 water content alone
was 0.04, to the second decimal place. Using a similar analysis for band

7 the equivalent value was 0.11,
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The optical thickness of ozone in the visible spectrum is quite
small having its greatest value of 0.05 at 0.6 um for ELTERMAN's (1968)
reference atmosphere. The zone of absorption is from approximately
0.5 to 0.7 pm and a representative value of optical thickness for both
bands 4 and 5 is 0.03.

The component parts of the total optical thickness at the time of
over flight are shown in Table A1.3. They are tabulated for each band of
Landsat, with the total optical thickness and equivalent total transmittance

also being shown.

TABLE A1.3

Component parts of optical thickness and total transmittance

for each Landsat band over Sydney 12th Dec. 1972,

Band 4 Band 5 Band 6 Band 7
T 0.09 0.05 0.03 0.01
Tp 0.34 0.28 0.23 0.17
THZO 0.00 0.00 0.04 0.1
T03 0.03 0.03 0.00 0.00
TTotal 0.46 0.36 0.30 0.29
T 0.63 0.70 0.74 0.75

Al.Lk Solar zenith and azimuth angle, and nadir scan angle

Solar zenith angle can be calculated using spherical trigonometry
and solar ephemeris or from tables or planispheres made for the purpose.
Using a planisphere constructed for a Sydney south latitude of 340 a solar
zenith angle of 38° and solar azimuth of 84° were determined. These values
were for a satellite overflight time of 23h.1h G.M.T. which for a Sydney
longitude of 10h.01 East gives a local apparent time of 9h.15 (9 hours
09 minutes) on 12th December 1972.

A nadir scan angle can be considered equal to zero because the
Landsat scanners look vertically down from an altitude in excess of 900 km
with a total field of view of 110. Assuming a representative value of 0.4
for optical thickness, transmittance will vary from 0.670 in the vertical
to 0.669 at a 54 nadir scan angle. This non-vertical effect was

considered negligible.
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A1.5 Path Radiance

Using the optical thickness values given in Table A1.3, EOA for
December 12th interpolated from Table Al.1, the wavelength interval for
each band, and values of P(uo) and P(-uo) at 0 _ = 38° from figure 2.5,
the functions F, G and H of (2.12) were calculated for each Landsat band.

For F and G these calculated values were as follows:

F = 0.0106 G = 0.0453
Y Y

F = 0.0071 G = 0.0361
5 5

F = 0.0047 G = 0.0292
6 6

F = 0.0023 G = 0.0208
7 7

The function H is dependent on RB’ average background reflectance,

and was determined from

RB
H = ———————— where J = 2(1 - n) T

1+ J(1-RB)

and for each band calculated as

JL+ = 0.1238

J5 = 0.0779

J6 = 0.0530

J_ = 0.0281
7

For small values of J, H was approximated by

From (2.12) and substituting Eo e_(T°3 + THZO) for Eo then Lp was calculated

from

L, = E_ e~ (To3 + T50) (F+GH)

which gave

-
]

—_ — 2
2.0 + 7.5 Rgy, + 1.1 Ry, [Wm=2 sr-1]

— —_ 2
1.2 + 5.4 RB5 + 0.5 RBS

— _2
0.6 + 3.5 RB6 + 0.2 RB6

-~

©

o
L]
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= -2
Lp; = 0.5+ 4.5 Rg, + 0.1 Rg (A1.1)

A1.6 Global Irradiance

Using values of J and H from section Al1.5 and values of |

calculated for the given conditions as follows

l, = 0.7307
I5 = 0,7510
I6 = 0.7624
I7 = 0.7753
and then from (2.13)
_ -(t + 1,.)
Ep = E e " H20 03" 1 [1 + JH} - E T cos 6
which gave
Ep, = 52.6 + 15.0 Rg, + 2.1 Rg}  [Wm™?]

Epg = 38.6+ 8.8 EbS + 0.7 ﬁg;

Epg = 25.8 + 4.9 §g6 + 0.3 Rbg
Ep; = 26.0 + 4.4 §b7 + 0.1 ﬁb%
and
Eg, = 138.4+ 15.0 Ry, + 2.1 Rgj; [Wm™?]
Egg = 122.h + 8.8 Egs + 0.7 ﬁég
Egg = 97.4+ 4.9 Rg, + 0.3 RgZ
Eg; = 173.0+ h.b §57 + 0.1 ﬁg% (A1.2)

As the-quadratic term will add a maximum of less than 2% to EG when

background reflectance is 100% it was neglected in all further calculations.
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Al1.7 Target Reflectance

From (2.14)

IR, DA n(CK - L)
A EG Tev
Thus for each band the following was derived

’zRi DA, m(0.1953 C, - 2.0 - 7.5 Rp,, - 0.5 Rpj)
A

0.63 (138.4 + 15.0 Rp,)

{ N\ - - — _ = 2
IR, AA. i "(0.1575 C; - 1.2 - 5.4 Rgy - 0.5 Rpg)
A 0.70 (122.4 + 8.8 Tp,)
- - Y — Ro2
IR, A i 7(0.1386 Cc - 0.6 - 3.5 Rg - 0.2 Rpy)
A —
\ @ 0.74 (97.4 + 4.9 Rgy)
( - - R, - Rn2
IR, 0A. ) i 7(0.3175 ¢, - 0.5 4.5 Ry - 0.1 RB7)
A

0.75 (173.0 + 4.4 E§7 )

A number of approximations were applied. The approximation

:
1+ x
1% or less to total reflectance when background reflectance was 100% were

= 1 - x was used because x = (T%%i%) is small. Terms that contributed

neglected, which gave in terms of percent reflectance -

(IR, A,
i i - _ — ) ) _
—3— | = 0.634 ¢, (1 -0.00105Rp,) - 6.5 - 0.236 Rp,
i
(IR, 0A,
i i _ _ - _ ) _
—F | - 0.578 Cs (1 - 0.00072 RBS) L4 - 0.195 Rg g
5
(IR, 4A,
| 1 . _ = - - Iy
] - 0.604 C, (1 - 0.00050 Rg,) - 2.6 - 0.151 R
6
(TR, AA. )
1 1 - - = _ _ -
— ] - 0.769 ¢, (1 - 0.00026 RB7) 1.2 - 0.109 Rg, (A1.3)
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A1.8 Point Spread Function

The purpose of this part of the research was to develop an algorithm
that removed the effects of psf convolution. However this idealistic
requirement was tempered by the knowledge that any increase in the number
of pixels used in the solution array would substantially increase computing
time to a point that made the use of the deconvolution algorithm
inappropriate for practical application. What was required was a simplified
algorithm that substantially reduced the effect, so that the correlation
between ground and sensor data could be improved.

The average ordinates for the psf were determined at discrete one
third pixel and line intervals using values bilinearly interpolated from
figure 2.6. These ordinate values were limited to a 3 x 3 pixel array,

a total of 81 values. While this procedure neglected small negative
ordinate values two pixels from the central pixel in the along scan
direction and small positive values in the opposite direction, it was
considered that their exclusion would not substantially alter the results.
Values were normalised so that the integral of the psf equalled one and
are shown in Table Al1.4.

A constant, unit value central pixel surrounded by zero value
pixels was assumed, and the psf of Table Al.4 was discretely stepped at
1/3rd pixel and line intervals. The results at each point were averaged
across the appropriate pixel to give the results shown in Table Al.5.

These results represent the values recorded at the appropriate
pixel positions for a true central pixel response of one. Alternatively
they can be considered to represent the weights to be given to each pixel's
true response as their contribution to the central pixels's recorded
response.

The Landsat MSS records in a six line swath causing a discontinuity
to occur at the edge of the first and sixth lines. Because of this effect
the results of Table A1.5 are strictly only appropriate for central pixels
on the second through 5th lines. However the spatial relationship between
ground truth areas and Landsat data was only known to the nearest half pixel.
The inclusion of a correction for this effect was therefore considered
inappropriate in many cases. Given this and the fact that the error would
be small and only affect part of the sample the simplified concept of no

discontinuity was assumed.
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TABLE A1.4

Ordinate values of Landsat sensor psf for a 3 x 3

pixel array.

PR

0.008, 0.025 ' 0.054

0

0 o . 0
e oo

0.075 0.103 jo.07o

St —

T T
1 [
., 0 . 0
r__- .
0 v 0 0
- e -t

0.043 ;0.015

0.052: 0.178 | 0.366

0.060 ' 0.206 | 0.422

e = e e e e e e
'

0.516 1 0.590 '0.497

0.6055 0.680 ,0.572

]
0.300 ' 0.105 [ 0

0.347 ,0.122 ' -0.009

v e e e e e e o em e me -

o.oszf 0.178 | 0.366

0.008 ' 0.025 ' 0.054

0.075.0.103 '0.070
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TABLE A1.5
Estimated recorded response from a unit value central
pixel,

0.03 | 0.07 | 0.02
Scan
———
0.18 0.45 0.13
Direction
0.03 | 0.07 | 0.02

Direction
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Using the values from Table A1.5,L

8
1y

(x,y

) can be given by

R X
+0.02 L, (x+1,y-1) +0.18 ks (x-1,y) +0.45 bs (x,y)
Y013 Lg (eaty) F 003 L (et yan) T OOT L (o la)
+0.02 L (A1.4)

x (x+1,y+1)

where x and y are the pixel and line coordinates of the central pixel, L:

is the total radiance received by the sensor, and LS is the total radiance

at the sensor prior to convolution.

Similar equations for adjoining pixels can be formed.

Two

assumptions were made in forming these equations,

(i) the radiance values of pixels
3 x 3 array were set equal to
in the array,

(ii)

all radiance values of pixels

L x 4 array were set equal to

The assumptions were chosen in preference

adjoining the central

their nearest neighbour

outside this modified

zero.

to assuming all pixels

outside the 3 x 3 array were equal to zero which would only realistically

occur in extreme cases.

The nearest neighbour assumption of (i) was

considered to be statistically more probable than a zero assumption.

The equations formed can be shown in matrix notation as,

FL:(X_]’y_1)- [0.73 0.15 0.00 0.10 0.02
L:(x’y_1) 0.21 0.52 0.15 0.03 0.07
L:(x+]’y_1) 0.00 0.21 0.67 0.00 0.03
L:(x_1’y) 0.10 0.02 0.00 0.63 0.13
L:(x’y) = 10.03 0.07 0.02 0.18 0.45
L:(X+1’y) 0.00 0.03 0.09 0.00 0.18

' 0.00 0.00 0.00 0.10 0.02

LS(x-1,y-1)

ey ™ b
0.00 0.00 0.00 0.00 L
s (x-1,y-1)
0.02 0.00 0.00 0.00 L
S(X,Y’l)
0.09 0.00 0.00 0.00 Ls(x+1,y-l)
0.00 0.10 0.02 0.00 L
s(x—1,y)
. . 0.0 .02
0.13 0.03 7 0.0 Ls(x,y)
0.58 0.00 0.03 0.07 Ls(x+1,y)
4 L
0.00 0.73 0.15 0.00 s (x-1,y-1)
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0.00 0.00 0.00 0.03 0.07 0.02 0.21 0.52 0.15} | L

bs (x,y+1) s (x,y+1)

L;'c 0.00 0.00 0.00 0.00 0.03 0.09 0.00 0.21 0.67{ |L

s (x+1,y+1) s (x+1,y+1)

and were solved for Ls(x ) in terms of L; values to give

bl

Ls(x,y) 0.09 Ls(x_]’y_1) - 0.35 LS(X,y-]) + 0.07 Ls(X+l,y-l)
S0.78 L (g ) F 2T6 Ly T 0.60 L
F3 * b3
+0.03 Ls(x-l,y-1) -0.35 Ls(x,y+1) +0.07 Ls(x+1,y+1)

(A1.5)
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APPENDIX 2

LANDSAT MSS SYSTEM

The Landsat satellites are earth resource observatories in near polar
orbits. Three satellites have been launched, Landsat 1 (formerly ERTS1),
Landsat 2 and Landsat 3. A fourth satellite in the series, Landsat D, is
scheduled for launch in late 1981.

Two sensors are carried by each satellite - the Multispectral
Scanner (MSS) system and the Return Beam Vidicon (RBV) system. The RBV
sensor is essentially a high resolution television camera. This system
ceased to operate on Landsat 1 shortly after its launching.

The MSS sensor, from which the data for this thesis is derived,
continually scans a 185 km swath of the earth's surface producing four
spectral bands of digitized imagery every 25 seconds, an area of
approximately 185 km square. The earth is scanned by an oscillating
mirror carried in the satellite. The intensity values of 6 pixels in the
direction of satellite travel, for each of the four bands are sensed
simultaneously by the scanner system. Data for an area of 474 m by 185 km
is therefore recorded on each sweep. A schematic diagram of the MS$SS
system is shown in figure A2.1,

The spectral regions recorded in each band are 0.5 - 0.6 um (green),
0.6 - 0.6 um (red), 0.7 - 0.8 um (near infrared) and 0.8 - 1.1 um (near
infrared). These bands are labelled bands L, 5, 7 and 7 respectively.

The scanner has a ground resolution of about 79m . While
successive scan lines are spaced approximately 79 m apart on the ground, the
pixels in a scan line are sampled every 57 m (approximately). An image on
one band therefore consists of 3240 pixels (picture elements) along each
scan line (approximately in an east-west direction) and 2340 scan lines.

The satellite covers the same area of the earth eVery i8 days amounting to
20 passes per year.

Data from the Landsat satellite are transmitted directly to a ground
receiving station when it is in range (2400 km) or can be recorded on tape
for later transfer when out of range. The data from a single scene is
distributed on a set of four computer compatible tapes (CCT's). Each CCT
contains the data for all four wavebands for a strip approximately 45 km
wide and 185 km long. Landsat data for the Australian region is now received
directly through a receiving station and can be purchased through a processing

and distributing centre in Canberra, Australian Capital Territory.
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OPTICS
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N
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FIGURE A2.1: Schematic diagram of Landsat Multispectral
scanner system,
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APPENDIX 3.

A3. GEOMETRIC TRANSFORMATION PROCEDURES

A3.1 Introduction

A necessary procedure prior to the main study was the transformation
of parts of the Landsat scene into the ground truth areas. As these ground
truth areas were to be located at 4 km intervals, sufficient ground control
to ensure a tight fit to each area was required and to allow examination of
surrounding residuals. Control points were also located so that, if inadequate
results were achieved from an overall polynomial transformation, individual
affine transformations could be computed. With seventy ground truth sites
a total of one hundred ground control points was needed to satisfy these
aims.

Unlike cultivated rural areas, urban areas exhibit an extremely
heterogeneous surface cover, and considerable interpixel and intra-pixel
change can occur. Ground truth areas therefore needed to be spatially
related to the Landsat digital image at the sub-pixel level if the correlation
between ground and image was to be fruitfully examined.

The number, distribution and registration accuracy of ground control
points (G.C.P.) will influence the accuracy of the computed ground image
spatial relationship. BERNSTEIN (1976) shows that if G.C.P. registration
accuracy is 0.5 of a pixel then 12 G.C.P. are needed to obtain a 50 metre
root mean square error and 18 G.C.P. for a 40 metre root mean square error.

As CARTER (1977) notes, these theoretical levels are not so easy to obtain.

A3.2 Basic Theory

Current research on the selection of suitable formulae for the
geometric correction of Landsat data reveal three basic methods (TRINDER,
1978)

(i) A parametric solution in which an attempt is made to

determine the position and attitude of the spacecraft
using known formulae describing the image formation
process,

(ii) Polynomial interpolation formulae which are a simplified
approach to the adjustments, and do not require any

knowledge of the image formation process.
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(iii) A simple interpolation formuia, followed by a least squares

linear interpolation procedure.

TRINDER (1978) suggests that there appears to be little if any
difference between results obtained using all three methods above. Because
of its simplicity and ease of application using an available multiple
regression computer package, the polynomial method was chosen for this
investigation.

Results by TRINDER (1978) indicate that a 3rd order polynomial is
adequate for the transformation of an entire Landsat scene using a limited
number of ground coordinates derived from 1:100 000 and 1:250 000 map
sources. However it was considered that when using a small portion of a
scene with a large number of more accurate ground coordinates, as was the
case in this study, a higher order effect could be significant. For this
reason the adjustment equations initially chosen were complete 5th order

polynomials of the form

E = a +aX+.... +a5X5+a6Y+ +a10Y5

+ag XY+ +a23x“\(3 (A3.1)
N = b, +bX+ ... +b5X5+b6Y+ +b10Y5

+ b XY + .... + b, X4y3 (A3.2)

11 23

where E and N are East and North coordinates respectively, (these
coordinates were Integrated Survey Grid (1.5.6.) coordinates, a local
system based on a transverse mercator projection, which is used for large
scale mapping in the state of New South Wales). X and Y are the pixel and
line numbers respectively of the control points and a, to ay3 and b0 to
b23 are the transformation parameters.

In addition to these transformations, a correction for interswath
discontinuity was applied. This cannot be corrected by the poynomial
transformations. The discontinuity or apparent slip between swaths, is
due to both earth rotation and sensor delay effects, and is of the order
of 50 m for Australian latitudes (TRINDER, 1978). A 50 m shift was
applied to all lines in each consecutive swath of six lines, the remaining

linear skew was then accounted for by the polynomial transformation.
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As the polynomial equations are essentially a least squares
adjustment with E and N as the dependent variables and X and Y (and higher
orders) as the independent variables, the problem was treated using
multiple regression techniques to compute the transformation parameters.

In addition to the interswath geometric error corrected prior to
the regression procedure, other significant geometric errors can exist.
These include, the effects of non-linear scan rate of the oscillating
scanning mirror and a topographic effect due to height differences of the
various G.C.P. A full description of all geometric errors has been
documented elsewhere (KRATKY, 1975).

For the selected Landsat sub-scene the topographic effect was
found to be insignificant. The maximum height difference was 200 m, and
the maximum distance from the satellite nadir was approximately 500 pixel
widths. Using Ar = Az r/z (where Az is the elevation of the satellite
and r is the pixel coordinate along a particular scan line as measured
from the satellite nadir), the maximum possible correction was found to be
of the order of 0.1 pixel widths or 6 m which was substantially less than
sampling error.

The effect of non-linear scan rate can generally be accounted for
by higher order polynomials. |In addition the selected sub-scene extended
east only 30 km from the satellite nadir, and thus the main components
of this effect were approximately linear. TRINDER (1978) found that
the non-linear scan rate effect was completely eliminated by the 3rd order

terms in a complete 3rd order polynomial.

A3.3 Control Point Selection and Distribution

The purpose of the investigation was to allow transformation
between parts of the Landsat Sydney scene and the ground truth areas.
These ground truth areas were located at approximately 4 km centres and
sufficient ground control to ensure a tight fit to each area was required.
Computer shadeprints and a corresponding printout of the intensity
values could be produced for any specific area. To produce the shadeprints,
a histogram of the intensity values was determined and nine different gray
scale values were assigned to equal portions (TRINDER, 1978). The
corresponding 'map' of the intensity values was achieved using a character

to represent all occurrences of a decimal value,
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An examination of various shadeprints from each of the four bands
indicated that for urban areas Band 7 was preferable for G.C.P. selection
due to the abundance of small parks, intersecting man-made linear features,
small water bodies and for coastal cities natural and man-made projections
into a water body. All of these features are generally against backgrounds
which give significant contrast in this near infrared band.

Control points were selected from within areas of fifty by fifty
pixel dimension. While this produced a more dense distribution of control
points in the along scan direction, since Landsat pixels are 1.4 times
longer in the across scan direction, this was considered an advantage as
most non-linear scanning errors tend to have their maximum effect in this
direction. The selection of the best G.C.P. in each area also meant that
in some cases the points were relatively close together.

Initial control point selection was made using the shadeprints,
while final estimation of pixel coordinates was achieved using the
character printout. Pixel and line values for each G.C.P. were estimated
to 0.5 of a pixel. For small ground features on uniform backgrounds,
the displays revealed symmetric distribution of intensities if the pixel
coincided exactly with the detail. Interpolation in these cases was
relatively easy giving whole or half pixel values. |If the ground feature
was asymetric with respect to the pixel location, the distribution of
intensity values was also asymetric and an estimation of the location to
the nearest half pixel was required. This led to a maximum error of
t 0.25 pixel,

The coordinates of the G.C.P. were obtained from 1:10 000 series
planimetric maps which were available for the whole of the Sydney region.
Coordinates were estimated to the nearest 5 m by referring to the closest
grid intersection and measuring the small displacements from that grid
intersection,

Preferred control points were features of the order of one or two
pixels in size, against a contrasting background. The centre or
intersection of features was chosen in preference to the edge where the
intensity change takes place. Unless enhanced, edges are smeared due to
the low resolution of the Landsat scanner and an unambiguous interpretation

is difficult to achieve. For specific examples of urban control points

see FORSTER (1980 a).
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A3.4 Results of Computation

Standard errors of the order of 30 m were achieved for both equations
A3.1 and A3.2. The distribution of vector residuals is shown in Figure A3.1.
At map scale each cell represents 2850 by 3950 metres therefore each cell
contains 50 by 50 Landsat elements. For convenience each control point is
located at the centre of the cell from which it was selected. The vector
residuals at each control point are drawn at a fifty times enlargement,
and so at this scale the cell represents a 57 by 79 metre picture element.

To reduce the size of the values used in the regression analysis,
250,000 metres and 1,200,000 metres were subtracted from the Zone 56 1.S.G.
Easting and Northing coordinates respectively. Line and pixel values were
reduced by 1000 units and divided by 10. Thus in the resulting equations
X and Y values are fractions in units of 10 pixels or lines. By scaling
down the values to be used in the computations, computer round-off error
is minimized.

For the easting equation, A3.1, the significant variables, at a 90%
confidence level or greater, were X, Y and X°, all other variables being
insignificant. The standard error of the regression as a whole using these
three variables was 32.3 m.and the equation was significant at the 99.9%
level. The order of entry of the variables into the regression computation
was X, Y and X°, with the standard error improving from 1376 m to 33 m as
the Y value entered the equation, and only a marginal but significant
improvement with the entry of X°. The coefficient of X® was significant
at the 98.6% level.

More variables were required to adequately define the northing
transformation, (A3.2). Here the significant variables were, in order of
entry, Y, X, XY%, X® and X3. The resulting standard errors as each new
variable was entered was 1848 m, 26.34 m, 26.29 m, 26.38 m and 24.79 m.
Little if any improvement in the standard error was achieved as variables
XY2 and X5 were entered even though their coefficients were significant
at the 90% level or better. Least significant however was XY2 in the
final variable set, and this could possibly be removed with littie change
in the results. Overall equation significance was greater than 99.9%.

The final results for each equation were

E = 43564.7 + 569.19 X - 111.69 Y - 0.27 X5(1077)

and
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FIGURE A3.1: Vector residual distribution of 100 G.C.P. The
centres of each cell represent the approximate
relative position of the control points on the ground,
being separated by 2850m along scan and 3950m across
scan. The dotted line indicates the outer limits
of the area in which ground truth sites were sampled.
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N = 126705.3 - 794.07 Y - 108.57 X + 0.14 X Y?(10-3)
+ 0.18 X> (107%) - 0.15 X3 (10"2), where E and N are in metres and X and
Y are in units of ten pixels or lines respectively. Similar equations with
X and Y as the dependent variables and polynomials in E and N as the
independent variables were also derived, for use when transforming Integrated
Survey Grid (1.5.G.) coordinates into the image coordinate system.

Because the use of a fifth order polynomial can lead to extensive
warping especially at the edges of the control block, the derived equations
were only used to predict coordinates of points well within the perimeter.

The azimuth of the across scan track was computed from the derived
polynomial equations and a calculated value of 11° 08' was determined.

As the scene in question extended from the satellite nadir, east for
approximately 30 km and given a circular standard error of + 30 m, the

standard error of calculated azimuth was approximately * 0° 05'.
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