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ABSTRACT

The thesis investigates the potentialities and problems of meas-
uring the Earth's polar motion and Universal time by Lunar Laser Rang-
ing (LLR). Theoretical developments and concepts are presented within
the framework of a review on the Earth's rotation and a comprehensive
summary of the LLR technique. Aspects of the Earth's rotation which
are considered include; the basic modes of rotation, the reference
frames and measurement systems used to monitor these modes, and the
causes of the many features which contribute to the rotation spectrum.

The description of the LLR technique is divided into four categ-
ories. The algorithms required to model the physical processes which
- cause time variations in the measured range are outlined. Also dis-
cussed are the scientific achievements and future objectives of the
experiment, the coordinate systems and procedures used to estimate the
predicted range, the method of parameter refinement, and the operat-
ional status of the network.

To study the feasibility of accurately monitoring the Earth's
polar motion and Universal time by LLR, a simplified model of the
distance between an earth-bound observatory and a lunar retroreflect-
or is developed. The conventional approach is used, in which each eff-
ective range observation is assumed to be constructed in accordance with
the 'normal point' concept and is treated in the analysis as a single en-
tity. Estimablevparameters.are identified and the model assumptions
cleé}l& documented. There is also a brief discussion on the diffic~
ulties of extracting Earth rotation information from single station
data.

The model is used to carry out studies designed to examine the
dependence of the results on network constituency, station geometry,
lunar declination, averaging interval, measurement uncertainties,
hour angle coverage, and data loss due to weather, sun-moon angle
and zenith distance constraints. The most significant conclusion is
that the present five-station LLR network, ranging with measurement

uncertainties of 3 cm, should be ‘able to provide a high percentage
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of two-day values for polar motion and Universal time to bettet than
5 cm and that additional southern hemisphere stations will be needed
if daily values are desired on a continuous basis at this level of
resolution. The effect of systematic errors is also discussed brief-
1ly.

Anticipating that the new space ranging methods will achieve
accuracies of 2-3 cm,kfurther studies are undertaken to explore the
effects of two geophysical mechanisms which now have the potential to
contaminate the results from earth rotation and geodetic experiments.
First, the changes in LLR station coordinates produced by lithospheric
plate motion are considered and their effects on polar motion and
Univérsal time results are computed. Estimates of these station drifts
are calculated from plate velocity models and then used as input to
determine the time it takes plate motion effects to become significant.
Results for selected LLR network combinations are tabulated and disc-
ussed in detail.

Seasonal variations in the geometrical shape of the earth's surf-
ace and the position of the geocentre will also be detected by space
"rénéingﬂﬁ;;;ufémgafé; One contribution to these variations is that due
to atmospheric and groundwater loading. Global atmospheric pressure
data, values of groundwater storage and load deformation theory are,
therefore, used to estimate the crustal response at strategic geodetic
locations. This response is represénted using conventional load Love
numbers. The results, which are marginally significant at the 2-3 cm
accuracy level, are depicted on a series of world contour maps. Part-
icular emphasis is given to regions where the displacements are larg-
est and to the results at sites where lunar, satellite and interferom-
etric geodesy is, or is likely to be,conducted. Only the radial
displacements need to be considered. The accoﬁpanying motion of the

geocentre is also estimated but is found to be almost negligible.
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NOTATION AND CONVENTIONS

SYMBOL
A,C principal moments of inertia for a spheriodal
Earth; A also denotes the amplitude of annual.
radial deformation
[A] design matrix; matrix of coefficients 9p/0Pj,
for parametric corrections to distance model
a,b probability factors in weather model; a also
denotes the Earth's radius
ag by, constants- of integration (2.16)
ag fraction of the Earth covered by oceans
[B] vector of constant terms in system of normal
equations
s spherical harmonic coefficients of degree n
nm’ “nm
and order m
c velocity of light in vacuo; also denotes
correlation coefficient in weather model
s correlation between i~th and j-~th parameter
] of distance model
D mutual separation of Moon and Sun (= L-L'")
dMJD time of observation in Modified Julian Days
-
d displacement vector due to loading
+
dr radial displacement due to loading, dr = |grl
> -+
dt tangential displacement due to loading, dt = !dt|
dx/dt derivative of x with respect to time; also
denoted by x
E eccentric anomaly of the Earth-Moon centre of
mass in its orbit about the barycentre (3.6);
also denotes elevation angle
e; independent random variable
ijk alternating tensor
argument of lunar latitude
5 Bernoulli random variable of two~state Markov
chain
£ laser frequency
fk body force (e.g. due to gravitational attract-
ion) '

* Further subscription and/or superscription may be used for purposes
of clarification. A notation used in one section only is defined

locally.



xii

SYMBOL

G universal gravitational constant

[G] inverse of variance-~covariance matrix for

' observations

g local acceleration due to gravity at the
surface of the Earth®

g value of g averaged over the surface of the
Earth

H geocentric hour anglesof lunar reflector

Hi absolute angular momentum

[H] coefficient matrix in theory of surface
loading

hi relative angular momen tum”

h ,kn,2 Love numbers of degree n (load Love numbers
if primed)

h mean elevation above sea-level

I, inertia tensor

ij

iij perturbations in inertia tensor Iii

-»> .

i unit vector™

k modification factor (5.27)

-5

‘k vector, selenocentre to lunar reflector

L lunar mean longitude* (solar if primed)

1 torque

1 . -’ » — . 1 1 —

[L] unar libration matrix { R3( wm)Rl(@m)R3( ¢m)}

M .mean anomaly of the Earth-Moon centre of mass
in its orbit about the barycentre (3.6): also
denotes mass of the Earth®

Mm mass of the Moon

-

M vector, barycentre to selenocentre

m January-July surface load difference

m' April-October surface load difference
mass of a disturbing body (e.g. sun)

m, direction cosines of the Earth's spin vector
(2.10, 2.18)

>

m vector, geocentre to selenocentre



SYMBOL

[N]

Pn(cos P)

xidii

normal matrix {= [A]T[Gl[A]}
nutation matrix {= Rl(—s)RB(Aw)Rl(E)}

lunar sidereal mean motion

outwardly directed normal to surface element,
ds

, *
atmospheric pressure

n-th parameter in distance model; also denotes
n—-th lithospheric plate in global tectonic
model

Legendre polynomial of degree n in terms of
cos Y

precession matrix {= RB(CO)RZ(@)RB(Z)}

stress tensor (including non-hydrostatic

contribution T, .) '
1]

quality factor™

variance-covariance matrix of adjusted par-
ameters

L
surface load, in grams cm
gas constant

counterclockwise rotation about the i-th axis
through an angle ¢ '

vector, barycentre to geocentre

vector, barycentre to Earth-Moon centre of
mass

vector, geocentre to centre of mass of dist~
urbing body

distance from geocentre to observatory
distance from geocentre to lunar reflector

: *
vector, geocentre to observing station (geo-
centric station vector)

>
r corrected for polar motion

-
r transformed to barycentric system

vector, geocentre to lunar reflector

surface of the Earth; dS' surface element;
dS = cosddddAr is a surface element on a unit
sphere



Vn(r), Wn(r)

[v]

v(r)

xiv

surface spherical harmonic of degree n
sidereal matrix {= R3(~6)}

temperature

non-hydrostatic stress tensor

vector of residuals; also denotes transition
probability matrix

time* (UT1, UTC, ET or IAT as required)

perturbation U, in ambient gravitational
potential due %o deformation plus the potent-
ial U2 of any applied mass load®

potential U of degree n
velocity vector relative to X system
volume; dV volume element

radially dependent functions defining rad-
ial and tangential displacements, respectively

vector of corrections to observations

velocity vectgr of+point r located on lithosph-
eric plate Pn (= wnxrn)

tide producing potential

tide producing potential of degree 2
indicators of observability

angular velocity*

space-fixed reference system (1950.0)

coordinates for pole of spin axis in BIH
system '

earth-fixed reference system (rotating frame)
lunar-fixed reference system (rotating frame)

vector of six parameters in theory of surface
loading

zenith distance*

right ascension of lunar reflector*; also
denotes the longitude of the Sun on April 15

transformation angles

phase of annual radial deformation: also
denotes lunar moment of inertia parameter

ecliptic latitude of the Moon



SYMBOL

SUT1
'6x,6y

295052
O ’¢ 911'}

m” m”'m

> D @

XV

vector, barycentre to observatory

Eddington-Robertson relativistic parameter
lunar moment of inertia parameter
mean temperature gradient

one-way travel time correction for curvature
of photon path (3.22)

one~way travel time correction for atmospheric
retardation

vector of parametric correction
P . %
relativistic clock correction”™ (3.6)

Cartesian components of position of geocentre
with respect to system located at centre of
mass of the earth plus load

nutation in obliquity*

one-way distance equivalent for At

time delay residual

nutation in ecliptic longitude*
declination of lunar reflector

time interval Between IAT and ET
Kronecker delta

change in T due to tidal and loading effects
phase angle of earth-tidal bulge
tidally-induced change in UT1

components of forced diurnal polar motion
instantaneous obliquity of ecliptic

mean obliquity of ecliptic*

precession angles

lunar libration angles with respect to mean
equatorial system of 1950.0 (if primed they
refer to the mean ecliptic system of date)

. , sk
Greenwich apparent sidereal time
Greenwich mean sidereal time

geocentric longitude of observatory* (posit-
ive eastward from Greenwich); also denotes
Lamé parameter

ecliptic longitude of the Moon



SYMBOL

Bp/aPn

ol

xvi

derivative of p with respect to n-th parameter
in distance model

gravitational constant of the solar system
probability factor in weather model
Lamé parameter

change in sea-level
lunar mean anomaly (solar if primed)

distance from observatory to lunar reflector”
density of matter®

vector, observatory to lunar reflector®

frequency of oscillation*; also denotes perp-
endicular distance from observatory to the
Earth's spin axis

uncertainty of i-th observation
variance of i~th observation
vector, barycentre to lunar reflector

random error contribution to uncertainty in
p—th parameter of distance model

variance of p-th parameter in distance model®

systematic error contribution to uncertainty in

p~th parameter of distance model
frequency of the Eulerian wobble
two-way time delay*

geocentric latitude of observatory*

geocentric angle between a point on the Earth's
surface and a load on the Earth's surface

excitation functions for a rigid Earth
Sun-Moon angle

nominal value for the Earth's diurnal spin
rate*; also denotes ecliptic longitude of as-
cending node of the lunar orbit

coupling parameter in Brans-Dicke theory
absolute value of x
expected value of x

longitude of the Sun measured from the beginning
of the year
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CONVENTIONS
A vector § is represented in the form

3 T
X=X.,1
i
where Xi are the vector components along the rectangular coordinate

> > >
axes defined by the unit vectors 1, 2, 3.

The scalar product of two vectors is given by

XYV = X.¥. + X.Y. +X.Y
= XYy R Y, XYy

while the vector product is defined as
> > > > > >
XY = XXY = (X2¥3—X3Y2)l + (XBYl—XlY3)2 + (Xle—X2Y1)3

The operator is defined as

> _ 3 =
Ve ot
1
Thus,
w- T3
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CHAPTER 1
INTRODUCTION

Observations of the earth's rotation have long been an important
asset for studying the physics and dynamics of the earth. The surge of
interest in this field during the late nineteenth century led to many
research papers by distinguished scientists. In more recent times, the
diversity of the subject inspired Munk and MacDonald (1960) and Lambeck
(1980) to write extensive monographs dealing with the geophysical
aspects of the problem. A substantial amount of the earth rotation data
discussed in these latter studies were obtained by classical techniques
employing optical and photographic instruments. While the accuracy of
such data is adequate to explain many of the rotational phenomena, there
are still several unresolved areas that require the rotational motions

to be measured with an accuracy about an order of magnitude better.

A solution to this predicament comes with the development of the
space ranging techniques. For example, precise tracking of artificial
satellites for studying the earth's gravity field, laser ranging to
lunar retroreflectors to further understand the dynamics of the lunar
orbit and rotation and the application of radio interferometric tech-
niques for locating the position of quasars all require accurate moni-
toring of the earth's rotation. This prerequisite is also of fundament-
al importance to the geodesist who wants to use the space techniques to

coordinate points on the earth's surface at the 5 cm level or better.

One particular consequence of these technological advances will he
the improved observation of the earth's polar motion and angular
position in space (UTl). Polar motion and UTl contribute to changes in
the spatial and geographical location of satellite tracking stations.
They also contain valuable information on the meteorological and geo-
physical phenomena affecting the earth's rotation (e.g., winds, earth-
quakes) and, for these reasons, need to be monitored regularly as well

as accurately. ‘All space ranging techniques have the potential to



achieve this goal. However, 1t is the purpose of this study to inves-
tigate specifically the feasibility of using fixed lunar laser ranging
obgervatories to provide this information. An assessment is also made
of the significance of some pertinent geophysical mechanisms that

hitherto have been regarded as observational noise sources in the space
ranging techniques but, in the future, could produce detectable effects

at the expected 1 to 3 cm measurement accuracy level.

Since the main body of this study deals with the problems and
potentialities of monitoring the earth's rotation by lunar laser rang-
ing, it is important that the concepts and fundamental principles of
both the earth's rotation and the lunar laser ranging technique be
understood. Chapter 2 is devoted to the earth's rotation and although
the review 1s unavoidably lengthy, it gives the reader an appreciation
of the diversity of the subject. The basic modes of the earth's rota-
tional motions are identified within the framework of rigid-body theory
using the well-known Euler equations. The equations of motion are
extended, in accordance with Liouville's development, to incorporate the
rotational response of a deformable earth. Systems for determining the
earth's rotation are discussed in Section 2.3 together with the basic
merits and limitations of each method. Section 2.4 summarizes the main
geophysical processes that perturh the rotation of the earth from its
rigid-body state and highlights the contentious areas where sustained
research effort is still needed. The chapter concludes with a brief
perspective on the main criteria governing the establishment of a future

earth rotation service and the role each technique is likely to play.

In Chapter 3, the discussion focusses immediately on the lunar
laser ranging experiment. The reference coordinate systems used In the
reduction of LLR data are defined and a complete description of the
precise time-delay modelling procedures and formulation of the obser—
vation equation is given. This outline is essentially a review and
more comprehensive acéount ofuthe description given bywétolz (1979).
Attempts are made to clearly define the sign convention used throughout

the mathematical formulation. The chapter continues with a summary of



the past and present scientific achievements from LLR, together with an
outline of the method used for parameter improvement. Finally, the
status of the LLR network is discussed in Section 3.4 as a means of

selecting realistic LLR network combinations for use in the numerical

analysis.

Because of the nature of the earth-moon geometry, several
assumptions can be invoked to simplify the ohservation equation. The
derivation of the distance and observation equation for single ranges
using the simplified approach is outlined in Chapter 4. "The estimable
parameters are identified and particular attention is given to the
problems of parameter separabhility as implied by the mathematical struc-
ture of the observation equation. It is assumed that each observation
has been formed according to the 'normal point' concept (Abbot et al.
1973) and since the primary object of the study is to examine how well
LLR can determine polar motion and UTl and not the lunar motion, 1t was
decided not to parameterize the lunar orbital and librational motions
separately. 1In fact, for the majority of the numerical experiments
carried out here, the lunar ephemeris is assumed to be perfectly known .
All parameters that constitute the mathematical model are assumed con-

stant over the specified analysis interval.

The mathematical formulation developed in Chapter 4 is used in
Chapter 5 to perform a series of variance studies to investigate the
potentialities of LLR for monitoring polar motion and UTl. This
approach is chosen out of necessity because of a lack of real ohserva-
tions from a network of LLR stations. Consideration is given to the
dependency of the results on the network constituency, station geometry,
lunar declination, the analysis interval, hour angle coverage, the loss
of data caused by the weather, the sun—moon angle condition and the
zenith distance restriction. Creating a realistic observational envi-
ronment is indeed one of the more critical aspects of this study. The
conditions of observability and the justification for their adoption are
summarized in Section 5.2. ‘In particular, a detailed theoretical deve-
lopment of the weather model is presented since meteorological factors

result in the greatest loss of range data. This summary precedes a



general description of the earth rotation analyses undertaken in this
work. The results and their significance are discussed in the remaining
two sectlons of Chapter 5.

The need to investigate the effect of geophvsical and
meteorological processes on geodetic observations and experimeﬁts
conducted at the 1 to 3 cm accuracy level 1s clearly obvious. Chapters
6 and 7 explore the geodetic consequences of two phenomena, namely,
lithospheric plate motion and seasonal atmospheric-groundwater loading,
respectively. The sixth chapter deals specifically with plate motion
effects on earth rotation results from LLR. Firstly, a brief review of
the global plate tectonics concept is given. Fstimates of the expected
rates of change in the coordinates of the LLR.stations, based on a suite
of absolute plate velocity models, are used as input to determine the
degree to which polar motion and UTl results would be contaminated if
such movements are not accounted for in high-precision experiments.
Plate models that give results which are in good agreement are

identified.

Seasonal variations in atmospheric pressure and groundwater storage
may‘also produce measurable effects. These will appear primarily as
radial surface deformations and as a movement of the geocentre.

Included in Chapter 7 are the basic theory needed to calculate the
crustal deformations caused by surface loading and the motion of the
geocentre, a description of the data used, the results for the seasonal
departures in radial position due to atmospheric-groundwater loading on
a global scale and at individual geodetic observatories, the calculated
motion of the geocentfe, and a discussion on the significance and

accuracy of the results.

The overall conclusions and recommendations for this work are

documented in Chapter 8.



CHAPTER 2

THE EARTH'S ROTATION: A STATUS REPORT

2.1 Introduction

The rotation of the earth with its theoretical and experimental
aspects is the basis of fundamental astronomy. Although problems in~-
volving rotation have been investigated by many prominent scientists,
ongoing research activities still produce several challenging questions
of geodynamic interest. One major factor which complicates our under=
standing of why thé earth rotates the way it does is that the earth is
not a rigid body. For example, to study the rotational consequences of
wind and ocean circulation, air-mass and groundwater variations, and
sea-level fluctuations requires some speculation about the internal
physical processes that can also produce similar effects (e.g. earth-

quakes, core motions and plate tectonic activity).

Recent improvements in instrumentation and the development of
geodetic space ranging techniques (Smith et al. 1972, MacDoran 1973,
Bender et al. 1973, Anderle 1973), however, have opened up new avenues
for the solution to many of these outstanding problems. Features of the
earth's rotation which need to be studied or explained in more detail
include: (a) the short—period diurnal, fortnightly and monthly terms;
(b) the sudden irregular changes; (c) the damping of the Chandler wob-
ble; (d) the character of secular polar motion and its associated long-

period variations, and; (e) the precession and nutation.

This chapter is devoted to reviewing the numerous aspects of the
earth's rotation. As a point of departure, the basic concepts and
theory are presented in Section 2.2. 1In Section 2.3 a brief account
of the methods for determining the earth's rotation is given, together
with the basic limitations of each methéd. This precedes a summary in

Section 2.4 of the numerous features which constitute the rotation



spectrum. The remaining section comments briefly on the future role

each technique is likely to play.

2.2 Theoretical Concepts.

2.2.1 Preamble

If the earth were rigid, spherical and rotated uniformly about a
fixed axis, its rotation would not be the subject of great interest. On
the contrary,.complex variations in the rate of rotation and orientation
of the spin axis with respect to the earth and to space have stimulated

numerous scientific discussions during the past century.

Despite the realization of the earth's non-conformity to structural
and geometrical homogeneity, its rotation can still he investigated by
applying the basic laws of dynamics. However, no attempt has been made
to rigorously compute the rotation because any achievement made in
mathematical rigor is lost due to a lack of accurate information on the
earth's variable density distribution. At best, computations of the
rotation can only be ohtained by construcfing realistic models of the
earth's physical properties. These theoretical results are then com—
pared with results obtained by observation. Such attempts, which usu-—
ally require recourse to geophysical data and theory, have been realized

and are discussed in Section 2.4.

The rotation of the earth about its centre of mass, the geocentre,
can be represented mathematically in several different ways. The fol-
lowing development is based on the well-known Fuler-Liouville equations.
In providing a framework for feview, the dynamic equations of motion are
solved for a rigid spheroidal earth and then exﬁended to account for a
deformable body. This approach introduces a useful mathematical founda-
tion that relates the earth's rotational respouse to geophysical occur-
rences. Alternate approaches (see e.g. Grafarend 1977) give essentially

the same result.
2.2.2 Barth Rotation Dynamics

An estabhlished dynamic principle which evolved from the application
of Newtonian mechanics to rotating bodies states that the torque acting

on a body is equal to the rate of change in its angular momentum. The



implementation of this principle requires the definition of two reference
systems; one fixed inﬁgpéce, the other fixed to the eérth and, there-
fore, moving with it. Neglecting the practical realization and defi-
nition of these systems for the moment, let each be denoted by a
rectangular Cartesian coordinate system such that X.i i=1,2,3 and

X; represent the space and earth-fixed systems, respectively. The

geocentre is located at the origin of both reference systems.

The equations of motion in the space-fixed system can be expressed

by the vector equation

(-‘Lﬁ-) - 1 (2.1)

—>
which equates the time derivative of the angular momentum H about the
.
geocentre with the vector L representing the applied torque. If the Xy

system is rotating with an angular velocity w; relative to the X, system
then equation (2.1) can be transformed and written as { Muink and MacDonald
1960)

dHi

EE—-+ eijijHk = Li . (2.2)
L; are the components of the torque exerted on the earth, Hi are the
components of the angular momentum and Wy are the components of the
rotation vector, with respect to the x, system. The alternating tensor
eijk equals 0 if any two subscripts are equal, equals 1 if any subscripts
are in even order and equals -1 if any subscripts are in odd order. By
the usual convention for summation any term containing a repeated suf-
fix is given all possible values for that suffix and the results then
added. Equation (2.2) is quite general and can, therefore, be applied

to a deformable earth.

The angular momentum H of the system is comprised of the following
components: (a) a contribution due to rotation, and; (b) a component '
designating relative angular momentum due to a motion of particles uy
relative to the Xy systém. A third component is introduced if the
geocentre moves relative to the x. system. It does not appear if the

i
geocentre coincides with the origin at all times. Nevertheless, the



consequences of geocentre motion need to be investigated in view of
the expected geodetic accuracy goals. This aspect is dealt with in

Chapter 7.

The components hy; of the rotational contribution h; have the form

h,, =1, w, (2.3)
1i ij 3

where Iij is the second order inertia tensor for matter contained in a

volume V. FElements of Iij are defined as

= - . 2.4
Iij 5 p(xkxchij Xin)dv ( )
6ij is the Kronecker delta with the properties. that if i = j, Gij = 1,

and 1f L # j then Sij = 0 and the density of matter contained in an

elemental volume dV is denoted by p.
The individual components of the relative angular momentum are
given by the relation

= Y . 2.
hZi é peijkukxjd (2.5)

Combining equations (2.3) and (2.5) algebraically gives

H = + . 2.6
" Iijwj hZi ( )

1

2.2.2.1 Reference Frames

The choice of reference frame for the rotating x; system and the
space—fixed X[ system Ls altogether arbitrary. For example, Smith
(1974) adopts a rotating frame of constant angular velocity such that
all the deviations of a rotating earth from its equilibrium state of
uniform rotation appear explicitly. In the case of the rotating frame

Xy belng earth-fixed, as applies here, W, represents the components of

the earth's instantaneous angular velocity.

In practice, it is common to choose a reference system which
facilitates maximum simplification of the equations of motion. Of the
options available, the principal (or figure) and geographic axes are

chosen for their conceptual and practical significance, respectively.



The principal axes are most useful for studying the dynamics of a rigid
hody. By aligning the x, system with the principal axes, the form of
equation (2.2) is greatly simplified because the products of inertia
gvanish. 1In addition, there is no relative angular momentum in a rigid

hody which means that the term hy; drops out of equation (2.6).

The selection of a suitable reference frame for describing the ro-

_ tation of a deformable earth should be related in some way to the ob-—
servatories. The system used at present is shown in figure 2.l and is
often called the “"geographic” frame (Munk and MacDonald 1960). It is
defined such that: (a) the origin lies as close as possible to the
geocentre; (h) the X3 axis is directed towards the Conventional In-
ternational Origin (CIO) which corresponds very nearlyrto the mean
terrestrial position of the spin axis as observed during the period 1900
to 1905 by the International Latitude Service (1LS), and; (c) the X
axis passes through the point of zero longitude as defined by the Bureau
International de 1'Heure (BIH) (see e.g. Guinot et al. 1971). The Xy

axis is directed towards longitude 90°E to form a right-handed system.

It must be remembhered, however, that the geographic system 1is not a
true earth-fixed system because the observatory coordinates, which essen-
tially define the system; are undergoing geographic and geocentric varia-
tions that are induced, for example, by tectonic plate motions. Attempts
have been made to determine these motions from astronomical evidence (see
e.ge. Proverbio and Poma 1976). Changes of this nature will contaminate
the results of earth rotation experiments and so it is desirable to ei-
ther model ‘or estimate the significance of these systematic effects. Once

again, these aspects are considered in more detail in Chapters 6 and 7.

With the precision of geodetic measurements approaching the centime
tre level, the geographic reference system caa only be considered earth-
fixed for periods not exceeding a few years. Indeed, further refinements
in the space ranging techniques will soon make a total reappralsal of the
reference frame problem necessary. For instance, Stolz and larden (1977)
have shown that the effect of plate tectonic motion becomes significant
in earth rotation studies after three months i{f a lunar laser ranging

network provides measurements with uncertainties of 3 cm.
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To measure the earth's orientation in space the X; system must be
defined. One common choice is the mean equinox-ecliptic frame for the
epoch 1950.0 (see, e.g. Explénatory Supplement 1961). 1In this system,
the X3 axis coincides with the north pole of the mean ecliptic for the
epoch of 1950.0 and the X, axis coincides with the direction towards the

1

mean equinox of 1950.0. The X2 axis forms a right-handed Cartesian co-
ordinate system. It is important to recognize here that the equinoctial

.point may not be the same for different ephemerides (Mulholland 1975).

In 1974 a colloquium was organized to initiate some thought on the
complex subject of defining a reference frame for geodynamic studies.
The feasibility of defining a system accurate to 5 x 10_9 radians in
"orientation and 1 cm in position was considered but only the hasic re-

quirements were established (Kolaczek and Weiffenbach 1975).
2.2.2.2 Rigid Earth Theory

To describe the basic modes of rotation for a rigid spheroidal
earth, equation (2.2) is developed further. Let A and C be the prin-—
cipal moments of inertia, such that A =1, = 122 and C = 133. For a
rigid earth, only the rotation contributes to the total angular momen-
tum. If the principal axes are used for the x; system then equation

(2.2) is expressed as

dw |

Lisae FerpyTa¥) = - 2.7

Expanding equation (2.7) as components along the base vectors Xy and re-

writing in terms of A and C gives

dw1
A '&—t— + (C—A)W2W3 = L].
dw2
—t - = 2.
A e (c A)w1w3 L, (2.8)
dw
3
C T = L3 .

Equation (2.8) defines the classical Eulerian motion for a rigid
spheroidal earth. Specific forms of solution are considered in

Sectlon 2.2.3.
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%2.2.2.3 Deformable Earth Theory

The hypothesis of rigidity is always useful for describing the fun-—
damental concepts of rotation., The implications underlying this assump-
tion are that (a) all the mass particles maintain a constant relative
position and (b) the inertia tensor is time invariant. DMreover, this
assumption is only one of convenience because the earth is far from
rigid. Departures from rigidity not only distort what one may consider
to be idealized motions but also create new spectral features in the

rotation.

Investigating these effects properly requires a more sophisticated
model; In 1858 Liouville extended Euler's work by (a) assuming the in-
ertia tensor varied with time and (b) assigning to the total angular
momentum contributions from rotation and relative angular momentum.
Substituting equation (2.6) into equation (2.2) and differentiating

with respect to time yields

g—--(I W, + h )+

dc VT35 T Mg e k¥5 (I

. = : (2
¥ thy) =L . (2.9)

An accurate linearization of equation (2.9) is obtained by using

the following perturbation scheme (Munk and MacDonald 1960)

= + = - .
Ill(t) A+ i (t) I12 112 W le

Izz(t) = A+ 1 = Qm (2.10)

2
I33(8) = CHigq(e)  T,3=14,, wy= R(l4my)

£ is a nominal value of the earth's spin rate, i.. are small pertur— .

i
bations in the inertia tensor, my and m, are the 3irection cosines of
the spin axis with respect to the earth-fixed X, system and Qm3 is the
difference between the instantaneous spin rate and the nominal value

. The scheme is only valid if the figure and spin axes stay in close
proximity to the Xq reference axis. The quantities, iijC~l, m and
hZi(CQ)“l are small so their squares and products can be omitted from
the development for most studies. However, for certain investigations
(e.g. wobble ellipticity) it is necessary to retain some of these
smaller terms (Lambeck 1980). After substitution of equation (2.10)

into (2.9) and neglecting 2nd order terms one can write (2.9) as



13

im
-1 %M _
O T T ™ T Th (D)
-1 o (2.11)
% EE-+ m = q’Z(t) *
dmy _ duy(0)
dt dt
where . and wi(t), i =1,2,3 are defined as-
-1
o, = (C-A)A '@ (2.12)
and
di dh
vy 23 -1 _ -2 -1 22 =2, -1
v (e) = (15 + 37 @ Ly = +hy 0+ =50 )(C‘A)
di dh
3 -1 -2 - 1 -2 -1
l;)z(t) = (123 + dtl 9+ LIQ + hZZQ L_ dtz Q )(c—A) (2.13)
-1 .t -1, -1
Y3(t) = (=135 + 2 [ Ladt = hya0 )C .
0

Equation (2.11) gives the mathematical relations needed to explore the ir-
regularities in the earth's rotation. An exact solution demands complete

knowledge of all the excitation processes that can cause changes in the

inertia tensor Iij’ the relative angular momentum hZi and the torque Li’

The unique characteristic of the Liouville equation is its provision
for a direct comparison between geophysically calculated variations in the
rotation and the observed variations. The left—hand sides of equation
(2.11) are determined from classical and modern measurements whereas the
right—hahd sides are calculated from geophysical data. The dimensionless

‘excitation functions wt(t) represent all the known geophysical effgcts
that influence the rotation. The research carried out in this work is
oriented towards estimating how much lunar laser ranging data can improve
the frequency and accuracy of the quantities ms My and my or more specif-
ically, their earth rotation counterparts x, y and UT! (see later sec-
tions for explanation of notations). Techniques for evaluating equation

(2.11) are given in Munk and MacDonald (1960) and Lambeck (1980).
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2.2.3 Rotational Characteristics
2.2.3.1 Basic Mdes

The following outline of the bhasic modes of rotation is limited to
the theory governing a torque-free rigid body and a descriptive summary
of the torque—induced modes. The theory of rotation for a torque-free
rigid body was formulated hy Euler in 1765. 1In this case, the total
angular momentum remains constant, that is, dﬁ/dt = i = 0. Equation

(2.8) reduces to

dw1
dt + 0rw2 =0
dw2
% . = 2.14
at A 0 ( )
dw
3 _
C Ic - 0

where

o = c-m)a" ) (2.15)

3

Equation (2.15) follows directly from equations (2.10) and (2.12) for
my = 0. The solutions to equation (2.14) are straightforward and can
be handled by standard mathematical techniques. They are (Lambeck 1980,
p. 31) '

w, = a cosot+b sing t
1 o r o r

w,=a sinot-b cosagt (2.16)
2 o r o} r

w.3 = constant = Q .

Equation (2.16) is an example of harmonic motion with angular frequency
O and constants of integration ag, bO and Q. For values of A, C and Q

that are appropriate to the Earth, o. = 1/306 revolutions per day.

To an observer standing on the earth's surface, equation (2.16) im—
plies that (a) the angular velocity component wy, is constant and (b) the
spin axis w, describes a circle about the figure axis X3 at an angular
frequency of OL.- If this motion is viewed from space the situation

changes slightly., The concepts arae hest tllustrat?d using the classical
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Poinsot diagram of Figure 2.2. Provided‘there is no slippage between
the two cones, the basic features are (1) the direction of the angular
momentum vector H remains fixed in space (Ly = 0) and, therefore, con-
stitutes an invariable axis, (2) the figure axis traces out a cone, in
space, about the angular momentum vector in a prograde manner and (3)
the spin axis generates two cones, one with respect to the figure axis
and a much smaller space cone abhout the angular momentum vector. To an
astronaut on the moon, the earth would appear to wohble about its spin
axis but if he were back on the earth's surface the spin axis would ap-

pear to move relative to the surface.

The terminology used in the literature to define these motions can
at times be confusing (Rochester 1970). Throughout this work the gen—
eral term given to describe the movement of the earth's surface relative
to the spin axis is polar motion. The components of polar motion are
either referred to as wobble or by some other descriptive term that un-
ambiguously defines the motion. For the spatial motion of the spin
axls, the terms precession and nutation are used for the secular and
periodic components, respectively. The term secular is used only in a
geodetic sense since over geological timescales precession is iq fact a

periodic motion.

While polar motion and nutation are different 1ﬁ principle, the
laws of dynamics governing the conservation of angular momentum require
that when one occurs it must be accompanied by the other, even thoﬁgh
the relative amplitudes may be very different. The terms 'forced' and
'free' are used occasionally to distinguish between motions that are

induced by torque action and those that are not.

Within this context, the torque—-free motion of a rigid spheroidal
earth relative to its spin axis is called Rulerian wobble (EW). Euler
predicted that 1if the spin and figure axes of the earth were not in co-
incidenée, the earth would wohble ahout its spin axis with an amplitude
no greater than 0.3 arcsecs with a period of approximately 306 days.

The associated motion of the spin ax{s in space has a small amplitude of
about 0.001 arcsecs, a nearly diurnal period (Woolard 1953, p. 32) and

is referred to as nearly diurnal free nutation (NDFN). The earth's
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angular velocity w will hereafter be called the spin rate. Various

forms of this particular mode are discussed in Section 2.2.3.2.

A second group of rotation modes arise when the torqhe components

in equation (2.8) are not equal to zero (Li # 0). The components Li are

generally written as the sum of two terms (Munk and MacDonald 1960)

= + 'o 2-7
L,=/o» pey g X 4f Y fe n_ds (2.17)

X .p
v ijk jkm m

The first integral accounts for the effect of a body force fk (e.g. the
luni-solar and planetary gravitational attraction) acting on the equa-
torial bhulge. The second integral accounts for the surface stress Prm
- acting in a direction k on a surface element dS no is the outwardly
directed normal to the surface element. Surface stresses that cause
radial deformation only do not produce a torque. The evaluation of
equation (2.17) is outside the scope of this study but has been done
elsewhere (see e.g. McClure 1973, Wahr 1979). Instead, the discussion
which follows deals only with the modes that are generated by the
gravitational attraction on the equatorial bulge. Section 2.4 is de-
voted to the more diverse subject of the rotational spectra for a de-

formable earth with fluid core.

The major gravitational contribution comes from the sun and the
moon and to a lesser extent the planets. These forces cause the plane
of the earth's orbit around the sun (ecliptic) and the earth's equator
to constantly change their orientation in space. The gravitational
attraction of the other planets, for example, causes the ecliptic to
slowly change its position in space and although this so-called plane-
tary precession (PP) has no direct influence on the position of the spin
axls in space it does cause the space-fixed reference system Xi to move
slowly with time. This phenomenon caﬁses the obliquity of the ecliptic
(angle subtended by the ecliptic and equatorial planes) to decrease at a
rate of about 47 arcseconds per century (asecs cy—l). It also causes
the equinox (the point where the ecliptic and equatorial planes inter-
sect) to move in a westerly direction along the earth's equator at a

rate of about 13 asecs cy-l.
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The movement of the spin axis in space is a consequence of the com-
plex interaction between the lunisolar gravitational potential and the
earth's equatorial bulge. The 'secular' component of the motion is |
called the lunisolar precession (LP). The spin axis moves around the
ecliptic pole tracing out a cone in space with an apex angle of about 47
degrees every 26,000 years. The corresponding 'secular' displacement of
the equinox albng the ecliptic plane occurs at a rate of about 5037 asecs

cy ~.» The compounded motion of the lunisolar and planetary precessions

is called general precession (GP).

Superimposed on the GP are the forced nutations whose periodicities
are functions of the orbital period of the earth around the sun and the
moon around the earth. The major term is known as the principal forced
nutation (PFN). It has an amplitude, in obiiquity, of about 9 asecs, a
period of 18.6 years and is a consequence of the regression of the nodal
line for the lunar orbit. These basic motions are illustrated in Figure

2.3.

As well as producing the precession and nutation, the lunisolar at-
traction also generates another mode called forced diurnal polar motion
(FDPM). Theoretical aspects of this mode were studied long ago (see e.g.
Klein and Sommerfeld 1903). Although referred to as FDPM, this mode is
really the difference hetween the nutations for the spin and figure
axes. The nature of this motion is shown in Figure 2.4 and 1if viewed in
an earth—fixed coordinate system appears as a retrograde diurnal movement
of the spin axis. The amplitude of FDPM varies from about 0.001 to about
0.02 asecs. Failure to correctly model FDPM in latitude ohserving pro-
grams will cause so-called 'dynamical'vvariations to appear (Atkinson

1973,1975). This phenomenon is discussed in more detail in Section 2.4.

With the theoretical foundations of the earth's rotation having
heen established, astronomers began the awesome task of matching obser-

vation with theory.
2.2.3.2 Observational History

Compared to the free modes, the forced modes of the earth's rota—
tion are well understood. The precessional motions have been studied

by astronomers for thousands of years. Early values for the precession
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were derived by Bessel at the beginning of the nineteenth century but
in recent work, Newcomb's (1897) values based on sun observations
during the period 1756 to 1869, have been widely used. Woolard (1953)
was the first to give an exhaustive treatment on the theory of nutation
and although his results were only applicable for a rigid earth they

were sufficient for use in classical applications.

Nevertheless, there is now considerable evidence to show that the
results from early work do not conform too well with present-day obser-
vatlons (Melchior 1971, Fricke 1971)- The discrepancies are mainly
caused by (a) liquid core effects, (h) the earth's elasticity and (c)

outdated astronomical constants (see Sec. 2.4 for further discussion).

Astronomical records of the spin rate also span a time interval of
some thousand years, although short—period variaﬁions have only been de~
tected since 1930. The spin rate is very important because it gives a
measure of the true rotational position of the earth-fixed coordinate

system x, relative to the space-fixed system Xi'

i
Higtorically, astronomers have observed meridian star transits in
order to establish local sidereal time (Mulholland 1972). Using an
almost linear relation, sidereal time is converted to Uni&ersal time to
establish a scale suitable for measuring the rotational position of the
earth in space. Measurements of Universal time (UT) that are observa-
tory dependent are designated UTO. Such measures are contaminated by
polar motlon which causes the observatory meridian to move with respect
to the spin axis. Correcting UTO for polar motion gives UTl, that is,
a measure of the spin of the earth as a whole. Analyses of UTl measure-
ments reveal secular, periodic and irregular variations. Their causes

are summarized in Section 2.4.

Since 1955, a uniform time scale has been provided by atomic fre-
quency standards. This scale, called International Atomic Time (IAT),
is used along with its sister time scale Universal Coordinated Time (UTC)
to measure the time variations in'm3. UTC itself is a hybrid time scale;
the rate is defined relative to the atomic clock rate and the epoch de-
fined relative to UT (Milholland 1972). Until the introduction of IAT,

the uniform time scale was based on the observed motions of the sun, moon
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and planets. The relationship between these various scales is given in

Chapter 3 where the precise modelling of the lunar range observations is

discussed.

Determinations of polar motion are obtained by observing variations
in latitude. The suggestion by Euler in 1765 that the spin axis may
move with respect to the earth's surface aroused sufficient interest for
astronomers to begin searching for his predicted 306-day variation. By
1880, however, conslderable skepticism prevailed because the results

were much smaller than expected.

Research tests on the aberration constant of light, by Kistner in
1884, rekindled what appeared to be a dying interest in the search for
polar motion. The results of his experiment were very discouraging
because they were neither internally consistent nor compatible with the
findings of his contemporaries. Indeed, they suggested the aberration
constant was variable. Having extensively examined all possible sources
of error, Kistner concluded that the variation he was observing should
have been attributed to a variation in latitude of 0.2 asecs rather than
an aberratlion. This discovery was supported in time by additional ob-
gservations from the Potsdam, Berlin and Waikiki astronomical observa-
tories. However, nothing definite was said about the exact period of

the motion, except that it was quasi-annual.

Around this time, S. C. Chandler was analyzing latitude data that
he had accumulated from the preceding 200 years. He found that in addi-
tion to an annual term there existed another component, hereafter called
the Chandler wobble (CW), with a period of 428 days (Chandler 1891).

The discrepancy between the period obhserved by Chandler and that pre-
dicted by Euler's theory was entirely unexpectéd and raised doubts about
‘the valldity of Chandler's results. A year later, Newcomb argued that
Euler's theory needed modification to account for the earth's elasticity
and demonstrated intuitively how the yielding of the solid earth and the
présence of the oceans would increase the EW period by 40 percent.
Lambertlgg_il. (1931) have documented a detailed and interesting his-—

torical account of these discoveries for the inquisitive reader.
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2.3 Systems for Determining the Earth's Rotation
2.3.1 Established Methods
2.3.1.1 Classical Astronomy

A direct and timely consequence of these early latitude studies was
the establishment of the International Latitude Service (ILS) in 1899.
‘Latitude observations made by an initial network of six stations have
provided continuous information on polar motion to this present day.
The approximate location of these stations on the 39th parallel of lati-
tude was prescribed so that systematic errors in star positions, proper
motions and the ephemeris would be eliminated by observing the same
stars and using the same reduction constants (Markowitz 1968). By 1946,
the network constituency stabilized and the stations which now remain

are Carloforte, Gaithersburg, Kitab, Mzusawa and Ukiah.

In 1962 the ILS continued its operation under the auspices of the
International Polar Mtion Service (IPMS). There are now approximately
80 stations contributing data to the IPMS. The IPMS publish jointly, a
pole path derived from the 5 ILS stations and a determination from all

the collaborating stations (Yumi-1978).

A request for real-time information on polar motion and spin rate
led to the formation of the Bureau International de 1'Heure (BIH) in
1955. The BIH has about 80 stations that measure latitude variations and
UTO in order to simultaneously compute the position of the spin axis and
UT1l. Although both services publish values of ﬁhe pole, they do work inde-
pendently. The main difference is in how the services endeavour to preserve

their systems so the results are not dependent on the total number of obser-

vatories contributing to any particular solution (see e.g. BIH 1978).

There is no significant disparity between the magnitude of the inst-
rumental errors associated with the instruments used by these agencies;
The standard deviation for a single PZT observation is 0.2 asecs and
this compares favourably with recent estimates for the VZT (Kolaczek
1977). The corresponding precision of a latitude and time determilnation
from a night of observations is of the order 0.02 to 0.03 asecs and 2 to

3 milliseconds (msecs), respectively.
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Table 2.1. Quoted Precision for Polar Motion and'Universal

Time (taken from Kolaczek 1977)

Polar Mtion Universal Time Averaging Time
Service
X,V; asecs UTl; msecs - days

BTH 0.01 1 5
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Errors for the published values of polar motion and UTl are listed
in Table 2.1 for each agency. The values for polar motion are denoted by
the parameters x and y. In the geographic frame of Figure 2.1, x repre-
sents the offset of the spin axis from the CIO as measured along the zero
meridian being reckoned positive towards the point of zero longitude and
y 18 the offset perpendicular to the zero meridian reckoned positive to-
wards longitude 270°E. The difference between the IPMS and BIH pole
paths can sometimes amount to 0.l asecs although usually the departures
don't exceed 0.03 asecs. Discrepancies between the pole paths
can be due to errors caused by refraction, local variations in gravity,
ephemeris errors and differing data reduction methods. To separate dif-
ferent systematic effects is very difficult and the importance of study-~

ing the local meteorological and geophysical biases has been stressed

many times (see e.g. Wells and Chinnery 1973). Studies by Thurm in 1960 o

indicate that the percentage contribution to the total error of a VZT
observation caused by refraction, instrumental and ephemeris errors is

40%, 40% and 15%, respectively.

The error budget of Table 2.1 clearly summarizes the precision of
the classical techniques. For a complete account of the classical meth-
ods and how they are used to obtain earth rotation information, the text
by Miueller (1969) is recommended. The data reduction procedures are

listed in the annual reports of the BIH and the IPMS.
2.3.1.2 Satellite Doppler Tracking

One major development during recent times has been the'application
of the Doppler principle as a method for tracking artificial earth sat-
ellites to obtain geodetic and earth rotation information. The follow-
ing discussion only deals with the basics of the technique since the
exact method has been documented in numerous research papers (see e.g.

Anderle 1973).

Data gathered from the U.S. Navy navigation satellites by a network
of about 20 Tranet stations are analyzed to provide polar motion infor-
mation. The stations record data from 5 or 6 satellites in polar orbits

at altitudes of about 1000 kilometers (km).
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The basic observable is the phase change, or Doppler shift, of a
continuous wave signal generated by an oscillator located on the satel-
lite. The phase change over a'given time interval is proportional to
the change in the distance from the station to the satellite. If the
satellite orbit 1s known, then the 'along-track' station component can
be determined when the Doppler shift is zero. This occurs when the sat-—
ellite occuples a position such that its velocity vector is perpendicu-
lar to the line of sight from the station. For satellites in polar drbit,
the station and satellite latitudes are nearly equal when the Doppler
shift 1s zero and residuals in the along-track position of the satellite
can, therefore, be analyzed to Improve the meridianbéomponent of polar
motion at the tracking station. From a well-distributed station network

the x and y coordinates of the spin axis are easily obtained.

The analysis of along-track residuals was first reported by Anderle
and Beuglass (1970). Limited computations were'performed prior to 1969
but the results were too scattered to enable definite conclusions to be
drawn. Since 1971, the spin axis position has been determined simulta-
neously with the orbital parameters of the satellite (Anderle 1976).
The computations were originally carried out at the Dahlgren Laboratory
of the Naval Surface Weapons Centre and the spin axis position was pub—
lished as 2 day values by the Dahlgren Polar Monitoring Service (DPMS).
However, since 1975 the computations have been performed by the Defence

Mapping Agency (DMA).

To evaluate the accuracy of the Doppler technique from individual
station accuracies 1s difficult because numerous stations and satellites
are involved in the determination. Nevertheless, analyses undertaken
during early 1976 show that the average root mean square (rms) error for
a spin axis position determination from 48 hours tracking to one satel-
lite is approximately 0.003 asecs in each coordinate. This estimate of
precision, which only includés observational errors, has also been re—
produced in subsequent years (Anderle 1977). Unfortunately, uncertain-
ties in the earth's gravity field and the model for atmospheric drag
produce orbital errors which continue to cause problems. For example,
the standard deviation of an individual two-day determination with re-

spect to a five-day mean sometimes exceeds 0.02 asecs while the standard
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Figure 2.5 Pole Paths from 1972.0 to 1976.0. Solid line - BIH
Vondrak smoothed values; broken line - IPMS 0.05 yearly values;

dotted line - DMA Gaussian smoothed values (taken from Larden. 1981)
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deviation of a five~day mean (standard error) based on observations from
two satellites 1s 0.0l arcsecs (Anderle 1976, Oesterwinter 1979). These
estimates are essentially the same as those obtained by classical tech-

niques (Graber 1976).

Doppler data have also been incorporated into BIH solutions (see e.

BIH 1978). Figure 2.5 shows the pole path curves obtained from DMA,
BIH and ILS data for the period 1972 to 1976. The rms deviation between
the DMA and BIH results is of the order 0.02 and 0.0l asecs for the x
and y coordinates, respectively. Slightly larger discrepancies are
evident between these results and the ILS values. Preliminary determ-
inations of UT1 from Doppler data have been reported by R. Anderle but

have not been documented on a regular basis.

Despite the advantage of being an all-weather, all~day system it
is still not clear how much of an improvement can be made by the
Doppler technique over the classical method. One of the limitations
of the Doppler technique is the well-known problem of having to
analyze radio signals which are travelling through the earth's iono-

sphere.
2.3.2 Procedures Under Development

During the last decade three new methods for measuring the earth's
rotatibn have been developed. They are, laser ranging to artificial
satellites (SLR), lunar laser ranging (LLR) and very long baseline in-
terferometry (VLBI). Each technique has the potential to provide earth
rotation information on a dally basis with 5 cm accuracy. An intuitive
agsessment of these methods shows that all have specific attributes for
measuring the earth's rotation. However, for a program requifing (a)
homogeneous data (b) continuity of results and (c) economy of operation,

a combilnation of resources may be required.

The following discussion does not intend to advocate any single
technique, but merely describes the observational methods, summarizes
the experimental results to date and comments generally on the obvious

limitations of each method.
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2.3.2.1 Satellite Laser Tracking

Since the fitting of corner-cube retroreflectors to the Beacon
Explorer satellites and their subsequent launching in the 1960's, the
technological advances in satellite laser ranging systems can only be
described as revolutionary and their applicatién for geodetic studies a
formality. Presently, there are about twenty satellite ranging systems
in operation. Collectively, they form a worldwide network which includes

stations in the U.S.A., Japan, France, Australia, Germany, South America
and Hawaii.

The details of a typical laser system have been described by Johnson
(1977). Design and instrumentation iﬁprovements over the past decade
have led to a five-fold reduction in the noise level of the observations.
Currently, most laser systems are achieving a precision of about 10 cm

with the ultimate goal being 1-2 cm (see e.g. NASA 1979).

The main problem with using low—orbit satellites, like the Beacon
Explorer series, for measuring the earth's rotation stems once again from
an inadequate knowledge of the earth's gravity field. However, the orbit
of the Laser Geodynamics Satellite (LAGEOS) is designed to overcome this
very aspect. It 1s almost circular, has an inclination of 110 degrees
and a semi-major axis of approximately two earth radii. Thils geometry
not only reduces the orbit perturbations due to the gravity field but
algso allows simultaneous tracking of the spacecraft from widely separ-

ated sites.

The basic measurement consists of the time it takes a laser pulse
to complete the transmitter-satellite-receiver distance. Corrections
to this time interval are usually made for (a) circuit calibrations
(b) pulse shape effects and (c) the distance from the reflector to the
centre of mass of the satellite (Smith et al. 1973). For very short-
pulse laser systems (see e.g. Wilson et al. 1978) the correction at

~(b) can generally be ignored.

Sufficient satellite laser observations are now available to permit
determinations of the earth's rotation over extended periods of time.
Recently reported are polar motion and UT1l values derived from LAGEOS

observations for the period 1976 to 1981 (see e.g. Tapley et al. 1981).
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The first attempt to extract latitude variafions from laser tracking
data was by Smith et al. (1972). 1In éhort, fluctuations in the in-
clination of a satellite orbit can be analyzed for improved values

of the instantaneous latitude of the tracking station. To obtain
values for polar motion and UTl, two or more stations have to track

the satellite. Smith used tracking daté from the Greenbelt laser to
the Beacon Explorer—C satellite and confined the analysis to times when
the satellite occupied the northern apex of its orbit; This configura-
tion ensures accurate determinations of the inclination. For the five-
month period between July and November 1970 the rms difference between
the satellite laser and BIH latitude values at Greenbelt was slightly

less than 1 metre.

In a more recent study, Dunn et al. (1977) re—analyzed a three-week
period of the 1970 data by fitting, in the first instance, a reference
orbit to the data and then adjusting the station coordinates to hest fit
the reference orbit on thirteen individual days. On each day values for
the station latitude and ""TO were obtained and their rms difference with

corresponding BIH values was 0.025 asecs and 0.81 msecs, respectively.

Polar motion results from a multi-station network were reported re-
cently by Smith et al. (1979). Observations were gathered from a total
of seven LAGEOS tracking stations; four in the U.S.A., two in South
America and one in Australia. Five-day values for polar motion were
obtained from three interlocking 30-day reference orbits covering the
period October to December 1976, The formal errors for the x and y
components were 0.003 and 0.002 asecs, respectively but the authors
believe an accuracy of somewhere between 0.01 and 0.02 asecs is more
realistic; From this experience and previous simulations (Kolenkiewics
et al. 1977) it is expected that daily pole positions to about 0.002
asecs and UTl values to about 0.2 msecs, consistent over 2 to 3 months,

are feasible.

Schutz et al. (1979) reported pole positions obtained by laser
measurements to the GE0S-3 satellite. Data from three NASA/GS¥C sta-
tions located at Greenbelt, BRermuda and Grand Turk were used in the

analysis. The small longitude dispersion between the three stations
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prevented a good determination of the x component for polar motion and
although the results were not as impressive as those obtailned by Smith
et al. (1979) they do indicate that meaningful information on the

earth's rotation is possible from a regional station network.

The three main hurdles to overcome when détermining the earth's
rotation by satellite methods are (Bender 1975) (1) the satellite orbit
uncertainty, (2) the effect of atmospheric refraction on the laser
measurement, and (3) the statistical and systematic measurement errors,
Of the three, the main source of error at present lies in the orbit.
Nevertheless, once the lower degree harmonics of the earth's gravita-
tional field are improved and the effects of the earth's albedo radia-
tion pressure on the satellite are correctly modeled there should not be
too many remaining problems. If a sufficient number of well-distributed
tracking stations are available then the orbit uncertainty should not be
substantially worse than the limitations mentioned in (2) and (3). Both

of these are expected to be modeled at the one centimetre level.

Comparatively speaking, laser ranging is more precise than Doppler
tracking. The LAGEOS satellite is also far more stable to track than
any low-altitude spacecraft and even though the laser ranging tech-
nique is dependent on fine weather for observational success, recent
simulation studies indicate this not to be a significant drawback for

future geodynamical applications (see e.g. Bender and Goad 1979).

2.3.2.2 Very Long Baseline Interferometry

The beginnings of radio interferometry date back to the third
decade of this century. Experiments were limited to short baselines
because it was felt that the two antennae should be connected by a co-
axial cable in order to properly compare the reception times of the
radio signal. The realization that very long baseline interferometry
(VLBI) could be used as a powerfu1~tool for accurately measuring the
earth's rotation (Gold 1967) coincided with the discovery that atomic
frequency standards were stable enough to record the arrival time of the
signal at each site independently. This discovery allowed baseline

lengths to increase to intercontinental proportions.
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To extract earth rotation information from VLBI data is a complex
and 1aboriohs process (see, e.g. Counselman 1976 for a general review).
The basic ohservables are radio signals emitted by distant quasars or
transmitters on artificial satellites and the moon. Quantities which
can be measured fnclude; the instantaneous difference in phase of the
signal as it arrives at each end of the baseline, its time derivative
and also its derivative with respect to the observed radio frequency.
These quantities are often referred to as fringe phase, fringe rate and
group—delay measurements, respectively. All three are sensitive to
variations in the earth's rotatlon but the latter two are more -suitable
because they skirt the phase ambiguity question inherent in the fringe

phase measurements (Rogers 1970).

Groups at the Massachusetts Institute of Technology (MIT), Jet Pro-
pulsion Laboratory (JPL) and the Goddard Space Flight Centre (GSFC) are
involved in the majority of the analyses. In fact, it has been these
studies which have provided the main impetus for improved determinations
of the positions of radio sources and the compilation of a fundamental
source catalogue for a global geodynamics program. The most accurate

source coordinates are known to about 0.0l asecs.

Since the introduction of VLBI in geodesy, most experiments have
dealt with the measurement of baseline lengths (see e.g. Ong et al. 1976,
Robertson et al. 1979, Niell et al. 1979). For example, the first mea-
surement of the Haystack-Greenbank baseline had a precision of 2 metres
(Hinteregger et al. 1972) and agreed with the land survey at the same
level. One of the most impressive length determinations by the inter-
ferometric technique so far is for the short 1.24 km Haystack—-Westford
baseline. From October 1974 to December 1976, 11 independent measure-
ments of the vertical and two horizontal components had rms scatters of
7, 5 and 3 mm about each respective mean (Rogers et al. 1978). The cor-
responding rms variation for the baseline length was 3 mm. The mean
results agreed td 6 mm or better with the values obtained from the con-

ventional land survey (Carter et al. 1980).

Experiments designed to carry out measurements of the earth's

rotation have been few in number. One of the first was conducted by -
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J. L. Fanselow on the Goldstone-Madrid baseline where on five separate
occasions during the latter part of 1971 values of UTl were obtained.
Each had a formal error of about 2 msecs and the rms difference with BIH
Circular D results was at the 1 msec level. The average observation
period for each experiment lasted about 15 hours. During the period
1973 to 1977 inclusive, 12 additional single-day UT1l values were obt-
ained; the result of the last experiment having a formal error of 0.6

msecs (Fanselow et al. 1979).

In general, baselines parallel to the earth's equatorial plane are
more suitable for measuring UTl variations and baselines perpendicular
to this plane are more sensitive to variations in polar motion (Williams
1970). Shapiro et al. (1974) present the results of nine separate VLBI
experiments during 1972 and 1973 to determine the length and variations
in the direcfion of the 3900 km baseline vector between Haystack and
Goldstone. The rms scatter of the length determinations was less than
20 cm, or 5 parts in 108. Changes in the direction of the baseline were
interpreted as changes in UT1 and polar motion; the rms scatter between
these results and the BIH Circular D values was 2.9 msecs and 0.042
asecs, respectively. Although the Haystack-Goldstone baseline is essen-—
tially parallel to the equator, there is sufficlent latitude separation
to obtain the x component of polar motion. A detailed account of these

and several other experiments is given by Robertson (1975).

In a more recent study by Robertson et al. (1980), comparisons were

" made between VLBI estimates of the x~component of the pole and UT1 and the
corresponding ones from lunar laser ranging, satellite laser ranging, sat-
’ ellite Doppler and the classical techniques for the period September 1976
to May 1978. 1In particular, the comparison between the lunar laser ranging
and VLBI determinations of UTl suggests that the rms of the uncertainties

in each set are below 1 msec.

A distinct advantage of the VLBI method is its all-weather capabili-
ty but this has been offset, in the past, by the difficulties in measur-
ing the amount of water vapour along the path of the signal. With the
use of water radiometers and surface meteorological readings, modelling

of this critical parameter should be achieved at the centimetre level
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very soon (see e.g. Wu‘l979, Resch and Claflin 1980). 1In the future,
very accurate measurements of polar motion and UTl are anticipated

when project POLARIS becomes fully operational (Carter 1980).

2.3.2.3 Lunar Laser Ranging

The technique of laser ranging to reflectors located on the moon was
first suggested back in the early 1960's (Bender et al. 1973). Since
then numerous scientific objectives have been pursued with improved de-
terminations of the earth's rotation being a prominent one. Because the
primary concern of this investigation 1s to see how well the earth's ro-
tation can be monitored by LLR, the discussion in this section will be
limited to the more general aspects of the experiment. Technical de-

tails are left until the following chapters.

The prospect and benefit of obtaining high—accuracy laser range
measurements of the earth-moon distance soon became evident aftér the
sustained research which took place in the field of laser technology
during the early 1960's. Extending the techniqﬁe beyond the realm of
an artificial satellite to include the moon depended on three important
considerations. They were (1) the development of a high—powered ruby
1asér capable of sending a pulse of light over twiée the earth-moon dis-
tance, (2) the design of reflector arrays which could avoid serious dif-
fraction problems and be used during full moon and (3) the deployment of
these arrays to the lunar surface by either manned or unmanned space-—

craft.

Considerations (1) and (2) were achieved by 1966 but it was only‘by
chance that (3) was fulfilled. Due to probiemé of work overload on the
Apollo 11 spaceflight in 1969, the disposition of simple'experiments includ-
ing an array on the lunar surface took precedence over the Apollo Lunar Sur-
face Experiment Package (ALSEP). By 1973, five arrays had been placed at
different locations on the lunar surface. Included were three American
designed arrays sent on Apollo missions 11, 14 and 15 and two French de-
signed packages mounted on the Lunakhod 1 and 2 exploration vehicles
gent by the U.S.S.R. on luna flights 17 and 21, respectively. All of

these arrays, with the exception of Lunakhod 1, have reflected signals
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consistently during the ensuing years, With VLBI measurements

using the ALSEP transmitters on the lunar surface, direct compari-
sons between the LLR and VLBI techniques can be made‘(Counselman_gE_gi.
1973, King et al. 1976).

Several countries have displayed an active interest in the numerous
scientific objectives offered by LLR. Some of the stations which have
already ranged to the moon are situated at Ft. Davis, Texas; Haleakala,
Hawaiian Is.; Orroral, Canberra and C;imea, U.S.S.R. Plans are underway
to range from Wettzel, Germany; Calern, France and Dodaira, Japan. Fur-
ther details on the early history of the experiment can be found in

Bender et al. (1973) and Milholland (1980).

The basic range measurement is the time it takes a laser pulse to
travel from a transmitting telescope on earth to a reflector on the moon
and back to a photo—multiplier unit. The systems at Ft. Davis, Texas
and Orroral, Canberra need only one telescope to transmit and receive
the laser pulse while the system at Haleakala uses separate facilities
to accomplish these tasks (Carter et al. 1977). IListed in Table 2.2 are
the basic attributes of the present systems at McDonald Observatory,

Texas and Orroral, Canberra.

Descriptions of the LLR observation process (see, e.g. Abbot et
al. 1973, Silverberg 1974, Shelus 1978) and the calculation of the
journey time (Calame 1976, Mulholland 1977, Stolz 1979) are readily
available. The measurements consist of two separate sets of data.
Firstly, an integral number of 50 nanosecond (nsec) intervals which
occur between the initial firing of the laser pulse and its subsequent
detection by the photomultiplier is determined and recorded. The second
consists of an accurate determination of the fractional time betwéen
(1) the start pulse generated by the outgoing laser pulse and the first
clock pulse (50 nsec interval) encountered after the laser is fired and
(2) the stop pulse generated when detection occurs and the next clock
pulse. These data are combined with circuit calibration and accurate

clock information to produce the measured journey time (see e.g. Shelus

1978).
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Table 2.2 Baslc System Characteristics for the Orroral and McDonald

LLR Tracking Stations

Item McDonald

Orroral

Telescope Diameter 2.7 metres

Pulse
(1) Length 3 nsecs
(11) Energy 1.2 Joules

(i1i) Repetition Rate 20 shots/min.

Normal Point Uncertainty 1 nsec
Beam Divergence 1.5 arcsecs

Information Source Silverberg (1974)

1.5 metres

6 nsecs
1 Joule
12 shots/min.

~ ] nsec
4 arcsecs

P.J. Morgan (1981, pri-

vate communication)
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In the early stages of the LLR experiment, the separation of signal
from noise was accomplished using a 'residual bin' system (Abbot et al.
1973) but these days, a far more sophisticated method of filtering is
used (see e.g. Shelus (1978) for a summary). Real returns are usually
detected after an accumulation of approximately 50 to 300 shots over a
5 to 30 minute period and are distinguishable if the distribution is
statistically cémpatible with Poisson's probability law. A good know-
ledge of the calculated journey time helps reduce the noise level of the

observations.

After recognizing the success of an observing sequence, the indi-
vidual returns are reduced to a common time by means of linear function
fitting. The condensed construct is called a 'normal point', containing
without degradation, all the information of the individual returns. Its
precision is determined by the length of the laser pulse and the number

of the returned signal pulses observed.

The main limitations which must be overcome in order to use LLR as
a technique to monitor the earth's rotation can be categorized as (a)
operational, (b) model and (c) geometrical. Silverberg (1974) summa-
rizes the main operational limitations to include (1) transparency ef-
fects due to cloud cover and atmospheric water vapour content, (2)
atmospheric visibility effects on telescopic guidance and beam collima-
tion, (3) image contrast problems during daytime observing particularly
around new moon, (4) equipment malfunctions and precautionary air traf-

fic restrictions and (5) time sharing conflicts.

Recent improvements in modelling the lunar orbit and librations
have allowed limited studies of the earth's rotation using single sta-
tion data (see e.g. Stolz et al. 1976, King et al. 1978, Calame and
Guinot 1979). However, even if the orbital and libration motions were
perfectly known there are still more fundamental factors that ultimately
will control the frequency and limit the accuracy of earth rotation re-
sults obtained by LLR. Factors which need consideration include (a) the
effects of weather and time scheduling, (b) the observation uncertainty,
(¢) the network constituency and (d) the geometric limitations related

mainly to station location, lunar declinatlon and hour angle coverage.
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The significance of these factors is examined in this work. In the next
section, the main features of the earth's rotation are reviewed in order
to establish a realistic yardstick for assessing the significance of the

simulated results.

2.4 Spectrum of the Farth's Rotation
2.4.1 Variational Causes

Changes in the earth's rotation are usually described in terms of
the terrestrial and spatial movements of the spin axis (i.e. polar mo-
tion and precession-nutation) and irregularities in the spin rate. Such
changes are caused by phenomena which broadly divide into three classes:
those which change the total angular momentum of the earth (e.g. the
lunisolar torque, ocean tidal dissipation, solar wind torque); those
which change the mass distribution of the earth (e.g. earthquakes,
lithospheric plate motions, deglaciation) and those which involve a re-
distribution of angular momentum but not an overall change (e.g. core-

mantle coupling).

Studies on the complexities of the earth's rotation date well back
into the last century. Lambeck (1980) summarizes the more reéent devel-
opments to include (a) the role of core-mantle interactions, (b) the cor-
relation of earthquake activity with irregular changes in polar motion
and spin rate, (c) the determination of improved CW parameters, (d) the
effect of ocean tidal dissipation on the earth's secular acceleration
and (e) the contribution of atmospheric circulation to changes in the

earth's spin rate.

In particular, the role played by the earth's liquid outer core on
the rotation of the mantle has stimulated much research during the last
three decades. A theoretical understanding of the problem was sought
near the turn of the century (see e.g. Poincare 1910) and this work_was
later extended independently by Jeffreys and Vincente (1957a,b) and
Molodensky (1961) to account for the elasticity of the mantle.

Two of the most recent and comprehensive studies on this subject
have been published by Smith (1977) and Wahr (1979). The first deals
with the effect of liquid core stratification on the CW and NDFN while
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the latter study gives the best solution to date for the forced nuta-
tions of a rotating, elliptical, elastic and oceanless earth. The re-

sults of these studies are discussed later on in this section.

With regard to the remaining itéms (b)-(e), the amount of available
literature on these subjects since Mink and M:Donald's (1960) historic
geophysical discussion is both extensive and diversified (see e.g.
Rochester 1973, Smylie 1977, Lambeck 1980). The summary which follows
here 1s neither authoritarian nor complete, however, it does gilve some
perspective on the areas that should be further investigated once data

from the new space ranging methods are consistently acquired.
2.4.2 Space Mtions
2.4.2.1 Precession

In present day geodetic studies it is customary to represent the
precessional motion of the earth by mathematical expressions derived by
Simon Newcomb (see e.g. Mieller 1969, p. 62-68). For periods less than
one century, polynomial series are quite sufficient (Laubscher 1972) but
if the computations are needed over longer perilods, say for paleoclima-
tological applications, a trigondmetric series 1s more expedient (Berger

1977).

The bases of the precession model are the fundamental astronomical
constants which define the precession rates. A collation of numerous
optical determinations made during the period 1925-60 (B8hme and Fricke
“1965) and the more recent analyses by Fricke (1972), Laubscher
(1976) and Asteriadis (1977) all indicate conclusively that Newcomb's
lunisolar precession (LP) rate of 5037.1 asecs cy-1 for 1900.0 is too
small by about 1 asec cy—l. Another correction of about l.4 asecs cy“
is also required to account for errors in Newcomb's value for the plane-
tary precession (PP) rate and non—precessional motion of the equinox
(Asteriadis 1977). The error in ﬁhe PP rate only amounts to 0.03 asecs
c:y—1 (Laubscher 1972).

Measurements of the précession'by space ranging methods are few in
number. VLBI and Doppler tracking of interplanetary space probes are the

techniques which appear to offer the most promise (see e.g. Walter 1974).
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The first VLBI determination of the GP, consistent with the .current
value obtained by classical methods, was reported by Robertson (1975).
The quoted uncertainty for this result is 0.05 arcseconds per year
(asecs yr—l) which agrees exactly with Elmore's (1976) error estimate
based on a hypothetical experiment. Pease (1977) notes in his analysis
of Doppler data from interplanetary space probe missions that he can
conveniently remove an apparent right ascension drift of -1.1%0.3 asecs

cy--1 by adopting Fricke's LP correction of 1.1 asecs cy—l.

The precession mode has little to offer in regard to understanding
more about the earth's interior. Toomre (1966) has shown that inertial
coupling and viscous friction are capable of balancing any difference
in the torque on the core and the mantle during precession (see also

Rochester 1974).
2.4.2.2 Nutation

The numerical series listed in the Explanatory Supplement of Astro—
nomical Ephemeris and Nautical Almanac (Explanatory Supplement 1961) was
derived by Woolard (1953). Independent rigid-body results which take
into account Eckert et al.'s (1966) improvements to Brown's lunar theory
and the higher degree harmonics of the earth's gravitational potential
have also been published (Kinoshita 1977) but as discussed later these

theories are not the best available.

Woolard's treatment gives the nutations for three major dynamical
axes, that is, the spin, figure and angular momentum axes. His mathe-
matical approach involves, in the first instance, theknumerical inte-
gration of Poisson's equations to derive the nutations for the angular
momentum- vector (Woolard 1953, p. 124). The nutations for the spin and
figure axes are obtained by adding to the solution of Poisson's equa-
tions several forced periodic terms plus a correction for the NDFN (see
Section 2.2.3.1). The latter correction, however, is only marginally
significant at the level of truncation adopted by Woolard. Woolard also
uses the Oppolzer terms to calculate the difference between the nuta-
tions of the spin and figure axes (Woolard 1953, p. 159). The charac-

teristic perlods of these terms when viewed in a space-fixed frame are
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two weeks or more but when viewed in an earth-fixed frame they combine

to produce the FDPM (see Figure 2.4 and also McClure 1973).

Several modifications must be made to Woolard's rigid-body theory
to account for the effect of elasticity and a liquid core (see e.g.
Jeffreys and Vicente 1957a,h; Molodensky 1961, Shen and Mansinha 1976,
Sasao et al. 1980). The most significant changes include, (a) a reduc-
tion in the amplitude of the PFN from its rigid-body value of about 9.21
asecs to approximately 9.20 asecs, (b) corrections of about 0.006 and
0.02 asecs to the rigid-body annual and semiannual terms, respectively
due mainly to liquid core effects (see also Melchior 1971) and (c) a
correction of about 0.002 asecs to the fortnightly nutation terms due

mainly to eiasticity (McClure 1973).

Of all the nutation theories formulated to date, the mostkrecent,
comprehensive and thorough treatment is by Wahr (1979). This theory,
based on the scalar equations and normal mode algorithm scheme presented
by Smith (1974,1976,1977), takes into account all the tidally induced
motions of the earth, that is, deformation, nutation and changes in spin
rate. The computation systematically includes the effect of rotation
and ellipticity throughout the core and mantle without artificlally
separating one from the other and considers the stratification of the
material in each major layer. These results, along with several others
are listed in Table 2.3 for the domlnant nutations of the mean figure
axis for the mantle. Observational results are also given for comparison.
It is clear frbm this tabulation that the observations for the principal
and semi-annual terms agree best with the models for an elasti¢ earth

with liquid core (Models 4-7, Table 2,3).

The choice of reference axls for the nutation series has become a
major discussion point during the past few years. Fedorov (1963) sug-
gests the angular momentum vector because its nutations are virtually
independent of the earth model but Woolard (1953) believed as Oppolzer
(1880) did that the nutations should be given for the spin axis and this
opinion is still held by many today. Nevertheless, astronomers involved
in latitude work were puzzled by the appearance of a perlodic term in

the results that was identical to the theoretical fortnightly Oppolzer
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term that contributed to the FDPM. Atkinson (1973) describes this phe-
nomenon as a 'dynamical' variatior of latitude and points out that there
would be other periodic variations were it not for the ohscuring nature
of the ohserving procedure and the accuracy of the results. Atkinson
(1973,1975) recognized the connection between. this fortnightly variation
and the Oppolzer term of similar period and proved that observations made
from the earth's surface were sensitive to the nutations of the mean
figure axis and not the spin-axis. Atkinson's résults and recommenda-
tions refer only to the rigid earth case and, therefore, need slight

modification to account for non—-rigid effects.

Wahr (1979) computes the nutation for the mean figure axis of the
outer crustal portion of the earth because, strictly speaking, this is
the surface from wﬁich the observations are performed. The nutations
for this axis are, for all practical purposes, identical to the nuta-
tions for the mean figure axis of the mantle (ibid. 1979); the latter
having been used by others. The mean figure axis is chosen for non-
rigid calculations in order to avdid using the instantaneous figure axis
which undergoes large tidally-induced diurnal variations. This distinc;‘
tion is not needed in rigid-earth theory because the figure axis remains

fixed relative to the body.

The IAU (1980) have finally decided to adopt the mean figure axis
of the mantle as the reference axis for the nutations. Mlodensky's
(1961) work was chosen ahead of the far more sophisticated work of Wahr
(1979) but a review of this decision has been recommended by the LUGG
(1980). The historical and experimental aspects of the earth's nuta=

tions are discussed in Fedorov et al. (1980).
2.4.2.3 Variations in Obliquity

In addition to displacing the equinox at a rate of aﬁout 13 asecs
cy—l, the planetary precession causes the obliquity of the ecliptic to
osclllate with a mean period of about 40,000 years. Over geodetic time-
scales this oscillation is not apparent. Observers merely see a 'secu-

lar' decrease in the obliquity at a rate of about 47 asecs cy—l.

As usual, the obhserved rate does not agree with theory. Early at-

tempts to explain the difference; which observations suggest could range
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anywhere between 0.1 and 0.3 arcsecs cy-1 (Duncombe 1958, Fricke 1972),
apbeared quite successful. The theoretical results of Aoki and Kakuta
(1971) indicated that electromagnetic coupling at the core-mantle
boundary could explain a 0.1 arcsec cy‘—1 discfepancy but Rochester
(1973) had reservations about their approach and emphasized the com—
plexity of the problem and the need for more sophisticated levels of

7

geophysical modelling.

In a subsequent paper (Rochester 1976), specific flaws in Aoki's
work were mentioned, the principal one being the neglect of inertial
fluid coupling between the core and mantle. Rochester showed that the
combined effect of inertial and frictional coupling made only a minor,
1f not negligible, contribution of 0.0004 asecs cy.—l towards explaining
any real discrepancy. It has also been pointed out that deficiencies in

the planetary theories are not responsible either (Krasinsky 1975).

A more recent stﬁdy of observational data by Duncombe and Van
Flandern (1976) has reduced the discrepancy between ohservation and
theory to 0.01%0.05 asecs c:y“1 indicating that there may not be a large
error after all. If the new space ranging methods are capable of deter-
miﬁing variations in the obliquity to within 0.0l asecs from one year of
data (see e.g. Kaula 1973) then a discrepancy as large as that observed
by Duncombe (1958) and Fricke (1972) would be detected after about 10

years of continuous observation.
2.4.,3 Polar Mtion
2.4.3.1 Chandler Wobble

To assert that the CW has been the most studied spectral feature
of all the earth's 'free' rotation modes is probably an understatement.
Astponomers and geophysicists alike have explored the nature of this
wobble in an effort to learn more about the hidden propertieé of the

earth's interior and the oceans.

Approximately 80 years of monitoring polar motion has enabled the
CW period to be determined with an uncertainty of approximately one perc-
ent (see e.g. Wilson 1979). Theoretical explanations for the difference

between the EW and CW period have also been successful within the bounds
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of the observational uncertainty and the effects of elasticity, fluid
core and oceans now seem well understood. Smith (1977), for example,
has calculated 403.6 days for the period of a realistic oceanless,
elastic earth model, which includes a neutrally stable fluid core, and

has shown that the result is insensitive to the earth model.

Equilibrium theories for the ocean tidal response to the CW have
been formulated (see e.g. Dahlen 1976). According to Dahlen, the equi-
librium pole tide lengthens the period of Smith's (1977) model by 27.6
days, while realistic non-equilibrium considerations do not change this
result significantly (Lambeck 1980). Including the effect of mantle
anelasticity brings the predicted CW period to about 434 days (ibid.
1980), compared with 431%4 days from observations (Wilson 1979).

Most analysts are reluctant to specify an exact period because the

" spectral peak is typically broad. A broad peak can indicate two possib-
ilities (1) the data are noisy and (2) the wobble is undergoing excitation
and damping. The variable excitation and damping also pfompts related
questions on energy dissipétion and the nature of the excitation mecha-

nisms which obviously have maintained the wobble for such a long time.

A convenient measure of the energy lost in an oscillating system
which is randomly excited and then damped is the quality factor Q
(see e.g. Merriam and Lambeck 1979, Anderson and Minster 1979). Low
values of Q indicate high levels of dissipation, thus making the search
for an energy sink difficult (Jeffreys 1956). Q estimates for the earth
at the CW frequency (ch) are derived from astronomical data and gener-
ally range from 30 to 100 (see e.g. Yatskiv and Sasao 1975, Wilson
1979), although substantially larger values have also been reported (see
e.g. Graber 1976, Ooce 1978, Wilson and Vicente 1980).

In the past, energy sinks have been sought outside the mantle be-
cause the majority of Qew estimates for the earth were less than those
determined at seismic frequencies for the mantle. In an extensive rev-
iew of the problem; Smith and Dahlen (1981) investigated whether the
difference between the observed ch for the Chandler wobble and the Q

for the mantle observed at frequencies in the seismic band might be due
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to variations of the Q for the mantle with frequency. This possibiiity
had been suggested previously by others (see e.g. Jeffreys 1978, Anderson
and Minster 1979). Using CW, tidal and free oscillation data, Anderson
and Minster (1979) conclude that the variation‘of Q for the mantle is
proportional to the cube root of the frequency; a result which they note
is consistent with laboratory measurements of the transient creep and
internal friction of solids at high temperature. However, the implicat-
ion for mantle rheology of a transient creep model inferred from this
result is not consistent with post-glacial rebound data (Peltier et al.
1980). On the other hand,some evidence presented by Smith and Dahlen
(1981) suggests the possibility that there may not be any variation of

Q for the mantle with frequency. If this is the .case, then the question
of mantle dissipation of wobble energy is still very much open and
energy sinks will have to be sought elsevhere. The role of the core in
these considerations appears to be minimal since core-mantle coupling

is weak during wobble (Rochester 1974), however, the oceans cannot be

ruled out (Wunsch 1974).

The pole tide is the ocean tide induced by the CW. The response is
generally assumed to follow equilibrium laws, in which case, the tidal
amplitude is about 1/2 cm. If this assumption is correct then wobble
energy cannot be dissipated in the oceans. However, characteristics of
the pole tide have been observed at a éprinkling of sites around the
globe and there is some evidence which suggests the response actually dep-
arts from equilibrium ét least regionally in both phase and amplitude (see
e.g. Dickman 1979a for a recent summary). Such departures could play a

significant role in the damping of the CW.

In his examination of the problem, Dickman (1979a) theoretically
models a wide variety of non-equilibrium situations that may occur on a
global basis and also in the North and Baltic seas. The models encom-
pass order of magnitudé changes in the equilibrium amplitude and phase
lags up to 120°. The time taken for these tides to damp the CW and
their corresponding impact on the period of the CW were calculated. For
the models considered, the results show a non—equilibrium contribution

to the CW period ranging from -57 to 200 days and an ocean capacity to
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damp the CW amplitude in accordance with the observed Q. values.
Nevertheless, in order for the validity of the less plausible tidal
models to hold, unrealistic changes in present core models are necess-—
ary to allow overall agreement with observation. Smith (1977) con-
sidered a suite of stable and moderately stable stratified core models
and found the effect on the CW period to véry by only a few days at the

most.

The real question that must be answered is 'How strong is the ob-
servational evidence for a non-equilibrium pole tide?' At the moment,
there is only weak support for the existence of a non-equilibrium glob-
al pole tide (Haubrich and Mink 1959, Miller and Wunsch 1973) and it
seems mere conjecture to state otherwise when the two most lmportant pa-
rameters in the problem are not well defined. The observed amplitude
and phase varies appreciably from site to site (see e.g. Currie 1975,
Hosoyama et al. 1976, Naito 1977, Daillet 1979) and may also depend on
record length (Hosoyama et al. 1976). The latter authors also suggest
qualitatively that non-equilibrium features at low and high latitudes
tend to cancel causing the overall effect on the CW to vanish. Until
these aspects and the large scatter in Qs values are cleared up the

dissipation question will remain unresolved.

An attractive alternative to the above problem is to argue that two
distinct periods exist within the CW spectral peak. This model has al-
ready been proposed by some researchers as a means of surpassing the
dissipation problem (see e.g. Gaposhkin 1972). Alternatively, Pedersen
and Rochester (1972) stress that a homogeneous data set of length much
greater than eighty years must be available and the analysis methods be
closely scrutinized before splitting of the Chandler peak. is seriously

considered.

The search for CW excitation mechanisms has also been difficult.
At present there are two possibilities; namely, the sideband effects
assoclated with the annual redistribution of atmospheric mass and the
‘mass redistribution accompanying large earthquakes. Mink and Hassan
(1961) originally dismissed atmospheric excitation, claiming that the

sidebands did not contain enough power to sustain the CW. Wilson and
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Hauhrich (1976) revived the issue, but could only attribute 25% of the
CW variability to the atmosphere. Lambeck (1980) believes that part of
the missing power could be a result of the inadequate coverage of sur-
face pressure data over Central Asia and observational uncertainty. The
basis of this suggestion is the noticeable difference in the results by
Wilson and Haubrich, Siderenkov (1973) and Jochmann (1976) for the an-—
nual atmospheric excitation function. All studies are based on differ—
ent data sets. Ooe (1979) has compared the irregular fluctuations of
the atmospheric excitation function given by Kikuchi (1975) with the ir-
regular fluctuations in the IPMS polar motion data. The comparison is
accomplished by subtracting off the seasonal and long-period terms from
each respective data set. The correlation between the two curves, how-
ever, 18 quite poor and only reaffirms Lambeck's suspicions about the

data.

The suggestion that earthquakes could play a role in CW excitation
was first given this century by Mlne (1906). The earthquake excitétion
hypothesis was dismissed by Munk and M:Donald (1960) but later revived
by Mansinha and Smylie (1967) after they realized the significance of
the pioneer work done by Press (1965) on earthquake displacement fields.:
Since then a varlety of solutions to the broblem have heen formulated
(see e.g. Smylie and Mansinha 1971, Dahlen 1973). TInitially, the theo-
retical diversity of each approach generated much debate on the extent
to which the CW could be excited by a large earthquake but a recent
study by Mansinha et él.‘(l979) suggests that most of the differences

appear to have been resolved.

The theoretical study by Smith (1977) shows that the coseismic dis-
placements during the 1960 Chilean earthquake could have shifted the fig-
ure axis by 0.65 metres and that there could have been an addifional motion
of 0.86 metres if the precursory motion suggested by Kanamori and Cipar
(1974) is correct. O0'Connell and Dziewonski (1976) have evaluated the
cumulative seismic excitation function from 234 large earthquakes (M >
7.8) that occurred between 1901 and 1970 to yield a synthetic curve that
resembles the observed CW during the same period. They conclude that

earthquakes provide about 50% of the energy needed to explain the CW
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variance but Wilson and Haubrich (1977) believe the estimate 1s too

large by a factor of 2.

Haubrich (1970) and Dahlen (1971) have argued previously that at-
tempts to correlate changes in the pole path with earthquake occurrences
will remain inconclusive so long as the ncise levels in the astronomical
data stay at their existing levels (see also Smylie et al. 1973). The
situation is unclear to say the least and alfhough it is tempting to sug-
gest that a combination of atmospheric and seismic processes may produce
the necessary energy for excitation the fact is the combined excitation
function is not much better than either contribution alone (Lambeck

1980). Space ranging data will he a most welcome asset in this area.
2.4.3.2 Annual Term

Superimposed on the CW is a forced seasonal variation which is gen-—
erally attributed to meteorological effects. For analysis purposes, it
is desirable to separate this term from the Chandler component. This is
usually accomplished by either a least-squares harmonic approach if long
(data series are available (see e.g. Yumi 1970) or a non-linear technique
like MESA 1if the record length is short (see e.g. Wells and Chinnery
1973).

It is difficult to separate these components because it is
likely that the respective amplitudes for both have a tiﬁe dependency.,
'As well as CW damping and excitation, there is now observational evidence
(see e.g. Chollet and Debarbat 1972) which indicates that year-to-year
variations in global weather patterns could affect the constancy of the
annual amplitude. Their study shows the annual term in the latitude of
the Paris observatory varying'between 0.04 and 0.10 asecs in amplitude
over a period of 14 years. Wells and Chinnery (1973) find a significant
inconsistency between the observed amplitude and phase of the annual com—
ponent at individual stations and stress the importance of determining
the local and regional biases in the latitude measurements. Lambeck
(1980) also notes the significance of these factors and suggests they
may be partially responsible for the discrepancy between the observed

annual amplitude and that derived from geophysical data.
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To first order, the amplitude of the annual component can be ac-
counted for by the seasonal redistribution of atmospheric mass. The
earliest evaluation was undertaken by Spitaler (1897) and since then
Mink and Hassan (1961), Siderenkov and Chvykov (1973), Jochmann (1976),
Wilson and Haubrich (1976) and many others have estimated this contribu~
tion. A precise computation must account for the response of the oceans
to pressure variations over and above the mean pressure. In the work
reported to date, the calculations agree reasonably well for zero ocean

response but not for an Iinverted barometer response (Lambeck 1980).

The groundwater contribution (i.e. water stored 1in the waterbtable,
as snow, In lakes and vegetation) and the seasonal ocean variations are
also very important for comparing the observed and calculated phase of
the annual term (Jeffreys 1972). For a gilven area, the groundwater
storage 18 a function of the precipitation, runoff, evaporation and
transpiration rates (Manabe 1969). At the moment only limited compu-
tations can be undertaken because (1) accurate rates of runoff are ex—
tremely difficult to obtain on a global basis and (2) data for essent -
ial effects (e.g. radiation rates, air humidity and wind velocity),
which are needed to compute the rates of evaporation and transpiration,
are generally not available (Lambeck 1980). Instead, empirical rela-
tions have to be used to estimate the global water balance (see e.g.

van Hylckama 1956,1970).

The seasonal changes in sea-level are caused mainly by (1) wind
stress, (2) temperatufe andbsalinity changes, (3) atmospheric pressure
effects and (4) ocean tidal excitation, but not all these factors will
contribute. In particular, changes in temperature and salinity will
alter the specific volume of water but not the mass. These so—called
steric changes do not load the Eérth and therefore will not contribute
to the annual excitation function. Seasonal ocean currents and winds
are further possibilities although they are mainly controlled by geo-
strophic forces. The effects of such forces on polar motion wouldivanish
when integrated over the entire earth if there were no land areas (Munk and
MacDonald 1960). Sanchez (1979) has investigated the effect of ocean tidal

excitation on polar motion and has shown that the annual component of the
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potential displaces the spin axis by 0.012 asecs, a contribution which

amounts to about 10% of the observed variation.

Other short-period terms are also evident in the polar motion spec—
trum. A semi-annual term has been observed in the Kimura z term but its
amplitude is close to the noise level of the observations. Although the
astronomical evidence is not really convincing at the moment, there could
be sufficient meteorological excitation at the semi-annual frequency to
generate a semi-annual wobble (Lambeck 1980). Ocean tidal excitation
can also play a dominant role in this regard. Sanchez (1979) computes
wobble amplitudes due to the ocean tides of 0.0l and 0.002 arcsecs at
the semi-annual and monthly periods, respectively. These have yet to be
confirmed by observation. Additional terms with periods ranging from
19 to 34 months have also been reported by Sugawa et al. (1973) but
their origin is still uncertain. Sasao (1978) discusses ways in which
the earth tides can induce small wobbleé. These effects, like the FDPM,
should be removed before the actual observations are used to determine

the CW and annual terms.
2.4.3.3 Long Period and Secular Trends

Analyses of the ILS and BIH astronomical data have shown that the
polar motion records contain a secular variation (see e.g. Poma and
Proverbio 1976). Often called secular polar motion (SPM) or polar
wandering, this feature still has an uncertain origin but can be ex-

plained two ways.

The first involves the dynamical principle which equates the geo-
graphical movement of the mean spin axis with shifts in the figure axis
that are caused by mass transfer mechanisms (see e.g. Goldreich and
Toomre 1969). Since the spin axis is dynamically constrained to cycle
closely about the figure axis then a change in the positioh of the mean
spin axis reflects a displacement of the figure axis provided the ob-
servations are free from systematic error. If errors of this type are
present they will cause an 'apparent' secular trend 1in the polar motion
spectrum. Changes in station coordinates due to continental drift (see
e.g. Dickman 1977) and errors in star catalogues (Guinot and Feissel

1968) are just two phenomena that can produce apparent effects.
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‘The concept of SPM is by no means novel. Discussions on the sub-
ject are found in the classic work by Darwin (1877) and later on by
Inglis (1957) but understanding the origin and extent of the trend has
not been easy. To date, researchers have used paleomagnetic and astro-
nomical data in their pursuits. Paleomagnetic evidence indicates that the
spin axis could have moved, over the past 115 million years, at an average
rate of about 0.1 milliarcsecs per year in a direction approximately
220°E of Greenwich (van der Voo 1978). However, these estimates have
uncertainties which are the same order of magnitude as the measured
rate. Van der Voo (1978) and Jurdy (1981) also noterfhat the direction
of the motion i1s quite variable and depends, to a large extent, on the

data used to reconstruct the plates.

Many attempts have been made to estimate the secular trend from
astronomical evidence since Lambert's (1922) analysis of the first 18
years of ILS data. Tahle 2.4, taken from Poma and Proverbio (1976),
summarizes the numerous determinations since 1922. 1In all cases, the
ILS data were used to deduce the annual rate and its difection. The
general rate is about 0.003 asecs yr--1 in a direction 290°E of Greenwich
and is in good agreement with recent results obtained from BIH data
(ibid. 1976).

At present, the results from paleomagnetic and astronomical evi-
dence disagree,with fhe rate deduced from the astronomical evidence be-
ing about an order of magnitude larger. The discrepancy may be due to a
number of factors including (1) systematic errors in each data set and
(2) different record lengths. However, since the astronomical data only
span a period which in geological terms is very short, it is likely
that the observed astronomical trend is merely a transient one. The
results from paleomagnetic evidence are based on rock samples whose ages
are greater than 105 years. It‘seems probable that during this length
of time the spin axis could have moved at rates similar to those inferred
from ILS and BIH data, but that on the average such motions have cancel-

led out.
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One common source of systematic error in the paleomagnetic and
astronomical data is that introduced by continental drift. Jurdy and
van der Voo (1974), realizing the significance of lithospheric plate mo-
tions in their interpretation of paleomagnetic data, have used a least-
squares algorithm to separate the absolute term due to SPM from the ob-
served displacement field. Similar methods have also been used in the
interpretation of SPM results based on astronomical data. Soler and
Mieller (1978) and Dickman (1977) have calculated the secular changes
in the station coordinates of the ILS and IPMS networks using the plate
velocity models of Solomon et al. (1975) in order to see whether SPM is
simply an artifact which appears when such changes are not taken into
account. Their results are in close agreement and indicate that only
10 to 20% of the observed shift can be explained by station drift.
Uncertainties in the stellar proper motions have also been ruled out as

an important source of error (Guinot and Feissel 1968).

The suggestion and theory which relates a gradual mass redistribu-—
tion occurring on or within the earth's surface to secular’perturbations
in the earth's inertia tensor and rotation was first put forward by
Darwin (1877). Since then numerous investigations on the subject have
been undertaken, Current opinion favors the effect of a redistribution
of mass between the Greenland ice regions and the oceans as the most
probable cause of the observed secular trend (Lambeck 1980). The cont-

ribution from plate tectonic mass transfer appears to be small.

Munk and MacDonald (1960), Cazenave (1975), Dickman (1979b) and
Nagiboglu and Lambeck (1980) have all considered the effect of degla-
clation and the associated rise in sea-level on the long-term secular
behaviour of the earth's rotation. Aithough.this phenomenon appears
significant to first order, the gravitational and viscoelastic interac—
tions between the melting ice, rising sea-level and the elastic earth
need to be known on a globél basis before an accurate calculation can
be made (Farrell and Clark 1976). The geophysical data are just too

sparse, at present, to enable a complete calculation.

The same predicament occurs when modelling and calculating the rota-

tional consequence of plate tectonic mass transfer. Different types of
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mechanisms have been investigated but the reliability of the models is
still questionable. Several assumptions éan be 1nvoked when modelling
these mechanisms. One 1s to assume that mass is merely being displaced
in active seismic zones while the second assumes that mass is accumulat-—
ing temporarily in subduction zones and dispersing from spreading zones
(Mather and Larden 1978). Over geological timescales (>105 years) the
displacement model is clearly the most plausible. Miss 1Lcumu1ation and
dispersion are conceivable over shorter periods {possibly <10 years)

but isostatic processes must dominate over longer periods.

Soler and Mieller (1978) have calculated the changes in the inertia
tensor using a model that only incorporates the crustal portion of the
earth. The corresponding secular motion of the spin axis was calculated
and found to be negligible, almost zero, compared with the observed
trend. However, the model they formulated failed to take into account
the density changes that occur when (1) the lithospheric material 1in
subduction zones moves underneath the continental plate into the under-
lying asthenosphere (see e.g. Isacks et al. 1968) and (2) the rotational
part of the earth's equatorial bulge moves to conform with the new posi-
tion of the figure axis (Goldreich and Toomre 1969). Both these factors
must be taken into account in the formulation of future geological

models for plate tectonic mass transfer.

Mantle convection (Takeuchi and Sugi 1972) and the destruction and
generation of crustal material along plate boundaries (Liu et al. 1974)
are further phenomena that can cause SPM. However, the assumptions made
in both these studies need further clarification before the conclusions
are taken seriously. Earthquakes (see e.g. Minsinha and Smylie 1967,
Smith 1977) also appear significant. Since the possibility that the
astronomical data are reflecting a transient secular feature in polar
motion cannot be ruled out, this would suggest that both the astron-
omical and paleomagnetic results may indeed be compatible, Moreover,
if future studies verify deglaciation as the major contributor, then
more sophisticated models for the mass redistribution océurring in

regions of extreme seismic activity may not be needed for this purpose.
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The oﬁly other appreclable long—term variation in polar motion that
appears in the astronomical data has a period of about 30 years (see
e.g. Vicente and Currie 1976). Busse (1970) suggests that this decade
scale mode 1s assoclated with movements of the solid inner core but this
would only bé valld if large density contrasts existed in the region of
the outer core. Recent seismic data indicates that this is not likely
to be the case. Lambeck (1980) has differenced the BIH and ILS data and
shows evidence to suggest that the decade wobble may simply be a conse-
quence of the observing or reduction process and not a real excitation

at all. Further study is needed.
2.4.3.4 Diurnal Polar Motion

Probably the most controversial feature assoclated with the liquid
core 18 the torque—free nearly diurnal polar motion (NDPM). Referred
to. by Rochester (1973) as the nearly diurnal free wobble, the motion ap-
pears as a homogeneous term in the solution of the equations of motion
and, therefore, its amplitude and phase can only be determined by obser-
vation. Hough (1895) and Sludskii (1896) first predicted the NDPM as a
retrograde cyclic movement of the spin axis relative to the earth's sur-
face with a period approximately 3 minutes short of a sidereal day.

NDPM must not be confused with FDPM or the NDFN because the latter mo-
tions are not of core origin (see Secs. 2.2.3.1 and 2.4.2.2). 1If the
NDPM -is viewed in a space~fixed system it appears as a free nutation
with a period of several hundred days. Toomre (1974) calls this mode
the principal core nutation (PCN).

The kinematical relation which connects the NDPM with the PCN

18 very similar to the relation counnecting the CW with the NDFN (see
Rochester et al. 1974 for respective mathematical developments). Earth
models chosen by Jeffreys and Vicente (1957a,b) indicate the PCN/NDPM
ratio for both amplitude and period to be about 460. Values based on
models used by Mlodensky (1961) are quite different. One is in close
agreement with 460, the other being 204. Other estimates discussed by
Jeffreys (1980) are equally discrepant and this illustrates the import-
ance of choosing good models for mantle and core structure when study-

ing this mode.
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It might be thought that the diversity of these theoretical results
pointed to measurements of the PCN as being a useful constraint for mod-
elling the earth's structure. However, Wahr (1979) has shown this not to
be the case., Using three of the latest most heavily constrained models

based on seismic data, he obtained PCN/NDPM ratios all within 1% of 458.

Previous attempts to observe either the PCN or the NDPM have been
treated with skepticism. Early analysts (see e.g. Popov 1963) were more
interested in observing the NDPM, yielding values of the order 0.01-0.02
asecs. Toomre (1974) stressed, however, that these results were incon-
clusive because they suggested the PCN had an amplitude about 460 times
larger. The existence of a nutation term this large with a'period of

several hundred days clearly was refuted by observational evidence.

Rochesterlgg_él, (1974) reconsidered the problem and from an analy-
sis of declination data gathered at the Loomis obhservatory, established
an upper limit of 0.12-0.26 asecs for the PCN amplitude in the frequency
domain of O-4 cycles per year (c yr_l). Adopting a ratio of 460, the
corresponding upper limit for the NDPM amplitude was 0.0003-0.0006 asecs.
This estimate i1s clearly more realistic in view of the current observa-

tional evidence.

Ooe and Sasao (1974) and Yatskiv et al. (1975) sought an explana-
tion for Popov's (1963) extremely high value for the NDPM amplitude and,
after examining his method of analysis, realized that he had obhserved a
combined variation in polar motion and nutation. This implies that
Popov's estimate actually refers to thé PCN amplitude. The situation
is still uncertain and further research is needed. Data from the
lunar laser ranging experiment are presently being analyzed for this
specific purpose. Preliminary results indicate that the PCN amplitude

does not exceed 0.005 asecs and perhaps may be even smaller (Wahr and

Larden 1981).

2.4.3.5 Irregular Fluctuations

From time to time irregular fluctuations occur in polar mottpn
that are very difficult to explain. For example, a sudden change was
observed by the BIH, IPMS and DMA during the period Miy to December 1974
(BIH 1975). The extent of the irregularity is shown in Figure 2.5.
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The rationale for the existence of these fluctuations can have
either an observational or geophysical basis. From an observational
standpoint, such trends could be the result of systematic errors,

For example, Alley and Bender (1968) have shown that a 1 x 10"8 per
km gradient in the index of refraction at a PZT station produces a
0.02 asec deflection in vertical observations. If similar conditions
were to exist over the Eurasian continent with a periodic signature

of six months then a trend similar to the one observed during 1974

is feasible.

Geophysical bases for the appearance of these fluctuations have
been discussed in Section 2.4.3.1 If the sudden changes are real they
should correlate well with times when mass redistribution occurs.
Earthquakes are certainly capable of producing short—period variations
in polar motion (Smith 1977) but considerable research effort is needed
to see whether the atmosphere or the core has sufficient power at pe-
riods less than one year to produce short—period fluqtuations. Larden
(1981) has made an effort to verify the 1974 irregularity using LLR
data. Results of the analysis indicate the trend may be real, however,
the data over two critical lunations appear seriously affected by sys-
tematic errors. This prevents definite conclusions to be drawn. The
verification of wobble excitation times 1is most important if excitation
mechanisms are to be identified. Clearly, the space ranging methods

will be the leading contributors in the future.

2.4.4 Spin Rate

Aspects of the Earth's variable rate of rotation, or spin rate, and
their geophysical causes have been recently investigated and reviewed by
Lambeck (1980). From equation (2.10) it is easy to show that a change
in the spin rate, or equivalently, length of day (l.o.d.) and Universal
Time are related to mg according to (Munk and MacDonald 1960)

Y3 A(L.o.d.) _ d(UT1-TAT)

M3 Q 1.0.d. dt : (2.18)

As mentioned previously in Section 2.2.3.2 the observed quantity is not
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really the mg but the integrated amount by which the earth is slow or
fast after a certain elapsed time interval with respect to a uniform

spin rate.

Often regarded as the richestISpectrum of all, the earth's spin
rate contains many observable features of geophysical and astronomical
origin. Figure 2.6, after Lambeck (1980), is a schematic of the power
spectrum for the proportional changes in the l.o.d. The discussion
which follows here serves only to summarize the main features of this
spectrum, their causes, and those areas whére space ranging measurements
can make important contributions. Pertinent information has been ex-
tracted from recent articles by Lambeck and Cazenave (1974,1977),

Rochester's (1973) review paper and Lambeck (1980).
2.4.4.1 Long Period and Secular Trends

Prior to the development of atomic clocks, only long-period fluc-
tuations and the secular deceleration of the earth's spin rate é could
be measured. Disgsipation of tidal energy has long been considered the
most suitable explanation for the secular deceleration or increase in
l.0.d. (Mink and MacDonald 1960). Figure 2.7 illustrates the principle
behind this phenomenon. Due to frictional processes, a portion of the
tidal energy is absorbed by the solid earth and oceans and this causes a
lag in the tidal response. The phase lag, in effect, is the angle (GT)
between the line of maximum bulge and the direction to the tide-producing
bbdy. Since the two are misaligned, a net torque 1is exerted on the
bulge by the tide-producing body causing a slowing of the earth's spin

rate.

The lunar torque is the main contributor, being about 4 to 5 times
larger than its solar counterpart (Rochester 1973). Mnor contributions
come from non-tidal sources. Those suggested are (1) gradual changes in
the earth's mass distribution from post-glacial isostatic rebound and
(2) torques within the earth, for example, electromagnetic coupling.

between the core and mantle (Lambeck 1980).

’
Astronomical observations give a direct measure of { but cannot

distinguish between the steady retardation due to tidal frictiom @ (1)
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Figure 2.7 Frictional Tide Response. If there is no dissipation,
then GT = 0. The notations are added to enable further referencing

from Chap. 3 and thus avoid duplication.
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and the non-tidal contributions However, separation can be ac-

- complished by observing the associgizg orbital deceleration of the

moon (Munk and MacDonald 1960). 1In the case of the moon, the angu~-

lar momentum lost by the earth due to the action of the lunar torque is
transferred to the lunar orbit. Assuming Kepler's third 1aw>and the
conservation of angular momentum within the earth-moon system, one ob—
serves an 1ncrease In the mean earth-moon distance and a decrease in the
lunar mean motion n (see Stacey 1977 for a discussion). Once n is known
the lunar contribution to the earth's tidal deceleration can be directly
evaluated. The solar contribution is less significant but ohce both are

known estimates of ﬁ (NT) can then be made.

Lambeck (1979) outlines two indirect ways of measﬁring n and hence
é . They are (1) the evaluation of the tidal energy dissipated in the
oceans using ocean tide models and (2) the use of satellite derived sec-
ond degree harmonics of the ocean tide potential to calculate the rate
of work done on the ocean surface by the lunisolar potential. Astro-
nomical observations, on the other hand, generally place estimates of
ﬁ in the range -20 to -30 asecs cy"2 (see e.g. Morrison and Ward 1975,
Muller 1976). Data from the lunar ranging experiment has also been used
to determine n. Williams et al. (1978) deduce a value for n of 23.8
* 4 asecs cy-2 which has since been re-estimated, without significant
change, by Dickey et al. (1980) using data through May 1980. Calame
and Mulholland (1978) also give similar values. This indicates that
LLR 1is a good source of information on n. Lambeck (1977) documents
the theory that permits an evaluation of n from satellite-derived ocean
tide parameters. Application of the theory by Félsehtreger_gg_g}, (1978
»1979) and Goad and Douglas (1978) to data from various low—-altitude
satellites gives values of n that also fall within the domain determined

by lunar laser ranging.

Observed values of é are about 50 times larger than n while the
non-tidal contribution to é is about a factor of 10 larger than n but
of opposite sign (see Lambeck 1977,1979). These rates imply that energy
is being dissipated at a rate approximately equal to 4 x 1019 ergs/sec
(Lambeck 1977).
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Estimates of é and n have also been obtained from paleontological
data (Scrutten 1978). Recent results are in good agreement with astro-

nomical, satellite and lunar ranging results (Lambeck 1980).

In addition to the earth's deceleration, there are several long-
period fluctuations in the l.o.d. Figure 2.8, after Lambeck and
Cazenave (1977), illustrates the periodic nature of the variations that
occurred between 1820 and 1940. The maximum change in the l.o.d. oc—
curred during the period 1870 to 1900 and corresponds to about 1 part
in 107 or 9 msecs. Once again, electromagnetic coupling of core motions
to the mantle or possibly topographic coupling seem to be the
most plausible excitation mechanisms for these variations (see e.g.

Hide 1977).

Lambeck and Cazenave (1976) have looked at the long-period spectral
features of the atmospheric and oceanic mass redistributions and find
that the relevant components can, at the most, explain only 20% of the
observed changes between 1820 to 1940. The meteorological excitation
function also lags the observed variations by about 10 to 15 years in-
dicating that the two seemingly correlated phenomena may have a common
origin. Récently, Currie (1980,1981) suggested that solar activity may
be responsible for an ll-year signal in the l.o.d. A similar signal has

also been found in surface air temperature (Currie 1979) and sea-level

(Currie 1976) records but whether these effects are real remains to be
seen. Some additional information may come from the FGGE program (see

e.g. Hide et al, 1980) .
2.4.4.2 Seasonal Variations

The improvement in time standafds led to the detection of several
periodic variations in the earth's spin rate. Discussed in this section
are the annual, semi-annual and quasi-biennial terms, all owing their
existence to some extent to the change in the earth's angular momentum

produced by the zonal wind circulation (see e.g. Lambeck 1980).

The annual term, having by far the largest amplitude (approximately
20-25 msecs) of the three, is sustained by the variable solar energy re-
ceived by the atmosphere as the earth orbits the sun. Mink and Mller

(1950) were the first to Interpret the annual change to be of wind
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Figure 2.8 Long-Period Variations in mq since 1820 (taken

from Lambeck and Cazenave 1977)
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origin and when Mink and MacDonald (1960) recomputed the excitation
function with additional data they found that 60% of the annual varia-
tion could be explained by this mechanism. Lambeck and Cazenave (1973)
reconsidered the problem when they discovered that no attempt had been
made to re—evaluate the new wind data that had become available since
then. Their results were very instructive, showing that 96% of the
annual variation in the l.0.d. during the period 1958 to 1961 could be

explained by the zonal wind circulation.

Another related and important aspect of the annual term is its time
variation. Year—to-year fluctuations in amplitude and phase are evident
in the astronomical data but uncertainties in this data do not permit an
adequate evaluation at present (Lambeck 1980). However, attempts are
being made to resolve some of the issues using newer and independent

data (see e.g. Lambeck and Hopgood 1979).

With regard to the semi-annual term, about 50% of the observed am-
plitude of about 9 msecs is attributed to the solar—induced earth tide.
Seventy-six percent of the remaining non-tidal contribution can be ex-
plained by the zonal wind circulation (Lambeck and Cazenave 1973) but
there are potentially important gaps in the wind data at high latitudes
which, if filled, could provide better agreement (Lambeck 1980). Atmo-
spheric, oceanic and groundwater variations make negligible contribu-—

tions at the semi-annual frequency (Mink and MacDonald 1960).

The possibility that relativistic effects could cause annual and
semi-annual changes in the 1.b.d. was recently poilnted out by Nordtvedt
and Will (1972). This possibility arises because of a prediction from
gravitational theory that the Cavendish constant may change as the
earth orbits the sun. In response to this change, the earth's self-
gravitational pull should change causing the earth to 'breathe" inw-
ards and outwards (Misner et al. 1973). As a result, there will be a
corresponding change in the earth's moments of inertia which will

give rise to small annual and semi-annual variations in the l.o.d.
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Rochester and Smylie (1974) suggest that these effects may be obser-
vable if the meteorological excitation functions are known with

precision.

Quasi-biennial variations in the l.o.d. were first reported by
Iijima and Okazaki (1966). Their resulﬁs revealed a term with a 26—
month period but Markowitz (1970) later observed a term near 24 months
and pointed out that it was not strictly periodic. An earlier analysis
of the tropical zonal wind data uncovered a quasi-biennial oscillation
which varied between about 20 and 30 months (Dartt and Belmont 1964).
Lambeck and Cazenave (1973) have also examined the biennial oscillation
and established quantitatively a relation between the biennial wind
circulation and the rather irregular quasi-biennial oscillation in the
l.o.d. The amplitudes of the excitation and observed functions agree
to within 87 and the phases to within 5 degrees. Their results high-
light the biennial oscillation as a non-stationary phenomenon; a fact
supported by harmonic analysis of the BIH astronomical data which shows

spectral lines near 2 to 3 years.

It is clear that tremendous progress has been made in understanding
the seasonal variations in the l.o.d. The possibility of using astro-
nomical and space ranging data to formulate boundary conditions for
future global wind circulation models must be contemplated (Lambeck

1977).
2.4.4.3 High Frequency Perturbations

Apart from the seasonal, biennial, long-period and secular varia-
tions, the l.o.d. spectrum also exhibits considerable power at higher
frequencies. Harmonic analysis of the BIH astronomical data shows sev-
eral peaks in the frequency range 0.3 and 36 cycles/year (Lambeck and
Cazenave 1974). Mink and MacDonald (1960) suspected irregularities in
the zonal wind and ocean circulation as the cause of these anomalous
fluctuations but noted, of course, that features with periods near one

month and two weeks were of tidal origin.

Lambeck and Cazenave (1974) have shown quantitatively that all the
irregular variations in spin rate in the frequency domain of 0.3 to 6

cycles/year are of zonal wind origin. Order of magnitude estimates by



67

these same authors also show zonal winds playing a dominant role in ex-
plaining l.o.d. variations with frequencies higher than 6 cycles/year.
However, this is not entirely unexpected since the global atmospheric
circulation exhibits a broad continuum from about 8 months down to a

few days (Mitchell 1976).

Large and rapid variations of a non-periodic nature also occur
from time to time in the l,0.d. One of these was reported by Guinot
(1970) as a 10 msec jump in Universal Time over a five-day interval
during April 1968. This anomaly has been investigated by Lambeck and
Cazenave (1974) but it is still not clear whether this is a real
fluctuation caused by the rapid propagation in latitude of the zonal
westerlies in the northern hemisphere or just unusual noise in the
BIH results. In a subsequent review paper, Lambeck and Cazenave
(1977) stress the importance of determining the meteorological contri-

bution to such changes before making any related geophysical inter-

pretations.

2.5 Future Perspective

The main criteria to be met by any measuring system with a poten-—
tial for monitoring the earth's rotation are: (a) the system must pro-
vide information at a frequency compatible with the desired sampling
interval and (b) the quality of the data must satisfy a standard which
allows current ambiguities between observation and theory to be re-

solved.

Establishing a desired sampling interval and accuracy standard can
be accomplished jointly, by simply examining the observed and theoreti-
cal aspects of the earth's rotation and assessing the criteria in this
fashion. This review chapter was written specifically for this purpose.
In particular, the discussion of Section 2.4 clearly shows that observa-
tional discrepancies, differences in theoretical treatments and differ-
ences between theory and observation are still prevalent; some issues
requiring resolution at the 5 cm level. Detection of sudden changes in
the earth's spin rate is also very important and, therefore, makes

the acquisition of daily information imperative.
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Past history has shown, however, that the established techniques
described in Section 2.3.1 cannot meet the requirements set out in the
preceding paragraph. Mreover, if VLBI measurements succeed in providing
frequent earth rotation information then the only outstanding question
for those concerned about the future monitoring of the earth's rotation

is the role of the laser ranging techniques.

Overall success at monitoring the earth's rotation by LAGEOS
ranging will depend on whether the short-period perturbations in the
satellite orbit are small enough to enable short-period fluctuations to
be identified (Bender and Goad 1979). TFor LLR, the errors in the orbit
and librations have periods greater than fourteen days and so the detec—
tion of short-period changes by this technique should be possible if

there is sufficient data.

LAGEOS, on the other hand, can be tracked more frequently than the
moon, thereby indicating the capahility of the system to provide all the
necessary information on polar motion. In contrast to this, LLR is more
suitable for measuring long-term variations in the earth's spin rate be-
cause the lunar orbit is very stable over these time intervals. It is
partially for these reasons that Silverberg (1979) suggests a pooling of

both LAGEOS and LLR resources as the most cost-effective approach.

Nevertheless, before deciding on the future role of the laser rang-
ing techniques, important questions still have to be answered. One con-
cerns the extent to which the LLR technique can provide daily informé—
tion on the earth's rotation at the 5 em accuracy level. The numerical
work in Chapter 5 has been carried out to answer this question. As a
means of Introducing this work, the important aspects of the LLR experi-—
ment are discussed 1In the next chapter. These include the precise mod-
elling of the range measurements, improvements Iin the parameters of the
earth-moon system and finally the status of the LLR network. The mathe-—
matical models discussed in Chapter 3 are then simplified in Chapter 4

to a form more suitable for the variance studies of Chapter 5.
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CHAPTER 3
THE LUNAR RANGING EXPERIMENT

3.1 Introduction

The acquisition of high—accuracy distance measurements between the
earth and the moon has opened the way for a vast improvement in our
understanding of the dynamics within this system. Since 1969 over 2500
normal points, representing ahout 24000 photon returns, have heen oh-
tained at the McDonald Observatory. At present, the typical measurement
uncertainty is 10 to 15 cm. 1In the future, it is hoped an accuracy of 2
to 3 cm will be ohtained from a worldwide network of stations, however,

recent progress towards this objective has been slow.

Nevertheless, numerous scientific objectives have already been
accomplished through the analysis of the data gathered thus far. They
include (a) improved determinations of the lunar orbit, the selenodetic
coordinates of the reflectors, the geodetic position of McDonald and the
earth—-to-moon mass ratio (b) accurate values of the fractional moments
of inertia and several low degree and order harmonics of the lunar grav-
ity field from measurements of the physical librations (c) an accurate
check on gravitational theories, in particular, the Nordtvedt effect and

(d) studies of the earth's rotation and its irregularities.

The basic models used for the analysis of LLR observations are (a)
the orbital motions and space 6rientations of the earth and moon (b) the
observatory coordinates and their time variations due to solid-body
tides and polar motion (¢) the coordinates of the retroreflectors and
(d) the relativistic and refractive effects on the photon path. In the
following section a detailed description of the time—delav computation
is given together with fhe formulation of the range residual. A summary
of the improvements in the model parameters over the past decade 1is then

given and the present status of the experiment examined.
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3.2 Precise Modeling of the Time Delay

The analysis of lunar laser ranging data not only requires
observations of the earth—-moon distance but also a physical model that
enables the distance to be predicted mathematically. Differences bhe-
tween these two quantities, that is, the residuals, can be analyzed to
imprové the parameters occuring in the prediction model. The model must
take into account the basic physical laws which govern the passage of
' light through the medium which separates the earth and moon as well the
orhits and rotations of these two bodies. Since the travel path of the
photon through the solar gravitational field is subject to relativistic
effects and the accelerations of the earth and moon in space are not the
same, 1t 1is necessary to formulate the prediction model in a space-fixed
system because the abhovementioned effects would be obscured in a purely
geocentric calculation (Mulholland 1977). A barycentric coordinate
system is chosen together with an appropriate theory of relativity.
Formulation of the mathematical model in a geocentric frame is only
permissible when acceleration effects and possible relativistic effects
are corrected for. This approach is followed in Chapter 4 where a more
simplified model 1is discussed and developed for the variance studies

carried out in Chapter 5.

Another consideration worthwhile noting before embarking on an
outline of the prediétion process concerns the use of the term
'distance'. Mulholland (1975, 1977) emphasizes that measurements to the
moon are not measurements of distance in the true sense of the word even
though it is convenient to think of them as such. The observation is
really a time—-delay because the times of photon transmission, reflection
and detection do not occur simultaneously. Nevertheless, it is a good
approximation to treat the process as if the distance were measured
instantaneously; the mind seems to rest easier if it can visualize an
observation in terms of distance rather than time. An appropriate
value for the speed of light c, serves as the intermediary constant

which relates both quantities.
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The following outline of the precise time—~delay computation is
based primarily on information documented by Mulholland (1977) and Stolz

(1979).

3.2.1 Time Scales, Coordinate Systems and Basic Concepts

As discussed earlier in Section 2.2.3.2, three major time scales
enter into the reduction process of lunar range data. They are (1)
Universal time (2) Dynamical time and (3) International atomlc time.
Universal time, or more specifically UTl, is needed because it is a
direct measure of the earth's diurnal rotation in space. Dynamical time
is the time argument in the ephemeridies of the planets, the earth—moon
mass centre and the moon. In Newtonian applications, dynamical time is
often referred to as Ephemeris time while for relativistic applications,
the term Coordinate time is sometimes preferred. However, to avoid con-
fusion and remain consistent with previous documentations of the time-
delay computation the term Fphemeris time (ET) will be used throughout
this work in place of Dynamical time. Fphemeris time, therefore, refers
to the time argument in the ephemeris which incorporates the theory of
general relativity. The third scale, International atomic time, is the
best approximation to uniform time currently available and, as such,
should define the unit of time in applications of this type (Mulholland
1972). As the discussion proceeds, the role of these time scales

becomes more obhvious.

The three coordinate systems employed in the time—delay computation
are (1) the 1950,.0 barycentric mean equatorial system, (2) the earth-—
fixed system described in Section 2.2,2.1 and (3) a selenocentric lunar-
fixed system., The barycentric frame is assumed to bhe fixed in space and
has its origin at the centre of mass of the solar system (é barycentre).
It differs, in two respects, from the ecliptic frame (see Section
2.2.2.1) which can be used to monitor the earth's rotation 1in space.
Firstly, the reference plane of the barycentric system is the mean
equator of 1950.0 instead of the mean ecliptic and secondly, the origin
is no longer at the geocentre. Reasons for the change in origin are

given above. It is a routine matter to calculate the transformation
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parameters that relate these two systems. Standard formulae are given,

for example, in the Explanatory Supplement.

In the usual development of the equations of motion, the lunar—
fixed reference system coincides with the principal axes of inertia,
however, to define these axes accurately one needs recourse to observa-
tions and a theory for the lunar rotation. The rotation is genevrally
described by three Fuler angles which are.derived according to Cassini's
laws of synchronous motion and departures therefrom. In some develop-
ments, these angles are given with respect to the mean ecliptic of date
(see e.g. Mulholland 1977) in which case additional transformations are
needed 1f the 1950.0 mean equatorial system is chosen as the inertial
frame (see Section 3.2.3). Since the rotation is a function of the
fractional momenta of inertia and the low degree harmonics of the lunar
gravity field, partial derivatives must be derived in order to locate
the principal axes in a position which best fits the observations in a

least squares sense (see Section 3.3.1).

The lunar-fixed reference system is defined such that the X1 axis
coincides with the axls of greatest moment of inertia. This axis points
roughly in the mean direction of the earth as a result of the moon's
synchronous and librational motions. The X3 axis coincides with the
axis of least moment of inertia. It points roughly in the direction of
the moon's spin axis. The system is right handed and the subscript m

distinguishes the lunar—-fixed system from the earth-fixed system.

Apart from the optical librations, which are computed directly from
Cassini's laws, most of the remaining librational motion is produced by
the torque exerted on the moon by the earth as the former moves through
the earth's gravitational field. These are called the physical librations
and are discussed in more detail in Section 3.3.2. Integration con~
stants also appear in the equations of motion and these terms constitute
the 'free' librations. As in the case of polar motion, the amplitude
and phase of the 'free' librations can only be determined by observation

although their periods can be predicted from theory (see section 3.3.2).
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All quantities which enter into the time—delay computation have to
be expressed in the same coordinate system. The 1950.0 barycentric mean
equatorial system is chosen for the ephemeris and needed for a solution
are the ephemeris coordinates of (a) the telescope at the time of
transmission (b) the reflector at the time of reflection and (c) the
telescope at the time of detection. TFigure 3.1 gives a basic illustra-
tion of the geometry of the earth—moon system. The orbits of the earth
and moon are denoted by the vectors ﬁ and ﬁ respectively, the vector ;
denotes the telescope position in the earth-fixed system X, and 6; its
time variations due to tidal and loading effects, the vector 5 gives the

>
components of the earth-moon distance in the barycentric frame and k the

reflector position in the lunar—-fixed system S

The ephemeris coordinates of the telescope are obtained by
modelling the sidereal, polar, nutational and precessional motions of
the vector ; (see Chapter 2), transforming the véctor ; back into the
1950.0 barycentric system in accordance with these motions, and adding
to the result the ephemeris coordinates for ﬁ. The ephemeris
coordinates for the reflector are obtained in a similar, but not
identical, fashion once fhe ephemeris coordinates for M and the

libration angles have been determined.

Corrections for relativistic, refractive and instrumental effects
are introduced to ensure all measurable quantities are not omitted.
Carrying out the prediction in the framework of Einstein's general re-
lativity, as opposed to the Newtonian model, ensures that (1) the orbi-
tal accelerations of the earth and moon, (2) the behaviour of the obser-—
vatory clock as it moves through the gravitational field of the solar
system and (3) the curvature of the photon path are all taken into
account. Atmospheric refraction also causes curvature in the photon
path and must he included along with an instrumental calibration

constant.

In the next three Sections 3.2.2, 3.2.3 and 3.2.4 a step-by-step

description of the prediction calculation is presented. Vector and
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matrix notation are used to simplify the presentation. More specific

aspects are referenced where appropriate.
3.2.2 FEphemeris Position of Telescope at Transmission Time

Calculating the ephemeris coordinates of the telescope involves a
serles of transformations to account for the earth's rotational motions,
corrections for the earth tide effects and a conversion from Universal
time to Ephemeris time. The spin axis is arhitrarily chosen as the
reference axis for the transformations (Mulholland 1977) even though any
one of the dynamical axes previously mentioned in Chapter 2 could have

beén adopted.,

; moves with respect to the spin axis

as a result of polar motion, it is obvious that during a series of mea-

Since the earth-fixed system x

surements to the moon, the telescope vector ; will continually change
its orientation relative to this axis. This wovement is measured as a
function of UTC (see Section 2.2.3.2) which is always defined in terms
of TAT. If t,(UTC) denotes a photon transmission time and one assumes
the spin axis passes through the geocentre then the instantaneous posi-
tion ;'(tt), of the vector r relative to the spin axis and the instan-
taneous equator (plane orthogonal to the spin axis and passing through

the geocentre) is

i"(tt) = Rl[ymzrxli’ (3.1)

x and y define the spin axis position as measured in a plane which is
tangential to the X4 reference pole of the earth-fixed frame Xy (see

BIH 1978). Ri[¢] is a 3 x 3 matrix representing a counter clockwise rot~-
ation of the coordinate system through an angle ¢ about the ith axis as
viewed down the positive direction. It is consistent in form and con-
vention with the rules adopted by Kaula (1966, p. 14) and foldstein
(1950, p. 99) for a right—handed system. Although the BIH and other
services adopt a left-handed system for publishing x and y (see Section
2.3.1.1), equation (3.1) has been formulated in such a way to maintain
the convention of the BIN system and still allow the use of Kaula's

(1966) rotation scheme. Mulholland (1977) and Stolz (1979) do not
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elabbrate on the sign convention adopted for their developments so their
equations must only be considered in general terms.,

Sevéral data sets of x and. y are available (see Section 2.3). The
BIN publish in their annual reports various sets including raw
(unsmoothed), combination (Doppler plus BIH), Vondrak smoothed and now
recent values deduced from LAGEOS (BIH 1978). LIR analysts opt for
another BIH set, the 5-day Circular D smoothed values, which are
readily available every month, However, these values contain the annoy-
ing 'dynamical' variations of latitude (FDPM) because the BIH reduction
program uses the nutations of the spin axis instead of the mean figure
axis of the mantle (see Sections 2.2.3.1 and 2.4.2.2 for further com
ments). Williams (1974) adopts McClure's (1973) elastic earth calcu-

lations and corrects the BIH values by
§x = 0,0087 sinf - 0.0065 sin{6-2(F+Q)} - 0.0029 sin{6-2(F-D+Q)}
- 0.0013 sin{6-2-2(F+Q)} - 0.0012 sin{6-2F-0}

+ 0,0012 sin{6-0} + 0.0005 sin{6-2} + 0.0005 sin{o+s} (3.2a)

Sy = =0.0087 cos8 + 0.0065 cos{6-2(F+Q)} + 0.0029 cos{6-2(F-D+Q)}
+0.0013 cos{6-2-2(F+Q)} + 0.0012 cos{6-2F+q}
-0.0012 cos{B-Q} - 0.0005 cos{6-2} - 0.0005 cos{9+£} (3.2b)

The corrections 6x and 8y are expressed in units of arcseconds and

cire D° 6 is the

angular equivalent of Greenwich sidereal time and g, F, D and Q are the

must be added to the Circular D values Xiire D and y

fundamental arguments from Brown's lunar theory. Substituting equations

(3.2a,b) into (3.1) and rewritting in terms of x and vy

cire D cirec D gives

." = ) l+'
r (tt) Rl[ycirc D+6yj Rz[xCirc D+6x1r (3.3)

Tn addition to the rotatiouns described by equation (3.3), the
vector r has to be corrected for earth tide distortions and variations
due to ocean, atmospheric and groundwater loading. At present, no
attempt is made to correct the measurements made at McDonald observatory

for loading distortions since these variations are not significant at
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the 10 cm measurement precision level. This assumption is examined more
closely in Chapter 7 in view of the expectednlaser ranging accuracy
goals of 1-3 cm. The radial distortions due to earth tides, however,
can be as large as 50 cm peak-to—peak, but like the spin axis coor-
dinates x and y, this correction does not vary significantly during the
2.5 second return journey time of the photon. In other words, if
td(UTC) denotes the detection time of the photon then ;'(tt) will equal
;'(td) to well within the computation accuracy. It is, therefore,
accepted practice to leave this correction until a later stage of the

computation (see equations 3.27-3.28).

Having transformed the vector ; from the earth-fixed system x; to a
frame defined by the instantaneous equator and spin axis it now follows
to transform ;'(tt) into the 1950.0 barycentric system X,. This is
accomplished via the Greenwich épparent sidereal time GAST, the nutation
matrix [N] and the precession matrix [P]. The quantities which enter
into the transformations include (figure 3.2), (1) the nutation in
ecliptic longitude Ay, (2) the antation in obliquity Ae, (3) the mean
obliquity 2, (4) the precession angles z, © and gy, (5) the earth's
angular position in space UTl, (6) the expression ag» which defines the
right ascension of the fiducial point to which UT is referred (see
Explanatory Supplement 1961) and (7) the ephemeris time appropriate to
the transmission time tt(UTC), that is, t (ET).

One mav start by computing the nutation parameters Ay and Ae for
the spin axis since these quantities, along with uTl, E, and ag, are
needed to calculate the GAST. At the moment, Melchior's (1971) correc-
tions based on Molodensky's (1961) Farth Model 2 are added to Woolard's
(1953) rigid earth values to account for elastic and liquid core effects
(Williams 1974). Denoting Woolard's values as Ay, and Ae then Ay and

Ae, expressed in arcseconds, are given as

Ay = Ay - 0.0043 sin{2(F+)} - 0.0411 sin{2(F-D+Q)} + 0.0193 sing’

+ 0.0441 sing - 0.0017 sin{&'+2(F-D+Q)} + 0.0036 sing

- 0.0003 sin{g+2(F+D)} (3.4a)
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Schedule for Figure 3.2

o= A XTI ISR T T Y SRR S -

Notation Description

;O Mean Equinox of Epoch 1950.0

EO Mean Obliquity of Epoch 1950.0

; Mean Equinox of Date e.g. 1981.0

€ Mean Obliquity of Date e.g. 1981.0

Y Instantaneous Equinox of Date e.g. 1981.0

€ Instantaneous Obliquity of Date e.g. 1981.0
€ = € + Ae

Ay Nutation in Ecliptic Longitude

Ae Nutation in Obliquity

8, z, g Precession Angles

0G' = UT1
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he = Ae, + 0.0022 cos{2(F+D)} + 0.0202 cos{2(F-D+a)} + 0.0056 coss'

- 0.0086 cosQ + 0.0008 cos{£'+2(F-D+0)} + 0.0004 coss

+ 0.0002 cos {8+2(F+Q) } (3.4b)
The solar mean anomaly &', together with the lunar parameters £, F, D

and § constitute the five fundamental arguments of the nutation theory.

As the demand on computational accuracy increases in the future, it

would seem imperative to consider Wahr's (1979) values for Ay and Ae

since these are based on realistic earth models such as that of Gilbert and
Dziewonski (1975) and avoid the ad hoc computétional approach used by

others (see discussion in Section 2.4.2.2 for further comments).

Polynomial expressions for € and o, as well as the precession
angles z, O and r;, are given in the Explanatory Supplement (1961). To

evaluate Ay, Ae, €, a_, 2z, © and gy at the time of photon transmission,

S’
tt(UTC) must be converted to ephemeris time tt(ET) according to

tt(ET) = tt(UTC) + (IAT-UTC) + 8, + AT(tt) (3.5)

IAT-UTC relates UTC to IAT and allows for the constant adjustments which
are made to UTC in order to keep the difference between UTC and UT1
reasonably small. It is an integer number of seconds defined by inter-
national convention. For example, during 1980 the value for IAT-UTC was
exactly 19 seconds, The third term GC is basically an integration cons-
tant which accounts for the difference in the origins of IAT and ET at the
initial epoch of IAT. The value for GC used by LLR analysts at JPL is
32,.1843817 secs. ATt includes periodic relativistic corrections which
account for the behaviour of the observatory clock as it moves through

the gravitational field of the solar system, or to express it differently,
the perilodic corrections to the observatory clock reading that would give
the corresponding reading if the clock were co-moving with the solar
system barycentre. For Newtonian applications, ATt = 0. However, with-
in the framework of Einstein's theory of general relativity the express-
ion developed by Moyer (1976) is the most recent and up~to-date. Expres-

sing ATt as a function of the first six major contributing terms gives
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3

1.658 x 10~ sinE + 3.17679 x 10-10 o sin(UT+X)

[]

ﬁT(tt)

+5.312 x 10712 4 sin(UT+A-M) - 1.3677x 107 sin(UT+A+2L")

+ 1.548 x 107% s1nD + 20.73 x 107° sin(L'-Ly) + .... (3.6)

where AT(tt) is in seconds, M and E are the mean and eccentric anomalies
of the earth-moon mass centre in its orbit about the barycentre, respec-
tively, ¢ is the spin axis distance to the observatory clock in km, X
the longitude of the clock measured eastward from Greenwich, L' the

mean solar longitude, and LJ the heliocentric mean longitude of Jupiter.

The time argument UT, which appears in the second, third and fourth
terms of equation (3.6) has, up until now, been loosely defined as a
measure of the earth's rotational position in space with only an occa-
sional passing reference to its precise definition (see above and Sec-
tion 2.2.3.2). The origin of UT is, by definition, a fiduclal point
whose right ascension o, as measured on the mean equator to date (see
Figure 3.2), has an identical time dependent motion to that of the
'fictituous' mean sun. A second order polynomial is used to describe
the motion and the time argument is counted in UT (Explanatory Supple-
ment 1961). UT is simply the hour angle of the fiducial point with

respect to the Greenwich zero meridian plus 12 hours.

In practice, UT1 (UT corrected for polar motion) is used to
evaluate AT, (Moyer 1976). Values of UTl are also published by the BIH
in Circular D smoothed format as 5-day averages of the difference UTl-
UTC. However, the smoothing process removes several tidally-induced
variations in UT1l, which for LLR applications, must he taken into
account, Williams (1974) corrects the interpolated BIH value of UTl at
the transmission time tt(UTC) according to the expression (Woolard 1959)

SUTL = =k, {2.47 sin(2F+2Q)
+ 1,02 sin(2F+Q) + 2.63 sing + 0.58 sin(2D-2)} (3.7)

Only terms with period one month or less, that 1Is, periods less than the

BIH smoothing interval, and amplitude greater than 0.5 milliseconds are
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included. 68UT1 1is given in milliseconds with 0.29 being a typical value
for the Love number k2 of degree 2. UT! at the time of transmission

tt(UTC) can be written as

: tt(UTl) = tt(UTC) + UT1 - UTC + &UT! (3.8)

Equation (3.8) thus defines the 'true' rotational position of the earth
in space. It Is true, not in an error—-free sense, hut only so far as

the effects of»polar motion are removed.

The point has now been reached where a series of rotations can he
>
applied to the vector r'(tt) to determine its components in the 1950,0
mean equatorial system at time te . The first step is to compute the

Greenwlch apparent sidereal time 6. The GAST can bhe expressed as

0= B(tt) + Ay cose (3.9)

where B(tt) = tt(UTl) + o + 12h is the Greenwich mean sidereal time.

Ay cos € accounts, to first order, for the motion of the instantaneous
equinox of date relative to the mean equinox of date as measured along
the instantaneous equator (see Figure 3.2). The rotation matrix for the

GAST is simply

[s] = R3[—G] . (3.10)

‘The negative sign denotes a clockwise rotation consistent with Kaula's
(1966) convention. To continue the transformation of the vector ;'(tt)
from the instantaneous equator of date to the 1950.0 mean equatorial
system the nutation [N] and precession [P] matrices are uneeded. The

nutation matrix is

[N] = R, (~e)Ry (AYIR, (&) (3.11)

where € = €+ Ae is the instantaneous ohliquity of date, Ay and Ae are
computed from equations (3.4a,b) and the expression for ¢ is given in
the Explanatory Supplement. The precession matrix consists of three

rotations given by
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fr] = R3(cO)R2(—@)R3(z) (3.12)

Once again, equations (3.11) and (3.12) are completely consistent and
must be evaluated using Kaula's (1966) sign convention and the rotation
angles as listed in.the‘Explanatory Supplement. If ;f(tt) denotes the

vector equivalent of ;'(tt) in the 1950.0 mean equatorial system then

©(t,) = [PIN](SIF" (x,) G

A1l that remains to complete the transformation is ;he computation
of the barycentric coordinates ﬁ(tt) for the centre of mass of the
earth, These are extracted from the earth-moon ephemeris using the time
argument tt(ET) from equation (3.5). Quantities tabulated in the pre-~
sent ephemeris include the barycentric position of the earth-moon centre
of mass ﬁeﬁ(tt) as well as the component of the earth-moon vector m.
The data are represented as coefficients of Chebyshev polynomials and
are interpolated accordingly (Stolz 1979). 1In order to calculate ﬁ(tt)
the earth-moon mass ratio rmust be known. A constant v = 1/(1+Me/Mm)’
where M, and Mm are the masses of the earth and moon fespectively, is

>
used to calculate the quantity vm which is subtracted from Rem(tt) to

deduce ﬁ(tt), that is

R(c,) =R_ (t,) - va (3.14)

The telescope coordinates in the barycéntric mean equatorial system of

1950.0 are simply

B(t,) = ©"(t,) + R(t ) (3.15)

3.2.3 Ephemeris Position of Reflector at Reflection Time

With the conditions of the photon departure having been determined,
the next step is to compute the barycentric coordinates of the ref}ector
at the time t (ET) when reflection occurs. The process is obviously an
iterative one since the exact time of reflection is not known. As a

first approximation, however, the reflection time can be estimated by
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tr(ET) = tt(ET) + 10/2 : (3.16)

where Ty is the observed time delay. A first approximation to the
ephemeris position of the reflector can bhe obtained by interpolating the
barycentric coordinates of the selenocentre a(tr) and the Fulerian
(1ibration) angles wm(tr), em(tr) and ¢m(tr) of the lunar-fixed system
Xyq 2t time tr(ET). The lunar ephemeris used at JPL lists these ‘quan-—
tities with respect to the mean equatorial system of 1950.0 (Williams,
private communication 1980). The corresponding approximate ephemeris

position ;h(tr) of the reflector whose lunar~fixed position is expressed

by the vector ﬁ is

> > >
cm(tr) = R3(—¢m)R1(em)R3(—¢m)k + H(tr) (3.17)

However, in some applications (see e.g. Melhourne et al. 1968, Eckhardt

1973) the libration angles are given with respect to the mean ecliptic

of date (Mulholland 1977). Denoting the Euler angles relative to the
IR t 1

mean ecliptic of date, e.g. 1981.0, as %n(tr), @m(tr) and ¢m(tr) (iee

figure 3.3) permits one to write the transformation of the vector k to

the mean equatorial system of 1950.0 as

5 (e ) = [PIR (-E)LIK + FiCc ) (3.18)

where
(L] = Ry (=97 IR, (O IR (=¢ ) (3.19)
is the libration rotation matrix. Equating equations (3.17) and (3.18)
glves
Ry (=9 IR, (6 IRy (=6 ) = [PIR,(-e)[L] (3.20)
The evaluation of equation (3.17) or (3.18) together with the

velocity of light ¢ permits a second approximation to the reflection

time
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-1, >
tr(ET) = tt(ET) + c |om(tr) - s<tt)l (3.21)

to be calculated. Unfortunately, the subtraction of ;h(tr) from E(tt)
will not give the exact one-way time delay to the reflector because the
photon path through the gravitational field of the solar system and the
earth's atmosphere is curved. These effects are of order 10—7 in the
one-way time delay and, therefore, small enough to neglect temporarily
during the iteration cycle between equations (3.17) and (3.21).
However, once the difference to successive approximations tr(ET) is no
longer significant the iteration for Sh(tr) is terminated and the
curvature corrections made. About three orders of magnitude are gained
for each iterative cycle if the Newton-Raphson method is used (Stolz
1979).

The time~delay of the photon path produced by the gravitational
field of the solar system is deduced from Einstein's theory of general
relativity. These equations have been solved exactly by Schwarzschild
for a massless particle moving in the gravitational field of a single,
spherically symmetric, massive body located at the origin of a non-
rotating coordinate system. The particle trajectory is a geodesic curve
and the increment in the one-way travel time over the Fuclidean

gtraight-1line value is (Holdridge 1967)

1+
G AT (3.22)
1 3 .

c

where

+ > > > + -1
= + . + -
a={Bt) +aq (t)+op} {Be) + 5 (c) -5}
and Sc = fgﬁ(tr)—g(tt)l is the calculated vector joining the telescope

and reflector. The Eddington-Robertson parameter y, which describes the
curvature of the photon path, is equal to ﬁnity for general relativity
and p denotes the gravitational constant of‘the solar system. Further
details are given in Misner et _al. (1973). Again, it is noted that 4,

will equal zero for Newtonian applications. The earth's atmosphere will
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also increase the photon travel time over its Fuclidean equivalent but
this can be modelled very accurately by a linear function of the
atmospheric surface pressure at the time of photon transmission (see
e.g. Hopfield 1976)., At the McDonald Observatory in Texas the correc—
tion applied is (Stolz 1979)

8, = 0.9869{2.3835+O.00476(f2—18.643)}P

, — (3.23)
299.7925{sinE + 0.00143 cosE(sinE+0.0445 cosE) 1}

where A, is in nanosecs, P is the atmospheric pressure in millibars, f
is the laser frequency in 1014 Hz and E is the elevation angle. Adding
A, and A, to the iterated value of tr(ET) and maintaining appropriate

units gives the final estimate of the reflection time t;(ET) as

’ =3
tr(ET) tr(ET) + Al + AZ (3.24)

3.2.4 Ephemeris Position of Telescope at Detection Time

The procedure for estimating the detection time of the photon
return again requires an iterative calculation because the arrival time
is a function of the ephemeris position of the telescope, which is a
function of the unknown time., Similarly, an initial approximation is
made basedAon the assumption that reflection occurred at the midpoint of

the total time—delay, that is

£, (ET) = 2t _(RT) - tt(mé) (3.25)

Following the steps outlined in Section 3.2.2, a first approximation to
the ephemeris position of the telescope E(td) at the approximate time of
detection is made using the time argument td(ET). If the transmitting
and receiving telescopes are identical then only equations (3.4a,b) and
(3.8)-(3.15) need to be evaluated because the changes in the telescope
coordinates relative to the spin axis (eq. [3.11-[3.31) and.the tidal
variations in UTl (eq. [3.7]1) are not significant during the return
journey time. The second approximation to td(ET) takes the form (see

eq. [3.21])

-1, » >
td(ET_) = t;(ET) + ¢ |om(tr)—8(td)| (3.25a)
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with the iterative cycle continuing until the value of td(ET) agrees
sufficiently well with the previous approximation. If Al and AZ denote
the re—evaluation of eduations (3.22) and (3.23) at the time of detec—
tion, then adding these quantities to the iterated value of td(ET) for

the final detection time té(ET) gives

t('i(ET) = td(ET) + A, + A (3.26)

1 2

A

In practice, 4 = 51 and AZ = A2 over the period of the return journey’

time.
3.2.5 Calculated Time-Delay and the Time-Delay Residual

To complete the calculation of the time-delay Tes the components of
the earth's tidal deformation vector gr must be estimated. An adequate
representation of the tidal distortion due to the disturbing bodies (in
this case, the sun and moon) in terms of the tidal potential Wy, is
(Stolz 1979)

22 3W2 3%
a; = E—;;;a;-sa; = - cosin, (3.27a)
h2
a, =5 W, + a; cosy, _ (3.271b)
where
1 2 -3 2 :
W, == Gmr Rg (3 cos yp-1) . (3.27¢)

ay and a, are the horizontal and vertical amplitudes of displacement,
respectively; G is the universal gravitational constant, m, is the mass
of the disturbing body, Yy is the angle between the telescope vector r
and the tidal bulge which is phase-shifted by an angle GT relative to
‘the transit of the disturbing body (see e.g. fig. 2.7), %, and h, are
the Shida and Love numbers of degree 2, respectively and Rg = Iﬁgl is

the geocentric distance to the centre of the disturbing body. For the
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> > >
sun, Rg = R(td) and for the moon Rg = %(td). The earth—tidal deforma-

tion vector is

> » Eg_ ;"
§r = —a1R3('dT) R + ay 1 (3.28)

=

where the lunar and solar contributions are determined separately and

>
combined to produce 6r.
i

The calculated time-delay 1, can be written as

2
1 (IAT) = t'(BET) - £ (BET) + = p*.or + At(t ) — at(t,) (3.29)
c d t c t d

where To is expressed in atomic time for comparison with the observed
time—delay TO(IAT), as determined by the observatory clock (see
Mulholland 1977 for discussion). Using respective time arguments, the
relativistic corrections AT(tt) and AT(td) are evaluated from equation
(3.6) while the tidal deformation vector 6; contributes to To by way of
the dot product with the unit vector Z* between the telescope and the
reflector. The result is divided by the velocity of light ¢ to convert
the units from distance to time and a factor 2 is.included because the

correction must he made twice for the two-way time delay computation.

Computing the time-delay residual A1, is accomplished simply by the

following subtraction

At(IAT) = TC(IAT) - TO(IAT) ‘ (3.30)

The quantity, At provides a hasis for improving the parameters which are
used to derive the calculated estimate of the time delay. The standard
adjustment procedure is outlined in the next section together with a
review of the improvements in the physical parameters of the earth-moon

system.
3.3 Parameter Improvement and Scientific Achievements

Over the last ten years, the LLR data have ylelded important

scientific results in astronomy, selenophysics, geodesy and cosmology.

Farly results from the experiment have been described by Bender et al.
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(1973) and so the purpose of this section is to summarize more recent
results and differentiate between the parameters that are solved for and
those that are modelled. .The summary draws heavily on information
documented in a recent review by Mulholland (1980). Before proceeding
further, however, a brief outline of the method of parameter improvement

is given.
3.3.1 Parameter Estimation by Least Squares

A frequently employed technique to obtain reliable functional
representation of the earth—moon distance is the method of Least
Squares. In the discussion that follows it is assumed that equation
(3.30) has been converted to its one-way distance equivalent. Removing

the time argument from equation (3.30) for generality gives

8p = p_ = Py (3.31)

where Ap = cAt/2, Py = CTO/2 and p_ = ct,/2. FEquation (3.31), in the
classical least squares problem, contributes to an ohservation equation
in which the residual 4p is the computed minus observed term. For every
observation 1, a value Apy is formed and the procedure of the differ-—
ential correction 1s used to determine the corrections v, to the obser—
ved range pg and corrections AP to the approximate values Pb for the
parameters of the prediction model P Noting with care the definition

of Ap as given above, the resulting system of equations to be solved is

ap .
__c_i- -
Lap o AP * Apy = vy (3.32)
n n
or In matrix format
[A] [aP] + [T] = [v] ’ (3.33)

ixn nxl ix1 ixl1

where

T =40 =p, = P, (3.34)

Equations (3.32) and (3.33) express the computational model in a
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linearized form. The partial derivatives chi/BPn are in fact first-
order terms in a Taylor series expansion of Py about the approximate

values for the parameters Pn' Together they represent the coefficients

of the design matrix [A] in equation (3.33).

The desired computational quantities are the corrections AP which
yield improved estimates for the parameters that constitute the predic-
tion model (see Section 3.2). 1In practice, 1 > n and so a solution con-
straint must be applied in order to obtain a unique set of corrections.
Known as the least squares principle, this constraint states that the

sum of the weighted squares of the observation corrections vy 1s a

minimum, or

m= [v1 (6] [v] (3.35)

where [G] is a square matrix of order 1 whose elements are the weight
coefficients of the observations. For uncorrelated observation errors,

[G] becomes a diagonal matrix with (Kaula 1966)

2 -1 _
84y = (Oi) ; By = 0 for 143

where Gi is the variance of the obserQation. The weight matrix [G] 1is
simply the inverse of the variance-covariance matrix for the observa—
tions. Observations with large variance, therefore, will contribute
less to the solution. When real data are available, standard statis-—
tical techniques can be used to see Lf the a priori estimate of the [G]
matrix used in the adjustment 1s a reliable estimate of reality. These
algorithms are not given here since this study only demands a knowledge
of optimization procedures. Readers are referred to texts on adjustment

theory for further information.

To minimize the function m, equation (3.35) is differentiated with
respect to v and the result set to zero. Taking equation (3.33) into

account yields a system of normal equations of the form

[n] faPl + [B]) =0 (3.36)

nxn nx} nxl

where
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Nl = [ATT[G]TA] and [B] = (A]T[G)IT] (3.37)

0f particular importance to this study is the inverse of the normal
matrix [N] because this is an estimate of the variance-covariance [Ql

for the adjusted parameters Pn’ that is

Q) = N7} (3.38)

The least squares estimate for the corrections AP to approximate values

for the parameters P is given by

(ap] = -[IN1"1(B] (3.39)

At present, only a small amount of geodynamical information has
come from the LLR experiment because a network of stations must he
ranging in order.to properly evaluate equation (3.36) for the desired
corrections. This 1is particularly true for polar motion (x,y) and
Universal Time (UT1) where observations from at least two stations are
needed to separaté these three components., If, however, hypothetical
observations are simulated under realistic counditions then equation
(3.38) can be evaluated to find out how well the LLR techniqﬁe can
determine the sought parameters. This is possible because the evalua-
tion does not require a knowledge of the observed distance, just the
times of ohservation, the positions of the telescope and reflector, the

obgervation uncertainty and the partial derivatives.

The main reasons for the difference between the calculated and
observed distance, as shown in equation (3.31), are (a) errors in
the model used to predict the distance, (b) systematic observa-
tional effects due to instrumental, atmospheric and timing system anoma-
lies and (c) random effects. Systematic errors are always a problem and
no matter how many obhservations are available the method of least
squares will not eliminate this type of error. The adjustment procedure
just described only acknowledges the existence of random observational
errors. Unlike previous studies (see e.g. Hauser 1974), no

attempt has been made to include lohg—term correlations between the
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observation errors. Readers are also referred to Kaula (1966) for the
development of a more general covarlance analysis which includes both

random and systematic effects.

3.3.2 Lunar Orbit and Rotation, Selenodetic and Gravitational

Information

Two of the foremost tasks 1In the early stages of the LLR experiment
were the construction of an improved lunar ephemeris and physical libra-
tion theory. Both were an absolute necessity because the lunar ranging
data were two to three orders of magnitude better than the classical
opticai data. While the early theories for the 1unar orbit (see e.g.
Brown 1908) and librations (see e.g. Koziel 1948) were sufficient for
classical applications they did not have the accuracy that was required

to regulate the range gate at the level suitable for photon detection.

The conventional version of Brown's theory was known to include
errors equlvalent to 2 km in distance that were largely due to uncer-
tainties in the astronomical constants. Fven the use of updated astron—
omical constants did not improve the situation very much because the
level of truncation in Brown's work gave rise to errors on the order of
500 m. Integrating the orhit numerically to avoid the truncation pro-
blem and adjusting the lunar moment of inertia parameters B and y, the
reflector coordinates E and the geocentric longitude A, at McDonald
reduced the rms value of the residuals Apy to about 50 metres by 1970
(Bender et al. 1973).

Similarly, the theory for the physical librations in vogue at the
beginning of the experiment was also limited in its application because
of the level of truncation (Eckhardt 1965). However, by 1970 the
thepry included improvements to the second degree terms of the lunar
gravitational field (Eckhardt 1970) and, together with the ephemeris
based on the techniques described in Garthwaite et al. (1970), was used

to obtain the results through 1970 reported by Bender et al. (1973).

Even though rapid progress was made in the Initial stages of the
experiment it was still apparent that considerable work had to be done

on the orbital and librational theories. For example, it was noted that
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the third degree harmonics of the lunar gravity field_played a
significant part in the libration theory (see e.g., Kaula and Baxa 1973)
and that to fully exploit the LLR data an ephemeris based on a complete
2nd-order theory of general relativity had to be implemented (Mulholland
1980). TIncluding these effects and continuing to solve for the lunar
moment of inertia parameters B and y brought the rms residual down to

" the metre level by 1974, A typical value for B in units of 10—6 can
range from 631.26 to 631.69 while for vy the range is 227.18 to 228,02

(Mulholland 1980).

Nowadays, most LLR solutions have a rms residual of about 40 em
(see e.g. Williams 1977) and if one of the solution parameters is uTo
the rms residual drops even further to about 25 cm. Among the para-=
meters and phenomena improved in these adjustments are the telescope and
obgervatory coordinates as contained in the vectors ; and E, the mass of
the earth-moon system, the Keplerian elements of the lunar orbit as
contained in the vector M and their initial values, tidal friction
effects on the lunar orbit (see Section 2.4.4.1), the Nordtvedt effect,
the initial conditions for the librations, the lunar moment of inertia
ratios B and y, some of the third degree harmonics of the lunar gravita-
tional field, several long-period and tidal terms in Universal time and

the lunar dissipation factor.

A discussion of the geodetic and earth rotation parameters and
those of geophysical interest is left until the next two sections. The
remaining part of this section summarizes the current status of the
models for the lunar orbit and physical librations and the contributions

of LLR to gravitational theory and selenodetic control.

. There has been no serious attempt to discuss the significance of the
adjusted Keplerian elements from an orbit integration since comparisons
between individual integrations indicate they are highly model-dependent
(Mulholland 1980). This reduces their effectiveness as a source of
physical information. Oﬁe physical quantity which enters into Kepler's
third law of satellite motion and can be determined from LLR ohserva-
tions, in restricted form, {s the combined mass of earth—moon éystem.

What is in fact determined from LLR is the ratio of the solar mass to
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the combhined mass of the earth and moon. The most recent value is

328900.54 * 0.02 (Ferrari et _al. 1980).

As was intimated previously, although not directly stated, the
orbit of the moon around the earth cannot be considered a point-mass
problem as is commonly the case with artificial satellites. Both the
earth and the moon are sufficiently non-spherical and large enough to
effect the lunar orbit and its rotation. In preéent-day analyses, zonal
harmonics through degree 4 are used to model the shape of the earth and
a combination of 3rd-degree zonal and tesseral harmonics as well as the
2nd—-degree terms are used for the moon (Williams 1977). A more recent
solution, however, includes some 4th-degree terms for the moon as well

(Williams, private communication 1980).

One of the main reasons for improving the model of the lunar figure
was to overcome the inadequacles in the earlier theories for the phys-
ical librations. The physical librations are merely the small pertur-
bations on the larger apparent oscillations (optical librations)
associated with the Cassini motion (see e.g. Mulholland 1980). Both the
optical and physical librations are represented by the Fuler angles

which describe the lunar rotation (see Section 3.2.3).

There are three standard techniques for determining the physical
librations, the analytic, semi-analytic and the numerical. A series of
semi~analytic solutions (see e.g. Eckhardt 1973 ) have been formu-
lated in which the perturbing forces are described by a Fourier series
whose arguments are linear combinations of the fundamental parameters of
the lunar theory but whose coefficients are purely numerical. The main
problem associated with the semi-analytic theory is the completeness
with which the perturbing forces are represented, particularly the
effects of the other planets. Similar problems are encountered using
the analytic approach (see e.g. Migus 1980). Although sustained
research effort is still needed in this area, an extensive set of
'additive and planetary' terms 1s now heing used by the LLR analysts to
supplement the analytic and semi-analytical theories (see Mulholland

1980 for further details).
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The advantage of the numerical abproach (See‘e.g. Cappallo 1980) is
that the forced terms can be represented to virtually any level of
precision. One readily available solution,designed JPL LLB5, incorpor-
ates all planetary effects and lunar gravity coefficients through degree
3 (Williams 1977). Two of the main drawbacks with the numerical
approach are (1) the calculations can only be made for a finite time
span and (2) the numerical solution admits homogeneous terms which the
computer cannot distinguish from the forced terms. InAany numerical
integration procedure, free oscillations are always implicit in the
starting conditions and errors in these conditions can generate large
periodic terms that are completely spurious in terms of the physical
problem (Mulholland 1980). The approach used at JPL to help minimize
such effects is to adjust the integrations to fit as closely as possihle

to a semi~analytic theory.

The search for homogeneous terms, or 'free' lihrations as they are
more commonly called, in the lunar rotation has been the subject of a
series of papers by Odile Calame. From an inspection of the equations
of motion and knowing the values for the lunar gravity field parameters
(see Table 3.1), it can be shown that these terms have three permissible
periods. The modes most readily determinable from the LLR data are the
libration in longitude with an amplitude of about 2 asecs and period of
2.9 years and one in latitude with an amplitude of about 3 asecs and a
synodic period of 27 days (see e.g. Calame 1977). Another component in
latitude is not well-determined; the solution amplitude is very model-

dependent and usually less than 0.5 asecs.

Until now, only meteoroid impacts have been considered as the
excitation mechanism of the free librations (see e.g. Peale 1975, 1976)
but both these theoretical studies suggest that the free libration
amplitudes should be much smaller than the values determined by Calame.
To resolve this issue, a Adeeper understanding of the processes governing
the dissipation of lunar rotational energy and lunar deformation is
needed (see Kovalevsky 1977 and Mulholland 1980 for further discussion).

Nevertheless, one clear message from the work of Peale and Calame is
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Table 3.1 Typical Values for the Harmonic Coefficients of the Lunar
Gravity Field through Degree 3 (taken from Williams 1977). The
reference frame 1is chosen such that (g, ClO’ Cll’ Sll’ (721 and 321 are
all equal to zevo. Terms of the form SnO do nnt exist in the spherical

6

harmonic expansion. The coefficients are in units of 10 7,

TET TR R LAY T YRR S T DT AT T BT XTW T AR T T T ST R W OBW Soaswna

= B e e ELIE ]

Degree and Order Harmonic Coefficient
(n m) Com Sam
2 0 -202.72 -—=
2 2 22.3 0
3 0 -10.4 -
3 1 28.6 8.8
3 2 4.8 1.7
3 3 2.7 -1.1
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that an earlier observation of the free libration in longitude by Koziel

(1967) 1s about an order of magnitude too large.

As mentioned previously in Section 2.4.4.1, one of the major
features of the lunar orbit 1s the decrease in the lunar mean motion n.
The details of that discussion will not be repeated here except to say
that interpreting the geophysical significance of n is difficult, parti-
cularly if the gravitational constant G 1s varying as well (Mulholland
1980). So far, LLR has established an upper limit for 1¢/Gl of 3 x 10°
yr.1 (Williams et al. 1978) whicﬁ is in good agreement with the limit

11

determined by other techmiques (see e.g. Shapiro et al. 1971).

Testing for the time variation of G is not the only study of
cosmological interest that can be made with LLR. Nordtvedt (1973)
showed that a departure from unity of the inertial to gravitational mass
ratio for astronomical bodies would cause the earth and moon to "fall"
towards the sun at different rates. The main variation in the earth-
moon distance occurs with a period of 29.53 days and has an amplitude
which is model-dependent. For general relativity the amplitude is zero
but for the Brans-Dicke theory (Brans and Dicke 1961) the amplitude is 1
m if the coupling parameter w is equal to 6. Analyses of the LLR data
(Shapiro et al. 1976, Williams et al. 1976), however, verify the
equivalence principle to 7 parts in 1012 and this corresponds to w being
greater than 29 in the Brans-Dicke theory. This result is consistent
with zero amplitude for the Nordtvedt term and with the results
obtained by Reasenberg et al. (1979) using data from the Viking relat-

ivity experiment.

LLR contributions to selenodetic control are best described in
terms of the reflector coordinates and the problems associated with
thelr determination. In an absolute sense, the reflector coordinates
have little significance since their values are clearly dependent on the
model chosen for the physical librations (Bender_ggﬁéi. 1973, Mulholland
1980). FExpressed differently, any error in the physical libration model
will be partly absorbed in the adjustment as corrections to the
reflector coordinates. A clear example of this is shown in Table 3.2

where the Cartesian coordinates of 4 of the 5 reflector arrays currently
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Table 3.2 Rectangular Cartesian Coordinates for the Reflector Arrays

in the Principal Axis System

= R L T B e e e e AR T SR o e ot 2 e R e R e et i Lo ]

Cartesian Largest Reference Source
*
coordinate discrepancy Williams Ferrari et al. Mulholland
(1977) (1980) (1980)

x| (0.476) 1592.490 1592.014 1592.486
Xy (1.089) 689.522 690.606 689.517
%3, ' (0.036) 21.036 21.048 21.012
1] (0.351) 1652.319 1652.668 1652.317
X, (1.116) -522.205 -521.097 -522.213
xa|, (0.076) -109.755 -109.685 -109.761
L 42
[x/] (0.092) 1554,763 1554.671 . 1554.762
X5 (1.078) - 96.924 98.002 96.932
f3}3 (0.032) 765.038 765.046 765.014
%] (0.575) 1339.973 1339.398 1339.962
X, (0.920) 800.871 801.791 800.871
x3 (0.015) 756.390 756.393 756.378
A

*All values are in kilometres.
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on the lunar surface are listed. The values are shown for three differ—
ent solutions and are given with respect to the principal axes. The
subscripts 0, 2, 3, 4 refer to the reflector packages left by the Apollo
11, 14, 15 and Lunakhod 2 missions, respectively.

The most striking aspect of this tahle is the 1 km displacement in
the Xy coordinate of each reflector as determined by Ferrari et al.
(1980) compared to the other two solutions. Discrepancies ranging from
0.1 to 0.6 km also exist in the X, coordinates and this suggests that
the physical libration model used by Ferrari et al. is displacing the
principal axes by these amounts. The results of Williams (1977) and
Mulholland (1980) agree quite well.

Computations of the baseline lengths between respective reflector
arrays agree much better for all solutions. The average difference is
on the order of 15 m (Mulholland 1980). This clearly indicates that
selenodetic control and mapping can be achieved to higher accuracy on a
relative basis and that there is still more room for improvement in the
physical libration model. For a range accuracy of 2 to 3 cm, terms in
the physical libration model with amplitudes ranging from 0.007 to 0.01

asecs must be retained (see e.g. Breedlove 1977).
3.3.3 Geodetic and Farth Rotatlion Parameters

The ability to use LLR data for geodetic and earth rotation
purposes was recognized quite early during the experiment (see e.g.
Chollet 1970, Faller et al. 1¢72). However, since that time, the full
potential of the LLR has never been utilized in these areas because of
the numerous prohblems that have prevented the completion of a global
network of high—accuracy ranging statlions. While the measurement unc-
ertainty at McDonald Observatory is typically 10 to 15 cm, this is not
the case for the other stations which have ranged to the moon; the mea-
surement uncertainties at the Crimean and Orroral observatories are at
the metre level (see e.g. Calame 1975, Shelus et al. 1979). Until sub-
stantial improvement is made in shortening the pulse length and reducing
the calibration_uncertainties at these stations no useful tectonic

information will be forthcoming (Mulholland 1980).
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Analyses of the data for earth rotation information are more
prevalent but since McDonald is the only station producing high quality
data, determinations are limited to station values of UTO and A¢. Most
studies have concentrated specifically on extracting UTO information
(see e.g. Stolz et al. 1976, Harris and Williams 1977, King et al.

1978 , Calame and Guinot 1979). All these studies indicate the
capability of LLR to accurately determine this parameter by at least a
factor of 3 better than that achieved by the classical techniques.
Several periodic trends are also evident in the UTO results but the
cause of these effects is still an open question (Mulholland 1980). It
is customary to solve for these terms before daily UTO values are

determined.

To this author's knowledge only three attempts have been made to
extract information on the variation of latitude (A$) at McDonald. The
first of these was by Shelus et al. (1977) who analvzed an extensive set
of LLR data acquired during October 1975. No effort was made to pre-—
select observations that were geometrically favorable for the deter-
minétion of the McDonald latitude and as a cohsequence the results at
northern declination were far from impressive. The sensitivity of the
range measurement to the latitude variation of a northern hemisphere
station diminishes when the moon occupies the northern apex of 1its

orbit.

Larden (1981), on the other hand, set out to verify a rather large
excursion in the polar motion curve which occurred during 1974. BIH,
IPMS and Doppler values of polar motion were used to derive the
variation in latitude at McDonald, Interpolated values were then
obtained and compared at appropriate times with LLR determinations in
order to verify the trend. In this case, analysis was confined to times
when the range was most sensitive to latitude variations, that is, when
the moon was at southern declination. Although serious attempts were
made to assess the systematic effect of lunar orbital and librational
errors on the outcome of the study, it was learned later that

the LLR data during a critical period of the analysis had been contamin-—
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ated by calibration errors. This prevented a definite conclusion to be

drawn about the reality or otherwise of the 1974 irregularity.

Langley et al, (1981) have undertaken a detailed analysis of the
data and solved for monthly values of the McDonald latitude simultan-
eously along with all other relevant parameters in the problem. Current
indications are that the rms range residual is reduced to about 15 cm

if the latitude parameter is included in the adjustment.

There have been many different theoretical studies on just how well
LLR can determine the bolar motion coordinates x, vy and Universal time
UT! (Fajemirokun 1971, Kaula 1973, Stolz and Larden 1977, Leick 1980).
All studies differ widely in their basic assumptions, parameterization
of the earth's rotation, the method of dealing with the individual

ranges and the analysis interval for the simulation.

One of the major reasons why it is difficult to draw conclusions
abbut the accuracy with which earth rotation information can be obtained
by LLR from Fajemirokun's study is the severe limitations placed on the
observation schedule. At most, only one range is assumed from a given
station to a given reflector per day, This not only eliminates much of the
earth rotation information which is contained in the diurnal signature of
the range’residual but also aliases it with the lunar parameters. Kaula in-
cludes four frequencies from the polér motion and UTl spectra. The
frequencies chosen were higher than or equal to 1 cycle/month because
the time span of his analysis was generally only 437 days. This clearly
prevented a realistic solution for the semi-annual, annual and Chandler
terms. Both Fajemirokun and Kaula conduct their simulations with a
network of three stationms but this 1s where the similarity ends.
Unlike Kaula, Fajemirokun models the rotation of the earth by three
Euler angles and their rates at epoch and makes no attempt to include
the effect of weather or systematic biases on the observation variances.
Kaula allows 3 observations per day from any given station and thereby
recognizes the significant role that the diurnal variation in the range
residual has in separating out the earth rotatidn information contained

in the range measurement.
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As stated by Mulholland (1980), the most comprehensive
theoretical study to date on how well one might obtain earth rotation
information from LLR data was that carried out hy Stolz and Larden
(1977). Since the work presented here reports the details of that study
and the research carried out since then, a complete account of the work

is left until Chapters 5 and 6.

Finally, a different approach for the analysis of the LLR data has
been proposed by Leick (1980). TFollowing the theoretical work of Arnold
(1974), Leick carried out several numerical experiments to see whether
daily values of the earth's rotation could be obtained to the measure-
ment accuracy if simultaneous range measurements were differenced.
Although the results indicate that.this is possiblelwhen a sufficient
number of observations are available, no attempt was made in the study
to assess the effect of the weather on the results. This clearly is an
important omission if the continuity of results is to be considered.
While range differencing may be useful when searching for fluctuations
in the earth's rotation with periods less than one day, there 1s no
evidence to suggest this approach is more advantageous than the single

range method.

In the next section, the status of the LLR network is reviewed
briefly in order to justify the selection of the station locations

chosen for the numerical studies described in Chapter 5.
3.4 LLR Network Status

Although most of the observations have come from McDonald
Observatory, there have been reports of ranging from eight
other locations as well (Mulholland 1980). These are the Lick Obser-—
vatory (California USA), Catalina Station (Arizona USA), Observatoire de
Pic du Midi (France), Crimean Astrophysical Observatory (Crimea USSR),
Dodaira Station (Japan), Agassiz Station (Massachusetts 1ISA), Mt.
Haleakala Observatory (Hawaii USA) and the Orroral Station (Australia).

Of these nine, only five remain. The Lick and Agassiz facilities
were intended to be temporary and, therefore, are no longer in opera-

tion. The Catalina and Orroral units are one and the same; the former
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having been transferred to the Orroral site in the early 1970's. The
laser system from Pic du Midi is now relocated at the CERGA Observatory
in Calern, France where it is now being tested with a new optical and
electronic system. Plans are also underway to range to the moon from a

station situated at Wettzel, Germany.

Thus the full complement of stations capable of ranging to the moon
_presently stands at seven. Their locations are shown in Figure 3.4, Of
these, the systems at Dodaira, Calern and Wettzel are still in various
stages of testing and the data from the Crimean Observatory has very
restricted availability outside the Soviet team. For this study, the
LLR network consists of a maximum of five stations. Thev are McDonald,
Mt Haleakala, Orroral, Calern and Dodaira. At the time these experi-
ments began, the author was not aware of the plans to range from the
Wettzel station and so it was not included. The Crimean Observatory was
not considered hecause its contribution to earth rotation experiments

would probably be small if data availability was limited.
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CHAPTER 4
SIMPLIFIED MODELING OF LUNAR RANGE MEASURES

4.1 Preamble

One of the more advantageous aspects of LLR sensitivity studies of
the type undertaken here is that several useful and valid approximations
can be implemented that reduce the distance equation discussed in
Chapter 3 to a more workable form. 1In this chapter, the distance equa-
tion is simplified and expressed in terms of the spherical coordinates
of the observing station and lunar reflector. The geographic reference
frame, previously defined in Section 2.2.2.1, is used throughout the
formulation. The development is then extended in order to derive the
trigondmetric functions for the coefficients chi/BPn of the observation
equations (see eqs. 3.32 and 3.33) for single ranges. The estimable
parameters, particularly those related to the earth's rotation, are
identified and ‘a discussion then follows on the structure of the obser-—
vation equation and the degree to which the parameters can be separa-—
ted. This will provide some insight into their individual determination
before carrying out the numerical experiments. The mathematical form
ulation of the distance equation for simultaneous observations has been

given elsewhere (see e.g. Chollet 1970, Arnold 1974, Stolz 1975, Leick
1980) and will not be discussed here.

4,2 Derivation of the Distance Equation
4,2.1 Coordinate System Definition

While it is necessary to use three coordinate systems to calculate
the precise time delay, this is not the case when the intention is
‘merely to investigate how well the geodynamical parameters in the pro-
blem can be determined (see e.g. Chollet 1970, Faller et al. 1972). For
the case of single measurements, it is convenient to express both the
coordinates of the observing station and the lunar reflector in the geo-
graphic reference system whose origin is at the geocenfre (see Figure

2.1). The geocentre is defined specifically in this study as the centre
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of mass of the solid earth plus core. 1In the author's opinion, this
definition aides in the understanding of the concept of geocentre motion
in relation to the surface mass loading problem (see Chapter 7 for fur-

ther discussion).

Figure 4.1 depicts the simplified geometry of the Earth-Moon
system. The position of the observatory in the geographic system X, is
given by three parameters Tgs ¢ and A which denote the geocentric dis-

tance, latitude and east longitude of the observatory, respectively. It

follows that

R X [cos¢ cosh
r,=|x, = r_| cos¢ sin) . (4.1)
Xq sing J
obs

When the spherical coordinates of the reflector, that is, ro, § and «
are given in the space-fixed frame Xi’ as implied by Figure 4.1, then it
is necessary to transform these quantities into the x; system by a
simple rotation through 6. Here r., § and o are the geocentric dis-
tance, declination and right ascension of the reflector, respectively
and 6 is the Greenwich sidereél time. Therefore, if ;r denotes the

position vector of the reflector in the X, system, then

xi‘ coss cos(a—65]
> > >
= = -— = .2
r. =|x, r_|coss sin(a O{J m+ k . (4.2)
X sind
—QJref

The position vector of the distance, 3 is simply obtained by differenc-

ing equations (4.1) and (4.2), that is,

> +>
p=r —; . (403)
r S
Equation (4.3) expresses the distance between an earth-based observatory
and a lunar reflector in vector format. It is completely general and

can be evaluated for any epoch of observation. However, it is desirable

for both a conceptual and practical reason to expand equation (4.3) in
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Figure 4.1 Simplified Geometry of the Earth-Moon System
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terms of the previously defined spherical coordinates of the observatory
and the reflector. This approach will help give a better understanding
of how well the parameters of the problem can be separated from one

another.
4.2.2 Distance Equation

The form of equation (4.3) is very convenient because the problem
has now been divided into two parts, that is, the dynamics of the earth
and the moon. For example, the depéndence of the distance on the lunar
orbit and rotation, and the lunar tides is contained in the vector ;r
while the vector ;s contains information on the earth's rotation, the
earth tides, surface deformation due to loading and changes in station
position due to the tectonic plate motions. Both gr and FS contain in-

formation on the motion of the geocentre (see Chapter 7).

To investigate the dependence of the distance on the parameters
which define the earth's rotation in more detail, it is also necessary
to express equation (4.3) in terms of the equivalent distance p, rather
than the "equivalent distance vector” 3. Substituting equation (4.1)

and (4.2) into equation (4.3) gives
p=lpl = {(rr cos¢cos(u—6) - r cos¢cosk)2 + (rr sing - rssin¢)2

+v(rr cosd$sin(a—-0) - r, cos¢sink)2}l/2 . ' (4.4)

After some elementary trigonometric manipulation, equation (4.4) reduces

to
o = {rz + ri - errs(cos¢ cosd§ cosH + sing sind)}l/2 (4.5)
where H, the geocentric hour angle of the reflector, is given by

H=Xx+06-a . (4.6)

H is zero when the reflector crosses the observatory meridian, is -60°

about 4 hours earlier, and is +60° about 4 hours later when the reflec-

tor is to the west of the ohservatory meridian.
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Equation (4.5), in its present form, contains only five parameters.
They are determinable only if the corresponding design matrix [A] (see
eqs. 3.32 and 3.33) is non—siﬁgular. In this case, the parameter list P

. (see Section 3.3.1) can be expressed generally as

P = £(r ,r_,¢,8,H) (4.7)
s r :

Accordingly, in the least squares adjustment process, these parameters

become the parameters for refinement.

It is important to realize, however, that each parameter of this
list can also be expressed as a function of many other parameters. For
example, the declination of the reflector &§ can be expressed as a func-
tion of Brown's fundamental arguments of the lunar theory (see e.g.
Appendix D, Hauser 1974) and so it is possible to reformulate the dis-
tance equation (4.5) in terms of any desired parameter which can in-
fluence the range measurement. In the next section, the basic observa-
tion equation is developed. Consideration is given specifically to the
parameters that are used to define polar motion and the earth's angular

position in space (UT1).

4.3 Basic Observation Equation for Parameter Refinement

In order to perform a sensitivity study it is necessary to
calculate what effect small variations in the parameters have on the
distance p between the observatory and the reflector. Together with the
difference between the observed and predicted values of the distance,
these partial derivatives are used to correct the approximate values of
the parameters. It is assumed here that the measured distances have
been corrected for all instrumental and other systematic errors (e.g.
calibration constants and atmospheric refraction). This assumption
eliminates the need to introduce a systematic error model into the
observation equation (see e.g. Hauser 1974 for the treatment of such
effects). Neverthéless, an attempt is made in Chapter 5 to treat the

effect of systematic errors in a subjective way.
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Given equation (4.7), the mathematical structure of the distance

equation (4.5) in a least squares sense can be expressed as
a a
where Pa is the vector of adjusted values for the observed distance P>

and Pa is the vector of the adjusted parameters. Using the notation of

Section 3.3.1,

p. =p_ + v, (4.9)

and

P. + AP . (4.10)
a b

o
It

In equation (4.10), Pb is the vector of approximate values used to com-
pute the predicted distance Pue Unless real observations are available,
equations (4.9) and (4.10) cannot be evaluated. The main concern here

is the structure of the design matrix [A]. 1Its formulation requires the

partial differentiation of equation (4.5).
4.3.1 Partial Derivatives

In practice, care must be exercised when calculating the partial
derivatives. The procedure, as described by Stolz (1979), is (a) to
split the predicted distance (see Section 3.2) into its upward and down-
ward leg components and (b) then partially differentiate the expressions
so obtained with respect to the parameters that are to be improved.

This level of sophistication, however, it not necessary for sensitivity
studies of the type undertaken here(see e.g. Silverberg et al. 1976,
leick 1980). As a first approximation, equation (4.5) is differentiated
on the basis that the amount by which the earth rotates during the
travel time of the pulse is negligible. The elements of the design

matrix [A] are

A11 =% . p-l(rs—rrcos¢c056cosﬁ - rrsin¢sin6)i
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Aiz = %f—-= p__‘l(rr = r_cos¢cos§cosH - 'rssi_ﬁqminé)i
r r
A13 = %%—= p—l(rrrssin¢§os6cosﬁ - rrrscos¢sin<5)i
Aéa %% = p—l(rrrscos¢sin6cosﬁ - rrrssinq;cosG)i
5 g%'= p-l(rrrscosq)cosﬁsinﬁ)i . (4.11)

Substituting equation (4.11) into equation (3.32) gives the basic obser-

vation equation

-1
o= + — J ¢ N sH- 3 1 + —_ N H—-
VI. Ap. P {(1’_‘ T (‘OSQ)COSOCO‘SH r 51uq‘>31n6).Ar (I' r .COS(bCOSbCOS

rss1n¢51n6)iArr+(rrr551n¢cosécosH—rrrScos¢31n6)iA¢

+ (rrrscos¢51n6cosH-rrrS51n¢cosé)iA6+(rrrScos¢cosé31nH)iAH} .
(4.12)

Note also that

AR = AX + A - Aa . - (4.13)

The symbol i indicates that for every measured distance, an

Poi
observation equation must be formed. The ith row of the design matrix
[A] consists of the values for the coefficients that are enclosed by the
subscripted parentheses. The coefficients must be evaluated at-each
measurement time. ‘According to equation (4.12) the design matrix will
have five columns. The values for the coefficients may be placed in any

order so long as consistency is maintained throughout the least squares

procedure.

There is still yet another approximation that can be introduced
without seriously affecting the results of the error analysis. Omitting

terms of order rs/p in equation (4.12) is equivalent to neglecting
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quantities of magnitude less than 2% because rs/p for the Earth-Moon
system 21/60, Without serious degradation, equation (4.12) can bhe

rewritten as

v, = bp; - (cos¢cosdcosH+sin¢sin6)iArS + At F rS(sin¢cosécosH—cos¢sin5)iA¢

o+ rs(cos¢Sin6cosﬂ—sin¢cos6)iAﬁ + (rscos¢cosssinﬂ)iAH . (4.14)

Rearranging terms slightly gives

v, = bpy - {cos(¢—6)—cos¢cos€(l—cosﬂ)}iArS + Ar

+ rS{sin(¢—5) - sin¢cos6(1—cosﬂ)}iA¢ + {rscos¢cqsasinﬂ}iAH
4.15
- rs{sin(¢—6) + cos¢sin6(l—cosH)}iA6 . ( )
As mentioned previously, the corrections Ar , Ar., A¢, AH and A§ are not
only introduced to take into account the errors in the initial values
for these respective parameters. For example, the corrections A¢ to the
latitude and AH to the hour angle of the reflector may also contain a
contribution attributable to errors in the models used for polar motion

and plate motion. Thus, one can write generally

Ap = A¢,

+
init A¢

b F o (4.16)

+
pole plate

+AH + co o . (4-17)

41 UT1

H +

b init AHpole * Aleate
To express equation (4.15) merely as a function of the corrections to
the parameters for polar motion (x,y) and the earth's angular position
(UT1) the well-known equations of conditions are introduced, that is

(see e.g. Guinot et al. 1971)

_ - - 4.18
Ad A¢pole Ax cosA — Ay sini ( )

M = AHUTO = AHpole + AHUT1 = tan¢(Ax sini+Ay cosi) + AUT1 . (4.19)

Equation (4.18) simply relates the corresponding correction that should

be applied to an observers latitude if the coordinates of the spin axis
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(x,y), as defined according to BIH convention (see &3ctioﬁ 2.3.1.1), are
corrected>by amounts Ax and Ay, respectively. It is assumed here that
the forced diurnal variations in x and y have been removed by using an
appropriate nutation theory for the mean figure axis (see Section 2.4).
The combined effect of polar motion and a change in UT1 on the hour
angle of the reflector is given by equation (4.19). Substituting (4.18)
and (4.19) into (4.15) and assuming that the initial station coordin-
ates, the .lunar ephemeris and all other influences on the range are per-—

fectly known gives (Stolz and larden 1977)

v Ao, + rsl{sin¢c056cos(A-H) - cos)\sinécos¢}i Ax

i

{sin¢cos6sin(A—H) - sinAsinacos¢}i Ay

+ {coé¢cos§sinH}i AUT1 ] . (4.20)
Obviously, the equations (4.18, 4.19) of conditions imply that a minimum
of two stations either well separated in latitude or longitude must be
ranging in order to determine Ax, Ay and AUT1 uniquely. Equation (4.20)
is the basic observation equation used throughout this work. Such
simple modelling demands that an accurate reference frame adjustment has
béen carried out and a good lunar orbit and libration model are avail-
able. 1In this case, the design matrix [A] has only three columns. With
i observations, equations (3.37) and (3.38) can be applied to determine.
the resulting uncertainties in Ax, Ay and AUT1 given a suitable set of
observational assumptions (see Chapter 5). Expressions similar to equa-
tion (4.20) have been derived by Wahr and Larden (1981) to analyze the

LLR data for information on the earth's nutation.

Additional parameters, or a reliable geophysical model, must be
included in equation (4.20) if the stations are undergoing substantial
displacements due to plate motion. If not, the variations in station
coordinates due to plate motion will be absorbed as corrections to the
earth rotation parameters and thus contaminate the results. Over short
intervals (<1 year) these effects will not be distinguisahle if the
range uncertainties remain at 10 to 15 cm. This would not be the case,

however, if 3 cm range accuracies are obtained (see Chapter 6). It is
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also important to note that space ranging techniques like LLR are not
capable of determining plate motions in an absolute sense. For example,
any east-west crustal motion ic, common to all stations in the LLR

ne twork, cannot be separated from a secular change  in the earth's
angular position or a drift & in the right ascension of the reflector.
The linear dependence of these three parameters is clearly evident in

equations (3.9) and (4.6).
4.,3,2 TEvaluation of the Coefficients

To evaluate the coefficients of equation (4.20), expressions have
to be derived for a, &, 6, ¢ and A. Fortunately, ¢ and XA do not vary
significantly and so for sensitivity—-type studies it is quite acceptahle
to adopt constant values for these parameters to evaluate the coeffic~—
ients. Given the approximations made thus far, values for ¢ and X that
are correct to within 0.2 degrees are more than sufficient. Typical
values of ¢ and A for stations of the LLR network are listed in Table

5.1.

In contrast, the quantities 6, o and 6 change dramatically with
time. 06 and o complete full cycles in one day and one month, respec-
tively, while the declination § can change from -28° to 28° in 14 days.
The Greenwich sidereal time 6 is computed using the expression (Kaula

1966, p. 85-86)

0 = 1.72218613 + 6.300388098 (d - 36933.0) (4.21)

MJD

where dM is the time of observation in Modified Julian Days and 0 is

JD
in radians. To an accuracy sufficient for this study, o and § can be

computed from the well-known expressions (Explanatory Supplement 1961,

p. 26)
cosdcosa = CcosSB _cosA
m m

cosésina = cosBmsinAmcose - Siansine

sind = cosﬂmsinxmsine - siancose
(4.22)

In the above expressions Bm’ A_ and e are the ecliptic latitude and

m
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longitude of the moon and the obliquity of the ecliptic, respectively.

To an accuracy that is consistent or better than that needed for this

study (Hauser 1974)

sin(Am—L) 0.10976 sing - 0.0223 sin(2-2D) + 0.01149 sin2D

+ 0.00373 sin2g - 0.00324 sing' - 0.00200 sin2F - 0.00103 sin(22-2D)

0.00100 sin(g'+2-2D) + 0.00093 sin(g+2D) = 0.00080 sin(g'-2D)

+ 0.00072 sin(2-2') - 0.0061 sinD - 0.00053 sin(2+2")
(4.23)

and
sin qn = 0.08950 sinF + 0.00490 sin(g+F) - 0.00485 sin(F-2)

- 0.00303 sin(F-2D) . (4.24)

Expressions for the fundamental arguments £, &' F and D of Brown's
theory, the mean longitude of the Moon L, and € are given in the

Explanatory Supplement (1961). They are to first order in dMJD

e = 230452294 ~ 0?0000003563(dMJD—15019.5) (4.25)
L = 2707436586 - 13?1763965268(dMJD—15019.5) (4.26)
L = 2960104608 + 13?0649924465(dNUD-15019.5) (4.27)
2" = 3580475833 + 0?9856002669(dMJD—15019.5) (4.28)
F = 117250889 + 13?229350449O(dMJD—15019.5) (4.29)
D = 3500737486 + 1201907491914(d [ ~15019.5) (4.30)

The arguments %, &', F and D refer to the lunar mean anomaly, the solar

mean anomaly, the argument of lunar latitude and the mean lunar-solar
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difference in longitude, respectively with the coefficients in units

of degrees.

Therefore, given the time of observation dMJD equations (4.21) to
(4.30) are ail that are needed to evaluate the coefficients in equations
(4.20). A1l observatories are assumed to lie on the surface of a sphere
with radius r_ = 6371 km. The computational procedure for the simula-
tions is discussed in more detail in the following chapter. 1In the next

section, the degree to which the parameters can be separated is discussed.

4,4 Comments on Parameter S paration

In order to separate out the earth votation information contained

in the correction terms A¢ and AH from information on the lunar orbit

and rotation, it is important that H has a nearly diurnal period (=25
hours) compared to the monthly cycle for the lunar declination § and

right ascension a. A close inspection of equation (4.15) also indicates
that it is particularly desirable to schedule the off-meridian observat-
ions so that they are symmetric about the time when the moon crosses the
meridian of the observatory and cover a period of at least six hours, pre-
ferably eight. This criterion ensures a good determination of the sinH and
cosH signatures and hence, the earth rotation parameters_in equation

(4.15).

Consider for example, the "single-station” solution parameter
AUTO. As described in Sections (2.3.1) and (2.4.4) 1t is the version of
Ur that has not been corrected for polar motion and as such is the only
form of UT that can be derived from single station data (single station
data cannot separate the component of polar motion perpendicular to the
observer's meridian from UT!). AUTO can be expressed alternatively as’
the apparent variation in the observer's longitude and thus its deriva-
tive is identical with that for the hour angle of the reflector (see
eqs. 4.12 and 4.13). So to order rs/p

ap

aU‘TO

~ r_ cos¢cos§sint . (4.31)

If the basic analysis interval covers only one day or even just a few
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days, then it is clear that T, and § are practically constant since
the shortest periodic variation of significance in these parameters is a
libration term of 13.6 days. As a result, the first terms of the coef-
ficients for Ar_, Ad and A§ in equation (4.15) are also approximately
constant and thus will have a similar effect as the coefficient for the
Arr term. This leaves just the cosH and sinH signatures as well as a
constant term to be filtered out from data that are analyzed for short-

period (<a few days) information.

Equation (4.31) shows that an error in UTO will produce a range
residual that varies during the course of a day's ranging as the sine of
the hour angle of the reflector. No other error source of similar mag-—
nitude is expected to introduce such a rapid variation in the range
residuals and so this signature should yield an unambiguous estimate of
UTO. 1t should also be pointed out that since H is zero at meridian
transit and sinH varies quite rapidly during a normal observing period
it is not essential for the hour angle coverage to be anywhere near 6 to
8 hours for an accurate determination of the sine curve. In this par-
ticular instance, a spacing of 3 hours between the first and last obser-
vations of the day is all that is needed for a good determination of UTO
(see e.g. Stolz et al. 1976). 1f the observations are perfectly sym-—

metric about the meridian then UTO is rigorously decoupled from the

other parameters.

The preceding discussion illustrates the potential of the LLR
technique for studying the short-period changes in the earth's spin
rate., Problems such as locating the origin of the lunar right ascension
in a space-fixed frame defined by a stellar catélogue or the effect of
long—périod errors in the lunar orbit are not significant if the object
of the analysis is to search for the occasional abrupt changes that may

occur 1n UTO over a period of a few days or less.

For longer period studies the situation is less clear (Mulholland
1980). Obviously, the variation in the lunar parameters cannot be con-—
sidered constant and so the amplitude of the errors in these terms at
the critical frequencies must be studied carefully. For example, when

the LLR data are analyzed for the subtle year-to-year fluctuations in the
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annual term of the earth's spin rate efforts must be made to ensure that
there are no errors in the lunar right ascension at frequencies that can

possibly beat together to produce a similar effect.

The determination of the latitude ¢ of an LLR station and its
variation requires more stringent scheduling of the observations in hour

angle. Writing the derivative to order rS/p as

d0 rs{sin(¢-6) fsin¢cos6(l—cosﬂ)} (4.32)

3¢
one clearly sees the importance of using the cosH signature to determine
latitude variations, particularly when the moon is in the same hemi-
sphere as the observing station (¢ = §) An error in station latitude
produces a range residual that varies both slowly as the sine of the
zenith distance at meridian transit and diurnally as the cosine of the

hour angle H.

Herein, lies the difficulty of separating out the latitude
information in the residuals from informaztion pertaining to the lunar
part of the problem. A quick inspection of equation (4.15) reveals a
very close resemblance between the coefficients of A¢ and AS. Further-
more, consider the analysis of ohservations gathefed over a period of a
few days or less and with poor hour-angle distribution. As H approaches
zero, so to does the term (l-cosH). This leaves only the slowly varying
first term in the derivative to determine the latitude. For periods of
a few days or less, sin(¢-8) is almost constant and this leads to a poor
separability of the latitude variation A¢‘from both the constant term
Ar and the declination term AS$ (see equation 4.15). FEven with good hour

angle coverage the situation is only slightly improved.

Consider a simple case when three observations, made at hour angles
-H, 0 and +H, with independent uncertainties of 3 cm, are used to
determine the corrections A¢, AUTO and Ar_. One can write the system of
equations as

v = bpp - rs{cos¢cos651nﬂ}lAUTO +

rs{Sin(¢_6)_SiH¢COSG(1-COSH)}1 ho + Ar_ (4.33)
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v, = bp, + rs{sin(¢-6)}2A¢ +oar (4.34)

- + si
vy = bp, rs{cos¢cosdqlnﬂ}3 AUTO +

+ rs{gin(¢“6)—sin¢cosé(l—cosH)}3 A + br_ . (4.35)

The solution is obviously unique (3 equations and 3 unknowns) and so

V] = Vy = Vy = 0. Adding equations (4.33) and (4.35), substituting

e = -bp, - rs{sin(¢—6)}2 A (4.36)

from equation (4.34), and assuming ¢ and § are constant over the obser—

vation period gives

r, Ay = (Apl+Ap3—2Ap?)/2 singcos§(1l-cosH) . (4.37)

' 2
The corresponding variance of the latitude determination, o. for

observation errors which are uncorrelated can be written as

2 2 2 2 2 2 2
o = {0 +g +40 }/4 sin ¢cos S (1-cosH) . (4.38)
r  A¢ Lp Lp P
s 1 2 3
2 2 2 . . e
Since ¢ =g =g = 9 cm, equation (4.38) can be simplified to
P Ap Ap
1 2 3
o, 8 =  3/6 / 2singcos§ (l-cosH) cm (4.39)
s .
where Or b is the standard deviation of the latitude determination.
s
For H = 60°, ¢ = 30° and § = 30°; o = 17 cm. Thus, in this parti-

» r, Ad
cular example, a 3 cm range uncertainty is mapped into a latitude uncer-
tainty of 17 cm if the diurnal signature (l-cosH) in the derivative is
relied on. On the other hand, if sin(¢—8) is the main term used to
determine A¢ and Ar, is not included as a solution parameter thea errors

in r. will contribute an uncertainty of cf /sin(¢=-8) to the total uncer-
T

tainty for A¢. The system of equations becomes

vy o= Ap1 - rgcos¢cosasinﬂ AITO

+ rg{sin(¢—6) - singcosS(l-cosH) | A¢ + Ar (4.40)
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v, = bp, + rscos¢coséslnH AUTO

_ ) (4.41)
+ rs{51n(¢—5) - singcos§(l-cosH) | A¢p + Ar, .
Clearly, a unique solution for A¢ and AUTO is obtained by assuming
or = 0. The uncertainties in AUTO and A¢, taking into account an error

in the assumption Arr = 0 and assuming uncorrelated observation errors,

can be written as

1
5 = Ho? 40 440’ ¥ /{sin(4-6)-sindcoss (1-cosh) } (4.42)
T A 2 Apl Apz Arr cos cos ' -
and
1
1, 2 2 .2
Grs AUTO — E{OApl+CAp2} /cospcosdsinH . (4.47)

It 1s clear from equation (4.43) that for observations symmetric about

meridian passage the solution for UTO is completely decoupled from the

parameters ¢ and r_. The uncertainty in UTO is determined only from the

r
measurement uncertainties. FErrors in r. do not contribute at all. For
observations that are not symmetric about the meridian the effect of
errors in r. will have to be considered if Arr»is not included as a so-
lution parameter. Also, as H approaches zero, the range becomes insen-
sitive to variations in UTO. Equation (4.42), however, shows the con—
tribution an error in r_  makes to the error estimate of a latitude
determination. Assume, for example, that oAp1 = oAp?v= 3 cem, H=0°,

(¢—=8) = 60° and Opr = 20 cm, then
: r

23 cm .

H

o
T Ad

For ¢ = )
Arr ’

it

g 2.5 cm .

r A¢

Of course, this example represents one of the more favourable geometric

cases in LLR, that is, when the moon is in the opposite hemisphere to



122

the ohserving station. However, when both the moon and the station are

m'

in the same hemisphere, sin(¢~§) + 0 and ofs b9 >
Because of this inescapable geometrical limitation, there 1is the

possibility that the accuracy of polar motion results from an LLR

ne twork may not be adequate at specific times during a lunation if all
the observing stations are located in the same hemisphere. The present
geographical distribution of stations comes perilously close to satis-
fying this condition and so the polar motion issue is examined further
in the next chapter. For UT1, the problem is not as serious. The
determination of UTl depends on a good determination of the sinH term
(see equation 4.,20) at two or more geographically well dispersed stat~
ions. This should be achieved relatively easily. Numerical calculat-

ions are carried out in the next chapter to ascertain which LLR station

combinations give the best results.
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CHAPTER 5
EARTH ROTATION SENSITIVITY STUDIES

5.1 Introduction

In 1974, a COSPAR resolution referring to LLR recommended "...the
establishment of a coordinated international program to determine varia-
tions. in the Farth's rotation...”. This led to the planning of an ini-
tial observing campaign called FROLD (Farth Rotation by TLunar Distance)
which began in 1978 and lasted for one year. While the objectives of
the campaign were very commendable, several operational prohlems at many
of the observatories expecting to participate prevented some of the
goals from being realized (Calame and Guinot 1979). 1In all, only the
McDonald, and to a lesser extent, the Orroral station contrihuted data.
This meant that no clear—cut statement could be made on the suitahility
of LLR for monitoring polar motion and Tniversal time on a very accnrate

and continuous bhasis.

Therefore, using the theory presented in Section 3.3.1 and Chapter
4, a series of numerical experiments are carried out in this chapter to
study this question. The dependence of the results on station location,
lunar declination, averaging interval, data loss due to weather, hour
angle coverage and other such factors is examined. The first group of
experiments are undertaken with the specific purpose of simulating the
likely outcome of future 'EROLD~type' analyses given that more ohbserving
stations are able to participate. Factors considered relevant to the
outcome include (1) the measurement uncertainty at each station, (2) the
network constituency, (3) the length of the averaging interval and (4)
the long-period variation in the lunar declination. The second group of
experiments are merely carried out for optimization purposes to investi-
gate the strengths and weaknesses of the LLR network geometry and the

importance of hour angle coverage.

A detailed description of the 'EROLD-type' analyses undertaken in

this work is given in Section 5.3. However, before they are discussed
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some comments on the ohservation selection procedure and the computa-

tional approach for these analyses seem appropriate.

5.2 Creating the Simulated Environment

The final uncertainties for polar motion and UTl will depend partly
on the measurement uncertainty and partly on the strehgth of the statis-
tical determination of these quantities. While the pulse length is the
main contributor to the measurement uncertainty, the strength of the
statistical determination is a function of the station geometry, the
position of the Moon in 1ts orhit, and the mumber of observations ob-

tainable during a predetermined averaging interval.

The network constituency for the numerical experiments to he re-
ported in this chapter is essentially the one that was expected to he
operational when this study was initiated. Of the seven possible sta-
tions that either could range or plan to range to the moon (see Sec.
3.4), only five are considered. These stations, together with their
latitude and longitude, are listed in Table 5.1l. The number of obser—-
vations obtainable, however, depends on the observing schedule, the
adopted averaging interval, the maximum allowable zenith distance, the
new Moon effect and the weather. In the next section, the conditions of

ohservability that are imposed for this study are discussed.
5.2.1 Conditions of Observahility
5.2.1.1 Rasic Limitations

In order for the simulated results to have a reasonable semblance
to what might be expected in reality, there are several basic observing
restrictions that must be acknowledged when creating the simulated en-
vironment. Most of these limitations are determined by the physical
constraints of thevproblem, however, the observing schedule 1is essen—
tially determined by the amount of telescope time that has been allo-

cated to the LLR experiment.

a) Observing Schedule for Participating Stations. One of the more

desirable features of the lunar motion for obhserving purposes 1is its

slow orbital velocity. BResides the obvious tracking advantages, this
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Table 5.1 LLR Station Locations

o

Station Latitude Longitude
b_;;;;;;; degrees
Orroral, Australia -35.5 148.9
Calern, France 43.6 6.9
Dodaira, Japan 35.8 139.2
McDonald, Texas, U.S.A. 30.5 256.0
Haleakala, Hawaii 20,6 203.7
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feature not only reduces the ohserving time needed to obtain acceptable
statistics for normal point determinations but also prolongs the length
of the orbital pass sufficiently to permit a good determination

of the diurnal signatures in hour angle (see Sec. 4.4 for further dis-

cussion).

At the McDonald Observatory there are usually three 45 minute ob-
servation periods during the course of a day. These are (1) when the
moon is approximately three hours east of the meridian, (2) when the
moon 1s approximately on the meridian and (3) when the moon is approxi-
mately three hours west of the meridian. While this observing schedule
may not be completely satisfactory to determine latitude variations at
McDonald, it is basically a compromise between what is theoretically

desirahle and what 1is feasible on a time sharing system.

For this study, however, it is assumed that the observing schedule
at McDonald can be modified to satisfy a tighter schedule which the
other participating stations expect to achieve as dedicated laser rang-
ing facilities. Rather than expecting a success rate of three ranges
per day, it is anticipated that a maximum of five normal points can be
obtained from any given station on any given day. These are assumed to
occur when (l)lthe moon is four hours east of the station meridian, (2)
the moon is two hours east of the station meridian, (3) the moon is on
the meridian, (4) the moon is two hours west of the meridian, and (5)
the moon is four hours west of the meridian. When all five stations are
ranging, a total of 25 observations are possible from the network on any
glven day but clearly, the other boundary conditions will serve to re-

duce the number actually considered.

b) Restriction on Allowable 7Zenith Distance. Because of the pos-—

sible danger to aircraft the laser at McDonald cannot be fired at zenith
distances greater than 70°. Above this limit there is also the problem
of modelling the refractive effects at the sub—centimetre level for a

photon travel patﬁ which skirts the horizon (see e.g. Hopfield 1976).

The effect of fhis constraint is to reduce the availahle hour angle

coverage when the moon is in the opposite hemisphere to the station.

When terms of the order rq/p are neglected, the zenith distance 7 is
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readily computed as a function of the station latitude, the lunar de-

clination and the lunar hour angle, using the expression
cos Z = cos § cos ¢ cos H + sin § sin ¢ . (5.1)

Clearly, when the moon is on the meridian (H = 0) equation (5.1) reduces

to
cos Z = cos(¢-8) . (5.2)

If the LLR stations are located at moderate to high latitudes (¢ >
+45°), the zenith distance restriction has a profound effect. Loumos et
al. (1975) estimate that roughly 50% of the observations from their
adopted observing schedule are eliminated by a Z > 70° criterion. For-
tunately, the effect at the fixed stations is not nearly as severe. Of
the five stations used in this study, the greatest loss will occur at
the French site where, at southern_declihations exceeding ~27 degrees,
even meridian transit observations may not be possible. MHowever, as
Morgan (1977) points out, advances forthcoming from remote atmospheric
sensing in specific bands offer the possibility of providing sufficient
information to extend the working zenith angle to 75-80 degrees. This

would then allow the French site to observe the moon at § = ~27 degrees.,

For the purposes of this study, a rather conservative attitude is
adopted regarding the zenith distance restriction. TInstead of trying to
re-schedule an observation that fails the zenith distance criterion

closer to the meridian, it is simply excluded from the analysis.

¢) Data Loss Around New Moon. One frequent hindrance to LLR data

acquisition is the lack of contrast that occurs at new moon between the
lunar surface features and the sky background. FExperience at McDonald
indicates that observations are generally not possible during a5 to b
day period centred on new moon, or equivalently, when the sun—moon angle
(angle subtended at the geocentre by the solar and lunar position vec-
tors) is less than about 45° (Silverberg 1974). Using conventional

trigonometric relations, one can express the sun-moon angle, wsm as

cos Wsm = cos B cos Am cos L' + cos Bm sin Am sin L' (5.3)

where An and B, are defined by equations (4.23) and (4.24), respectively

and L', the mean longitude of the sun. The expression for L' has the
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form (Explanatory Supplement 1961)

0 0
L'= 279.696678 + 0.9856473354 (dMJD - 15019.5) . (5.4)

In Kaula's (1973) analysis, it is assumed that ranges are made to
the moon when wsm> 60°., Although this constraint was a realistic repre-
sentation of the problem then, there is now hope that the contrast of
the television image of the lunar surface can be enhanced electronically
and thus permit more daytime observing. As a compromise between present
reality and future expectations, it was decided that all observations in
the time interval when wsmg 40° be excluded from the analysis. No at-
tempt has heen made to model the short interruptions that occur at the
ohserving stations for telescope maintenance. Hopefully, this work can

be accomplished around the time of new moon.

5.2.1.2 Weather Modelling

Optical experiments such as lunar laser ranging are invariably in-
terrupted by overcast weather or atmospheric turbulence. At McDonald
the laser is not fired unless there are lunar images that are equivalent
to having about 75% of the light from any star located within a 5 asec
circle of the photon path (Silverberg 1974)., Consequently, the effect
of this limitation is to reduce the strength of the statistical deter-
mination of the parameters of interest by weakening the network geometry
when one or a group of stations are not ranging, and by reducing the

numher of ohservations possible during a given averaging interval.

To allow for data loss due to weather in a plausible way, a model
based on climatological data and probability theory is constructed. A
detailed derivation of the statistical model is given by Ross (1972).
The model assumes that the day-to-day weather pattern at any station in
the network follows a two-state Markov chain whose transition probabili-

ty matrix [T] is given by

T00 T01 1-b b
(Tl =12 ¢ | = li-a a (5.5)
10 11
where a is the probability that given fine weather on day i1 it will also

be fine on day i+l and b is the probability that given cloudy weather on
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day 1 it will be fine on day 1+l. The subscripts O and I in equation
(5.6) are thus the two states of the Markov chain. Clearly, when the

process is in state 0 it is cloudy and when in state 1 it is fine.

An important property of the two-state Markov chain is that the
conditional distribution of any future state Fi+1 given the past states
FO’FI""’Fi-I and the present state F;» is independent of the past
states and depends only on the present state F;. Moreover, if Fy is
the stochastic ensemble which defines the above weather prediction model

then

1 if F =1 and e < a
i i+1

= = .6
Fi+1 1 if F‘i 0 and ei+1<h (5.6)

0 , otherwise

where e;4] are independent random variahles uniformly distributed over
the interval 0 to 1. The evaluation of the probabilities a and b is ac~—

complished using the general rules of conditional probability and expec=~

tation. Let u be the probability that Fi will be a fine day, that is,

Prob{Fi=1} =qu . A (5.7)

Because Fy is a Bernoulli random variable, its expected value can be

written as (Ross 1972, p. 30)

[}

<F,>

<F> i

in

Prob{Fi=1} 1+ Prob{Fi=0} 0

pl+ (1-p) O

= ]J . (5'8)
Given the above conditions of equation (5.7), the probability that LA
is a fine day is given as

<hl

Prob{Fi+1=1} Prob{Fi=l} Prob{ei+1<a} + Prob{Fi=0} PrOb{ei+l

pa+ (A-u) b . ' (5.9)

1

From the form of equation (5.8) and the result of equation (5.9), one‘

can express the expected value of F as

i+l

< Fi+l >=pna+ (1-p) b . (5.10)
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Given the stationary quality of the expected value one can equate equat-

ions (5.8) and (5.10) and write

< Fi+l >=ypa+ (I-uy) b
= <F> =1 . (5.11)

To complete the evaluation of a and b use is made of the rules of condi-

tional expectation to compute the correlation between Fi and Fi+l' In

particular, the varlance of F, is defined as (Ross 1972, p. 34)
2
Var(Fi) = <(Fi-u) > . (.12)

Expaﬁding equation (5.12) gives (Ross 1972, p. 37)

Var(Fi) = u(l=-u) . (5.13)

In a similar fashion, the covariance bhetween Fi and Fi+1 can be written

as (Ross 1972, p. 41)

Cov(Fi,F1+1) = <(Fi+1-u)(Fi—u)> . (5.14)
Expanding equation (5.14) gives
COV(Fi’Fi+1) = pla=u) . (5.15)

Using equations (5.13) and (5.15), one can write the correlation c bhe-

tween Fi and F1+1 as

Cov(Fi,' )

Fi+l
v
ar(Fi)

= a7y (5.16)
1-p

Rearranging terms in equation (5.16) gives
a=c(l=-p) + u (5.17)
and substituting this result into equation (5.11) for b yields
b = u(l_C) . ) (5.18)
In order to calculate a and b it is mnecessary to assign reliable

values to p and c based on the available climatological records at each

site. For this study, values of what are considered to be indicators of
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observability have been compiled on a monthly basis for each station
using data from H.M.S.0. (1965), Landsberg (1970), Loumos et al. (1975),
Luck et al. (1973) and Orton (1969). These indicators, as listed in
Tables 5.2, 5.3 and 5.4, respectively, are: W1, the percentage of days
completely clear per month; W2, the percentage of days completely cloudy
per month; and W3, a visibility factor, also expressed in percent, which

describes the average amount of usable sky per month.

In deriving the monthly weather factors for Orroral, Calern,
Dodaira and McDonald a normélization procedure was employed so that the
annual average data loss at these stations, as predicted by the weather
model, agreed closely with a reliable long-term average of cloud cover
for the region in which each station is located. The weather factors
for Orroral were taken directly from the reconnaissance study undertaken
by the Division of National Mapping, Canberra, Australia (Luck et _al.
1973) . However, since the study covered a two-year period only, the
factors W1, W2 and W3 for this site were normalized so that their annual
average agreed with the appropriate regional estimates given by

Landsberg (1970).

Values for Calern and Dodaira were obtained solely from the pre-~
vious reference source and, therefore, are regional estimates only. The
W1 factors for both stations are deduced from the number of sunshine
hours per month and on some occasions the seasonal values for the number
of clear days. Values for W2 are based on estimates for the number of
days with precipitation, thunderstorms, gales and fog while W3 values

are based on the long-term monthly averages of mean cloudiness.

Values of Wl and W2 for McDonald were obtained directly from Orton'
(1969) and normalized, according to Landsberg (1970), to give annual
averages of 40% and 25% respectively. Values for W3, like those of
Calern and Dodaira, are based on the long-term monthly averages of mean

cloudiness listed in Landsberg (1970).

Care was taken in deducing the values for the Haleakala site be-
cause it was pointed out that it would be risky to use regional weather
statistics to describe the sky behaviour at a site situated above the

inversion level (Bender, private communication, 1976). The observatory
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Table 5.2 Estimated Percentage Mumber of Completely Clear Days

per Month (Wl) at LLR Sites

o

- e Sy

B o 2 St g

g m—mo

Observatory (Clear Days, %)

Month
Orroral Calern Dodaira McDonald Haleakala

Jan 19 18 37 32 25
Feb 19 19 34 37 30
Mar 25 22 27 32 35
Apr 35 26 22 39 40
May 30 29 19 47 45
June .43 32 13 52 45
July 38 36 13 26 40
Aug 23 33 17 32 35
Sept 34 28 18 49 30
Oct 33 22 29 50 25
Nov 27 18 33 46 25
Dec 33 17 39 38 20
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Table 5.3 Estimated Percentage Mumher of Cloudy Days per Month
(W2) at LLR Sites

LT TR T T N N e I S i

Observatory (Cloudy Days, %)

Month
Orroral Calern Nodaira McDonald Haleakala

Jan 51 51 45 36 38
Feb 50 45 55 31 33
Mar ' 43 51 66 ' 36 35
Apr 32 52 79 25 33
May 37 44 75 16 29
June 27 34 57 12 - 33
July 29 24 61 23 38
Aug 41 34 64 20 35
Sept 32 47 64 21 36
Oct 31 50 57 20 35
Nov 39 46 48 28 36

Dec 31 50 48 32 40
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Table 5.4 Estimated Percentage Amount of Visible Sky per Month
(W3) at LLR Sites

s i e o R 2 X o e T T T TS T W ST R T

Observatory (Visibility Factor, %)

Month
Orroral Calern Dodaira McDonald Haleakala

Jan 54 37 63 52 65
Feb 52 35 51 55 A75
Mar 52 29 42 54 65
Apr 49 35 36 60 65
May 47 34 31 65 60
June 43 41 19 68 50
Juiy « 47 65 25 52 45
Aug 49 57 34 57 50
Sept 52 46 25 68 55
Oct 48 40 32 65 55
Nov 48 32 44 66 60

Dec 53 35 60 57 65
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on Mt. Haleakala is at an elevation of approximately 3000 meters above
sea level., For this reason, the weather factors for Haleakala were
normalized so that the average annual data loss predicted by the model
was about 40%. This 1s the estimate obtained at the site by the LURRE
team before the station was erected. The monthly values for Wl and W2
were estimated using data from H.M.S.0. (1965) while the values for W3
were deduced from the seasonal weather maps published by Loumos et al.

(1975).

Since monthly values of weather data were available, the probabili-
ties a and b were calculated for each station every month. To calculate

the value of u, it seemed logical to use the factor W2, that is,
pu=1-0,01 W2 (5.19)

because the probability that ranging is attempted on any given day in
any month is simply a function of the number of completely cloudy days
for that month. Cﬁoosing a value for the correlation c between F, and
F1+1 was extremely difficult because the task of obtaining daily values
of W2 at each station in order to compute the covariance function was
cleariy outside the scope of this work and, more than likely, not war-
ranted. Instead, a compromise was made by setting c equal to 0.5. By
invoking this assﬁmption, one not only avoids the time consuming work
involved with the alternate method but at the same time has an

estimate of ¢ which, given the stochastic properties of the weather,
seems reasonable.

After determining whether it is possible to range on day i+l, the
next step is to calculate how many ranges should be accepted within a
given day. This is accomplished using a random number generator and
empirical formulae based on Wl and W3. Clearly, if the weather model
allows ranging on day i+l then the probability of obtaining one range on
that day will be very close to unity. A small margin is left to account
for the fact that atmospheric seeing may cause acquisition problems even

when there is no cloud in the sky, The probability of obtaining one

or more ranges is taken to be

P>l = 0,001 W3 + 0.9 . ‘ (5.20)
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Similarly, the probability of obtaining four or more ranges is defined
as the number of completely clear days during a month divided by the
expected number of days on which ranging is possible during that month,

that is,

Wl
P = Ll

4 = 100-w2  ° (5.21)

The probabilities for getting two or more, three or more and five ranges
are obtained by interpolating and extrapolating the values derived from
equations (5.20) and (5.21). Once all probabilities have been deter—
mined, a random number is compared with these values to settle on the

number of ranges actually obtained on that day.

In view of the nature of this study, there did not appear to be
anything to gain by incorporating a correlation between observing win-
dows on any day as did Loumos et al. (1975) in their study of the accu-
racy of site coordinates ohtainable with a mobile lunar ranging station.
Instead, when less than five ranges are predicted by the weather model
the selection procedure (see schedule) tends to place the ranges nearer
the meridian as it is less likely to be cloudy towards the zenith. Note,
the initial number of accepted ranges is chosen merely on the basis of
the weather model. Fach range is then checked for compliance with the

zenith distance and sun—-moon angle constraints (see next section).

The percentage data loss for each month of the year at the LLR
sites, as predicted by the weather model, is shown in Table 5.5. Three
points are interesting to note. The first is the good agreement (<5% in
all cases) between the annual average data loss indicated by the statis-
tical model and the weather records. Also, the periods of bad weather
at Dodaira as mentioned by Kozai (1975) and at Calern as mentioned by
Kovalevsky (1975) have been reproduced by this model. However, the
expected loss of data at McDonald during the wetter periods in July and
sometimes August are barely distinguishable. Nevertheless, the model
does conform with McDonald's general weather patterns which permit an
average to good availability of observing time throughout the year, but

with considerable scatter (Evans 1977).
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Schedule for Observation Selection Procedure after
Weather Considerations

Number of Accepted Placement in Hour Angle, hours
Ranges -4 -2 0 +2 +4

1 X

2 X X

3 X X X

4 X X X X
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Table 5.5 Data Loss Nue to Weather at LLR Sites

T T AT T T I L Iy

Observatory
Month
Orroral Calern Dodaira  McDonald Haleakala
Data Loss, 7%
Jan 64 64 76 51 49
Febh 66 61 32 31 29
Mar 54 62 58 50 41
Apr 44 40 73 38 39
May 38 69 85 55 46
June 47 62 79 35 35
July 33 64 68 43 37
Aug 62 49 67 29 45
Sept 43 37 81 28 50
Oct 43 55 41 25 68
Nov 58 72 55 41 48
Dec 64 42 60 47 50
Annual Average
Weather Model 51 56 65 39 45
Weather Records* 53 60 64 33 40t

*Baged on long-term averages of mean cloudiness (l.andsberg 1970).

tValue communicated by Bender (private communication, 1976).
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5.2.2 Computation Procedure for the Analyses

After the initialization of all respective arrays, the read-in of
all necessary input, and the computation of all appropriate conversions,
the starting time d_(MID) for the analysis is set at the specified date
(the beginning of the year) and a calculation begins over two nested
'DO' loops: the outer loop for all days within the specified sampling
interval and the inner loop over all stations contributing to the
analysis. 1In the numerical experiments carried out in this study,
the sampling interval is either chosen as one, two or five days while
the number of contributing stations varies from three to five. The

analyses extend over a period of one year (see Section 5.3).

At the beginning dX(MJD) of each day within the sampling Interval,
the corresponding Greenwich sidereal time 6, and the right ascension of
the moon a  are computed using dMJD = dx(MJn) in equations (4.21) and
(4.22). From this information, the time of the lunar meridian transit

d_(MID) at each station is calculated by
o - 1 :
a (n) = (6-a) mod{(ax-ex—x), 2n} + d_(MID) (5.22)

where A is the station longitude. A check is made every day to ensure

that the simulated observations do not overlap those of the previous day.

Once the time of meridian transit is established at each partici-
pating station it is a straightforward matter to set up the observing
schedule. To do this, the weather model is called for each station to
see if ranging 1s possible on the specified day and to decide on how
many ranges are permitted on that day. The initial conditions for the
weather station, that is, does Fi=1 equal 0 or 1 are chosen at random.
If it is a fine day (Fi=1 = 1), then the number of ranges permitted by
the weather model are placed in their respective 'positions' according
to the prescribed placement procedure (see previous section). The
values of Fi for each station are stored in an array for the subsequent
calculation of Fi4 on the next day. For each observation that has been
accepted, a determination is made to see whether the Moon is within the
maximum allowable zenith distance and beyond the minimum sun-moon angle

[see equations (5.1) and (5.3), respectivelyl.
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Tahle 5.6 Effect of Weather, 7, = 70
and New Moon on the Number of Observations
Obtainable for a Two-Day Sampling Interval

During 1977

Wiy I R g o e e e

Number of Observations Occurrence,

Obtained %

0-5 17
6-10 | 5
11-15 12
16-20 21
21-25 21
26-30 16
31-35 6
36-40 2
41-45 0

46-50 0
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For each of the availahle observation times that are not eliminated
by these constraints, the coefficients of the observation equation (4.20)
are evaluated using the appropriate time argument dMJD and written onto
tape. In the evaluation, the hour angle for off-meridian ohservations

is calculated from the equation

> . —1 -1
d = D + - .
D dc(MJ ) £ (6~a)  cos H (5.23)

where dy gy is the specified time of the observation in MID. Obviously,

the observing schedule adopted in this work only allows the quantity
{dyp - dc(MJD)} to have specific values. A typical frequency distri-
bution of the number of accepted ranges after the imposition of all ob-
servational constraints is shown in Table 5.6 for a two-day sampling
period. Clearly, the significant percentage in the interval range 0-5
1s due entirely to the sun—-moon angle restriction. For a two;day pe-
riod, a maximum of 50 observations are possible from a network of five

stations.

At the end of the sampling period, the coefficients are read back
off the tape and, together with an appropriate [G] matrix for the obser-
vation variances, are analyzed according to equations [(3.33) to (3.38)]
to obtain the final variance-covariance matrix for the parameters. The
standard deviations Ty oy and Iyr1 for the unknown parametric correc-
tions Ax, Ay and AUT]1 are obtained by taking the square root of the ap-—
propriate diagonal elements of the variance—-covarilance matrix. With the
exception of the initial steps, the procedure just outlined is repeated
as many times as there are sampling intervéls in one year. For a sam—

pling period of 5 days this will mean 73 times.

5.3 Description of the Numerical Experiments

Based on the theory outlined in Chapters 3 and 4, and the previous
sections of this chapter, a series of numerical experiments are carried
out to ascertain whether LLR can provide frequent earth rotation in-
formation accurate to 5 cm'given all the observational constraints pre—
viously discussed. This accuracy level is a realistic estimate that
ultimately should be obtaineﬂ by the.space techniques. No attempt 1is

made in these analyses to correct the observations for errors in the
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lunar orblt and rotation. TIt.is assumed that the only contribution to
the residual is caﬁsed by errors in %, v and UTl [see eq. (4.20)1.' In
this context, the results obtained are likely to be slightly more opti-
mistic than pessimistic. This section gives a brief description of the

numerical studies undertaken.

The experiments are divided into three major categories according
to the measurement uncertainty schedule adopted for each experiment (see
Table 5.7). At first glance, the schedule for Experiment 1 appears
overly pessimistic with regard to the measurement uncertainties for the
Orroral, Calern and NDodaira stations. On the dther hand, if the Calern
and Dodaira statioﬁs were to begin ranging immediately, then the sched-

ule would he a fairly close representation of reality.

Experience has shown, however, that the refinements in the opera-~
tion and performance of a sophisticated LLR facility takes years to
achieve, The schedule for Fxperiment 2 is thus an optimistic budget
that could he achleved within a reasonable time frame if the current
developmental and updating programs at each LLR station go according to
plan. Finélly, the schedule for Experiment 3 is -included with the hope
that the 13 em accuracy goal of the Hawaiian station can also be real-
i1zed in the future by every station in the LLR network. Obviously, the
results obtained from Fxperiment 3 will be premature for the present.
However, since all ohservations in Fxperiment 3 contribute equally to a
solution, the results can be scaled accordingly if the measurement

uncertainty happens to be uniformly worse at each station.

The purpose of each simulation is to investigate what the likely
outcome of a typlcal 'EROLD-type' experiment would be given the mea-
surement uncertainty schedule discussed above. Of course, interest is
mainly focussed on the results obhtainable when all five stations, that
is, Orroral, Calern, Dodaira, Haleakala and McDonald are participating.
However, there 1is the possibility that less than this number will be
operational in the near future and so the results obtainable from likely
combinations of three stations and four stations are also presented.
Each simulation lasts for a period of one year. The observations are

sampled so that accuracles are ohtained for one-day, two~day and five-day
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Table 5.7 Measurement Uncertainty Schedule

%
Stations
Experiment :
Number A F J T
Measurement Uncertainty Oy» CM
1 50 50 50 10
2 10 10 10 3
3 3 3 3 3
*
A = Australia, F = France, J = Japan, T = Texas,
H = Hawaii.
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averages only. The one-day sampling interval is chosen on the basis

that the previously described observing schedule is unlikely to produce
better than daily values of polar motion and UTl. Two—-day and five~day
values are currently bheing obtained by the PMA and BIH agencies and are,

therefore, considered for this purpose.

Experiment 3 is also repeated for subsequent years in order to de-
termine what effect the changing declination bandwidth in latitude has
on the outcome of the results., During 1977, the declination varies betw-
een v +19°. However, by 1986 the limits have changed to approximate-
1y +28° and this could have an effect on the results for polar motion
and UUTl. The effect is manifest two ways. Firstly, the zenith distance
restriction will have a more profound effect on the elimination of off-
meridian observations when the moon occupies its orbital positions of
maximum declination and secondly, the latitude dependent sin(¢—-8) term
is, on the average, much smaller when the declination is #28° than when
119°. This means that because of the bias towards north hemisphere sta-
tions in the present LLR network, the ranges made at northern declina-
tion times will be less sensitive to polar motion variations during
1986. The UT1 determination is dependent, to a certain extent, on the
cos$ term in its partial derivative. This term, however, is nowhere
near as sensitive to declinatior changes as is the sin( ¢~8) term. Thus,"
the effect on UTl determinations will probably be due to a combination

of geometry and the impact of the zenith distance constraint.

In the following section the results of these experiments are pre-
sented together with some optimization calculations that have been car-
ried out to further explore the dependency of earth rotation results on

statlon location, lunar declination and hour angle coverage.

5.4 Polar Motion and UTl Results
5.4.,1 Outcome of 'EROLD-type' Analyses

Summaries of the simulations for the 'EROLD-type' analyses are pre-
sented in Tables 5.8 to 5.14. 1In all cases, the percentage number of
sampling intervals for which uncértainties in x, y and UT1l are better
than or equal to 5 cm are given. While expressing the uncertainty of

these parameters in units of distance is contrary to normal astronomical
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conventions, it does help in the assessment of the results when compari-
sons are made with the basic measurement uncertainties. Even so, one
can easily make the necessary conversions by assuming 1 cm at the earth's
surface is equivalent to approximately 3 x 10_4 asecs in x and y and

0.02 msecs in UTl for an earth radius of 6371 km.

Tahle 5.8 illustrates fairly conclusively that an LLR network of
five stations or less will have great difficulty in consistently pro-
viding daily values of UTl, x and y good to %5 cm. In particular, the
measurement uncertainty schedules for Experiments 1 and 2 are clearly
unacceptable if these goals are to be achieved. The results for Fxperi-
ment 3, however, areAsomewhat more encouraging. The fact that approxi-
mately 17% of the daily sampling intervals are eliminated hy the sun-
moon angle restriction means that of the remaining 837, approximately
80% have solution uncertainties for x, y and UTl good to #5 cm when five
stations are ranging. This would seem to indicate that a network of at
least seven or eight stations would be required to produce continuous
daily values of Universal time and polar motion at the 5 cm level. Of
course,'this conclusion depends critically on each station attaining a
measurement uncertainty level of #3 cm and the assumption that the lunar
orbit and rotation are perfectly known. Also, if the problem around new
moon cannot be resolved then users will have to look to other techniques
for daily values over this period. However, all these factors are re-

duced in significance if two-day and five-day averages are considered.

Results for a sampling interval of two days are shown in Table 5.9.
As expected, there is no marked improvement in the outcome of FExperiment
1 and the fact that there are still no solutions for y with uncertainties
less than or equal to #5 cm is not considered significant. A closer in-
spection of the bomputer output for Fxperiment 1 showed that about 157
of the sampling.intervals gave solution uncertainties‘for v in the range
5 em < oy < 10 ecm. The reason for this is due to the fact that the
Hawaiian station, which contributes more to the solution for the x com-
ponent of polar motion, has a measurement uncertainty about a factor of
three smaller than the Texan station; the latter station is located near

the meridian that defines the y coordinate of the pole. An interesting
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Table 5.8 Simulated Outcome of 'EROLD-type' Campaign for Single Day
Sampling. The measurement uncertainty schedule of Table 5.7
is used. The first, second, and third value in each column
refers to the results for the x, y and UTl parameters, re-
spectively. The analysls period is one year and extends

through 1977,

L2 o B =

Percentage Number of 1-Day Solution Uncertainties <5 cm

Stations :
A F J T H Fxperiment 1 Fxperiment 2 Experiment 3
X, y and UT1l; 7%
5 Stations
o o o o o 1,0,7 19,32,54 67,66,72
4 Statiouns
o o o o 0,0,7 18,27,41 52,47,61
o o o o 1,0,6 17,31,49 60,61,66
o o o o 0,0,6 16,27 ,44 54,55,58
3 Statious
o o o 0,0,6 16,19,29 33,28,40
o o o 0,0,6 15,23,39 42,46,50
o o o 0,0,6 15,25,35 38,40,50

*
A = Australia, F = France, J = Japan, T = Texas, H = Hawaii.
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Table 5.9 Simulated OQutcome of 'EROLD-type' Campaign for Two Day
Sampling. The measurement uncertainty schedule of Table 5.7
is used. The first, second, and third value in each column
refers to the results for the x, y and UTl parameters, re-
spectively. The analysis period is one year and extends

through 1977.

o= meETER

ey + e T I T A

Percentage Number of 2-Day Solution Uncertainties <5 cm

Stations
A F J T H Experiment 1 FExperiment 2 Fxperiment 3
X, v and UT1, 7%
5 Stations
o o o o o 14,0,24 53,54,77 79,79,82
4 Stations
o © o o 14,0,24 42,47,66 71,68,75
o © o o 13,0,24 45,54,75 76,77,79
©o 0o o o 13,0,24 40,53,69 71,73,75
3 Stations
o o o 11,0,24 31,40,53 52,51,62
o o © 11,0,23 32,51,66 65,69,71
o o o 13,0,24 36,46,58 59,60,67

*
A = Australia, ¥ = France, J = Japan, T = Texas, H = Hawaii.
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observation on the outcome of Fxperiment 1 is the number of intervals
(»25%) for which the determination of UT! has an uncertainty better than

or equal to 15 em. Tt was noted that these solutions were obtained only

when the Hawailan and Texan statlions were ranging.

Clearly, when the measurement uncertainties for all stations become
more bhalanced, so to do the results for two—day sampling (see results
for Experiments 2 and 3, Table 5.9). Once again, the most impressive
results are obtained when five stations are ranging and their measure-
ment uncertainties are 3 cm. This time, however, practically all the
two—~day solutions for x, y and UTl outside the new Moon period have un—
certainties better than #5 cm. FEven the four station combinations ap—

- pear capable of providing equivalent results about 70%Z or more of the

time,

Two more points concerning the results of Table 5.9 should be men-
tioned. The first-is the reasonably high percentage of two-day solutions
for x, y and particularly Tl obtained hy the five station configuration
during Experiment 2 that are good to %5 cm. This is very encouraging
congidering the Orroral, Calern and Dodaira stations ranged with mea-
surement uncertainties of #10 cm. 1t is also interesting to note that
there 1s not much difference between the UTl uncertainties as obtained
from Experiments 2 and 3. Changing the measurement uncertainties at
Orroral, Calern and Dodaira from 13 cm to #10 cm has only a marginal
effect (#5-107%) on UTl uncertainties and a noticeable effect (=20-30%)
on the polar motion uncertainties if two-day sampling is considered.
This result suggests that if a network of seven or eight stations were
to exist then it would not be compulsory for all stations to achieve a
measurement uncertainty of 3 em 1f only two—-day values of polar motion

and UT]l are needed at the +5 cm level.

Table 5.10 indicates that five~day values of x, y ahd UT1 with uncer-
tainties better than 5 cm can almost always be achieved from the five station
configuration if the measurement uncertainty schedule for Experiment 2
or 3 1s assumed. Even the four station combinations would be adequate
if all stations ranged with a measurement uncertainty of 3 cm. Tt is

unfortunate, however, that there are still times when it is not possible
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Table 5.10 Simulated Outcome of 'EROLD-type' Campaign for Five DNay
Sampling. The measurement uncertainty schedule of Tahle 5.7
is used. The first, second, and third value in each column
refers to the results for the x, y and YIT]l parameters, re-
spectively. The analysis period is one year and extends

through 1977,

= == = = oot b SEEE T oI e T SRR TR R IR R

Percentage Number of 5-Day Solution lUncertainties <5 cm

Stations
A F J T H Fxperiment 1 Experiment 2 Experiment 3
x, y and UT1l, 7%
5 Stations
0o 0o o o o _ 35,11,54 85,88,89 93,93,93

4 Stations

o o o o 34,11,51 77,80,86 90,91,93
o o o o 34,10,53 83,87,87 90,92,92
o o o o 34,10, 50 77,83,88 86,88,89

3 Stations
o o o | 34, 8,47 59,63, 80 72,78,87
o o o 33, 9,50 70,82,85 83,87,87
o o o 34,10,51 70,77,83 . 82,84,89

* .
A = Australia, F = France, J = Japan, T = Texas, H = Hawaii.
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to obtain a solution around the new Moon period. Of course, this dif-
ficulty could be overcome hy spacing the five day periods so that the
changeover occurred near new Moon. 1In particular, the results from the
five station configuration for‘Experiment 3 indicate that some overlap-
ping did occur around this time period. On this occasion, solutions for
X, y and UTl to better than 15 cm were obtained 93% of the time as op-
posed to 83%. This latter value would have been the result had the five
day sampling intervals coincided exactly with all the new Moon periods
that occurred throughout the year. Once again, the results from Experi-
-ment 1 are not satisfactory. It iy interesting to note, however, that
ahout\SO% of the solutions for UTl had uncertainties better than 5 cm

even with the poor measurement uncertaintles.

The pefcentage number of successful solutions for x, y and UTI,
irrespective of whether or not the parameter uncertainties satisfy the
15 cm limit, are listed in Table 5.11. These results are identical for
Fxperiments 1, 2 and 3 and are for 1977 only. It is emphasized that the
percentages for any given'station combination will not equal 100 because
of the effect of data loss generally, which is to say, that cases where
too few ohservations are avéilable to invert the normal equation matrix

[N are excluded, as is the effect of data loss due to new Moon.

The effect of a change in lunar declination bandwidth on the out—=
come of the results is shown in Figure 5.1 and summarized in Tables
5.12, 5.13 and 5.14. The results for 1977 are listed again for compari-
son. In general, the results for single-day and two-day sampling are
about 107 worse during 1986 than they are for 1977. This is a conse-—
quence of the declination bandwidth changing from +19° to #28° for these
years and the subsequent effect it has on the zenith distance restric-—
tion and the range sensitivity to variations in x, y and UTl. For five-
day averages, only the results from the three station configurations
change by IOZ. For all other years, the results are essentially the
- same to within 5%. This suggests that this phenomenon should not

seriously affect the outcome of LLR earth rotation experiments.
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Table 5.11 Percentage Number of Successful Solutions
for x, y and UTl using a One, Two and Five

Day Sampling Interval.

g = T 22 SE et = s

Stations* Samp?ine
A F J T H Single Day Two Day Five Day
Number of Intervals, 7
5 Stations
o o o o © 77 83 93
4 Stations
o o o o 67 80 93
o o o o 73 81 93
o o o o 65 78 89
3 Stations
o o o 51 69 87
o o o 58 74 88
o o o 60 74 90

A = Australia, F = France, J = Japan, T = Texas,

H = Hawali.
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Figure 5.1 (a) Uncertainty for UTl. Open circles: All five stations
ranging. Solid circles: Orroral excluded. (b) Same, except
for y coordinate of the pole. (c) Same, except for the x

coordinate of the pole.
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Table 5.12 Simulated Outcome of 'EROLD-type' Campaign for Subsequent

Years with Single Day Sampling and +3 cm Ranging.

The first,

second, and third value in each column refers to the results

for the x, y and UTl parameters, respectively.

The analysis

period is one year and the 1977 results are listed again for

comparison (Experiment 3 only).

b S B R B T e 2 S R i e S A 2 b

Percentage Number of l1-Day Solution Uncertainties <5 cm

o=

*
Stations
A F J T H 1977 1980 1983 1986 1989
X, y and UT1, 7%
5 Stations
o 0o o o 67,66,72 66,65,70 64,61,66v 60,57,64 63,60,67
4 Stations
o o o 52,47,61 50,47,59 47,47,56 47,44,55 49,47,59
o o o 60,61,66 57,58,63 54,51,58  50,46,55 52,49,58
o o o 54,55,58 54,53,59 49,47 ,54 45,42 ,49 49,48 54
3 Stations
o o 33,28,40 35,26,41 30,25,39 28,23,35 31,28,37
o o 42,46,50 41,46,48 36,39,41 33,34,35 35,37,40
o o 38,40,50 33,37,47 31,34,45 31,33,45 34,35,48

N .
A = Australia, F = France, J = Japan, T = Texas, H = Hawaili.
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Table 5.13 Simulated Outcome of 'EROLD-type' Campaign for Subsequent
Years with Two Day Sampling and +3 cm Ranging. The first,
second, and third value in each column refers to the results
for the X, y and UTl parameters, respectively. The analysis
period is one year and the 1977 results are listed again for

comparison (Experiment 3 only).

Percentage Number of 2-Day Solution Uncertainties <5 cm

Stations - )
A F J T H 1977 1980 . 1983 1986 1989
X, ¥y and UTl, %
5 Stations
© 0o 0o o o 79,79,82 80,78,81 81,78,81 77,74,79  79,78,80
4 Stations
o 6 o o 71,68,75  72,66,77 72,67,77 68,68,76 72,71,75
o o o o 76,77,79  76,75,78  76,73,79  69,70,73  74,72,74
o o o o 71,73,75  72,71,74  73,70,74  68,63,68 70,67,71
3 Stations
o o o 52,51,62  55,47,64  56,45,61  50,40,58  52,45,56
o o o 65,69,71  65,67,69 62,65,66 56,58,58 59,61,62
o o o 59,60,67 59,58,68 57,58,67 55,59,67 61,60,68

*
A = Australia, F = France, J = Japan, T = Texas, H = Hawaifi.
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Table 5.14 Simulated Outcome of 'EROLD-type' Campaign for Subsequent
Years with Five Day Sampling and #3 cm Ranging. The first,
second, and third value in each column refers to the results
for the x, y and UTl parameters, respectively. The analysis
period is one year and the 1977 results are listed again for

comparison (Experiment 3 only).

= B R b R R e oI oBEEEE T T B R I SR

Percentage Number of S—Déy Solution Uncertainties <5 cm

*
Stations
A F J T H 1977 1980 1983 1986 1989
x, y and UT1l, 7
5 Stations
o o o o o 93,93,93 92,90,92 89,90,90 91,91,92 89,89,91
4 Stations
o o o o 90,91,93 86,85,89 85,84,88 89,91,92 86,85,89
o o o o 90,92,92 86,88,89 86,88,89 84,85,88 86,85,89

o o o o 86,838,830 89,88,89 88,86,88 89,82,89 86,84,88

o o o 72,78,87 77,74,82  76,69,80 73,68,76  74,68,81
o o o 83,87,87 82,85,85 82,84,85 78,77,82 77,80,84
o o o 82,84,89 78,81,85 77,80,86 81,84,88 84,81,89

*
A = Australia, F = France, J = Japan, T = Texas, H = Hawaii.
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In all the analyses undertaken thus far, no attempt has been made
to discuss the correlations between the parameters. The parameter cor—
relations cyy are a good indicator_of the separability of all the
parameters that form the mathematical model. They can be ohtained al-
most directly from the variance-covariance matrix [Q] for the adjusted
parameters, using the expression

O'i,
c, = —21 (5.24)

ij ] i

For the majority of solutions from the previously discussed analy-
ses, the correlations between x, y and UTl are less than 0.5 which in-
dicates good separability. However, on some occasions the separability
was not good and, as expected, a strong dependence of the results on the
station location, lunar declination and hour angle coverage was evident.
A series of optimization calculations are undertaken in the following
two sections in order to investigate the influence of these factors more
closely and isolate their effects from those of the weather, the zenith

distance restriction, averaging interval and new Moon.
5.4.2 Effect of Lunar Declination and Station Location

Studying the effect of lunar declination and station location is
accomplished by assuming the hour angle coverage at each station in the
network on any given day 1s in accordance with the optimum observing
schedule (see Section 5.2.1.1). Only daily solutions are considered.
This means that for a solution based on the five station combination,
the maximum number of observations is 25. Similarly, for a two station

combination the number of observations is 10.

The range of values obtainable from all the possible combinations
of two or more stations is shown in Table 5.15. As expected, the uncer-
tainties for x and y are smaller when the moon is at southern declina-
tion and are worst when the Moon 1is at northern declination. This is
due to the significant bias in the number of northern hemisphere sta-
tions. For UTl, the distinction is not nearly as great. The exception
to this occurs when the Australian station and one in the northern hemi-~
sphere are ranging, and can be best explained by considering the results

from the Orroral-McDonald combination. Clearly, at southern declinations
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Table 5.15 Dependence of Universal Time and Polar Motion on Station Lo-
cation and Lunar Declination Using Single Day Sampling with 43 cm rang-
ing. All stations achieve full hour angle coverage during the course
of the day's ranging (i.e. measurements are made at H = +4, +2, and O

hours) .

Results are for 1977 only and where two values appear in a

column the first corresponds to when the moon is at maximum southern dec—
lination and the second when the moon is at maximum northern declination.

BT TOITE TSRO BRSO3 N I TR R A TR T SR et

Parameter lUncertainty, cm

Correlation, ‘Cij'

%tations*
AFJTH X y Tl Cx,y €y, UTl Sy uTl
5 Stations
00000 1,2 1,2 1 0.1,0.3 0.1,0.,2 0.05,0,1
4 Stations
oo oo 2 2 1,2 0.3,0.6 0.2,0.5 0.1,0.5
ooo0 o 1,2 2 1 0.05,0.3 0.02 0.1
oo0oo0o0 1,2 2 1 0.05,0.3 0.1,0.2 0.2,0.3
o oo0oo 2 2 1 0.1,0.3 0.2 0.1
0 00O 1,3 2 1 0.05 0.1 0.1,0.2
3 Stations
o oo 2,3 2,3 2 0.5,0.6 0.5 0.2,0.3
oo o' 2 2,3 2 0.3,0.5 0.1,0.4 0.4,0.5
o oo 2 2 2 0.1,0.3 0.2 0.02
oo o 2,3 2,4 2,3 0.1,0.7 0.2,0.7 0.4,0.8
o o o 2 2 1 0.1,0.3 0.02 0.1,0.2
ooo 2 2 2 0.1,0.3 0.02 0.3
o oo 2,4 2,3 1,2 - 0.3 0.2,0.5 0.02,0,2
0 0o 2,4 2,7 1,3 0.05,0.4 0.1,0.5 0.3,0.8
oo o 1,3 2 1,2 0.05 0.,1,0.2 0.1
o0 o0 1,3 2 2 0.05 0.05 0.02
2 Stations
o o 3 4,3 2 0.5,0.6 0.3,0.4 N.1,0.3
o o 3,10 2,13 2,6 0.6,0.7 0.6,0.9 0.5,0.9
o o 2 2 2 0.4,0.3 0.05 0.05
o o 2,4 8,7 6 0.3,0.9 0.2,0.8 0.9
o o 2,4 2,4 2,3 0.2,0,5 0.2,0.6 0.2,0.6
o o 2,4 2,7 2,3 0.2,0.4 0.05,0.4 0.3,0.8
o o 2,4 3 2 0.3,0.2 0.05,0.2 0.2
o o 6,4 2,5 3 0.4,0.8 0.8 0.2,0.8
o o 2,5 3,9 2,4 0.3,0.05 0.2,0.1 0.6,0.9
o o 2,4 2,3 2 0.2,0.3 0.2,0.5 0.1,0.3
%

A = Australia, F

= France, J = Japan, T = Texas, H = Hawaii.
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the ranges from the McDonald station are far more sensitive to polar mo-—
tion variations through the sin (¢4=8) term than are the .ranges from the
Orroral station. Since McDonald is close to the meridian that defines vy,
this explains why the uncertainty for y at.southern declinations is a
factor of 3 smaller than the uncertainty for x. On the other hand, at
north declinations the reverse applies. This time it is the Orroral sta-
tion that is the maln contributor but because its longitude is nearer the

meridian that defines X, the uncertainty for this component is slightly

better.

Station combinations where parameter separability is a problem are
identified by the high correlations. For example, the difference in
latitude and longitude between the Haleakala and McDonald stations is
not sufficient to permit a precise separation of the earth rotation
parameters even when the moon 1s at southern declinations. The values
in Table 5.15 do suggest, however, that better results are obtained from
azpair of northern hemisphere stations that are well separated in longi-
tude (e.g. Calern and Haleakala) and, that for a pair containing Orroral,
the results are best when the longitude difference is small (e.g. Orroral
and Dodaira). These findings are substantiated further in Tables 5.16
and 5.17 and are in agreement with the limited analytical studies car—

ried out by Arnold (1974) and Stolz (1975).

The results obtainable from McDonald (X = 256°E, ¢ = 30.5°) and a
floating station on the same parallel of latitude are summarized in
Table 5.16. The values are obtained by assuming the optimum observing
schedule with daily averaging and a #3 cm ranging uncertainty for both
stations. They refer speclfically to when the Moon is at a northern
declination of 28°, that is, at a time when the effect of declination is
quite adverse. Clearly, the results are best when the two stations
differ in longitude by 180 degrees. 1t is also interesting to note that
when the floating station 1s situated near the meridian that defines the
y component of polar motion, it is in fact the x component of the pole
that 1s best determined. This rather unique case can be explained
simply 1in terms of the observing schedule and its related effect on
the partial derivatives. All of the contribution to the solution for x

comes from the observations at wide hour angle, that is, 4 hours. The
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Table 5.16 Effect of Longitude on the Re-
sults Obtainable from two Northern Hemi-
sphere Stations. The values are obtained
using the McDonald Observatory (A = 256°F,
¢ = 30.5°) and a floating station on the
same parallel of latitude (see text for

other basic assumptions).

Tt EETIETECR AR IR USIE 273 TUT POTTTURIIFIETS UX IR S ONNE

- Parameter Uncertainty, cm

Longitude

Degrees X y uTl
235 o 64 31 41
215 30 21 20
195 18 18 12
175 12 16 9
155 9 15 7
135 7 14 5
115 ' 5 13 4
95 5 13 3
75 6 12 3

%
Longitude of floating station.
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solution for y is essentially determined by the polar motion variations
seen by each station in their own meridian. However, in this case

§=+28° and so the sensitivity of the range to a variation in y is smaller
compared to x because sin(¢-§) is small. As the floating station
approaches the McDonald Observatory it becomes increasingly difficult to
separate x, y and UTl because, in the limit, this would be identical to
the geometry for a single station. As mentioned previously, data from a
single station cannot separate the component of polar motion perpendicu-

lar to its meridian (in this case, x) from UTI.

Results from Orroral (A = 148.9°E, ¢ = =35.5°) and a floating sta-
tion in the northern hemisphere are depicted in Table 5.17 where values
for both extremes of declination are given. In carrying out these cal-
"culations, no attempt is made to impose the zenith distance condition
which may not generally be satisfied for off-meridian observations when
the floating station approaches the upper middle latitudes. Clearly,
the solutions are best when the floating station is on or near the same
meridian as Orroral and is well separated in latitude. DNodaira (A =
139.2°F, ¢ = 35.8°) fits the description admirably. The other interest-
ing aspect of Table 5.17 is the poor results obtained when the floating
station 1s roughly symmetric about the equator with the Orroral station
and differs in longitude by 180 degrees. Arnold (1974) has shown ana-
lytically that there is a singularity problem in a two-station solution
when the angle subtended at the geocentre by the.two station vectors is
180 degrees. In this case, it would occur if the floating station were
located at A = 328,9°E and ¢ = 35.5°. The results for A = 330°E and
¢ = 40° begin to confirm this particular effect.

The importance of the Orroral station for earth rotation studies
when the moon 1s at northern declinations is shown back in Figure 5.1.
In these diagrams, the results obtainable for x, y and UTl are depicted
when all five stations are ranging and also when the Orroral station is
excluded. The declination is varied between 128° and only one-day aver—
ages with complete hour angle coverage from each station are considered.
The improvement at north declination is most noticeable for x and y; the
improvement in the determination of UTl being attributable entirely to

the effect of averaging.
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Table 5.17 Effect of Latitude and Longitude on the Parameter Uncer-
tainties for Polar Motion and Universal Time. Where two values ap-—
pear in a column, the first corresponds to when the Moon 1is at 28°N
declination and the second corresponds to when the Moon is at 28°S
declination. The values are obtained by assuming the optimum ob-
serving schedule with daily averaging and a ranging uncertainty of

+3 cm for each station,

R =) wymom LT =

t ¢T = 40°N ¢T = 20°N ¢T = 0°
Longitude Parameter UIncertainty, cm
Degrees
: X y UT1 x y UTl X y url
148.9 2 2 2 2 32 3,4 5 2
170 2 2 2 2 4 2 2,3 4,6 2
210 ' 3,2 3 2 2,3 3,5 2 2,6 3,8 2
250 4,6 5,2 4 3,11 4 3,4 2,12 2,6 2
290 8,12 13,5 11,9 4,14 6,5 4,7 - 3,7 3 2
330 18 30 27 6 10 6 35 2

TLatitude and longitude of the floating station.
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5.4.3 Significance of Hour Angle Coverage

In this section,’an investigation of how differing hour angle
coverages at different stations can influence the quality of the earth
rotation results is undertaken. The study consists of three hasic ex~
periments that have been designed to (1) assess the dependence of the
parameter uncertainties on the hour angle coverage obtained at each
station and (2) see whether there is any appreciable reduction in the
correlations between the earth rotation and lunar orbit parameters when
the hour angle coverage is varied at each station. For these analyses,

the observation equation is written as
vy = bp, + rsl{sin ¢ cos § cos (A-H) = cos A sin § cos ¢}i Ax
~ {sin ¢ cos & sin (A-H) = sin X sin § cos ¢}i Ay

+ {cos ¢ cos § sin H}i AUTI

- {8in(¢=8) + cos ¢ sin &§(1 = cos H)}i A8 + Ar . (5.25)

It is important to emphasize once again that errors in UTl and the lunar
right ascension o cannot be separated unless they occur at different

frequencies. Equation (5.25) assumes that o is perfectly known.

The first of the three experiments examines the improvement and de~
gradation in the parameter uncertainties and correlations when the hour
angle coverage at each station i1s varied from 2 to & hours while the re-
maining stations in the network achieve 2 hour coverage. In this and
the other two hour angle experiments, the following common assumptions
are made: (1) the solution averaging interval is one day, (2) three
ranges are scheduled at each station per day, (3) each station has a
range uncertainty of 43 cm, (4) the conditions of observability have

been waived and (5) all five stations are ranging.

The modified ohserving schedule is introduced to simplify the cal-
culations. For a station that achieves a 2 hour coverage in hour angle,
the ranges are placed at H = %1 and 0 hours. Likewise, for a station
that achieves an 8 hour coverage in hour angle, the ranges are placed at
H = 14 and O hours and so on. With this observing schedule a total of

15 observations are obtained for each daily solution.
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Parameter uncertainties and correlations associated with the first
hour angle experiment are summarized in Table 5.18a and b, respectively.
Only correlations greater than or equal to 0.5 are listed in Table 5.18b.
The values without brackets in both tables are the results obtained when
all five stations achieve an hour angle coverage of 2 hours. The brack-
eted values are the bestvresults that occur for the parameter uncertain-
ties and largest values for the correlations when the hour angle cover-
age at each specific station is varied from 2 to 8 hours while the rem-
aining four stations in the network achieve 2 hour coverage., Only the

most significant changes and salient points are discussed. They are;

(1) the strong dependency of the results for x, y and § on lunar
declination due to the inclusion of only one southern hem-

isphere station in the network,

(2) the virtual independence of the results for UTl and rr on

lunar declination,’

(3) the significant decrease in the uncertainty for y at northern
declination when the Calern station has a wider coverage in
hour angle compared to the remaining stations. Off-meridian
observations at Calern with large hour angles contribute
very strongly 'to a determination of y at northern declinat~-

ions.,

(4) the significant decrease in the uncertainty for UTl at all
declinations when any one of the stations has a wide

coverage in hour angle,

and (5) the high correlation between r. and § at southern declination
and the moderately high correlations, 14 and o5 at northern

declination.
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Table 5.18a Parameter Uncertainties for Hour Angle

Experiment No. 1 as a Function of Lunar Declination

s = T - TR IEIE T @

Parameter Uncertainty, cm

Declination
Degrees x=1 y=2 UT1=3 r =4 §=5
-28 1 2 (3),5 1 2
0 2 2 (2),5 1 2
28 5 0 (5),8 (3),5 1 4

Table 5.18b Parameter Correlations for Hour
Angle Experiment No. 1 as a Function of

Lunar Declination

L

Correlation, lcij|

Declination
Degrees 0.5-0.7 0.7
28 %5
0 c45
28 ©141%25 (e5)
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The results of the second hour angle experiment are summarized in
Tables 5.19a and b, The values without brackets are the results ob-
tained when all five stations achieve an hour angle coverage of 8 hours.
There is, however, no change in the results when the hour angle coverage
at individual stations is reduced from 8 to 2 hours. This indicates
that when a majority of stations in the network obtain a maximum cover-
age in hour angle, the results are not degraded if poorer coverage 1is
ohtained by one or perhéps even two of the remaining stations. Like-
wise, no significant changes occur in the correlations. 1In fact, the
results look remarkably similar to those obtained from the first experi-
ment., Reducing the hour angle coverage at the Calern statlon does, how-—
ever, increase the correlation between y and § when the moon is at north

declination.

The third and final hour angle experiment is carried out to see
what effect a variation in the hour angle coverage at every station in
the network has on earth rotation results. Interest is.focussed on the
changes in parameter uncertainties and correlations when all stations
achieve 8, 6, 4 and 2 hour coverages, respectively. Results for the 2
and 8 hour cases can be extracted from the information in Tables 5.18
and 5.19, respectively. The 4 and 6 hour cases are summarized in Tables
5.20a and b, The values without brackets are the results obtained when
all five stations achieve 6 hours -of hour angle coverage. Bracketed
values are the corresponding results for the 4 hour case. 'Note, that
there is no change in the correlations between the 4 and 6 hour cases,
Comparing these results to those in Tables 5.18 and 5.19 allows the fol-

lowing conclusions to be drawn;

(1) there is no large difference in the uncertainties and

correlations for the 4, 6 and 8 hour cases.
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Table 5.19a Parameter Uncertainties for Hour Angle

Experiment No. 2 as a Function of Lunar Declination

B R e == TR T RO I

Parameter Uncertainty, cm

Declination
Degrees x=1 y=2 UT1=3 r =4 8=5
-28 1 2 2 1 2
C 2 2 1 1 2
28 4 3 2 1 3

Table 5.19b Parameter Correlations for Hour
Angle Experiment No. 2 as a Function of

Lunar Declination

Correlation, Icijl

Declination
Degrees 0.5=-0.7 >0.7
0 %5

28 c145¢155(C95)5¢45
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Table 5.20a Parameter Uncertainties for Hour Angle

Experiment No. 3 as a Function of Lunar Declination

el

B e o S P R R s b e e e R Tt

Parameter Uncertainty, cm

Declination
Degrees x=1 y=2 UT1=3 rr=4 §=5
28 1 2 2,(3) 1 2
0 2 2 2 1 2
28 4 3,04)  2,(3) 1 3,0

Table 5.20b Parameter Correlations for Hour
Angle Experiment No. 3 as a Function of

Lunar Declination

R e R R i e

" Correlation, 'Cijl

Declination
Degrees ' 0.5=0.7 0.7
-28 CA'S
0 C4s
28
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(2) if hour angle coverage continues to be poor (€2 hours) at
most of the stations in the network, then every effort
should be made to 6btain wide hour angle coverage at
Calern, particularly when the moon is at north declina-
tions. This will ensure a good determination of both y and
UTl. Poor hour angle coverage at all stations will degrade
UT1 determinations at all declinations. Only one station
needs a wide hour angle coverage to ensure a good deter-
mination of UTIL,

(3) there is a slight tendency for the network to determine the
X component of the pole better than y and UT! when the hour
angle coverage is poor at all stations.

(4) for better determinations of x and y when the moon is at
northern declination it is important to have wide hour
angle coverage at a majority of stations. At southern
declinations the effect of hour angle coverage is less
significant.

(5) when wide Hour angle coverage 1s obhtained at all stations,
the strength of the x and y determinations is almost iden-
tical. 1Tl results appear to be better by ahout a factor
of 2,

and (6) in general, most of the parameter correlations are less
than 0.5 for all declinations. The exception occurs for
the correlations between x and the lunar orbit parameters
rr and § which are high at northern declinations. The
introduction of an additional southern hemisphere station

would probably reduce these correlations substantially.

In order to assess how much the uncertainties in %, y and UTl are
reduced when the lunar orbit parameters r and § are not included in the
solution, the 8 hour case was repeated with the orbital parameters ex—
cluded. The results are shown in Table 5.21 and comparing these values

with those in.Table 5.19a allows the following conclusions to be drawn:
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Table 5.21 Parameter Uncertaintiles for x, y
and UTl when the Lunar Nrbital Parameters are

Fxcluded as Solution Parameters (8 hour case

only).
. Parameter Uﬁcertainty, cm
Neclination
Degrees X vy UTl
-28 1 2 1
0 2 2 1
28 2 2 1




170

(1) while there 1s no reduction whatsoever in the uncertainties
for the x and y parameters at southern declinations, the
improvement at northern declinations is quite significant.
Once again, this result is intimately related to the un-
avoidable imbalance that exists in the LLR network geometry
and the subsequent effect this has on the parameter uncer-
tainties and correlations at northern declinations, par-
ticularly when the lunar parameters are also included in

the model. ,
(2) there is no large difference in the uncertainties for UTL.

This is not entirely unexpected because solutions for UT1
are uniquely decoupled from L and 6§ when off-meridian

observations are symmetric about the meridianm.

5,5 Summary Remarks

Numerous analyses have been undertaken in this chapter to investi-
gate the suitability of the LLR technique for monitoring the earth's
rotation. To summarize all the individual results would only be repeti-
tous, particularly when most of them are self-explanatory. However, it
would be beneficial to re—emphasize the basic assumptions made and view

the general conclusfons within this context.

The fairly low percentage of one-day periods for which polar motion
and Universal Time are obtained to better than 5 cm from the five sta-
tion network, and the fact that this percentage rises significantly when
the sampling interval is two days suggests that a five station LLR net-
work can provide accurate earth rotation information if the sampling in-
terval is greater than or equal to two days. Clearly, the éddition of
a southern hemisphere station in South America and one in South Africa
would not only imprové the frequency of one-~day values but also help al-

leviate many of the geometrical limitations discussed in this chapter.

The two basic assumptions critical to the validity of these results
are that a uniform measuring uncertainty of 13 cm will be attained by
all the participating stations and that systematic errors in the mea-
surements are negligible., While there is no reason to doubt that the acc-

uracy. goal of the Haleakala station ultimately can be realized by the other
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stations, one could certainly expect. that some systematic errors will
be present in the data., The extent to which plate motion and sea-
sonal variations in station position due to surface mass loading con-

taminate earth rotation results obtained at the 5 cm level is considered

in Chapters 6 and 7, respectively.

To estimate the effect of systematic errors on the determination of
the parameters in the Farth-Mercury system, Ashhy et al. (198l) carry
out a modified worst—case analysis that closely follows the theoretical
work of Hauser (1974) for the Rarth-Moon distance. In brief, the theory
predicts the time-dependent systematic error which results in the maxi-
mum uncertainty for each parameter of the mathematical model subject to
the condition that only the total rms magnitude of the error is known.
Hauser (1974) derives a formula which is equivalent to (Ashby et al,1981)

. s . .
the worst—case systematic error Op in each parameter being larger by a

factor of il/2 than its random error, that is,
' 1/2
o = of (Y (5.26)
p P

where i represents the number of observations used for the solution and
r

cp the random error for the p-th parameter. Since the resulting uncer—
tainty is linear in the estimated total rms error, the final results can

also be scaled accordingly to any estimate of the total rms systematic

error.

Ashby et al. (1981) point out, however, that it is inconsistent to
expect every parameter 1n the model to have a worst—case uncertainty as-

soclated with its determination and so they introduce a factor k to

modify the worst-case results in order to give a more reasonahle esti-
mate for the final parametric uncertainties, that is,

oS = x oS (y!/? (5.27)
p p

If there are a reasonably small number of parameters in the mathematical
model, and if the derivatives of the range with respect to these parameters
are roughly orthogonal, Bender(private communication, 1980) suggests'that

a rough rule of thumb is that

k < n /2 (5.28)
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where n is the number of solution parameters, For the EROLD-type

~ studies undertaken here, k would thus be < 0.58. However, a substant-
ial fraction of the systematic error may occur at frequencies which
don't affect the résﬁlts appreciably. Thus, a value of k = 0.4 is
chosen for the present analysis. Ashby et al. (1981) choose a value
of 0.25 in their model for the Earth-Mercury distance, for which there
are 18 parameters, but some of the parameters of main interest have

- quite similar partial derivatives of the range.

In applying the theory to the results presented in this chapter,
consider the two-day solutions for x, y and UTl from a five station net—
work achieving a uniform ranging uncertainty of 3 cm. Stolz and Larden
(1977) have shown that the random uncertainty in x, y and UTl for the
majority of these solutions is generally less than or equal to 3 em. If
the average number of observations per solution 1s taken to be 25 (see
Table 5.6) then the modified worst-case systematic contribution to the
total uncertainty for x, y and UTl, assuming an rms systematic error of
2 cm 1s achieved in the future (Bender, private communication, 1980),
and using the appropriate scalar, is

S

ox,y,UTl < 4.0 cm *

t
Writing the total uncertainty cp for each parameter as the root sum of
squares of the systematic and random contributions gives

1
t 2 2 /2

Thus, when systematic effects and two-day averages are considered, the

uncertainties for x, y and UTl will generally be about 5 cm.

The results from Tables 5.19a and 5.21 also indicate that solving
for the lunar orbit parameters r. and § only has a marginal effect on
the uncertainties for two-day values of x, y, and U'Tl. Tt is, however,
very important to have available a good physical model for the orbit
before reliable values of x, y and UTl are obtained. TUntil this is
achieved it may be wise to include the orhit parameters in the analy-

sis model.
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CHAPTER 6
PLATE MOTION EFFECTS ON EARTH ROTATION RESULTS FROM LLR

6.1. Introduction

For stations undergoing relative and absolute motions induced by
geophysical prbcesses, additional parameters must be included in the
distance equation (4.20) so that variations in the distance due to these
processes will not be interpreted in the analysis as corrections to x, Yy
and UTl. Over very short time intervals, some of these effects will not
be detectable. But as the ranging uncertainties of the space techniques

approach the 1-3 cm level, this statement is bound to be reappraised.

One process that will cause changes in the latitude and longitude
of LLPR observatories is global plate tectonics, the modern—day
‘counterpart for the theory of continental drift. Attempts to deduce
these changes from astronomical data (see e.g. Proverbio and Poma 1976)
have been seriously limited by the accuracy of the results. Also, many of
the stations are located close to plate boundaries in regions of high
seismic activity and this can lead to doubtful results. The other
alternative for deducing these changes is to adopt an absolute plate
velocity model based on geological and seismic evidence and compute the
changes in station coordinates and, hence, the time-scales over which
these motions become significant in high-precision geodetic
experiments. Studies based on the latter approach have been done for
the ILS, BIH, VLBI and SLR networks (see e.g. Mueller and Schwarz 1972,
Dickman 1977, Soler and Mueller 1978) but a detailed analysis has yet to

be carried out for the LLR network.

The purpose of this chapter is to carryvout such an analysis. 1In
the first instance, the changes in latitude and longitude of each
individual station in the LLR network are computed from the recent
absolute plate velocity models constructed by Minster et al. (1974),
Kaula (1975) and Solomon et al (1975). The assumptions uﬁderlying these

models are discussed. The contribution that these changes make to polar
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motion and Universal time results obtained by the LLR technique is then
calculated. All computations are carried out in the geographic

reference system (see Section 2.2.2.1).

6.2. Plate Motion Kinematics
6.2.1. Concept of Global Plate Tectonics

The concept that the earth is made up a relatively small number of
rigid lithospheric plates which are in motion with respect to one
another is the central hypothesis of global plate tectonics. The theory
implies the transportation of mass as the plates move about the earth's
surface, material rises from the asthenosphere and cools to generate new
oceanic lithosphere, and lithospheric slabs descend to displace
asthenospheric material. Chapple and Tullis (1977) discuss the various
mechanisms that can cause or impede this process and while mantle
convection is a leading contender it is still not clear whether the
extent of the convection is confined to the upper mantle or is mantle-

wide (O'Connell 1977).

The distinction between lithosphere and asthenosphere is based on
rigidity and to a large extent reflects differences in temperature. The
depth of the boundary between these two regions is about 100 km (Isacks
et _al. 1968), however, this value can vary substantially from one
seismic region to another (Walcott 1970). As the lithospheric plates
slowly move about, some carry oceanic crust, others carry continental
crust or both. Their boundaries are generally of three types (Cox
1973): (i) mid-ocean ridges (e.g. mid—Atlantic ridge) where sea-floor
spreading processes are operating to add new material to the
lithospheric plates,(ii) subduction zones (e.g. Aleutian trench) where
one lithospheric plate plunges under another and is reabsorbed back into
the mantle, and (iii) transform faults (e.g. San Andreas fault) where
two plates move tangentially to one another avoiding both the creation

and destruction of the lithosphere.

The actual number of plates, their boundaries and their velocities

differ from model to model, although there is consistent agreement with



175

*S9Ta03BAdSS(O

YT1 943 3JO UOTIBDO] 3yl 23IBDTPUT SI[OITO PFI[O§ °SIIBJ OTUOIDSL Jo SUITINY  [°9 2Ind1g

Ove 02¢ 00¢ 082 092 OvZ 022 002 08I 09I Ovl 02

00l 08 09 O 02 0 Ovg

| I ] I I | | I | I _
08

0S

Oov

0¢

0¢

ov

09

(0]}

I I [ ! ! I

Oove 02¢ 00¢ 08¢ 09¢ OvZ 0¢¢ 00¢ 08I 091 Ovi 02l

00l 08 09 O0Ov 02 0 Ot




176

regard to the macroplates, Viewed microscopically, the'lithospheric
plate boundaries are indeed fairly complex with deformation zones
extending over quite large regions that often become smaller plates.
Even so, one important aspect of the plate tectonic model is that over
geological time scales, the plates are assumed to be rigid away from the
margins. This assumption implies that the relative géometry of points
on the same plate remains unchanged and its verification is one of the
primary tasks of NASA's geodynamics program (NASA 1979). The major

tectonic plates are shown in Figure 6.1.

An essential aspect of the plate tectonic model is that it
represents a time-averaged situation (Lambeck 1980). The primary type
of data that forms the basis of all current models is the marine
magnetic anomalies which exist in mid-ocean ridge areas (sece e.g.
McElhinny 1973). This information, together with the geometry of
transform faults and earthquake slip vectors, is used to determine the
average relative motion between the plates over periods exceeding 106
years. Additional constraints are needed if these motions are to be
established in an absolute reference frame. Such models and their
underlying assumptions are discussed in the next section. Further
details on the global tectonic model may be found in the texts by Le

Pichon, Francheteau and Bonnin (1973) and Cox (1973).

6.2.2. Absolute Plate Velocity Models

As mentioned in Section 6.1, the changes in the latitude and
longitude of the stations in the LLR network due to the drift of the
continents can be calculated using the absolute plate velocity models of
Minster_EE_gl},(l974), Kaula (1975) and Solomon et al. (1975). However,
before outlining the computational procedure and presenting the results
of the calculations, several preliminary comments concerning the

assumptions upon which these models are based seem in order.

The model of Minster et al. consists of eleven major lithospheric

plates; included are the Cocos, Nazca and Arabian plates as well as the
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six large plates considered by Le Pichon (1968). Recognition is also
given to evidence which suggests that the continents of North and South
America lie on two separate plates whose métions are resolvable and that
internal deformation within:the North American plate has resulted in the
formation of the Bering plate which 1s bounded geographically by the

eastern end of Siberia, the Bering Sea, and the western part of Alaska.

In Minster_gg_gi.'s model the poles of rotation and relative
velocities of the plates are obtained by inverting 68 sea-floor
spreading rates, 62 fracture zone trends and 106 earthquake slip vectors
using a self-consistent maximum likelihood theory. However, no attempt
was made to determine the velocity of the Bering plate because the data
" along its perimeter were not reliable. The model is designated as
RMl. The absolute velocities, designated model AMl, are then determined
using the hypotheses that the "hotspots” are fixed with respect to each
other and that they define a reference frame related to the underlying
mantle. vMinster‘gs_ggf believe there has not been any significant
relative motion between the hotspots during the last 107 years but this
assertion has been challenged (see e.g. Molnar and Francheteau 1975).

It appears that when time periods of 5 x 107 years are considered,
hotspots appear to show relative velocities averaging 1-2 cm/year (see

e.g. Molnar and Atwater 1973).

Hotspots are regions of volcanic activity, presumably surface
manifestations of deep, upwelling "plumes”, that are usually located in
the plate interiors. It was first proposed by Wilson (1963) that plate
motions over these regions were responsible for the genesis of various
island chains (e.g. the Hawaiian Islands in the Pacific) and aseismic
ocean ridges., Morgan (1972) extended Wilson's list of hotspots and
constructed a model for the lithospheric plate motions with respect to
the underlying mantle that was compatible with the directions of the

hotspot traces on the plates,

Minster et al. (1974) invert the trends of 20 linear island chains
and aseismic ocean ridges, located on eight of the lithospheric plates,
to determine their absolute plate velocity model. The data, which
include 16 of the traces used by Morgan (1972), fit the model quite
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well. That only one of the computed trace azimuths deviates from its
measured value by more than its observational uncertainty speaks

strongly in favour of the Wilson~Morgan hotspot hypothesis.

Kaula (1975), on the other hand, approaches the absolute plate
motion problem from a slightly different viewpoint and explores
solutions that minimize the translational motion of the mid-ocean ridges
and, hence, their motion with respect to convective upstreams. Kaula
also applies a condition which minimizes the motions for the overthrust
plates in zones of subduction and had all the hotspot traces in Minster
EE,EL"S (1974) model been close to these zones, the two models would
probably be very similar. As it turns out, the results between both

models agree to within 1 cm/year.

The basis of Kaula's boundary velocity minimization model is the
plate system and the relative velocities of Minster et al. (1974). In
addition, Kaula includes the Philippine and Somali plates and determines
a minimum velocity for the.Bering plate by least squares fitting the
data from four adjacent aseismic regions. Every plate boundary segment
is given a tectonic description (e.g. mid-ocean ridge, ocean plate
subducted under ocean plate, etc.) and results are presented for fivé
solutions, each based on a different selection of the boundary types for

which the absolute velocities are minimized.

Kaula's solution number 5, designated.here as K5, is the most
comprehensive and, as such, is chosen as one of the models for the
calculatidns undertaken in this chapter. In this solution, the
overthrusting plate velocities are minimized at all types of subduction
zones and the transverse velocities are minimized for all other boundary
types considered. The results indicate that oceanic plates move at
rates of the order of 5 cm/year, about a factor of 3 or 4 greater than
continental plates. The minimum boundary velocities are consistent with
the results ohktained by Solomon et al. (1975) and are of the order 1-2
cm/year. These results may suggest a possible interaction between the
lithosphere and the convective flow scheme and a rather temporary

existence of the so-called absolute global reference frame.
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Solomon et al. (1975), using a modified version of the relative
velocity model of Minster et al. (1974), determine the absolute plate
velocities after postulating that the lithosphere as a whole is in
mechanical equilibrium. This assumption was originally discussed by
Solomon and Sleep (1974) and is equivalent to stating that the
lithosphere is not accelerating. By conservation of angular momentum,
the torques exerted on the lithosphere by bouyancy forces at plate
boundaries and by viscous drag forces beneath the plates must sum to
zero. Therefore, if some fraction of the torque exerted on the
lithosphere is produced by forces which depend on the velocity of the
plates with respect to the underlying mantle, then the no net torque

condition provides a framework for determining the absolute velocities.

The basic plate boundary and relative velocity model used by
Solomon et al., although similar in most respécts to the models of
Minster et al. and Kaula, does have some obvious differences. Included
in the plate schedule are the Philippine and Caribbean plates, however,
the model does not recognize either the Bering plate or the division of
the American plate into separate North and South American plates. The
Bering plate is judged simply as an artifact of the systematic errors
believed present in the slip vectors of the Aleutian earthquakes while
the division of the American plate produces relative motions between the
Caribbean and South American plates that conflict with the geological
and seismic evidence for that region. All authors have avoided the

small controversial plates (e.g. Gorda, Fiji, Iran etc.).

A total of eight absolute plate velocity models are presented by
Solomon et al. To determine the absolute velocities, various torque
balances on the plates (e.g. the viscous drag on continental plates 1is a
factor of three larger than that experienced by oceanic plates) are
assumed subject to a further condition that the asthenospheric drag
exerted on the lithosphere acts to resist the plate motions. On the

other hand, should méntle—wide, non-passive convection be a reality, it
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would invalidate the torque-balancing models because the lithosphere-

mantle interaction would change from resisting to a driving nature.

Table 6.1 lists the models considered in this study together with
their appropriate designation and a brief description of the basic
assumptions upon which they are based. All of Solomon et al.'s (1975)
plate models are included since all have been constrained to physically
plausible properties. The rotation poles and angular velocities for the
absolute motions of the tectonic plates appropriate to the LLR network
are listed in Table 6.2. Moreover, Orroral is taken to be on the Indian
plate, Calern and Dodaira to be on the Eurasian plate, Haleakala to be
on the Pacific plate and McDonald to be on the American plate. The
triplet of values for the n-th plate denotes the latitude (¢n) and east
longitude (An) of the rotation pole, in degrees, and the angular
velocity (Wn) in 10—.8 radians/year, respectively. The rate of rotation
is taken to be positive in a right—handed sense, or expressed
differently, the.plate rotation is positive if the plate moves in an
anticlockwise direction as viewed by an observer standing on the pole of

‘rotation and looking down the rotation axis of the plate.

With the exception of the Japanese site, there is no reason to
expect the uncertainties in the predicted plate motions to exceed
1 cm/year. All of the plate motion models agree to within 1 cm
per year for the velocities of the major plates and the Orroral, Calern,
Haleakala and McDonald Observatories are safely located away from the
plate boundaries in reasonably stable regions (see Figure 6.1).
However, because Dodaira is situated very close to the Japan trench, one
of the most tectonically active regions of the globe (Isacks and Molnar
1969) and the Eurasian plate is relatively slow moving, it would not be
unreasonable to expect the error in the predicted motion at Dodaira to
be as large as the motion itself. Such errors would arise if
substantial local and regional motions were to exist and not be taken
into account (see Dickman (1977) and Morgan (1977) for a brief
discussion of these phenomena). It is also informative to mention that
there is no concensus among geophysicists as to whether the present—day

relative plate velocities are the same as the 5 x 106 year averages
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*
Table 6.1. Schedule of Absolute Plate Velocity Models

Plate Model " Literature
Designation Description : Source

AM1 Fixed hotspots Minster et al. (1974)
K5 Boundary velocity minimizations Kaula (1975) -
A3 Uniform drag coefficient beneath

all plates Solomon et al. (1975)
B3 . Drég beneath continents only Solomon et al. (1975)
B4 Continents have three times more

drag than oceans Solomon et al. (1975)
C3 Drag opposing horizontal translation

of slabs, oceanic subduction

zones only Solomon et al. (1975)
C4 Same as C3, but including the

Arabian and Himalayan trenches Solomon et al. (1975)
D1 Maximum pull by slabs plus plate

drag Solomon et al. (1975)
E2 Drag beneath 8 mid-plate hotspots

of Morgan (1971) Solomon et al. (1975)
E3 Drag‘beneath 19 hotspots of Morgan

(1971) . Solomon et al. (1975)

*See Minster et al. (1974), Kaula (1975) and Solomon et al. (1975) for

further details.
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inferred from the geological and seismic evidence. These factors mast

always be borne in mind in theoretical studies of this nature.

6.2.3 Changes in LLR Station Coordinates Due to Plate Motion

Once the absolute angular velocity vector ;n for each plate is
known (see Table 6.2), the time variations 6¢nk and 6Ank in latitude and
longitude of the k—th station bélonging to a particular plate P, can be
computed. The required formulation for evaluating the differential
changes is based on the well-known theorem due to Euler which states
that the instantaneous motion of a rigid plate constrained to lie on the
surface of a sphere can be completely and uniquely described by an axial
rotation. Since the length of the station vector is invariant under
this type of rotation, the velocity field of a mosaic of n plates is
simply determined By’specifying the absolute angular velocity vector of
each plate, referenced to some fixed frame whose origin is at the centre
of the sphere. The geographic reference éystem described in Section -
2.2.2.1 is used throughout these calculations. With respect to this
reference frame, the velocity v(r) of a point r belonging to plate P,

in vector format, is (Minster et al. 1974)

v(r) = ;n < T | (6.1)

T >
where v has been defined previously. From Figure 6.2, the Cartesian

components of these vectors are

- - -
rscos¢kcos>\k wncos¢ncosAJ

r= - W = i)

r = rscos¢k51nkk w,o s whcos¢ns nA (6.2)
L-rssinzpk ] YhSin¢n ]

where all quantities have been defined previously. Since the velocity
vector is always tangent to the sphere, it can be expressed in terms of

A
its latitudinal component, vik and its longitudinal component, V.
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Figure 6.2 Geometry of Plate Motion Kinematics
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From equations (6.1) and (6.2), the Cartesian components of v(r) can be

written as

rswh{sin¢kcos¢nsinxn - cos¢ksinkk31n¢n}.

v, =
!

vx2 = rswn{cos¢kcoskksin¢n - sin¢kcos¢ncoskn}

vx3 = rswn{cos¢kcos¢nsin(Ak—An)] . (6.3)

Taking the inner product of v(r) with the unit tangents to the meridian

of longitude and the parallel of latitude passing through r gives

¢ - -
LA sinAkvX + cos}\kvx
1 » 2
A = - (6.4)
Vo = —sin¢k{cosxkvx1 + sinAkvxz} + cos¢kvx3 . .

Substituting equation (6.3) into equation (6.4) gives

o _ -

AA r v, cos¢nsin(}\k An)

vA = r w {cos¢ sing_ - sing, cos¢_cos(A =i )} . (6.5)
nk s n k n k n k "n

In equation (6.5), vik‘and Vik are given in linear units. To express

these quantities in their angular measure equivalents, 6¢nk and 5Xnk»

one may write

861 vf:k/rS = wncos¢nsin(kk—xn)

6Ank

A .
vnk/rscoscpk = wn{51n¢n tanq;kcosq;ncos()\k An)] . (6.6)
The predicted secular changes in the latitude and longitude of the
LLR observatories due to absolute plate motions are shown in Table
6.3. These values are expressed in milliarcsecs yr_1 and are obtained
from a direct evaluation of equation (6.6), assuming appropriate

conversions have been made. The most obvious comment about these
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Secular Changes in LLR Station Coordinates due to Plate Motion

Plate Model Observatory
Designation Orroral Calern Dodaira McDonald Haleakala
) S S¢ SA 8¢ SA 5¢ SA S¢ S
Change in Station Coordinates, OTOOl yr"l

AM1 1.6, 0.5 0.3, 0.5 -0.3, 0.3 -0.2, -0.9 1.1, -2.8
K5 1.6, 0.7 0.2, 0.8 -0.4, 0.4 -0.1, -0.8 1.1, -2.6
A3 1., 0.8 0.4, 0.7 -0.4, 0.8 -0.1, =0.5 1.0, =-2.4
B3 1.8, 0.4 0.0, 0.3 -0.2, 0.0 0.1, -0.9 1.4, =-2.9
B4 1.7, 0.6 0.2, 0.5 -0.3, 0.5 0.0, =0.7 1.2, =2.6
C3 1.5, 0.9 0.5, 0.8 -0.4, 1.0 -0.1, -0.4 0.9, -2.2
C4 1.6, 0.8 0.4, 0.7 =0.3, 0.8 -0.1, -0.5 1.0, =2.3
D1 1.9, 0.9 0.0, 0.6 0.0, 0.6 0.0, -0.3 1.3, -2.3
E2 ‘1.7, 0.5 0.4, 0.3 -0.2, 0.8 -0.3, -0.7 0.9, -2.4
E3 1.8, 0.5 0.2, 0.3 -0.1, 0.3 -0.1, -0.8 1.2, -2.7
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results is the good agreement for the drifts in latitude and longitude
as predicted by the ten different models. Expressed as a linear rate,
the largest discrepancy is 2.5 cm/year. This occurs for the longitude
drift at Dodaira as predicted by Models B3 and C3 of Solomon et al.
(1975). However, the largest discrepancy between the more favoured
models AM1, K5 and B4 (Dickmén 1977) occurs for the longitude drift at
Calern but only amounts to 7 mm/year. Overall, the Orroral and
Haleakala observatories have the largest velocities; they are of the
order 6 cm/year and 8 cm/year, respectively. The velocities of the
North American plate upon which McDonald is located and the Eurasian
plate upon which Calern and Dodaira are located are much smaller by

comparison. Stations on these plates do not move faster than ~3

cm/year.

It is important to note that the direction of the station drift
plays a significant role with regard to the extent plate motions will
contaminate earth rotation results. From equation (4.18) it follows
that changes in latitude will have a first order effect on polar motion
while the changes in longitude enter the equation through the sine and
cosine terms and, as such, have only a second-order effect.
Nevertheless, equations (4.13) and (4.19) clearly show that changes in

longitude will affect UTl results directly.

The extent of the corrections to LLR earth rotation results caused
by the drift of the network is examined in the next section. A least
squares procedure is used to arrive at these results and so the
magnitude of the corrections will depend on the degree to which the

individual station drifts cancel each other in an average sense.

6.3 Apparent Variations in Polar Motion and Universal Time Due to LLR
Station Drifts
If the changes §¢ and 8\ in LLR station coordinates are known then
their effects 8x, 8y and SUTL on the determination of polar motion and
Universal time can be computed from expressions similar to equations

(4.18) and (4.19), that is, (Stolz and Larden 1977)
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6x cosA — §X sinA

6

SA tan¢g(Sx sind + S8y cosi) + 6UTI . (6.7)

Stated differently, the problem reduces to determining three small
angles Gai il= 1,2,3 that will transform the geographic reference system
Xy, as defined by the LLR station coordinates at time'to, to the new
apparent system ;i at time ti after the plate motions have been
applied. The Cartesian coordinates of the two systems are related by
the known transformation |

[x;] = Ry(60 IR (80,)IR, (60 ) [x, ]« (6.8)

Consequently, if &x, 8y and SUT1 are given in linear units, then sin Say

= Gx/rs, sin Sa, = <Sy/rS and sin Say = GUTl/rS,

It is clear from equation (6.7) that if 6x, 6y and SUTLl, are
determined by the least squares method, they represent the apparent
changes in the spin axis coordinates and the position of the zero
meridian needed to produce, in an average sense only, the drift of the
LLR network due to plate motion. Equations (6.7) thus form the
observation equations which contribute to a least squares solution for
the unknowns 6x, 8y and SUTl given the coordinate changes 8¢ and SA.
Note, also that values of 8¢ and 6A from more than one observatory are
required to determine tﬁese unknowns. Therefore, if {x,y,UTl}LLR are
the LLR solutions for polar motion and Universal time made in ignorance
of the plate motion effect and {x,y,UTl}COR are the correct solutioms,
which take into account the changes in latitude and longitude due to
plate motion, then the relation between these two solution sets follows

as (see e.g. Okuda 1972)

Xoor = XLLr T %

Yeor = YLLr " %Y

UTlCOR = UTlLLR - SUTl . (6.9)
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Values for 6x, Sy and 6UTl are shown in Tables 6.4 to 6.7, in cm/year,

for the five station network and selected two, three and four-station

combinations. The value for SUT]l is given in the equatorial plane and

if positive indicates that the average displacement of the zero meridian

for the LLR network is in an eastward direction.

The following trends are evident from the results listed in Tables

6.3 to 6.7:

(a)

(b)

As the number of stations in the LLR network increases, the
effect of plate motion on earth rotation results over short
time periods tends to be less significant.- The calculations
indicate that plate motions will contaminate determinations of
x, y and UT1, accurate to 5 cm, if a five station network is
constantly in operation after about four or five years. For
two station combinations the timescale for contamination can
be shorter by anywhere up to a factdr of 8, depending on which
parameter and station combination is under consideration. The
results for three and four station combinations generally lie
somewhere in between these limits. In the previous study by
Stolz and Larden (1977), substantially shorter time intervals
for the five station case were given., However, these earlier
results were based on the relative velocity model given by
Solomon and Sleep (1974) in which the Pacific plate was held
fixed., By using the actual absolute motions it is clear that
the effect of plate motion on earth rotation results can be
viewed in a more appropriate perspective. |

In general, the absolute plate velocity models considered in
this study predict changes in the LLR station qoordinates that
are in good agreement. With the exception of the latitude
change at McDonald predicted by Model B3 (drag beneath
continents only), all other coordinate changes are

consistent. For this particular model, McDonald has a slow
drift northward whereas the majority of the models predict a
slow drift southward but since the meridianal motion at

McDonald is about 1 cm/year, which is the level of
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Table 6.4. Effect of Secular Changes in LLR Station Coordinates on Polar

Motion and Universal Time Determinations for the Five-Station Network.

Plate Model §x 8y SyT1

Designation - cm yr—
AM1 -0.9 1.3 -1.7
K5 -0.8 1.7 -1.2
A3 -0.6 | 1.3 -0.5
B3 -1.7 1.6 -2.2
B4 -1.2 1.4 -1.3
c3 -0.4 1.1 - =0.2
C4 ~-0.7 1.1 . -0.4
D1 -1.9 1.1 -0.6
E2 -0.7 0.5 -1.1

E3 -1.4 1.1 -1.7
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Table 6.5. Effect of Secular Changes in LLR Station Coordinates on Polar Motion .

and Universal Time Determinations for Selected Four-Station Combinations.

Plate Model Four-Station Combinations”
Designation FJTH AJTH AFTH
§x, 8y, Oypys om yr’l

AM1 0.8, 1.8, -2.2  -1.8, 0.6, =-2.4  =2.1, 2.4, =3.3
K5 0.8, 2.3, -l1.6 -1.7, 0.8, =2.0 =2.0, 2.7, =2.7
A3 1.0, 1.9, -1.0 -1.5, 0.6, =1.2  -1.8, 2.4, =2.l
B3 -0.1, 2.2, -2.7  -2.6, 1.0, -2.9  -2.9, 2.7, -3.8
B4 0.5, 2.0, -1.7  =-2.1, 0.8, -1.9 =-2.3, 2.5, =-2.8
c3 1.2, 1.7, -0.6  -1.3, 0.5, -0.8  =1.6, 2.2, ~-1.8
ch 1.0, 1.7, -0.9  -1.6, 0.5, =-1.1  =1.9, 2.2, =2.0
Dl -0.3, 1.7, -l.1  -2.8, 0.5, =-1.3  =3.1, 2.2, =2.2
E2 0.9, 1.0, -1.5 -1.6, -0.2, -1.7 =-1.9, 1.6, =2.7
E3 0.3, 1.6, =2.1  =2.3, 0.4, -2.3  =2.6, 2.2, =3.3

A = Orroral, Australia; F = Calern, France; J = Dodaira, Japan

T = McDonald, Texas; H = Haleakala, Hawaii
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Table 6.6. Effect of Secular Changes in LLR Station Coordinates on Polar Motion

and Universal Time Determinations for Selected Three-Station Combinations.

Plate Model

. . .k
Three Station Combinations

Designation ATH FTH JTH
§x, 8y, Syrps °om yr-
AM1 -4.8, 1.0, -5.1 0.2, 3.7, =3.2 0.2, 0.4, =-3.3
K5 -4.8, 1.2, =4.6 0.1, 3.3, -3.9 0.3, 0.7, -2.8
A3 -4.6, 1.1, =3.9 0.3, 3.3, =2.7 0.5, 0.7, =-1.9
B3 -5.7, 1.5, =5.6 -0.8, 3.7, <-4.4 -0.6, 1.0, =-3.6
B4 -5.1, 1.3, -4.6  -0.2, 3.5, -3.4 =0.1, 0.8, =2.6
c3 -4.4, 1.0, =3.5 0.6, 3.2, =2.3 0.7, 0.5, -1.5
c4 -4.6, 1.0, -3.8 0.3, 3.2, =2.6 0.4, 0.5, -1.8
Dl -5.8, 1.0, =4.0 -0.9, 3.2, -2.8 -0.8, 0.5, =2.0
E2 -4.6, 0.3, =4.4 0.3, 2.5, =3.2 0.4, -0.1, 2.4
E3 -5.3, 0.9, =-5.0 -0.4, 3.1, -3.8 -0.3, 0.5, =-3.0

*See Table 6.5

for notations
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Table 6.7. Effect of Secular Changes in LLR station Coordinates on Polar Motion

and Universal Time Determinations for Selected Two-Station Combinations.

Plate Model. Two—Station Combinations*
Designation AF AH TH
5%, 8y, ypys cm yr |
AM1 -0.1, =7.9, 7.5 -5.3, 3.9, =5.4  -5.6, =-2.0, =-8.3
K5 -0.2, -7.2, 7.9  -5.2, 4.2, -4.9  -5.6, -l1.8, -7.7
A3 0.2, =-8.1, 8.7 -4.9, 3.7, =-4.2 -4.9, ~l.4, =-6.6
B3 -0.9, -7.8, 7.0  -6.0, 4.0, -5.9 -6.0, -1.0, -8.3
B4 -0.3, -8.0, 8.0 -5.4, 3.8, =-4.9 ~5.4, -1.2, =-7.3
c3 0.4, =8.3, 9.1 | -4.7, 3.5, -3.8 -4.7, =-1.5, =6.2
C4 0.2, -8.3, 8.8 =-5.0, 3.5, =-4.l -4.9, =-1.5, =-6.5
D1 -1.1, -8.3, 8.6  =6.2, 3.5, -4.3  =6.2, -l.5, =6.7
E2 0.1, -8.9, 8.2  =5.0, 2.9, -h.7  =5.0, =-2.2, ~-7.l
" E3 -0.6, -8.3, 7.5 -5.7, 3.5, =5.3 -5.7, ~-l.6, =7.7

*See Table 6.5 for notations.
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agreement between the plate velocity models, one cannot con-
sider the appearance of this anomaly to be very significant.
The fastest drift in latitude occurs at the Orroral station
where the rate is about 5 cm/year northward. For longitude,
the rate of 8 cm/year at Haleakala is the largest.

It is noticeable from Tables 6.6 and 6.7 that the plate
motion effects at Orroral and Haleakala will have a signif-
icant impact on earth rotation results after about one year
if a two or three~station network which includes these
stations is in existence. Also, it must be remembered that
even if a five station network is in operation, weather
conditions will not always permit a five station solution.
For example, if polar motion and UT1l results are obtained
using just the Orroral and Haleakala station data, then
plate motion effects will need to be considered after one
year because both these stations are located on fast mov-
ing plates. However, as more stations are added to the

LLR network and contribute to the solutions for polar
motion and UTl the plate motion impact becomes less sign-
ificant due to averaging and cancellectioh effects.

With the exception of the AF case (see Table 6.7),'a11
plate velocity models produce an apparent westward dis-
placement of thé zero meridian for the LLR networks that
have been considered. It is also instructive to note

that wﬁen the apparent drift of the pole is computed

after consideration of the LLR station motions, the maj-
ority of models give results that are consistent. For

the five~station network, all models predict an apparent
drift of the CIO at a rate of approximately 1.5 cm/year

in a direction bounded by longitudes 20°E and 60°E. The
magnitude of this drift is about a factor of 6 smaller

than the present astronomically observed secular motion

of the pole and in a direction roughly perpendicular

to it (see Section 2.4.3.3).
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The determination and maintenance of a global geodynamics reference
frame for earth rotation and plate tectonic studies is presently the
subject of considerable discussion (see e.g. Bender 1981). One of the
leading questions to be considered will be whether or not a theoretical
model for the plate motions should be adopted and if so, which model?
The results of the analyses carried out in this chapter indicate that
the currently avéilable absolute plate velocity models appear consis—
tent. Even if these models were not an adequate representation of the
present~day relative plate velocities, the data from the space ranging
techniques will certainly provide an avenue for their improvement.
Although recourse to geophysical hypotheses is necessary to deduce the
absolute motions, the wide variety of assumptions upon which the ten
models considered in the study are based, and the general agreement
between the results indicates that adopting a model for the plate
motions is not likely to have serious drawbacks. Since models AM1, K5
and B4 give compatible results for likely four and five-station LLR
networks, then it would seem desirable to consider the adoption of
any one of these models in the reduction of high~precision LLR data. One
must also give due consideration to the recently published absolute ‘
plate motion models of Minster and Jordan (1978) and Chase (1978). A
close inspection of these models, however, indicates that the velocities
of the major plates, upon which the LLR stations are located, are in

close agreement with those suggested by models AMl, K5 -and B4.

In the next chapter, efforts are made to assess the geodetic
consequences of two additional geophysical mechanisms which hitherto
have been regarded as sources of observational noise. Specific
consideration is given to the seasonal redistribution of air mass and
groundwater and the associated elastic deformation of the earth's
surféce as incorporated in the surface mass loading problem. Since both
involve a form of mass transfer, the extent and nature of geocentre
motion is also examined. The significance of the results is discussed
within the context of the expected 1 to 3 cm measurement accuracy level

for the space ranging techniques.
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CHAPTER 7
GEODETIC CONSEQUENCES OF SEASONAL ATMOSPHERIC
AND GROUNDWATER LOADING

7.1. TIntroduction

As the measurement ﬁncertainties at LLR, SLR and VLBI observing
stations approach the 3 cm level (see Chapter 2) and new data types from
the next generation of geodetic measuring systems are used to densify
regional survey networks with expected relative point positioning
accuracies of 1 to 2 cm (se: e.g. Anderle 1979, Faller et al. 1979,
MacDoran 1979, Larden and Bender 1981), one can query whether there
exist other time-dependent geophysical phenomena, apart from global
plate tectonic activity, that hitherto have been considered as sources
of observational noise in the space ranging techniques but could now
produce measurable displacements within the context of centimetre

geodesy.

Identification of these processes ahead of time using geophysical
data and knowing the significance of their effect on geodetic observa-
tions serves a two-fold purpose. Firstly, such information will give
valuabhle insight on what effects deserve parameterization in reduction
programs for high-precision data and secondly, is particularly useful
when the data contain signatures of spectral similarity that require
separation before experimental results on, say, the earth's rotation and

crustal motions, can be correctly interpreted.

As discussed in Chapter 2, there are many geophysical mechanisms
that contribute to the spectrum of the earth's rotation. What has not
been studied as thoroughly, though, are their effects on the position of
the geocentre and the geometrical shape of the earth's surface. Such
studies are extremely important because three-dimensional position mea-
surements to the LAGEOS satellite and the moon are sensitive to distortions
in the shape of the earth's surface as well as to the movement of the

geocentre. As pointed out in Chapter 2, the term geocentre is used in
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this study to mean the centre of mass of the solid earth which is deemed
to include the core. In the surface mass loading problem (see e.g.
Farrell 1972), mass transfer outside the earth's surface causes the geo-
centre, along with the solid earth, to shift in inertial space so that the
centre of mass of the whole system (earth plus load) is not displaced. It

is in this context that the concept of geocentre motion is discussed.

Some geodesists use the term geocentre rather loosely and state that
it is the centre of mass of the earth when they really mean the centre
of mass of the combined solid earth, oceans and atmosphere. While this
definition has a fundamental basis in satellite orbital dynamics (in
this context, the geocentre is located at the focus of the orbital
ellipse) it does, howevef, invalidate the concept of a movement
of the geocentre as discussed above. It should be emphasized that the
definition in the preceding paragraph is chosen for conceptual reasons
only and that it is not the author's intention to advocate which defini-
tion should be applied to the origin of the geographic reference system.
Such a decision is not critical to the intérpretation of the results in

this chapter.

Among the mechanisms that have to be considered, in addition to
plate tectonic activity, are the earth and acean tides, changes in
sea-level associated with the melting of the polar ice caps, atmospheric
pressure and groundwater variations, and earthquakes. The geodetic
consequences of some of these effects have been discussed many times
(see e.g. Melchior 1978, Walsh and Rice 1979, Goad 1980, Peltier 1980).
In this chapter, specific consideration is given to the combined
seasonal effects of atmospheric-groundwater loading which until recently
had not received much attention in the geodetic literature. Since this
mechanism involves a form of mass transfer, the magnitude of geocentre
motion is calculated together with the associated radial deformation of
the earth's surface as the latter responds elastically under the action
of the variable load. The corresponding tangential displacements for
seasonal atmospheric-groundwater loading turn out to be very small and,

therefore, are not computed (Stolz and Larden 1980).

Previous calculations for the radial deformations of the earth by the

atmosphere have only been done for regions of limited extent and then in
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connection with gravimetric and tiltmeter studies (see e.g. Urmantsev
1971, 1975; Trubytsyn and Makalkin 1976, Warburton and Goodkind 1977).
Theoretical solutions for the distortions of a model earth by a radial
stress which is uniformly distributed over equal antipodal ecaps have
also been reported by Slichter and Caputo (1960). While the calculated
displacements are of the order 1 cm, it is difficult to reconcile these
purely theoretitcal results with reality. The first global solution for
the seasonal distortions in the shape of the earth's surface due solely
to atmospheric loading was carried out by Stolz and Larden (1979). A

comprehensive account of this study is given in this chaptér.

Studies on the geodetic implications of groundwater variations have
mainly dealt with the impact of variations in water table levels on
the interpretation of crustal movements as deduced by gravimeter and
classical leveling methods. Like the atmospheric studies, analyses were
only carried out for regional areas (see e.g. Lambert and Beaumont 1977,
Hein 1980) and no attempt was made to investigate the time-dependent
effects of moisture stored on the surface in the form of snow, ice and
vegetation as well as water stored between the surface and the water

table.

Ever since the introduction of the Kimura term in the wobble equation
for latitude variations by the ILS, researchers have used the existence
of this term as likely evidence for geocentre motion (see e.g. Schumann
1903, Munk and McDonald 1960, Sugawa et al. 1973). Initial estimates
for the component of the term attributable to a shift of the geocentre
were made by Naito and Sugawa (1973), using seasonal data of atmospheric
pressure and oceanic mass transports across the 39th parallel of
latitude on which the ILS network is located. While it seems possible
that oceanic mass transports can explain the term, the overwhelming
number of observational, geophysical and astronqmical factors that can
contribute to the term are still not known well enough to warrant defin-
ite conclusions about the results (Lambeck 1980). Recent studies show
that the atmospheric tides (E. Groten, unpublished manuscript 1976) and
the M2 ocean tide (Brosche and Sunderman 1977) displace the geoaentre
in space by less than 1 and 2 cm, respectively. Using three of the plate

tectonic mass transfer models constructed by Mather and Larden (1978),
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Larden (1980) has shown that for realistic models, the displacement of
the geocentre relative to the earth's surface due to plate tectonic

activity probably isn't more than 5 mm/century.

Stolz (1976a,b) has estimated the contributions from seasonal
variations in ailr-mass, groundwater and sea level, and concludes that
together they amount to a seasonal shift in the geocentre of less than
5 millimetres. However, the atmospheric data used in this study were
quite old and only extended to latitude 40°S where, by the form of the
integrals which have to be evaluated, a maximum effect is expected.
Also, an algebraic error was made by Stolz (1976a) when allowing for the
oceanic response to atmospheric pressure changes and like many previous
studies, the dynamical nature of the calculated geocentre motion was not
'specified. Stolz and Larden (1979) corrected these oversights in their
recent calculation of the seasonal displacement and deformation qf the
earth by the atmosphere, using newer and more complete data., However,
the unresolved issues in this more recent study are the effect of defor-
mation on the displacement of the earth in space and the magnitude of the
surface distortions pfoduced by seasonal groundwater variationms, for
which fairly reliable data can be obtained. No attempt is made here
to evaluate the contributions due to seasonal fluctuations in sea level
since reliable data are not available (Lambeck 1980). Gill (1978,
private communication) believes it will be a decade or two before a

reliable ocean mass transport model becomes available.

In the following sections, the theofy of the elastic deformations
of the earth is reﬁiewed to provide the necessary mathematical platform
from which.the geodetic consequences of seasonal atmospheric-groundwater
loading and the unresolved aspects of Stolz and Larden (1979) can be
explored. Specific eonsideration is given to the interpretation of the
low~degree Love numbers as they apply to the surface mass loading
- problem, the data used and its manipulation, and the errors introduced by
the assumptions made in the calculation. Above all, however, efforts
are made to explain the nature of the calculated displacements and assess

the significance of the results on LLR, SLR and VLBI geodetic networks.
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7.2. Load Deformation Theory
7.2.1. Development of the theory

The equilibrium response of an elastic earth, subject to surface
mass loading (see e.g. Longman 1962, 1963; Farrell 1972, Dahlen 1974),
is an established topic of geophysics which has now attracted the
interest of geodesists who are involved with the analyses of high-
precision measurements made on the earth's surface and from it to extra-
terrestrial sources. The computation of ocean loading effects on mea-
sured geodetic quantities is a typical example (see e.g. Farrell 1973,
Brétreger and Mather 1978, Chiaruttini and Livieratos 1978, Goad 1980).
Since the theory has been discussed in numerous texts and papers, only

a brief account of the more general aspects is given here.

For an elastic earth that is radially stratified, spherically
symmetric and in hydrostatic equilibrium before the surface load is
applied, the linearized equations of motion for small deformations can

be written as (Lambeck 1980)
VT - $(pg3-f¥) - p%U + g%-(pg)z; - pazg/atz = 0 (7.1)

where T is the non-hydrostatic stress tensor, p is the density and g
is the gravitational acceleration in the equilibrium state, d is the
displacement vector, I 1s a unit vector with radial and tangential
components 2; and 2;, respectively, and v is the gradient operator

defined as

2z °o_ ¥
V= 9x . ]

J
The perturbation in gravitational potential U has two components
Ul and U2 which are, respectively, the perturbation in potential due to
the deformation and the potential of the applied mass load. Inside the

earth, U satisfies Poisson's equation, that is, (see e.g. Heiskanen and

Morttz 1967)

320 = —4nGT- (pd) (7.2)

where G is the gravitational constant. Since equations (7.1) and €(7.2)

are to be solved for spherically symmetric earth models with elastic
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properties that are functions of radius (r) alone, one can obtain

solutions for these equations if U is harmonic, that is,

U= ule)s, (7.3)
n

where U;(r) are the radially dependent functions defining the
potential perturbation and Sn is a surface harmonic of degree n. The
solution to equations (7.1) and (7.2) for this case is also harmonic

and can be written in the form
> > > >
d = g{vn(r)snir + W (r)vs 1} (7.4)

where Vn(r) and Wn(r) are the radially dependent functions for the
radial displacement and tangential displacenent in the direction of the
load, resbectively. To facilitate further solution, equétion (7.1) is
transformed with (7.2) and (7.4) to reduce the equations of motion to
six coupled first—order differential eQuations of the form

in/dr = [H] [Y] i, j=1,....6 (7.5)

ixj jx1

where [H] is a 6 x 6 coéfficient matrix whose elements are functions
of the Lamé parameters A and u, the density p, the gravitational acce-
leration g, the harmonic degree n, and the frequency ¢ of the deform-

ation. The Y,'s denote the following quantities;

i= 1;i radial displacement, Yl = Vn(r)

i = 2; radial stress

i = 3; tangential displacement, Y3 = Wn(r)

i = 4; tangential stress

i = 5; potential perturbation, Y, = U;(r)

i = 6; The derivative of Ué(r) less the radial displacement
contribution; Y6 = 3 U;(r)/a r - 4nGan(r).

Equation (7.5) is completely general and, in addition to the surface
mass- loading problem, can be applied to studies of the earth's free
oscillations and the deformations accompanying earth tides. Subject to
appropriate boundary conditions, equation (7.5) can be solved by

numerically integrating this set of differential equations to obtain

values of the Yi's (see e.g. Farrell 1972 for integration teghniques).
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For example, the boundary conditions relevant to the surface 1oad1ng
problem are different from those of the earth tide problem in that

the load exerts a normal stress on the loaded surface that is missing

in the other case. Nevertheless, the conditions of (1) regularity at
the origin, (2) continuity of deformation and stress across internal
surfaces of discontinuity, and (3) internal and external gravitational
potentials and their respective gradients must‘be equal at free surfaces
and across surfaces of discontinuity,still apply (see e.g. Alterman

et al. 1959).
7.2, The Load Love Numbers

In the surface mass loading problem which is of concern here, it is
conventional to discuss the deformation of an elastic sphere, due to
an applied potential U2 of the form (7.3), in terms of the dimensionless
load Love numbers h;(r), lﬁ(r) and ké(r) (Munk and MacDonald 1960). For

=l =lu s , (7.6)
n n

the displacement functions Vn(r) and Wﬁ(r), and the potential perturbation

Ui n(r) due to deformation are related to the load Love numbers by (see,
s
e.g. Farrell 1972)
—_ - -
Fvn(r) h' (r)/g(r)
— ) \J
W (r)| = Uz’n(r) Zn(r)/g(r) (7.7)
\ 1
Ul’ér) kn(r)
In terms of the Yi's of equation (7.5)
= ! '
Y, (r) hn(r)Uz,n(r)/g(r)
= ¢! v : . ,
Y4(r) Zn(r)Uz’n(r)/g(r) (7.8)
= ' 1
Y5(r) [1+ kn(r)]Uz,n(r)

Of geodetic Interest, are the radial, Er’ and tangential, gt’ displa-
cements in position and the perturbation in potential, U, at the earth's sur-

.face (r = a, where a is the earth's radius). Dropping the radial argument
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when r = a and using equations (7.3) and (7.4) together with equations

(7.7) and (7.8) gives

-> = > _ ' ->

d_=J]vysi =] [n U, /gli (7.9a)
n n

> _ > _ v -

d =1 Y3(VSn)It =] (o) VU, /el (7.9)
n n

= = ' .
U IZI S rzl (HDT, (7.9¢)

Implicit in these equations is the combined effect of loading and
attraction. The deformation is due to two opposing effects. While the
major component is the surface depression caused by the load, there
is also a smaller component which is due to the attraction by the
load. The combined effect is described by equations (7.9a,b). The
additional potential due to the distortion alone is given hy kr'le’n
(see equation 7.9¢). Similar equations can be employed to study the
effect of surface mass loading on gravimeter and tiltmeter measurements

(see e.g. Goad 1980).

An important aspect of the load Love number formulation that should
be discussed here is the dependence of the calculated load Love numbers
on the frequency of the load. In most calculations of these numbers
(see e.g. Longman 1963, 1966; Dahlen 1976) it is customary to assume
the elastic response behaves statically. The concept of purely static
deformation is based on zero frequency response (0=0) which implies that
when the load is applied, the elastic deformation occurs instantaneously
and follows a linear pattern. This assumption nullifies the contribution
of the frequency dependent terms in the [H] matrix of equation (7.5) and
leads to exp;essions for the Yi's and the load Love numbers, h;, l; and
k! that are merely functions of the Lameé parameters X and u, the density
o, gravitational acceleration g, and the harmonic degree n. Values of

h', &' and k' deduced in this manner are often referred to as static
n n n .

load Love numbers (see e.g. Dahlen 1974).

For cases where the frequency ¢ of the applied load potential U2

is eclose to Oy ® 26 cycles/day, that is, the frequency of the fundamental

mode of free oscillation (see Stacey 1977 for a discussion of these
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modes), the static response approximation is unreliable for load Love
number calculations and the dynamic approach is necessary in order to
account for resonant effects. This is accomplished by retaining the
frequency dependent terms in the [H] matrix of equation (7.5) (see
Farrell 1972).

, In deciding whether the static approximation can be used in
practice, Jeffreys and Vicente (1966) offer the following geheral rule.
They suggest that the fractional difference in the static Love numbers
(0=0) and the values for frequency o should be of the order of 02/05

where % is defined above. This order of magnitude has been
substantiated by the studies of Pekeris and Accad (1972). For loads
that vary annually (0=1/365 cycles per day), such as the seasonal

redistribution of atmospheric mass and groundwater, the differences are
infinitesimal. This clearly indicates that the static equilibrium
response approximation is more than adequate for the calcuiations in
this chapter. Even at the semi-diurnal tidal frequency (0=2 cycles/day)
the statlc approximation is, at least, good to 1%. There is, however,
some controversy on how to treat the fluid core response in static
deformation problems (see e.g. Dahlen 1974, Crossley and'Gubbins‘1975)
but this 1ssue does not seem to affect the results for the: response at

the surface of the earth (Dahlen 1974).

Values of the load Love number h;, as déduced by various authors,
are listed in Table 7.1 for all harmonics up to and including degree 36.
It did not seem necessary to list the companion values l; and k; since
the tangential displacements are very small fqr seasonal atmospheric-
groundwater loading (Stolz and Larden 1980) and the perturbations in
gravitational potential are not considered in this study. Consequently,

an evaluation of equations (7.9b,c) was not undertaken.

Longman's (1966) results have been derived for a Gutenberg earth
model with an Adams-Williamson core using the static response approxima-
tion. The properties of this model are described by Alterman et al.
(1961) and Longman (1963). In his extension and review of Longman's
work, Farrell (1972) calculates h; for the same earth model but uses

the dynamic approach and chooses the loading frequency ¢ as the M,
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Table 7.1, Values of Load Love Number ('h;) for Radial Deformation

Calculations

Deﬁree Longman (1966)  Farrell (1972)"  Dahlen (1976)
0 (19)  0.134 (1.949) ——= (%) 0.135 (2.016)
1 (20) == (1.994) 0.290 (*) 0.292 (2.064)
2 (21)  1.007 (2.037) 1.001 (*) 1.010 (2.110)
3 (22) 1.059 (2.078) 1.052 (%) 1.074 (2.154)
4 (23)  1.059 (2.117) 1.053 (%) 1.080 (2.196)
5 (24)  1.093 (2.156) 1.088 (*) 1.116 (2.235)
6 (25)  1.152 (2.194) 1.147 (%) 1.177 (2.273)
7 (26)  1.223 (2.223) x (%) 1.250 (2.309)
8 (27)  1.296 (2.257) 1.291 (*) 1.326 (2.343)
9 (28)  1.369 (2.291) * (%) 1.401 (2.376)
10 (29)  1.439 (2.322) 1.433 (%) 1.475 (2.407)
11 (30)  1.506 (2.351) . x (%) 1.545 (2.437)
12 (31)  1.572 (2.380) * (%) 1.613 (2.465)
13 (32)  1.631 (2.408) *  (2.379)  1.679 (2.492)
14 (33)  1.691 (2.429) * (%) 1.741 (2.518)
15 (34)  1.747 (2.455) k(%) 1.801 (2.543)
16 (35) 1.798 (2.470) k(%) 1.859 (2.566)
17 (36) 1.852 (2.497) X (%) 1.914 (2.589)
18 1.902 1.892 1.966

*
Values not listed by Farrell (1972).
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semi-diurnal ocean tide frequency because he is primarily interested

in the loading effect of this constituent. The differences between
these results and Longman's are at the 1% level as predicted by Jeffreys
and Vicente (1966).

Farrell, however, does not bother to list all the load Love numbers
since these are merely intermediaries for the solution of the point-mass
oceah loading problem where local effects may dominate. For some
point-mass problems it is more convenient to use Green's
functions, since the load Love number approach outlined in
equations (7.9a,b,c) involves the use of a large number of param-
eters. One of the simplifying aspects of the seasonal atmospheric
and groundwater load is that its energy is concentrated in the low
degree spherical harmonics which makes the load Love number approach

far more attractive.

Dahlen (1976) has computed static load Love numbers for the more
recent earth models 1066A and 1066B of Gilbert and Dziewonski (1975).
The discrepancy between these values and those of Longman and Farrell are
at the 5% level. This can mainly be attributed to the differences in the
earth models, particularly the detailed structure of the mantle. Tests
also revealed that the difference between radial displacement results
using h; values for model 1066A and 1066B in areas where atmospheric-
groundwater deformations were the largest did not exceed a few tenths of
a millimetre at the most. Therefore, only values for model 1066A are

listed in Table 7.1.

Whereas Dahlen (1976) derives all values of h' up to and including
degree 36, Longman (1966) ignores the first degree term (h ) and Farrell
(1972) sets the zero degree term (h ) equal to zero. Both the zero and
first degree terms are needed in thlS study for reasoms given in the
following section. Since the static approximation is more than adequate
at the annual frequency and the load Love numbers of Dahlen (1976) are

complete, his values for model 1066A are used throughout this study.

7.2.3. Interpretation of Low-Degree Load Love Numbers

The significance of the load Love numbers of degree 0 and 1

deserves a special word of mention. A zero degree term is introduced to
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model the earth's response to a load whose mass is not conserved and
characterizes a load component that is uniformly distributed over the
entire earth's surface. Since the earth is compressible this component
causes a radial displacement which is accompanied neither by a tangential
displacement nor by a perturbation in the gravitational potential. If
mass is conserved then the zero degree term will vanish (Rochester and
Smylie 1974), but not if the radial deformations due to seasonal air-mass
and groundwater variations are calculated without considering the oceans

(Stolz and Larden 1980),

An estimate of the zero degree contribution for both these
constituents can be obtained by examining the results of Stolz and
Larden (1979) and Lambeck (1980). According to Stolz and Larden (1979),
the seasonal variation in mean atmospheric load qg(t) over the whole

earth, in grams per centimetre squared (g cm ~), is
A -2 :
qE(t) = =0.11 cos® - 0.06 sin® g cm (7.10)

where @ is the longitude of the sun measured from the beginning of the
year. Mean groundwater storage also varies in a similar manner but is
slightly out of phase. From Van Hylckama's (1956) groundwater data,

which are used in this work, Munk and MacDonald (1960) estimate
G ] -2
qE(t) = 0.19 cos® + 0.77 sin® g cm . (7.11)

The total seasonal variation in the combined atmospheric-groundwater

load is obtained simply by adding equations (7.10) and (7.11), that is,
ng(t) = 0.08 cos® + 0.71 sin@ g cm > . (7.12)

Clearly, the combined mass within these two constituents is not conserved
on a seasonal basis otherwise the right hand side of equation (7.12)
would be zero. Equation (7.12) is thus an indicator of the zero degree

contribution.

At any particular location on the globe, the zero degree contribution

of the combined atmospheric-groundwater load will not exceed (0.712+
0.08%)1/2

land where the space ranging networks are located and the deformations

= 0.72 g cm—z. In areas of geodetic importance, that is, on
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are a maximum, this value is about 10% of the observed seasonal load de~
partures. This conclusion wds reached by comparing the value 0.72 g cm--2
with the local seasonal variations at strategic sites as indicated by

the atmospheric dataset of Schutz and Gates (1971, 1972, 1973, 1974)

and the groundwater dataset of van Hylckama (1956). Since no attempt

has been made to conserve mass in these calculations, one would expect
the deformation results to contain a zero degree contribution of about
10%. This clearly will not affect the general conclusions that can be

drawn from the results presented in section 7.4.

Lambeck (1980) has estimated qg(t) using a scaled version of Van
Hylckama's (1956) groundwater data set (Van Hylckama 1970) which leads
to a smaller estimate for the seasonal change in total groundwater

storage of
G ., -2
qE(t) = 0.02 cos® + 0.60 sin® g ¢m . (7.13)

Adding equations (7.10) and (7.13) for the total seasonal variation in

the combined atmospheric—-groundwater load gives
AG . -2 -
g (t) = -0.09 cos® + 0.54 sin® g cm (7.14)

which is not significantly different from equation (7.12) and, therefore,
does not alter the previous statement concerning the zero degree contri-

bution to the deformation results.

Terms of degree 1 were omitted from earlier sets of the load Love
numbers because their inclusion implied a displacement of the whole
earth in space which to a geophysicist was of no direct consequence.
Cathles (1971) realized this was incorrect for the surface loading pro-
blem and noted that the earth responded to a first degree load in two
ways. Firstly, there is a displacement of the earth's surface in space
and secondly, the earth is deformed. The displacement of the solid part
of the earth in space follows directly frbm the equations of motion,
which show that the position of the centre of mass of the earth plus
load remains stationary. As the load is redistributed, the solid earth
moves to keep the whole system in equilibrium. The geocentre thus moves,

along with the solid earth, in space. It will be shown in section
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7.5.1 that the magnitude of the displacement is, for all intents and
purposes, the same irrespective of whether the earth is treated as a
rigid or elastic body. Farrell (1972) and Dahlen (1976) assume this
shift has already taken place and compute the load Love numbers accord-
ingly. Equation(7.9a) thus gives the deformations relative to the
position of the earth's surface after the load is redistributed but
before any deformation has taken place. The first degree component of
the deformation is simply accounted for by the hi term (see Table 7.1).
Assuming the shift of the geocentre in space has already taken place
permits the load Love numbers to be determined independently of the load
magnitude (Cathles 1975). However, the satellite geodesist requires

that this shift be monitored hecause it is one of the many phenomena

that can affect the measurements.

In section 7.4, both the radial deformations and shift of the
geocentre that accompany the seasonal redistribution of atmospheric and
groundwater mass are evaluated. These calculations are preceded in
section 7.3 by a discussion of the data and followed in section 7.5 by a
discussion of the results, their accuracy and their significance within

the context of centimetre geodesy.

7.3. Data
7.3.1. Atmospheric Pressure

To estimate the seasonal variations in geodetic position (see
section 7.4), global datasets of atmospheric pressure and groundwater
storage are needed. For the atmospheric calculations the January,
April, July and October éverages of sea-level pressure compiled by
Schutz and Gates (1971, 1972, 1973, 1974) from the atlases of Taljaard
et al. (1969) and Crutcher and Meserve (1970) are used. These data are
given at grid-points spaced every 4° of latitude and 5° of longitude
over the entire earth but need to be adjusted back to station elevation
before the evaluation of equations (7.6), (7.9a) and the geocentre motion
integrals of equation (7.37) (Munk and MacDonald 1960). 1Ideally, the
pressure should refer to the mean elevation of the area for which the

grid value is assumed to be representative. However, since the method
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of estimating sea-level pressure from station level data varies from
station to station it is only possible to perform this adjustment

approximately.

In this study, Laplace's formula as modified by Siderenkov and
Stekhnovskiy (1971) is used to make the correction. Assuming that the
atmosphere is polytropic up to the maximum height on land one can write

the surface pressure P as

P =P (—) -—5 (7.15)

where PO is the pressure at sea-level, T is the surface temperature in
degreeszKelvin, T0 = T 4+ vh is the temperature at sea-level, g = 980.618
cm sec is the value of gravity averaged over the earth, R = 0.287 x
lO7 ergs g-l deg_ is the. gas constant, y = 6° km_l is the mean tempera-
ture gradient, g is the local acceleration of gravity, and 850 is the
sea-level value of g at latitude 45°. The surface temperatures for
January, April, July and October at the grid-points were obtained from
Schutz and Gates (1971, 1972, 1973, 1974) and an averaging process was
used to determine the mean elevation h of each 4° x 5° compartment from ‘
the 1° x 1° height data of Lee and Kaula (1967). A convefsion factor of
1 millibar = 1.02 g cm-2 is used to convert the pressure values given,
in millibars, by Schutz and Gates, to the equivalent load units of g em

via the hydrostatic approximation (see Munk and MacDonald 1960, p. 108).

7.3.2. Groundwater

For seasonal departures in groundwater storage, the dataset of
Van Hylckama (1956) has been used. This monthly compilation lists
estimates of the total amount of water stored in the ground, in units
of 1016 cubic centimetres, for 10° x 10° areas of the earth's surface.
As mentioned in Chapter 2, the definition for groundwater includes
moisture stored on the surface (snow, vegetation, lakes) as well as in
the upper regions of the crust. In particular, the seasonal variation
in the amount of water stored between the earth's surface and the

shallowest position .of the water table is an important consideration
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(Munk and MacDonald 1960). Data beyond latitudes 70°N and 70°S, in
areas that are comparatively small and where moisture changes are
slight and information is sparse, have nct been included in the dataset.
Used in this work are the volume estimates for the months of January,
April, July and October. Noting that 1 cﬁbic centimetre of water
weighs 1 gram, the values for each 10° x 10° compartment were divided

by the area of the compartment to yield the surface load in g cm .

The reliability of the method used by Van Hylckama to deduce the
amount of water stored on and in the ground hinges primarily on how
adequately the empirical expression developed by Thornthwaite (1948)
can estimate the evapotranspiration term in the water balance equation
as a function of air temperature and latitude. The problem has been
discussed by Lambeck (1980) together with a brief summary of the
other viable methods that can be used to estimate the change in ground-
water storage. For global calculations, Thornthwaite's method appears

to be the most versatile.

A discussion of the effect of errors in the groundwater and

atmospheric data on the resuylts is left until section 7.5.

7.4. Seasonal Variations in Geodetic Position

As a matter of convenience, the vector joining the geocentre and
an observing station on the earth's crust shall be referred to as the
geocentric station vector. Changes in the length of this vector can
be caused by a shift of the geocentre with respect to the earth's
surface or surface deformations. A shift of the geocentric station
vector in space will not alter its length in any way but will be
detected by measurements to artificial satellites and the moon. It,
therefore, must be considered. The VLBI technique, for example, is

insensitive to movements of the geocentre.

In this section, consideration is given to the movements of the
geocentric station vector caused by seasonal atmospheric-groundwater
loading. 1In the first instance, the surface deformatiéns are calculated
individually for the atmospheric and groundwater loads. The results

are presented in contour form on global maps for each of the four
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seasons. Secondly, the nature and extent of the accompanying motion
of the geocentre is investigated. The approach here will be to solve
the problem for a rigid earth and then, if necessary, correct the
solution for the effects of load deformation. Détails of the basic

assumptions invoked for these calculations are given in section 7.5.
7.4.1. Seasonal Departures in Radial Position

The radial displacements dr are calculated directly from equation
(7.9a). The potential U2 at the surface arising from seasonal depar-
tures in surface load q(¢,A,t) g cm_2 may be written as (Munk and

MacDonald 1960, p. 29)

q
L= 4mGa ) o— (7.16)

U, =10, Tl
n n

s
where 9, is the nth degree surface spherical harmonic representation

of q(¢,A,t) at a particular point on the globe (see e.g. Heiskanen and
Moritz 1967, p. 30), a is the earth's radius, and G is the gravitational
constant. Substituting (7.16) into (7.9a) gives

h'q
_ 4mGa nn
d_ = |Zr| - rzl o1 . (7.17)

qn may be determined in two ways (Heiskanen and Moritz 1967 p. 29).
The easiest method is to expand the load in terms of spherical harmonic
coefficients but this approach is not very convenient if, as is done in
this study, the errors introduced by solution truncations are to be in-

vestigated. Thus, the direct approach is chosen, namely

- 2n+1
9 4

f q(6,25£)P_(cosp)ds (7.18)
S n

where Pn(cosw) is the Legendre polynomial, ¢y is the angle between the
radius vector at the computation point and the radius vector at the
location (¢,A) of the disturbing load, dS = cosdddd)r is a surface
element on a unit sphere and S is the surface of the earth. Substitu-

ting (7.18) into (7.17) gives
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d_ =327 n [ q6,23)P (cosp)ds . (7.19)
n nJS n

‘Equation (7.19) is used extensively to compute the radial displacements
caused by the seasonal departures in the atmospheric and groundwater

load from an annual average value,
7.4.1.1. Deformation due to Atmospheric Loading

Departures in radial position from an annual average position due
to atmospheric loading are shown in Figures 7.1, 7.2, 7.3 and 7.4,
that is, for each of the four seasons. The response of the oceans to
seasonal changes in atmospheric pressure is assumed to follow the
inverted barometer rule on a global basis (see Munk and MacDonald 1960,
and sections 7.4.2 and 7.5 for further discussion). The oceans thus
yield so as to annul horizontal pressure gradients. The seasonal
departures in load on the ocean floor, at any particular instant, are
thus everywhere the same but varying in time because of the seasonal
variation qo(t) in the mean atmospheric load that lies above the oceans.

Following Jeffreys (1916) one can write

qo(t) = — q(9,)3t)ds (7.20)
4ma Oceans
as 0
1 1 1 .,
q.(t) = [- = m sin(@-a) + = m' cos(@~a)]ds (7.21)
0 0 2 2
4ﬂa0 Oceans

where m and m' are the January minus July and April minus October load
differenées, respectively; ag is the fraction of the earth covered by
oceans, o = 10472 is the longitude of the sun on April 15 and 6 has been
defined previously. From the oceanic pressure data of Schutz and

Gates (1971, 1972, 1973, 1974) and using aO = 0.697 from Balmino et al.

0
(1973), Stolz and Larden (1979) find
4o(t) = =0.73 cosd - 0.19 sind g cm - (7.22)
while Siderenkov (1973), assuming zero phase lag, gets

qo(t) = -0.82 cos0O g cm_z _ (7.23)
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using the data from Siderenkov and Stekhnovskiy (1971). An alternate
method of evaluating qO(t) is given in section 7.4.2, however, the

difference in results is insignificant.

Lines of equal deformation in Figures 7.1, 7.2, 7.3 and 7.4 were
drawn using computed values of dr at grid points spaced every 16° in
latitude and 15° in longitude. Values of dr were computed with the
complete (n=36) load Love number dataset of Dahlen (1976), however,
the spacing used to prepare the global maps was chosen because the
harmonics of the atmospheric pressure field up to an including degree
12 contribute nearly all the power in the seasonal radial deformations
(see Figure 7.5). Note, a negative contour interval represents a
depression of the earth's surface from an annual average position
whereas a positive value indicates a relaxation or lengthening of the

geocentric station vector.

The most striking aspects of these maps are the dominant cells
located over Australia, Greenland, Antartica and near Central Russia
in January, the absence of any significant departures in radial position
for April, the reappearance of dominant cells over Central Asia,
Greenland and Antartica in July, and the disappearance, once again,
of major departures during October. In general, the peak—-to-peak
annual variations in radial position over parts of Asia, Europe and
Greenland approach 1 cm and are larger by a factor of 2 in Antartica.
Over the Australian and American continents, the peak-to-peak

amplitudes are only of the order 0.5 cm.

These general trends correlate well with the seasonal pattern of
pressure systems. For example, the 5 mm depression over Central
Russia in January (see Figure 7.1) is caused by the high pressures
which prevail over the FEurasian continent during winter. The shift in
air-mass associated with this broad high pressure cell also contributes
significantly to the observed annual term in polar motion (see Munk and
MacDonald 1960, Lambeck 1980). 1In the northwestern hemisphere, the
Icelandic low pressure system dominates during winter and is responsible
for the 4 mm departure in radial position over parts of Greenland. The

maximum seasonal departure occurs in Antartica where there is a 1.5 cm
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depression caused by the summer high pressures which, in some local
areas, deviate up to 25 mb from the mean annual value. By July, the
atmospheric loading process has reversed and corresponding departures
are opposite in sign. During the months of April and October the.
seasonal departures in radial position due to atmospheric loading are
of the order 2 mm for most parts of the globe. However, this is not
necessarily true for groundwater loading as is discussed in the next

section.
7.4.1.2. Deformation due to Groundwater lLoading

Seasonal departures in radial position from an annual average
position due to groundwater loading are shown in Figures 7.6, 7.7, 7.8
and 7.9. The global maps were prepared from values of dr calculated
on a 10° x 10° grid. Because the groundwater data are spaced on a
similar grid network, only load Love numbers up to and including degree
18 were used to calculate dr' Calculating the contribution of the higher
harmonics through degree 36 requires data on, at least, a 5° x 5° grid.
However, the experience gained from the atmospheric calculations indi-

cates that higher degree terms make only minor contributions to the

total deformation.

The most obvious difference between Figures 7.6 to 7.9 and their
atmospheric counterparts is the phase shift between the maximum and
minimum departures. Maximum groundwater storage usually occurs in late
winter and the middle of spring whereas the minimum storage occurs
during the late summer and early fall. In temperate climates, the
evapotranépiration mechanism hardly operates during the periods of cold
weather while precipitation and snowfalls continue. During the summer
the reverse applies; the snow melts and runs off, soil moisture evapor-
ates, plants transpire and rainfall activity reduces. Of course, the
exception to this trend occurs in the monsoon areas of the tropics where
in India, for example, the wet and dry seasons coincide with summer and
winter, respectively. Atmospheric effects are generally more predictable

and are most pronounced during summer and winter,

In general, the maximum peak-to-peak annual variations in radial

position due to groundwater loading occur over parts of South-East Asia,
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Table 7.2. Global Trends for Combined Seasonal Atmospheric-Groundwater
Loading Effects on Radial Position

Country/ Annual Radial Deformation
Continent Amplitude, mm Phase, deg
Europe 9 211
Asia 5.5 60
North America 7 255
Greenland 4.5 334
South America 5 291
Australia 3 6
South Africa 3 285
North Africa 3 96
Antartica* 11 192

*
Results are for atmospheric loading only since groundwater data were

not available.
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Canada, Europe and South America and are of the order 1 to 1.5 em. 1In
Africa and the United States the peak-to-peak variations are less by
about a factor of two while in Australia they are virtually

negligible.

It is clear from the above results and those presented in section
7.4,1,1 that when the radial surface deformations caused by the seasonal
departures in atmospheric pressure and groundwater storage are combined
algebraically, the results become marginally significant at the expected
1 to 3 cm accuracy level for new geodetic measuring techniques. The
likelihood and influence of errors in the geophysical data and year~to-
year fluctuations in the annual components of atmospheric'pressure and

groundwater, therefore, must be considered (see discussion in section

7.5).

The major global trends are summarized in Table 7.2. The results
are given for regions within each country or continent where the deforma-
tions are largest and are expressed in functional form using the

relation

dr = A cos(®-B) (7.24)

where A and B are the amplitude and phase of the annual radial deforma-
tion, respectively. Peak-to-peak variations (2A) exceed 1 cm in Asia,
North America and South America, and approach 2 cm in Europe and Antar-
tica. Appropriate corrections may need to be made, particularly if a
Transportable Laser Ranging Station (TLRS) visits a site in a region of
maximum deformation. Most dedicated geodetic observatories are not
located in such regions and so the loading effects are not as significant.

These results are summarized in the next section.
7.4.1.3 Deformations at LLR, SLR and VLBI Stations

Two recent studies by Stolz and Larden (1980) and Larden (1980)
addressed the question of whether variations in radial position due to
seasonal atmospheric-groundwater loading were significant at VLBI sites
and over the North American continent. The resulfs of these studies

form the basis of a more comprehensive summary presented here that
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incorporates SLR and LLR stations as well, Table 7.3 lists the annual
radial deformations at a selection of sites that either are actively
involved in or might be of interest for LLR, SLR and VLBI experiments.
Results for Dodaira (SLR/LLR), Japan; Haleakala (SLR/LLR), Hawaii;
Papeete (SLR), Tahiti and Madrid (VLBI), Spain have not been listed
because the amplitudes are negligible. Stations in close proximity

to those listed have also been omitted to avoid duplication of results.

The most significant variation in radial position occurs at
Novosibirsk, USSR where the peak-to-peak amplitude 1s 1.4 cm. Annual
variations of about 1 cm peak-to-peak amplitude are also evident at
Duluth, Minnesota; McMurdo Sd, Antartica; Greenbelt, Maryland; Westford,
Massachusetts and Bfazil, South America. The peak-to-peak amplitudes
at LLR sites are of the order 5 mm or less and are not considered signi-
ficant.

Many of the stations listed in Table 7.3 will form the terminals
of geodetic baselines whose lengths will be monitored as part of the
global plate tectonics program. (National Academy of Sciences, 1978). It
is, therefore, worthwhile to investigate whether the radial deformations,
dﬁ and df, at two sites A and B might compound to produce larger motions
of the baseline AB. If A and B are located on the surface of a sphere
then the change AbAB in baseline length due to the motions d: and di
follows as

i,y = @+ a1 - cos u,AB)/:z}l/2 (7.25)

where
cos wAB = cos ¢A cos ¢g cos(AA—AB) + sin LN sin og > (7.26)

is the cosine of the angle wAB subtended at the geocentre by the geo-

centric station vectors A and B.

Table 7.4 lists the annual variation in length for a selection
of possible SLR baselines whose peak-to-peak amplitudes exceed 1 cm.
The results were obtained by a direct evaluation of equation (7.25)

using the information given in Table 7.3. The peak-to-peak annual
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Table 7.3. Annual Radial Deformations at LLR, SLR and VLBI Sites Due to

Seasonal Atmospheric-=Groundwater Loading

= ===

Station Latitude Longitude Amplitude - Phase Station
TL.ocation deg deg mm deg Designation
Arequipa, Peru . =16 289 1 298 SLR

ESO, Chile -29 289 1.5 310 SLR
Nairobi, Kenya -1 37 1 355 SLR

Crasse, Frénce 44 7 2 232 SLR,LLR
Wettzel, Germany 49 13 3 234 SLR,LLR
Bangalore, India 13 78 2.5 59 SLR
Novosibirsk, U.S.S.R. 55 83 7 223 SLR

Kootwi jk, Netherlands 52 6 3 239 SLR,VLBI
Duluth, MN; USA 47 268 6.5 244 SLR

McMurdo Sd, Antartica -78 167 6 196 SLR

Athens, Greece 38 24 3 212 SLR

Bonn, Germany 51 7 3 236 VLBI
Greenbelt, MD; USA 39 283 4.5 243 SLR
Geraldton, Australia -29 115 2 0 SLR
Canberra, Australia -36 149 2 5 SLR,VLBI,LLR
Fort Davis, TX; USA 31 256 2 248 SLR,VLBT,LLR
Westford, MA: USA 43 289 5 251 VLRI

Owens Valley, CA; USA 37 242 2 265 VLRI
Onsala, Sweden . 57 12 3.5 240 VLBI
Brazil, S. America -15 310 4,5 284 VLBI
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Table 7.4, Annual Baseline Variations

Baseline Amplitude Phase

: mm deg

Novosibirsk = McMurdo 12 211
Minnesota - McMurdo 10.5 221
Minnesota — Novosibirsk 8.5 233
Minnesota - Géraldton ' 5.5 262
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variation of baselines formed by LLR stations is below 1 ecm. Similar
conclusions have also been reached for VLBI baselines (Stolz and Larden

1980) .
7.4.2. Geocentre Motion ’

Up to this point, the discussion has concentrated on the deformat-
ions of the earth relative to the displaced position of the whole earth in
inertial space. In other words, no attempt has been made to compute the
annual oscillation of the whole earth produced by the first degree (Pl)
component of the combined seasonal departures in atmospheric-groundwater
load. Tt will be shown that the above-mentioned shift corresponds to
one of the solid earth, including the geocentre, in inertial space and
that the magnitude of the shift will be the same irrespective of whether
the earth is treated as a rigid or elastic body. The mathematical formu-
lation presented here follows essentially that of Stolz (1976a) and

begins by assuming that the solid parts of the earth are rigid.

For a redistribution of matter loading the earth's surface, the
changes Axi(t) = [xi(to) - xi(t)] in the coordinates of the geocentre
with time are (Stolz 1976a)

3
a

Axl(t) = Er—fs q(p,A;t)cospcosr dS

3
sz(t) = ﬁ— f q($,);t)cosdsini dS
S

=

3
Ax3(t) —_— J q($,Ar;t)sing dS (7.27)
S

where ¢ and A are the latitude and longitude of the seasonal load
departures, M is the mass of the earth, S is the surface of the earth,
and a, q(¢,2;t) and dS have been defined previously. As was the case for
the deformation calculations, the effect of the seasonal redistribution
of the atmospheric and groundwater loads on Axl(t), sz(t) and AXB(t)
will be discussed separately and then combined algebraically.
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Since Jeffrey's work in 1916, it has been customary to treat the
effects of the atmosphere and the ocean response to pressure changes
together. Fdr studies involving seasonal variatibns, the usual
approach is to assume the‘oceans respond to atmospheric pressure changes
like an inverted barometer (see e.g. Lambeck 1980). The increase in
the atmospheric pressure, over and above the mean pressure over the
total ocean surface, depresses the local ocean surface by about 1 cm for
every millibar of pressure. As the sea surface responds, a flow pattern
is set up between the various oceans of the world so as to annul the

horizontal pressure gradients on the sea floor.

Since the inverted barometer rule implies that the seasonal
departures of the total load on the sea floor are constant at any
instant, but vary with time according to the variable fraction of the
atmosphere that lies above the oceans, one can express equations (7.27)

as (Munk and MacDonald 1960, p. 109)

3
Axl(t) =-§— [I q(é,X;t)cospcosidS + qo(t)f cos¢coskd;]
Land Oceans -
a3 I
sz(t) = q(¢9,A;t)cosdsinAdS + qo(t)f cos¢sinkd%}
—Land Oceans
a3 I
Ax3(t) = f q(9,r;t)singds + qo(t)f sin¢dé} (7.28)
“~Land Oceans

where qo(t) is the mean value of q(¢,);t) over the ocean areas [see
equation (7.21) for the evaluation of qo(t)]. It should be emphasized
that oceanic mass must be conserved for these equations to be valid.

Using the fact that

1]
o

j cospcosrdS f cosdcosAdS + J cospcosAdS
S Land

Oceans

i
o

cos¢$sinAdS + f cos$sinAdS

Oceans

cos¢sinAdS J
g Land
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and

i
e

J sin¢dS = sin¢dS + [ sin¢dS
S

JLand ocean

one can express equations (7.28) as

3
Ax, (£) = & [ {q(¢,2;t) - q.(t)} cosdcosrdS
1 M Land 0

3
sz(t) = 5—-[ {q(¢,2;t) - q.(t)} cosdsinAdS
. M 0
Land
a3
Ax3(t) = ﬁ-f {q(d,r3t) - qo(t)} sin¢dS . (7.29)

Land

In section 7.4.1.1, qo(t) was evaluated using the oceanic pressure
data of Schutz and Gates. (1971, 1972, 1973, 1974). However, since pres-
sure data are more plentiful over continents, and the seasonal variation
in mean atmospheric load qg(t) can be calculated from seasonal compila-
tions of atmospheric water vapour one can alternatively deduce qO(t)

from the relation (Munk and MacDonald 1960)

1 A (l'ag)
qp(t) = ;—0— qp(t) - —-—a-o—- q, (£) | (7.30)

0 0
where qL(t) is the mean value of q(¢,A;t) over land and all other
quantities have been previously defined. The validity of equation (7.30)
rests on the assumption that mass and the amount of dry air in the
atmosphere are conserved. From a monthly compilation of precipitable
atmospheric water vapour by Tuller (1968), Stolz and Larden (1979) find
[see also equation (7.10)]
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qa(t) = 4 fs a($,15)ds

=.l_’f [;-% m sin(e-a) + %—m' cos(@-G{]dS
S

= ~0.11 cos® - 0.06 sind® g cm--2 (7.31)

where m and m' are the January minus July and April minus October load
differences, respectively. DNata spaced on a grid 10° in latitude and
15° in longitude were used to evaluate the integral in equation (7.31)
and a conversion factor of 1 inch of water = 2.54 g cm_2 was used to
convert Tuller's values of precipitable water, in inches, to the load
equivalent of g cm_z. Munk and MacDonald's (1960) comparable estimate
for qg(t)-using the data of Bannon and Steele (1957), which are only
available between latitudes 70°N and 52°S, is

qg(t) = -0.17 cos® - 0.08 sin0® g cmm2 . (7.32)

The annual variation qL(t) in mean atmospheric load over 1andiis

given, in analogy to equation (7.21), by

1

q, (£) = ——————
L 4n(1—a8)

J E—:-Zl—m sin(@-a) + %—m' cos(G)—oc):IdS (7.33)
Land -

where this time m and m' are the January minus July and April minus
October load differences computed from the pressure data of Schutz and
‘Gates (1971, 1972, 1973, 1974) over land after theirladjustment back to
station elevation using equation (7.15). With these data and procedures,

Stolz and Larden (1979) find
q; (£) = 1.30 cos® + 0.31 sin® g — . (7.34)
Substituting equations (7.31) and (7.34) into equation (7.30) gives

qq(t) = -0.73 cos® - 0.22 sin® g em™ 2 . (7.35)
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Stolz and Larden (1979) also calculate qO(t) by the above method using
a value for qg(t) based on seasonal averages of precipitable water
vapour rather than mid-season values as are used in equation (7.31).

This procedure gives

2

qo(t) = -0.75 cos® - 0.20 sin® g cm (7.36)

Clearly, the difference between the results from equations (7.35) and ‘
(7.36) and the result from equation (7.21) using oceanic pressure data
alone i1s hardly significant. 1In making a choice for the evaluation

of equafions (7.29), the value of qo(t) deduced from oceanic pressures
is judged to be superior since the stations used to produce these data
are more abundant and their geographic distribution is more representa-

tive than the stations used to produce Tuller's (1968) maps. Substitu-

ting (Jeffreys 1916)
1 1,
q(d,rzt) = - 5 m sin(@-a) + 7 m cos(G-a)

and equation (7.22) into the integrals of equation (7.29) and expanding

terms for o = 10422 gives

3
Axl(®) = ﬁ_.f q(®) cos¢dcosrds
Land
a3
AxZ(O) =¥ f q(®) cos¢sinAd§
Land
a3
by (0) = ﬂ"[ q(®) sin¢ds (7.37)
Land

where

q(®) = (0.12 m + 0.48 m' + 0.19) sin®
+ (0.48 m - 0.12 m" + 0.73) cos®

The evaluation of q(®) is equivalent to the procedure adopted by
Rosenhead (1929) in his study of the annual component for polar motion
where atmospheric load values are amended to allow for the response

of the oceans.
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Equations (7.37) are based on formulae for the centre of mass of
continuous matter occupying a closed region of inertial space. This
region is taken to be bounded by the surface of the earth and the
atmosphere is considered as a load exterior to this surface. The
loads q(@) may thus be thought of as a series of point masses acting
radially on this surface. The terms q(0) cos¢cosr, q(@) cosésin) and
q(®) sin¢ are then the Cartesian compénents of q(0®) and integra-
tion over the earth's surface is equivalent to compounding the loads at
the geocentre. Accordingly, for the total system (solid earth plus load)
to reméin in equilibrium, the quantities Axl(O), sz(@) and AXB(@) must
represent the Cartesian components of an oscillation of the solid earth
in space with respect to the centre of mass of the system. Evaluation
of equation (7.37) for the motion of the geocentre due to atmospheric
loading using the appropriate adjusted data of Schutz and Gates gives

(Stolz and Larden 1979)

Axl(O) 0.6 cos® - 0.1 sin®
sz(@) = 1,5 cos® + 0.1 sin®

-0.1 cos® - 0.2 sin® (7.38)

Ax3(@)

where the units are millimetres and, the values 6.371 x 109 mm and

5.977 x 1027 g are used for the earth's radius and mass, respectively.

A comparison of the above result with the previous estimate by
Stolz (1976a) based on Rosenhead's (1929) data indicates that the Ax3
motion is smaller. However, this can be attributed to the influence
of the additional data in the polar regions that were not listed in
Rosenhead's earlier compilation. For reasons given in the next section,
no attempt has been made to recompute the earlier estimate by Stolz
(1976a) for the seasonal motion of the geocentre due to groundwater
loading. Using the groundwater data of Van Hylckama (1956), Stolz
(1976a) obtains | '

Axi@b) = 0.1 cos® + 0.8 sin® mm
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-0.6 cos® - 1.2 sin® mm

Axé(@)

Axé(@) 1.0 cos® + 2.8 sin® mm . (7.39)

Addition of equations (7.38) and (7.39) gives the combined annual
variation in the motion of the geocentre due to seasonal atmospheric-

groundwater loading expressed in Cartesian form as

0.7 cos® + 0.7 sin® mm

Ax

1
sz = 0.9 cos® + 1.1 sin® mm
Ax3 = 0.9 cos® + 2.6 sin® mm (7.40)

1’ sz and Ax3 are the changes in the components of the geocentre
with respect to the centre of mass of the earth plus the atmospheric-

where Ax

groundwater load. The motion is an elliptical oscillation with the major
and minor axes being 5.8 and 1.4 mm, respectively. The magnitude is
very small indeed and well below the detection level of future dynamic

satellite and also gravimetric measuring techniques.

7.5. Discussion of the Results

During the execution of the calculations just described in the
previous sections, several assumptions were invoked that deserve some
justification. In this section, a discussion on the impact of these
assumptions is given together with some concluding remarks concerning

the geodetic significance of the results.
7.5.1 Basic Assumptions and Result Accuracy

1. No attempt has been made to evaluate the small corrections
to the atmospheric results arising from the changes in sea-level caused
by the deformation of the crust beneath the oceans and by the mutual
attraction between the oceans and atmosphere. Another minor defect is
that by accepting the inverted barometer rule, the sea surface does
not end up being an equipotential surface. A systematic development

to the problem was considered by Munk and MacDonald (1960) and the
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general theory which permits the static equilibrium response of the
oceans to be determined rather than presumed has been developed by
Dahlen (1976) and Farrell and Clark (1976). While this theory incor-
porates the gravitational self attraction of the oceans and the elastic-
gravitational response of the earth model to both the applied potential
and the equilibrium oceanic tidal load, its application to the atmos-
pheric loading problem requires a complete coverage of actual pressure
data over the oceans. The oceanic data of Schutz and Gates (1971, 1972,
1973, 1974) hardly qualify since they were compiled from a mere
sprinkling of coastal and island stations around the globe. Since the
results obtained here are already small, it is unlikely that a more
rigorous approach using other atmospheric pressure datasets will
achieve much.

2. The premise that oceanic mass is conserved, which is implicit
in the inverted barometer rule, is not strictly valid and thus requires
further investigation. A complication arises due to the fact that there
is a seasonal net transfer of water between the earth, atmosphere and
oceans. From equation (7.14), the total seasonal change in atmospheric

moisture and groundwater is
AG -2
4 (t) = -0.09 cos® + 0.54 sin® g cm R

which must be redistributed over the oceans. Thus sea level will be

3 0
uniformly modified by —qgc(t)/ao, or

£ =0.13 cos® - 0.77 sin® cm .

This corresponds to a uniform tide of about 8 mm in amplitude and an

=2
additional load qé(t) on the ocean floor of about 0.8 g em ~. It is
because this effect is small that no attempt is made to ensure that sea

level remains an equipotential surface (Lambeck 1980).

From equations (7.19) and (7.28), the changes in the computed
deformations and displacement of the earth due to the additional load

can be written as
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Ga
§d_ ==Y n' f q! (t)P_(cosd)ds
T g o ™lg 0 n
and
a3
6{Ax1(t)} = ﬁ—-qé(t) [ cos¢cosA dS
Oceans
3
G{sz(t)} = ﬁ—-qé(t) f cos¢sini dS
Oceans
,a3
G{Ax3(t)} = ﬁ—-qb(t) f sin¢ dS ,
Oceans

' -
respectively. Substituting qo(t) < 0.8 g cm 2 into these equations

gives Gdr, and
2 2 2 1/2
§s = E{Axl(t)} + 8{ax, (€))7 + G{Ax3(t)}‘l

less than 0.4 mm. The effect is clearly insignificant for these calcu-
lations.

3. In the expression for the load deformation potential
[equation (7.18)], the angle ¢ should be assigned all values in the
range 0° to 180° when calculating the nth degree surface spherical
harmonic representation of the load at the point of computation. This
tends to make the calculations rather time-consuming and costly and so
in order to improve the efficiency in eomputation time and at the
same time achieve a reasonable trade-off between cost and accuracy,
several tests were conducted to see whether data beyond a certain
value of ¥ could be truncated from the solution without seriously
affecting the results. Test points on each continent were chosen in
areas where maximum deformation occurred. Areas beyond ¢ = 30, 60, 90,
120, and 150, respectively were assumed to have zero contribution to

the solution and the approximate result for dr was compared with the
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result from the full global calculation. The optimum angle for Y that
produced acceptable truncation errors was 90°. Table 7.5 shows that by
excluding data beyond ¥ = 90° the results will not be in error by

more than 0.2 mm. More detailed results on the effect of truncating

the atmospheric load are given by Stolz and Larden (1979).

4. It was shown in section 7.4.2 that_the shift of the geocentre
in space due to seasonal atmospheric-groundwater loading did not exceed
6 mm. To obtain this result, the earth was assumed to respond to the
redistributed load as if it were a rigid body. In other words, no
attempt was made to calculate the additional shift of the geocentre
caused by the further redistribution of mass as the earth deforms under
the action of a P1 load. The significance of this omission can be
assessed intuitively as follows. It is clear (Cathles 1975) that a load
component of form P1 is characteristic of the transfer of mass from one
side of the earth to the other. The effective amount of mass trans-—
ferred can be estimated using an expression similar in form to equation
(7.27), that is,

M = é—g—,ﬁ : (7.41)
where AM is the total amount of mass transferred, AS is the rigid body
value for the peak-to-peak shift of the geocentre in space due to
atmospheric-groundwater loading and M is the mass of the earth. §',
the average distance over which all the mass is transferred, can be

obtained from the expression-

4a

w/2 9
S' = a f sin  ¢cospd¢ = 3

0
where a is the earth's radius. Substituting AS = 5.8 mm from equation
(7.40), M = 5.98 x 1027 g and S' = 8.49 x 109 mm into equation (7.41)

gives

MM o= 4.1 x 1088 ¢ .

What then are the consequences of moving this amount of mass

from one side of the earth to the other and allowing the earth to deform?
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Table 7.5. Truncation Errors for Atmospheric and Groundwater

Calculation with Zero Contribution from Data Beyond y = 90°.

Error, mm

Continent AtmosphereT Groundwater*
Europe 0.2 0.1

Asia 0.2 0.1
Antartica 0 No data
North America 0.2 0

South America 0 0.2
Australia 0.2 0.2

Africa 0.2 0.2

TResults obtained from January departures.

*
Results obtained from July departures
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To approach the problem simply but not affect the conclusions, let's
assume the mass is moved from the southern hemisphere to the northern
hemisphere and that the pole of maximum deformation coincides with the
north pole. Since the redistributed mass must characterize a first
degree load to produce a shift in the geocentre, one can write the total
amount AM of mass transferred to the northern hemisphere as a function

of the load qq at the pole of maximum deformation as

9 27 ym/2
M = a f f qq sin¢cosddp-di (7.42)
A=0 7 =0

Evaluating equation (7.42) gives q; = 3.2 g cm—z. From equation (7.19),
the accompanying radial deformation at the north pole caused by the

redistributed mass can be written as

Gahi — 27 0 2w -1/2
drl = ' J f 44 sindcospd-dr + f f -q, sin¢cos¢d¢-d§}
& LJx=0 Jo=n/2 A=0 /=0

or after evaluation of the integrals

|
ZﬂGahlq1
dr =""'—"'—g"_'_‘ .
1

Making the relevant substitutions gives
drl = 0.25 cm

which can be used to estimate the volume AV of the depression over the

northern hemisphere as

2 27 (0 2
AV = a [ J drl sin¢cos¢ddd+dr = Ta drl
A=0’¢=7/2

3.2 x 107 e’ i

If the volume created by the depression is filled with water
(ow =1lg cm_3) then the additional redistribution of mass AM'
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accompanying the deformation is

M' = p AV

w

3.2 x 107 ¢

When the redistribution occurs globally (S' = 4a/3), the correction
to the rigid-body value for the peak-to-peak shift of the geocentre
in space is

AM' s

AS' = N - 0.46mm

Alternatively, if the volume is filled with water from nearby regions,
say S' < 100 km, then the value for AS' will be considerably less. Note,
however, that the above process is an iterative one. Substituting

AS' = AS back into equation (7.41) for the second iteration gives an
iterative correction to AS' of 0.04mm. After the third iteration the
correction is 0.003 mm which, for all intents and purposes, is neglig-
ible. The maximum additional shift of the geocentre due to seasonal
atmospheric-groundwater loading is of the order 0.5 mm, that is, about
8% of the calculated rigid-body value. This conclusion holds true for
any location of the pole of maximum deformation. If the redistribution
of matter accompanying the deformation occurs locally then this per—
centage will be at least an order of magnitude smaller. Farrell (1972)
makes the assumption in his calculation of the load Love numbers

that the centre of mass of the undeformed earth and the centre of

mass of the deformed earth coincide in the reference frame which he
adopts for the integrations. This gives a zero value for the potent-

ial term ki.

5. Radial deformation calculations were also carried out using
the load Love numbers of Longman (1966) and Farrell (1972). The rms
differences between these results and the results presented in figures
7.1 to 7.4 were of the order 0.2 and 0.lmm, respectively,while the maxi-
mum differences of 0.9 and 0.3,respectively, occurred near the south pole.
Similar tests showed that these statistics are also valid for the ground-

water loading effects. The calculations agree because the hé and hi
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coefficients which are omitted from Longman (1966) and Farrell (1972)
are about an order of magnitude smaller than the remaining coefficients
and, because the harmonics of degree 2 through 12 for which the
corresponding coefficients are essentially identical in all three data-
sets, contain nearly all the power in the radial deformations (see e.g.

figure 7.5).

6. The theoretical results of Slichter and Caputo (1960) mentioned
in the introduction to this chapter are in reasonable agreement with
those presented here. Any differences that do occur are primarily due to
the fact that (1) the mutual attraction of the earth's surface by the
load is not taken into account by these authors and (2) the finer features

of the atmospheric-groundwater load are difficult to include in their

simplified theoretical development.

7. A previous study by Urmantsev (1971) on the seasonal atmospheric
loading over a 2000 km leveling traverse in the U.S.S.R. indicated thét
radial deformations due to air-mass variations alone could be as large
as 3.6 cm peak-to-peak. Based on the results presented in figures 7.1
to 7.4, Stolz and Larden (1979) believe this value is too large by
about a factor of two and suggest that Urmantsev's choice of sea-level
pressures and severe trﬁncation limit of Y = 30° is responsible for the
discrepancy. For accurate results, surface pressures must be used
together with a more realistic truncation limit; Table. 7.5 clearly

shows that choosing Y = 90° for the truncation limit is more than satis-

factory.

8. The effect of errors in the atmospheric and groundwater data
on the accuracy. of the results is difficult to evaluate precisely
because the compilation of the global datasets involves an extensive
-amount of extrapolation. For example, the distribution of stations
reporting atmospheric pressure is fairly uniform over most continents.
The exceptions are Antartica, Greenland and Central Asia where the
coverage is either sparse or non-existent. Over the oceans there is

also a lack of actual pressure data but this only becomes a problem
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insofar as it affects the determination of qO(t). The independent‘
estimates of thiquuaﬁtity, however, are in good agreement. Lack of
actual pressure data over the abovementioned continents is indeed a
problem because it is in these regions where the computed seasonal
departures in radial position are a maximum. A constant error of about
10 mb in the seasonal departure of atmospheric pressure over a continent
the size of Antartica produces an error in the corresponding departure
in radial position of about 1 cm. Fortunately, most space ranging
networks have their stations located in other regions of the globe but
if a TLRS should visit the abovementioned areas then clearly regional

climatological factors need to be considered.

Similar problems are encountered with-regard to the groundwater
data. Runoff Qata, in particular, are very hard to ohtain on a global
basis (Stolz and Larden 1979) and Thornthwaite's methnd tends to over-
egtimate the evapotranspiration rate (Lambeck 1980). In retrospect, it
would seem desirable to divide the groundwater deformation calculations
for geodetic sites where measurable distortions occur into two separate
parts as 1s done with the computation of geoid heights by gravimetric
methods (see e.g. Heiskanen and Moritz 1967). The inner zone contribu-
tion (say, ¥ < 20°) could be evaluated with groundwater data based on a
more precise method for estimating the evapotranspiration rate, like
Penman's method (see e.g. Lambeck 1980), while the outer zone contribu-
tion could simply be evaluated using a global data set. On the other
hand, it is interesting to note that Thornthwaite's method is remarkably
accurate for North America (Munk and MacDonald 1960) which is where many
of the space ranging stations are located. Another encouraging aspect
is that even if Van Hylckama's (1956) data were in error by 257%, the
error in the peak-to-peak variation in radial position due to ground-
water variations would only be about 3 mm over south-east Asia where the
maximum distortion occurs. In other areas the error would be consi-

derably less.

The difference between the results of Stolz (1976a) and Stolz and
Larden (1979) for the shift of the geocentre due to the seasonal redist-
ribution of air-mass can be attributed to two factors; (1) the algebraic

error made by Stolz (1976a) and (2) differences between the two atmospheric
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Figure 7.10 Geocentre Motion Due to Seasonal Atmospheric Loading
Broken line, Stolz (1976a); Solid line, Stolz and Larden
(1979)
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datasets. Figure 7.10, which is a plot of the function S(®) = {Axl(O)2 +
Ax2(0)2 + Ax3(9)2}1/2

order 0.6 mm. A recomputation of the groundwater contribution using

against time, shows that the difference is of the

newer data is still in progress (Stolz, private communication, 1980).
7.5.2. Summary

An attempt has been made in this chapter to give some insight on
the geodetic consequences of seasonal atmospheric-groundwater loading.
In reviewing the various aspects of the problem, it was pointed out
that the pioneering efforts of Stolz (1976a) indicated that the shift
of the geocentre brought on by the seasonal redistribution of air mass
and groundwater was very small. However, the data (Rosenhead 1929,
Van Hylckama 1956) used to obtain this result were quite old and so, in
an extension of this work, Stolz and Larden (1979) recomputed the atmos-
pheric contribution to the motion of the geocentre as well as the
accompanying radial surface deformations caused by the atmospheric load
using the more recent pressure data of Schutz and Gates (1971, 1972,
1973, 1974). At the time, it was concluded that better values of soil
moisture storage were not available in mosf parts of the world and so the
groundwater calculations in Stolz (1976a) were not redone. Nevertheless,
it did seem desirable to carry out an order of magnitude study on the
surface deformations caused by seasonal groundwater loading using Van
Hylckama's data and combine them with the results of Stolz and Larden

(1979). This work is documented in this chapter.

The results here indicate that the radial surface deformations
caused by the combined seasonal variation in atmospheric pressure and
groundwater are sighificant in some parts of the world at the 1 to 2 cm
level (see Tables 7.2, 7.3 and 7.4). Since all future satellite and
gravimetric measuring techniques are likely to detect deformation at this
accuracy level (Bender et al. 1979, Faller et al 1979), steps must be
taken to make the appropriate measurement corrections for these effects
before the results are used to gain a better understanding of the forces
that drive the tectonic plates and the subsurface density and strain

changes that occur in active seismic zones. From equation (4.15) it is
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easy to show that radial surface deformations will affect an LLR

measurement accordingly as
Ap = {cos($p-8) - cos¢cos§(l—cosH)}ArS (7.41)
where from equation (7.24)

Ars =z dr = A cos(Q—B) .

Clearly, the effect of radial surface deformations on measurements from
LLR sites is geometry dependent. Equation (7.41) indicates that the
maximum contributions will come at times of the year when the distor-
tions are largest and when the moon is toward the zenith of the observing
station. Tangential displacements will enter the range equation through
the A¢ and AX terms but these are negligible for seasonal atmospheric-

groundwater loading.

Since thé LLR range équation (4.15) has been formulated in a
geocentric frame based on the centre of mass of the solid earth,
oscillations of this point in space will be manifest as apparent varia-
tions in the coordinates (rr, 8§, a) of the feflector. On the other hand,
if the range equation were formulated in a frame whose origin coincided
with the centre of mass of the solid earth, oceans and atmosphere, the
motion of the geocentre in space would produce variations in station
positions with respect to this point. In any case, the shift of the
geocentre in space due to the combined seasonal redistribution of air-mass
and groundwater is very small and well below the detection level of future
dynamic satellite and gravimetric measuring techniques. The partials
needed to evaluate the effect of geocentre motion on the range measure-
ment are given in equation (4.16), however, equation (7.40) must be
transformed to its spherical coordinate equivalent before performing the
substitution. The evaluation is not carried out here because the effects
are extremely small. Once again, the maximum contribution will occur
at specific times during the year and will be geometry dependent. At
most times, the peak-to-peak contribution will be considerably less than

the 6 mm indicated by equation (7.40).

To substantially reduce the effect of seasonal variations during

crustal motion re-observing programs employing transportable systems
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(see e.g. NASA 1979), one could schedule the times of site occupancy
during the same season. If this strategy is not practical then correc~
tions for seasonal effects must be considered. It is also important to
remember than the results presented here are based on average seasonal
values for air pressure and groundwater and that year-to-year fluctua-
tions in these quantities cannot be dismissed (Lambeck 1980). To
estimate the magnitude of year-to-year fluctuations, it is necessary to
repeat the calculations here using geophysical data gathered over a
different time span (see e.g. Kurihara et al. 1968; Y. Kurihara, un-
published data, 1977). A major study has already étarted (Stolz,
private communication, 1980) in which the wobble excitation functions
[see equations (2.13)], the displacement, and the deformations of the
earth are being recomputed using the latest groundwater dataset
obtained from the atlases of the world water balance published by the
UNESCO Press, Paris (see e.g. Korzoun 1979). Comparison of these results '
with those presented here will help give some insight into the extent of

year-to-year variations.

The possibility that large short-period displacement will
occur cannot be ruled out either. For example, Trubytsyn and Makalkin
(1976) proved that the crustal deformations resulting from cyclones may
be larger than 2 cm. While it is unlikely that observations will be
attempted at times of extreme meteorological activity, it is clear that
the regional response of the earth to such events needs to be consi-
dered before the new space ranging data can be used to provide further

detailed knowledge on the earth's interior.
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CHAPTER 8
CONCLUSIONS

Recognizing the importance of continuous, high—accuracy
determinations of Universal time (UT1) and polar motion for the analysis
of observational data acquired by the space technidues and as a tool for
geophysical research, a series of extensive numerical analyses were
undertaken to assess some of the potentialities and problems of moni-
toring these rotational modes by lunar laser ranging. In what even-
tually became a rather lengthy but, nevertheless, fruitful and instruc-~
tive exercise, efforts were made in the review Chapters 2 and 3 to
introduce the reader to the complexities of the earth's rotation and
give a broad account of the lunar laser ranging technique. From
thereon, the study was directed toward answering three basic questions

of motivation:

1) Can a future LLR station network determine the earth's polar
motion and UTl at the desired 5 cm accuracy level on a
continuous daily basis?

2) What are the consequences of the outcome of these results if
the shift of the observatories due to lithospheric plate
motions are neglected?

and

3) 1Is it possible that seasonal atmospheric-groundwater loading
can produce measurable displacements and deformations of the
earth's surface at the expected 1 to 3 cm measurement accuracy

level for the space techniques?

An idealized model for the topocentric distance from an observatory
on the earth's surface to a reflector packége on the lunar surface was
constructed and a least squares formulation used to estimate the
expected parametric uncertainties for polar motion and Universal time as
measured relative to the lunar orbit. For simplicity, polar motion was

defined as the movement of the spin axis in the geographic reference
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system with the forced diurnal terms removed. Problems of parameter

separability were discussed, the chief ones being the linear dependence
of UT1 on the correction to the lunar right ascension and the insensi-
tivity of the range to station latitude variations when the moon is at

the station zenith.

The model, in its most basic form, assumes that the range residual
is entirely due to errors in polar motion and UTl. The distance is
assumed corrected for such effects as planetary perturbations, tidal
deformation (inqluding ocean loading), precession and nutation. Errors
in the lunar orbit and libration, and in the definition of the terres-
trial reference frame are also assumed to be negligible. Thus, given
the adequacy of the weather model and the remaining conditions of
observability, the earth rotation results presented in Chapter 5 are
probably indicative of the ultimate one can hope to achieve with the
lunar laser ranging technique. At best, it appears that a high per-
centage (»70-80%) of two—day values of polar motion and UTl can be
obtained to better than 5 cm when four .or five LLR stations are ranging
with #3 cm measurement uncertainties. Including the geocentric distance
and declination of the reflector as solution parameters and allowing for
the effect of systematic range errors, does not seem to change this
conclusion significantly. It must be noted, however, that the present
status of the LLR network is still far from meeting the above
requirements. The analyses undertaken in this study confirm that less

optimistic measurement uncertainty schedules do not give satisfactory

results.

Two other interesting points concerning the results presented in
Chapter 5 are worth emphasizing once again. These are the obvious lack
of southern hemisphere stations which are so important in earth rotation
ekperiments when the moon is at northern declination (see Figure 5.1)
and the fact that there is no significant difference in the uncertain-
ties for polar motion and UTl or their correlation with the lunar
orbital parameters r and & when hour angle coverage is varied uniformly
at each LLR station. If additional stations with dual capabilities of
ranging to the LAGEOS satellite and ;he moon are contemplated then 1t is

strongly recommended that they be placed in the southern hemisphere, and
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near the meridians and in equatorial symmetry with existing northern
hemisphere stations. Should the most cost-effective scenario for lunar
laser ranging, regarding its contribution to the determination of earth
rotation information, include a combination of resources and detailed
coordination with complementary methods as suggested by Silverberg
(1979), then it would appear from the analyses undertaken here that hour
angle coverage is not likely to be a critical factor in the design of a
joint observing schedule involving both LAGEOS and the moon. The
results presented in Chapter 5, where further conclusions on this

subject can be found, form the basis of this conclusion.

Estimates of the changes in LLR station coordinates due to plate
motion have been presented in Chapter 6 in order to assess the allowable
time period before these effects begin to contaminate polar motion and
UT1 results at the 5 cm accuracy level. TFor a network of five statioms,
the movement of the lithospheric plates, in principle, might not
contaminate polar motion and UT1l results until after about 4 or 5 years.
However, as was pointed out in Chapter 6, weather conditions will not
always permit a five station solution and if polar motion and UT1
results are obtained using the two station combination of Orroral and
Haleakala, then plate motion effects will be significant after about

1 year because both these stations are located on fast moving plates.

In order to avoid the inconvenience of making corrections to polar
motion and UT1 results for plate motion which are dependent.on the
particular station combination that contributed to the solution, it
would seem more desirable to model the station motions using a reliable
absolute plate velocity model. The station motions predicted by model
AM1 of Minster et _al. (1974), K5 of Kaula (1975) and B4 of Solomon et
al. (1975) as listed in Table 6.3, are all in good agreement. This
is very encouraging, particularly in view of the fact that each model
is based en widely differing yet physically plausible assumptions. If
episodic plate motions were to cause the present-day station motions
to depart from their 5 x lO6 year average inferred by the plate

models above, then the results for polar motion and UT1 would start to
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appear noiser than one woild expect from the space ranging techniques.
This would indicate that a new solution for the station coordinates
would be needed in order to improve the plate velocity model and, hence,

the earth rotatlion results.

An aﬁtempt was also made to estimate the combined effect of
seasonal atmospheric-groundwater loading on geodetic position using
atmospheric pressure and groundwater storage data. 1In contrastbto the
ocean loading problem, it was shown that for this type of load the
conventional load Love number approach could be used to calculate such
effects because most of the deformational power in the atmospheric-
groundwater load is concentrated in the lower degree harmonics. While
this approach has often been criticized as an uneconomic procedure oﬁ
the computer, it was also shown that truncating the solution to ¢ = 90°
to reduce the computer time did not produce adverse errors (see Table
7.5). The results indicate that the peak—-to—peak radial surface
deformations caused by the combined seasonal variations in atmospheric
pressure and groundwater are of the order of 1 to 2 cm at several
strategic geodetic locations around the world and, therefore, will be
marginally significant in high precision geodetic experiments. The
results do, however, contradict Urmantsev's (1971) previous assertion
that the radial deformations over Europe due to seasonal variations in
atmospheric pressure alone could be as large as 3.6 cm. Reasons for the

differences are clearly stated in Section 7.5.

It was also shown that the peak—to—-peak variations in radial
position at LLR and VLBI ohservatories, and the associated motion of the
geocentre in space due to the first degree component of the atmospheric—
groundwater load were below 1 cm and probably not detectable by the
future dynamic satellite or gravimeter measuring techniques. On the
other hand, it should be mentioned, that the validity of these results
depends heavily on the reliability of Van Hylckama's (1956) groundwater
data which are very old. The recomputations presently being undertaken
by Stolz (1980, private communication) using more recently published

groundwater data should resolve this issue.
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