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SUMMARY

Various, approximation methods of solving differential
equations are reviewed and applied to the solution of the Geodetic
Boundary value prdb]em. Similarities between the methods when
the underlying space is chosen to be a Reproducing Kernel Hilbert

Space are discussed.

Statistical methods entailing the use of the projection
theorem in the linear least squares prediction of quantities are
then examined with a view to their application to Physical

Geodesy.

The basic congruence theorem is then used to demonstrate
how the statistical and approximation methods correspond in certain

specified cases,

Finally the problems associated with the choice or
computation of the Covariance function and thus the relevant
Reproducing Kernel Hilbert Space and corresponding norm are
reviewed and investigated. In particular, a derivation of
Lauritzen's result on ergodicity which does not use topological
group theory 1is presented, and a suggestion is made as to how the
covariance function may be chosen in such a way as to prevent the

normsor variance,of the predicted quantity from becoming infinite.
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INTRODUCTION

Since George Gabriel Stokes published a formula for

determination of the Geoid-Spheroid separation in 1849 it has been
no small problem for Geodesists to apply it, for there has never
been a complete gravity coverage of the earth.

The formd]a is

R
N = mjj Ag S(IP) do

o]

where S(y) = 575%575) - 6 sin %—+ 1 - 5 cosy ~ 3 cosy &n(sin %—+ sinZ%J

is known as Stokes' function,

R 1is the radius of the earth

G is the Mean Value of Gravity over the earth

v is the spherical distance between the point
where N is being determined and the point where Ag
is known

Ag is the gravity anomaly

do 1is an element of surface area.

If gravity or gravity anomaly were known at all points on the
earth with latitude ¢' and Tongitude 1A', the geoid spheroid separation

at a point P with coordinates (¢, A) could be expressed as

i

2n
N(¢,2) = 155- f f Ag(s"s A")S()cose'de'dx’
07

where Vo= cos'l[sin¢sin¢‘ + cos¢cos¢’cos(A'-21)]

(HEISKANEN & MORITZ, 1967)



Now if nglo',a') had =
be possible to integrate the above expression analytically, or at
Teart choose some numerical method of integration where 1T is po
te make the error as snati ac one wished.

But this is not the case, for the functional form of ag will
never be known ds soime convenient expression.

If ag(¢', 2') were known at all points on the earth's surface
it would not be at all difficuit to evaluate the above integral
numerically and suitably restrict any errors due to the approximate
evaluation by summation simply by choosing ever decreasing element
sizes until refinement produced negligible effect,

But this is not the case either for even at the present time,
after many years of gravity measurements, and technological advancements
making it easier to obtain such data in oceanic regions, there are
still vast areas of the earth's surface where no measurements have
been made.

The computation of N has been done by two methods (HEISKANEN
& MORITZ, 19€7)

1)  Using templates subdividing the earth into concentric

circles, a method now somewhat obsolete

¢) By the use of grid lines. Here the earth is subdivided into
"vrectangular" blocks, the subdivision being effected by the grid lines
of some coordinate system, usually latitude and longitude. The blocks
are called "squares", The size of these squares varies, for the gravity
anomalies close to the computation point affect N much more than those
located far away. in fact beyond a certain sphericai distence & squeare

R R o . T A 1 PR
Phoa SptieriOal Cdb GidBE L rLaty Jpbiun oLt sl Luk

represented by a single anomaly vaiue,



Instead of writing Stokes' formula in terms of Latitude and

Longitude, it may be written in terms of the Spherical distance vy,

and Azimuth o from the computation point, ie

N

do = siny dady. Thus

2n w

5 E%G‘J j Ag(v,a)S(¥)sinydyda

0 0

Now, whereas S(y) is infinite at y = 0, the function F(y) = S(y)siny

is finite for 0 < ¢ < m.

Taking a value of Ag to represent each square the above integral

can be replaced by a summation.

where b

iJ

n
r Fly..) aq..
E (i) 8945
number of different classes of squares

ie %% x %%, 1°x1°, 5°x5°etc.

number of squares of a certain size
spherical distance to centre of square i, j
value of gravity anomaly chosen to represent
square i, j 3 in milligals

area in (degrees)? of a class i square

R me . 5 -2
mx-(—]-.gﬁ-)*z’ 1.58 x 10

This value of K is computed using R expressed in

centimetres and G in milligals and gives N in centimetres.

In addition to these blocks or squares it is also advisable to choose

a circular ring around the computation point as the innermost zone

and evaluate it separately using individual anomalies.



B ] ¥ . i H P § H . ¥ ¥ &
Vil LS L Syl o i o0 %
R N R : ¢ s EE
IS L il i L ! B £ i i Vi i g
) 1 ” + o
A i i : i
P& iy
3 [
Paod 1ese Tian

R
dned Ll

SGuarey

i

i}
H

o
on
ot
o3

Q.

—
[ w5
-

e oneis DEen Carried
P o [ o o . Fiy
Qut b,/ L GIAT R i [

era 11 was dsual o “soive” problem () by using a zery gravity

for all unsurveved sguares. This assumption, although not veally

vaiid for a particular souad

inctuded in 4 summation itowas oniy Lhe assumplion that ine

buted about o Z+

unknown an:

[t was veally just The same as asserting that the expectsd velue of

8}

inoa tteral

15 Zero, wWiicn is true ai

nomaiy" means a departure from

houid not

o

Also the Ti0°d of anotaiies

A s ;
[T T 1 R 5 . s s H . ¥ I3 i [
SO0 e Dol - fl - Py o v I . [ Tiis
3
. N L ) -
PRy (et 3% i e e g Phoiun
[ ORI i [ [ i A




where Ag; = mean anomaly for square i
Agij = observed anomaly
n = number of stations in a square
t = number of squares considered.

The quantity G, was also used:

t
- 1 v 2
6 = ¢ =t (Bg; - Ag)
i=1 .
L t Ag;
where Ag is the general mean = I 5
i=1

but it does not appear that any analysis of variance model was
applied to the data, nor was any sampling technique other than
simple random sampling used.

Hirvonen used the following formula for computation of the

mean error of N
m(N) = 1,035 / 1S2E%q?

S2 being Stokes' function for the square

g2 the area of the square

E2 was the error of representation assumed constant
for each square.

So at this stage the problem was still being dealt with at a
somewhat rudimentary level.

However Hirvonen appears to have been aware that correlation
functions or at least correlation could be used in some way to predict
gravity anomalies in unsurveyed areas as were Moritz and Rapp.
(MORITZ, 1962) gave a general least squares method for interpolation
and prediction of gravity anomalies where an unknown anomaly was
represented by a linear combination of surrounding anomalies and

the difference between true and predicted anomalies minimised.
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(MATHER, 1967) used a least-squares fitting of two-dimensional
trigonometrical Fourier Series in the extension of the gravity field
in South Australia, and in addition to the statistical methods
mentioned so far there were methods of prediction which attempted to
use Geophysical phenomena or models such as isostasy to solve the
problem of miss%ng data.

So in the mid-sixties there was quite a range of theories and
methods.  Some unification was necessary.

The direction from which this came appeared basically to be an
extension of (MORITZ, 1962) although it wa§ more fundamental, and
permitted the use of quantities other than gravity anomalies, not
just in the prediction of Ag in unsurveyed areas, but in the direct
prediction of N itself, as well as any potential-related quaniity of
the earth's gravity field. It was called Least-Squares Collocation.

Its invention is usually accredited to (KRARUP, 1969) although
the contributions of Bjerhammar, Moritz, Rapp and Tscherning in the
period at the close of the sixties should not be underestimated.
(MORITZ, 1972) clarified the Hilbert space oriented theory which is
somewhat difficult for the uninitiated to understand and extended the
theory to the case where observational noise is admitted.

(LAURITZEN, 1973) set out to formalise the theory, and produced
the famous result on the non-ergodicity of the empirical covariance
function. He also placed great emphasis on the theory of Reproducing
Kernel Hilbert spaces. Many aspects of the theory have been treated
by a number of writers: (GROTEN, 1972, 1975), (DERMANIS, 1976, 1977),
(KEARSLEY, 1977), (LACHAPELLE, 1975, 1977), (LOWREY & ARGENTIERO, 1977),
(MEISSL, 1971, 1976), (MORITZ, 1973, 1977, 1978, 1980), (RAPP, 1972, 1973),
(RUMMEL, 1976), (SCHWARZ, 1976, 1977), (TSCHERNING, 1970, 1971, 1972a, b, c,
1973, 1974, 1976, a, b, ¢, 1977, 1978, a, b, ¢, d, 1979, a, b, 1980)

to name a few.



Two of the more interesting aspects dealt with are the result
of (TSCHERNING, 1977) concerning the divergence of the norm when the
empirical covariance function is used, and the (DERMANIS, 1976, 1977)
articles which show a link between probabalistic and deterministic
methods of prediction,

The purpose of this project is to review certain aspects of the
theory in view of the reluctance of some Geodesists to accept it as a
method as good as the solution of Stokes' equation by summation.

This suspicion towards the method possibly has something to do
with its development as a statistical method. Accordingly in
Chapter 1 the method has been developed as an approximate solution
to Laplace's equation, the boundary condition being the spherical
approximation of what is known as the "fundamental equation of

physical geodesy" (HEISKANEN & MORITZ, 1967, pp 86, 98)

ie
ger = 2T, 2T 12T coth b 1 Cll I
P2 T r ar  reB82 T Y2 30 0 ¥Zsinfo ar?

where (r, 6,)) are spherical polar coordinates, 6 being the colatitude
and x» the longitude.

This is Laplace's equation in terms of T, the disturbing potential,
and is satisfied outside a sphere of radius R, ie. for r > R.

The boundary condition is

. _oT 27
9% T T F

where Ag is the gravity anomaly and is satisfied on the boundary r = R.
So the same equation and boundary condition are used as in the
derivation of Stokes' equaticn, the only difference being that a
numerical solution is sought directly rather than taking the
intermediate step of deriving Stokes' equation and then seeking &

numerical solution.



Instead of using the above equations themselves, a more general

L e

operator notation has been used and a quite general method known as
the Method of Weighted Residuals has been applied. There are many

variations to this method and attention has been focussed specifically

on the methods known as Least Squares, Galerkin's Method, and Collocation,

It is found that if the test function is a linear combination of the

e e

representers of evaluation functionals in a Hilbert Space, the three

methods coincide.

The kernel functions in a Reproducing Kernel Hilbert Space

are an example of such representers and an extensive treatment of

Reproducing Kernels is given, particularly to the class of Reproducing

B T TN e e g e

Kernels appropriate in the solution of Laplace's Equation.

Finally the concept of error bounds is dealt with and a
suggestion for a method of deriving an optimal Kernel function is
given.  An example of a Kernel function for which both the norm of
the function being predicted and the Kernel function itself are
bounded is also given.

In Chapter 2 the statistical treatment is examined. The

similarity of the approximation equation to that for conditional

expectation is first noted, and the method is then derived as an
example of Linear Least Squares Prediction. The Basic Congruence
Theorem (PARZEN, 1959) is invoked and the statistical method is shown
to give an identical result to that obtained by approximation when
the covariance function is chosen to be the reproducing kernel.

The result is not new, having been derived by (DERMANIS, 1976, 1977).
However Dermanis used the Karhunen-Loeve expansion to do this, a
method dependent on the index set in use. The result is here shown
to be more general. However, in the Physical Geodesy case, Mercer's

Theorem does hold and the Karhunen-Loeve expansion of a continuous
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and isotropic covariance

function on the sphere for both anisotropic,
functions, is derived. On examination of the covariance function,

these expansions are used to verify Lauritzen's result on the
non-ergodicity of the empirical covariance function by the use of
elementary probability theory rather than the rather abstract
topological group theory, with which a large proportion of Geodesists
are unfamiliar.

It is to be noted that throughout this project classical or
Stokesian theory only has been used. However, for the newer theories
such as Molodenski's, where integral equations instead of differential
equations are involved, approximation methods such as collocation,
Galerkin's method, and Least Squares are valid. Hence, much the
same treatment could be given. But this was considered to be beyond
the scope of the present work so it was decided to restrict the topic

to the spherical approximation.
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CHAPTER 1
APPROXIMATION

1.1 Introduction

In operator form a linear partial differential equation and
its boundary conditions may be expressed as
The Qifferentia1 equation
| Au = f on D
The boundary conditions
Bu = g on oD
A and B are linear operators, u, g and f are functions in some function
space H, u being unknown. D is some domain in R" and 8D is the
boundary of D.

In the case of the solution of Laplace's equation with the
sperical approximation of the fundamental equation of physical geodesy
as boundary condition,

D is the space outside a sphere of radius R,
3D  is the surface of this sphere
f =0
g = Ag (r, 8, A) the gravity anomaly function
A is the Laplacian
B is the operator 2+ %&

or r=R

and u is the potential T.
Since f = 0 homogeneous equations alone need be of interest, ie
Au =0 on D

Bu =g on aD.



An approximation of u is sought. It is of the form:
u s u* = cyyp ooy +oLL, F Cn¥
where 4. i=1,¢, ..., nare linearly independent functions which

T
span some n dimansional function space Hnu
These functions must ail satisfy the equation
A¢i = 0 i=1,2, ..., n on D
(More specifically they must satisfy Laplace's equation).
They are thus chosen such that the above equation is satisfied.
This affects the choice of Hn'
Note also that Au* = 0 on D
must therefore be satisfied for A is a linear operator and u* is a
linear combination of the wi‘s.
Of course there will be many such sets of functions {Wi} which will
satisfy the above,and many choices of Hn' This will be dealt with
in sections 1,5 - 1.7, For the moment, however it will be assumed
that these choices have already been made. The problem then is to
determine values of ¢, ¢,, ..., <, such that the linear combination
u* satisfies the boundary conditions, ie such that both
Aux = 0 on D
and Bu* = g on 3D,

This provides the approximation of u.

1.2 Methods of Undetermined Coefficients

These methods have been applied to the solution of differential
equations since the early part of this century. I.G.Bubnov in 1913
and B.G. Galerkin in 1915 appear to have done the pioneer work leading
to the Bubnov-Gailerkin method. M. Picone in 1928 applied the method

of least squares to this problem whilst J.C. Slater in 1934 and J.Barta
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in 1937 applied the method of collocation in the solution of
differential equations related to electronic energy bands in metals,
and the torsion of a square prism,respectiye]y.

Other methods include the subdomain method advanced in 1923
by C.B. Bilzeno and J.J.Koch, the method of moments  developed by
H. Yamada and H. Fyita  in 1947-51 and the integral method of
von Karman and Pohlhausen in 1921. In addition it is possible to
combine the least squares and collocation method if there are more
data points than there are constants to be determined. This method
is called least squares collocation and was applied by S.L. Altman
in 1958 to calculations in crystallography.

There are two ways that these methods may be applied:
as interior methods and as boundary methods. In interior methods
the trial functions ¢j, ¥o, «u.s Y, are chosen to satisfy the boundary
conditions and one of the abovementioned procedures is used to determine
the constants ¢;, ¢y, ... o such that the differential equation is
satisfied. In boundary methods the reverse is the case. Mixed
methods also exist. Since in this project it is Laplace's equation
outside a sphere which is of interest, only boundary methods will be
dealt with,

S.H. Crandall in 1956 and L. Collatz in 1961 unified the various
procedures, Crandall as the "Method of Weighted Residuals" and Collatz
as "error distribution principles”, although the similarity of the
methods had been recognized by C.B. Biezeno and R. Courant as early
as 1924, It may be noted that Crandall and Collatz merely use different
terms for essentially the same unification. For the historical
development of these methods see (FINLAYSON, 1972) where the above

is dealt with in more detail, and references are supplied.



The Metnod of Weighted Residuals (M.W.R.)

fa—
.
(a0

Since the method applies where a functional form of the boundary
condition is indeed known, and is applied mainly because the use of
rigorous methods is too difficult, too cumbersome or even impossible
the method will be described for this case first. Later it will be
shown how this method may be adopted where no functional form is
available and one is forced to use it because one has only values on
the boundary at certain discrete points.

In general one has

Au = 0 in D as differential equation
Bu = g on 5D as the boundary condition
where 3D is the boundary of D, and
A and B are linear operators.

Yis U2 «e.s b, ave chosen such that they are solutions of
the differential equation.

An approximation of the form

u* =gyt Couy we FCobg
is sought such that in some sense it approximates the boundary condition.

Let the "residual" at some point t on 3D be defined as R(t),
where R(t) = Bu*(t) - g(t)
or simply,

R = Bu* - g
Let there be n "weighting functions" wi(t) also defined on 3D.
This is represented as Wi in function form,
The the MWR criterion is that the inner product of the weighting
function with the residual is zero.

ie { Ni’ Ry =0 i=1, 2, ..., D
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Thus (W;, Bux - g ) =0

ie (W, Bux) = (W.g)

and hence 4 Wis C1Byy + cByy + ...+ c BY ) = (Ni,g)

or cy (M5, Bur) +co Wiy Byp) + ..o+ c (W, Byp) = (W;»9)

i=1,2, ..., N,

It can be seen that in all methods there will be n equations in the
n unknowns Ci, Cos sees e Each choice of the weighting function

leads to a different method.
1.4 Choice of the Weighting Functions
1.4.1 Galerkin's Method (also called the Bubnov-Galerkin method)

Here the weighting functions wi(t) are chosen to be the
same as the functions wi(t) which satisfy the original differential

equation.

ie ( Vis Bu* - g ) =0
If Hn is a Hilbert Space then it is the same as requiring that the

residuals are orthogonal to all v in Hn or that the solution is the

projection of g on Hne
Hence
c1 s, Bur) + ca{wgs Bua) + oo+ o (g, Bypd = (v4,9)

i=1,2, ..., n.

In matrix form then

Ge = f
where 955 = { Vi Bwj)
ST = [Cl Co eeue Cn]
and
£l = [fy f5 ... f,) where f. = (v, )



1.4.2 Collocation

[ R

In this method the wi‘s are chosen to be displaced dirac
delta functions
W, (t) = §(t - ti) t,tie oD i=1,2, «..n.
The dirac delta function for functions defined on the real line

has the property

J st-a) dt = 1

je. it vanishes everywhere except t = a where it has unit "area".

In &3, 8(r - a) = s(x - a;) s(y - az) &(z - ag)

~

(= T e o} o0

J J J §(x - a;) 8(y - ap) 8(z - a3) dzdydx

-0 .00 =0

and J §(r - a) dv
R3

= 1

Also, on the real line we have

oo

j s(t - a) f(t) dt = f(a)

-0

~

and in Rr3 J 36(r - a) f(t) dv = f(a)
. d L d

In a general Hilbert space them, the dirac delta corresponds to the

representer Ly of an evaluation functional 22

i i
. . . = * . - *
ie if £ is in Hn’ then zti is in Hn’ the dual space of Hn
* —_—
zti(f) = f(ty) = (zt1, f),

*
where Ly is the representer of Ly in Hn'
i i



e
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Or, in dirac delta notation

(st - t), f(1)) = f(t)

So with W, = s(t - ti)
= By, . Bu;(t;)
i
and (W, g) = (s(t - ty), g(t) )
= g(ty)
Again,in matrix notation
Ge = f
but this time
gij = Bwj(ti)
and  f, = g(ti)
or c1By1(t;) + coBua(ty) + ... + B a(ts) = alty)

i=1, 2, ooss N
Thus what has been done is to choose as many locations i, as there
are coefficients C; and make the function u* equal to g at these
locations. So at the n locations ti the approximation is exact or
"correct”. Hence the name collocation. In using this method one
would hope that the residual does not get very far away from zero
between the points where it vanishes. The choice of collocation
points would be a matter of some concern therefore, if the functional
form of g were known. In the Geodetic problem however, there is no

choice, since it is not known, although g(ti) is known at various

points.



1.4.3 Least Squares

Geodesists are quite familiar with the Gauss-Legendre
principle of least squares since it is used in the adjustment of survey
networks, ie that the sum of the squares of the residuals should be a
minimum for the best linear unbiassed estimator.

In the solution of differential equations the residual function
is not a discrete point function, usually, but is known over a more or
less continuous domain. So it is a question of the minimisation of an
integral of squared residuals, rather than the sum of the squares of
residuals, but then an integral is really a generalisation of a sum,
so the principle is much the same. However by the use of Hilbert
space theory thereis a common link. What is minimised is the inner
product of the residual with itself and thus the norm of the residual

is also minimised.

ie  min ||R]| where ||Rj] = (R, R )1/2
U*LHn

SO Cys Cpu wuv, € Are chosen to minimise

F o= (Bu - g, Bu" - g )
- (Bu", Bu") - 2(Bu", g} + (g, g’
= {¢;By; + cBy, + ...+ ChBY, 1By, + ... 4 anwn)
- 2{ciByr + cByp + ... c B LG +{g,G)
= clec - fe(ag)
where G = [gijJ 945 T (Bus, Bwj)

and f-‘ = <B‘l'-ls g >



Se et
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To minimise F, %%- is equated to zero giving
26c - 2f =0
or Gc = f
where G and f are as stated above.
. . . aBu* . . .
This is equivalent to choosing == as the weighting function W,
i
in the equation
{W., Ry = O
(W;» R)
ie
*
(BUF gy = 0 i=1,2, cnn
% (BC- E] BU*- g) - 0
. j
E .
i 3Bu* = ( BY
(5 » Bu*) (5> 97
. i i
| (Byss C1BYy + CoBUp + ..o cBvy = {Bvs, g )
i i=1,2, «e.5

Pt

since B is a linear operator,
or ¢Cy (Bll),l, Blpl) +C2(Bwis B\Pz) + ... +Cn(B‘~p.i’ Bq)n) = (Bw]s g)’
i=1,2, .c.5 N

as before

1.4.4 Other Methods

In the subdomain method, the domain 3D is divided into n subdomains,
where n is the number of coefficients tc be determined, then the coefficients
are determined in such a way as to make the average value of the residual

in each subdomain zero.
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This is equivalent to using an indicator function as the

weighting function in M.W.R.

je. Wi(t) = IaDi(t) = 1, for t in aDi

0, for t not in aDi

B S s

where aDi is a subdomain of 3D. i=1, 2, ... N,

This method could be used in Physical Geodesy if one were 1o divide

the earth into "squares" and allow the average value of the measured

gravity anomalies in a square represent the product

( IaiD(t), g(t) )

But the problem with this method is that there are squares where no

anomaly has been determined, and so the method has the same difficulties

as the use of Stokes' Integral. There is no need to make the 'squares

of equal size, however.
In the Method of Moments, successively higher moments of the

For ordinary differential equations

residual are equated to zero.
-1

then, the weighting functions wi(t) would be 1, t, t2, ...,

It would appear that in partial differential equations, product moments

would make the solution somewhat cumbersome.  The integral method is

just a first approximation of the Method of Moments.
In Orthogonal Collocation the functions vy, 2, ... ¥, are chosen
to be orthogonal polynomials and the collocation points are chosen as the roots

of the polynomials. However since it is not possible to choose the

collocation points in the Geodetic Boundary Value Problem it appears

that the method is not of great interest here.

If the weighting functions are a set of complete functions but

are not the trial functions the method is merely a general MuR.
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One way of doing this is to choose some differential operator D
of the same order as A and form the weighting functions wi(t) = Dwi(t).
This method was proposed by Krawchuk 1in 1932,

It appears so far that most of the methods mentioned will not
be of great use in solving the Geodetic Boundary Value Problem (GVBP)
since they require some knowledge of the functional form of g(t)
rather than its evaluation at various points. An exception to this

is the Collocation method of which there are some variations.

1.4.5 Variations of the Collocation Method

(i) Collocation with Derivatives

(COLLATZ, 1966) describes a procedure which he calls

ties "Collocation with Derivatives" in which g is not known at all the
res” collocation points but derivatives of g are. Rather that restricting
the disucssion to derivatives however, the general case where various
| linear functionals of g are known at the n points, some of which could
i; be evaluation functionals (but not necessarily all of them) will be
f dealt with,
S % The equations are essentially the same except that the operator B
% is now partitioned
ie B = KB;
sen o
e roots % F¥{
B

where there are m linear operators of different type, ie.
Bk = DkB where Dk is a linear operator
g is also partitioned into m functions, each related to g by a linear

operator equation of the form 9y = Dkg
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je. Au = O for t in D
B, u = |9, for t in oD
B 92
°m (gm/

which is the same as writing

Au = 0 for t in D
\

Biu = g

Bou = go for t in 3D
S

Bmu = gm

Note m < n.
The solution 1is given by

Gce = f

But this time g, = Bkwj(ti)
with f, = gk(ti)
This is to say that it is now important to use the operator Bk
and function 9y relevant to the evaluation point ti'
Now, gij may also be expressed as follows:
955 = (%0 Buy2 .

We may regard Bk as the composition of two operators Dk and B such

that Bk = DkB'
Then g5 = {25, DB )
= (D, )
or gij = Dkzi, Bwj

where D: is the adjoint of D,.
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*
But Dkzi is itself the representer of a functional since it
gives a real number when its inner product is taken with Bwj.

Let this functional be called E? with representer E&
Note also that f1 = gk(ti)

But if DkB = .Pk
and Bku = gy
then DkBu = g = Dkg

—
N

(11’: Dkg )
*

(Dkil,_i, q)

= (Eji g)

So the general form of a collocation solution s

ie

C1 (:QT_', BIJJ]_) + Co (1—1s Bll)z/\ oot Cn(i’_'i’ Blj)n) =<-Ei’ g)

(ii) Least Squares-Collocation

In the pure collocation and collocation with derivatives

methods, the value of g(t) or some functional of g(t) was known at n
points, which was the same number of points that there were constants c;.
In least squares g(t) was known for all t e 3D. But what is to be
done if g(t),(or some functional of g(t)),is known at M > n points?

It is simpler to deal with pure collocation first, the extension to
collocation with derivatives then follows immediately.

The residual function was

*

R(t) = Bu (t) - g(t).
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Using evaluation functiona
deltas, we would have for the evaluation of R(t) at the M points ti

w1 =4 i=1,2, ..., M

ie "
i=1,2, ..., M
1f each of these residuals is set equal to zero, M equations of the
form
*

(2, Bu y = {5, 90 are obtained.
But since

*

U = Ci¥; t+ Coyp + ...t ann

and M > n there is no solution for ¢ as the equations are inconsistent.

So the best that can be done is to minimise the (weighted) sum of the

squares of the residuals instead of equating each residual to zero.

We have then

R = Hc-f
where RU = (R(t1), R(t2) R(ty)
QT = (i ... cn]
T :
o= I, 9) (2, 9} «or Yy 90 )
H = Lhijj where hij = {4, Bwj >

The minimisation of BTWB with respect to ¢ gives

T T

= (nhw) ™ nlur

where W is a suitable M x M weighting matrix.

After minimisation the residual 1is

R = {H(H' T

W)L T - 13f
which in general is not equal to 0, so the method is not a true
collocation method in the sense of the residuals vanishing at all of the

collocation points.
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when M = n the method reduces to collocation and as M becomes
infinite the method tends towards least squares. In the case of least

squares-collocation with derivatives it is only necessary to

substitute I: , a general Tinear functional, for z: the evaluation
functional ie substitute Ei for o, in each of the above equations
where %5 appears:

The weight matrix W allows one to give relative importance to
each of the collocation points.  For example,n of the points could
be given weight 1 and M-n of the points weight zero. In this case

the method reverts to pure collocation on the n points with weight 1.

:
[
o
| |
4

In the case where g(ti) is determined by measurement the weights can
be made equal to the reciprocal of the variances of each measurement.
If the measurements are independent the matrix W will be diagonal

but if they are correlated W will be the inverse of the covariance

matrix ¢ of the observations. If it is assumed that the observations

SRR e

i

are error free an identity matrix IMXM should be used, the error being
assumed to be solely in the approximation method used rather than
distributed between the observations and the approximation.

The similarity of this method to the least squares method is seen
by examining the equation for the pure least squares method.

Here

1 (Buss Bur) *+ Co By, By + ... ¥ cp (Buys Buy )= (Biys g)

i=1, 2, «vey N
If the inner product {, ¥ which is usually some sort of integral

is replaced by ( , ) where

T
(By;» Byy) = by Wby
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T r It . P i i
where gk = [bwk\tl) Bwk(tg) e Bwk(tM)J
= L(f't’]; quk ) (\53'23 Bwl»’k) o (FVMa Bk‘Jk/\ J
je ul = et v lte) b () )
<k AR S Yk

)

and W is the MxM weight matrix mentioned above, then (B?i’ BgJ

is obviously the i, J th element of the matrix HTNHQ
In addition

(Bwi’ g) = b§ Wf , the ith element of the vector HTWf

-~ ~

So the equations

c1(Byss Byy) + Co(Bygs Byo)t oo ¥ ¢, (By;Byy) = (Bugs 9)

i=1,2, «ees N
with the inner product ( ) as defined are equivalent to the matrix

equation

T T

S R T3

It would appear that if it was required that the inner product ( , )
converge to {,» for an infinite number of points where '

is of a form similar to

[ W) 4300 oj(e) g, tes

o= ow(ty)

then the weight matrix would be diagonal and of the form w.. j

where w(t) is the weight function of the inner product ¢, 7
Notwithstanding this, the weight matrix also gives the opportunity

to introduce the factor of observation noise. Perhaps a way of
including both elements is to use a matrix of the form W = (w{l + w;l)’l

where W, represents observation noise and W, represents the weighting

function of the inner product £, )
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Finally, it may be noted that this method resembles the least
squares method more than the collocation method. In fact it is not
really a collocation method at all since the residual is not made zero
at the collocation points.  "Discrete least-squares" would probably
be a better name for it, but it is best not to introduce new names for
a method which already has an established name. It should also
not be confused with what (MORITZ 1972) refers to as least squares
collocation. To distinguish between the two methods in this project
the method of Moritz will be called "Geodetic Least Squares Collocation",

the present method remaining as is.

1.4.6 Summary of MWR methods

In all cases the matrix equation is
Gc = f ,

I
where ¢ = [c; ¢z ... C.l

and gij’ the i, jth element of G and fi the i th element of f are
given by the choice of the method

(1) Galerkin's method

Weighting function: W. = .
f The G matrix: 95 ~ ( is Bwj)
(¥359)

The f vector: f

(ii) Collocation

Weighting function: wi = 3., the representer of the

-l’
evaluation functional at ti’ z:
or W, = s(t - ti) the displaced dirac delta.
( L3 B‘PJ‘) BWj(tj)

(255 9) gl(ty)

The G matrix: 95 3

The f vector: fi



(ii1) Least Squares

Weighting function: wi = f%u
.i
The G matrix: 955~ (Bwi, Bwj )
The f vector: fi = { Bwi, g }
! (iv) Collocation with Derivatives
— %
Weighting function: w1 = 4y F Dkzi

*
where Dk is some linear operator, &, an evaluation

functional
The G matrix: 935 ~ { i Bwj )
The f vector: fo = A E%, g )
(v) Least Squares Collocation
*

: Weighting function: wi = %%E
i i
% The G matrix: 95 ~ (Bgi, BYj)
: The f vector: fio= (Bygs 9)

where the inner product ( , ) is as defined above.
The inner product { , ) is in all other cases the inner
product of the solution space of Au = 0, eg. a Hilbert
Space of functions harmonic outside a sphere of radius R
and regular at infinity.
On obtaining c, these coefficients can be substituted into
WS = cpul F Cabp b ety

Cnn

to give the solution to the differential equation which approximately

satisfies the boundary conditions.
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However, it is not so much the functional form of the
approximate solution which is of interest in this project. What is
of interest is the approximate value of u(t), or of some linear
functional E; of u(t) at some point tp, tp e 3D, for example the
geoid-spheroid separation N, the value of the gravity anomaly Ag or

a deflection of the vertical in the meridian ¢ at some point tp on the

surface of the earth where no quantity has actually been observed.

1.4.7 Value of a Linear Functional at the point tp

What is sought is the quantity

dp = (Ep, u?l

An approximation may be obtained using u”

je. d_ = %, u*
(pU)

©

where p' = [¢ Ep, vy X ip, Yoy ee. | Ep, vy ]
So

d = pTG'lf, G and f having been obtained by one of the

p v
various M.W.R,

Note that where z; is the evaluation functional of Bu it is also the

evaluation functional of u if B'1 exists.

1]

Bu(tp)
then zp(u) u(tp)

ie  if o (Bu)
1e 1 u
p

*
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,
For suppose B has an inverse operator B '

. T *=1 -1 *
L = 2 4, B B = B 9 , B =B "¢ (Bu
<’p u ) (p u?y ( 0 u) p( )
- '—]- 4 L { &
= B7TBu(t. ) = u(t))
p p
= * — .
If zp = Dkzp = zp, one of the functionals in the original formulation,
T — — —
th = L., 0 [ - 9,
enp = [R5, vi) (2, v2) {25 vy 2]

In particular if tp is one of the collocation points ti in the pure

collocation method, and

(%, u) = Bu(ty)
then E} = B*zi and
* * *
ET = [(B Q.ia tL’l) (B Q:.i:l.DZ) LU (Bz-is ¢n>]

[ e, Bu) {4y, Bz ? oo £t By )]

But this is the ith row of the matrix G in the pure collocation method.
When multiplied by G"1 it will provide a row matrix with all elements
zero except the ith one which is unity.
Calling this row matrix fz, then

d. = pG°f = rI

~

fo= fo= olty)

In other words the original value is returned.
In the case of collocation with derivatives, much the same thing
happens. At the point t. the value observed was, say, Dkg(ti)'

*
Now Dkg(ti) = DkBu(ti) = zi{DkBu}

1

: * —
(5 D Bu) = (D255 Bu) = (25, Bu)
(B*ﬁg, ud

4

*

So the representer of the functionai required 1s 8 Ly



S e e

- 31 -

Thus
pT = [( T Bor) { Tp» Bl2) woo (T Buy) 3, which

is the ith row of the G matrix in the collocation with derivatives

or "mixed" collocation method and hence ETG'I = riT.
RN [P - (7 \ =7 _
Thus  d; = X; f=1,-= (24,97 = ( 25, Bu ) = Dkg(ti)’ and

the original functional of g which was observed is returned.

1.5 Choice of Functions .

In the case of least squares collocation, however, it s not
expected that the observed value g(ti) will be returned.

But it may be possible by some choice of the functions ¥

to obtain a situation where

PT = [(By:s Byr) (Byys Byz) ... (Bygs Byp)d

Then, in the manner described above, the ith element of the vector f
would be returned.

Now f. = (B?i’ g)

But if ET was indeed as described above then the evaluation functional
under this inner product would in fact be Bwi, and thus fi would equal
g(ti). Although at first it appears unlikely that this speculation
would amount to anything, it illustrates the similarity between the
methods and may give some clue as to the way the functions ¥, V2, ... ¥,
could be chosen.

Similar remarks would again apply to the pure least squares
method the difference being that the inner product {,) is used
instead of ( , ). ie. here one would require that

Bwj(ti) = { Buy, Byy )

for a collocation type situation.
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More interesting in this regard is Galerkin's method. A choice

of functions ¢y, Yo, +-o vy would have to be made such that

.
P :(\/\t;')]-, B"L‘l) <¢1, Blb;g) .o n <‘b1’B¢)n>Jl
ie such that Buy(t;) = vy, Buy) .

Then di = <@i’ g)

But note that Bua(ti; = (%, Byy )

This means that the functions that would be chosen would be the
representers of the evaluation functionals 2:. Now, if in much

the same way that collocation was generalised to collocation with
derivatives or mixed collocation Galerkin's method were generalised to
a mixed method, then instead of only the representers of evaluation

functions being chosen as the functions vy, 2, <.« ¥y they would

w
=]

be chosen as the representers of general functionals je L1, %2,

Returning to the collocation method with derivatives and
substituting E} for vy, 1=1, 2y wees N

945 ~ ( 255 Bey )

f ( %55 92

4

Doing the same thing for Galerkin's method

9i5 = ( E%, BE& )

foo= (%597
But, for least squares

9ij -~ { BE}, 813 )

fo = ( BEi, agy.

So it appears at first that the result obtained by least squares may
differ from that obtained by the other methods even if the representers

of linear functionals are chosen as the functions wi, j=1,2, ...n.
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However it is worthwhile to examine the methods further and

perhaps work out conditions where they are the same.
*

Letting i = D_i %5 ij=1,2, ..., n as before, for

least squares

1]

— — * *
(Bzi,Bn.) = (BDizi, BDjzj)

9ij j

f.

; = (BR, g} = (BD;g, 9

Then for i =1, 2, ..., n it is known that

* * * * * *
c, {BD;1, BD121) + C2(BD 24, BDay ) + ... Cy (BD %, BD 2 )
_ *
- (BD~|R'-| » 9 )

Ky X _ * _ *

.
W~ S

J

D.BBD 2 (2.} = D.B BD 2 .{2.} = D.B g(t.)
1 c;D;B BDyeyieyk = Dy lecJ J“T 23 it 9

f1l™m3

J

In most cases encountered in Geodesy Di and B are differential or
integral operators which possess inverses. So assuming then that

*
the operator DiB has an inverse it follows that

z CJBDJ 11{2 b= g(ti)
j=1
Hence n
JzchDTBDJz {z } = Dig(ti) = (21, D9 )
n * n * * *
§ Cj (Q‘i’ DiBDj ’Q'J) = E Cj (D_il_i, BDij) = (01-52,1., g)
j=1 j=1
or Jl\](g']’ . (Q‘-i’ g)’ -i=1’ 2’ -oun

which is the set of equations for Galerkin's method as before.
ie., cl(fi, Bi—l) + cz(}:]., B-i_z) L Cn(z.i, an)’ :(Eis g )

i=1,2, «.. N
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That is to say that if Di’ i=1, 2, ..., n and B both possess
inverses, then the values of Cis i =1,2, ..., 0N obtained by least
squares are the same as those obtained by collocation or Galerkin's
method provided that Ei = s 1 =1, 2, «oos N

Recalling the formula for the value of some linear functional
of u(t) at the point t

p
T

dy = Pc s
it is seen that since ¢ is the same for all three methods under the
conditions stated, the least squares method returns the "observed"
value of Bu(t) at t = tp and so becomes a collocation method without
the use of any "unusual" choice of P.

As well, it should be noted that although ¢ is the same for

all three methods, nowhere has it been stated that

(25, sz) ={ BL;, sz) , or that

(T, 9 Y =(BT;, )

In fact it is highly likely that the matrix G in Galerkin's method ov

for collocation is not symmetric whereas in least squares it must be

symmetric. Computational advantages must surely follow from this.
Now all that is necessary to do is to solve the system

c G'lf

~ ~

it

1
il

with G [gij] where 953 ( Bfi, BE& y
i (BLis 9

and a collocation as well as a least squares solution is obtained.

f

"

In fact since BE& is itself a linear functional one may

without loss of generality write

gi; = Ky 1y)

iJ
f] (Z1sg>

where the E}‘s are linear functionals.
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It is now necessary to find some means of getting numerical values

for the inner products.
Before examining this matter in some detail, perhaps it is

worthwhile to revisit the method known as Teast-squares collocation.

Here, dealing only with pure collocation,

1t

(Bzi, ng)

(Bzi’ g) if Wi = 21 i=1,2, «acs

gij

fs

Now the inner products are different in this case, but by a
similar reasoning as that used in least squares, the system may be

reduced to one where

91j = (li’ sz)
fi = (21’ g)
Expressing this in matrix form,
¢ = (L)t Twr
where L = [zij] R

5 ° (%55 2 )
i=1,2, ..., M
=12, > N

o= [hij]Mxn

h1.j = {2 sz )
i=1,2, ..., M
j=1l.2, ..., n

M>n
f.‘ = (*Q'-ia g)

Now where L, is the ith column of L it is easily seen that
L T = LTHE = (g, )

However, it is the quantity <21’ g ) which is of interest, ie where
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P? = [ {2,

[ (., Boy ) {2, Bip) ooo{ 05, BL DD,
M i i ]

b

it would be required for a collocation solution that:
¢ = el Wl ThuE = £ o= e 90

This will happen if LiW = ri,

where r. s a vector with a unity as the ith element and zero elsewhere,

for then
T T, o7 T N P
E1WH = [ikl = 81 and giw f= gif f1
Now if LTw =t
=i ~i
T _ T,-1
l:1 —‘:iw
% je. Lis ¥ y = Sij
where Sij is the i, jth element of the inverse of the weight matrix.
r
and indeed L' = (1 0 0 0 ... 0)
0 1 0 0 . 0
0 0 1 0 0
L_O 0 0 0 1 0
fixM
= L In»n On><M-n
o LM o= 6 = [g) =12 .0 §=l 2 n
where 95 = P BQJ
T ) ' ~ ~ ”~ ‘\’
And L'Wf = [l ! 0 xMend - ((qu g )\ = ({215 9)|= g(tl):
g(tz)i

(225 9 (225 97

(o> 9 | e g) |

e e e
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so the equation for ¢ becomes
cp {24s B,y +Cp (R B2} * ... 7 cp{ %5 BL) = (%45 9 )

i=1,2, «u.s N
So if the inner product is chosen as above the collocation or
Galerkin equations are obtained. And since these equations give the same

result for ¢ as the least squares equations we may say that the system

6

Hel
1

where

6 = [g;;] 7 sz) = 945

5

(B,Q,.i, 9)
gives an identical result to least squares collocation provided

that wi = L.,

; and (255 2 Y =S..,

1
i, =1, 2, vy N
Since inner products are to be determined as described above it is

instructive to evaluate the inner product

{ BL., sz Y.
Now {Bs., B y = {ay, B*B zj)
= 23 (B sz)
_ * *
= BB zi(zj)
* *
If there were some function S(t,u) such that
Sij = S(t,u) | = S(t,, tj)
t = ti
u = tj
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with t, u in 3D then the notation above would mean

* *

ie. first hold u fixed, perform the operation B on it and evaluate
at t = t.. Then perform the operation 8" on the result and evaluate

it at u = tju

S(t,u) would of course have to be an element of the Hilbert
space in question whenever either t or u were held fixed.
There would also have to be some resemblance to a linear functional
in this case. Such functions do exist and will be the topic of the
next section.

However, before this is dealt with, a final word on the matrix W.
It was stated before that this matrix could perhaps be used to introduce
observational noise into the problem. But now it may well be imagined
that something more fundamental to the problem than merely observational
error is involved. It is conceivable that if the matrix W is the
inverse of the covariance matrix of quantities of the form B_lg
evaluated or observed at points ti i=1,2, ..., n then due to the
strong resemblance of the above expression to the matrix expression

B~ 87,

the matrix G would be the covariance matrix of the quantity g evaluated
at the points ti‘ The covariance matrix would then have much more to do
with the signal rather than noise.

But rather than introducing probabalistic aspects to the problem

at this stage the problem will be allowed to remain deterministic.



-39 -

To gain an appreciation of the significance of the function S(t,u)

it is necessary to introduce the concept of a Reproducing Kernel.

1.6 Reproducing Kernel Hilbert Spaces

The standard text on kernel functions is (MESCHKOWSKI, 1962)
which contains most of the proofs. Unfortunately there does not
appear to be an English translation of this work. There are also
a number of good references on this topic. (ARONSZAJN, 1950) is
perhaps the definitive work, and for quite good sections one may consult
(LAURITZEN, 1973), (DAVIS, 1963), (MEISSL, 1975/76), (MORITZ, 1978) or
(TSCHERNING, 1978a), to name but a few. Consequently, rather than
reproduce proofs from these articles it is intended to 1ist those

theorems which may be considered important to this project and attempt

. to illustrate their meanings by use of simple examples.
1ee Let M be some point set in ®" and let H be a Hilbert space of
2d functions from M to the real numbers R, with inner product denoted
1al by {, ) and with norm || f]] = ({f,f) )%, for all f in H.
For example M could be the integers, the interval [a,b] € R,
a subset of the integers, or D or 3D from previous sections.
Now let K be a function of two variables
K:MxM->R
je. z = K(s,t) z ¢ R, s,t e M.
d Let s, now be a fixed value.
 do S,
Let K ' denote the function
m 55

: M>R

ie, z = K(si,t) ZeR, teM, s.eM
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1.6.1 Definition

The function K is said to be a reproducing kernel for the space H
if the following properties hold

i)  For all Ss in M, Ksi is an element of H

ii) For any function feH the reproducing property holds

S.
f(s;) = (f, k')  for all s eM
: or written another way

fls;) = {£(f), K(s;, t) )

for all sieM.

1.6.2 Examples

i) Euclidean Vector Space of four dimensions E“
M= {19 2, 3: 4}
H

thiM >R | M= {1, 2, 3, 4}}
Lh(1) h(2) h(3) h(4)]

1]

h
eg hy= [15 18.2 67 93.8]

These may be written as vectors and the inner product is

T
‘(hl, hg_) = hl hz.

~

The reproducing kernel is K(i,j) = éij

: i,jeM, the kroneker delta.

K(1,3) = 855 = 1, =]
0, i#3
This may be written in a matrix form as
- B
K(i,3) = l 1 0 0 o0
|
} 0 1 0 0
0 0 1 0
|
{*0 0 0 1
J
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Now for property (i) to be satisfied,

Ki(j) should be an element of H
eg
Kl(j) = K(1:J) = ‘513 = 1 J =1
0 J#1
So K1) =1 K(2)=0 K{3)=0 K!4)=0

K1(j) could be written as a vector [1 0 O OJT.

similarly K2(j) K3(j) and K*(j) could be written as vectors
o 1 0 OJT , [0 0 1 O]T , [0 0 O 1]T respectively.
So for all i, K'(j)eH.

To check the reproducing property it is required that

{ K'(3), h(j)) = h(i) , or written in vector form

with the inner product as described above

@, m@y = K= i@ K@ ki) K@ o]
o h(2)
h(3)
h(4)
So for example {K3(j), h(j)» =0 O 1 03 -B(l)w
h(2)
h(3)
h(4)

h(3) as required.

ii) R3 with inner product gTPy

where P = 1 0 O
0 2 O
0O 0 3
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Here K(i,j) =

= ©
oy
~
~o
o

<o
(@)
—
~
w
[
—
t
~
o
—
o
~—
=
—~
~d
~—
o
—
w
~—
[~

je  K(i,J)

]
[en]
.
N

—

1/2 3 =1-=2
1i/3 3 =1 =3
So for property (i)

Kl (1 0 0] K2 = [0 1/2 07

~ ~

it

and 53 =[0 O 1/3]T which are all vectors in RS.

And for the reproducing property, for example

(K',hYy= [0 1/2 01 |1 0 51 [h(1f] - h(2)

0 2 0
o 0 3 (3]

or in general

( Ki, h) = h(i) as required.

i

iii) M = N the natural numbers {1, 2, 3, ...}

-
it

{h:N>R ,
n

W ™8
=~
——
=
e
A
8
—

1
These functions are the sequences chosen such that they are bounded

under the norm defined by the inner product

{hy, hyy = = hi(n) ha(n)
n=1
o o1 1 1 1
9. ) = 7% = 7801637
h 1 -
2(n)_" _19}_’l’i_s
n! 2 6 24
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These functions could be written as (infinite) vectors

1 1 1 1 1 T
hh = L5 7 8§ 16 37 eeo ]
1 1 1 1 T
h, =1 7 § 2@ T -
. - T
with inner product (hy, hp ) = hy” hp
= 1,1 1 1 1 ® 1
54+ = gat oyt oo =1
778778738 3840 o1 2Mne
Now K(m,n) = 8. = izl e.(m) ei(")
and e1(m) = 8o s ei(n) = S m, N e N.

K(m,n) could be represented as an infinite order square matrix with

unity on the diagonal and zero everywhere else.

Now KP(m) = 3 ei(p) ei(m) for a fixed p
i=1

ie KPm) = 0 p#m
1 p=m

which could be written as an infinite vector with a "1" in the p th
position and zero everywhere else. So it is an element of H, and

property (i) is satisfied.

Now the inner product is

( kP, h) KP(n) h(n)

1]
H™8g

n=1

h(p)

1l
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or in vector notation

(Pyny = KPTh o= 000 00 ... 1 0...] [h(1)]
h(2)
h(p)

= h(p)

So the reproducing property is satisfied. The Hilbert space in this

example is often called the 22 space.
jv) Let H consist of functions of the form

X
HOX) = J h(t) dt
0

where h(t) ¢ L% [0, 1] je. M= {0, 1]
The inner product is defined by

(H, G)

fi

Jl Hi(x) G1{x) dx
0

jl h(x) g(x) dx , HI(x) being the derivative
’ of H(x), etc.

Now this is the inner product of L? [0, 17 but H is not L? [0, 11

L2 [0, 17 is not really a function space in terms of the definition

for here it would be necessary to identify all functions f(x) and g(x)

for which

1
[ [f(x) - g(x)J%dx = 0. ie. it is a set of equivalence

0
classes which, in fact, does not possess a reproducing kernel for reasons
which will be apparent later.

However, it is possible to construct one for H.
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For K{x,y) to be a reproducing kernel then, holding x fixed KX(t)

must be an element of H.

The inner product of H(t) with K*(t) is H(x).

I}

je. H(x) = (H(t), K*(t))¢

1
- Jr HL() Kl(x,t) dt
0

But also, by definition
X

H(x) = J H1(t) dt
0

1

X
je J HI(t) dt = J HI(t) Kl(x,t) dt.
0 0

X 1
J Hi(t), 1 dt + J Hi(t). O dt
0 X

ie. it would be required that

Ki(t,x) = 1 0 <t<xX
0 x<t<l
Now
Kl(t,x) = éﬁigiél- and letting
K(t,x) = t 0<t<x
X x<t<1 ,

the results above hold.

1.6.3 Properties of Reproducing Kernels

i) A reproducing kernel is symmetric
(30, Ky = (W), )

K(t,s)

ons K(S,t)

1)




1.6.3 ii) A reproducing kernel is positive

je. (K5, K )Y = K(s,s) : O
and equals zero if K35(t) = 0, elmost everywhere
n n
S0 151 jil a;3; K(tj, ti) > 0

In examples (i) and (ii) then, the matrices would be (at least)

positive semi-definite.

Theorem 1.6,1 A necessary and sufficient condition for a Hilbert

space H to have a reproducing kernel is that all the evaluation

*
functionals L s tigM defined by
j

Ly (h) = h(ti) for all heH

are bounded. Their representers will thus be in H, so they will
be members of the dual space H*u

To illustrate, it was previously mentioned that the space
L? [0, 1] did not have a reproducing kernel, If instead of examining
L% [0, 1], the case of L2 [-n, =] is taken, the same statement
naturally applies.

However, one may ask about the dirac delta function. Surely
this is a function from MyM to R where the reproducing property holds.

In fact, for all h « H,

Jﬂ h(x) §(x-t) dx = h(t)

™
Unfortunately however, although the reproducing property holds, the
first property, which demands that for fixed t (say), &(x-t) 1is an

element of H,does not.
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For the dirac delta function has the following expansion [see (DAVIS, 1963)
or (STAKGOLD, 1967)1:

1
= cos k (x-t)

Ho~™ 8

s(x-t) = o+

k=1

NoW Tktean” = (B, kKHx)) = Kt

and letting x =t

[22]

s(t,t) = s(0) = _21—"_+—71T—k-2-1 cos k (0) =
So for t = ti ,6(X-t1) is not square integrable. Also the evaluation
functional is unbounded, so L2[-m,n] does not have a reproducing kernel.
By much the same reasoning L2[a,b] will not have a reproducing kernel,
nor will L2[-w, ],
In fact in the case of L2[-»,=] the delta function can be shown
not to be square integrable more directly. For the case t = 0

the § function may be approximated by a sequence of ordinary functions

ny?2
sn(x) = ,/gje nx n=1,2,3...
with §(x), being thought of as the 1limit as n goes to infinity of 6n(x)

Note that

so Tim J dn(x) dx = 1 = J s(x) dx .

nN->© -0 -0

However, J §,2(x) dx = n J RGUSEPY
m

-0 - OO



A,

So the & function is not square integrable, as before, and thus not

an element of H.

Consequently it would be considered inprudent to use L%[a, bj or
L“L @ J where ¢ is some set in R" as the space of functions from
which the approximate solution of the differential equation will be
sought in this work. This is because of the rather attractive

properties which Hilbert Spaces with reproducing kernels possess.

Theorem 1.6.2 If H has a reproducing kernel, then the kernel

is unique.

Theorem 1.6.3 Let M be an arbitrary set and let K : M x M >~ R be

positive and symmetric. Then there exists a Hilbert Space, unique
up to isomorphism which has K as its reproducing kernel.
Now since the kernel for such a Hilbert Space is unique
by theorem 2, this theorem implies a one to one correspondence between
reproducing kernels and Hilbert Spaces for a given set M, at least
up to isomorphism.
Any positive symmetric function is thus the reproducing kernel
for some Hilbert Space. Given such a function, the Hilbert Space
can be constructed as follows:

Since K(s,t) is a reproducing kernel then for any fixed ti e M,

t.
K '(s) is an element of some linear space Hy-  Now if a; e R the
n ti
linear combinations & a K~ will also be elements of HO for n & .
i=1
n ti
ie. HO = | p a, K | aieR, tieM, neN }
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The inner product may be defined as

n ti n ti) n n )

(z a,K', £ b.K = ¢ 1 asb; K{t.,t;

j=1 j=1 9 i=1 j=1 'Y L
neN ass bj £ R ti’ tj e M

Let the norm be defined as the square root of the inner product of an
element with itself and H0 is a pre-Hilbert Space. Adding limits of
sequences of functions 1in HO makes it a Hilbert Space H.

Let us examine such a sequence of functions hy, hy, h3, ... which
converges to some element h ¢ H in the strong sense (convergence in

norm)

ie. 1im || h - h, | = 0

N> o«

Since H is a reproducing kernel space,

L h(s) - b (s) I = [ 4h - h, K

s
< fh-h e 1K

1
= [fh-h | - {K(s,s)}*
< JIh-hl-c

1
2

for any s in M} a subset of M and where | {K(s,s) }°| < c.

This gives the following result:

Theorem 1.6.4 Let H have a reproducing kernel K(s,t) and let a sequence

of functions hi(s) s € M converge in the strong sense.

Then there will be pointwise convergence in M.  In addition,
there will be uniform convergence in any subset M! of M where K is
bounded on the diagonal of ML yx M!.

ie Tim hn = h,
n-> o




If, furthermcre, the Hilbert Space is separable, cne is permitted
to write an equality sign between an element and its expansion with
respect to an orthonormal basis.

In fact the reproducing kernel and the orthonormal basis are
intimately related in a separable reproducing kernel Hilibert Space,

as stated in the following theorem:

Theorem 1.6.5 A reproducing kernel Hilbert Space H of functions on M

is separable if, and only if, there exists an orthonormal basis e N e N

such that for all s,t ¢ M,

K(s,t) = =

The functions e, will then constitute a complete orthonormal system

in H.

Now if e, N e N and fn’ n ¢ N are both orthonormal systems
in H, then due to the uniqueness of the reproducing kernel, and the

above theorem,

for all s,t in M.

Since it is known that in a separable Hilbert Space with a reproducing

kernel there exists a complete orthonormal basis it would be interesting
to see if the functions K(ti,s) i=1, 2, ... would form a complete
set in H.

Here is a particular case where this happens:

Let H be a separable Hilbert Space of continuous functions H : M » R
which has a reproducing kernel.  Suppose that within M there exists an
c-net of points tj, 1 =1, 2, ..., =. That is to say, suppouse the {tjf

is everywhere dense in M ie. for any point t and any ¢ > 0 there exists a

s +h N
L 1

St [ PO N A -~
point t, so that t ToXait less than =.

i
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An orthonormal basis may be constructed from the function

t.
R t) i=1,25 eee s @ by the Gram-Schmidt method. Let ¢1, ¢2 ...

be the orthonormal basis

t)
97 = ankK (t)

t; t,
0, = an K (t) + ayK2(t)

t t
by = 8K H(E) +apoK 2(t) + ... +agK N(t)

Ktl(t) +a thZ(t) + ... an+1,n+1K

Y+l T ¥n+1,1 n+1,

It is easy to show that a5, # 0 for all i in N,

Now let f within H, be some function orthogonal to all ¢i» where
i is in N.

So (6., £) = {ankti(t), f(t) ) = a;f(ty) =0

Since a;; # 0, f(ty) = 0.

Now assume that f(ti) =0, 1=1,2, cuoes N

o F) = (2 Kt"(t)+ <L) E(t)
n+l? i=1an+1,i an+1,n+1 ? !
n
) -Elan+1,if(ti) * an+1,n+1f(tn+1)
= an+1,n+1f(tn+1) =0

And since a;; # 0 for each i in N, f(tn+1) =0
Thus, by induction f(t;) = 0 for all i inN.
Now since ti’ i=1,2, ..., @ is an e-net for any point t in M

a point t; may be found such that

|t - tﬂ‘ < e

G R e
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And by continuity of f a & may be found such that
Nt =-xl] <e = [[f{t) - fx)) <¢

In particular

Ht - tll <e & QI f(t) - f(t)] <¢

But f(ti) =0 for all i 1in N.
Hence || f(t)|l < ¢
Since this is true for any e,f(t) =0 or f = 0.
Thus by (DAVIS, 1975 Theorem 8.9.1) ¢
is a complete basis for H.
So any f in H can be expressed as a linear combination of ii's.

But these in turn are just linear combinations of the functions K ' for

i in N. So any f in H may be expressed as

o t.

f = aiK ! where a; is a real number

i=1
&
and thus K ', i in N forms a complete set in H. This is a most
useful result for in approximation it is often necessary to find the
t.
projection of f on some subspace of H. K ], i=1,2, ..., nwill
form a basis for an n dimensional subspace and the projection of f
on this subspace will converge pointwise to f as n » «,
Before examining this aspect, however, there are some more

examples of reproducing kernel Hilbert Spaces to be examined.

1.6.3 iii) Isotropic Kernels on the Unit sphere o
Let M = v, the unit sphere centred at the origin, and H be

square integrable functions defined on ¢ with inner product

f
(9,h)='{ig(t)h(t)dt t e o.
PR
9]

The space H is thus L%[o], and the functions f, g can be expanded into a

series of Spherical Harmonics.
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o n

flo,n) = & & [a R (8,0) +b .S (68,2)]

ege. nm nm nm nm
g n=0 m=0

where = >8> 0 and 2m > > 0, 6 and A being the co-latitude

and longitude respectively.
Rop(8s2) = P p(c0se) cos ma

(6,A) = P_ (cose) sin mx

Snm nm

where an(cose) js a solution of Legendre's differential equation,
known as a Legendre Function

2
je  sine g"(e) + cose g'(e) + [n(n+l) sine - ggﬁgjg(e) =0

has solution

g(e) = P (cose)

Putting t = cosé,
+m
o1 q_ym/2 gf___ 2 _ 1\"
P 1) = S (1000 ol 1)
When m = 0 the Legendre functions become the well-known Legendre Polynomials

Pn(t)°

It may be shown that

3
J J an(e,x) Rsr(e,x)do = 0
g
( )
J ‘ Syt 8sA) S¢(652)do = 0 forn#s orr#m
g
and
.
)] an(e,x) Ssr(e,x) do = 0 always.
ag
Also
[ [R_(6,0)12 do = AT and
Jo) 7ot ° o+l
g



b
S

LSnw(u,A);# do

AN LT
n+l (n-m)!
A complete orthonormal set of functions is obtained by dividing cach

of the spherical harmonics by its respective norum.

, - ¥ , Tl
fe. R {u,n) = ”%;A'RHO(U,A) =/ —2;1-Pn(cosw)

no ¥

5 ra _ 2(2n+1) (n-m)! v N
an(L’A) h //" 4 {ntm) ¥ an(U’A) > 70

T (¢ ; 2(2n+1) (n-m)!
Sl 0> F / T (nmnn Spalesr) s m 70

(Note that these definitions differ trom those in (HEISKANEN & MORITZ,
1967) where a factor of £7 is used outside the integral sign).
SO now | ( R ) do = {

[
J Tnm

The function f(u,3) can be expanded ii terms of this orthonorinal set as

w2 n
flo) = » Sla R (u,A0) +b. 5 (6,4)]
’ : - monm ‘ T
n=0 geQ  Mnm i~ nin
where
— ‘1 [ —
Y T [ Flo,2) an(u’ﬁ) de
and
!' { —
b= Aoy S (e, ) d
T b ' e
(Here we let S = ()
no
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gince the spherical harmonics are a countable set they can be identified

with the natural numbers and so be expressed as functions with a single

index.
eg. o1 = Rool0,2) o5 = Rp0(8,2)
2 = Riole,2) %6 = Ra1(6,2)
93 = Ry1(6,2) ¢7 = S21(0,1)
oy, = S511(0,1) etc. (MORITZ, 1966)

Note that Sno = 0, for all n ¢ N since sin Ox = 0.
The orthogonal expansion for f(o,1) is now

f(o,A) =

fl ™ 8§

c; ¢5(852)

i=1

and

{ ¢329,)" J J 95(0,1) ¢,(6,1)do = &4,

9

Now, as for L2[-m w1, the space L2[c] does not possess a reproducing
kernel as the evaluation functionals will not have bounded representers

within the space. In other words, the series

'Zl¢i(t) ¢i(s)’ t, s e o diverges.
1:

Now

s(s,t) = z o.(t)ey(s) = £ R (05,00) Rpo(64she)

[ o

>
™8
o

i=1

© n
+ ¢ ¢ [R.o(6_,n.) R _(68,.,1)
n=1 m=1 M s°S nm't’7t

* Snm(es’xs) Snm(et’xt)]



noo~ 8

1
LER (en+1) P (coss ) P (coso,)

n
(n-m)! i :
% TﬁiﬁﬁT{an(coses) an(coset)(cosmxtcosmxS s1nmxts1nmxs)]

m=1

; 2(2n+1)

i

+
n=1

w n
1 (n-m)! .
ZF'{l +n=1(2n+1)[Pn(coses)Pn(coset)+2m£1 )T nm(coses)an(coset)cosmbk-

it

(2n+1) P _(cosy)

§(s,t) = ﬁ%-+ i%— n

n

It ™8

1

by the addition rule for spherical harmonics (HEISKANEN & MORITZ, 1967)
and where cosy = COSB,COSHy + sinetsinescos(xt-xs).
Note the similarity between this expression and the expansion of the

delta function s(s-t) in L2[-m,n]. Now since Po(cosw) =1,

I S
s(s,t) = T L (2n+1) Pn(cosw)
n=0
Putting v =0 , &(s,s) = 2= I (2n#1) = =
n=0
ie. ||65|l= » and the evaluation functionals are unbounded.

Now since L?[c] does not have a reproducing kernei it would be
of benefit to find a space H which is not unlike it but which does have
one.

The orthogonal expansion of L%[c] was

f(t) = 1 Tolt) teo
n=1

By Parseval's equality,

2 [o2]
el 2 = I ¢?
L4[o] n=1 "
and indeed, { f,q ) = 1T .
(f,9) L Cndh

n=1
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Let the elements remain the same as those in L2[c] but construct a

new Hilbert Space H with norm defined by

2 1 © 2n+l —
W flly = 7o B &% ©5
H 4'” j=1 k J J
and inner product, the j being related to n by Moritz's numbering:
| o1 2 2l o=
: | oty = I Ty S5

¢j(t) j=1,2, ... »areno longer orthonormal since the

inner product has been changed. In fact

367)
1
. = {4..0:), 2=
lo5lly = Lo50052 4 \/_k_2_nj'_l_
iV
An orthonormal basis wj, js formed by dividing ¢j by its norm.
k:v 4n
ie. p, = -3 .
J /ondl Y
Then
K(s,t) = = v.(s) v.(t)
j=1 J J
be
2
have _ - K J
= 4n Jil n+l ¢J(5) ¢j(t)
= 5§ K2. P.(cosy), under certain conditions
3=0 J J
For p = 0 K(s,s) = T K2
=1 J

<
a
2
:
&



o
e
]

So for H to possess a reproducing kernel the constants K. must be
J ]

chosen such that

A kernel of this type is known as an isotropic kernel, for it only
depends on the spherical distance ; between the points s and € ¢ ¢,
and not on the positions of the points (OS,AS), (ot,xt).

As will be seen Tater if the constants K% are chosen to
be the "degree-variances", the kernel is the empirical covariance

function of a homogeneous and isotropic random field on the <phere.

Note also that the orthonormal expansion in H is

f(t) = = E.¢. ie. the coefficients E. become
nel 93 J
SooL el 5y
J Y T4 j

The new orthonormal set in terms of Rnn and Snm becomes

1

Rno = kno Pn(coso)

P ’ 2(n-m)t
nm nm / (ntm) T Cnm

i

0 - h /@(njHXL
nm nm v (n+m) T nm
X T —
- nn o /2n+l
a = f R ped e e e e
nm Cf mQH kwn 4n
{
b5 .
~ . Sy . nm /en+]

= { S

nm o'y R Thn
nm



s
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The orthogonal expansion is

~ ~ (22 n . . .
f=3 ¢ [ Rm™ b 1 = ¢ I [a Rt b, S, 1

: nm nm nm”nm n=0 m=0 nm nm nm-nm
as is easily verified by substitution.
2

- 3 K2. P.(cos¥)
oo 39

Since kj represents hnm or knm depending on the value of j it is
not the same as Kj. Indeed it is not always possible to express
K(s,t) in this form.

So now the conditions for which

8

K(s,t) =
n

i ™

2
K ; Pn(cosw)

holds, will be determined.

Now w k2
K(s,t) = dr 2 g 05(8) ¢5(t)
w k2
- no
4ﬂn§0 7n+l Rno(es’xs) Rno(et’kt)
4 @ N k2 h%m
+ 4n 1z I 'ﬁ R S <
n=1 m=1 Znt (SS’A ) an(et’xt) 2n+l Snm(es’xs) Snm(et’xt)‘
= 2
nzo Ko Pn(coses) Pn(coset)
+ § 22 p 2 : (n-m
o nm(cose an(coset) [k®m cosmxtcosmxs—hznms1nmxts1nmA by ey

= 5 2
£ k2 P.(cose.) Pn(coset)

n=0 "°
© N
+ 2t k? (cos ) Pn (cos ) [COSM,.COSMA-STnM sinm ]( n-m) !
n=1 mel nm’ nm t t AgSINMA ) T
+ 0{ 27-(n2 . . (n-m) !
n=1 m-l( oK ! an(coses) an(coset)s1nmxts1nmxstﬁ¢ﬁYT
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- [¥'e] 2 p X
nEO k o Pn\cosus) Pn(coset)

sz g {n=m)!

5
. nom=1Tﬁim i

+
™~ 8

an(coses) P (coset) cosm(xs-xt)

nm

n

w n

- - (n-m)! SlL,2 _p? : :
+ n:1 §;1Th+m i an(coses) an(coset) [k m h nm) sinmisinmg
2 2 e :
+ (k am™K no)(cosmxtcosmxS s1nmxts1nmxs)]
-9 2
K(s,t) nEO k no Pn(cosw)
P 22 (n-m) ! P_(coso_)P_ coso,)[(kZ -k2 )cosmr_cosmi
n=1 m=1 n+m)! " nm s’ nm t nm  no’ s t

_ 2 _ 2 . .
(h - k no)s1nmxss1nmxt]
The first term is the same as the isotropic kernel expression when
kno = Kn .

The second term is an expression for the anisotropic part of the kernel.

It becomes zero when

k = h = k = K m=1, 2, ..., n, for all n.
nm nm no n

This is the condition for a kernel to be isotropic, when the norm is
defined as previously stated.

In other words the norm should be chosen so that

v 2 1 @ 2n+l no_ B—~
! = M 2 + .
H f ‘l H ZTY nEO K:‘n iO(a nm an) i

for an isotropic kernel.



ISMA

ernel.

1

n.

n
1 =2 IR
= r (32, +b2 )
E;-m=0 nm - nn
c2
= I —~zrl (2n+1)
n=0 n
P nEZ oo 62
= 25 Rgn' + I Kyﬂ
n=0 " n n=0 " n

it is seen that for f to be bounded 2K2n must converge at a slower

rate than znézn . But for H to possess a reproducing kernel

szn must not diverge. So the values of K which may be chosen are
limited by these considerations. Note that if K2n is chosen to equal
C2 or even (2n+1) Ezn, although szn < » 1in both cases, f is unbounded.
So in this case, K(s,t) would be the reproducing kernel of some

Hilbert Space V in which f is not included. szn must converge

slowly enough for f to be included if K(s,t) is to be the reproducing

kernel of H.

1.6.3 iv) Let M be the space outside a sphere with radius R in R3,
centre at the origin.

Let H be the set of functions harmonic in M and regular at
infinity.
For harmonicity it is required that

v2h = 0 for all h ¢ H

or in terms of 6, A, r, where r is the distance to a point from the
origin,

32h sh | 52h ah 1 32
r? +2r Sy 20 4 o =
vz ¥ 2r mp oo + coto o5+ gy 532 0

Regularity at infinity means that

lim rh exists

> oo
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y . . 5h
%%_’ 2 %%. and r< %K' are all bounded.

and r?
In fact it is shown (MACMILLAN, 1930) that if h is the potential

of the sphere and the mass is finite,

M = Tim rh 1is the mass of the sphere.
> o

Note also that since h is harmonic in M, it is also analytic, that is,
it is continuous and has continuous derivatives of any order
(HEISKANEN & MORITZ, 1967).

Let the norm be defined as

Hhil = j (vh)? dM with inner product
M
{(h, g) = J(Vh'Vg)dM
_ogoh L g3h a0
where Vh 1 3% +J 5% + k 5X3
R 2 - &2 .?_Ilz _3112
ie (vh) (axl) + (axzj + (ax3)

Now using Green's Theorem and the fact that v?h = 0,

¢
2 = - o

J (vh)Z dMm J J h T ano

M R =
Where g is a sphere of radius R.
And ‘o= | [ -

J nm J nm
g [¢)

w

[ _ B r B ] ~ ~
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A solution of Laplace's equation in the region M is given by

; 1n
-ential o R - = ~
froo) = 2 (§) T [aRo(e.a) + By Spn(0.0)]
n=0 m=0
So an orthogonal set of solutions is given by
't is 1 p. = (R n+1¢. j=1,2, ... = where ¢, is given
’ i (%) T8¢ ’ j
R ML _ g+l _
: - J J (+) R * Tnez (0+1) |Rnm do
i UR r r=R
3 r1*1 R+ <
= - S - (n+1) Snm do
J“R I rn+1 nm rn+2 lr=R
2n+l - —
= R = _ | 1(n+1)R2
Jc J R2N+2 (n+1) 82, do = Jc J R nm do
R R
2
REL) < pene)
S0 to form an orthonormal set, one must divide each wj by / R(n+1)
1s before. Rn+1/2
So y, = - é
J (n+1)72 n+l 7]
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To form the reproducing kernel, Theorem 1.6.5 is applied.
ie

I L Rl mere S LY

+ 2 n+1
n+l (rth) Pn(cosw)
S

E
" n=1
where  is the angle between s and t ¢ M subtended at the origin,
or centre of the sphere.

Note that when re = ry = Rand ¢ = 0

However when this is so, s and t are no longer in M, and as
long as Fes Ty > R the series converges,so for all s, t ¢ M, K(s,t)

is a reproducjng kernel but not on boundary, ie. the surface of the

sphere ORe

A closed expression.(which has been modified to the present notation)

for this kernel is given by (LAURITZEN, 1973):

rsrt(l-cosw)

- L2, 1
K(s,t) L PR R.L+R“-r r cosy
Py L
where L = [ {—%7) - 2r.r, cosy +R?])*

This kernel is often referred to as the Dirichlet Kernel for this

particular space of functions.
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This is not the only reproducing kernel for the index set M.

For example (KRARUP, 1969) shows that

K(s,t)' = %? with R and L

representing the same quantities as above and s, t e M as defined,

is the reproducing kernel for the Hilbert Space whose inner product
is defined as

1 11
(f,g) = E?'J & vf-vg dM

M

Another example of a reproducing kernel Hilbert Space on the same set

of functions is the Poisson Kernel.

1.6.3 v) Let M and the functions f : M > R be as defined in 1.6.3 (iv).
This time, however the Hilbert Space F will differ from H in that its
inner product is defined as

(fg) = Tin Ly [ [ frgegng) alryopag) doy

r-R
Iy

- L
where r = (rsrt) > R.

An orthonormal set of regular harmonic functions in M is

n+ls _
(BY:__) an(et’kt) n, m= 0, 1, 29 s ©
t
R (Nl
(’FE] Snm(ets)\t) n, m= 1, 2a soey @

Note that

— 2 f 2
= < =n2
JO J[ nm(et,xt)] dor Jo J[Snm(et,ka] dor re.
r r
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S SN 2 R Y
SO J J (-}:-—) [an(et’xt)“ dOr | { \’YT‘) [Snm(et,)t J Or
O t "0 t
) n+l
- ('5.—7) re
t
R2 ntl ) L )
= = v since (ryr,)?=r
ie s =1t

n+14

lim 1 (R?
nd or el

Thus the reproducing kernel for F may be found by theorem 1.6.5

o R2 n+l
K(s,t) = j§1 O ¢j(s) ¢j(t)
where ¢j(s), ¢j(t) are the same as in (MORITZ, 1966)
: 1 = g2 "M
ie  K(s,t) = E;ﬁio(rsrt) (2n+1) P_(cosy)
-RY
1 Fs Tt
And, K(s,t) = 7 (g5

with L the same as for the Dirichlet Kernel, is a closed expression
for K(s,t).
Again it is noticed that when re =Ty s R,o = 0,K(s,t) becomes infinite.
But, once again, this does not matter because M was the set outside but
not including a sphere of radius R in R3.

Now it is seen that this kernel as well as the Dirichlet Kernel
depend on y rather than the points (es,xs) and (et,xt) so in a sense
they are isotropic kernels for functions on any sphere of radius R! > R,

= = 1
when rs ry R,
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. gy sinilar reasoning to that in 1.6.3 (iii) it can be shown
'»thétva'very general class of kernel is given by
. o 2 n+1

K(s,t) = Z k2 R ) P_(cosy)

r n
n=0 no rgry

o o p2 Ml -m)!
+ I 2(—3—-3 n-m: p (coso)P

(n*m)T "om
n=1 Fs't

\/
e
|

nm(coset) x

Vel
"
o+

2 _k2 (h2  _k2 : . :
[(k nm k no) COSMA L COSMA (h - k no)smm)\tsmmxs),]

Qﬁeré‘the first term is the isotropic part of the kernel and the
',second term is the anisotropic term which becomes zero when

knm = hnm = kno' There is no reason why a Hilbert Space with such

an anisotropic reproducing kernel should not be used for functions

harmonic and regular outside a sphere, but the class of isotropic

kernels certainly seems more "natural" because of its similarity

to such kernels as the Dirichlet and Poisson kernels.

In fact, in the above equation when knm =h = knO for all

nm
m.the general form of the isotropic kernel for harmonic functions

outside a sphere of radius R is

<] R2
K(s,t) = E K2, (=) P (cosy)
“inite.

: but Obviously, when

Kz - 2n+l
n dx *

the Poisson kernel is obtained and when

an+l

_ 1
“n = o rmery!

K(s,t) is the Dirichlet kernel.
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To obtain the kernel K(s,t) given by (KRARUP, 1969), one makes the

substitution
KLn = 2 for all n
Then
(.00 - 25 (2" p (cos)
K{s,t) = 2zt P (cosy
n=0 rsrt n
. R
L

If 3 K2n converges, then when r_ = r, =R and v = 0, K(s,t)
is not infinite on the sphere. But one needs to be extremely careful
to take notice of what is being modelled in this case. For example
% KZn could converge at such a rate that notonly = K2n converges,but
so does I KZn rn+1, where 0 < r < 1,

In this case it would be possible for r.r, < R and K(s,t)
would still be a reproducing kernel. But rery < R implies that one
or both of ros'y is less than R. So K(s,t) would be the reproducing
kernel for H' the space of functions regular and harmonic outside a
sphere R' where R' < R,

Physical considerations may preclude this from happening,
and so the kernel would not really be appropriate.

For K(s,t) to be a reproducing kernel for functions which are
harmonic and regular outside a sphere of radius R then, the minimum

condition is that

n+l

N G )
=0 n rsrt

This applies whether the kernel is or is not isotropic.
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In addition if the kernel is anisotropic it is required that

n+l n (

w R2 n-m! 2 2
PGS (k2 +h2 ) <
o1 el m=1(n+m5! nm nm

which will happen if k.. hyp are of the same order as k. (ie Kn)

for each n.
The norm of f in a space with an isotropic kernel is given by

2 1 ® 2ntl
|l = LA Clr L L
:) K}.n=0 Km0 ™M nm
. . 2 _ 2n+l
~eful For the Poisson kernel, then with K n =
e it = 5 L@, + B )
f = ¢ I ({a +b
but n=0 m=0 ™M nm
as would be expected, from Parseval's equality.
.. 2n+l
2 =
For the Dirichlet kernel K n T-R(NFI)
mne
LfI D= RS (o) & (32, + B
-ing so fl| =Rz (n+1) =z (a2 + )
n=0 m=g " nm
a
And in the case of the kernel in (KRARUP, 1969)
2 1 eontl M2 2
NfllT = — = £ (a, +b_ )
l 4'IT n=02 m=0 nm nm
Tre It can be seen that there is considerable variation between the norm
i of f depending on what reproducing kernel is chosen. In other words

the choice of reproducing kernel is really a "norm choice" problem.

1.6.4 Representers of Linear Functionals

Let H : M > R be a reproducing kernel Hilbert Space of functions.

Then, because of the reproducing property

S.

(k' f) = f(sp)

S.
the functions K 1(t) are obviously the representers of the evaluation

functionals.
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But these are not the only functionals which exist in the dual
space H*of H.
If B is some linear operator
B :H->H,
then the evaluation of Bf at some point ti e M is a linear functional
also. Let such a linear functional be called E: with representer E}.

Then B

(%, f)y = Bf(t;)
t.
But since K '(s) is the evaluation functional for any f ¢ H, then

t.
(K '(s), BF(s) )
t.

( B*K '(s), f(s) )

t. %
je B*' is the representer of the linear functional L35 OF
t.

—_ _ * 3
Qa_i - BK

where B* is the adjoint of the operator B.

Bf(t.)

H
(we)
™~
(@]

<

—~
w

~—

Note that Bf(ti)

1]

i ~8
)
w
<
P
n
N

where {wn(s)} is an orthonormal basis.

Also  { B*K(ti,s), f(s) ) = Bf(t.)

where K(t,s) = oz wn(t) vp(s)
So ( B*K(t,s), f(s) ) = « §1 B*wn(t) vp(s)s f(s) 2
n:’
= nil( v(s)s F(s) )y By (t)
= T ¢ By (t)



al

=]

t. 0
or (B '(s), f(s) ) = I c BTy (ty)

\t=ti

t.
So B*K '(s) is not difficult to determine.  One holds s fixed,

performs the operation B on K(t,s) as a function of t then lets
t = ti and allows s to become the variable once again.
This is illustrated with the following example:

Let K(s,t) be the Poisson Kernel of example 1.6.3(ii1)

Let
_ of _ 2f
Ag = ¢ T for f ¢ H.

It is intended to evaluate Ag at the point ty on the boundary of M

ie where ry. = R.

i
The reproducing kernel can be written in the form

© R2 n+1
K(s,t) = 1 () ¢j(s) ¢j(t)

j=1 ‘st

n+l
where ¢j(s), ¢j(t) are such that (%iﬁ ¢j(t) form an orthonormal set.
t

N - 5 (R I R B S
ow  frg,6.,1,) nio (rs) § (@, Rom(8cs2g)+ b Srm(€s22g) ]

which may be written using the notation of (MORITZ, 1966) as

3

n+l

f(s) = 3 c-[JiJ ¢.(s) where c, = ¢ [a _+b ]
j=1 I J J p=g MM NW

Now where B is —— - %- R
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Now 1
t. n+l n+l nt
; , @ Ry ntl 2y (R: . R
(K '(s), Bf(s) ) = jilcj (F{:—) @j<ti)< (rs - R) (r\s) ¢j\5) (rs) ;(S
i
Now n+1 n+l
2R R, = g
( - ﬁ(;?ﬂ ¢J(5)’ (;T? ¢J(5) ) T-R
S S
and n+l n+l
n+l, R R n+l
o) el G eyle)) =T b

i n+tl 2, (R yn+l
So (K '(s), Bf(s) ) = = cj(T- 2 ) 95(t5)
j=1 ti
But this must equal Bf(ti)
o 1 2, R M
BF(t,) = 2 ci(Xh- () es(ts)
1 j=1 J rti R rti J

Thus rti = R which is not surprising since t, was chosen to

be on the boundary of M.

_ bt mn-1

So Bf(ty) = I c (Fpe;ity) s

Jj=1

n
< n-1 ) T
= I —w L [a J
n=0 R meg Nmonm nm=nm
Now
t. * n+l n+l
@ R ntl 2y, R
B*K '(s) = B, K(s,t)] =1 () (s) (2 - 5 () es(ty)
t ‘ti =1 re J rti R rt‘ jva
i
« L. § n+l n+l nti
i v+l 2y R (R (R ‘
and ( B K (S), f(S) ) - nzl(rt_ - R)(rt ) ¢j(t])\(rs) ¢n(s)’cj&rs) f
i i
© o+l 2 [l .
= Loy - R oyt
n=1 9 rti R rti jv

l
e~
~h

=
{—’-

S
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And since tj is on the surface of the sphere of radius R

t. .

{ Bk '(s), f(s) ) = ‘Zlcj(nﬁlﬁ ¢j(t1) as before.
J:

S5 oml @ R+ B S

n=0 R m=0 M nm nm- nm

Now that a way of representing linear functionals has been found

a method of determining inner products between the representers
of these linear functionals is required.
With evaluation functionals there is no problem. For, by the

definition of a reproducing kernel,

S'i 51- Sj
(K, KR ) = (Kisps ), KO(8))

- KI(sy) = Kispsy).
Now if B; and B, are two linear operators and
X = o (BF) = Bif(t) = (B KZ.F)
TR = Bf(t) = (B K, F)
then (T,%) = (B K, B K2)
- (BB Kb, P2y = ety to),  say

which may be written BzBl* K(t,, tp) ie operate in the manner
previously described for Bl* on K(s,t) with s as the variable and
evaluate at t = t;, giving Gt1(t). Then operate using By with ¢t (t)
as a function of t, then evaluate at t, to give C(ty, t2).

It is possible therefore to find the norm of an evaluation
or other functional.

For example using the closed expression for the Poisson Kernel,
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RZ (Y‘ ZrtZ_ le)

K(s,t) = : 52 - 3%
{rsart -2R rsrscosw+R }
i b 4
Then I = (k) K s) Y = K(tyuty)

t.
Note that as r, R then K T(s)]| -+ .
i

3 O

With B=-2 -
ar
BB™ K(ti’tj) may be determined.

The norm of such a functional is given by

—x 2 %
IZ0° = BB™ K(tynt))

(2n+1) (nﬁljz

1
8

it 8

1
A nso

_ %
So 2; is also unbounded on the sphere.

i
Since it will be required that ¢ E},I& Y be evaluated on this boundary
it is evident that the Poisson Kernel will be inadequate for the
approximate solution of differential equations with boundary values.

A similar computation would reveal the same deficiency with
the Dirichlet and Krarup Kernels.

Thus it is necessary to look to the general isotropic kernel

for the evaluation and other functionals.
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o ) RZ )n+1 ( )
kK(s,t) = £ K P (cosy
( o Ty n
ti o
Ik (I =z K2
n=0
— 2 — 2 ® n_l 2
and || 2,1l = Jleyil = iz KZ (79

je. in this case it is not only required that KKZ converges,
but also that = Kn2n2 converges too. Indeed, before choosing the
Hilbert Space it may be necessary to look at the norms of all Tinear
functionals which are to be used in the solution.

For all candidate operators Bi it would also be advisable
to examine the norm Bif as well as that of f.

In the case above ag = Bf, the norms are given by

2 1 < 2ntl " o L=
I A 5 2wl ;5 252
T =0 Ky e MM onm
2_ 1 %2 (2n+1)(n-1) _
and A = g AeTTANITL) L
IFagll An n=0 KnZR m=0 GnmAbnmz)

In this case it can be seen that an should converge at a slower rate

than
w n
I n?g [anﬁ4bn£§ , which is even slower than that required
n=0 m=0
2
for || f|| . So the choice of the constants K may be more severely

Timited when functionals of f are taken into account.

Now that the form of the linear functionals and a method of
finding inner products between them has been determined, it is necessary
to examine finite dimensional subspaces H, of a reproducing kernel
Hilbert Space H, for the test function in the approximate solution of

differential equations is of the form

*
U = Ciyy + Cobp + ... £ C U,



- 76 -

and yp,¥zs «..» ¥, CaN only be the basis for some finite dimensional

space.

1.6.5 Projections and Subspaces

Since the evaluation functionals are bounded, then if a
subspace H'c H is chosen, obviously they will remain bounded for
this subspace:

Theorem 1,.6.6

If H' is a closed subspace of H and H is a reproducing kernel
Hilbert Space, then H' also has a reproducing kernel.

A subspace of a Hilbert Space will, of course, have the same
inner product. Now if y;, ¥», ... is an orthonormal basis for H,
then Y1y V2, e Yy will be an orthonormal basis for HN’ an N-dimensional
subspace of the separable space H. Thus any element hN € HN can be

represented by

N
hyls) = = c v (s)
N =l MM
N N
Now (& w(s)y (t), = cow(s))
n=1 " " mel M
N N
g (nzl v (s)v, (), v (s) )
N
= milcmwm(t)



ynal

rnel

mensional

n be

(K'(s,t), 2(s) ) = (milwm(S) by(t)s n§1 cpbpls) ?
N o
=L I (o (s) v (t)sup(s) )
N
= mil ¥t

But this is the projection of h onto the subspace Hy.

Theorem 1.6.7

If K' is the kernel of H'c H and h is an element of h, then

the projection P of h on H is found as

ph(t) = (K'%, h)

That this is not restricted to separable spaces is shown in
(LAURITZEN, 1973).
It can be seen that if
N

Pyh(t) = m§1 v (t)
as N » =, PNh(t) > h(t), since the constants c; are the same for each
i in both expressions.

Returning to the approximate solution of differential equations

it is easily seen that the quantity u* obtained is the projection of u
on an n dimensional subspace Hn of H. This is because if the
representors of evaluation functionals are chosen as the basis vectors
for H , the other methods are equivalent to the least squares method.
The Teast squares method minimises the norm

Il u-u™]]

* —_— —
where u” = cy;2; + Ccofp + ..o C 2



Now ( U*, U > = ( Cl_le + C2m2+"'+C 2, f >

{

nn’
IS R,
(225 )
ey £
and (u*u” y = ST (%, 21 ) (22, 2 ) (Eh, P )‘1 c
F Ty (T T (e B2 )|
|
~(Eﬁ, [0 O P e S QU )_J
= gT G c

where G and f are the same as in the section on least squares solutions.
Now when a least squares solution is obtained, it is given by

the matrix equation

c = o7'f
Thus  ( u*, u)y = fTG-lf
and (v, u*y = flele ety = flaTlf
So (u, u)y - ¢ u*, u*y = 0 = {u¥, u-u” )

Thus u-u™ s orthogonal to u* £ Hn’ and so u” is the orthogonal

projection of u on Hn'

So if 2, 2, ... form a complete basis for H and %;, %z, ..., £ form
N

n
a linearly independent basis for Hn’ in view of the fact that u™ = & C%vi
i=1

where ¥ is an orthonormal basis for Hn, and that as N » «,

w N w©
. * o i . * o - - Ay
U > I Ciw, = U, then U = L Csfs: » U= 5 C,2 » as N » =,

EPRE RS . i . i

=] i=1 i=

i 1
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t.
e kernel functions K 1(s) i =1,2, ... n are chosen as the

e it has been previously shown that if all f ¢ H are

pasis of Hp» sinc
t

continuous K s) i=1,2, ...~ forma comp]ite set of functions,
n ,

then it must follow that as n-e u* = = ciK Y(s) converges pointwise
i=1

to u.
; t.
Naturally the same result will follow if B:K (s) i=1,2, ...0 are

chosen as the basis vectors for H.

It is also of importance that, as stated in (HEISKANEN & MORITZ,
1967), if u is a function harmonic outside a sphere of radius R and

regular at jnfinity, it is continuous and infinitely differentiable,

as are all harmonic functions.

1.7 Choice of H - & summary

The problem:
Ay = 0 in D, is a partial differential equation
Bu = g on 3D, the boundary of D, is the boundary condition
where 1, ¥2, ...9, are solutions of the differential equation, the
approximate solution is of the form:

u¥ = cqPp + Covy e Cobn and this must satisfy the

boundary conditions.

Let H be a reproducing kernel Hilbert Space with kernel K(s,t),

ueH, y,eH, i=1,...,n LetH, be an n dimensional subspace of H

with a basis given by 1, v2, ... wn.

1

Solutions are given by ¢ = G "f with G and f given as

(i) Least Squares

gij = | Bwis BWj Y s fi = | Bwi, g)
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(ii) Galerkin's Method

(iii) Collocation
955 = €2y By

(s> 9

i (21:»9)

Now since H is a reproducing kernel Hilbert Space the evaluation

functionals z: where Q:(f) =
t.
K '(s), the kernel functions.

1

t
Also since K '(s) i =

1,2, «ous
for H if all u € H are continuous,
chosen as the basis vectors for Hn
as n »w,

This yields the solutions

(ia) Collocation
gij = (K ', BK ")
= BK(ti;j)
(iia) Galerkin's method
ti t_i
= BK(ti,tj)
(iiia) Least Squares
ti tj
9;5 = (BK',BKY)
*
= BB K(ti,tj)

t
kBies), kt2(s), ...

and u™ will converge po

£
sfi=(K,g>=(
= g(ti) = Bu

t.

afi-(K1’9)
= g(ti) = Bu
2
f1'<Bng)_
*

. . * *
Now if B possesses an inverse, then so does B and B B so

methods can be unified to give the same equation.

f(t.), have as their representers

n form a complete set of functions

, K N(s) may be

intwise to u

K ', Bu)
(t:)

(t;)

ti
{K ,Bg)
*
B Bu(ti)

all three
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i

K(t'i’tj) fl' = U(ti)

ot t,
(kTokIy  fo= (K u)

-+
i

L]

e

On this equation which is an equation for pure collocation, least-squares,

i “etc. the "mixed" methods or methods with derivitives or operators may

 be based.

So if the quantity B,u i=1,2, ... n is known at n points t, of M
“where H : M > u is a reproducing kernel Hilbert Space, instead of
t. B .
choosing K T(s) as the basis, Ri(s) = B;K Y(s) may be chosen.
The equations then are equivalent to
t. t. t.
= 1 J = 1
{ BiK R BjK ) fi { BiK , U )
ie the elements of the matrix G are

*
B3B; K(tyts)

and of the vector f are Bi“(ti)'

There is an additional benefit in the use of a reproducing
kernel Hilbert Space. Not only may boundary conditions on 3D be used
to determine G and f, but also other relationships in the space D
may be used. There is a problem in some cases with this method.
If M excludes the boundary 3D of D where H : M -+ u is the Hilbert Space,
there will be problems with unboundedness on 3aD.

Two possible solutions present themselves. One is to choose
M such that 3D is included within it as well as D, in which case there
may be problems in relating the mathematical model to the physical
reality. For example in Geodesy a "Bjerhammar Sphere" totally within
the earth may be chosen, outside which the functions u are said to be
harmonic and regular. There is no problem then with unboundedness of u

on the surface of the earth which is then well within M, and thus outside



the sphere of radius R.  But between the Bjerhammer Sphere and the
surface of the earth there is a definite discrepancy between the
mathematical model and the physical reality, since it assigns the
property of harmonicity and regularity to potentials at points on
and within the earth's crust.

The other approach is to attempt by some judicious choice of
the reproducing kernel to make the norms of u, and Biu, i=1,2, £.. n
converge as well as making the norms of the linear functionals BiK 1
converge on 3D.

This choice of reproducing kernel is really a choice of the
inner product for the space H and is regarded as a "Norm Choice"
problem.

So provided that the operators Bi are not singular, the only
problem remaining in the choice of the space Hn and a basis for this

space is this norm choice problem. To get some idea of what is involved,

the concept of error bounds must be examined.

1.8 Error Bounds

It is possible to find bounds which the difference in value of
some linear functional evaluated at a point and its estimated or
approximated value cannot exceed.

Let Ep be the representer of a functional E;. This may or
may not be some functional already used in determining the matrix G,
such functionals being denoted Ei’ i =1,2, .oy N

Let the function u be estimated or approximated by the function
u” where

c.2. , as before.

So ¢ (u) is approximated by E;(u*).
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;i;(u) - ig(u*)l = Iig(u—u*)l = (Ep, u-u)

b (B u) - (T Eed) = Ee ()

And where QT = [ zp, 1) Ep, 2 ¥ e A Ep- 1)1,
( i;, u )V = QTS = PTG_lf as before,

where £l =7 (o, u) (2 u)y ... ( Eﬁ, u) 1l

Let p'a™! = df

Then ip, u) = ng = gldifi = _gldiI}, u)

1

=% =% _ = o * - =—"
1 zp(u) - zp(u )= L zp, u=-u y={(2 zp, u
<Aull-11Ey - 2l
= 2 -1 2
= full -] QT -l

Now if Ep is denoted by D*zp where D* is an operator and zp is the

representer of an evaluation functional,

| Eglu) - Bl < flulle | ODK(E ) - e

K(t,s) being the reproducing kernel of the space of functions {u}
and the operation DD* being performed as previously described.
In particular for "pure" collocation without derivatives ie. prediction,

Fulty) = ute) | il | KGet) - pT6T ) = Il o



This, with appropriate notation changes, is the expression given by
(TSCHERNING, 1978). (DERMANIS, 1977) gives what he believes to be

a better bound.

Since u = Ug + 4" , Wwhere ug is the residual u - u o,

= = ~ *

L Lo U = - X +

{ 0™ u o) (ﬁp Qp u u o)
n
= — = T Ta-1
Now (2., u" )= (rcL:y & y=pC=pG f
P’ j=p vV P R -
n n n n o n
and (e ,u" )= {rd;, zco. )= 1 Lcci Ry fy)
P j=1 TV g3 g T
= dloc = plaTlf
= ~ *
- . = 0
So ( gp zp u o)
and (- e, u ) = (R - g ug )y s fuglhe l ey - gl
< e - g
<l g - 2l
je. it is a lower bound since by Pythagoras,
2 | 2 cn2 .
Tl = fug 1+ (u*ll de llugl s lull .
2 2 -
Now flugll = Cu-ut, u-uty =l - £l
So a bound is
=k =k K 2 - 1 - 1

R - T e - £1g1e)2 {DD*K(tp,tp) - pleTipyE

For a Hilbert space H(K) with a reproducing kernel which is isotropic ie

the norm of u can be

™~ 8

K(Ws’t) -

N 2 ’
Kn Pn(cosws’t) R

1!

n=0

obtained from the expression
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2
+b21 =5, the following expression is obtained

| fér,the prediction case:

2
» (2n+1)S ©
* 1 n Ta=1p% T.-1 4%
t ) -u(t z |{—~ ¢ - fl6 I s K2 - p'6 2
| ulty) - u(ty) 1= gy =gz - f RN S p}

This function, according to Dermanis, is a tool for comparing kernels

je, if there are two kernels K (s,t) and Ky(s,t) then K;is better than K;

~ for predicting a certain quantity if the expression above when computed

for K, is small than that for K,, for the particular data set which

gives the vector f. An optimal kernel from a particular class of

kernels would give the minimum for this expression.

He also makes the point that one is usually interested in not
one, but a number of predictions and proposes the possible use of a
risk function to allow for this, and mentions the possibility of using
the density function of the mass of the earth in obtaining values for
the bound.

However, in this project it is proposed to investigate a slightly
different line of reasoning. Since it is mathematically easier to
handle, only expressions for "pure" prediction, eg. potentials from
potentials, gravity anomalies from gravity anomalies etc., will be
dealt with. Examining the expression for lu(tp) - u*(tp)l it is seen

that the terms fTG'lf and pTG'lp contain expressions for the kernel
K(s,t), for:

gij = K(ti’tj) and p; = K(tp’ti)’

What is required is that for a given data set (ie. a given f) the

predictions should in general be in some way optimal.
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It is sensible to assume a given or constant data set because
the problem that one is usually posed is that of predicting some quantity
or a number of quantities from the available data ie. finding the best
predicted value from a given data set. f can thus be regarded as a
constant vector, and G can be regarded as a matrix whose terms depend
on the coefficients Kn alone ie. in the isotropic case
g.. = | R4 Rj ) = K(wti,tj) = nEOKﬁz Pn(coswti’tj) , varies

with Kn’ n=0,1,2, ... and not with wti’tj
It is noticed at this stage that the term
| (2n+1) T~-1 :
{77 '3 - f G f } depends only on the K 's
"n=0 "n
since the Sn2 = L [ah% +b 2] , n= 1,2, ... are constant for a
m=0

particular u.

{2 K2 - QTG'lp } , however, is dependent on the point tp,

n
n=0
ie. the particular prediction, as well as the Kn‘s. So it is conceivable

The term

that for two kernels K, and K,, K; could give the best prediction at

the point tp whilst K, could be better at tq.
It would seem more sensible to consider all possible predictions

and choose a kernel such that the mean square error of prediction is

minimised.  Perhaps some expression such as

. n
s ) - u(e ) )

could be used, but a more fundamental expression is |[ju - u™] .
In fact this expression has already been used as the minimisation
criterion for least squares, etc., on the assumption that the kernel is

known,
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~ Now imagine that predictions have been carried out with a

!fnumber of different kernels. Surely that kernel which yields the

';;VSmallest value for |ju - u'|| is most preferable.  Surely if the

~];'m1n1m1sat1on of |Ju-u *|| is a good criterion for derivation

i of the pred10t1°“ equations it is also a good criterion for choosing

an optimal kerne1 Here it will be assumed that it is.

Now the minimisation of lu - u*|l is equivalent to the minimisation

of its square se. the function to be minimised is

2

(2n+1)Sn T.-1
—x T - fG°f
n=0 n ~ ~

* .2 1
fo -1’ = 4

n ™8

- As has been shown, for 2 particular data set this expression depends
only on the kernel ie. the choice of K, n=0,1,2,
An attempt will now be made to minimise this expression.

It will of course be required that T an is finite, so the
n=0

expression will be minimised subject to I an = K, some constant.
n=0

It appears then, that a Lagrangian Multiplier technique will be

appropriate.
w (2n+1)S.2
je.  Minimise f —r— _flg e
i=0 j ~ -
subject to ? Ki2 =K
i=0

Where A is a Lagrangian Multiplier and where

® (2n+1)S1.2

F= & —g7z - fTG'lf + A( T Ki2 - K)
i=0 i ~ ~ i=0
the mini i1 i L =
mum will be obtained where —p—7 = 0, i=0,1,2,
i
and -E-)E = 0.

A
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- - 2 < 2 < 2 S
Now G = 1io K Pi(coswll) i: K, Pi(coswlg) ces 150 K, Pi(coswln)
- 2 - 2 ;
120 Ky Pi(coswnl) 150 Ku Pi(coswnn)
- . /
lgﬁ 1= Pn(coswll) Pn(coswlz) . Pn\coswln)
. n —_
__Pn(coswnl) Pn(coswnn{_
= [Pn(cose)] (by definition)
5™ -1736 -1 -1 -1
Also KT = - &WTQ%G = -G [Pn(cose)]G
n n
-(2n+1)S %
oF ( n T.-1 -1
50 K7 R + 16 [P (cos8)IG f + A =0
SRR M. g -1
or —x7—— +f6 [Kn2Pn(cose)]G f + AKnZ = 0.
n ~ -~
n=20,1,2, ...

Summing over the range of n,

© (2n+1)Sn2 T 1. -1 w
-3 e FFE GG f A K7
n=0 n ~ ~ n=0
Now £ = 0 dmplies D K2 = K
A AN
n=0
w (2i+1)S.?
So A= l—]&‘{ b ——K—Z—}— - fTG—l

2

0
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_(2i+1)8,2
tingL= ¢ —¢.z2  °
i=0 1
K(2n+1)S, 2
( n Kf 671rp, (cos0) 16” f - f G 1f = 0

n=0,1,2,

s is an infinite set of equations in an infinite number of unknowns.

'"ygr, for numerical purposes jt may only be required to obtain, say,
 7rst 201 coefficients an, n=0,1, 2, ..., 200, This would
‘7‘sy$tem of 201 equations in 201 unknowns, provided that one
ssigned values to L and K, or made them finite sums. The equations
Lﬁawever by no means linear and would be exceedingly difficult

’ not impossible) to solve.
However, using the above equation and by dint of some perhaps
daubtful manipulation it is possible to get a result which is interesting

jinfterms of the convergence of the norm |lull and the reproducing kernel
T2
niﬂxn Pn(cosw)
2
K(2n+1)$n T.-1

let q = —pw—— - L = keT671p (cose) 6 e -l
L n

f‘

"In terms of the coefficient anl, q,_; may be formed:

K(2n-1)$, 2
-1 ° '--1(ﬂ;flil - L = kflgip,_(cose)] el - flals
n- ~ ~ ~ -
Thus £1K q ¢ e (cose)]G"1 61t
~ n-1 n - qn-l ]~

1

- Tk g, 67hp, y(cos0) 167" - q 6 0f




O
[
L

Noting that the converse is not claimed, it may be stated that this
equation will be satisfied if

-.}_ - -}-r' 7 J\ “}. 2"‘}.‘
G )= [Kq,G [P _y{cost)]G ™ - g G "]

-1 -1
20T 2 -
[an'l(, LPn(CDSv)_jG a . ]

‘n-1

ie. if (g, - q,_)6 = K{q, [P _;(cose)l - q [P, (cosd)]}
From the definitions of G and [Pn(cose)] it is seen that this
condition is fulfilled if

- T K 2 . i .
(qn qn'l)nioKn Pn(coswij) K{ann_l(coswij) qn_an(co @13)}

for all wij in the matrix G.

Suppose A = .-

Then K(2n+1)S * K(2n-1)S,. 2, _ |

L =
T w — v o
Ky Kn—l
K (2n+1)s 2 K2 (2n+1)s 2
K5~ (a-ns 7 okzZ T /s

A particular case where this will happen is where

AR |

2 = 2 2 = _ 2
Kpe = ¢ (2n+l)Sn and Kn—l = ¢ /(2n l)Sn_1

where ¢ is some constant.

But then G, = 0 and g = 0 and the above condition holds for all

n-1

wij’ albeit trivially.

Now it is by no means ciaimed that setting Kn2 = ¢ V/22n+1)§;i'
forn =20, 1, 2, ... minimises | u-u™ll , for this would imply that

o

L K_“P_(cosy
n n\COSw)

P (cosy) = —

.

for ail n, which oniy occurs when & = 0,
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this é{hg}ess. the choice of K 2 in such a manner does lead to
it ’;ting properties as far as the norm and the kernel and
-1 q G_1] ghgif convergence are concerned.
" | ) | e (2m1)S.?
foll = @ TR
k"’an = Fm ’
t this ’ 1 o
Null' = s nko (2n+1)S,
H(cosv )] ’éyihe kernel K(v) = ngoan P,(cosy)
= ano //fgﬁlisggi P (cosy)
fe.K(0) = cn°§°0 /(Zn+1)s 2

Here is a case where if the kernel is bounded then so is the norm
~and vice versa.

; In section 2.9, this suggestion for the choice of norm is
 fufther discussed, in view of the recent tendency to use convenient
fﬁexpressions to approximate the empirical covariance function:

K(yp) = ? (2n+1)Sn2 Pn(cosw).
n=0
',One~th1ng which must be noted at this point is that although the
~ empirical covariance kernel is bounded, the norm is not, as was pointed
i ~ out by (TSCHERNING, 1977). ,
e flul® = % ((——)—72::)2“2 = Tl=o,
n=0 n n=0
at So notwithstanding the lack of rigour in the derivation of this

suggestion for the kernel, it may be worthwhile to use it with test data

and compare the results with those obtained using the empirical covariance
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1/m
function. It may aiso be interesting to consider Ky” = {(2n+1)5n2}

]

where m is some integer other than 2, in this regard.
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STATISTICAL METHODS

2.1  Introduction

To this' stage, no probabilistic reasoning has been introduced
into the solution of the problem, although mention has been made of

covariance matrices in connection with the method known as least

~sguares collocation.

Recapitulating, the equations were, for the "pure" case of

 Jeast squares without derivatives

~ T
d, = pP¢
where ¢ = (HTWH)"InTwr
T .
and po= [ ( zp,le y zp,Bzz } eee { zp,an Y ]

Now since the functicnals %5 have been used for ¢,, a least squares

solution is also a collocation solution so c may be expressed as

¢ = (W)L LTwr
with L = [Qij]Mxn’ 25 T { Bisks ) i=1,2, ... M
H = [hij]Mxng hij = (g;_i,Blj ) j = 1,2, ess N
and  fy o= (2,0) = g(ty)  i= L2 M
Now if LW = [1 : 0 ]
nxn . nxM-n
LW = 6 = L9547 §2 1,2y wees Ny J = 1,2, cous N
LTuf = " g(ty)]
g(ty)

L a(ty)
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and the expression for ¢ becomes the same as that for the collocation,
and thus the least squares and Galerkin cases. In effect, only the first
n of the M observations of g are used.
The condition for this to happen is that
T

LW = g ¢ Onsmen!

Now let the matrix S = [Sij]MxM be given by
Sij = A Lis05 ) i=1,2, oo My 3 =1,2, o0y M

The first n rows of S form the matrix LT, Soifs = Wl the expression

for LTW holds.

In a purely deterministic solution one would, using knowledge
of the properties of the differential equation to be solved, choose
an appropriate reproducing kernel K and form the matrix S, letting

K(t:,t.) = S

i*7J ij -’

W would then be the inverse of S, for the method to be equivalent to
the ordinary least squares case.

However it is possible to examine the problem from a probabilistic
viewpoint. If the observations g(ti) are regarded as random variables
jointly distributed such that W is the inverse of the covariance matrix

C = [Cij] where

1 1

¢c., = Covi{B~

i g(t;), B

g(tj)} P

the question is whether a reproducing kernel K may then be chosen such

that K(ti,t.) = If this is the case then w“1 = S once more, and

Cize

J 1J
the method which is a statistical method known as "linear least squares
prediction"” will be equivalent to the solution of a differential equation
using a particular and in some sense optimal reproducing kernel.

That it is possible to do this is the subject of this chapter.
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the similarity between solution of differential equations

ation, further see
the first. 'by approximate methods and prediction it is instructive to examine, in
;; §ery elementary form, the concept of conditional expectation,
gpecially in the case of jointly distributed normal random variables.
vzgz | Conditional Expectation
i Let the random variables X1, X25 «ces Xn’ Z, be jointly
. M ~d}stributed under some probability law with a density function
. f(xi, Xos eees Xps z), which is assumed to be known.
ression - Assume also that observations have been made of X1 Xos enes Xn
?ﬁuf not Z, the observations being xly x2, ... x". Then the
edge “conditional density function of Z given X; = x!, Xz = X2y X, = x" s
ose : .
ng h(Z|x*) = h (Z|x}, X2 5 «oes XM = Fxty X2, .o x:’ 2)
~ g(x, X2, o0 X))
| where f(x!, x%, ... x",z) is the joint density function of
t to TVXI, X2 +o.s X,» Z evaluated at X, = x}, X, = x? etc, and
g(x!, x2, ..., x") is the joint marginal distribution of Xy, Xz, «e0s X,
abilistic “evaluated at the same points.
riables ’ The expectation of the variable Z with this density function
Cmatrix ~ is known as the conditional expectation of Z given x7, or ECZ|x" 1.
It is also known as the regression of Z on X'.
Also if u(Z) is a function of Z the conditional expectation of
n such u(Z) given x* is, in the continuous case,
‘e, and ®
E[u(Z)If'] = J u(z) h(z|x")dz.
squares ~ )
equation The conditional variance is E{[Z - E[le']]2|X1

and is equal to

ECZ2[x*] - {E[Z\x']}2 .



In the particular case when X;, X,, ... X _, Z are jointly normally

n’
distributed, the conditional expectation which in a sense can be
regarded as a predictor that is unbiassed and minimises the mean
square error of prediction is given in a matrix form which one may

recognise as being not unlike the equation for prediction of g(tp) in

the solution of differential equations.
Using Theorem 3.10 (GRAYBILL, 1961) for the special case
where Z is a single random variable, let [X;,X, ...XnJT = X and Z

be all jointly normally distributed such that E(X) = My and E(Z) = by

Let Y =

>IN

Let the covariance matrix of Y be V

where

Then the conditional distribution of Z given that X = x° is the
univariate normal distribution with mean My ¥ PTG'l(x' - “X) and

-~

variance given by

In the case that Hy = 0 and Wy = 0 it is apparent that

H
o
o
>

E(Z|x"]

In the case of gravity measurements on the Earth for the
prediction of some linear functional of the potential at point P,
the elements of the matrix G, 955 would be the covariances of the
gravity anomaly measurements considered as normally distributed

random variables at the points ti’ tj i=1,2, ..., ny, J=1,2, ... n




y normally

nd
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the elements of the vector P would be the covariances between the

uylar linear functional of potential at the point P and the

agfty anomaly at the points ti’ i = 1,2, ..., N when both quantities
| ered to be normally distributed random variables. The elements
x* would be the actual measurements of gravity at the

’;; 1,2, ... n as they were in the case of the solution of
fferent1a1 equations.

“; So if some rationale could be arrived at to equate the P vectors
: he G matrices for both cases, then both methods would give

entical results.

‘In the present context, however, this is not entirely possible
e to the weakness of the assumption of normality. Even if it were

ff sible to assume that the gravity anomaly measurements were normalily
iétribu@ed, it does not necessarily follow that the disturbing
péteﬂtial or a deflection of the vertical would also have this property.
f‘The nature of the measurements also seems to preclude the Gaussian
distr1but10n For example a gravity anomaly less than about -990 gal
fuld be extremely difficult to measure since this would imply that
‘measured gravity at the point is negative and the observer and
tmnStrument would be accelerating spacewards. Very large positive
x4anomal1es would also be precluded so that the tail regions of the
Normal curve would be greater than that of the actual distribution

' ?0 matter how small the variance. This does tend to indicate, however,
- that whatever the true distribution, it will almost certainly have

- finite second moments if such moments exist. Consequently the assumption
of Normality will be replaced by the assumption that all quantities

ie. disturbing potential and its linear functionals are second order

random variables with zero expectation.



The assumption of zero expectation is not completely necessary for it
is always possible to construct random variables with zero expectation
from the original random variables. A discussion of how this may be
done will appear in section 2.10. For the time being, it will be
assumed that the word "anomaly" means exactly what it appears to mean:
something other than the expected value of zero,

In this case then the second moments will be variances and
covariances and the problems considerably simplified.

The proper context for solution of this problem is undoubtedly
a study of Hilbert Spaces spanned by second order random functions.
The work of (PARZEN, 1959, 1960, 1961, 1962, 1963(a), (b)), (LAURITZEN,
1973), and (DERMANIS, 1977) will be closely followed in connection
with this, reference being made to the particular problem of potential

prediction where appropriate.

2.3 Second Order Random Functions

Consider a probability space (g, 4, P). Let there be a family
of random variables {X(t),teT} where T is some index set such that the
random variables are defined on the probability space for each point
t ¢ T. The family of random variables is known as a random function.
If in addition the nature of the probability space allows each of the
random variables X(t) to have a finite second moment for any value

of t T,

< 1

2
ie. E{X(t)] = J IX{t)| dP for all t e T,

then {X(t), t:T} 1is a second order random function.
In this definition the nature of the index set T has not been

specified. In fact no restriction is placed on the nature of 1it.



- 99 -

for it 1f for example T is the integers or the natural numbers then
actation {X{t); teT} is known as @ discrete parameter stochastic process,
may be ? 3f T is the real line or a section of it a continuous parameter
I be 3 5t§tha5tiC process results. When T is r" the function is called
Lo mean: _;aﬁ (n-dimensional) random field.
Howevef what is of interest in this project is the case where
ind sz is either a sphere of radius R, the space outside this sphere, or
1 thé'union of these two sets. The above definition does not preclude
ibtedly fr_this. whenever, for purposes of developing relationships, it is
ions. ‘ : nééessary to restrict the nature of T in future sections, the
WRITZEN, . suftability of the modification to the special case in question will
-ion . ‘be discussed.
ytential Now with the same probability space (2, 4, P), L,(2,4,P)
will be defined to be the set of all random variables U, defined
on this space, whose second moment is finite. The random variables
| Family comprising {X(t), teT} will thus form a subset of this set.
hat the 2.4 Linear, Inner Product and Hilbert Spaces
point Now if any two random variables U and V in L,(0,4,P), are taken,
inction, it is easily seen that there is a unique random variable W = U+Vv=V+U
of the which must have finite variance. Also for random variabies U, V and Y
Tue it is obvious that U + (V + Y) = (U + V) + Y always holds.  Now when
a and b are real numbers and U and V are any random variables from
L2(2,4,P), aU is a unique random variable, a(U + V) = aU + aV,
(ab)U = a(bU), (a+b)U = al + bU, 1.U = U, when the scalar is unity,
and for zero, 0.U = 0, a random variable which is identically equal
been to zero. The zero random variable 0 is one for which
it, Plw:o(w) = 0} =1

and must be an element of L,(q,4,P) since its variance is finite.



Obviously for any other Uy, 0 + U =U+ 0 =U. When unigueness 1s
mentioned in the above, it means that U and V may be regarded as the
same vector if they differ only by a set of measure zero, for since
(s,4,P)is a complete measure space, 4 must contain such sets. 1t 13
therefore seen that L,(2,4,P) forms a linear space.

If a scalar product ( U,V ) between any two random variables
is now defined as

(U ) = E[WT = J UvdP
0
for all U, V ¢ L,(9,4,P), then it can be seen that for U,V,W,ebl,(5,4,P)

and acR,

(1) (au,v)
(i1) {( U+V, W )
(1) U,V )
and (iv) (U,U) = E[U?1>0if U #o0.

]

Efalvy = aE(uv) = a{u,V)
EL(U+V)W] = ECUN+VHT = (UM ) + (VW)

H

EfUV] = E[VU] = (V,U)

So L,(a,4,P) is an inner product space.
1
Defining the norm of U as || Ulj = {E[u?]}® > 0, it is seen that

2 -
UV = E(U+V)? = ECUZT + ELV2] + 2E[UV]
< E[UP)+ B0V + 2] JEVTD |- | SRV

o2 L2 i ,
I R A U

4

2

fIu i+ v}

]

ie JjUvi o< [JUIT v

So L,(q,4,P) is a normed space under the norm induced by the inner
product.

Now a series U of random variables in L,(u,4,P) is said Lo converge
(strongly) to U if

Tim U -Uj] = 0.
N> o« n
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is convergent then the Cauchy sequence converges

Hm - =
m.n+wilun Ul =0

TR

U -Upll 2

hugli- 1ol |

by Schwarz jnequality.

fu-ull 2
ibles '
thére existé some €, > 0 such that for all m,n > N

< g1

N A

2(0,4,P) 05Ul 2

éa’let n=N m= Nk, k an integer > O.

For any value of k then \\Unll cannot differ from || UmH
be more than e; .

1 h‘so for m = N+k, n =N there is some e, such that

< E2 .

ol gl vl

~ Now llUnll < » by definition for a finite n = N.

< e, to hold there must be

soif Ul = = for [l - 1Y
1Spme k such that [lUn+k||becomes close to ||UJl . But then

gl - gl
- sequence converges. Thus || U]| cannot be infinite and thus it

> g, contrary to the assumption that the Cauchy

must be an element of L,(9,4,P). S0 Lo(Q,4,P) is complete.
Thus L,(g,4,P) is a complete normed space with the norm
generated by the inner product
(u,vy = E(W).

nner
This is what 1is known as a Hilbert Space.

nverge




The completeness property of Lo{(u,4,P) is of great consequence
because if any linear subspace of it can be shown to have the same
norm and thus the same inner product then merely by adding to this
subspace the limits of its Cauchy sequences, which must exist
because of this property, the subspace can be made into a Hilbert

Space. Such a subspace is the topic of the next section.

2.5 Hilbert Space Spanned by a Random Function

Consider a random function of second order {X(t), teT}
consisting of random variables defined on the probability space
(2,4,P). Now for each teT X(t) must Tie in L,(9,4,P).  So also
will Tinear combinations of the X(t)'s. It would appear then that
in much the same way as a set of linearly independent vectors in R"
form a basis for a subspace of R" the set of random variables
{X(t), teT} may serve a similar purpose for a subspace of Ly{(9,4,P).

Define, therefore, a Linear Manifold, spanned by the random
function {X(t), teT}, denoted L{X(t), teT}, to be the set of all

random variables X which may be written in the form

n
X = 5 c; X(t.,), for n some integer,

C; i=1,2,...n, reai constants

and t.eT, i=1,2,...n.
It thus consists of every possible finite linear combination of the
random variables X(t), teT. 1t does not, of course, include
infinite linear combinations and a simple example shows why:
Suppose T to be the real line and there is some random function

which for all den, E(X(i))? » 1 E(X(i) X(3)) > 0 and E(X(t))* < =,

for all tel. The Linear Combination Y = & X{i) wiil have an
i=1
infinite second moment and thus not be an element of L,(w,4,P).
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finite linear combinations must have finite second moments
ear manifold is restricted to only these. The properties
ativity, commutativity, scalar multiplication

y hold, the zero element being any linear
=0 for all i. So the linear manifold
Allowing the inner product to be
ame as that of LZ(Q,A,P) enables it to become an jnner product
of, the norm being defined as before.

As mentioned before by simply allowing such 1imits of sequences

om variables Xn as are necessary to be adjoined to L{X(t), teT}

the completeness property for a larger space called Lo {X(t),teT} is

satisfied. It is not necessary to adjoin all limits of sequences

in Lz(ﬂ,A,P) for this to happen, only the Timits of sequences Of
random variables in L{X(t), teT} and no others are required.

So in fact LZ{X(t),teT} is the smallest subset of Lo(9,4,P) spanned
by the manifold which possesses the properties of a Hilbert Space,
and is known as the Hilbert Space spanned by the random function
{X(t), teT}. Note also that {X(t), teT} does not necessarily form a
basis for Lp{X(t), teT}. It is only a spanning set.

Now there are some points worth noting about the nature of the
set T. As yet there have been no restrictions placed on jt. So, for
example, T could be the real line. It could also be a finite number m
of points on the real line : T'. Now T'< T. Certainly any linear
combination of random variables X' = _g cix(ti), ty e T' is also a
linear combination for the same points %:15 T. So L{X(t), teT'} is a
proper linear subspace of L{X(t), teT}.  Since both manifolds will be

given the same inner product and since limits of sequences of XH must

be not only in Ly{X(t), teT'} but also in Lo{x(t)s teT} then the first
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is a Hilbert subspace of the second and is in fact a finite dimensional
subspace, the dimension being the number of linearly independent
elements in the spanning set {X(t), teT'}. There may be elements of
L,{X(t), teT} which are not elements in Lo{X(t), teT'} and a very
important problem is to find that element in L {X(t), teT'} which most
closely approximates a given element in Lo{X(t), teT}. This will be
the topic of much further discussion in section 2.6.

It may also be noted that the cases of most interest to this
project are not precluded. So if gravity is measured at a number of
points on the earth, the points where it is measured could be regarded
as T' a subset of T the sphere of radius R, and Lo{X(t), teT'} €
Lo{x(t), teT}.

But it is not only the prediction of gravity anomalies that
is of interest. Linear functionals such as the disturbing potential,
the geoid spheroid separation and the deflections of the vertical are-
also required.

That is to say if {X(t), teT} are potential functions and thus
X(ti) is the random variable at some point not only is Qw*{x(ti)}
required ie. the evaluation of X(ti) at some point w < @ or "outcome",
but the evaluation of certain linear operations on {X(t), teT} is
also required. If L,*{X(t), teT} is the dual space of Lo{X(t), teT}
it consists of all possible bounded Tinear functionals of the space.
There is a representer in Lo{x(t), teT} for each functional.

So if B : Lo{X(t), teT} ~ Lo{X(t), teT} is a bounded linear
operator and

v(t) = BX(t) is some other process then the outcome of
Y(ti> is given by
{ . Y(ti) ) » where g s the representer of the

evaluation functional gw*
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(g0 BUED Y S 87a,, X(t5) )

*
Now B ¢ € La{X(t), teT}

1]

But {2, V(t3) )

Lo}
.

is the adjoint of

it *
so letting B £, L, 0

e} = (E XE) DS Tt}

h is simply 2 linear functional of X(ti), tieT.
y necessary to deal with the process {x(t), teT} and

not with 2 multitude of them. The Hilbert Space Lo{X(t), teT}

consists of all random variables which may be obtained by means of

~ Yinear operations on the random variables {x(t), teT}.

This becomes somewhat clearer when La{X(t), teT} is represented

by a Reproducing Kernel Hilbert Space. However at this stage

the concept of Linear Least Squares prediction must be examined for
one is now able to obtain an equation of the form

A T.-1
4 = .
p PG "x

2.6 The Projection Theorem and Linear Least Squares Prediction

The projection theorem is well known. The form in
(PARZEN, 1959), theorem 6A will be used here with slightly altered

notation. A proof is included in parzen's article which will not

be reproduced.

2.6.1 The Projection Theorem

Let H be some abstract Hilbert Space which has M as a subspace.
Let z be some vector in H. Let, for any vector zeH:

d{z|M} = inf | x-z|
- >§eM ~ o

Then there exists a unique vector EeM which satisfies each of the

following equivalent conditions
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(1) ifz- zff = d{z[M} = inf |ix
-~ " XeM

t

(2) « 2-2, X ) 0 for all x e M

(3) {2z, x)

(zy, x ) forall xeM.

Py

z may be regarded as a least squares estimator of z .

-~

An exposition of the relationship between geometry and least squares

estimation may be found in (DERMANIS, 1977).

Now suppose that the vectors Xj;, Xo, «evs X form a basis

for M which is of dimension n.  Any vector heM may be expressed as

h =

- 1

C.X
l'l...

|1 g

; where CicR i=1,2,.0.., N,

Among all such vectors a vector 7 may be found which most

closely approximates zeH in the least squares sense. So it is

required to find constants Ei’ i=1,2,...n such that

n ~

= % CoXs o
. i1
i=1

t N>

From condition (3) above, then for i = 1,2, ..., n,

(2oxp) = Lzx)

no
-
=

i

1’ H

This is a system of n equations in n unknowns so C; i
may be found by solving them simultaneously. The vector z is found

immediately, for

Z =
~

il o~ =S
(@I
ped

‘1 i
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* *
Now let 2. be an evaluation functional in the dual space M with

p
representer RpeMa
let d = o
~ nl\
Then d_ = ¢, IC
p = Chp LGN

Now the vectors x, z etc. are vectors in abstract Hilbert Spaces M and H.

~

Below, the vector notation will refer to vectors in " as defined.

Let cT = [El, Ez, cas cn]
T _ )
PP= Lz, %) (2 X2 ) s5een (z, x, )1
- _ AT
G = (Xl’ Xl) (Xz, xl) eeo (an Xl)j = G
{ X1s X2} { Xzs X2} «eo X2 X2)
L(Xl’ Xn) (XZ’ xn) *eo0 (Xn’ Xn)‘J
X'T =[xy’ X2. 000 Xn.]
Clearly, Gc = p or ¢ = G'lp
- - T To-1
and thus d_ = T c.x;°= cx* = pG X’
S - -

However, this has only been shown for abstract spaces M and H.
To see even more similarity between this expression and conditional
expectation for jointly normally distributed variables, the application

to Hilbert Spaces of random variables will now be examined.
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2.6.2 Application of the Projection Theorem to Random Variables

Let the space H be the Hilbert Space spanned by the random
function {X(t), teT} de. Ly{X(t), teT}. ~Now let T* be the set
{tis tus eues tnl tieT}. The random variables X(t;), X{(t2)s «.«s X(tn)
will be assumed to form a basis for Lo{X(t)|teT'}. Let this space be
M. Now let the random variable Z be an element of H.  The inner
product of both M and H is of course given by ( X,Y } = E(XY) for all
X,YeM or H.

Note that E(XY) = Cov(X,Y) since E(X) = E(Y) = 0, for all X,Y.
The object is to choose the element of M which most closely approximates
7 in the least squares sense. It is easy to see that 7 is a least
squares estimator in the usual sense of the word for one wishes to

minimise

i

| 2-z) = (P2, 2-1)7

~ 1 1
e *

Var(Z-7)}% = {Var(Z} }

In other words Z possesses the properties of being a minimum
variance linear unbiassed estimator, E(i) being equal to zero, and
these are the basic properties of a least squares estimator.

The third condition of the projection theorem is once again
invoked, ie. for all X(t) teT'

(Z, X(t) )

o
-3
o~
™~ ~N
M M
>< ><
— e~
o+ (s
S
S
S~
~~
it 1

A random variable in M will have the form

—<
il
W o~ S

c.X(ts) .
=1 1

In particuiar the one which most closely approximates Z will be

7 = c.x(t.)

1 1 1

it~ 3

i

{(1Z, X(ti) ) for all tieT' je i = 1,2, .




- 109 -

3 5o for i = 1,2, , N
m n .
( £ ciX(ty), X(t3) ) = (Z,X(t:) )
R AR i i
t =1
, X(t)) N .
n oI c { X(tj), X(t;) y = (1, X(ti) ¥ i =1,2, «e0s N
pace be j=1
ner n .
or cj}Cov{X(tj), X(t)} = cov{z, X(t;)} i=1,2, «c.s N
for all j=1
In the prediction case Z = X(tp),
1X,Y. Letting the vector of covariances cov{z, X(t;)} 1= 1,2, «.0sh
roximates be p, the covariance matrix of the X(t;)'s and X(tj)'s be G and
east the vector of estimated constants Ei be c, again the following
Cto equation is obtained:
Gc =P or c = G'lp .
If X(ty), X(t2) «.c X(t,) had only been a spanning set rather than
a basis for La{X(t), teT'} it would not be possible to use G—l and
generalised inverses would have to be used. However, jt is not
1imum
proposed to deal with this aspect in this project. The relevant
and
details are in (DERMANIS, 1977), section 3.5.
R n
jain Now Z = 121C1 X(ti) = X(tp)
This gives the random variable 7 in terms of the random variables
X(ti)' However, for prediction, what is of importance is the value
1 = 1,2, - . > 4 1
of Z for a particular realisation of the process. 1€ for the sampled

values of X(ti) i = 1,2, ... N which may be written X(ti,w), weh .

In effect Z(w) for some particular w is required.

This is done by defining the evaluation functional 1: such that




* .~ ~ ~
(U{Z} = ( zw’ Z ) = Z(m)
* L .
and o {x(tb o= e X(t;) Y = X(tg, o)
= X i = 1,2, ,n

It is not intended to construct one of these functionals for it

is only its effect which is of importance. It 1is known that such
things exist and that % js in fact a random variable since M and H

are Hilbert spaces and the Riesz Representation Theorem holds. This is
one of the benefits of abstract reasoning, for such random variables

may be somewhat difficult to construct.

So armed with such functionals it is possible to obtain a

prediction for Z given that certain values have been observed at the

points t..
Since
~ n -~
Z = Ly X(ti)
i=1
~ ~ “~ n ~
d, = 2(o) = {2, 2) = (8 121C1 X(t;) )
n ~
= I C (SLUJ’ X(t-‘) )
i=1
s n . ‘
or X (tp) = iilci X3 where x: , i=1,2, ..., N
are the values observed.
In matrix notation then
. T.. T . . .
dp = cx where xto= [X] 5 X2 5 se- an
ap = pTGmlx' an identical expression to that previously

obtained. However in addition to being the same expression in terms
of symbols, the symbols mean exactly the same things as they did in
the expression for the conditional expectation of Z given x’ in the

case of jointly normally distributed random variabies.
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je. in the normal case

Erzlxs] = d
[!{f] 0

(pARZEN,1959) gives as lemma 6a a necessary and sufficient condition
for the least squares estimator or projection to be identical to a
true conditioné1 expectation and because of the similarity uses the
notation E*[ZIM]Jto denote ap. Here, however projections are of
interest and if they happen to coincide with conditional expectations
this will merely be regarded as fortunate. It has only been
mentioned to emphasise that the coincidence of the two concepts does

not belong exclusively to the normal distribution.

2.6.3 Further Properties of Projections

The smoothing property is given by Theorem 6B (PARZEN, 1959)

and put simply it states that if M and M; are subspaces of the Hilbert
Space H such that M; €M then the prediction obtained by projecting

first on M then onto M; is the same as if one projected first onto M;
and then onto M.  In short it is simply the projection onto M;.

Now if there were a second subspace of M called M, and My and M,
were orthogonal compiements then the addition of data could be dealt

with by determining the projection on M,and adding it to the projection

on M. Unfortunately, however in gravity anomaly prediction it is
ved. never the case that M; L M,. However the procedure is not much
more complicated if the spaces are not orthogonal. Simple matrix
manipulation gives an expression for the quantity to be added to the
projection on M;.  The procedure in Geodesy is called "Stepwise Collocati
ms and is used as a computational aid to prevent computer storage problems
where large matrices are involved, as well as for updating or improving

prediction as more gravity and other data becomes available.

(25

TS



As there is extensive literature on this aspect, for example
(MORITZ, 1980) section 19, it will not be dealt with here.
A more interesting property is given by Theorem 6D
(PARZEN, 1959) which, in part, states:
Let Mn, n=1, 2, ... , be a sequence of Hilbert Subspaces
of H which are monotone non-decreasing (ie. M, is a subspace of Mn+1).
UM

n=1
Let Z,, Z, ... , be a sequence of vectors in H such that for every

Define M_ to be the Hilbert Space spanned by the union

integer m and n

* 3
E LanMm1 = L if m<n,

Then there is a unique vector X in M_ such that

* -
z, = ¢ [X{M,1 for every n,
Vim || Z, - X[l = O
n-—» o

2
if and only if lim iizn{{ <

n—> o

If Z is a vector in H such that Z = E*[Z\Mn], n=1,2, ...,
then

*
X = EZ|M]]

In the case of linear least squares prediction the Hilbert Space H
would be L,{X(t), teT} for some set T.  For example, T may be the real Qinﬁtg
Tn could be a finite subset of T, perhaps {N-n, N-n+l, ..., N-1, N} and *é
Tn could be the integers less than or equal to some number N.

Thus with H as above M would be Lo{X(t), teT } and M_ = Lo{X(t), teT } -

Since the elements of the Hilbert Spaces are random variables with

Finite second moments and because of the completeness property the

theorem holds. In other words if a sequence of predictions utilised

an increasing amount of available information then the prediction
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pased on a finite past period would tend to the prediction over the

infinite past.

For a random field with index set T the surface of a sphere
of radius R a similar effect occurs. Here one would have observations
of the gravjty anomaly at n points on the surface of the earth.

The positions at which these measurements were made would constitute
a finite subsét of the elements of T and this would be T . The set
T, would be the set of all points with rational values for the
coordinates (6, A) where o is the co-latitude and A 1is the longitude
ie T_is a countable set dense in T.  Again assuming that the random
variables have finite second moments, the theorem holds and the
predictions based on an increasing amount of gravity data will tend to
the predictions based on gravity data made at all points on T_.

Now since in practice there is absolutely no difference between
having gravity data at all points in T_ and at all points in T,

as far as gravity anomaly prediction is concerned this is a useful
theorem indeed for it confirms the belief that the more gravity data
there is available the better will be the prediction.

However, when T is the space in R3 outside a sphere of radius R
it is quite possible to have a countably infinite set which is not dense
in the set T. For example, rational values or even integral values
on a ray in a particular direction from the origin outside a sphere of
radius R. This aspect will be further dealt with when reproducing
kernels and their relationship to linear least squares prediction
is examined.

Before going on to this topic, by way of summary it is worthwhil
noting two important points which are perhaps not stressed in the

Geodetic literature and could cause some conjecture.



The first is that in all the above, absclutely no restriction
has been placed on the nature of T. T may be the real line, a sphere
of radius R, the space in r® outside such a sphere, the integers or
a subset of the integers. This means that the method is not merely
applicable to discrete or continuous time stochastic processes but
may be used on random fields based on sets which need not even be
of a Euclidean type.

The second point is that if we define the function C(t,, t,) =
coviX(ty), X(t,)1 ty, tyeT no restriction such as stationarity,
homogeneity or isotropy has been placed on such a function, which

may be referred to as the covariance function. It is only required

ij * cov[X(ti),X(tj)J:C(ti,

and prediction is possible by the linear least squares projection method

t

[

that the elements of the matrix G be known ie. ¢

described.  (Note that the projection theorem nowhere requires E[X(t)]z0).
It is noted that the form of the equation for the prediction
by projection methods and that using approximate solutions of differential

equations is much the same. In the solution of differential equations

the equation was
- Tn-1
d =pG-f
p P
t

f was a vector of known or observed values, fi = { K Yu )

G was the matrix [gij] whose i, jth element was given by

where K(ti, t.) was a reproducing kernel, and the ith element of p

J
was given by

pj = Kktp’ ti) tps i

where tp was the point where the differential equation was to be

evaluated.
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o The function K(s,t) was the reproducing kernel of the
onere reproducing kernel Hilbert Space H(K). This is the equations for
ol mpure" collocation (etc) or prediction of like quantities. Slight
> modifications are made when "unlike" quantities (eg. potential from
- gravity anoTa1y‘etc.) are required.

In iinear least squares prediction, however, the elements P

and 943 are given as covariances je.

ba) = 9i5 = CoviX(ty), X(tj)] = ELX(t;), X(tj)] = C(t;s tj)

p; = CoviX(tp), X(t;)1 = ELX(tp), X(t;)1 = C(tp, t;)
ed with the elements of the vector x’ being the observed quantities

once again, the equation of rediction bein
tj)]zc(t.i .t g q P g

method J dp = plelx"

(X(t)3=0). Now C(ty, t;) = ELX(t;), X(t5)] = EDX(ty), X(ty)]

ion =t ty) ti, ty e T.

ferential C is defined on the set T X T.

ations It is also non-negative due to Theorem 2A (PARZEN, 1959)
which states:

C is the covariance kernel of a random function,
if and only if, C is a symmetric non-negative kernel.

It thus possesses many of the properties of the reproducing
kernel K(s,t). In fact, recalling Theorem 1.6.3, if T is some
arbitrary set and the function C : T X T » R is positive and symmetric,

° there exists a Hilbert Space, unique up to isomorphism with C as its

reproducing kernel. (This is called the Moore-Aronszajn -Loeve theoren
One then may ask if it is possible to use the covariance kernel

to generate a Hilbert Space H(C) and simply regard the problem as the

solution of a differential equation by approximate (MWR) methods in the
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special case where C happens to be the reproducing kernel.

In other words, are the deterministic and statistical methods in

a sense equivalent? This will be the topic of discussion in

section 2.7. (DERMANIS, 1977) has dealt with this problem using

the orthogonal expansion known as the Karhunen-Loeve expansion.

This requires the use of Mercer's Theorem. According to (PARZEN, 1959)
and (ZAANEN, 1953), Mercer's Theorem holds if T is assumed to be a
closed bounded subset of a Euclidean space. It is intended, however,
in this project to place as few restrictions as possible on the nature
of T. According to (PARZEN, 1960) the notion of the representation

of a time series by a reproducing kernel Hilbert Space is the natural
setting in which to solve problems of statistical influence.

His work is closely followed in the next section, and this is where the

proofs of theorems and lemmas may be found.

2.7 Relationship Between Approximation and Statistical Methods

2.7.1 Definitions

An isomorphism between two Hilbert Spaces H; and Hy is a
mapping v : H; » H, which is a one to one correspondence (ie. such
that an inverse w'l : H, » H; exists), and satisfies the following
properties.

For any vectors uy and up ¢ H; and for any real number a:

1) wlup +up) = wlup) + w(up)

viau;) = ap(uy)

A mapping ¢ is an isometry if it preserves inner products.
je. Denote the inner product between two vectors uj, up & Hj as

P

Uy, Uz )l and the inner product between vy, v, = Hy as {vi, Vo )r>
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Then y is an isometry if

(U1=U2>1 = (w(uﬂ.IMuz))z

A congruence is a mapping which is both an isomorphism and an isometry.

So two Hilbert Spaces Hj and H, are said to be congruent if
there exists such a mapping between them. A congruence not only maps
linear combfnations of vectors in H, to corresponding linear
combinations in H, but maps Timits into limits ie.

u = lim u, if and only if y(u) = 1im w(un).
n-> oo n>o

In much the same way as was done for random functions a Hilbert Space H
with index set T may be considered and the linear manifold L{iu(t), teT}
spanned by the family of vectors {u(t), teT} is defined as the set of
all finite linear combinations of vectors in this family. By adjoining
1imits of cauchy sequences as before the Hilbert Space L*{u(t), teT}
spanned by the family may be formed.

1f L{u(t), teT} coincides with H it may be said that
{u(t), teT} spans H.
Furthermore if {fu(t), teT} spans H but no subset of it spans H then
it is a basis for H, and the number of vectors in {u(t), teT} is the
dimension of H. Such a basis is not unique, but all bases for H must

have the same number of vectors.

2.7.2 The Basic Congruence Theorem

Let H; and H, be two abstract Hilbert Spaces. Let T be an
index set. Let {u(t), teT} be a family of vectors which span H; and
{v(t), teT} a family of vectors which span H,.  Suppose that, for

every s and t in T,

(u(s), u(t) y = (v(s), vit) ) .
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Then the spaces H, and H, are congruent, and one can define a congruence i
from H, to H, which has the property that
plu(t)) = wv(t) for all teT.

For a proof see (PARZEN, 1959).

Using the Gram-Schmidt orthonormalisation process it may be
shown that any Hilbert Space possesses an orthonormal basis ie. if
{w(t), teT} is a basis for H it is an orthonormal basis if for all

ti’ tj, €T,

(wity), w(t) y = 1

i

(wlts), W(tj) )

0 if ti # tj

Now if H; and H, are Hilbert Spaces of the same dimension their
bases may be put in a one-to-one correspondence. Thus there exists
an index set T and families of vectors {u(t), teT} and {v(t), teT}

which are orthonormal bases for H; and H, respectively.

3]
<
—
-+
~——

ie. wlu(t,)) ;
plu(ti))

for all ti’ tj eT where ¢ is the one-to-one correspondence.

il
<
—
o+
~—

Now since the families are orthonormal sets

(u(ty), ulty) y, = 0 i
Culty), uteg) ) = 1
and
Cvlty), vity) ) = 0 7]
(V(t1)9 V(t-l) ),}: 1
But Cvitg), vitg) ) = (wtu(ty)), w(u(tj)) ) = 0
and Cvltg)s vlt) 2 = Culu(ty)), wlu(ty)) )y = 1

2 2




ruence v

their

ts

- 119 -

ie. when i 73 {u(ty), ulty) ) Cwlu(ts))s vlulty) 7,

and

(U(ti)’ U(t-i) )l (\Mu(ti)): W(U(ti)) )2

So the %nner product is preserved for all basis vectors and by the
Basic Congruence Theorem H, and Hy are congruent. Thus the useful
result is obtained:

Any two abstract Hilbert Spaces of the same dimension are

congruent.

In fact there are a multitude of congruences between H, and H
as is easily seen: the particular correspondence between basis
vectors in the above was not specified.

Now in the section on Linear Least Squares prediction
the Hilbert Spaces used were Lp{X(t), teT} and subspaces thereof.
The elements of these spaces were random variables. Now if Hilbert
Spaces of the same dimension as these are chosen, it should be possi
to work in the congruent spaces instead of the original ones althoug
the elements of such spaces do not look like and in fact are not
random variables at all. The elements of such spaces will thus
represent random variables. Any Hilbert Spaces of appropriate dime
could be used to do this but it is best to choose spaces which are
most suitable for the purposes in mind.  Reproducing kernel Hilber
Spaces appear to be best for the representation of random functions
especially if the covariance function is chosen as the reproducing

kernel.




1

—

s

<O
!

2.7.3 Representation of Random Functions by Reprcducing

Kernel Hilbert Spaces.

The properties of reproducing kernel Hilbert Spaces have been
dealt with quite comprehensively in section 1.6. Nevertheless there
are some additional facts worth noting.

Let H be a Hilbert Space and let M = L*{u(t), teT} be a subset
of it. Let g be a vector in H. Let { g, u(t) ) = 0 for all teT.

By the projection theorem
( E*[QIM], u(t) Y = (g, u(t) ) for all t in T.

Thus ¢ g, u(t) > =0 implies E*[ng] = (0. Clearly unless
g=0,gt# E*[g;M] je. geM if and only if g = 0. So M =1H if and only
if the only vector satisfying (g, u(t) » =0 for all t is g = 0,
or put another way:

The family {u(t), teT} spans H if g = 0 is the only vector
in H satisfying { g, u(t) ) =0 for all t in T.

Now let K be a reproducing kernel for some Hilbert Space of functionsé
fs). K(t,s) is a function of seT for some fixed teT. So the set |
{K(t,s), teT} is a family of functions of s, one for each teT.

Now if { f(s), K(t,s) )s = 0 for each teT (the inner product being
taken over the index s), by the reproducing property ({ K(t,s), f(s) }Szf(tF£7
for all t in T. de. f(t) =0 on Tor f =0 so the family of functions
{Kt(s), teT} spans H.  (The notation Kt(s) is often used in preference
to K(t,s) to emphasise that it is a function of one variable seT for
(various) fixed t<T).

Now suppose that there are two Hilbert Spaces H and H' of the
same dimension. There is a congruence between them, y, and they may
be based on the same index set T, If K is the reproducing kernel for

both of them and g(t) €H, g'(t) eH', then
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g(t) = {a(s), K(s,t) Yy = {g'(s), K(s,t) Jye 7 g'(t)

by the definition of congruence and the reproducing property.

So H and H' are jdentical.

Now let {X(t), teT} be a random function with covariance

) which must be symmetric and non negative. It is

(t), teT which will

function C(s,t
possib]é to form a Hilbert Space of functions g
be called H(C) in the following manner.

For some unique random variable U in Lo{X(t), teT}, let

g(t) = ELUX()].
An inner product between the functions

g(t) = E[fux(t)l and hit) = ELVX(D)]
can be defined as

{g, hy = E[WI,

and the norm defined in the usual manner.

Obviously,
C(s,t) = CS(t) = ELX(s) X(t)]
is in H(C') and
(g, C ) =

verifies that C(s,t) is a reproducin

(g(t), Cls,t) ) = ECUX(s)) = g(s)
g kernel and it is quite simple

to verify that H(C) is a Hilbert Space. The family of functions

{Cs(t), seT} span H(C) and only Hilbert Spaces jdentical to H(C),

so H(C) is unique. In fact the above reasoning has shown that the

Moore - Arenszajn - Loeve Theorem, (Theorem 1.6.3) holds for random

functions.
S5 S S 5
Now since (¢ '(t), C Jg)y )y =C (s3) = C(Si,S-)

and E[X(si), X(sj)] = C(si,sj) also,




and since E[X(Si) X(sj)] is the inner product between the elements

X(si) and X(sj) in the Hilbert Space L,{X(t), teT}, by the Basic
Corgruence theorem there is a congruence between H(C) and L, X(t), teT}.
Before going into detail, however it is necessary to define what is
meant by a representation.
A Hilbert Space H is said to be a representation of a random
function {X(t), teT }if H is congruent to L,{X(t), teT}. Or, because
of the basic congruence theorem:
A family of vectors {u(t), teT} in a Hilbert Space H is a
representation of a random function {X(t), teT} if, for every s and t
inT
(u(s), u(t) Yy = C(s,t) = E[X(s)X(t)]
In the special case of reproducing kernel Hilbert Spaces the family of
vectors will, of course, be the family of functions {Ct(s), teT} in the
Hilbert Space H(C). So {Ct(s), teT} is a representation of {X(t), teT}.
Any Tinear map ¢ from H(C) to L,{X(t), teT} which has the
property that for any geH(C) and any teT,
ELw(g) X(t)]1 = g(t)
is the congruence which maps Ct(s) to X(t)
Ys)) x()1 = cHY) = ct,t)

which is true if p(Ct(s)) = X(t).

ie ELw(C

If ¢(g) = U then the equation
E[UX(t)] = g(t) 1is obtained as before, so the inverse
mapping ¢'1 can be denoted as an inner product in Lo{ X(t), teT } if one
allows t to take any value in T.
It is also possible in view of Theorem 7C (PARZEN, 1959)

to represent the congruence ¢(g) = U as an inner product in the space H(C)-




for some function LML) such tnatb
Sy i % . s 4 doby oy on om0 IR ST N
(4,07 = X{tr, the subscoript U denoting that ihe

inner product is taken with respect to the space H(C).
Now suppose thet {(X(t), teT} is a random function with
L, (ALE), tel b = H the Hilbert Space spanned by it.  Let the
covariance kernel be C. Now if T' is a subset of T then
L. {X(t), teT' | is the subspace H'€H. Let R be the covariance
kernel of H' such that R(t,s) = C (t,s) for s,teT'el.
Let 7 be some random variable in H which is to be approximated
by its projection on H'.
The projection theorem may be applied directly to H and H'

ults previously obtained. However, the corgruent

w

to get the re

spaces H'(R) and H(C) may be used instead and the projection theorem

applied to w'l(Z) = h(t) where

it

h(t) ELZX(E) 1.

Let the projection of Z on H' be Z which maps under the congruence to

~

h(t), where
h(t) = E[ZX(t)].
ti ti »
By the projection theorem, and since R "(t) = C (t) for any t.eT'eT,
t. t. '
" i, L \
(h(E), € '8y = (hir), ¢ ()
oY .ty L
(hy 01y, = {n, 0 i= 1,2, n
. no, tj. .
Now b= mds O cince heH'{R) and because of the reprocucing
i=t
Pt ¥ ’/5 ‘hﬁ ““1‘ = on *{}~
" n £ L,
{ ! . i 5 { } I i



t.
Now (€3, ¢ 1) =Cltys t) = ELx(ty) X(t5)]-

5o in matrix form Gd = h where G is the same as in the statistical

case. Sod = G_lh.
R t.
Now h = L d. C J
j=1 "
~ n t.
or h(t) = £d;C J(t)
=17

At this stage it is worthwhile to compare this expression with the
one obtained by application of the projection theorem to the statistical
case ie. the spaces H and H'.

1f one is only interested in prediction je. X{(t) is to be
predicted at the point tpeT rather than BX(t) where B is a linear
operator, then Z = X(t) and 7 = X(t).

Also w(h) =
Writing the above expression in matrices after rearranging,

oy = reti(e) et . ctn(t)1 671 [h(t)]

(t2)

h(t

whereas in the statistical case

~

R(t) = et cta(ry ... ctn(t)1 6

—
T T
>
"o —_
o+
—
3

since w(h) = X it follows from these expressions that ol

so that the predictions are congruent as would be expected.
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There is a difference, however and that is that the next step
in the statistical method is to apply the evaluation functional at a
particular point weAd and obtain iw(t) from the values Xw(ti) j= 1,250
of a particular realisation.

In the deterministic casé however the problem may be regarded
as the 1nteré01ation of the function h(t) at the point tp, the best
value for this being ﬂ(tp). So in the above h(ti) are values which
may be considered to be already known - je. h(t) is known at points
ty ij=1,2y «ves N and its value at tp is to be estimated. 30 the
next step is to apply the evaluation functional with respect to a
particular point tpeT.

Also in the statistical method the point tp has been predeterminec
In the above expressions chi(t), ct2(t) etc. are in fact Ctl(tp), Ctz(tp)
and these values are already known numerically as Ctl(tp)=c(t1,tp)=E[X(t1
etc.

5o in effect the problem is being attacked from "opposite sides"
although, as will be seen, the destinations are jdentical.

This is because ¢ @, X(ty) dy = X*(t;) = h(t;) 1= 1,2, -«-
in the statistical case using the inner product in H, ind when the final

operation is performed in the deterministic case, (C P, ¢ ! )C =

t.
1 .

t ) = Clt, = . = )
¢ p) C(tys tp) ECX(t;) X(tp)] 3= 1,2500000

Thus applying the evaluation functionals to both cases
ﬁ(t )y = { h Ctp Yo = ' i(t Yy T X(t )
P ’ C » "trp! H p*’
and the two approaches are jdentical.
Now it is not a difficult matter to show that the approaches
are identical for cases other than the pure prediction casé je. if so

quantity BX(t) were to be predicted at t = tp or if instead of having

the quantities E[X(ti) X(tj)] the quantities E[LiX(ti) JjX(tj)] only
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were available for various Li Jj where B Li and Jj are linear
operators.  (DERMANIS, 1977) deals with this quite adequately.
The main point is that if the Covariance function C(t,s)
is used as a reproducing kernel in the space H(C) one may regard
the procedure of solving a partial differential equation where there
is incomplete boundary value data and the procedure known as linear
least squares prediction as essentially the same. The reason for
this is that the Basic Congruence Theorem applies, but a more
practical reason is that they always will give identical results.
Some discussion of (LAURITZEN, 1973) is in order:
In Chapter 5 examples 4.1 and 4.2 he cites the cases of the Wiener
process where T = [0,11], C(s,t) = min(s,t) and E(X(t))= 0 for all teT,
and pure white noise where T =R, C(s,t) = 8ot (the Kronecker delta)
and E(X(t)) = 0. In the case of the Wiener process he states:
w_ .. the sample functions of the Wiener process indeed behave very
wildly! It can be shown that the sample functions cross any level
more than a finite number of times in any small interval ... But note
that the kernel space of the Wiener process entirely consists of

functions which are absolutely continuous with square-integrabie

derivatives ... There is in fact a remarkable difference between
the sample functions and the functions in the kernel space!®

In the case of pure white noise: "The sample functions behave as
wildly as functions possibly can. 'he kernel space consists of
functions that are identically zero except in a denumerable set of

points, and in such a way that I f(t)2< »., The sample functions
teR

and the functions in the kernel space do not look 1ike each other
at all!"  An example is also given where the "sample function space
and the kernel space are identical", where T = R, C(s,t) = 1 and

E(X(t)) = O with the comment: "But the process is not very interesting

at all."
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Now this demonstrates that the congruences between the

spaces Lo{X(t)s teT} with covariance kernel C and the spaces H(C)
are certainly not jdentities. That is to say, the congruences
are of the form

w(ch

Ct

X(t) and not

1]

X(t).

It also serves to demonstrate the usefulness of working in the
kernel space for one is often able to use well behaved functions
rather than ones which "behave very wildly".

In Chapter 6, Lauritzen makes use of the concept of the Hilbert
valued random variable, a mapping X : @+U where U is a Hilbert Space
and where for all u* ¢ U¥, the dual space, the mappings u¥o X : @R
are real valued random variables, toO derive a Karhunen—Loeve expansion
in the case where the random variables u¥o X are Gaussian.

(DERMANIS, 1977) following Lauritzen's work with some minor changes
of emphasis arrives at the same result without the Gaussian restricti
whilst Lauritzen does not mention the index set T, Dermanis stresses
that his exposition is general and without restrictions on its nature
for the case where X(t), teT has sample functions in a Hilbert Space
and can be regarded as a Hilbert-valued random variable.  Then, by
requiring U to be a reproducing kernel Hilbert Space with the reprodi
kernel K(s,t) fie. such that K(s,t) =nzNen(s) en(t) where {en(t)}

€
an orthonormal system jn U, Lauritzen derives this result:
R(s,t) = ECX(s) X(t)] 1is the covariance function of a Gaussian proc
with mean value zero the sample functions of which belong to U with

probability one if and only if -
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R(s,t) = 20n2 en(s) en(t) for all s,t,eT
where Zonz <+ o are eigenvalues

of the operator B : U > U where

R(s,t) = {RKE, k%)
Dermanis, on the other hand, derives Mercer's Theorem without the
requirement that U be a reproducing kerne Hilbert Space or that
X(t), teT be Gaussian.
These results are quite remarkable, and perhaps a little brave, for
usually Mercer's Theorem and the Karhunen-Loéve expansion are derived
for a finite closed interval [a,b] eR although (PARZEN, 1959) and
(ZAANEN, 1953) state that the theory can be extended to the case where T
is a closed bounded subset of a Euclidean space.

Indeed, Dermanis uses these results to show that the
deterministic and statistical approaches are jdentical which indicates
that he is not making use of the basic properties of the congruence
between Lo{X(t), teT} and H(C). It is even more obvious that Lauritzen
is not for it would be somewhat difficult to find 2 reproducing kernel
for Ly{X(t), teT}. In fact by noting that R(s,t) = K(s,t) implies
Onz = 1 for all neN, Lauritzen shows there is no Gaussian process
with mean value zero and covariance function K(s,t) the sample functions
of which belong to U with probability one. If use had been made of the
congruence between LoiX(t), teT} and H(C) it would never have been
proposed that H(C) comprised of all the sample functions of X(t).

The congruence is not an identity mapping.

It is proposed to attempt something a little less ambitious
than trying to show that Mercer's Theorem holds regardiess of the
nature of T. Instead,an attempt will be made to derive an orthogonal

expansion for a random function on a specific T for a particular type




re T

es

tzen

el

ions

the

1]

- 129 -

of covariance function, namely the case in question: the harmonic
functions outside a sphere of radius R. First it is necessary to

discuss the nature of the covariance function.

2.8 The Covariance Function

In this section it is really only necessary to deal with the ca
where the index set T is a sphere.  This is because any harmonic funct
outside a sphere may be expressed in the form

o N1 _ e
h(8,A,r) = nio mzo ;ﬁ:T - an(e,x) + b Snm(e,x)]
whilst continuous functions on the sphere may be expressed

n — —— —
n=0 mEO [anm an(e,x) + Eﬁm Snm(e’l)]

f(0,1) =

I|M8

There is thus a one-oné correspondence between continuous functions

on the sphere and harmonic functions outside it. In other words for
different rea1isations of a stochastic process it is only the a -

and Eﬁm values which change regardiess of which type of process is bef
dealt with. Thus, for all intents and purposes the process on the
sphere may be dealt with and simple modifications made when processes
harmonic outside the sphere are of interest.

This is useful, for a sphere of radius R is a closed, bounded
subset of £3 and according to (PARZEN, 1959) and (ZAANEN, 1953), Merc
Theorem holds and Karhunen-Loéve expansions are possible.

It is thus not necessary to use more general results such as

n (LAURITZEN, 1973) or ( DERMANIS, 1977).

Now since the results obtained for deterministic and statist
methods are identical where the reproducing kernel in the determinis
method happens to be the true covariance function in the statistical

case, it would appear to follow that the covariance kernel must be ©

of the permissible reproducing kernels of the deterministic case.
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Otherwise, since the kernels in the deterministic case have been
determined with a view to solution of Laplace's equation, the
probabalistic case would not provide such a solution.

For the sphere,permissib]e reproducing kernels are of the

form

w 2
K(s,t) = Z K P (cosy)
=0 "0 n

® " (n-m)!

+ZZZW

2 2
I an(coses) an(coset)[(knm-kno)cosmxs cosiniy

22
—(hnm-kno)s1nmxss1nmxtJ

for two points s (es,xs) and t : (et,xt) where ¢ is the spherical

distance between them. For each set of knm’ m,n = 0,1,2, ...

h m,n = 1,2, ... there is a different reproducing kernel.

nm?

One such set of constants should yield the true covariance function.
This is not an jsotropic kernel, but when the values of knm

and h . are the same for all values of m at any particular value of n,

the anisotropic term is Zero and the isotropic kernel is obtained:

© 2
K(s,t) = = K, Pn(cosw) .
n=0

If this were a covariance function for some random field on
the sphere it would imply that such field were homogeneous and isotropic.
In fact it is enough simply to say that it is homogeneous, for on the
sphere homogeneity implies isotropy, a fact which is not difficult to
show. (see also (OBUKHOV, 1947) and (MORITZ, 1980) ).

However, a more fundamental expression for such a kernel is of
greater interest, since by its use the Karhunen—Loéve expansion of a

random function on the sphere may be derived.
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For the above kernel it may be recalled that the norm was

given by
1 = 2+l <2 _ 1 5 2ntd no_2 2
Wfll, = & : — 7 ¢ °~ ;s 2 5 [a b
H Bl k9 T 20 K om0 M nm

An orthonormal basis for H was given by
f

- A _
V5 ks/ 70T %3

where the expression ¢j corresponds to an or Snm using the
numbering system in (MORITZ, 1966)

Thence by Theorem 1.6.5

8

K(s,t) =

v (s) v (t),
n n n

H ™~
o

For a continuous function on the sphere

«© n —_— — ——
f(e,r) = nEO mio[a"m an(e,x) +b snm(e,x)]
[+ n ~ ~ ~ A
- nEO mZo[anm an(e,x) * bnm Snm(e’x)]
where Rno = knoPn(cose)
A=k Sh-m)! & . & =h 2n-m ! =
nm nm (n-m)T “nm > Tnm nm (n+m) ! nm
a - igm_ n+l . b= Prm n+l
nm Kom A nm F;;' &

and where an is an abreviation for an(e,x) etc.

§nm form an orthonormal set for H which

o b

nm’
correspond to the wj under the (MORITZ, 1966) numbering system.

The expressions Rno’




Hence

i

K(s,t)

w N R R R
g ) an(et,xt) + Snm(es,xs) Snm(et,xt>;

~

Here it must again be stressed that Sno does not exist, but the above

equation holds if by convention gno 0. (R.(s)sS (t) etc. will be used

nm nm

to denote an(os,xs), Snm(et,xt) etc. when a point t or s 15 specified

and simply ﬂhm’ Snm etc. when no particular point 1s specified).

Now it is known that

[ oglt) epltide = Son

(8]

2TY [ » .

ie KO Jo an(e,x) qu(e,x) sinod edx 6np6mq
(271 (o
J jo an(e,x) Snm(e,x) cinededr = O

o]

ki
‘ T (8,r) S..(65% inodedr = 6.6
JO XO nm( ) Dq( ) s np - mq

Now

(211 (Tf : n R n n N .

jO B {niO mEOEan(es,xs) an(et,xt)+snm(es,AS)%m(et,xt)]}qu(egxs)swnesdesdxs
{Zﬂ {ﬂ . N n )

= Jo }O qu(GS,%S) qu(es,xs) qu(et,xt) sing do dhg
~ 4_[‘ 2'” !’“ = . ) ‘

= qu(ut,xt) kpq 75T [O Jo qu(es Ag) qu(es,xs) s1nbsdc)sd%.s
Guk

- 7ptl qu(@t’xt)' p,q = 0,1,2, <.




2
f’ "oq
! v I} - . e N
ie j Kls,t) qu(s) ds 751 pq( )
SRR 5
o r _ Arh _
Similarly ] K(s,t) Spals) ds = iy S,o(t)
Seo
p,q = 1,2,
Or using the (MORITZ, 1966) numbering,
2
J 4ﬂk.i
K(S.t) (b](S) ds = -Z-ﬁ:l_—l‘(i)_'(t) = A.IQL)](t)'

Seo

So ¢i<t) i=1,2, ... form an orthonormal set of eigenfunctions

of the kernel K and A i=1,2, ... are the corresponding non-negative
eigenvalues.

By Mercer's Theorem then,

K(s,t) = LA

o (s) ¢ (t) ,
n=1 n

n'n

the series converging absolutely and uniformly on o x o.

Or, in the an, Snm notation,

o n 2 2 _ -

_ 4 =— —
K(sst) = = w2 Lk Roo(s) Ro(8) + b Spo(s) So(6)1
n=0 m=0
as is easily seen on substitution for an, Snm in terms of an and Snm
in the original expression.
It is noted that the eigenvalues are positive and that
B (h" =0 for all n)
7 5 + < o, = or all n).
1=0 Zn+1 meg M nm no

Now let {X(t), teo} be a mean square continuous process which is
measurable, with covariance kernel K(s.t), which has orthonormal

eigenfunctions ¢n(t) and eigenvalues Ay @S described above.
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Define the random variables

= _—1‘-—- f \
Xn - yj; g ¢n(t) X(t) dt.
N teo
Then E(anm) = oo
X - n+1 j"z'ﬂ' }"ﬁ B .
nm 4ak - Co o X(8,2) an(e,x) sinodedx.

Y = — .
nm 4“him !y X(o,1) Snm(e,x) sinedoda
2m i 2n 7
2n+l f , — —
E(X. X ) * Zmk. J j { ECX(e,2)X(e' 52" ) IR (a,0)R (8',2")
hmPq nknmkpq 0 o] Jo o] nm Pa
X sine‘sinede'dedx'dx,
by Fubini's theorem.
2
k 2n o
= R (8,2) R_{6,2 sinodedx
b jo || Runfo03) Bygles
= 6np qu
Similarly EC qu) = 0 always
and E(Ynm qu) = Snp amq n# 0.

Again using Fubini's theorem,

EX(E) X ) = A= | ECE) X(ED) ()
/P teo
1 {
= K(t,t) ¢ (t) dt
/ *n tio ) "
= ¢n(t) teo.




- 135 -

N 2
S0 E[X(t) - zl /g ¢n(t) X,
n:

2 N 2 N
- ELX(®)1 ¢ zl . [q»n(t)] -2 zl ¢n(t) /™ g{x(t) X}
n= n=

2
= K(t,t) - I 2 Lo ()]
n=1 n n

i

which tends to zero as N » < by Mercer's Theorem.

So x(t) has the orthogonal expansion
- . N /”'
X(t) = 1im in g.m. /™ ¢n(t) X,

N > n=1
This expansion js known as the Karhunen-Loeve expansion and in terms

of R and S is expressed as

du (k.. X T (8,2 * Ny y 5 (8,21

X(t) = % AL
n=0 2n+l oo nm “nm nm nm T nm

For a particular realisation P (t), Xﬁm and Yﬁm are constants SO
the right hand gide is a continuous function. But the sample functions
are also continuous, hence the equality.

The expansion does not rely on homogeneity of the covariance
function, just as in the one dimensiona\ case stationarity js not
necessary. 1t is not difficult to obtain the expansion for the case

where the covariance fFunction is homogeneous and jsotropic.

Here knm = kno = Kn , Nems = 0,1,25 --- and

w n
- TT n <
Thus X(t) nio Kn / Zn+l ZO[Xnm Rom * Yom Snm]
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Also because ELXnm qu = énpémq = E[Yanpq] and E[Xanpq] =0
it is not difficult to show that

Erx(s) x(t)1 = K(s,t) for both the isotropic and
anisotropic cases.

Evidently, under the congruence J from Lo{X(t), tec} to H(K),

the following relationships hold:

R - /R
JLXnm] N an(t) knm Zn+l an(t)
JIY. 1= § (t) = h S5 ()

nm nm nm 2n+l Tnm

This follows from ( PARZEN, 1959) Theorem 50, since

_17/‘. _ ~
era R, (£)IX(8)] = ECXpk(8)1 = R (D)

-~

era7l S, ()IX(2)1 = Spp(t)
Also,
4
Jrx(t)1 = K (b
4 n_ 2 _ _ +h2§ _
EO 2n+l mEo[knm nm( 1) nm(t) nm nm( 1) nm

in the case of an inhomogeneous kernel, and

™~ 8

2
Jx(ty)) = Kp Polcosvg. ¢

n

il

in the case of a homogeneous 0ONe, where

bp. ot is the spherical angle between some point tieo
1,

and a variable point L. It is thus a function of t.
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1t is easily verified that

t m t.

n .
= . 1 a ‘]
b X(t)] { ta;K's LD K3 Y

m
Z
; J

n
EL 2 a; X(ti)
i=1 j=1 i=1 j=1

for t'itj £ O,

and that the results hold for 1imits of Cauchy sequences.
At the risk of being accused of repetitiveness it 1is

once more ﬁoted that

w D _ _ _
sts,t) = B T Reg(s) R () * Spu(5) Sl ¥
1 12
= 7 E;-n§0(2n+1) Pn(cosws,t)

and where s = t (or Vst = 0)
T e
n=0

That is to say, the space of sample functions X(t) regarded as real-
valued functions on o je. Lo[ol do not form a reproducing kernel
Hilbert Space. In other words the space H(K) is not a space of sam
functions. (This is the significance of the statement by (LAURITZE
1973): "there is no Gaussian process with mean value zero and covar
function r the sample functions of which belong to U with probabi1i1

one".)

2.9 Estimating the Covariance Function: Ergodicitx
The Karhunen-Loéve expansion may be written for x(t) in a

slightly modified form

X(t) = Eo 5 [Anman(e,x) + Bnmsnm(e,x)]
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. o et
where  Ap Ty ?H1T’knmxnm > Bnm T/ Zn+l hannm

are random variables such that

& | L .
knfoq //2E¢T Snpng * ECA, qu] = 0 alwayss

ELAm qu]

/RN
and ECBry Bog? hopq 7 Zn+1 ®np°mg.

1]

A particuiar realisation is given by

n

xe(t) = & & [a R _(8,2) + b S (6,1)]

=0 m=0 nm o onm nm “nm
. — w il - w . __ w Gn - u
€. m Kom Xom 7/ Znel Anit Eﬁm' hom Yom //~;+1 B
W (W) . . .
Xnm’ Ynm being realisations of Xnm and Ynm .

Attempts have been made to utilise a realisation or a “partial”
realisation to estimate the covariance function K(s,t). The most
common method is quite similar to that used in the estimation of the
covariance function of a one dimensional stationary time series where
ergodicity is assumed. It is called the “empirical covariance
function", and mainly for computationa] reasons it 1is usually assumed
that the process is a homogeneous random field. For an inhomogeneous
and anisotropic field it would be jmpossible to compute a sensible
estimate, just as it would be for a non-stationary time series if only
a single record were obtainable.  After trend removal 1t may be possible
to regard the resulting field as homogeneous, however. On the plane,
or in &M it is possible to have anisotropic random fields which are
homogeneous but this type of field is precluded when the sphere is
the index set, since here homogeneity implies isotropy. It is, of
course, possible to have an inhomogeneous random field which is

jsotropic at two points diametrically opposite each other on the sphere




but at no other point, as mentioned by (JONES, 1963} in connection
WILH meleoreiogicai rorecasting, [n terms of the gravity field of

the earth one would expect gravity measurements to be of this nature,
However by subtracting normal gravity, as determined by a model, to
obtain the gravity anomaly this trend is deemed to have heen removed.
In effect then, the assumption of homogeneity is the same as
the assumption that all trends likely to cause inhomogeneity have
been removed, If the trends are expressed as the first few terms
of an expansion in spherical harmonies, the resultant or residual
field will still be harmonic outside the sphere or continuous on it.
The assumption of homogeneity therefore should not be
regarded as highly controversial, If there is any doubt as to its
validity the remedy is to use better models for trend removal rather
than invalid concepts such as "local anisotropy" within a homogeneous
field. If a random field is locally inhomogeneous it can hardly
be globally homogeneous. Also the benefits computationally are of great
importance: in fact they are the difference between being able at
least to attempt to estimate the covariance function and not being
able to do it at all.

The formula for the empirical covariance function is

1 (Zﬂ [’ﬁ W {a}
R(s,t) = ey J '; X (US,)\S) X <Ut’At) sinadoda.
o} Q
X“(GC,AS}, being the realisation of the function in question, (usually

gravity anomaly), at the point (es,as) etc.

As shown by (HEISKANEN & MORITZ, 1967), for an isotropic

homoceneous random field the expression in terms of spherical harmonics
Ve b the spherical distance from s to © and way be
y b
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R(s,t) = R(ws’t) = E R,P (coswS t)
n-O
" 1 n 2 2
where Rn = In r 3 + bnm]

Usually the index n yuns from 3 to = since the terms with index
n=0,1,2 represent known Geodetic parameters, je. some trend removai(
has taken place in the calculation of gravity anomalies.

The R terms are known as "degree variances" or variances

at degree n because of the gimilarity to the expression

1 2 I 1 D 4r 2 2
T mio {ECA,d (Bl = 7 E n+1 (Kt
2 2 2 2
= Kn since knm = hnm = Kn ,
2 I3
hno = (, for an jsotropic kernel.

The expression differs from Moritz's by 2 factor of E—-but this is
only because the inner product was chosen such that anqud np mq
rather than g? vﬁnﬁﬁpq - 6np5mq etc. It is in fact the
(TSCHERNING, 1970) notation.

So E;m corresponds to E[A o) and b to E[B2 1 and they may
thus be regardad as estimates of variances, hence the term "degree

variance". They are estimates and not estimators, for the estimator

of the covariance function 1is in fact

R(s,t) = I R P (cosy. +)
n=0 " " s»t
o ~2 1 " Az 2
where Kn = v EO[ nm+8nmJ

2
£

n2
which is unbiassed, since E[Kn] = Kn
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For a particular realisation, Aﬁm = a,, and Bﬁm = by
an estimate is obtained, so the empirical covariance function may
be deemed unbiassed.

Now it should be remembered that the formula for the empirical
covariance function js just that: a formula. It has not been derived
from inviofab]e precepts by a rigorous statistical treatment but is
merely Erogosed as a method of estimating the true covariance function
from a single record or realisation. In this it is not altogether
different from most estimators, for, in general, one proposes a theory
and derives an estimator using it. The next step is to examine the
various properties of the estimator, often in comparison with other
estimators, and see whether it adequately suits the purposes for
which it is intended.

In the case of the empirical covariance function it is seen
that it possesses oOne desirable property, that of unbiassedness, but
it appears to be somewhat difficult to find other properties which are
not undesirable. The formula seems to have been proposed because
of its similarity to the one used in computing the covariance function
on the real line for a time series, which is given by the time

average

T
a _ 1
R(0) = ﬁj X(t + 2) X(t) dt.
-T
In turn, this formula has been widely used for temporal processes

possibly because of its resemblance to the following formula for the

sample correlation coefficient of two variables X and Y:

(- D =D

preid

h

por s
(=11 B I e =

—

.
I

i=1
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where X, Y are the respective sample means. The average here
is over the probability space rather than over the time axis and
js equivalent to estimating the covariance between X and Y in the

case where they are known to have zero means by
- n
c = 1 XY,

A slight modification of the variables X and Y to Xt s Xt oy
followed by conversion to the continuous analogue g1ves RT(A)

Now R was derived using the method of maximum 1ikelihood
on the assumption that X and Y were normally distributed.
See, for example, (HOEL, 1954)., It would appear therefore, that
some assumption to the effect that the process is Gaussian
has influenced the choice of ﬁT(A) in computing the sample covariance
function of stationary time series.

For this estimator to be of use, an ergodicity assumption
must also be made ie. that time averages equal ensemble averages.
In the case of a time series, for ergodicity of the autocorrelation the
following is required:

T
Tim R (A) = lim L X(t +1) X(t)dt
T 27
> © T > o 1

ECX(t +2) X(t)1 = R(A).
According to a theorem in (PAPOULIS, 1965) this is true if and only
- o
if the variance of the random variable RT(A) tends to zero as T tends
to infinity: ie. if

lim A JZT(l Ty (R, (1) - R%(A)1dt = 0
T—+uo T 0 -ﬁ ¢¢T- N

where R¢¢(r) = E[X(t + a+t) X(t +1) X(t +2) X(t)2




he
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je. [R¢¢(T) - R%(x)1 is the autocovariance of the process
X(t +1) X(t), so to test for ergodicity of the autocorrelation,
knowledge of fourth order moments is required.

Now in the formula for the empirical covariance function,

f? outside the integral sign corresponds to g% outside the integral

sign in the time series case ie.

i

(2m
R(s,t) = -%; J

™
i} w .
) JOX (es,xs) X (et,xt)s1nededx

or for the estimator k(s,t) of which R(s,t) is a particular estimate:

a 21 ¢
K(s,t) = f; J J X(es,xs) X(et,xt) sinededr, and
o]

(o]
kil il
J J sinededyx = 4w,
[s] e}

T ~
just as dt = 2T in the case of the autocovariance function RT(x)

-T
Now it is difficult to see exactly how one can perform for the
empirical covariance function, a limiting analogy to that of the
time series case where the variance of ﬁT(A) is a function of T and
T is allowed to go to infinity. 47 is not a variable and obviously
cannot do the same thing. A misconception is that the process of
"£i11ing the gaps" of a discrete record of gravity anomalies so that
gravity is known all over the earth and a summation becomes an
jntegral is the same as allowing T to go to infinity. This is
definitely not the case; just as a time series of, say, electrical
current through a resistor measured at discrete intervals over
a period T, will not yield a particularly different estimate of
the covariance function to that calculated from a continuous

record over exactly the same period, The fact that there is a
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continuous record does not alter the fact that the record is not
over the entire real line.

One may thus doubt whether ergodicity is a particularly
appropriate concept or even a reasonable assumption for an index set
such as a sphere or interval of the real line. For time averages
to equal ensemble averages in such cases, then with probability oné
the same empirical covariance function would be obtained for each
sample chosen. In other words, if there were a multitude of
readily available planets with exactly the same geological or
cosmological history as the earth it would be possible to get
ensemble averages and thus a good estimate of the true covariance
function. It does not seem 1ikely, however, that in each case the
empirical covariance function would be the same and thus be the same
as the true covariance function. That is not to say that it 1s
impossible, just highly unlikely. The prospect of actually obtaining
such repeated trials is even more unlikely.

Ergodicity, therefore, is much more restrictive in the case
of a finite interval or a sphere.  The limit as T tends to infinity
of the variance is unobtainable, so it must be demanded that the
variance of k(s,t) itself be equal to zero.

(LAURITZEN, 1973) has shown that in the case where the process
is Gaussian the variance of R(s,t) is indeed not zero. To do this he
used topological group theory but it does not seem necessary to go to
such lengths, for elementary probability concepts appear to be gquite
adequate in this regard.

In general the estimator corresponding to the empirical

covariance function may be expressed as




S © A2

K(s,t) = nio Ky, Pn(cosws’t)

~2 1 n 2 2
where Kn = a;-miO [Anm + Bnm]

and, as stated before
, _ fAx . _ B
z Anm - Zn+l knmxnm s Bam T /70l hannm

(Note that Ynm and hence Bnm do not exist for n = 0).

In the case of a Gaussian process Xnm and Ynm are identically and

jndependently distributed as N(0,1).

Thus, a2 1 { ) " 2 2 2 2

Kn = % |2071) mEO Ckyr*nm * Pam

Now the covariance function is jsotropic and homogeneous and thus
2 2 2

Kn, = hnm - knm’ 502
a2 Ky n 2 2
Kn T 7n+l EO [Xnm * Ynm]
K 2n+l -
=_._n.__- X U_
2n+l i=1 i

where Ui’ i=1,2, oo 2n+l are jdentically and independently

2
distributed as N(0,1) and thus Uj, i =1,2, ..., 2ntl are
independently chi-squared with one degree of freedom,  Thus by the

additive property of the chi-squared distribution,

2
a2 K, 2 2
- )
Ky YT Q where Q : x (2n+1)
"
a2 n 2
Hence V(Kn) = (—mz v(Q )
"
2Kn

Zn+l
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As a direct consequence of the fact that if X and Y are independent
and g(X) and h(Y) are functions of these variables then

ELg(X) h(Y)] = ELg(X)IECR(Y) D, it is easily seen that

Cov (Km, Kn) = Qg form#n.
~ w a2
Thus ViK(s,t)]l = nEO V[Kn Pn(cosws’t)]
KM
_ .o N 2
- izo 2n+1 [pn(cosws,t)]

This is obviously not zero, SO the process is not ergodic.
The expression in (LAURITZEN, 1973) for the empirical covariance

function of the gravity anomaly is

n+2

agls) pa(®) = 3 (2} (n-D) oy g Palcosyg o)

n=3 rsrt)

2
Converting to the present notation and letting r.ry = v~ the expression

becomes

K(ag(s),ag(t)) {:2n+1 (n-1) l }znléé}z Pn(cosws’ti}

§3 [§2n+1)(n-1)2{{§) [;2}2 P (cos i} V(K )

2

uMS

Thus VCKag(s),2g(t))]

i

b o
2{%2) nE3(n-1)”(2n+1) K: [{§}4“[Pn(cos¢5’t)]

which with o: substituted for K: is Lauritzen's expresgion for the
variance. SO Lauritzen's expression is verified by methods not
involving topological group theory.

This result led Lauritzen to say that it seems to be a more
difficult problem to find the true covariance function than to find
1

the value of the potential (or gravity anomaly) at a point, since
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if gravity were known at all points on the earth's surface, the

potential could be found but the true covariance function could not,

and that the problem does not seem suited to statistical treatment.
Perhaps it is not suited to a classical statistical treatment, ie.

where probability js defined in a relative frequency sense, but it would

be an interesting exercise to apply Bayesian methods to the probliem.

It does not appear that this has been done in the 1iterature and

unfortunately it is a 1ittle beyond the SCOpE of this project.
Nevertheless, Lauritzen concluded that it would be better to

choose a kernel that reflects the observed behaviour of the actual

potent1a1 rather than an arbitrary one, and for this reason it is

desirable to get a covariance function which is €asy to handle and

not too far away from the empirical one. It was found that a

potential covariance function

( ) o A Rz n+l ( )
R(s,t) = £ { } P _{cosy
3 (n-liln—?i rsrt n s,t

gave a good approximation to the empirical covariance function
calculated from the data in (KAULA, 1966). Closed expressions
for this are also given in (LAURITZEN, 1973). This covariance

function corresponds to

AZ— 2 _ ( A
Kn = % ~ d n-1){n- n-1)
{ 0 if n<?2

ifn>3

(LAURITZEN, 1975) and (TSCHERNING, 1976) showed that it is possible
to obtain this expression from the point of view of mass density
anomaly functions, and similar nethods of computing values for the
various covariance functions are still in use today. For example
(TSCHERNING & FORSBERG, 1981) quote an expression for the covariance
function of the disturbing potential used in computation of the geoic

in the Norwegian-Green?and Sea area as
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180
z
i=2

Cov (T(P),T(Q))

o

+

i=181
It was chosen to approximate an empirically
function.

However it is somewhat difficult to
so much emphasis

an empirical covariance function,

estimator of the true covariance function in any case.

of the ergodic property is,

when compared with the fact that the values

(29+1)(3x10°%) |

2 2
300 mgal /R
(i-li%i—Z}(i+24

placed upon obtaining something not quite as

'GM‘Z
\Rj

{R 2 yi+l
y rprg) Pi(cos¢).

determined covariance

understand why there is

good as

which is itself an inconsistent

The lack

however, a comparatively minor problem

predicted using the

empirical covariance function are not elements of the Hilbert Space

being used (ie. L, X(t), teo | or H(K)).

The norm squared of an element f of thi

s space is given by

2 1 = il D L
| fll = g &L gp(a, *b )
2o K om0 ™ nm

2
As was shown in ( TSCHERNING, 1977) if K,

js estimated by

then for the particular realisation of the earth

— w
o 2nm and By, = ma
je. R(s,t) = nio R Pn(cosws’t) where
KRS WS S d thus th
N el (2, am) > an us the norm
m=0
squared is
2 w »
el = s+ 1) = -

il

n
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This is basically the same as saying that the variance of
the predicted quantity is infinite.
2
If the expression for Kn as suggested by Lauritzen is used,

) 2 A
ie. Kn = To-D)(n-2)(2n-1) °

i
the norm squared of f becomes

2w (po1)(n-2)(4n2-1) T =2, P
ey = n§3 x nio(anm+bnm).
If th f numbers £ (2 + 51 i he order —L
e sequence of numbers nio[a"m + b1 s of the order ;EIE

H 2 0 0
then || f|]| will be finite where e > 0. It is not known if this

can be guaranteed, but one would expect that such would not be the
case, if the expression gives a close approximation to the empirical
covariance function. It is to be noted also that this divergence
happens, no matter what the distribution of the process is, whereas
the ergodicity problem was a consequence of the process being Gaussia

Referring to the derivation of the variance of K(s,t) it is
seen that use is made of the fact that if X and Y are independent
and g and h are functions then Cov (g(Xx) h(Y)) = 0.

However this cannot be guaranteed when X and Y are merely
uncorrelated. The expression for the variance would become much
more complicated because of cross product terms,and will not be
reproduced here. It is certain however, that it is not impossible
for the variance to be zero.

Now according to (GIKMAN & SKOROKHOD, 1969) independence

Y implies that they are uncorrelated,

of the random variables Xnm’ o

orthogonal and Gaussian. Thus the lack of ergodicity follows

directly from the fact that the process is assumed to be Gaussian.
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If the process is not assumed to be Gaussian of course this does

not mean that it is automatically ergodic, merely that it may be.

In fact (MORITZ, 1980) gives two examples of processes which are
ergodic, both of which are only of interest because of this fact.
They have little chance of occurring in practice, and one of them is
trivial merely being the same sample rotated by arbitrary angles in
space to make the samples appear different.

The problem then appears to be that the formula used to
compute the empirical covariance function is somewhat jnappropriate.
It is based on a Gaussian assumption which, if it were true, would
preclude ergodicity. More importantly when used in linear least
squares prediction it gives results which have infinite variance
(when regarded as estimators) and are thus not realisations of second
order random functions at the particular point in space. In (MORITZ,
1980) it is suggested that instead of

1 N2

R = %r m}_:O[anm ¥ Bim]

the expression Rn(l + e)n where ¢ is arbitrarily small be used in the

expression for the empirical covariance function, giving

1 w n Vo2 2
R(s,t) = 7= I (1+ e)! T [a,* b Pn(cosws’t) .

n=0 m=0
2
substituting this in the expression for || FIl »

2 @ 2n+l . .
IRl EO man s obtained. ;

2
Using d'Alembert's ratio test it is seen that ||[f | is finite.
However there is some difficulty with the boundedness of the kernel

R(s,t). When ws’t = 0, (ie. Pn(cosws’t)= 1),

R(0) =

™8

1{7 (1+¢)" 2[52 +b5_ 1.
n=0 =0
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The expression which fits the empirical covariance function well,
according to Lauritzen, is of the order of %& so it is well to

examine the convergence of the series

w© n
T ngﬁl- , using Cauchy's nth root test.
n=0
(1red"
1+e) \n _  lte Tim 1+ _
Now {*“ﬁq—‘} = ;F7h and 7, ;ﬁ7h = l+e >1,

so it would appear that the kernel is unbounded.

Regarded as an estimator it is biassed:
ey A 3 Al 4 Bl1) =) K
E{(1+e)” 7= mio[An nlb = e)

2
So unless the true values of Kn in the true covariance function
converge very rapidly the estimator is quite biassed, no matter how
small e is.

o n ~ o« n 2

je. EC(1+e)” K(s,t)1 = I (1+e)” K, P (cosy t)

n=0 n 3>

A suggestion made in section 1.8 of this project was to use some
function involving the square root or some power of Rn'

For example if C(s,t) = 3 ¢ P _(cosy_ ,) where
n=0 "N s,t

=2 .
= ——-,/[;n+1 Z ag, * bnm] the following results are

obtained

2n+l n o2 )

el -

IIMS
g
M
=)
[

n=0 “E‘ ¢Q 2ntl) T [aé 5 1
m=0

- I 7 //77 3 4B
n=0 n+l mEo[abn * Dy
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n ° 7

T . 1
Now if m:O ‘anm + bnm] is of the order i then the nth
1.
term of ‘lf%Vi is of the order R\ or-—L .
’ e ; n" n3/2 n1+1é
* 1 e
and I is finite.
n=0 n- ?
By the same token for s = t ie. Vg ¢ =0
1 2 M )
c(0) = . /ontl 2
an n=0 // § [anm * bnm]
m=0
which also converges. S0 a bounded kernel 1is obtained which also
gives predicted values whose norms are bounded. C(s,t) is not to

be seriously regarded as an estimate of the true covariance function.
1t would be difficult to find a distribution, for example, where the
corresponding estimator

~ 1 2 '3

o e 2 ,
Cls,t) = 77 ° S+l L2 Ay * Bom? ] Pn(cosws,t)
n=0 m=0

is unbiassed.

Indeed C(0) would not be a good estimate of the variance of the
process. Perhaps if C(s,t) were multiplied by R(0), something resembling
a covariance function would be obtained, and this would give the same
results for prediction as if C(s,t) were used. But it is best to regard
this kernel as an interpolation kernel rather than a covariance function.
It is however, not an arbitrary kernel for it makes use of known values
of gravity, albeit in a comewhat indirect way. The coefficients Cg
could be computed from Lauritzen's expression or any other expression
which fits the empirical covariance function well, simply by
multiplying by (2n+1) and taking the square root. It would be
preferable to obtain a closed expression for this kernel but in view

of the fact that at this stage it is but a tentative suggestion, and




that 1t i< heyond the scope of this project to peviorm the nocessavy

[g3]

numerical work to see what results are obtained, this will not be

done

.

Since the kernel C(s,t) is regarded as an interpolation kernc.
rather than a covariance function, the prediction obtained using it

bl

is more in the nature of a deterministic approximation sclulion.
The basic problem with such solutions is that it is somewhat difficuit
to deal with observational noise. To see why this is sc the concept

of Geodetic Least Squares Collocation will be examined.

2.10 Observation Noise and Trend Removal: Geodetic

Least Squares Collocation,

The definitive work on this topic is (MORITZ, 1972) although
(MORITZ, 1980) includes all the material therein plus extensions.
Consequently it is well known and will only be briefly dealt with for
illustrative purposes. (DERMANIS, 1977) also gives a geometrical
approach to the method.

Here only gravity prediction will be dealt with, but it must
be remembered that it is possible to predict any linear functional of
the earth's gravity field by using cross covariances in much the same
manner as in Chapter 1 where linear operators were applied to kernels,
For further information see (MORITZ, 1980), (DERMANIS, 1977).

Any observation of gravity may be said to be comprised of
normal gravity, ie. the gravity value determined from a mathematical
model, plus a signal caused by geoidal undulation or divergence Fyoim

the chosen model plus observational error or noise. g

R S . - & TR . st iy oo
measured ai mopoints on ine edri s LSuraduite b

Ll miavy hoa o oponyeemsant oy
1S may g FeproniEsLos

by the veclor equation

L= o *+5s+n
- ~ Y -
{e. Ohserved gravity = PTrue” normal gravity + signal + noise.
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The signal and noise in the above equations are mxl random vectors

with zero expectation and given covariance matrices E(ssT) = CSS s

-~ e

E(nnT) = Cope Signal and noise are assumed to be independent,

. T\, _
fe. B0 = D -

Now it is possible to parameterise the normal gravity such
that

Y = AX E(I) = AE(X) = ABX = uy

-~

where Ynx1 and §qXI are random vectors and A is an mxq matrix of
constants. Some linearisation is necessary for this.
The model thus becomes
L= Mes e
If m observations of gravity are taken on the earth's surface

it is possible therefore to estimate X by least squares.

Let s+ = 1
B(Z) = 0 EZZ) = G+ Cp = T
Thus Z = -AX + L, and minimising %Tt'lé the estimator of § is
obtained as
X = (AT_C"lA)—lAT-C"ll:

Also, I =L - AX

~

If the observations were assumed to be error free, ie. Cnn = 0mxm then

appropriate adjustments could be made giving

Te -1

-1
Te -1
(A CSS L

X A) A Ceo L

~

~

S

~

it

L - AX

The use of ; would give gravity anomalies where indeed E(s) = 0

-~

rather than having to make the assumption that E(s) = 0 as would be

necessary if some arbitrary model were used to compute vy .
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In this way trends would be removed in a much more satisfactory
manner than determining the average gravity anomaly from an arbitrary
normal gravity model, taking the average and subtracting it from each
gravity anomaly value. It is also better than using an arbitrary
model and assuming 1t is correct, ie. that

fz = je. E(g) = 0

The % values could then be used in linear least squares
prediction as previously described.

However it is not wished to make the assumption that there 1is
no observational ervror at this point,and it also desired to predict
the value of the signal at some point P which has not been previously
observed. Let the signal s at point P be denoted by d, and form the
vector

v = [dZ1Z2 oe- zm]T - a2

~

tet B = [0 xm] where Imxm js an identity matrix.

mx1 Im
Form the model

1}
o

AX + BV - L

It is to be noted that

~

A§ ¥ BY - E - A% * 0m><1 P1x1 ¥ Imxm %mxl - Ele
= AX+s+n-L=0
je. L = AX+s+tn as before, so it will be expected that

i when estimated from the new model will be the same as previously est

To estimate X one first places

EfVV T

o e o — =

o
1
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i
o
o
&
o
o
n
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where Cyy = E(ddT) is a 1x1 matrix
= T, _ 7.7
Cgs = E[?% 1 = E[g(i n )]1xm
= E[dsT], for signal and noise are independent,
T .
Ciq = Cys 1S mx1

. T
and Eﬁxm is, as before, E[%% 7.

Then the function VTQ'lv is minimised giving the standard estimators
for this type of least squares problem:

- 1 o-1 1
X (AT(sqe™)y A) AT(BGBT) L

~ ~

" -1 -
v a8’ (Ba8T) (L - AX)

Substituting for B and Q ,

R 1
2 = cia At
= I_’\ = Yo "
4] - [t
Z L - AX

So the same results are obtained for R and 2 as before.

Now d = Cdsf"J(L - Ai) and it is interesting to note that for

error free observations, Cnn = 0 and

mxm
s = L - Ai
—4 -1 _ ~ -1
¢ - (Css * Cnn) B Css
i = c¢.cts

ds “ss L °

In the notation of the section on linear least squares prediction s

corresponds to f' . CSS to G and Cds top , SO

~

d = pTG-lx'




in this case, which is identical to the deterministic mode when

the reproducing kernel is the covariance

However it is to be noted that the model where noise was

included was derived from the point of view that the signal was poador

- . T,-1 o : ,
That is to say V Q "V was minimised and () was a covariance matris

So if observational noise is to be included it appears than an
interpolation kernel cannot be used for Css' A least squares
estimate is only obtained when C . is the covariance matrix of the
signal. If something else is used an optimal solution is not

obtained. [t is easy to see why. The diagonal elements of ng

are the variances K(0) of the signal process. If no noise is

included it does not matter if the interpolation kernel C{s,t) at s

ie. C(0),4s equal to MK(0) where K(0) is the true covariance
function, for the factor M cancels out in the prediction formula.

)"1 instead of (C__ + C )“l

But if one were to use (MC__ + C s nn

SS nn
in the case where observational noise is taken into account, the
cancellation would not occur and the balance between signal and

noise would be drastically altered. If M were small, this couid

lead to very strange results,for the impression gained would be one

of a process similar to a white noise process. For large M fhe

a

effect would be similar to not including observational ervor at a

IINe

Now it may be argued that this would not matter particutarly since

the accuracy of a single gravity observation is such that 73

variance 15 minute compared to the variations i the sigral.
[t i< in fact true that fhe pracision of gvavily obser variont i3
it must he vememberad that 11 single gravity obseprvations

prediction, the storags and computationatl probloms

IR I SRR LR L EREES]

1.

T,
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estimates would be immense. Usually what is done is to try to
obtain a value which is representative of the gravity anomaly in a
particular area, say a 5° x 5° or 1° x 1° square. Whereas the
precision of the observations made to obtain the value is very good
it may not be possible to say the same of the accuracy or "error of
representation” of the value finally chosen to represent an area.
In addition, whereas gravity observations are not going to differ
greatly in precision at various points on the earth's surface,
there may be quite large variations of the accuracies of anomalies
used to represent 1° x 1° squares, simply because the density of
gravity coverage varies greatly over the earth's surface.

So there are certain disadvantages in using non-probabilistic
kernels for prediction. The problems may not be insurmountable but
should not be simply ignored. As stated in (DERMANIS, 1977) it is
necessary to extend the deterministic approach either by introducing
bounds for observational errors or by means of some combination of
probabilistic and deterministic concepts, to remove this inherent

defect of the deterministic approach.
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CONCLUSION

It has been shown in this project that it js possible to
take two entirely different points of view in deriving suitable
equations for prediction of linear functionals of the earth's
anomalous potential field. In Chapter 1 the equations were derived
by various mean weighted residuals methods, particu]ar1y least
squares,gGa1erkin's Method and collocation. These were shown to yield
jdentical results if a reproducing kernel Hilbert Space were chosen
and n kernel functions were used as ¥ in the test function

U* = cuur * Cova *oees Cplbpe

It is quite valid to use such functions for suitable choices
of reproducing kernels, namely those kernels K(s,t) where the function
kS(t) are solutions of Laplace's equation. The general form of such
kernels has been derived, with the jsotropic kernel shown as a special
case.

In Chapter 2 the problem has been approached from a statistice
or probabilistic point of view. Here, no reference at all has been
made to the solution of Laplace's equation. The observed gravity
anomalies have been assumed to be values obtained at various points
on a single realisation of a second order random field on a sphere.
The method of least squares linear prediction has been used to derive
equations using the projection theorem on a Hilbert Space of random
functions. This space is a reproducing kernel Hilbert Space, but
the kernel is not chosen with a view to satisfying Laplace's equatior
It is chosen as the covariance function of the random field. This

a positive definite function and if the random field is homogeneous

may be expressed in the form

where I g, < - (OBUKHCV, 1947)
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In addition, the Moore-Aronszajn—Loéve theorem (theorem 1.6.3)
shows that there exists a Hilbert Space unique up to isomorphism
with C(y) as its reproducing kernel, which is called H(C). By use
of the Basic Congruence Theorem it is shown that the results obtained
using H(C) in a deterministic sense are identical to results obtained
using linear least squares prediction.

But C(w) is of the same form as isotropic kernels giving
rise to a solution of Laplace's equation, so the statistical method
solves Laplace's equation with the given boundary conditions.

It is therefore not just some method which has been arbitrarily
chosen merely on statistical grounds, although it appears to be when
only the statistical treatment in terms of matrices is given -
especially when the empirical covariance function is used. It is a
special case of the solution of Laplace's equation by approximation with
insufficient boundary data. Now all kernels of the above form (and
of course of the more general anisotropic form) give such an
approximation. But a particular choice of the coefficients in the
expansion, such that the true covariance function is used as the kernel,
gives the solution attractive statistical properties and may allow
the computation of confidence bands with appropriate probability
statements. For example the error bound shown in section 1.8 would,
due to the congruence, be a variance in the statistical method.

This aspect, however, has not been further amplified in this project
because of the difficulty or impossibility of obtaining thé true
covariance function. The problems of estimation of such a function
discussed in section 2.9 appear to preclude the eventual attainment
of even a consistent estimator, no matter how many observations of

gravity are made in the future.
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(DERMANIS, 1977) section 3.2.4 shows that the choice of the
true covariance function leads to an unbiassed estimator which has
minimum variance among all Jinear estimators, so from the probabilistic
point of view, the choice of reproducing kernel should approximate
the true covariance function as closely as possible.

Nevertheless, it is interesting to consider the following:
suppose the true covariance function were known, and that the gravity
anomalies were known at all points on the earth. Now suppose that the
record of all but n "saved" values had been misplaced. If an infinite
array of earths were taken, each of which had anomaly values at the
n locations identical to the ngaved" values, and the mean value of the
anomalies at all unknown points were computed, these values should
equal the values predicted using the true covariance function in
conjunction with the n "saved" values.

Now imagine that the lost record had become found again, and
the missing anomalies were available. The predicted values would
differ from the original record, albeit optimally. But a question
may be posed: Is it possible to choose coefficients in a kernel
function such that when it is used with the prediction formula and
the n "saved" values it yields smaller discrepancies (in mean square,
perhaps) from the actual record than those yielded by the true
covariance function?

Put another way, the stochastic nature of the problem has more
to do with the fact that the unknown values have not been measured
than to some variation between samples.

The problem then, is to predict what has occurred in a single

sample, rather than what happens on the average.

SR TR NE
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Let us suppose that it is possible to obtain a function,
albeit with foreknowledge of all values, which is at least competitive
with the true covariance function. The next step would be to obtain
an estimator which may be used to estimate this function from a
limited record. in such a way that if information were increased it
would approach the function.

An attempt was made to do something of this nature in section 1.8,
where the mean square error of prediction was examined with the
intention of choosing coefficients in the kernel function to minimise
prediction error for a particular limited record. Unfortunately it
led to a rather uncomfortable set of equations and more thought will
be required if this avenue is to be adequately examined.

Notwithstanding this, a result was obtained which, although
it by no means minimises the mean square error of prediction, at least
has the property that if the kernel is bounded then so is the norm of
the function. Here the error bound of the predicted value is not
infinite, a property not shared with the empirical covariance function.
The expression for the kernel so obtained is related to the empirical
covariance function so it is not difficult to enumerate.

It should not be thought of as an estimator of the true
covariance function but more as an interpolation kernel.

The use of such deterministic kernels has the disadvantage
that there does not appear to be a way of adequately combining them
with the effects of observation noise, an important aspect if mean
anomalies are being used to represent large areas away from the
computation point.

some remarks should be made on anisotropy and local prediction.

Firstly it must be emphasised that the method works for an anisotropic
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kernel, and that nowhere has isotropy been assumed in the derivation
of the prediction equations by either the approximation or statistical
approach. The difficulty with anisotropic kernels is that they are
extremely difficult to estimate from a single record in the global
sense.

The ﬁrob]em is similar to that faced in a non-stationary time
series. Here, covariance values are estimated by taking a mean square
of values sampled at two points a constant distance apart over the
entire record. If the sample is non-stationary this cannot be done
because covariance ceases to be independent of the starting point.

So it is necessary to remove all trends, linear, periodic etc. by some
filter and work with what remains, which can then be assumed stationary.
Something similar would need to be done for a random field on the sphere
rather than attempting to obtain an anisotropic kernel. This has been
briefly discussed in section 2.10. As is the case in time series
analysis the method of achieving this trend removal would be basically
trial and error, but more difficult. In time ceries it largely amounts
to repeated examination of the correlogram, after each attempt to

remove trend, until it looks like that of a stationary time series.
There are systematic methods of doing this: Box-Jenkins for example.
However, when the index set is a sphere difficulties arise. On a plane
it would be possible to use a two dimensional covariance function, such
as the one in (KEARSLEY, 1977), and draw the covariance function as a
contour map. Repeated attempts to remove trend could be judged by the
closeness of the contour lines to circles. Perhaps the sphere Or part
of it could be projected onto a plane in such a way that distortions in

shape did not occur and the same procedure followed.
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It may alsc be possible to remove trend jteratively: First
use an isotropic kernel, with normal gravity to remove trend, and
determine a geoid.  Then use this geoid model to determine "normal"
gravity, subtracting the values so obtained from the original gravity
values to obtain new anomalies. Then determine the empirical
covariance function using these values. If the function so obtained
does not resemble one which could be attributed to white noise, repeat
the procedure until such a function is obtained. The penultimate
covariance function is then isotropic. But this method would tend
to depend on the original kernel used, and may not converge.

As far as applying collocation in a local sense one needs to
be careful. It is either possible to make the assumption that globally
the field is isotropic and homogeneous, or it is not. If it is not,
some attempt should be made to remove trends globally until the residual
field is isotropic. For example this is done where gravity anomaly
rather than gravity itself is used: the north-south trend due to the
ellipsoidal shape of the earth being removed. In any case, the field
used in global prediction should be jsotropic if only because of the
difficulty in estimation of an anisotropic global covariance function.

But no matter how sophisticated the trend removal is globally,
it will always be possible to find areas on the earth's surface where
anisotropy seems to prevail. Such areas could be "détected" using a two-
dimensional covariance function. One may then ask whetper a special
anisotropic covariance function should be used locally for interpolation
in such an area, possibly in conjunction with the global covariance
function for observations in areas remote from the computation point.

To this, surely the answer is no, for the following reasons:

1. Such an interpolation is likely to be on a local plane

using a two dimensional covariance function. If so,




S
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the kernel can no longer be regarded as one whose
functions satisfy Laplace's equation.

2. Statistically it is usually an absurdly small sample
for covariance function estimation. It is similar
having a fifty year record of electrical impulses

" measured hourly which exhibit stationarity, then selecting
from this record a period of a week, say, where some
small trend appears (a trend probably balanced by subsequent
weeks) and using this small sample to compute the covariance
function.

3. If the field is globally homogeneous, how can it be
inhomogeneous in a number of locations?

4. The computation of the anisotropic two dimensional
covariance function carries an inherent assumption of
stationarity, at least in two directions.

5. If such a function is not used in conjunction with the
global covariance function for points outside the area
this is tantamount to an implication that values outside
a small area do not contribut to N, (although this is not
so serious when deflections of the vertical are being
considered). If the function is used in conjunction with
the global one, the computations become quite involved.

6. If the global homogeneous covariance function is used, the
peculiarities of the particular area are reflected in the

p and f vectors in the prediction formula, in any case.

When one adds to the above objections the problems of even
obtaining a good estimate of the global covariance function using all

available data, problems associated with non-ergodicity and non-converge



of the norm, which will be greatly exagerated for smaller samples, one
must conclude that the method should only be applied globally.

Tne problems associated with global estimation are simply not avoided
by using local interpolation and preciction.

In fact the only inherent difficulty in the problem is lack of
knowiedge of the true covariance function, the rest of the theovry being
quite sound. But then all that is lost is the possibility of making
probability statements about confidence intervals or bands, for as long
as the kernel chosen is of the form derived in section 1.6.3 the
solution obtained is always an approximate solution of Laplace's
equation with the relevant boundary condition.  One point to note
is that even if the true covariance function were known, it would still
be necessary to know or assume something about the distribution of the
random function before very efficient probability statements could be
made. So really all that is sacrificed is the best linear unbiassed
property of the estimator and compatibility with the random noise of
observations.

Finally it should be noted that the methods examined in this
project are not the only ones which may be applied.  Other interpotation
methods include the use of spline functions as in (BHATTACHARYYA, 1969),
(PRETLOVA, 1976), (SUNKEL, 1975), the use of piecewise quadratic smooth
functions (GERSTL, HEINDL & REINHART, 1979), multiquadric harmonic
function interpolation (HARDY, 1971, 1979), (HARDY & GOPFERT, 1975)
and the methods used in Geostatistics such as Kriging and interpolation
using the Variogram (MATHERON, 1963), (MONGET & ALBUISSON, 1971).

Mean weighted residual methods are by no means the only way to
approximately solve partial differential equations, either Other

approaches include finite-element methods and methods using the calculus



- 167 -

of variations (DAHLQUIST & BJGRK, 1974), (FINLAYSON, 1972).  Indeed
even the least squares principle could be varied and the minimax
principles of Tchebychev Approximation (DAVIS, 1963) applied.
Bayesian statistical methods could also be examined.

It would be instructive to compare such methods theoretically
if possible.  For example (FINLAYSON, 1972) relates variational
principles to the Galerkin and finite-element methods. In cases
where such relationships cannot be found there would be great value
in a comparison of numerical results.

In this way a fuller appreciation and understanding of the
approximate solution of the Stakesian geodetic boundary value
problem would be obtained. Similar sentiments apply to modern
non-Stokesian methods where integral rather than differential

equations must be solved.
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