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ABSTRACT

Analyses of satellite laser range data for crustal deformation are
presented. These analyses have common theory and error sources with the
application of altimetry data to ocean dynamics. Both types of data are

examined,

The orbit and geodetic parameter estimation program GEODYN is used
for many of the studies. Substantial research effort is expended on the
development of expertise with GEODYN, This expertise is applied to both
solid-Earth and ocean dynamics investigations,

The ocean tides are usually determined by solving Laplace’s tidal
equations, Little observational data is available for the tide in the
open ocean. GEOS-3 radar altimetry data is a source of information on
the complete sea surface height spectrum, However, as yet problems with
systematic errors, usually attributed to orbital error, preclude any
tidal estimation. Spectral Analysis is used to determine periodic errors
in the sea surface height data, Knowledge of these errors can enhance
solutions for the M, tide. The method reduces the crossover residual
variance by 30%. However, this is not enough to allow successful tidal
determination, Possible reasons for problems with systematic errors are

discussed.

Satellite laser range data can be used to determine accurate
orbits and tracking station coordinates. The feasibility of using laser
range data from the LAGEOS satellite to determine the crustal movements
of the Australasian region are investigated. The GEODYN and ORAN
programs are used to determine the effect of errors in dynamic models
and solution procedures on estimated geodetic coordinates and baselines.
For centimetre accuracy, errors due to force modelling, Earth rotation
and solution procedures must be carefully ascertained, Gravity modelling
and biases dominate the error budget. Techniques for minimising these
errors are examined. Laser range data to LAGEOS are analysed for the
baseline distance between the Orroral and Yarragadee tracking stations,
The preprocessing software for filtering and compressing the data to
normal points is described, Baseline values and variations are discussed

and further topics of investigation are suggested.
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CONVENTIONS and DEFINITIONS

In general upper case letters denote matrices, whereas lower case
"bold" letters denote vectors. Otherwise the convention will be defined,

The magnitude of a vector a is denoted a.

Linear dependence refers to m vectors a; satisfying the equation
(KREYSZIG,1962) ;-

zksai =0
i

where k; are scalars not all equal to zero.

If the wvectors do not satlsfy this equatlon they are linearly
independent,

The rank of a matrix A is equal to the maximum number of linearly
independent rous or columns of the matrix (KREYSZIG 1962), The system of
observation equations

Ax +b=1+v

are rank deficient if their rank is less than the minimum number of
columns or rows,

A is referred to as the design matrix,

X is the vector of parameters,

1 is the vector of observations and,

b is the vector of modelled observations,

If the set of observation equations is rank deficient, the rank
defect is equal to the number of independent constraint equations
necessary to make the system of equations rank full. This set of
constraints is referred to as a “minimal set of constraints”
(BLAHA, 1971a),

Pseudo-rank is the rank of a matrix as determined by numerical
methods,

The eigenvalues e and eigenvectors y are obtained from solution of
the equations: '

det(A-eI) = Q
and
Ay = ey

where I is the identity matrix.

i x



The determinant of A (det A) is equal to the product of the
eigenvalues., If A is singular, det A = 0, and there must be at least one

zero eigenvalue. If a matrix is singular no inverse A exists where:
AAt= I

A design matrix is ill-conditioned if small changes to the original

matrix result in large changes to the inverse (NOBLE, 1973). The

condition of a matrix is a quantitative estimate of ill-conditioning and

its effect on solutions, Methods of determining condition are described

in appendix C,

I1l1-conditioning implies that several solution vectors nearly

satisfy the least squares condition
v'v = minimum

Estimability refers to the parameters, which can be determined

from an observation,

The term geometric, implies that strictly simultaneous
observations have been used to solve for tracking station coordinates in
the context of geodetic satellite solutions. The satellite motion is

thereby eliminated from the solution.

The term dynamic, in the same context as above, implies that
observations have heen combined into a solution for tracking station
coordinates by using a force model to derive the position of the
satellite., The satellite motion is therefore also a parameter in the

solution,
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C HAPTER 1

APPLICATIONS of SATELLITE GEODESY to GEODYNAMICS

1. INTRODUCTION

This dissertation aims to apply satellite geodesy to specific
problems in solid-Earth and ocean physics, The problems are:

(1) the analysis of GE0S-3 altimetry data for orbital errors and
ocean tides: and

(2) the determination of the crustal deformation from laser
ranging measurements to the LAGEOS satellite.

These two topics involve position determinations and are closely
related through their dependence on satellite orbital theory and common
analysis techniques., The error sources for both applications are
dominated by the force models used for orbital calculations.

With the development of precise extra-terrestrial measuring
systems since the beginning of the satellite era, the scope of geodesy
has broadened to include a much wider field of sciences., Geodynamics is
used in this dissertation to refer to both solid-Earth and ocean
dynamics. Geodesy has always been closely related to geophysics and
hence geodynamics through the study of the size and shape of the Earth
(BOMFORD,1962), The. geodesist’s interests have extended from classical
mapping applications to a greater involvment in the Earth scienées.
During the last 20 years, measurement accuracy has improved from 1 part
in 10® to 1 part in 10® (NASA,1979: FLINN,1981), Most of this
improvement has been obtained through the use of extra-terrestrial
measuring techniques, These techniques include tracking of artificial
satellites and the Moon and also Very~Long—Baseline"Interferometry
(VLBI), Precise tracking of the Moon is accomplished by lunar lager
ranging (LLR)., Among the artificial satellite tracking techniques are
laser ranging (SLR) and Doppler tracking to the Navy Navigation
Satellites (NAVSAT or NNSS). The Global Positioning System (GPS)
is now being introduced. The measurement of gravity has also achieved an
accuracy of 1 part in 10® (TANNER & TORGE, 1979; DRAGERT et AL,1981).
Apart from the improvement in these techniques there has also been an
associated improvement in data processing and the measurement of time.

Geodynamic results can be obtained from a multitude of measuring
techniqués. Two data types are of interest here, SLR and radar
1



altimetry.

The objectives of SLR are to provide improved information on polar
motion, tectonic motion, the Earth’s gravity field and to precisely
determine orbits (FLINN,1981). Laser tracking stations determine the
distance to a spacecraft by measuring the time interval for a light
pulse to travel from the tracking station to the spacecraft and back. 2
travel time accuracy of 1 nsec is equivdlent to a one way range accuracy
of 15 cm. SLR has been{carried out since the mid-1960's, There are now
about two dozen SLR observatories around the world with more being
constructed or planned. The range accuracies of these stations vary from
3 em to 1 m. The laser systems at Goddard Space Flight Center (GSFC) and
Wetzell, West Germany have a range accuracy of about 3 cm, The NASA
Moblas stations operate between the 5 and 10 cm accuracy level, while
the SAO stations range to LAGEOS with an accuracy between 10 and 20 cm.
Other observatories are at Kootwijk, The Netherlands and Grasse, France,
A transportable laser ranging station (TLRS) capable of ranging to
LAGEOS with an accuracy of 3 cm has been successfully tested and is
being deployed in California for studies of crustal movements
(SILVERBERG,1978:1981; SILVERBERG & BYRD,1981), The TLRS was scheduled
to visit Australia in 1982 (NASA,1979; FREY,1980), These plans have
since been changed., A plan to build a TLRS at the University of Texas or
modify a MOBLAS system and deploy it in Antarctica for one season and
then move it around Australia was proposed. The Antarctic proposal has
now fallen through. Alternative plans for a measuring program in and
around the Australian continent are being made.

SLR is the technique of specific interest to this dissertation,
Laser range data was used to determine the GE0S-3 ephemeris. This
ephemeris was used to reduce altimetry data to sea surface heights and
ig described in Chapter 6, In Chapter 7 the feasibility of using laser
range data to LAGEOS for Australian crustal motion studies is
investigated., In Chapter 9 laser range data to LAGEOS is analysed for

crustal deformation in Australia.

The other measuring technique of specific interest is radar
altimetry. The distance from the satellite to the ocean surface is
measured. GE0S-3 altimetry data are internally consistent to about 20-
30 cm (STANLEY,1979: COLEMAN,1981)., Therefore, they can be used in
combination with accurate satellite tracking to determine the geocentric

position of the instantaneous ocean surface. These measurements have

2



been used to improve geopotential models, especiaily over the oceans.
The data have proved useful for investigations of ocean surface features
like eddies and the Gulf Stream., The structure of the lithosphere has
also been investigated using altimetry in the vicinity of seamounts
(LAMBECK,1981b). Further geodetic applications of altimetry data are

given in Chapter 2.

Time systems play an important role in extra-terrestrial measuring
techniques, A satellite at an altitude of 850 Km has an along-track
velocity of approximately 7 km per sec, Therefore, in order to model
it’s position to an accuracy better than 10 cm, the time must be
accurate to the order 103 sec. The equivalent Universal Time is needed
to relate inertial position to position on the Earth’s surface. These
time systems are maintained by organisations such as the Bureau
International de 1’Heure (BIH), '

Data processing techniques are fundamental to all measuring
techniques where observations are used to estimate parameters of
geodetic or geophysical interest. The importance of data processing
cannot be over-emphasised. Since large amounts of data are collected
with extra-terrestrial techniques and also because of the many intricate
formulae that are used to model these data any improvement in measuring
technology is of little benefit unless it is accompanied by similar
improvements in data processing and solution techniques. If this
relationship is not maintained the required results will not be
obtained, Computational capabilities at GSFC are described by
SMITH (1978) and PUTNEY (1980; 1981), These are of interest because the
GEODYN computer program was developed at GSFC. GSFC resources are
representative of current trends and were used for much of the work in
this dissertation (Chapters 6, 7, 8 and 9),

Technological improvement has made a vast field of  inter—
disciplinary research possible. In order to use the techniques
correctly, scientists must have a comprehensive knowledge of a number of
distinct topics so that reliable results are obtained. With the present.
application of geodetic data to new fields of research it is easy to
understand the movement of the geodetic community into the field of
Earth dynamics, This movement has necessitated an emphasis on inter-
disciplinary liaison by the Inter-Union Commission on the Lithosphere
(ICL,1980; 1981),

The accuracy of position determination is esgentially limited by

3



either unmodelled or inadequately modelled geodynamic phenomena. At the
highest accuracy levels, position fixing and geodynamics cannot be
separated, High-precision geodesy is therefore an interdisciplinary
science. For example, if satellite techniques are being used to
determine tectonic motion, then systematic effects due to the gravity
field, Earth-tides and Earth rotation need to be estimated or filtered
from the estimated coordinates; Similarly with oceanographic
applications of altimetry data, errors in the estimated sea surface
height due to orbital errors must be separated from the oceanographic
phenomena of interest. The geodesist who provides information on
position must both understand and provide information on the multitude
of systematic errors that can affect position determinations at the
10 cm accuracy level, This means that reference systems must be uniquely
defined and that the data should have all possible errors removed or at
least defined. This thesis therefore contains essential error analyses
for geodetic calculations. Common’ error sources exist for applications
of both SLR and altimetry to geodynamics.

Earth and ocean phenomena, which can be studied with satellite
data are described in Chapters 2 and 3. The application of geodetic
techniques to two specific geodynamic investigations are described in
Chapters 6, 7, 8 and 9. These investigations could not be made without a
thorough understanding of the topics summarised in Chapters 1, 2, 3, 4
and 5.

Applications of satellite geodesy to geodynamics and earthquake
research began in 1964 with the National Geodetic Satellite Program
(NGSP), which aimed to coordinate the diverse efforts in satellite
geodesy and to improve geodetic and geophysical constants, Broad
outlines for investigations were formulated in the subsequent research
programs. These projects show the global nature of modern geodesy.
Results will not be achieved without international cooperation,

Topics in need of investigation for geodynamics are presented in
the proceedings of the Williamstown meeting (KAULA,1969), the EOPAP
program (NASA,b1972), the constitution of the inter-union commission on
the Lithosphere (ICL,1980,1981) and NASA’s Crustal Dynamics Program
(NASA,1979).

The Geodynamic Experimental Ocean Satellite mission (GE0S-3) and
Laser Geodynamic Satellite mission (LAGEOS) were developed under EOPAP,

These missions are of specific interest to this thesis, Details are

4



given in Chapter 4.

The application of geodesy to physical oceanography is confined
mainly to the GEOS-3 and SEASAT missions. Satellite geodesy can provide
information on the dynamics of the sea surface. Ocean dynamics research
is now mainly realised through NOAA environmental satellites, Since the
malfunction of the SEASAT satellite, analysis of altimetry for
oceanography has been confined to the 1975-1978 era. Possible
applications of geodesy to oceanography are described further in
Chapter 2.

One method of combining fundamental orbit theory with conventional
methods for minimising errors in the analysis of altimetry data is
investigated in Chapter 6. Essentially similar methods have been
independently adopted by other investigators at about the same time as
these studies were made (GOAD et AL,1980: MASTERS et AL,1979),

" The goals of the NASA research and applications program in crustal
dynamlcs for the period 1980 to 1990 are set out in NASA’ s Crustal
Dynamics Program (NASA,1979), The program involves, amongst other
things, testing the postulates and consequences of the plate tectonics
theory and global geophysical processes. The program includes searching
for fallacies in the theory and development of modifications needed to
bring the theory into accord with observations, With the available
extra-terrestrial measuring techniques (ie. SLR, LLR, VLBI, GPS and
NAVSAT) conditions are conducive to the rapid development of the Earth
sciences, However geodetlc techniques will need at least ten years to
produce significant results, A few geodynamic programs are described in
Chapter 3.

The studies presented in Chapters 7, 8 and 9 are part of an
ongoing Australian program associated with NASA’s Crustal Dynamics
Program and the International Lithosphere Program (ICL,1980:1981), The
feasibility of pursuing these projects at the University of New South
Wales is studied, Work still in progress comprises the processing and
analysis of real LAGEOS range data. A few results are presented in
Chapter 9, The error analyses for these studies were based on the same
theory as used for Chapter 6. GEODYN was used extensively for orbital
calculations,

A superficial examination of the different end products of Earth
and ocean dynamics in fact obscures the similar procedures used to
process and interpret geodetic data from satellites, Earth and ocean
dynamics are the end products of systems involving data processing,
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satellite dynamics, statistics and geophysics. In fact many of the
errors for both applications emanate from the same source, that is the
satellite orbit., Laser range and radar altimetry data are similar data
types. The same basic theory and procedures can therefore be applied to
ascertain the sensitivity of the observations to geodetic and geodynamic
parameters, Therefore a thorough understanding of satellite geodesy and
geodynamics is necessary to obtain the best geodynamic results from any
geodetic data type. '

One sgpecific aim of this dissertation is to apply an inter-
disciplinary and comprehensive approach to solving geodynamic problems.
This approach includes understanding the theory used in GEODYN (MARTIN
et AL,1976) and investigating how the theory would effect determinations
of crustal deformation and ocean tides., Although not specifically stated
elsewhere, similar methods and theory are used in Chapters 6, 7, 8 and
9. GEODYN is used in each chapter and orbital errors are common to the
analysis of both altimetry and range data.

The GEODYN Program (MARTIN et AL,1976) has been operational on
the University of New South Wales FACOM computer for many years. This
program is used internationally for geodynamic applications, It has
provided an important tool for Australian geodetic research,

The structuring of satellite geodesy theory in a program like
GEODYN involved tens of man-years of development. This program
development is also a never-ending procedure as the dynamic models are
continually improved and updated. Keeping GEODYN up to date with the
continual improvements in technology is itself a daunting task. Thig is
especially so if GEODYN’s 40 000 Fortran statements are considered, It
is obviously important for the users of this type of software to be
aware of its capabilities and especially its limitations. It is
important to know the theories adopted and also to some extent how they
have been programmed, If this is not done the interpretation of any

estimated parameters may be of dubious value,

Essential preparation for the work presented in this dissertation
has involved detailed study of the theories and models used in GEODYN,
These models and their inter-relation are briefly described in
Chapter 5. The analysis and results in Chapters 6, 7, 8 and 9 include
investigation of the effects of models and model errors on geodynamic

calculations,

The estimated accuracy of measurements and computational
techniques implies that they are sensitive to many geodynamic phenomena.
6



In - the past the following three steps of investigation were usually

separated,
(i) the analytical and statistical theory used to model the

observations must be continually refined, in order to obtain
position consistent with the accuracy of the tracking data,

(ii) Computer software used to process the observations using the
analytical theory in (i) need to be refined.

(iii) Geophysical phenomena can be analysed using these highly

accurate measurements,

However with new data types geodynamic models are needed for +the
analytical theory used to model the observations. The three digtinct
steps can no longer be considered to be independent and need to he
included in any geodetic investigation. In order to complete this thesis
it has been necessary to study the latest developments and interaction
between the three steps., The early chapters therefore give an overview
of Earth dynamics, ocean dynamics and satellite geodesy with reference
to many publications in the area. The later chapters use this knowledge
to investigate a few specific topics. A brief synopsis of the chapters

is given below.

Chapters 2 and 3 outline the principles of Earth and ocean
dynamics, These sections are intended to be introductory rather than
comprehensive and give a summary of the areas where satellite altimetry

and laser ranging can contribute,
Chapter 4 describes the GE0S-3 and LAGEOS missions,
Chapter 5 is a summary of satellite geodesy theory,

Chapter 6 deals with the effect of data distribution and error
sources for the GE0S-3 radar altimetry, These data are analysed with an
aim to determining the ocean tides and also removing systematic errors
for oceanographic applications, Preliminary results for the
determination of the M2 tide in the Sargasso sea region are given. These
results are derived from an updated version (in 1979) of GEOS-3

altimetry data set.

Chapter 7 is a feasibility study for the determination of crustal
strain in the Australian region using laser tracking data fro.. the
LAGEOS satellite., This Chapter investigates the available computer
resources and a few of the possible systematic errors which could affect
position determinations in the Australian region, Possible alternative
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methods for processing the LAGEOS range data are looked into and further
research topics are suggested.

Chapter 8 analyses the dynamic satellite solution process. The
constraints needed to obtain solutions and also the implied reference
systems are investigated. The implications of these problems for
geodynamic calculations are discussed. Possible errors are especially
relevant to the feasibility study in Chapter 6 and analysis of range
data in Chapter 9.

Chapter 9 comprises an analysis of laser range data to LAGEOS for
the baseline distance between the Orroral and Yarragadee tracking
stations. Preprocessing methods for filtering and compressing the data
to normal points are described. Baseline results are compared with error

analyses and other measurements.

The appendices describe some of the theory and principles of the
numerical methods, which have not been elaborated upon in the main text.
These include spectral analysis and spherical harmonic theory.



CHAPTER 2

OCEAN DYNAMICS
2.1  INTRODUCTION

The dynamics of the oceans are concerned with the circulation of
the oceans and the physical state of the ocean surface. These are of
direct concern to the general global community. Ocean dynamics is also
intimately related to climate of the world.

Ocean dynamics is described here in general terms. The GE0S-3
altimetry as used in this dissertation have also been used to analyse
many parts of the sea surface height spectrum. Common problems with the
propagation of errors occur in all these applications. However these
problems are more critical for some parts of the spectrum than others.
Specifically, problems with determining the tides have been investigated
in Chapter 6, Knowledge of ocean dynamics (tides) and satellite geodesy
is used to minimise errors.

A  number of satellite techniques, which can globally map
oceanographic features within a short time span, have now been
developed, Satellite remote sensing technology provides distinct
advantages over the often sporadic, conventional oceanographic ship
surveys. The GE0S-3 .satellite orbit, for example, traces out a 1°x 1°
grid sampled between latitudes 65°N and 65°S every 25 days.

Radar altimetry data provides information on the height of the sea
surface and is of specific interest to this dissertation, Apart from the
" global coverage, an important advantage of using radar altimetry to
obtain the sea surface height is that the height is determined in
absolute space (COLEMAN,1981). The datum problem associated with the
dynamic height technique used by oceanographers to determine global
geostrophic currents is therefore avoided. This datum problem however is
not critical for regional work (COLEMAN,private communication, 1981),

Microwave, infra-red and visible radiometers, scatterometers and
synthetic aperture radar are also used for oceanographic research.
Application of these techniques are given by NAGLER & McCANDLESS (1975,
MATHER (1976), COLEMAN (1981), and literature on the SEASAT mission,

The satellite orbit, altimetry measurement and sea surface height

are related as follows (Figure 2.1)
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Relationship between Altimetry, Satellite Orbit,
Geoid and Sea Surface Height.

10



hse + va =%+ &+ (a + va + by 2.1D

where hs 0{850 Km}! is the height of the satellite above the reference

ellipsoid as derived from the ephemeris,

vs 0{5 m} is the systematic orbital noise,

Zw 0{100 m} is the mean sea surface height above the reference
ellipsoid,

£+ is the time dependent sea surface height referred to the mean

sea surface height,

a 0{850 Km} is the altimetry measurement corrected for refraction,

va 0{0.5 m} is the altimeter noise and,

ba 0{5 m} is the altimeter bias.

£+ contains the tide signal as well as any periodic and secular time
varying features, vs is a function of the force model used to derive
the motion of the satellite, tracking station distribution as well as
ranging quality and quantity. Equation 2.1 is used to reduce the
measured altimetry and calculated satellite height to instantaneous sea
surface heights,

Radar altimetry data is potentially sensitive to the whole sea
surface height spectrum. The sensiti&ity to specific frequencies and
spatial wavelengths depends on the magnitude of the phenomena, the
accuracy of the altimeter, the accuracy of the ephemeris and the
sampling characteristics of the satellite orbit. Different analysis
techniques are more suitable for some parts of the spectrum than others
(MATHER et AL,1979). For example, an absolute datum is necessary for the
global dynamic Sea Surface Topography but not the detection of eddies
and temporal features (COLEMAN,1981: CHENEY & MARSH,1981), This means
that orbital errors can be separated from temporal variations by
differencing passes of data in the same region,

The four broad spectral ranges into which the sea surface height
can be divided are shown in Table 2.1. The spectrum is of interest here
to put the application of altimetry data into context. Specifically
relevant to this dissertation are the short-period ocean tides, However,
the same data were analysed by RIZOS (1980a) and COLEMAN (1981) for the
applications of satellite geodesy to physical oceanography and other

associated geodetic investigations.
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TABLE 2.1
SPECTRUM of the SEA SURFACE
(after MATHER, 1978b)

spectral band period
short-period < 1d
intermediate-period 1-1004d
long-period 100 d - 2 yrs
quasi-stationary constant

2.2  SHORT PERIOD PHENOMENA

The largest short-period phenomena are the ocean tides. Other
short-period phenomena include swell, storm surges and so forth., The
dominant tidal constituents have periods less than one day, spatial
wavelengths from 500 to 10000 Km and magnitudes of 10 to 100 cm, Tides
are caused by gravitational forces exerted on the Earth by celestial
bodies. The tidal potential may be calculated from formulae originally
developed by LAPLACE (1775), Information on the tides can be found among
many treatise including MELCHIOR (1966; 1978), BRETREGER (1978),
LAMBECK (1980) and SCHWIDERSKI (1980).

The tide in the open ocean is not expected to exceed 1 m
(LISITZIN,1974). Nevertheless anomalies in tidal amplitudes and phases
do occur and 5 metre high tides have been recorded along continental
coastlines. Reliable measurements of the true ocean tides were possible
only at mid-ocean islands, where the topography rose steeply from the
ocean floor. This problem has been overcome with the deployment of deep
sea tide gauges. The gauges are sensitive to pressure and temperature
fluctuations on the ocean floor. An improved knowledge of the tidal
amplitudes at the regional level has been obtained through their
deployment (ZETLER et AL,1975; CARTWRIGHT et AL,1980). Their geographic
distribution is however too sparse to define the tides globally.

The ocean tides load and deform the Earth’s surface causing
temporal variations of the gravity field. A knowledge of these loads/
permits the determination of the hydrodynamic structure of the ocean as
well as the elastic parameters defining the structure of the solid Earth
(LAMBECK,1980), Moreover the tidal signal could be filtered from

f—
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altimetry data and orbit perturbations. For example, ocean tidal
perturbations are evident in the LAGEOS orbit and corrupt the analyses
for other phenomena such as Earth rotation (CHRISTODOULIDIS &
SEIFFERT, 1980), Tidal dissipation is also responsible for the
acceleration of the lunar orbit (LAMBECK,1980), Apart from their purely
oceanographic relevance the ocean tides need to be accurately known for

other geodynamic and astrodynamic studies.

The tidal potential at a point P can be expressed by a potential
of degree two (LAMBECK,1980), that is, (Figure 2.2)

P
Pe
Figqure 2.2
The Tide Producing Potential
UB (P) = GMB/pB |rp/-03'2. Px (cos wg) (2.2)

where M, is the mass of the tide producing body B,
G is the gravitational constant,-
Pe is the geocentric position vector of the body B,
r» is the geocentric position vector to the point P,
¥e is the geocentric angle between r, and oe and

Px is the Legendre polynomial of degree 2, order 0.
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The tidal spectrum for the Sun and Moon has a wide band of frequencies
(LAMBECK,1980), Equation 2.2 cen be expanded in terms of orbital
elements for the Sun and Moon., The main tidal periods can then be
separated into long-period, diurnal and semi-diurnal constituents
(MELCHIOR,1978), These periods are critical to the determination of the
tides using satellite altimetry data. The sampling distribution of the
altimetry data with respect to time is not ideal for determining the

diurnal or semi-diurnal tides (see section 6,6)

Ocean tide models are commonly obtained by solving Laplace’s Tidal
Equations (LTE), which can be written as follows (HENDERSHOTT, 1972):

su _ : = ~9__ acgy, -I'/g) Fa

ot (2w sin ¢)v R cos ¢ A * Pu Do

v , - _—9_ 3&-T/q) Fe

a3t + (2w 8in ¢)u R ad + o4 Do

oty _ 9% a(uDg) | 3(v Do cog ¢) -

Tl b e So ") /Rcosp = 02,9

where R is the Earth’s mean radius,
(¢,X) are the latitude and longitude,
(u,v) are the eastward and northward components of fluid velocity,
w is the Earth’s angular wvelocity,
Do is the undisturbed ocean depth,
¢ty is the deviation of the sea surface from its undisturbed level,
8¢ is the geocentric solid Earth tide height,
F, and F, are the zonal and meridional components of the
bottom stress,
P« 18 the density of water,
g is the downward acceleration of gravity at the Earth’s surface
and,
I' is the potential of all the tide generating forces.

Early tide models were obtained by neglecting eddy dissipation,
bottom friction and loading effects, Present day models include
constraints to account for: land-sea distribution and ocean depth,
energy dissipation (usually assumed to occur in shallow seas and along
coastlines): solid Earth tides: ocean loading deformation; and tide
gauge ohservations (LAMBECK,1980: SCHWIDERSKI,1980). These models are
believed to be very accurate, However the prediction of the tides in the
open ocean is still based on theory and not observation, Satellite
altimeter data facilitates the modelling of ocean tides on a global
scale. It has the potential to provide the information needed to
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overcome the deficiencies of existing tide measureﬁents. However, all
attempts to resolve this information have been unsuccessful, Problems
of determining the ocean tides with altimetry data are investigated in
Chapter 6,

A suitable method for analysing altimetry derived SSH data for the
tides is described by BRETREGER (1979). COLEMAN (1981) gives the
formulae for a global solution using a spherical harmonic series instead

of the Fourier series. The development presented below follows
BRETREGER (1979),

The ocean tide signal, &; at any point on the globe is
expressed as the sum of many tidal constituents, &y

& = 2 &y (2.4)
i

Tidal constituents can be expressed as
En = Lu(d,)) cOS(B, - a (4,0)) (2.5)

where &, is the constituent amplitude,
8: is the time dependent argument of the i-th tidal constituent
(see MELCHIOR, 1978, p27 for a listing of these arguments), and

a; is the phase lag at a particular epoch,
Equation 2.5 can be expressed as
Eri = Lul9,X)cosa; (6,X)cos 8, + Euld, Mgina; (¢, )sin8; (2.6)

Equation 2.6 relates SSH observations taken at a gpecific latitude and
longitude to the tide, It does not take into consideration the
correlation between adjacent observations, In order to overcome thig
limitation and to allow all observations taken within a finite region to
be simultaneocusly analysed, the Equation 2.6 can be modelled as a

2-dimensional Fourier model. Thus

8 nk 8 nk
gn(¢,l,t) = Cos 9i2 p) Fm Ce + sin 912 > Flm C’lm (2.7)
k=1 n k=1 n

where
- Cwm and C'v, are the fourier coefficients to be estimated,

Fw are the position dependent functions, given below

Fim = C0OS nay n=0,......nl
Fa, = 8in nay n=l,,.....n2
'Fan = €OS nay, n=l,...,...n3
Fiw = 8in nay n=l,......n4



Fs. = COS naey COS mayy n=1,......n5, m=1,,...n5

Fe = COS nay Sin may n=1l,......n6, m=l,,...nb
Fm = COS nay Sin magy n=1,......n7, m=1,,...n7
Fa = Sin nay sin magy n=l,......n8, m=1,,...n8

(2.8)
ay = TM(¢s - $0)/(¢y - ¢o) and, (2.9
au = MA, = X/ Ay = Ag) (2.10)

Note that (¢, X) is the south-east corner of the region and (¢w,As) the
north east corner.

Latitude (°N)

282 285 , 290 294
Longi tude (OE)

Figure 2.3
Mof jeld M, Tide Model

Several analytical global tide models have been developed in
recent years. For the North Atlantic Ocean an empirical tidal prediction
model developed by MOFJELD (1975) is available, This model agrees with
deep sea tide gauge data to *3 cm, The amplitude of the ocean tide in
this area is about 60 cm, which predominantly comes from the M;, Nz, S,
K,, 0; and P, tidal constituents, The cotidal-corange chart for the ﬁz

tide constituent is shown in Figure 2.3, The significant estimated
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Fourier coefficients are (BRETREGER,1979):

Co = 0,403 C'yw = -0,029
Cy = -0.064 C'yw= 0,028
Cx = 0.043 C':n = -0,009

These coefficients reproduce the M, Mofjeld tidal signal to %2 cm. The
first degree coefficients correspond to an average amplitude of 40 cm
and a phase of 356 degrees with respect to Greenwich, However, this SSH
model is not the same as the geocentric SSH as sensed by the altimeter,
Corrections are needed to allow for the effects of the solid Earth tides
and ocean loading, These effects canndt be considered negligible in the
context of the 40 cm tidal amplitude., COLEMAN ¢1981) gives a complete
review of an M, tide model determined from altimetry using
Equations 2.6 and 2,7,

2.3  INTERMEDIATE PHENOMENA

Eddies are mesoscale circulatory patterns. They usually develop
when western boundary currents form meanders which then break off and
separate from the main stream (PARKER,1971). Eddies have interested
scientists for some 40 years and have become of major interest to the
oceanographic community. This is because a large proportion of the total
energy in the ocean seems to be associated with eddies. Due to a lack of
suitable long-term tracking techniques, little is known about their life
history, What is Kknown is that eddies have a period 20 - 400 days,
spatial wavelengths 50 - 300 km magnitudes 20 - 100 cm and move at rates
from 2 to 10 km per day.

The surface expression of eddies manifest either as hills or
depressions in the sea surface. They can be readily identified using
altimetry range data. One method for detecting eddies using this data is
presented in MATHER et AL (1978a: 1979; 1980) and in COLEMAN (1979:
1981), They compared their results with remotely sensed circulation
patterns in the Gulf Stream region, provided by the U.S. National
Weather Service (NOAA,b1978). Altimetry data can provide useful
information in combination with the other remotely sensed data for
analysing eddies, Recent work is usually associated with investigations
of the Gulf stream (CHENEY & MARSH,1981; DOUGLAS & CHENEY, 1981: KAO &
CHENEY, 1982),
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2.4 LONG PERIOD and QUASI-STATIONARY EFFECTS

Sea Surface Height (SSH) is defined as the height of the ocean
surface above a reference surface, If this reference surface is the
geoid, the height is called Dynamic Sea Surface Topography (Dynamic
SST: or &£s) (MATHER et AL,1979; COLEMAN,1981). The free ocean surface
does not lie along any equipotential surface of the Earth’s gravity
field (STURGES,1967). Quasi-stationary phenomena like the distribution
of water density and the pattern of m&jor surface currents cause the
mean sea level (MSL) to deviate from a level surface. This dynamic sea
surface topography is the dominant driving force of the geostrophic
circulation (REID,1961: WYRTKI, 1975, LISITZIN,1974), Altimetry ranges in
combination with an accurate geoid model and satellite orbit are
gsensitive to the dynamic SST. Therefore they can be used to determine
ocean currents on a global scale. An analysis of the wunderlying
principles and the use of altimetry measurements for studying the
dynamic SST is given by MATHER (1976), RIZOS (1980a) and COLEMAN(1981).

If the tides are excluded, the dynamics of the surface layer of
the oceans can be defined by the differential equations (MATHER, 1978b)

W - fx, = 9% L B gy ooiex)

0X4 Pu 9%4
W +fx, = 9% L B Loy oiex,) (2.1

X2 Pu X2

where the Coriolis parameter f is given by f=2w sin ¢,

%, and X, are local Cartesian coordinates in the local horizon

system with x4 oriented east and %, oriented north,
w is the Earth rotation rate,
F, and F, are the local horizontal stresses on the surface
layer,

P, is atmospheric pressure,

;1,;2 are accelerations,

;1, éz are velocities,
The predominant component is &s (MATHER et AL,1979), Information on &s
can be obtained from GEOS-3 and SEASAT altimetry data in combination
with the most recent gravity models and precise tracking. The
sensitivity of the altimetry data to the global stationary dynamic SST
was investigated by MATHER et AL (1978b). The low degree harmonic
features compared favourably with conventional oceanographic estimates,
Altimetry can therefore be used to determine the velocity field of the
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ocean surface (MATHER et AL,1979), Unfortunately there are problems in
estimating & on a global or regional basis due to inadequate geoid
models (MATHER et AL,1979),

One major research need in physical oceanography is the
understanding of general circulation movement. This especially includes
the strong western boundary currents, such as the Gulf Stream, The
problem is complicated by highly variable mesoscale flow fields, which
obscure the mean flow field, This necessitates long periods of

continuous measurement to quantify circulation movement,

Western boundary currents transfer water from equatorial regions
to high latitudes. They have large velocities and therefore large
dynamic SST. For example the Gulf stream has a velocity greater than
100 cm/sec, maintained by a dynamic SST slope of 80 cm/100 Km orthogonal
to the flow (NEUMANN,1966). These slopes can be observed in altimetry
data. A lot of research has been done on this topic (HUANG et AL,1978:
DOUGLAS & GABORSKI,1979: LEITAO et AL,1977;1978;197%a;1979b; MATHER et
AL,1979;1980; GORDON & BAKER, 1980; CHENEY & MARSH,1980: COLEMAN, 1981:
WUNSCH & GAPOSCHKIN,1980: CHENEY & MARSH, 1981; DOUGLAS & CHENEY, 1981;
KAO & CHENEY,1982), '

2.5 COMMENTS

Altimetry data give useful information on the SSH spectrum, The
application of satellite data to physical oceanography is - however
limited due to many error sources. Problems for oceanographic and
geodetic applications of altimetry data are mainly attributed to orbital
errors. On the other hand, the altimetry has been shown to be accurate
to design specifications (Chapter 4). In order to obtain the best
geodynamics results from altimetry data, information from both satellite
geodesy and ocean dynamics should be included in any investigations. For
the most accurate results, the ocean SSH gpectrum must be taken into
account in geoid calculations which include altimetry data., Orbital
dynamics can be used to minimise errors for both geoid and oceanographic
applications. That is, the general interaction of all geodynamic
phenomena must be kept in mind,

For oceanographic applications & and the geoid height are needed
to a high degree of accuracy. MATHER (1978d) and RIZ0S (1980a) describe
the geoid requirements for oceanographic applications, The accuracy
required for ephemerides and the geoid depends on the part of the
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spectrum being analysed. For example ephemeris errors can be easily
separated from temporal features like eddies, whereas they cannot be
easily separated from the tides, Geoid errors on the other hand limit
the determination of the global dynamic SST to a few low ‘degree

harmonics,

Information from both satellite geodesy and ocean dynamics has
been used in Chapter 6 to minimise orbital errors in altimetry derived
SSH data., Special consideration is given to the determination of ocean
tides. However, the reduction of systematic errors from altimetry
derived SSH data has benefits for all applications of altimetry data to

ocean dynamics,
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CHAPTER 3

SOLID~-EARTH DYNAMICS
3.1  INTRODUCTION

Solid~Earth dynamics is the study of the motions and distortions
of the solid-Earth., These motions are responsible for earthquakes, tidal
waves, volcanic eruptions, mineral differentiation, mountain building
and the like,

The purpose of this chapter is to describe the Earth dynamic
phenomena which can be investigated using high-accuracy satellite
geodesy. Australia’s participation in NASA‘s Crustal Dynamics Program is
summarised. The investigations described in Chapters 7, 8 and 9 are also
relevant,

Figure 3.1 (from BARANZANGI & DORMAN, 1969) shows the location of
worldwide earthquake epicentres, The epicentres delineate the boundaries
between tectonic plates (NASA, 1972, p2.3). Most earthquakes occur in the
lithosphere and this implies that they are associated with plate
tectonics, The goals of any earthquake hazard reduction program are
therefore associated with understanding the structure and motion of the
lithosphere. Apart from distortions of the lithosphere, geodynamics also
involves research into many aspects of geology, geophysics and

geochemistry,

The surface of the Earth is always in motion. Both classical and
space geodetic techniques are ideally suited to measure this motion. One
assumption is that the displacement fields associated with earthquakes
are the instantaneous expressions of plate tectonics and mantle
convection., Seismicity studies in general, confirm global tectonic
motions if averaged over periods longer than 50 to 100 years
(LAMBECK, 1981a). Geodetic measurements also give instantaneous
observations of motion of the Earth’'s surface, This information is
important for developing models to explain the structure of the Earth,
However, the measurements may or may not confirm tectonic motions on a
global scale. Obviously for short time periods regional displacement
fields must also be accounted for if geodetic methods are to be used to

determine major tectonic displacements,

The plate tectonics hypothesis describes the Earth’s crust as

consisting of more than a dozen thin crustal sheets or plates moving
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relative to one another. The plates spread apart along the worldwide
ocean ridge systems and rift zones. Elsewhere the plates converge, with
one plate being subducted with respect to the other, Large amounts of
literature have been published on various aspects of the plate tectonics
theory (eg. see bibliography in BIRD & ISACKS,1972; BIRD,1980), The
driving mechanisms, and plate movements over geodetic time scales have
not yet been verified. Indeed not everyone accepts the plate tectonics
hypothesis as a valid explanation of Earth dynamics (CAREY,1976:
BELOUSSOV,1979),

Many plate models now exist (MORGAN, 1972; LE PICHON,1968: MINSTER
et AL,1974; MINSTER & JORDAN,1978: SOLOMON & SLEEP,1974; LE PICHON et
AL,1973). Essentially similar, these models depict the plate boundaries
and motion, The plate velocities have been obtained from sea floor
spreading rates determined from magnetic anomalies, transform fault
azimuths and earthquake slip-vectors (MINSTER & JORDAN, 1978
LAMBECK, 1981la), They therefore represent averages over millions of

years,

The internal stability of tectonic plates is important because the
average plate motions determined by geological and geophysical methods
are dependent on assumptions about the internal rigidity of the plates.
If the viscosity of the asthenosphere is in most places similar to the
value determined from post-glacial rebound data, then it is very
difficult to imagine how the present rates could differ from the average
rates away from the plate boundaries. However, it should be remembered
that the viscosities derived from post-glacial rebound data have been
obtained only on continental plates, and that the wvalues could be
considerably lower elsewhere, particularly under substantial parts of
the fast moving ocean plates. As the assumed viscosity is decreased,
changes in the stresses on the faults at the front and sides of plates
could have a stronger effect on the overall motions and could cause them
to be episodic. Simple calculations moreover, show that the plates could
be quite compressible, For example, if the viscosity of the
asthenosphere is ignored altogether, a 5000Km square plate which was
fixed at the front and had no shear stress on the sides, could be
compressed by about 20 m before the average stress on the front becomes
sufficient to overcome the frictional forces along the fixed edge (STOLZ
& LAMBECK,1983), This is roughly equivalent to the amount of energy
released in a medium sized earthquake and corresponds to about 150 years
accumulated motion of the Australian plate relative to the Antarctic
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plate, The seismic activity within continents suggests that plates as a
whole undergo differential stresses (SYKES,1978). Hence it is important
to check the basic stability of the major plates before attempting to
infer present rates of relative motion from changes in position. It is
also important to understand the intraplate stresses that can cause
hazardous earthquakes. Thus there is a need for much denser high-
precision geodetic networks than presently available, (LAMBECK,198la).

‘Measurements across the San Andreas fault in the United States
indicate that plate movements are occurring now (SMITH et AL,1979b;
SAVAGE et AL,1981), The motions at the plate boundaries however do not
necessarily reflect the motion of the plate as a whole. After
determining the stability of the plates the role of extra-terrestrial
positioning 'techniques is to verify the plate tectonics hypothesis by
directly meaéuring the relative motions of the plates. The fundamental
problem of understanding the mechanisms that cause plate motion can then
be studied., Progress can be made in minimising the hazards of
earthquakes if the mechanisms can be defined. Moreover since pre-seismic
deformation does occur, it needs to be understood as a premonitory
phenomena for earthquake hazard reduction (LAMBECK,1%8la).

Tectonic plate motion is believed to be the result of one or a
combination of the following (NASA,b1979):
(i) Coupling ‘of plates to convective flow in the wunderlying
mantle;
(ii) Negative buoyancy of subducted slabs; and
(iii) Gravitational sliding down from thermally maintained highs at

the ocean ridges.

The important geophysical questions which are of relevance to
geodesy, which must be answered in order to fully understand the forces
that drive the plates are (NASA,b1979):

(i) Are the plates moving smoothly and steadily in the same
direction and with the same rates as they have been doing for periods of
millions of years as determined from geological and geophysical
evidence?

(ii) Does an individual plate move uniformally and smoothly as a
rigid body, sliding over the underlying asthenosphere, or is the
movement episodic?

(iii) What is the nature of the deformation of the plates if they

are not rigid?
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These questions have in common the problem of measuring relative
position and movement between points on the Earth's surface, Over
continents for distances less than 100 Km classical ground-based
- geodetic surveying methods give adequate accuracy, However, for
distances up to thousands of kilometres the accuracy of these
measurements deteriorates to make them unsuitable for geodynamic
applications, In the last decade, space technology has developed to an
accuracy which can meet these needs. The two principal space
techniques, which will be used to realise geodynamic research goals are
VLBI and SLR (FLINN,1981),

Geodetic measurements can meke contributions in regions which are
relatively close to plate bourdaries, leading to better understanding of
earthquake mechanisms and stress propagation as well as lithosphere and
mantle rheology. It should be noted that geodetic measurements cannot
provide information on movements of the lithosphere with respect to the
mantle (LAMBECK, 1981a). This is an important limitation for
interpreting the dynamics of the Earth’'s interior from geodetic

measurements,

Investigations into Earth dynamics can be approached from a global
or regional scale, Plate tectonics is part of Earth dynamics, whereas
satellite trqcking data is used for other geodynamics projects as well,
The deployment of the available measuring instruments has been proposed
to fulfill both global and regional requirements (NASA,1979),

3.2  MEASUREMENT PROGRAMS for GLOBAL GEODYNAHICS

A global network of tracking stations is required for optimum
gravity field modelling and monitoring Earth rotation, Gravity field and
Earth rotation models are in turn important for modelling observations
for other geodynamic inVestigations.

Although the laser tracking station network has been designed to
satisfy geodynamic requirements, some rearrangement may be needed in
order to fulfill the needs of specific projects (BENDER, 1981). In
principle satellite tracking techniques can be used to determine crustal
strain on a global scale, The TRANET Doppler system, for which data has
been collected since 1962 has been used for global tectonic calculations
(ANDERLE, 1978: MALYEVAC & ANDERLE, 1979: McLUSKEY, 1979). However these
determinations resulted in spurious values for a few of the plate
velocities, The results suggest that there are many error sourcesg which
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are unaccounted for. The propagation of errors from refraction and
gravity modelling among others need to be carefully assessed for these
solutions. The large amounts of data and computer time used for these
results also show that it is probably more practical to examine regional

areas in greater detail and build up a global model in stages.

The following sections describe two regional geodynamics
experiments, These are in progress now. One experiment is in the United
States and the other is in Australia., The author has a significant role
in the latter,

3.3 SAN ANDREAS FAULT EXPERIMENT (SAFE)

A plan was devised in 1972 to systematically monitor the motion
of the San Andreas fault in California, U.S.A., using laser range
measurements to artificial satellites. Design studies were completed in
1973 (SMITH et AL,1973). In these studies, the positions of tracking
stations located at San Diego and Quincy in California were estimated
for an 8 year period using range measurements to the BE-C satellite.
Error sources modelled were: GM, the Earth’'s gravity field, range
biases, solar radiation pressure, atmospheric drag and San Diego
tracking station coordinates, The study showed that with 1973 estimates
of error magnitudes the baseline precision (r.m,s.) would be 10cm.

It is interesting to compare the results of the simulation study
with those obtained from real data. The two tracking sites were occupied
in 1972, 1974 and 1976. The Bear Lake station was added as an extra site
in 1976. Range measurements were made to the BE-C satellite. A dramatic
improvement in tracking quality seems to have occurred between 1972 and
1974, as the r.m,s. fits to the tracking data were reduced by about half
an order of magnitude during this period. The data were very carefully
selected so that force model errors would be similar at each epoch. The
baseline velocities should therefore be practically unaffected by
gravity model error (CHRISTODOULIDIS et AL,1981), The motion across the
plate boundary was estimated to be 9 + 3 cm/year. This agrees with
terrestrial measurements in the area (SMITH et AL,1979b; SAVAGE et
AL,1981), Further measurements are obviously needed to unambiguously

determine if the detected motion is real,

Since then rangé measurements to LAGEOS have been used to
determine the same baselines. These have been compared with the SAFE
baseline estimates, yielding results usually consistent within the
formal precision for each baseline (SMITH et AL,197%u). VLBI
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measurements have been made also. The results for'the same bagelines
from various extra-terrestrial techniques have been compared (see

chapter 1, p3).

Investigations are continuing in the San Andreas fault area,
CHRISTODOULIDIS & SMITH (1980) and CHRISTODOULIDIS et AL (1981) have
investigated the possible accuracies obtainable with the deployment of
the TLRS in the San Andreas Fault region, These results are described in
Chapter 6. An experiment which was designed for Australian participation
in the crustal dynamic program is described in the next section,

3.4 AUSTRALIAN PLATE DEFORMATION EXPERIMENT

Figure 3.2 summarizes the tectonics of the Australian region, At
the Ninetyeast Ridge, the Indian sub-continent sector of the Australian
plate appears to be meeting more resistance to the plate’s general
north-ward motion than the Australian sector, The area around the ridge
is either a zone of major deformation or an active plate boundary (STEIN
& OKAL,1978), To the south, the Australian plate is separated from the
Antarctic plate by the South-east Indian Ocean Ridge and the relative
motion between the two plates is estimated at about l4cm/year with
Australia moving northwards (Bureau of Mineral Resources, 1979). To the
north, in the tectonically ‘complex region of Indonesia and Papua~-New
Guinea, the Australian plate is subducting smoothly at the Java Trernch,
and to the east the plate is in collision with the Pacific plate.
Australia proper is relatively aseismic, However, there are regions of
concentrated seismic activity that indicate stress accumulation. The
Adelaide geosyncline in South Australia is a good example of this (BROWN
et AL,1968), Fault plane solutions of earthquakes and in-situ stress
measurements suggest a near uniform stress field across the continent
and it appears the plate is subject to deformation (WEISSEL et AL,1980),

NASA’s crustal dynamics program (NASA,1979) includes a campaign
to measure tectonic motion and plate deformation in the South-west
Pacific region., A complementary program to study the crustal dynamics of
the Australasian region using satellite laser ranging methods was
proposed (K,LAMBECK,unpubl ished manuscript,1980), It was suggested that
the high accuracy laser range measurements to the LAGEOS satellite could
be used to measure, and periodically remeasure, the baselines between
the existing tracking stations, Transportable tracking stations could
also be deployed at critically selected sites throughout the region. In
this way relative motions could be determined, An Australian responge to
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Figure 3.2
Generalised Plate Tectonics of the Australasian Region

NASA’s Crustal Dynamics Program was prepared by STOLZ (1980), The main
objectives of the Australian study are:-
(i) to independently test the long term reliability of the
satellite laser ranging method of relative position determinations:
(ii) to determine the large scale deformation of the Australian
plate: and ' . '
(iii) to measure- the relative motions of the plates in the
Australian region.

The project is part of the Australian response to the Lithosphere
Project., Part of this dissertation involved a prélimiﬁary,evalﬁation of
the laser range processing capabilities with the computing resources
available to the Department of Geodesy, University of New South Wales.
These investigations are presented in chapter 7. Later investigations

28

20%



are planned to evolve as follows, Initially, the relative geological
stability of the Australian continent over geodetic time scales will be

used to assess the accuracy of the laser data and computational

processes used to determine baselines., This will be achieved by

monitoring the baseline distance between Orroral Valley in the

Australian Capital Territory and Yarragadee in Western Australia using

the laser data to the LAGEOS satellite, Later, if the errors can be kept

‘small enough, the range data will be used to assess the large scale east-
west deformation of the Australian region. These are long term goals

and their achievement is dependent on the availability of tracking data

and the deployment of NASA’s mobile tracking stations. The tracking

station sites other than Yarragadee and Orroral have not as yet been

finalised (STOLZ & MASTERS,1982). Therefore only proposal (1) can be

suitably calculated at this stage., Proposals (2) and (3) can be

determined only to a limited extent with existing data. This work is now

well underway (Chapter 9; STOLZ & MASTERS,1982).
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C HAPTER 4

SATELLITE MISSIONS

The two satellite missions relevant to the investigations in
Chapters 6 and 7 are described in this chapter. A technical description
of the satellites together with the aims of the mission are presented.

Important research work in the field is cited.

4,1 GEOS-3

The GEOS-3 spacecraft is shown in Figure 4.1, Orbit and satellite
parameters are given in Table 4.1. The GE0S-3 project was designed to
fulfill numerous aims in many interdisciplinary fields. These include
improving man’s knowledge of the Earth’s gravity field, the size and
shape of terrestrial geoid, deep ocean tides, sea state, ocean current
structure, crustal structure, solid Earth dynamics and remote sensing
technology (STANLEY,1979). The project was initiated in the changeover
period between the National Geodetic Satellite Program and the Earth and

Ocean Dynamics Application Program,

Relevant mission objectives were (GE0S-C,b1974):

(i) To perform an in orbit satellite altimeter experiment in order
to determine the feasibility and utility of a spaceborne radar altimeter
to map the topography of the ocean surface with an absolute accuracy of
+ S mand a relative accuracy of 1-2 m, The feasibility of measuring the
deflection of the vertical at sea would also be determined. Information
contributing to the technology leading to a future operational altimeter

system with a 10 cm measurement capability would also be obtained.

(ii) To support the comparison of new and established geodetic
and geophysical measuring systems including; radar altimeter, satellite
to satellite tracking, C-band, S-band, laser and Doppler tracking

systems.

(iii) To investigate solid earth dynamic phenomena such as polar

motion, fault motion, Earth tides and so forth.
(iv) To refine orbit determination techniques.,

The radar altimeter proved to be extremely reliable. It was
designed to operate for only 1500 hours and was still working after 1900
hours of operation (STANLEY,1979). The altimetry data were
systematically collected, so that the coverage is nearly global. SSH
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data is available between latitudes 65°N and 65°S at a minimum spacing
of 0.5°. Approximately half the data is illustrated in Figure 6,2
(Chapter 6).

The mission was regarded as a success in each of the objectives
for which it was designed. The one exception was the ocean tides
(STANLEY,1979), Problems with tidal estimation are investigated in
Chapter 6,

TABLE 4.1
GEOS-3 SPECIFICATIONS

Launch 9th April 1975
Mass 345.9 Kg
Number of ' 264
Retro-reflectors

a 7217 Km

0.001

i 115°
Perigee Height 846 Km
Apogee Height 865 Km
Average Height 843Km
Period 101,7 min

0 2.°7 / day

w -0.°3 / day

The GEOS-3 altimetry data have been most successfully used for
studies related to the Earth’s gravity field ( see Jour. Geophys, Res,
Vol 84 No BS8,1979), SeVeral oceanographic studies were also undertaken.
These mainly involved the Gulf Stream off the east coast of the United
States. The altimeter is capable of distinguishing phenomena with
amplitudes greater than 20 to 30 cm and spatial wavelengths greater than
50 Km (BRAMMER,1979). The altimetry also contain information on eddies
and tides (COLEMAN,1981),

The mission clearly demonstrated potential for achieving real time
results pertaining to physical oceanography (MATHER et AL, 1979},
However altimetry data suffers from limitations for the successful
determination of many phenomena. The main limitations are associated
with orbital and geoidal which errors cannot often be separated from
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geodynamic features., The ocean tidal spectrum, in particular, has so far
eluded “all altimetry investigations although encouraging results have
been :obtained from ‘refined data. sets (MASTERS et AL,1979:1980:
COEEHKNVT981)‘ :

N It 1s approprlate to compare the mission achievements with its
aims; By far the most common appllcatlon of GEOS-3 altimetry data has
been to 1mprove models of the Earth’'s gravity field, especially in ocean
areas "Over ocean areas the altlmetry derived SSH data prov1ded ‘an
1mportant new source of high frequency information on the geoid, Large:
amounfs ;of GE0S-3 tracklng and altlmetxy data have been 1ncorporated;
into” the latest Goddard Earth Models (LERCH et AL,1977, 1978a):"
Literature exists on other wuses such ag the departures of the sea
surface from the geoid., This information can be used for ocean dynamlcs'
studies as was outlined in Chapter 2. The work of MATHER et AL at the
University of New South Wales was progressing towards the use. of;-
satellite data to synoptically monitor ocean currents (MATHER, 1974a,
1974b, 1974c, 1975a, 1975b, 1976, 1977, 1978a, 1978b, 1978c, 19784,
1978e; “'MATHER & COLEMAN,1977: MATHER & RIZOS,1979: MATHER et AL,1976a,
1976b, 1977a, 1978a, 1978b, 1979: COLEMAN, 1979, 1981; RIZ0S,1980a,
1980b). This work is not of specific relevance here. Hence only ' the
publications are cited. Other publications in the same field are (LEITAO
et AL,1977, 1978, 1979a 1979b: DOUGLAS & GABORSKI,1979: HUANG et
AL,1978; CHENEY & MARSH,1980: GORDON & BAKER,1980; WUNSCH &
GAPOSCHKIN,1980). '

+ Other mission achievements include:
GEOS-3 orbital perturbations have been used to improve the
determination the Earth’s gravity field (LERCH et AL,1977) and improve
knowledge of Earth tides (FELSENTREGER et AL,1979),

The tracking data has been used to determine tracking station
positions (DUNN et AL,1979).

Satellite to satellite tracking data is being examined as a
potential source of additional information on the gravity field (MARSH
et AL,1977; KAHN et AL,1981).

The GE0S-3 altimetry data are analysed in this dissertation for
orbit perturbations and ocean tides. The reduction of orbital errors is
important for ocean dynamics applications of altimetry data. The
investigations are presented in Chapter 6,
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4,2 LAGEOS

The LAGEOS satellite is illustrated in Figure 4.2, It was
launched specifically for geodynamics research and is NASA’s first
satellite designed solely for laser ranging experiments, The mission has
been operated in two phases since the launch on May 4,1976. Phase 1 was
devoted to the development of a precise ephemeris for the satellite and
of laser tracking systems. Phase 2 involves the acquisition and analysis
of precision satellite laser ranging data to yield information on the
dynamic behaviour of the Earth. One of the principal goals of the LAGEOS
mission is to provide data for NASA's Geodynamics Program as outlined in
chapter 1 and Section 3.1. LAGEOS plays a dominant role in NASA's
Crustal Dynamics Program, which aims to investigate plate movement and

crustal deformation using space techniques.

The satellite provides a precise and essentially permanent target
in space for laser ranging and investigation of -
(i) relative movement and deformation of the Earth’s tectonic
plates;
(ii) variations in the motion of the Earth’s polar axis and the
Earth’s rotation;
(iii) improved geodetic -reference systems;
(iv) solid Earth and ccean tides; and
(v) satellite orbital perturbations.

LAGEOS was launched into a nearly circular orbit with a 5900 Km
altitﬁde (NASA,1978), so that only 100 spherical harmonic coefficients
in the Earth’s gravity field give orbit perturbations, which are 1 cm or
more in amplitude (LERCH et AL,1980; CHRISTODOULIDIS et AL,1981). Except
for a few resonance terms these coefficients are mostly below degree
ten. The satellite is covered with 426 corner cube reflectors. 422 of
these are fused silica and operate through the visible and near infra-
red portions of the spectrum. The remaining four are Germanium, which is
effective in the middle infra-red region (NASA,1978). The satellite is
spherically symmetric, of aluminium, with a brass core and is therefore
of a high Qensity; Consequently atmospheric drag and solar radiation

perturbations are both minimal and almost constant in time,

The LAGEOS satellite and orbit specifications are given in
Table 4.2, A typical groundtrack pattern over the Australian region is
depicted in Figure 7.1 (Chapter 7). As many as seven passes per day can
be observed from one geographical locaticn,
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TABLE 4.2
LAGEOS SPECIFICATIONS

Launch Date May 4, 1976
Diameter 60 cm
Mass 411 Kg
Number of Reflectors 426

a 12265 Km

i 109°

e 0.004
Perigee Height 5858 Km
Apogee Height 5958 Km
Period 225 min

o 0.°3 / day

A number of accomplishments have been made through the analysis
of LAGEOS data, These include:
- Analysis of the satellite orbit has resulted in improved gravity
modelling (LERCH et AL,1977; LERCH & KLOSKO,1981; LERCH, 1982),
- an improved value for the GM (LERCH et AL,1978b).
- ocean tide modelling (TAPLEY et AL,1979; SMITH et AL,1979c;
CHRISTODOULIDIS & SEIFFERT,1980: TORRENCE & DUNN,1980).

The data has also been used for the determination of Universal
time, pole position, tracking station coordinates (SMITH et AL,197%9a;
TAPLEY et AL,1980), and baselines variations with time (SMITH et
AL,1982). The LAGEOS mission is therefrre well into the Phase 2.

The use of range data to LAGEOS from the Australasian region - for
determining crustal movement is described in  Section 3.4 and

investigated further in Chapters 7 and 8.



CHAPTER S

SATELLITE GEODESY
5.1  INTRODUCTION

An overview of satellite geodesy theory is presented in this
Chapter. The aim is to present a summary of the information which forms
the basis for GEODYN usage and later investigations. Topics include
estimates of error sources in dynamic models. These errors are referred
to in later chapters.

The principles of using satellite observations to determine
geodetic and geodynamic parameters can be categorised as follows:
satellite dynamics, Earth rotation, estimation theory and observation
processing. The first three categories involve definitions of reference
gystems,

Satellite dynamics involves the determination of satellite
position by integration of the equations of motion. The equations of
motion are expressed in terms of contributions from many phenomena, like
the geopotential, luni-solar potential, planetary potential, radiation
pressure, earth tide potential and atmospheric drag. The modelling of
each force for a near-Earth satellite is a complicated problem. The
geopotential is particularly important for orbit determination and
geophysics, Specific descriptions of dynamic models are beyond the scope
of this chapter. The reader is referred to KAULA (1966), LERCH et
AL (1974) and MARTIN ethL'(l976). Spherical harmonic representation of
the gravity field is described in Appendix B. Dynamic theory, which is
the basis for later investigations, is described in Section 5.2, Error
sources in force models are also described in more detail in Chapter 7.

Earth rotation models are fundamental for reducing any extra-
terrestrial measurement. In this dissertation Earth rotation refers. to
the complete spectrum of Earth rotation, that is precession, nutation,
polar motion and length-of-day. Models are described in Section 5,3,

Statistical estimation theory is needed to combine thousands of
observations to determine particular parameters and to assign precisions
and accuracies to those parameters. Procedures have an important bearing
on geodynamic applications of satellite geodesy., The implications are
discussed in Chapter 8. Least squares techniques are also fundamental
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for all data analysis, Standard procedures are described in Section 5.4,

Observation processing involves the conversion of signals detected
by tracking instruments to observations, which can be analysed for
scientific results, For example, photon returns detected at a laser
tracking station must be converted to time delays or range measurements
for geodetic analysis., These conversions were considered to be outside
the scope of this dissertation. Range measurements and UTC times are
usually received as basic observation types at the University of New
South Wales. The only corrections and conversions necessary are for

refraction and timing biases.

Reference systemg are implicitly defined in any dynamic theory.
They are needed to model observations between satellites and the Earth.
Hence in satellite geodesy the transformation between the inertial
reference system for satellite motion and the terrestrial reference
system, which is "fixed" to the Earth’s surface is required. For near-
Earth satellites the transformation is usually made to include only
Earth rotation. This is achieved by adopting the geocentre as the origin
of the inertial system.

The reference systems used in satellite geodesy are similar to
astronomical reference systems and similar terminology has been adopted.
In practice, the actual definitions are not necessarily the same. Care
is needed to make the different reference systems compatible. A few of
these problems mentioned in Chapters 7 and 8., NAGEL (1976) describes the
reference systems in detail and also investigates a few associated
problems, Much scientific debate has been expended on reference system
definitions and their associated problems (GAPOSCHKIN,1981; GAPOSCHKIN &
KOLACEK,1981),

~ The definition of time is also important since it enters as the
independent parameter in dynamic theory. Transformations are needed to
convert between the various systems of atomic time, universal time and
ephemeris time, that is time systems are used to model Earth rotation

and satellite motion.

All these topics, which are in themselves highly specialised
research areas are all needed for dynamic satellite geodesy. Geodynamic
phenomena of interest can be investigated with satellite geodesy by
using the best models for all these phenomena to represent range data.
The problem yet to be solved is to separate geodynamic phenomena like
plate tectonic motion from the modelling effects of dynamic forces on
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the satellite and Earth rotation.

The following flow diagrams (Figure 5.1) show the information
needed to reduce and model range and time measurements in order to
estimate geodetic coordinates. All input information is a potential
error source to be minimised or remodelled.

Ebserved TIME DELA?Il

OBSERVATION PREPROCESSING %%$
refraction etc..

OBSERVED RANGE
DISTANCE

Figure 5.la

Modelling a range and time observation
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5.2 SATELLITE MOTION and DYNAMIC MODELS

The derivation of the equations of motion for a satellite is dealt
with in standard celestial mechanics texts (for example see BROUWER
& CLEMENCE,1961: MOULTON,1970: BATE et AL,1971; HAGIHARA,1972),.
KAULA (1966) treats the problem analytically. He derives the equations
of motion for a central force model and a perturbed gravitational field
using the Lagrangian treatment. This involves relating orbital
parameters to anomalies in the Earth’s gravity field, commonly termed
the disturbing potential. His development is useful for understanding

simple orbital motion and the nature of orbital errors.

The satellite position can be obtained by integrating the
equations of motion, These may be written as (MARTIN et AL,L1976):-

r =grad U + A (5.1)

where U is the geopotential, which is conventionally expressed in terms
of spherical coordinates (Appendix B) and,

A accounts for other forces due to atmospheriz drag, Earth tides,

Ocean tides, solar radiation pressure and luni-solar

potentials.

A reference system is defined by the spherical coordinate system
adopted for the spherical harmonic expansion of U, In order to study the
perturbations of near Earth satellites these spherical coordinates are
conveniently transformed to Keplerian elements, The potential can
be expressed as (KAULA,1966);:-

V=222 V (5.2)
nmpaqgq nmpg
where
- Mal b )G (e) 5. (M98
nmpxy ——m nmp npgq nmpg
a
2$ng> |, 0€psn , ~=S$qgfew
C n-m even -8 n-m even

S = nm } cosy + [ nm ] siny
nmpq [ Snm n-m odd nmpdq Cnm n—-m odd nmpq
wnmpq = (n2pdw + (n-2p+g)M + m(Q - @)

and a e i wQ M are Keplerian elements, respectively semi-major axis,
eccentricity, inclination, argument of perigee, right

ascension of the node and mean anomaly respectively,
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6 is the rotational position of the Earth (sidereal time),

a. is the semi-major axis of the Earth,

F are the inclination functions and,

G are eccentricity functions,

G(e) is proportional to e and, as the eccentricities of most
orbits are small, the summation over the index q needs to be carried out
only over a small number of terms: that is -2 € q £ 2 (KAULA,1966:
LAMBECK, 1980),

‘The acceleration of the satellite due to perturbing forces is

required, This is obtained from the Lagrangian form of the equations of
motion (BROUWER & CLEMENCE,1961; KAULR,1966), that is,

da _ 2 av
dt na M

de _ (l-e? V. (1-ed)2 3y

dt nae M nae 3w

dw _ ___-cosi v, (l-e)? 3V

dt na?(l-e?)12 gin i a1 na‘te Jde

di _ cos 1 v 1 oV
dt na?(l-e?’)"? gin i au na?(l-e»)1”2 gin i 3R
de _ 1 v

dt T na?(1-e)7sin 1 3i

dM l1-e2 a3V

dt = "7 na?e oe n a 5.3

&

The perturbations due to specific gravity field harmonics can be
obtained from Equations 5.2 and 5.3 (KAULA,1966;  LAMBECK,1980).
Equation 5.3 can be integrated either by numerical methods or
analytically to obtain variations in the Keplerian elements with time,
KAULA (1966,p40) and LAMBECK (1980,pl34) give theoretical solutions for
the integrated perturbations of the orbital elements, These are useful
for estimating orbital errors and tidal perturbations (KOZAI,1968:
LAMBECK et AL, 1974: BRETREGER, 1978; LAMBECK,1980).

The frequency of gravitational perturbations is governed by ﬁ_m
(WAGNER & KLOSKO,1977), that is, gravity model perturbations are
periodic with respect to w, M, Q@ 8, As the perturbations are
proportional to l/i large effects occur when é is small. Deep resonance
occurs when (WAGNER & KLOSKO,1977)

p = 0 (5.4)
This happens when there is exact commensurability between the satellite
motion and the Earth’s rotation. In this case, longitudinal terms of the
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gravity field yield excessively large orbit perturbations. Generally
other forces are acting on the satellite, so that the orbit simply
passes through this condition. It is then referred to as shallow
resonance (WAGNER & KLOSKO, 1977; KLOSKO & WAGNER,1979),

The harmonics for n-2p+q=0 give rise to m-daily perturbations.
These are independent of the mean anomaly and are a dominant source of
low degree and order gravity field information (CHRISTODOULIDIS et

AL,1981),

WAGNER & KLOSKO (1977) classify the perturbations according to

frequency by rewriting ¢ as follows:-

¥ s O ¢m0k (5.5)

= k(M + &) + m@Q- 8 (5.6)

These equations indicate that terms in resonance, with m-daily and short
period variations will have ¢uok as a dominant fast frequency and —qw
as a secondary slow frequency. A fast period is less than five days
whereas a typical slow period is 180 days. These frequencies, which
depend on m, define the longitude dependent gravitational harmonics for
the majority of geodetic satellites (WAGNER & KLOSKO,1977). Sparse
tracking data does not sample the short-period perturbations very well,
Hence the coefficients of gravity field models which mainly cause short-
period perturbations are poorly determined as compared to those which
cause long period and secular effects., Tesseral harmonics are generally
poorly determined compared to zonal harmonics, We could expect these
poorly determined harmonics to produce short-period orbital errors in
ephemerides, which are used for other data types. These errors should be
estimable in more continuous data types like GE0S-3 altimetry
(WAGNER, 1979),

Much information 1is available in tracking data for estimating
tesseral harmonics of the gravity field, Knowledge of the frequencies
(Equations 5.5 and 5.6) can be used to constrain gravity field models if
adequate tracking data are available (KLOSKO & WAGNER, 1979: BALMINO &
REIGBER, 1974; REIGBER & BALMINO,1976), It is also feasible to determine
periods and amplitudes of dominant orbital errors for a specific
satellite by determining the perturbations from poorly determined
coefficients of the geopotential, 1In this way gravity field models can
be tailored to the orbits of specific satellites by estimating the
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coefficients which are sensitive to both the orbit and the tracking data
(KLOSKO,privaﬁe communication,1980), A tailored model has been developed
for the LAGEOS orbit (LERCH & KLOSKO,1981; LERCH,1982), CHRISTODOULIDIS
et AL 1981) list a few perturbations for LAGEOS, Noticeably, resonance
effects are usually orders of magnitude larger than other short period

and m-daily perturbations,

Analytical theory was employed when optical observations to
satellites were common (ANDERLE & TANENBAUM, 1974). GAPOSCHKIN (1973)
used . analytical integration for the Smithsonian Standard Earth Models.
Numerical integration techniques however, are now preferred for solving
the equations of motion and variational equations, Techniques are
described by LERCH et AL (1974), MARTIN et AL (1976) and CAPPELLARI et
AL (1976) and others. Cowell numerical integration techniques are
employed in GEODYN to integrate the equations of motion and variational
equations. The technique is well documented (BROUWER & CLEMENCE, 1961:
CAPPELLARI et AL,1976: MARTIN et AL,1976). Numerical methods are much
more versatile and allow complicated force models to be incorporated
into the dynamic theory. This means that they are much more applicable
to reducing observations to near Earth satellites than analytical
techniques, The latter do not adequately model satellite orbital
perturbations for current tracking quality and quantity (ANDERLE &
TANENBAUM, 1974). However, analytical techniques are still very important
and are used in combination with numerical methods (GAPOSCHKIN, 1978),
Numerical methods for solving the equations of motion and variational
equations are also used by NSWC (ANDERLE, 1974), University of Texas at
Austin (SCHUTZ et AL,1979) and Massachussets Institute of Technology
(ASH,1972).

SMITH (1978) summarises the dynamic models and their limitations,
Especially mentioned are the models for the gravity field, atmospheric
drag, solar radiation pressure and tides. Suggestions for possible
improvements are made. GAPOSCHKIN (1978) gives a similar summary, and
refers especially to the progress in analytical theory. PUTNEY
(1980;1981) describes the improvements to GEODYN which were implemented
by 1980 and also the revisions of the models for atmospheric density and
albedo radiation pressure which are proposed for introduction to current
software. These probably represent the current trends in dynamic
modelling procedures and are typical of the models in most dynamic

satellite software.



The accuracy of the dynamic modelling can be gauged from recent
LAGEOS results (SMITH & DUNN,1980), Laser range data were fitted to the
LAGEOS orbit with an r.m.s of 1 m for monthly spans of data. This result
was obtained using the GEMI0 gravity field model, luni-solar effects,
solar radiation pressure and simple tide perturbations with the GEODYN
system, Thirty two months of data were fitted to 15 m r.m.s, by
including a simple along-track acceleration model., From the analysis of
the long term LAGEOS orbit bounds for the errors in parts of the force
model were estimated, The solar radiation pressure model is believed to
be accurate to a few percent and the GEM1O odd zonal coefficients to
better than 0.5 parts per thousand, The cause for the perturbation in

the semi-major axis is unknown (RUBINCAM,1980).

From these analyses it is evident that the limitations in most of
the force models are of little consequence for the high LAGEOS orbit,
This is especially so if the orbital arc lengths are less than 30 days.
Therefore the LAGEOS satellite, as intended, provides a stable target
for estimating geodetic and geodynamic parameters. Nevertheless, the
minimisation of residual gravitational and other force model errors is a
major problem for crustal motion investigations, where centimetre
accuracies are required. These problems are investigated in Chapter 7
and 8,

Similar problems occur with GEOS-3. This satellite is lower in
altitude than LAGEOS and has a more complicated shape (Table 4,1,
Figure'4.l). Gravitational perturbations and atmospheric drag effects
are therefore significant, The radial component of the orbit can be
determined to about 1.5 m r,m.s. (LERCH et AL,1978c). This is still too
large for tidal analyses, Possibilities for removing orbital error in

tidal investigations are invegtigated in Chapter 6,
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5.3  EARTH ROTATION

The equations of motion for a general mass M are given by the

Liouville equations

Li = Hj + Eijn Wj Hk (5.7)
H; = I” w; + hi (5.8)
Iu = Jm (Xka 8“ - iji) dm (5.9
he = [ e XX dm (5.10)

where subscripts i = 1,2,3 refer to a set of Cartesian axes, with the
origin at the geocentre and an angular velocity w, ,
Ly, Hy denote components of net external torque and angular
momentum respectively,
I;; is the inertia tensor,
hy is the part of the H; arising from the motion relative to the
¥; system and,

repeated indices indicate summation.

The equations of motion can be solved by making assumptions about
the Earth’s rigidity, Thesé assumptions affect the inertia tensor and
angular momentum of the Earth (Equation 5.8 and 5.9). The non-rigidity
of the Earth distorts and introduces new spectral features to the
idealised rigid body solution of the equations of motion. To acquire
centimetre accuracy in geodesy, rigid body solutions of the equations of
motion are inadequate, The spectrum of Earth rotation may be divided as
shown in Table 5,1 (ROCHESTER,1973). (The values in the table are not
quoted as the latest estimates), The classifications and expected errors
are described in more detail below:

(i) Precession is a long period motion of the Earth’s equatorial
plane with respect to its orbital plane. This motion is due to luni-
solar effects and has a period of about 25 700 vears, The precession
matrix (P) transforms from the mean-of-date system of 1950.0 to the mean
of date at reference time. The components of the matrix (z,0,Z) are
taken from the Astronomical Ephemeris and Nautical Almanac (AENA,1961)
and are also listed in MARTIN et AL (1976),

P = R3(-2) R (8) Ry (-&) (5.1

where R; (S) is a rotation of S about the i axis,
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Newcomb’s General Precession constant, which was determined by
observations and theory could be in error by approximately 1"/century
(FRICKE,1971; LAUBSCHER,1976; ASTERIADAS,1977: PEASE, 1877),

(ii) Nutations are short period oscillations of the celestial pole
about the ecliptic pole. These periods are due to the complex interplay
between the orbits of the Sun and Moon. They are also identical to those
causing the tides (MELCHIOR,1971). The nutation matrix (N) transforms

from the mean-of-date to the true-of-date systems.
N = Rg (“Gr) R;(—Alﬁ) Rj(sn) (5.12)

where &; is the true obliquity of the ecliptic,
én 1is the mean obliquity of the ecliptic and
Ay is the nutation in longitude.

The adbpted value of 9721 for the principal 18.6 year nutation
term could be in error by approximately 070l and is inconsistent with
other astronomical constants (MELCHIOR,1971). The rigid-body series for
nutation in longitude and obliquity are given by WOOLARD (1953),
Nutation terms due to the Earth’s non-rigidity are not adequatély
modelled, Various authors; including KINOSHITA et AL (1979),
MELCHIOR (1971) and WAHR (198la; 1981b) have calculated modified
nutation terms to account for liquid core effects, These terms
especially affect the annual, semi-annual, 4month, 27 day, 13.7 day and
9.1 day nutation coefficients and should more effectively model the
Earth’s nutations. The nutation series is currently under review. WAHR's
development is the most comprehensive and is being considered for

adoption by the International Astronomical Union.

(iii) Length of Day (LOD) is the diurnal rotation of the Earth. The
Length of Day (rotation) matrix (S) transforms from the true of date
system to a pseudo body-fixed system,

S = R;(-8) (5.1
where 6 is the Greenwich Apparent Sidereal Time (GAST).

(iv) Wobble is derived from the solution of the Liouville equation
without any external torgques (MUNK & MACDONALD, 1960; LAMBECK,1980). The
Wobble transformation (W) transforms from the pseudo body-fixed system

to a terrestrial system "fixed" to the body of the Earth.
W = Ry(-x) Ry (-y) (5,14

The Bureau International de 1'Heure (BIH) publishes S5-day pole

49



coordinates (x,y) with respect to the BIH mean observatory reference
system, Other agencies which publish pole positions are the
International Polar Motion Service (IPMS) and Defence Mapping Agency
(DMA). The latter is often referred to as the Dahlgren Polar Motion
Service (DPMS). If BIH pole coordinates are used there are incompletely
modelled diurnal Oppolzer terms, due to the motion of the figure axis
with respect to the instantaneous axis of rotation (ATKINSON,1973;
STOLZ,1979). These terms are either neglected or modelled using
McCLURE’s (1973) analytically derived values. Although the effect has
been observed in astronomical observations, these values however have
not been adequately confirmed by observation, (ATKINSON,1973; MA,61973),

BIH maintains Universal and Sidereal time systems. The estimated
errors for BIH are 0.5m for pole position. and lms for LOD (BIH,61979;
LAMBECK,1980)., Anomalies in Chandlerian polar motion and Length of Day
(LOD) are observed, because of their unpredictable nature at some
periods, One example is shown by the 10msec jump in LOD over a period of
10 days as reported by GUINOT(1970), If not accounted for these types of
changes could possibly cause anomalous results for geodetic solutions.
The MERIT campaign will hopefully reduce these errors by an order of
magnitude. MERIT is a campaign to utilise all observation techniques to
monitor and improve knowledge on the rotation of the Earth
(WILKINS, 19800,

MUELLER & LEICK(1979) and LARDEN (1981) summarize some of the more
recent developments in Earth rotation theory. LAMBECK (1980) gives a
current description for Earth rotation, especially for polar motion and
LOD,

Earth rotation models are used to transform coordinates between
terrestrial reference systems and inertial reference systems., It is
obvious that these reference systems are not adequately defined for
geodynamic applications. Errors in the Earth rotation models can have
both dynamic and kinematic effects, These are described in Chapter 7,
They are therefore important for any extra-terrestrial observation type.
The inertial reference system in GEODYN is defined as True-of-Date at a
user defined reference epoch, The inertial-terrestrial transformation in

GEODYN is therefore given hy:-
-1 N~
VfISNe'P‘_:‘Pr Nr (5.15
where r denotes the reference epoch and

e the measurement epoch,
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5.4 BAYESIAN INFERENCE and LEAST SQUARES

The underlying principle of Bayesian inference, is that there is
always some a priori knowledge about parameters, which can be used for
estimating parameters., The following diagram, which is taken from
BOSSLER (1972) gives the flow of the Bayesian estimation scheme,

i INITIAL __»_), A PRIORI
INFORMATION PROBABILITY _
——->! BAYES’ |___.| A POSTERIORI
-->| THEOREM PROBABILITY
NEW “"I LIKELIHOOD l —_
INFORMATION FUNCTION

Conventional geodetic least squares adjustment procedures are a
special case of the general Bayesian estimation techniques. A procedure
is needed to estimate m parameters (x), using n observations (1), from

the observation equation
1 +v=1fx (5.16)

where v is the observation noise and
f is a functional form relating the observations to the

parameters

Bayes’ theorem states (BOSSLER,1972)

P(x|1) = P(x) P(1l{x) (5.17)
P(L)
where P(x|1) is the joint conditional probability density
function for x given 1.
P(x) is the joint probability density function for x
P(1) is the joint probability density function for 1

P(1l]x) is the joint conditional probability density

function for 1 given x.

Using Bayes’ theorem, the best estimate for the parameters X, ,
can be obtained by determining the a posteriori conditional density
function., This is achieved by assuming that the noise on 1 is normally
distributed with a mean of zero and that the best estimate of X, 1is the
vector, which maximises the a posteriori probability density function.

The best estimate x,, corresponds to the maximum likelihood estimate
for x. Due to the assumptions made for the observational noise, the

variance-covariance matrix 3, is diagonal. Therefore x, corresponds to
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the mean and median (BOSSLER,1972).

If the a priori probability density function p(x.) is assumed to
be normally distributed, then the a posteriori probability density

function is maximised by maximising the product P(x,)P(l|X» . This
product is obtained by minimising the quadratic form (MARTIN ET AL,1976)
(Xa~Xe )T Za(Ka-Xe ) + VIV (5.18)
where Xa is the a priori estimate of x
PR is the a prigri variance-covariance matrix

associated with x,.

The following development is for a general least squares solution
MIKHAIL(1976,p343). For any functional model F(ly)
where 1. comprises 1, lc, X, la, V, Ve, V., A, Ac, A and
1l is a n x 1 vector of conventionally designated observations with
a priori cofactor matrix Q
l. is a t x 1 vector of cbservations arising from the constraints
with a priori cofactor matrix Q.
X is a u x 1 vector of variables or parameters with a priori
cofactor matrix Qu
l,, denotes the vector of approximations,
v v. v, denote vectors of residuals and,
4, Ac A repregsent vectors of corrections to the approximate

values.

We may write _
Fg(lg) =0 (5,1%)

which can be linearised by Taylor’s theorem. Second order and higher
terms are neglected, Let

A = 3F/9l c X n matrix
B = 3F/ax € X u matrix
A. = 9F. /3l s X t matrix
€ = 9F./9x s X u matrix

where F. is partitioned into F. and F,

The linear equations, which relate observations, parameters and

constraints are therefore

Av + BA = f, (5.20)

Acv. + CA = fa (5.21)
where

f, = -{F(l, ,x,)> — ACl,-1)} (5.22)
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fao = “{Fc (e %0 — A (laa-1.)02 (5.23)
f,. = X. - %
Accordingly
A 0 017 v B ] f.
[ 0 a O Ve } + Cl A= fo. (5.24>
0 0 I v, -1 | £,
Imposing the least squares condition gives
(BTC" -I1[ W, 0 0 17[ B T
0 WO Cl A
_‘0 0 WoJL-I |
[BTCT -I1f W, 0 07T f.
= 0 WO fea ] (5.25)
L 0 0 Wodl £,
where We = (AQAT )1 (5.26)
Wee = (AcQc A7) (5,27)
Wo = Qut (5,28)

By assuming Equations 5.26, 5.27, 5.28 are non singular and by

introducing new auxiliaries

N = B"W,B (5.29)
t =B"W.f (5.30)
Ne= CTWee C (5.3D)
te= C'We fo. (5.32)
Equation 5.25 takes the more familiar form
(N + No + WodA = (t + t. - Wof,) (5.33
or '
A = N+ N + W)t {t + t. - Wof} (5.34)

When all variables have known a priori values and known cofactor
matrices, Equation 5.34 may be used to derive least squares estimates
for corrections to the approximate values assigned to the parameters.
The terms N, t’denote the contribution to the normal equation matrix and
associated right hand side from the observations, N., t. denote the

contribution Wocf x the

contribution from the a priori parameters. The familiar parametric least

is recognisable if there are no constraints and no

from the constraints and W, denote

squares formula

a priori
considered for geodynamic applications as they affect the relative

geometry of the estimated parameters. These estimated parameters will be

variances., The use of a priori variances must be carefully

referred to the fixed parameters. Bayesian least squares procedures are
in GEODYN. It is therefore easy to use subjective information to

constrain geodetic solutions with this program,

used
This complaint about

Bayesian least squares has often been expressed by analysts
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(BOSSLER,1972) and the effect of these procedures on geodynamic

applications are investigated in Chapter 8.

Pseudo Inverse solutions minimise the trace and norm of the

a posteriori variance covariance matrix for the estimated parameters,

that is, they minimise
vViWv + XX (5.35

Pseudo-inverses are therefore a special case of the more general
Bayesian estimation, They have important properties for geodetic
adjustments. These include defining the orientation and origin for
"free" adjustments. These are investigated by BLAHA (197la) and
BJERHAMMAR (1973) and others. Pseudo-inverse solutions obviously have
important characteristics which could be used for dynamic satellite
solutions for geodetic coordinates especially if the coordinates are to
be used for geodynamic applications. These properties are examined in

Chapter 8. Numerical methods for determining pseudo-inverses are

described in Appendix C.

Estimates of precision for parameters can be obtained from
Gaussian error propagation theory. Let
dy = Jdx (5.36)

where elements of the Jacobian J are given by

Ji = 8y:i/9%;
The variance-covariance matrix for the derived parameters y is

Sy = JZ JT (5.37)
and the cofactor matrices are therefore

Qpy = JQu J7 (5.38)
where Q = /o and (5.39

o is the variance factor,
Using the principle of propagation of variances (Equation 5.37) with

Equations 5.34 we can show that

Qu = {N + N + W} (5,40
The corresponding quadratic form can be obtained from
O = VWV + v We Ve + VT W vy (5.4

The estimation of the degrees of freedom for cases, which include
constraints and parameters as observations is a complicated problem.
BOSSLER (1972) deals with these cases., Problems are generally avoided by
assuming the a priori cofactor matrices are variance-covariance

matrices. This leads to the a posteriori cofactor matrix being

equivalent to the variance-covariance matrix for the parameters.
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Equation 5,40 can therefore be used for simulation studies where
the sensitivity of the estimated parameters to the observations is

desired.

Assuming that there are no constraints, then
Qu = (N + W)™ (5.42)

The contribution of W, to Qu is often needed. For the cases where N
and Q. are non singular, we can show (MIKHAIL,1976 appendix A68) that
Qu = N* - N*(I + W, N1)'W, N7 (5.43)

The first term on the right hand side of Equation 5,38 is seen to
be the cofactor matrix for the estimated parameters when only
observations are used, This equation shows that the a priori matrix We
will decrease the size of the diagonal elements in Qu relative to the
case where only observations are used. This is because both N and W,
are positive semi-definite, Equation 5.43 was also obtained by VAN
'GELDER (1978>, It 1is an important result to take into account in
sensitivity studies particularly if parameters are estimated by means of
subjective g priori information. If Bayesian techniques are employed,
the a posteriori parameter variances will be optimistic relative to the
solution, which wuses only the observations. Obviously, the effect of
a priori parameter variances must be carefully considered if Bayesian

techniques are used for sensitivity studies.

For sensitivity studies, where all elements of the functional form
(Equation 5.19) are not usually estimated, the contribution of errors in
the functional form to the solution parameters are often needed. HATCH
et AL (1973) and MA (1978) give an expression for the variance-
covariance matrix of the solution parameters by subdividing the
parameters of the observation equation (equation 5,20 into
estimated (x) and non-estimated (y) parameters. The resulting
observation equation is

1 +v=2Bx+Cy (5.44)

where B and C are coefficient matrices of partial derivatives.

The least squares solution is obtained from

X = (B"WB)'B"W(1l+v-Cy) (5.45)
From Equation 5,38 we have

Qux = (BTWB) B "WQuvey ((BTWB)1BTW}T (5.46)
Assuming the observations to be independent

Quwey = Qv = Qo (5.47)

Q =0 (5.48)
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Q =Wt (5.49)
Qm= CQWCT (5.50)
The variance-covariance matrix for the parameters is

Q. = N* + N1B"WCQ,, C" WBN™ (5.51)
This result is obtained after substituting Equations 5.47, 5.48, 5.49,
5.50 into equation 5.46.

The first part of the right hand side is recognisable as the
Normal equation matrix for only the observations. Equation 5.51 is a
convenient formula to employ with simulation studies involving satellite
orbit dynamics. The contribution of errors in the dynamic models to the
accuracy of the estimated parameters can be obtained from the second
part of the equation,

The ORAN program (HATCH et AL,1973) (which has been used for many
satellite missions) is based on this formula, Several simulations for
the sensitivity of geodetic parameters to modelling procedures, have
been undertaken using this program (BENDER & GOAD,1979; CHRISTODOULIDIS
& SMITH,1980: CHRISTODOULIDIS et AL,1981), ORAN is designed on the same
dynamic theory as in GEODYN and is used in Chapter 7 to verify and
augment the results obtained from GEODYN.
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CHAUPTER 6

TIDES AND GEOS-3 ORBIT ERROR
6.1  INTRODUCTION

The investigation described in this chapter was aimed at finding
a method of filtering the effects of orbital noise from GEOS-3 altimetry
derived sea surface height (SSH) data. The principle of the method was
to analyse the sea surface heights for significant orbit derived
features., The results are presented in Sections 6.5, 6.6 and 6,7, A data
base with less systematic noise than the original SSH data was produced
by reducing the altimetry measurements to SSH using GEOS-3 ephemerides
as determined by LERCH et AL (1978c). Attempts were alsoc made to
determine the M2 tide signal using crossover residuals in the Sargasso
Sea ‘area. The results are presented in Sections 6.8.2 and 6.8.3. The
‘remaining constituents of the tidal spectrum were not studied because
their amplitudes are small when compared to the dominant M2 signal.
Moreover the presence of orbital and altimeter noise makes their
detection nearly impossible, Similar work carried out by other authors

is summarised in this section.

The GEOS-3 altimeter data have recently been used to estimate
ocean tides on a regional basis, Satellite data, when compared to the
discrete measurements made at tide gauge or with conventional
oceanographic equipment have the advantage of sampling on a wide scale,
The attempts at tidal measurement with altimeter data have proved
unsuccessful to date. MAUL & YANAWAY (1978), BRETREGER (1979) and WON &
MILLER (1979) estimated the tidal signal in the GE0S-3 calibration area
(Sargasso Sea), while KU (1978) used an area in the Gulf of Alaska,
Recent work is reported by BROWN & HUTCHINSON (1980), PARKE (1980) and
DIAMANTE & NEE (1980),

MAUL & YANAWAY (1978) analysed data collected over an 18 month
period in a 5°x 5° area and found that the signal to noise ratio is
1 : 10, This implies that GE0S-3 altimetry data cannot be used to
resolve ocean tide information. In their analysis, altimeter
observations of SSH taken from one pass of the satellite were averaged,
Apart from the expected altimeter and orbital errors the average value
contains an error signal due to variations from the ocean tides, geoid
slope and Earth tide over the region,
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BRETREGER (1979) analysed the data by modelling the regional sea
surface using the technique described by MATHER et AL (1977a). With this
method corrections were applied to passes of altimetry data for biases
and tilts. In order to do this, passes were subdivided into smaller

segments, The following formula was then used to correct the data.
£ =&yt by + ooty - ta) (6.1)

where &, is the estimate of the sea surface height from the J-th
element of the i-th pass,
b; is the bias for the i-th pass,
ty, tu are the times of the J-th and lst segments in the 1i-th
pass, and
c; 1is the tilt for the i-th pass.

This Biags and Tilt analysis technique is fully described by COLEMAN
(1981). It has been successfully used for many oceanographic and geoid
investigations. These include determining temporal variations in the
dynamic SST and geoid heights in ocean areas (MATHER et AL,1980: LERCH
et AL,1978c).

By using Equation 6.1 it was assumed that the difference between
two sea surface height values at a crossover point contains the tidal
information. A crossover is defined as the point of intersection of two
passes. The actual crossover point is defined by data in something like
a 0.°2 x 0.°2 area., Any observations falling within thies area are
averaged to define a point observation of § at the centre of the area.
Geoid variations within the small area should be negligible and
therefore should not introduce significant  errors. For later
calculations in this chapter crossover has a more specific definition
(Section 6.2.2).

BRETREGER (1979) used 282 passes of altimeter data in a 12° x12°
area defined by latitude 31°N and longitude 288°E at the centre of the
area. The results of his study differed significantly from the tide in
the region, This is probably due to the high levels of systematic noise.
Another possible explanation is geometrical instability introduced by
the lack of very long passes of continuous data used to model the
regional sea surface., A pass greater than 5000 Km is considered long.
MATHER et AL (1978a) showed that some of the tidal signal is diminished
if Equation 6.1 is applied to the altimetry data. This was confirmed by
DOUGLAS & GOAD (1978) and DOUGLAS (1979) who showed that it is
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impossible to obtain ocean tide models if tilt corrections are applied,
The bias and tilt technique of filtering orbital errors from SSH data is
therefore not suitable for resolving the tidal spectrum. A more

sensitive filtering model must be developed.

Only a small number of Fourier coefficients are needed to
successfully reproduce the empirical Mofjeld tide model in the Sargasso
area (BRETREGER,1979). This tide model is fully described in Chapter 2.
If the noise were random, BRETREGER’s (1979) technique could have
accommodated a signal to noise ratio of 1 : 10, but only 4 ; 10 if the
noise showed a systematic pattern over a pass length. He obtained this
result by modelling the M2 tide in the Sargasso region and simulating
random bias and tilts for each pass of the actual GE0S-3 altimetry
distribution in the region. Had these simulations reflected reality then
the M2 tide signal could be estimated in the presence of about 1 m
r.m.s. systematic noise, This value has been adopted later as the

maximum allowable noise level for successful tidal analyses,

WON & MILLER (1979) analysed altimeter data for the tidal signal
using two narrow strips of data in the Sargasso Sea. Each strip
contained over 25 passes of altimeter data. Profiles of four ocean tide
constituents (M;, 0,, S;, K;) were derived for the two strips. Anomolous
results were attributed to GEOS-3 orbital errors, Not surprisingly the
derived amplitudes and phases were in poor agreement with the MODE deep
sea tide gauge data in the region (ZETLER et AL,1975).

Poor tide measurement with altimeter data are attributed to
correlation of orbital errors with the tidal signal. For other parts of
the spectrum (eg., temporal variability) the separation of orbital errors
is not so critical as they can be removed with the bias and tilt method.
Nevertheless, success with the removal of systematic orbital noise from
altimetry derived sea surface heights would enhance any oceanographic
investigation. Hence the aim of this chapter has wider applications than
tidal analysis alone. In order to minimise orbital errors, information
on the satellite orbit must be included in the reduction and
interpretation of data. These problems are examined in the remainder of

this chapter.
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6.2 DATA BASES

Two data bases are described in the following sections. These were
prepered here to study the problem of orbital error and ocean tide model
recovery, The data have also been used elsewhere to determine the
equatorial radius of the Earth, global dynamic SST and for analysis of
the Gulf Stream and analysis of eddies (RIZ0S,1980a; COLEMAN,1981),

6.2,1 GEOS-3 Altimetry Data Base - "LAS79"

The altimetry-SSH data set LAS79 was prepared by upgrading the
1977 GE0S-3 altimetry data, The latter data set was described in
MATHER et AL (1978b) and will subsequently be referred to here as the
WALLOPS data set. The distribution of these data is governed by the
satellite orbit and hardware restrictions, A substantial gap exists in
the data from Dec 31, 1975 (MJD 42777) to Feb 22, 1976 (MJD 42830),
Moreover, hardware restrictions already mentioned in Chapter 2 caused
the altimeter data to be collected in regions until a global data set

was obtained,

The orbits, which are required to reduce altimetry measurements to
sea surface heights were computed using the GEODYN program (MARTIN et
AL,1976), The GEMIO gravity field model (LERCH et AL, 1977) was employed
to integrate the orbits, Earth tides, luni-solar perturbations and
atmospheric drag were also modelled, Five-day arcs of laser data were
used to estimate state vectors from which the GE0S-3 ephemeris was
determined. Small amounts of S-Band radar tracking data was added to a
few arcs to augment sparse laser data (LERCH et AL,1978c). The orbits
are referred to the tracking station network (see Figure 6.1) and the
dynamic models adopted in GEODYN,

The LAS79 data base was produced as an interim data set as it did
not contain all the observed altimetry data. Nevertheless, the noise
signals, as shown later, are smaller than those in the WALLOPS data. The
LAS79 data should therefore be more useful for oceanographic studies.
However, much better results can now be obtained from the complete
GE0S-3 data sets (R,COLEMAN,private communication,1981),

The WALLOPS and LAS79 data comprise observations times, latitudes,
longitudes, sea surface heights, altimetry measurements and theoretical
values for geoid and tide height., The sea surface heights were
calculated allowing only for the effect of refraction and bias, They
should contain hoth the signal of the sea surface spectrum and
unmodelled orbital perturbations. It is therefore necessary to separate
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orbital erraors from oceanographic phenomena,

The LAS79 data were reduced in a consistent way. The effect of
systematic errors on the determination of oceanographic phenomena should
therefore be predictable., The WALLOPS data on the other hand, were
produced using a variety of models and the orbits were computed at one
of three research centres,

~ Wallops Flight Center (WFC) using the GEM7 gravity field
model (WAGNER et AL,1976),

- the Naval Surface Weapons Center (NSWC), wusing from 16
to 60 doppler tracking stations and a gravity field model
specially tailored to the GE0S-3 satellite (MATHER et AL,61978h)
or

r

- Goddard Space Flight Center.

The principle of tailored gravity field models was described in
Section 5.2. The WALLOPS SSH data could be expected to exhibit different
systematic noise patterns at different epochs., This is because of the
varied reference force models and possibly also the different algorithms
for determining satellite orbits., Since a more accurate gravity field
model and laser tracking dgta of higher accuracy have been used to
calculate the orbits for the LAS79 data, the orbits should in turn be
better than the WALLOPS data. However, this advantage could be negated
by the sparseness of the laser tracking data (see Figure 6.1) when
compared to the NSWC Doppler data. The latter being an all weather
tracking system uniformly distributed over the globe.

The residual precisions obtained from the LAS79 sea surface
heights as shown in Section 6,2.2 are better by a factor of two compared
to the WALLOPS data, This is not as much of an improvement as would be
preferred, A similar data set to LAS79 produced by LERCH et AL (1978c)
shows slightly better residuals for the crossovers, This is probably due
to the fact that they were reduced using more stringent filtering

criteria.
6.2.2 "CROSSOVER" - data set

The difference between two separate estimates of SSH from a
crossover contain the signal of orbital errors and time varying
oceanographic features (eg., tides and eddies). The technique used to
create the CROSSOVER data base initially involved locating the

intersection points of all north-south (descending) and south-north



(ascending) passes in the GE0S-3 SSH data. Data only rarely occurs at
the exact crossover point. The precise time, latitude, longitude and
two values of SSH for the crossover point were obtained by interpolating
the data from 0.2° on either side of the crossover point. The SSH values
were also identified as coming from ascending or descending passes, This

proved to be useful as shown in Section 6.4.2,

An estimate of the precision for the derived crossover sea surface
heights can be obtained from error propagation theory and the estimated
precision of the individual data. If the internal precision for the
altimeter is around the 30 cm level (MATHER et Al,1978a: STANLEY,1979)
and the five or six measurements in a 0.4 degree region are considered,
the estimated precision for each crossover SSH is about 15cm, This is a

precision estimate and does not include systematic orbital errors,

Crossover data sets were produced from both the WALLOPS and LAS79
data sets. The 52333 global crossover points in the WALLOPS CROSSOVER
data set are plotted in Figure 6.2. A crossover residual is the
difference between the two observed SSH values at a crossover, The
r.m.s, of the crossover residuals are tabulated below (Table 6.1).
Histograms for the crossover residuals for both global and regional data

sets are shown in Figures 6.3 and 6.4.

That the LAS79 data are better than the WALLOPS data can be
gleaned from Figures 6.3 and 6.4. For both global and regional data sets
the width of the central peak of the histogram is much narrower for the
LAS79 data than the WALLOPS data, From an examination of the histograms
a 10 m crossover residual was used to filter the data in most
calculations, As the altimeter and tracking performance is generally
good and reduction calculations are sound, residuals greater than 10 m
are probably caused by incorrect time tags on the data and the like.

TABLE 6.1
CROSSOVER DATA PRECISIONS

CUTOFF WALLOPS LAS79
DISCREPANCY!| Number of Number of
(m) Observations rms (m) Observations rms (m)
o 52333 43,0 21747 3.6
30 50323 5.6 21744 3.1
20 497772 4.9 21721 3.0
10 46727 3.8 21460 2.6
5 37530 2.4
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Several passes are contaminated by substantial timing biases
(LERCH et AL,1978c). Timing is critical when the altimeter measurements
are correlated with the orbital ephemeris to produce SSH data. Timing
biases significantly distort the signal obtained and must therefore be
eliminated. The radial velocity for GE0S-3 can be as large as 20 m/sec,
which means that a constant timing bias of "n”" msec will result in a
"2n" cm error in the reduced sea surface height, The error, if constant
over long periods of time, will be equal and opposite in sign for
ascending and descending passes (MATHER,1978b),

6.3 METHOD
6.3.1 Introduction

Crossovers are now commonly used to independently estimate the
accuracy of satellite ephemerides (eg. LERCH et AL,1977), The technique

is adapted here to estimate and model orbital errors.

In Section 6,4 a few characteristics of the GE0S-3 orbit are
examined with a view to separating some of the orbital errors from
oceanographic phenomena. The bias and tilt technique (Equation 6.1) has
proven to be quite satisfactory for some analyses. However, the method
is somewhat empirical in that it does not take into account the real
nature of orbital errors as outlined below and in Chapter 5. For
oceanographic analyses where the method is inappropriate, understanding
the models used to create the satellite ephemeris and knowing the data
sampling, can assist in finding a better method of filtering orbital

errors from the data.

The underlying assumption of the bias and tilt technique is that
each satellite pass independently samples the SSH in & region., The SSH
data is created from altimetry and a continuous ephemeris. For the LAS79
data, each 5-day arc can be considered to represent a continuous segment
of the complete GE0S-3 ephemeris. The quality of the orbit determination
can be partially assessed by examining the residuals for each span of
laser tracking. For 5-day arcs these have an approximate r.m.s, of 0.8 m
(LERCH et AL,1978c). However, these residuals only reflect the accuracy
of the orbit during the limited tracking period and not necessarily the
whole arc. The largest amount of tracking data in any 5-day arc is
approximately 7000 range measurements (LERCH et AL,1978c). This
represents roughly two hours of tracking over five days. Clearly a largé
proportion of a 5-day arc of reduced sea surface heights containg noise
mainly derived from the integration of gravity and other force model

67



errors, These errors are continuous, with periods depending on the
interaction between components of the various force models (KAULA,1966:
WAGNER & KLOSKO,1977: Chapter 5). Perturbations of 5 days or longer
should be absorbed by the estimated state vectors. This characteristic
has often been exploited to compare empirically "true" against
"theoretical” orbits (SMITH & DUNN,1980). Short-period orbital errors
can arise from both zonal and tesseral harmonics. Many of these
coefficients are not well determined, The orbital error spectrum less
than five days should therefore be rich. These periods should be
observable in the altimetry derived SSH data. Errors however, are also
introduced by other factors like imprecisely known tracking station
positions. Hence, we should always have a preference for SSH data in
regions with good tracking capabilities, The Sargassc test area is one

region where good tracking has been consistently available,

The problem of removing orbital errors from the SSH data is
conceptually one of spectral analysis. Significant signals at varying
frequencies must be identified from data sparsely sampled in time and
position. In principle, this is a less formidable task than if the
errors are assumed toc be random with every pass of data. One primary
limitation on what can be achieved is the sampling interval, This is
dictated by the altimeter rate and satellite orbital characteristics and
is discussed further in Section 6.4.3

6.3.2 Spectral Analysis

The determination of the spectrum of a time series is a fairly
straight forward matter if the data are eguispaced. Conventional Fourier
transform techniques may be used under these circumstances, The
separation of the peaks in the estimated spectrum depends mainly on the
length of the data set (JENKINS & WATTS,1968), For non-equispaced data

however, the procedure is not so clear,

A least squares technique is used here for spectral analysis. The
method is identical to the Fourier transform under certain conditions
(VANICEK, 1971), Details of the method and minor changes used to speed
up the algorithms are presented in Appendix A. The significance of the
estimated spectrum can be statisticelly tested with standard procedures.

One problem encountered with non equi-spaced data, in this
context, is that the concept of Nyquist frequency does not have meaning.

Periods shorter than the sampling interval will generally alias longer
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periods in the estimated spectrum. For analyses of irregularly spaced
altimetry data the problem of aliasing and correlation between
frequencies is not clearly defined. The implications of the sampling
distribution of GE0S-3 altimetry data for tidal analyses have therefore
been investigated in Section 6.4.3.

The sampling pattern of GE0S-3 is complicated. It is difficult to
perform a realistic error analysis for the altimetry data without
actually using the real data. BRETREGER’s (1979) study should give the
most reliable estimate of the sensitivity of the SSH data to the tide
spectrum, Hence BRETREGER’s signal to noise ratios for successful tide
recovery have been adopted, Tidal investigations are also made easier
because the frequencies are well known from astronomical observations,
Tides and other features with periods shorter than the minimum sampling
time can therefore be estimated if the period of the irregular data is
long enough to adequately sample their signals. The success of this
procedure can be gauged from the a posteriori variance-covariance
matrix, Least squares spectral analysis should therefore make possible
the identification of features in the sea surface at varying periods,
The determination of significant harmonics in the sporadic time series
of SSH data or CROSSOVER data, will depend on the distribution of data
in time and space. Difficulties will arise from the correlation between
any orbital errors and the sea surface spectrum as sensed by the

altimeter.

Other possibilities exist for analysing the data sets, The
CROSSOVER data sets can be analysed by treating the two observations of
SSH and time for each crossover as a time series. In order to improve
this procedure the SSH values can be reduced to pseudo dynamic SSH (&)
by referring them to a higher reference model. This can be achieved by
subtracting the correspbnding modelled geoid height from each SSH value
(MATHER, 1978b), If a recent Goddard Earth Model is used for the higher
reference model &, should lie between #10 m, This is an order of
magnitude smaller than the original SSH. These data can then be analysed
for the spectrum of the SSH, using the least squares spectral analysis
technique described in Appendix A, In this case, estimated frequencies
higher than 1 cycle per 100 minutes (frequency of one GE0S-3 orbital
revolution) could result from either geoid model error, orbital error or
sea surface features, For lower frequencies the spectrum should result
from orbital error, However this may not be the case if aliasing from
high frequency sea surface features and geoid errors has occurred. It
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must be said at this stage that the interpretation of the estimated SSH
spectrum is a dubious procedure, even under ideal conditions.
Nevertheless, if the significant peaks in the estimated spectrum are not
highly correlated with the tides, they can be removed from the data.
Spectral analysis can therefore provide a potential method for filtering

orbital errors from the SSH data.

Orbital errors can be found through the entire range of time and
space (Chapter 5). The dominant periods can be estimated analytically.
However as shown later, empirical estimation is more viable., One
possible filtering method therefore involves the determination of
significant periodic orbital errors using all the data and then removing
these periods from the data before using it for global or regional
studies. An alternative and equally suitable method is to include these
errors as additional parameters in the oceanographic analyses. Both

these techniques have been adopted for this dissertation (Section 6.5
and 6.6).

6.3.3 Functional Analysis

The propagation of radial orbit error into SSH data as a function
of time can also be studied using equations of the form
n
ACm + 2 {Ci(Ft (¢2,l2,t2) - F (¢1,l1,t1))} = Vv (6.2)
i=1
where Afy is the difference in SSH between the L-th and M-th pass,
C; are the parameters of the problem and,

F; are the functional models.

Equation 6.1 is a special case of Equation 6.2. The advantage in using
Equation 6.2 is that any position dependent, time independent
contributions to the SSH (like those due to geoid heights) will not
affect the determination of the coefficients C;. In the analyses

presented here simple functional models were adopted for Fi for both

global and regional CROSSOVER data sets, These are described in
Section 6.5, Coefficients were also defined to describe the tide signal

in these analyses (Section 6,6)
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6.4 GE0S-3 ORBIT
6.4.1 Orbital Noise in the SSH Data

Simulation studies show that the total noise signal needs to be
below 1 m r.m.s if the dominant tidal signals are to be distinguished
from the noise (Section 6.1)., We could expect a few oceanographic
features to be highly correlated with orbital noise. For these cases the
noise must be modelled if the features are to be successfully

determined.

It is plausible to assume that the variance of the real SSH is
less than 1 m® (Chapter 2). Therefore any estimated features which are
larger than this must come from other sources. The variance of the LAS79
CROSSOVER residuals is 6.8 m® (see Table 6.1), therefore the variance
of the systematic noise signal is at least 5.8 m®. This is
significantly larger than the magnitude of the noise gignal which will
not alias the results for tidal parameters. One aim of the analysis in
this chapter is to reduce this noise variance in the SSH data to an
acceptable level so that the tides can be estimated. -Assumedly, this

level is about 1 m2.
6.4.2 Unmodelled Radial Orbit Perturbations

One can easily show that orbital errors are not random and
independent per pass as assumed for the "bias and tilt" filtering
technique (Chapter 5)., The predominant error source in most satellite
data analyses arises from incomplete or erronecus force modelling for
the equations of motion., The effect of these gravity model errors on
ephemerides can be estimated by various techniques., Equations relating
specific harmonic coefficients of the spherical harmonic expansion of
the Earth’s gravity field to orbital perturbations are given by
KAULA (1966), These expressions facilitate the estimation of the
frequencies and magnitudes of many perturbations, including those from
Earth tides and the geopotential,

Orbital errors will vary in magnitude for all parts of the
spectrum. Since ‘sparse range data are generally not sensitive to
tesseral harmonics in the gravity field, even the most recent gravity
field models have limited accuracy. These harmonics should cause a wide
band of unmodelled orbital perturbations with frequencies less than a
few days. Moreover, since the LAS79 data set were reduced using 5-day

arcs these perturbations should also be presént in the SSH data.

71



Radial (m)

-5 5 1.5
<::::::::>
_—
[—

-2.5 -1.5

1]
1-3.5
'
[}
)
.
1
1
1
)
)
]
L]
)
[
.
1
]
1
1
L]
L]
1]
)
1]
)
L]
H
1
i
]
]
)
H

4.5

35

25

-.5

Latitude

-15

A

GEM108

-35 -25

-4.5

-60 0 60

Figure 6.5

Radial Ephemeris Differences from a reference

GEM10 Ephemeris due to Geopotential model.

72



An alternative method of estimating orbital errors is to use
numerical error propagation techniques to estimate the effect of "known"
dynamic modelling errors on the solution parameters, This procedure has
been adopted for sensitivity studies of LAGEOS range data (Chapter 7).
However, for realistic sensitivity studies of altimetry data an
analytical method is preferred, This is because it is difficult to

simulate realistic amounts of data,

The suggested orbital errors modelled by MATHER et AL (1978b)
accounted for time dependent radial perturbations with one half, one and
fourteen orbital revolutions and a resonance effect at 4.7 days. The
effects of possible gravity model errors on the radial position of the
satellite are illustrated in Figure 6.5. As only the radial term is of
interest for altimetry measurements, the corresponding along-track and
cross-track differences have not been shown. These plots were generated
by determining the GE0S-3 ephemeris using GEODYN with various gravity
field models. These were then plotted as radial perturbationgs relative
to the ephemeris determined using GEM10 (LERCH et AL,1977). The other
models are: GEM7 (WAGNER et AL,1976); GEM9 (LERCH et AL,1977); and
GEM10B (LERCH et AL,1978a). The comparisons are interesting because the
GEM9 & 10 series of gravity models were derived using common data, as
shown below (LERCH et AL,1978b:19784d):

GEM9 satellite tracking

GEM10 satellite tracking + gravity

GEMIOB =satellite tracking + gravity + altimetry(l)

GEMIOC satellite tracking + gravity + altimetry(2)

altimetry(l)~ 700 globally distributed passes.
altimetry(2)- 28000 1°X1° block means,
A few coefficients will significantly differ from one gravity model to
another, This is because of the differing sensitivity of data used in
each model to these coefficients., These same coefficients, because they
are not well determined, may produce significant perturbations in the
true satellite orbit, These perturbations in turn will be observable in
the independent altimetry data, which is not as sparse as the laser
data. In Figure 6.5 a peak with a period of 102 minutes stands out from
the rest, This happens to be one revolution of the GE0S-3 satellite
orbit. There are other periods which are not as significant. These
produce the noticeable beat pattern in the GEMIOB plot,

The radial differences were also plotted against latitude
(Figure 6.5), These indicate that on a regional basis, &SSH data from
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ascending passes could be radially higher or lower than those from
descending passes, On the other hand the mean error is near zero, if the
differences are averaged over the globe. This phenomenon is evident in
the real data (PARRA et AL,1980). The frequency histogram for the data
in the Sargassc region is centred about -1.5 m (Figure 6.4). As the SSH
values from ascending and descending passes were sorted in the crossover
data sets (Section 6€.2.2), this figure indicates that SSH data from
descending passes of data are consistently higher than those from
ascending passes. For the global LAS79 crossovers the histogram is
centred about -0.5 m (Figure 6.3), which indicates that the phenomenon
averages out arcund the globe, Similar anomalies are present in the
WALLOPS data. A possible alternative explanation from gravity modelling
errors to explain this phenomenon is the presence of timing biases
(Section 6.2.2).

Closer inspection of the crossover residuals revealed that the

solutions for tides using only ascending passes have larger a posteriori

variance factors than the corresponding solutions using only descending
passes (MASTERS et AL,1979). This cannot be explained at this stage, but
possibilities include variable tracking station and gravity model errors
in different parts of the globe, Resuits from crossovers are analysed
further in Sections 6.5 and 6.6,

Other orhital perturhations can be expected from incomplete force
modelling., Atmospheric drag produces an along-track perturbation, which
is proportional to the velocity of the satellite. This perturbation
should not contribute much to the radial position over short periods of
time. In any case the effect on the orbit should be negligible because
drag was included as a parameter in the LAS79 orbit solutions (LERCH et
AL, 1978c), Earth tides produce another large perturbation, The
predominant ones occur in the inclination and longitude of the
ascending node of the satellite orbit with periods greater than 13
days (BRETREGER,1978), The perturbations are therefore mostly absorbed
by the estimated state vectors for the 5-day arcs. Perturbations from
Edrth tides do exist with periods less than 100 minutes., These affect
the radial position of the satellite orbit by less than 10 cm
(BRETREGER,1978), They should therefore have an insignificant effect on
the altimetry derived SSH, at least for the level of accuracy sought
here. Nevertheless these effects as well as those of other incompletely
modelled parameters mentioned earlier, need to be carefully investigated
if oceanographic features with amplitudes less than 10 cm and periods

less than 100 minutes are to be analysed.
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6.4.3 GE0S-3 Data Distribution

GEQS-3 traces out an n® X n°® grid every 25/n days, Figure 6.6
shows the ground trace for a 2 day arc, The minimum time interval
between crossovers is mainly latitude dependent, This can be determined
from the diagram, Also, this time interval depends on the direction of
the satellite motion., The time interval between crossovers can be
deduced from the following formula (MATHER,1971)

sin (A+6-Q) = tan ¢ cot i (6.3

where ¢ is geocentric latitude
A is longitude
8 is Greenwich Sidereal Time
Q is longitude of the ascending node, and
i is inclination
The predominant time varying elements give adequate accuracy here.

Hence,
sin ((A+65-0p) + (§-Q)t} = tan ¢ cot i (6.4)

where é and é are the rates of change of # and Q and,

Bs, Qp are initial values at time t=0,

Figure 6,7 shows a solution of Equation 6.4 for crossover time as a
function of latitude. Values for 8 and Q from KLOSKC and BELOTT (1977)
were used, The sampling rate of GE0S-3 for various regions can be

estimated from this figure,

Assuming that the orbital perturbations are secular, Equation 6.4
will give reliable results for short time periods, The formula is
unstable at high latitudes or low inclinations because of the
tan ¢ cot i term, The plotted solution (see Figure 6.,7) results in an
error below 0,1 days for the minimum crossover time, This was considered
reasonable for preliminary crossover estimates, The figure shows that
the smallest time differences between crossovers occur at high
latitudes. However, the subsequent crossover time is much larger. At the
equator the sampling is almost equispaced at about 0.5 days. Closer
study of a GE0S-3 orbit reveals that four altimeter readings can be
taken within a 10°x10° degree region within 48 hours. For the Sargasso
area, the best possible times of ohservation that can occur, assuming
time = 0 for the first observation are: 0, 0.4, 0.99 and 1.39 days. Time
dependent features are thus sampled at approximately half day intervals
during a 48 hour period., Since the satellite groundtrack drifts in
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longitude this pattern is not repeated until about 5 days later. The
pattern is significantly different to that adopted for a few sensitivity
studies (ZETLER & MAUL,1971: BRETREGER,1978), In reality this sampling
pattern is not reproduced., However, of all the regions for which data is

available it closest to being optimal for the Sargasso region,

The GE0S-3 data sets used for this dissertation contain SSH data
for a total period of 393 days (Section 6.2). Any features with
wavelengths between the length of 1 pass (20 minutes) and the orbital
groundtrack sampling rate (approximately 0.5 days) will not be sampled
in a suitable tashion for optimal estimation, This suggests that long
periods of altimetry data collection are needed to resolve the semi-
diurnal tides and probably also the diurnal tides. The same problem
arises with the SEASAT altimetry. Even though it is of higher accuracy,
the sampling of the ocean surface is probably not adequate to resolve
the tides because of the short duration of the mission., Combination of
.the two data sets may produce reasonable results, Despite these sampling
problems, the large amount of data collected should make possible the
recovery of the tide signal, especially when all the GE0S-3 data is
available, This has been shown by manybsimulation experiments (ZETLER &
MAUL,1971: MAUL & YANAWAY,1978% WON et AL, 1978: BRETREGER,1979).

6.5 DATA ANALYSIS
6.5.1 Orbital Errors

MATHER et AL (1978b) investigated crossover discrepancies.,
Equation 6.2 was used in their study to constrain the satellite
ephemeris and reduce the signal to noise ratio., The modelled orbital
features had periods of one half, one and fourteen reveolutions, and a
4,7 day resonance effect due to almost overlapping groundtracks as well
as linear drifts with time. A similar study of the LAS79 CROSSOVERS was
done by the author., The results are summarised in table 6.2. The above
periods accounted for only 10% of the total variance of the crossover
residuals, This is much less than the 85% which is required to reduce
the noise level to the 1 m® required for tidal analysis
(BRETREGER, 1979), One possible explanation is in Section 6.5,2.



TABLE 6.2
ANALYSIS OF LAS79 CROSSOQVERS

PERIOD { orbital J AMPLITUDE (m)

(days) revolutions *

0.00 bias 0.5

0.035 1/2 0.145

0.071 1 0.069

0.141 2 0.091

0.494 7 0.108

0.989 14 0.044

4,680 66 0,355

A priori Variance 6.76 m®, A posteriori Variance 6.10 m?
* using Equation 6.2

6.5.2 Spectral Analysis

The data were spectrally analysed to identify other significant
peaks in the SSH spectrum, which should be abundant with orbital
perturbations (Section 6,3.1). A faster version of VANICEK’s (1971)
method was used (Appendix A), The LAS79 SSH were converted to quasi-
dynamic SSH using the method described in Section 6.3.2. The GEM1OB
harmonic coefficients (LERCH et AL,1978a) were adopted to generate geoid
heights, An inspection of these sea surface heights revealed no
unusually "large" periodic’ features., This was substantiated by the
spectral analysis, The spectrum was determined between periods of 0,067
and 400 days. Shorter period errors can be removed using the bias and
tilt technique. In any case short period errors are difficult to

separate from oceanographic features of similar period,

It is difficult to estimate the significance level for peaks in
the estimated spectrum for this large data set. At the 95 % confidence
level any peaks larger than 0,07 percent of the total variance are
significant if a Fisher Test is used (NOWR0OZI,1967), The significant
peaks” are greater than 0.2 percent if a CHI-SQUARE test is usged
(KREYSZIG,1970), The significance levels are all very small, because of
the large amounts of data and assumptions about their probability
distribution. For convenience only peaks larger than 1% are listed in
Table 6.3. 1% of the total variance of the pseudo-dynamic SST data
(approximately 100m?) is large in comparison to the SSH spectrum.
Significant peaks happen to occur at periods equivalent to one orbital
revolution, two revolutions and 4.7 days. The other features have not
yet been identified with any known effects, however the half day peak is

close to the semi-diurnal tide spectrum.



The bandwidth of the 102 minute peak is less than 0,008 cycles per
day. This corresponds to a period of about 4 sec in this part of the
gspectrum and indicates that it is not easy to estimate the period of
orbital errors in the high frequency part of the spectrum as attempted
previously, The peaks are seemingly impossible to detect without
resorting to spectral analysis and this is the reason why the initial
estimates as given in table 6.2 do not reveal the features obtained by

spectral analysis. One exception is the 4.7 day resonance term,

The simultaneous least squares estimate of the amplitudes from the
pseudo-dynamic SSH are given in column 3 of table 6,3, These correspond
to the percentage variances from the spectral analysis in column 2, The
a posteriori variance factor for this calculation is 6.6 m* and
constitutes geoid model error, oceanographic and residual orbital noise,

By assuming that the ocean surface contributes 1 m* the orbital and

TABLE 6.3
SIGNIFICANT PEAKS in the SPECTRUM
of the GLOBAL SSH DATA

PERIOD PERCENTAGE ESTIMATED AMPLITUDES (m)
(days) VARIANCE *
0.06796 1.7 0.35 0.37
0.07068 + 5.1 0.59 0.73
0.07603 3.6 0.47 0.23
0.09000 1.1 0.21 0.14
0.14352 ++ 1.2 0.36 0.38
0.16024 1.1 0.31 0.15
0.50312 2.3 0.42 0.20
1.3 1.0 0,38 0.19
1.803 1.1 0.38 0.25
4,70588 +++ 1.3 0.49 0.35
14,81481 1.0 0.11 0.10
19.04762 1.0 0.26 0.16
28.,57143 2.2 0.30 0.25
30.76923 1.7 0.26 0.21
57.14286 1.6 0.30 0.33
80. 1.1 0.42 0.32
200, 4,5 0.63 0.19
400, 2.2 0.42 0.59
total 37.7 2.75 1,91
+ 1 revolution
++ 2 revolution
+++ resonance
* estimated using Equation 6,2
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geoid model noise account for 5.7 m?. Furthermore by assuming the
GEMIOB geoid model contributes about 1 m® (LERCH et AL,1978d) then
orbital noise contributes 4 m® to the variance.

A second analysis of the crossovers using Equation 6.2 and the
periods derived from the spectral analysis resulted in the amplitude
estimates shown in column 4 of Table 6.3. The & posteriori variance

factor from this solution is 4,97 m?, These harmonics therefore account

for 27 percent of the crossover variance leaving approximately 4 m? of
orbital noise in the data. Accordingly, the previous estimate for the
orbital noise variance of 4 m?* represents a reasonable if not
pessimistic value. Unfortunately this is still 300% too large for tidal
investigations. Nevertheless, it is an improvement on the previous

figure obtained in Section 6,5.1.

Estimates of the tides were made concurrently with these spectral
results, The results presented by MASTERS et AL (1979: 1980) and COLEMAN
(1981) did not allow for any prefiltering of orbital errors, It is
therefore not clear whether the removal of the orbital errors as
determined in this section would have enhanced those calculations, The
systematic noise is probably still too high., These studies have been
discontinued, principally because improved and more complete data sets
will eventually become available for both the GE0S-3 and the SEASAT
missions, The techniques developed here could be used to minimise
systematic noise in ény future analyses. Indeed GOAD et AL (1980) have

already used a similar procedure for the SEASAT data.

At this stage it is evident that the noise signal, after removal
of periodic orbital errors, is still too large for tidal analyses.
Either the assumptions about the nature of the errors is incorrect or
noise of higher frequency than 1 cycle/100minutes is present, At this
point it appears that not much can be done, in either case, to filter

the errors from the tide signal.
6.5.3 Positional Dependence

The crossover data were examined in the previous section assuming
that errors are only time dependent. Tests were performed to check for
position dependence in the crossover residuals. For this study, in order
to simplify calculations, the crossover residuals were averaged for
1° areas. Inspection of these residuals revealed that no obvious long
wavelength trends exist., Contrary to previous conclusions this indicates
that ascending passes are not biased with respect to descending passes
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on a positional basis., A spherical harmonic analysis of the residuals
also verified this. The estimated coefficients are given in Table 6.4,
Furthermore, the variance of the 1° block means was large at 2.9 m?,

This figure alsoc indicates no positional dependence, except for very
small specific regions, like the Sargasso Sea., The analysis was

therefore not pursued any further.

TABLE 6.4

SPHERICAL HARMONIC SOLUTION *
for the CROSSOVER RESIDUALS

degree | order Cnm Snm
n m
0 0 0,296 -
1 0 0.378 -
1 1 -0,158 0,074
2 0 0.124 -
2 1 ~0,061 -0.203
2 2 -0,136 -0,351
3 0 -0,149 -
3 1 -0.053 -0.063
3 2 0.068 0.137
3 3 -0,048 -0.059
4 0 -0.010 ' -
4 1 ~0.043 0.011
4 2 0,052 0,137
4 3 -0.035 -0,166
4 4 -0,006 -0,109
5 0 0.039 -
5 1 -0.013 0.033
5 2 -0.005 -0.005
5 3 0.020 0.009
5 4 -0.068 0.017
5 5 0.088 0.082

*,,..(fully normalised in metres)
6.6 TIDAL ESTIMATION

The formulations for estimation of the tides given in Chapter 2
can easily be modified to include terms with the frequencies of orbital
errors., Alternatively, the data can be prefiltered. If the region is
carefully chosen, most of the position dependent terms in the Fourier
formulation are not necessary and the equation becomes a one dimensional
time ~series. This is the case for the S degree area chosen by MAUL &
YANAWAY (1978), which has a fairly smooth geoidal slope and uniform
tide. Therefore, it is possible to model the tide with a small number of

coefficients.
In order to estimate the sensitivity of the filtered data to the
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tides, the mean amplitude and phase of the M2 tide in the Sargasso
region were estimated and compared to the expected tide in the region,

These results are given in the following sections.

6.6.1 Preliminary Estimates for the M, tide using CROSSOVERS in the
Sargasso Sea

A preliminary regional analysis was done by the author using
Crossover data in a 5°X5° area bounded by latitudes 27°N and 32°N and
longitudes 287°E and 292°E. This area corresponds to that studied by
MAUL & YANAWAY (1978), Solutions were obtained for coefficients
representing the average'Mz tide signal, biases, linear trends and some
periodic orbital errors as previously defined. The solutions display a
large variation, depending on the selected parameters. This indicates
that the data are insensitive to the tidal spectrum. The results are
given 1in Table 6.5, The r.m.s. value for the residuals (0g) is never
less than than 1.3 m, This indicates that there is a large noise signal
in the data.

TABLE 6,5

ESTIMATE FOR THE M, TIDE
for a 5°x5° AREA in the SARGASSO SEA

model amplitude 0.4 m, phase 356°

SOLUTION TYPE Tl AMPLITUDE PHASE
*% (m) (m) *
T,0,B 1.5 0.42 293
T,0,B,LT 1.3 0.25 289
T,B,LT 1.5 0.21 289
T.B 1.6 0.40 280
M2 2.4 0.59 290
M2,B 1.8 0.23 279
M2,B,LT 1.7 0.08 - 266
M2,B,LT,4.68 1.6 0.1 180

*  PHASE in degrees with respect to Greenwich
*¥*% Parameters estimated for each solution

T PP tidESMz,Ki,O1,P1,Sz,N2

0 «.. Oorbit 4.7 days, 0.5 rev, 1 rev, 2 rev, 7 rev, 14 rev
M2 ... Mz signal only

B ... bias ascending-descending passes

LT ... linear trend

4,68 ,.. rescnance term



Solutions were also cbtained using the WALLOPS data. These were
similar to the anomalous results of other investigators (see MAUL &
YANAWAY,1978)., The LAS79 data give results which are closer to the
correct magnitude. However the phases are consistently lower than the
known tide values for the region. COLEMAN (1981) obtained more
reasonable results wusing the full Fourier formulation described in

Chapter 2,

TABLE 6.6

ESTIMATE for the M, TIDE
for a 12°x12° AREA in the SARGASSO SEA
model amplitude 0.4 m, phase 356°

FILTER PARAMETERS AMPLITUDE PHASE O, (m)
(m) * a priori

None M2 0.39 308 2,18
M2,B 0.21 321
M2,B,LT 0.12 352

Tl M2 0.22 13 1,78
M2,B 0.22 23
M2,B,LT 0.21 22

T2 M2 0.24 13 1.82
M2,B 0.24 27
M2,B,LT 0.24 29

T3 M2 0.24 356 1.96
M2,B 0.22 12
M2,B,LT 0.22 22

T4 M2 0.22 346 1.93
MZ,B 0.18 6
MZ,B,LT 0.18 2

¥ PHASE with respect to Greenwich in degrees

Tl ... All periods shown in table 6.3

T2 ... Tl without the 0.50312 day term

T3 ... Periods of 0,07068 days, 0,07603 days, 4.70588 days,
28.57143 days, 200 days and 400 days,.

T4 ... T3 without the 0.50312 and 400 day terms

SOLUTION PARAMETERS

M2 ...M; signal only

B ... bias ascending-descending
LT ...linear trend

Problems could be expected when trying to estimate the average
tide for a 5° X 5° degree region., The sampling is praobably ideal for a
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larger 10°x10° area, as was discussed in Section 6.6.1, Hence, for a
5° x 5° area, the distribution of data with respect to time may be too

sparse for optimal estimation of the tides.

6.6.2 Filtered Estimate for the M, tide wusing CROSSOVERS in the
Sargasso Sea

The same technique as described in Section 6.6.1 was employed to
analyse a 12°x12° degree block in the Sargasso region as shown by
Figure 6.8. The larger area was selected to further improve the sampling
with respect to time. The procedure was modified to remove the features
previously determined by spectral analysis of the global data set before
estimating the tide., This was possible because of the fairly uniform

tide over the region (Figure 2.3).

Four models were used to filter the orbital errors from the
data. These are summarised in Table 6.6, The table lists the results of
the solutions obtained from Equation 6.2 and solving for the M,tide
with biases and tilts, The a priori r.m.s. for the data (o,) show that
the filtering procedures have reduced the noise in the data by
approximately 30% compared to the unfiltered case (row 1), The peaks
from Table 6,3 however, do not necessarily improve the regional data.
This is shown by the fact that the filtering model T3 results in a
larger variance than T4, even though less terms are included in the
latter, Unfortunately, all the variance factors indicate that the signal
to noise ratio is to small to recover the M, tidal signal

. (BRETREGER, 1979),

For the regional data distribution shown in Figure 6.8 and the
functional modelling of Equation 6.2, the M, tide turns out to be not
highly correlated with the features shown in table 6.3, The highest
correlation (0.3) exists between the M; coefficients and those for the
0.16024 day period. However, the differences between the various
solutions indicate there is enough aliasing between the parameters and
the noise to make tidal estimation impossible at this stage., Low
correlations indicate however that long-period orbital errors can in
general be removed from the data without affecting the tidal signal. The
method used is therefore potentially superior to the bias and tilt

technique.
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6.7 SUMMARY

An analysis of crossover residuals revealed time dependent
features in the global data sets. After these errors are removed
approximately 2.2 m r.m.s of residual noise remains unaccounted for, The
cauge of the noise is unknown at this stage. It may not be orbital
error, but can be accounted for as high frequency noise, and removed on
a pass by pass basis using the bias and tilt technique. Unfortunately,
this procedure also removes the tidal signal. One objective of this
investigation was not aqhieved. That is, the signal to noise ratio for
tidal estimation is still too large. However the method will be useful

for future analyses of altimetry derived SSH data.

Preliminary results for the M, tide in the Sargasso Sea using the
Crossovers are given in Section 6,6, These results were calculated
concurrently with those given by COLEMAN (1981). Reliable estimates of
the M; tide are not possible at this stage, due to the amount of noise
remaining in the LAS79 data. The situation should improve when the full
GEOS5-3 and SEASAT data sets are available and the filtering procedures
are further refined. Moreover, the noise levels are much lower in these

later data sets, which along with thé longer time span will produce

better results,

Spectral analysis of the pseudo-dynamic sea surface heights is a
useful way of estimating periodic orbital errors. Two alternatives are
then possible to remove the errors, either to prefilter or to include
coefficients for the simultaneous estimation of oceanographic features
and orbital error. However, for larger data sets careful consideration
needs to be given to making computational algorithms faster, Study of
the methods used to determine satellite ephemerides and to reduce
altimetry measurements to sea surface heights can result in more
effective filtering procedures than presently used, The spectral
analysis method should be better suited to the continuous SEASAT data.
Analytical theory could possibly be used more effectively to estimate
significant perturbations in the orbit., However the effectiveness of

this procedure may be limited as shown in Section 6.5.2.

It is apparent from the results presented her~ that useful
information about error sources is available if the theory and
techniques used to reduce the altimetry data are known. It is obviously
beneficial to include all available information in these applications of

altimetry data,
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CHAPTER 7

The LARGE-SCALE CRUSTAL MOTION OF AUSTRALASIA DETERMINED by LASER
RANGING :
A FEASIBILITY STUDY

7.1  INTRODUCTION

The experiments undertaken by the author to determine the
feasibility of processing LAGEOS laser range data at the University of
New South Wales are presented in this chapter. Special attention is
given to devising a suitable method of analysis for crustal motion using
the LAGEOS data acquired at several sites in the Australasian region.
Determinations are made of the effects of systematic errors in the range
prediction models as well as the amount of random noise on the accuracy
obtainable,

The geophysical questions that can be answered with position
determinations of high accuracy were described in Chapter 3. The
tectonic features in the Australasian region and an Australian proposal
to determine crustal motion in the Australasian region were also
described. The aim of high accuracy position determinations in this
context is to determine the motion of terrestrial positions with respect

to time,

Fixed laser ranging stations in Australia are located at Orroral
valley, south west of Canberra, Australian Capital Territory, and at
Yarragadee near Geraldton, Western Australia. The Orroral station
belongs to the Smithsonian Astrophysical Observatory while Yarragadee
belongs to NASA (Due to funding cuts within NASA the Orroral SAO laser
wag shut down in February 1982). Neither site is ideal from the
viewpoint of local tectonics. They do however provide a baseline, with
respect to which crustal motion may be measured both inside and outside
Australia, By providing additional southern hemisphere tracking support,
these stations are important for global geodynamics programs because
they strengthen the orbit determination capability of the global laser

tracking network.

The Australian National Mapping Division has commenced modifying
its lunar laser ranging equipment at Orroral to track satellites as well
as the Moon (GREENE,private communication,1981)., The aim is to modify
the telescope and to install a high technology laser and detector
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capable of ranging to better than 3 cm. When this has been completed
(September 1983 is the current estimate) and sufficient time has been
allowed to calibrate the modified system against the Smithsonian
station, the latter could be used as a quasi—transportable station at
selected sites throughout Australasia. A site in Antarctica and one at

Charters Towers in Queensland are now favoured (STOLZ,1981).

The accuracy with which the relative motion between two points can
be determined depends primarily on the accuracy of the baseline
measurement, and the period between the first and last measurements
(NASA,1979), Clearly the highest feasible measurement accuracy is
required 1in order to obtain the desired information on tectonic motion
and plate distortion in the shortest possible time. Equation 7.1 gives
the accuracy of relative velocity determination between two points, with

baseline observations made at time intervals At for a total period T

(NASA,1979),

g (12T/AT) 12
o = 7 [ (1+T/AT)(2+T/AT) } 7.1

where o, is the velocity accuracy between two points, and

0, 1is the baseline accuracy

For o, = 5cm and At = Syears, o, = l.4cm/year after 5 years,
0.7 cm/year after 10 years and 0.3cm/year after 20 years. For
o = 10cm and At = 1 month, o, = 9cm/year after 1 vyear, 3.3cm/year
after two years and 0.9cm/year after 5 vyears. Therefore, relative
velocities greater than 10 cm/year should be observable after 2 years of
observation, if at least one baseline determination, accurate to 10 cm

can be made every month,

The accuracies of the laser ranging solutions for relative station
positions are difficult to assess. The formal precisions give little
information on the true accuracy of position determinations. Orbit
modelling errors in particular degrade the results obtainable. For short
orbital arcs of a few revolutions, the largest source of error in the
orbital computations is usually the gravity field, but as the arc length
increases to days, weeks and months atmospheric drag, solar radiation
pressure, tidally induced and numerical integration errors usually begin
to dominate (SMITH,1978). There are few external standards against which
satellite rangiﬁg can be tested, However, since the Australian continent
appears to be relatively stable (see Chapter 3), one can be fairly sure

that the method is at fault if larger than expected motions are
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detected. In this way, knowledge of the geodynaéics of the Australian
region is useful for the maintaining and ascertaining the precision of
the SLR system. Error magnitudes have been systematically reduced so
that estimated baselines are now consistent to better than 10 cm over a
twelve month period (KOLENKIEWICZ,b1981; SMITH et AL,1982).

7.2  METHOD

The orbit and geodetic parameter estimation program GEODYN (MARTIN
et AL,1976) was used to construct a model for the topocentric range to
the LAGEOS satellite. In GEODYN, use is made of a multitude of dynamic
models. The hypothetical ranges are therefore sensitive to these models.
The sensitivity of estimated tracking station positions within the
Australian region to induced systematic nerturbations in the dynamic
models, and also to random noise in the range measurements was studied.
The implications for geodynamic calculations of using fynamic satellite
theory and Bayesian estimation techniques are examined in Chapter 8. The

effects of model perturbations and random noise on tracking station

position were determined by examining the a posteriori  variance-
covariance matrix and the corrections to the initial values for position

and baseline length, These results are given in Section 7.4.

The simulations were based on five days of simulated tracking
data, consisting of one range observed every eight seconds at Orroral
and one every second at Yarragadee, All possible passes were included,
The ranges for which the zenith distance exceeded 80 degrees were
excluded, Furthermore, the longitude of one station Yarragadee was held
fixed during the computations. The effects of these assumptions are
dealt with later. A 5-day arc was chosen as a basis for the study for
the following reasons:

(1> the radiation pressure and other short term orbital
perturbations for LAGEOS can be modelled to a high accuracy over this
period (BENDER & GOAD,1979; SMITH,1978);

(2) assuming that all possible data is collected, the baseline
precisions do not improve significantly after five days of data
collection and;

(3) the amount of data is of manageable size.

We were also influenced by the fact that analysts at Goddard Space
Flight Center have generally adopted 5-day arcs (SMITH et AL,1979%a;
CHRISTODOULIDIS & SEIFFERT, 1980).
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7.2.1 "Range Data”.

Simulated topocentric ranges were obtained at the required time
interval by:

- generating an hypothetical LAGEOS ephemeris with GEODYN. The
groundrack is depicted in Figure 7.1:

- transforming the ephemeris to the same reference system as the
tracking station coordinates:

- calculating the range ohservations for periods, when the
satellite was above the horizon for a given tracking station and:

- reprocessing so as to create a data base, which exactly fits the

GEODYN dynamic models.

The ephemeris from GEODYN is obtained by numerically integrating
the equations of motion for the satellite. The main perturbing force is
the Earth’'s gravity field. Other perturbations modelled were
atmospheric drag, solar radiation pressure, and the effect of Earth
tides. The GEM9 gravity field model (LERCH et AL, 1977) was adopted as

the reference gravity model,

The ephemeris produced by GEODYN refers to a True-of-Date
coordinate system, Thus it was necessary to model length-of-day, polar
motion and nutation in right ascension, in order to transform the

ephemeris to the terrestrial reference system. The transformation used

was;:-
T = WS

cos 8 ~sin 8 -X cos 8-~y sin8
sinéd cos 6 -X 8inf+y cos @ (7.2
X -y 1

3
1}

where x,y are are components of pole position and

8 is the Greenwich Apparent Sidereal Time.
In this transformation terms less than 0{10%2)} were neglected,

The tracking stations at which the satellite was in view at any
time were determined by calculating when the elevation angles to the
satellite were positive. The simulated range observations at the desired
tracking time interval were obtained by interpolating the ephemeris and
calculating the range distance from

Pp=s-r
where p is the range measurement vector,
8 1is the position vector of the satellite and,
r is the tracking station position vector.
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At the time that these investigations were made, GEODYN had an
option to generate simulated data if the observation times of the range
measurements were available. Later versions of the ﬁrogram can simulate
data without initial data. The method for generating simulated range
data, as described in this section, is therefore now redundant.

7.3  SYSTEMATIC PERTURBATIONS

Estimated tracking station positions are affected by many sources
of error. These errors result from:

- the force model, which is used to determine the orbit,

-~ the transformation model, which relates terrestrial positions to
the reference system in which the equations of motion are integrated,

~ the numerical limitations of the computer and

-~ observational errors.

The dominant error source in dynamic solutions for tracking
station position arise from gravity model errors. The LAGEOS orbit and
physical characteristics (see Chapter 4) were specifically designed to
minimise errors. Atmospheric drag and solar radiation pressure
perturbations are small because of the spherical shape and high density
of the satellite, Indeed the atmospheric drag model used in GEODYN
produces zero acceleration at the altitude of LAGEQS, Moreover, only a
small number of coefficients representing the Earth‘s gravity field
significantly perturb the orbit., These are mostly below degree ‘10 except

for a few zonals and resonance coefficients (LERCH et AL,1980).

SMITH and DUNN (1980) conclude that the presently available
dynamic models are inadequate to describe the LAGEOS orbit over many
months, For short arcs of a few revolutions the dominant error sources
are not as easy to identify., Except for resonance perturbations the
effects of tesseral harhonics are short term and periodically cancel out
(KAULA,1966), These perturbations are therefore hard to detect in sparse
tracking data (WAGNER & KLOSKO0,1977).

CHRISTODOULIDIS " et AL (1981) and LERCH et AL (1980) identify the v
predominant gravity model perturbations. Frequencies and magnitudes are
given as well as the possible parameters which could absorb them in a

solution system,



7.3.1 Force Model Errors

SMITH (1978) concludes that the limitations imposed on short arc
orhital calculations are derived from gravity modelling. One aim of this
dissertation was to ascertain computational procedures for minimising
gravity model error in determinations of tracking station pusition and

especially in haselines.

The most common technique used to solve for tracking station
positions with laser range data is to simultaneously estimate tracking
station positions and epoch state vectors for multiple passes of the

satellite. This is referred to as the long—arc method,

CHRISTODOULIDIS & SMITH (1980) and CHRISTODOULIDIS et AL (1981)
have done an error analysis for the prospective use of the TLRS in the
San Andreas Fault region of the United States. This investigation is of
interest here, because there are many similarities to the work in this
chapter. FErrors due to range biases, refraction, GM and gravity field
coefficients less than degree 10 were included in the study. The
variance-covariance matrix for the GEM9 gravity field model (LERCH et
AL,1977) was chosen as a plausible error model for the gravity field.
CHRISTODOULIDIS et AL (198D) found that the harmonics, which
significantly affected baseline measurements were :- Sw , S», Sz,

Cwx , Su, Sw, Cz, Sun, S . Cu, Cu , Czo. These coefficients

are in general those which are expected to significantly perturb the
LAGEOS orbit (CHRISTODOULIDIS et AL,1981). They also found that an error
of one part in 107 in GM contributes 1.8 cm to the total baseline error
of 3.1 cm. This is significant, The remaining gravity model errors
contributed 0.4 cm to the total error in the baseline measurements. GM
can therefore be a dominant error source if it is not treated correctly

in any solution,

The dominant resonance effect, with a period of about three days,
is due to the order six gravity coefficients, These effects should be
mainly absorbed by the state vector if the arc lengths -are kept to a
few days. M-daily and other short-period perturbations could be problem
error sources if the data do not adequately sample the perturbations,
that . is, the errors cannot be estimated or averaged out., The other
effects due to the low-order tesseral harmonics may only be removed from
geodetic solutions if the arcs are long enough, so that the errors
cancel out (CHRISTODOULIDIS et Al,1981). The periods of these errors

must be kept in mind when selecting the optimimum arc length for orbital
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or geodetic position calculations, Short period terms may be eliminated,
if single-pass solutions are used, However, it is not clear if single-
pass multi-arc solutions will remove all short-period perturbations to
the centimetre accuracy level required for geodynamics. It is obviously
a difficult task to determine the optimum technique for minimising the

total error from gravity modelling,

The changes in positions and baseline for Orroral and Yarragadee,
due to induced changes in certain coefficients of the gravity field
model, are described below. The GEODYN program was used for the
solutions. It was assumed that the actual errors in the gravity model
were known, This is essentially the same procedure as adopted by
CHRISTODOULIDIS & SMITH (1980) and CHRISTODOULIDIS et AL (1981),
However, these authors used the ORAN program, which was not available in

Australia at that stage.

The ORAN program was specifically designed for this type of error
analysis, A multitude of error sources can be modelled and the effects
of these errors on derived parameters can be estimated (HATCH et
AL,1973), One ORAN run is equivalent to many GEODYN runs. The results
obtained with GEODYN can therefore be obtained more efficiently with
ORAN, For example, the individual contributions of all gravity field
coefficients can be obtained in one run of ORAN compared to one run per
coefficient with GEODYN., The principles of ORAN are described in
Chapter 5,

GEM9 was used as the reference gravity model. An error model was
adopted for the gravity field by perturbing the GEM9 coefficients with
the values given in Table 7.1. These perturbations of the coefficients
represent changes in the gravity field due to specific changes in the
Earth’s shape (MATHER et AL,1977b). The model does not represent real
errors in the gravity field models, Nevertheless, it should give an idea
of the effect of errors in the low degree coefficients (less than degree
5) on estimated tracking station positions. Several of the coefficients,
which CHRISTODOULIDIS & SMITH et AL (1980) found to be significant were
included. The coefficients with especially large perturbations were Cau,
Cz, Cz, Sxu, Sz. The changes to the other coefficients were very
small. The effect of most low degree tesseral harmonics may not be

evident in these analyses.

A third model contained the low-degree coefficients of GEM9 and
the high degree coefficients (greater than degree 5) of GEM10B (LERCH et
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AL,1978a), This model should show the effect of perturbations in higher
degree coefficients on position determinations,

TABLE 7.1
Spherical Harmonic Coefficients for Gravity Model Changes

Gravity Model

C S ERROR MODEL coefficient
20 -1.043e-08 -0.10826375e-02
30 3.823e~11 0.25359250e~-05
40 -1.940e-11 : 0,16245586e-05
50 -2,025e-12 : 0,22698397e~06
21 1.128e~10 ~{3,16351803e-09
31 1.130e-11 0,219078072-05
41 7.683e-14 ~-0,50552741e-06
51 -1.26le-12 ~0,420514262~-07
22 4,536e-09 (,15756781e-05
4 2 1.32%-12 0.78843844e-07
21 -5.910e~10 -3,582670562-08

31 1.130e-11 0,27268204e~06

41 -4,027¢-13 ~-(.44125055e-06

51 ~1.26le-12 ~0,7900297 4e~07

22 -2.576e~0(% ~-0,90488902e-06

4 2 -7.548e~13 (.14816683e~-06

Other force model errors are discussed by BENDER & GOAD (1979) and
CHRISTODOULIDIS et AL (1981), Errors dus to Earth albedo radiation
pressure and upper atmosphere radiation pressure result in along-track
ephemeris errors of 2 to 3 cm end orbital plane errors of Scm/month,
Tidal effects are more serious, but in general they are long-period and
will be absorbed by the state vectors. This feature has been exploited
for studying tide perturbations on satellite orbits (SMITH & DUNN, 1980:
SMITH et AL,1979). Atmospheric drag is almost non-existant at the
altitude of the LAGEOS orbit, although, RUBINCAM (1980) attributes the
observed along track perturbation of sbout 1.lmm/day to an unmodelled
drag effect. Except for the tides, these perturbations are all very
small in magnitude. They are alsgo long-period effects and should not
affect tracking positions estimated from short arcs of a few days.
CHRISTODOULIDIS et AL (1981) substantiated these findings. Their results
show that errors in solar radiation pressure only becomes significant
for 70 dey arcs, but that tides and ocean loading effects are

negligible,

For satellite solutions of tracking station position scaling
problems need to be carefully considered. Scale is partly associated
with the force model and can be introduced from both GM and the speed of
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light. The LAGEOS orbit is especially sensitive to GM (CHRISTODOULIDIS
et AL,1981). This implies thet the speed of light and the value of GM
must be consistent. If this is not so solutions for geodetic position
will be aliased by the two "scaling” parameters, An alternative is to
estimate GM simultaneously along with the geodetic parameters, This
procedure was used for GEM9 (LERCH et AL,1977) and has alsoc been adopted
by STOLZ et AL (1981), The effects of posgible GM errors are
investigated later (Section 7.4.1).

7.3.2 Inertial-to-Terrestrial Transformation Errors

The transformation model is used to calculate the orientation of
the Earth with respect to inertial space. It is conventionally divided
into precession, nutation, Ilength-of-day and polar motion (Chapter 5).
One requirement for the {ransformation is to convert terrestrial
dependent gravity forces to inertial space for solution of the equations
of motion., Any errors in the transformation will therefore propagate
into the calculated position of the satellite as pseudo-force model
errors, These are referred to as dynamic effects. Perturbations in the
calculated orbit can therefore be due to erroneous precession, nutation,
sidereal time, and polar motion models (LAMBECK,1973: REIGBER,1981).

The geophysical significance of the low degree harmonics is
described in Appendix B. The position of the geocentre is defined as the
origin by defining Cy = Cy = Sy = 0, The degree two coefficients
define the orientaton of the principal inertia tensor with respect to
the terrestrial reference system, Specifically, Cx and S define the
orientation of the "figure axig", which is important for geodetic
reference systems. These quantities have conventionally been held fixed
for orbital calculations, Yet, they differ significantly between various
gravity models (see LERCH et AL,1974,1977,1978a; BALMINO et AL,b1976).
This means that the reference gystems for these gravity models are
different,

The Eulerian equations of motion define the angular momentum of a
rotating body through its inertia tensor and angular velocity. C, and
Sz are therefore directly tied to the dynamics of Earth rotation
because of their relationship to the inertia tensor. Bounds can be
placed on their magnitudes because the rotation of the Earth has been

monitored regularly since the beginning of the 20th century,

The logic of this procedure is as follows. The locations of
gravity measurements are defined with respect to a terrestrial reference
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asystem, Satellite orbital perturbations are defined with respect to a
terrestrial reference system, through the previously mentioned inertial-
to-terrestrial transformation (Chapter 5). If we assume that the
transformation models are correct and consistent then the low-degree
harmonics of a combination gravity field, as derived from these
observations, will define the orientation of the inertia tensors with

respect to our terrestrial coordinate system.

Observations of the Earth’s polar motion define the orientation of
the instantaneous axis of rotation with respect to the observatory
positions. In the case of the BIH these positions define the terrestrial
reference system (GUINOT & FEISSEL,1968: BIH,1979). Thus we have the
orientation of the rotation axis with respect to our terrestrial
coordinate system, which is hopefully the same as that used for the
gravity model. Theoretically the instantaneous axis of rotation for a
rigid non-excited body undergoes circular motion around the principal
axis of inertia (figure axis) (MUNK & MACDONALD,1960), It is well known
from observations that for the Earth the average period of the motion is
approximately 14 months, It is therefore possible to determine the
position of the "figure axis" with respéct to the rotation axis, which
is in turn defined relative to our terrestrial coordinate system. This
can be done by determining the average position of the axis of rotation
and means that it is possible to define Cy and S» from polar motion
data, If rotational and tidal deformation are included, the path of the
figure axis can still be easily determined (REIGBER,1981),

Summarising the argument so far, Cx and Sy are defined by the
gravity models, These coefficients are also defined by the orientation
of the figure axis with respect to the terrestrial reference system.
This orientation can be determined in an average sense from the
orientation of the instantaneous rotation axis, which is in turn
monitored by organisations 1like BIH. It is therefore possible to
determine Caz and S, from polar motion observations, NAGEL (1976) and
REIGBER (1981) have both performed these types of calculations,

The values determined from polar motion observations can be
compared with the gravity model values, assuming that they both refer to
the same reference system. The comparisons of Cx and Sx determined by
gravity and polar motion data do not agree., Tnere is an inconsistent set
of parameters being used for most dynamic satellite calculations. The
problem is complicated further by the non-rigidity of the Earth,
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Theoretical calculations show that for a non-rigid Earth wundergoing
rotational and tidal deformation, the figure axis has a diurnal, sixty-
metre oscillation with respect to the Earth’s surface (McCLURE,1973).
This means that the diurnal variation of Cx and S is as large as
their average magnitude, These variations can be significant for orbital
calculations (REIGBER,1981). Reference systems defined by Cx and Sxu
are obviously unsuitable for geodynamical applications, It is hard to
imagine that they would not affect geodetic position calculations if
they are not accounted for, This is especially the case if the
sensitivity of baselines to Cx and Sz is considered
(CHRISTODOULIDIS, 1981), These coefficienls will result in diurnal
m—daily orbital perturbations., The tide model used in GEODYN should
however minimise the diurnal effects. A few investigators do correct the
Cx Sa coefficients to the published polar motion values (SCHUTZ et
AL,1979:1980). Range data to LAGEOS should be sensitive to orbital
perturbations caused by inconsistency between parameters which define
reference systems. Evidence of residual tidal frequencies does exist
(CHRISTODOULIDIS & SEIFFERT,1980), REIGBER (1981) has investigated
several of these problems for the GE0S-2, D1D and BEC satellites.

Transformation model .errors will propagate into the modelled
ranges because of the incorrect conversions of satellite and tracking
station positions to the same reference system., These errors in the
transformation models are referred to as kinematical effects and will be
absorbed by the solution parameters, Estimated tracking station
coordinates should therefore change from epoch to epoch with periods of
the transformation errors. For example, latitudes should change with
dominant fourteen month and annual periods if polar motion is not
modelled. Nevertheless, if simultaneous observations are used, inter-
tracking station baselines should be unaffected because the
transformations, by definition, preserve scale, Care should however be
exercised with non-simultaneocus data as often used in long-arc
solutions, because the errors from each tracking station may not
propagate equally into baselines, It is not clear under these conditions

that estimated baselines can be expected to be invariant with time,

The spectrum of Earth rotation is summarised in Chapter 5,
Knowledge of errors is obviously important to the interpretation of
geodetic positions, which have been determined using dynamic techniques.
Care must be exercised with pole coordinates given by the different
authorities, because their reference parameters are different and also
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periodically updated, For example, the BIH system changed substantially
in 1979 (BIH,1979)., Any data analysed before and after that date,
without accounting for the reference system change will be affected,
The same care will need to be used when a new nutation series is adopted
by IAU (Chapter 5), The comparison of geodetic coordinates from

different organisations is complicated by these problems,

The problem of defining a unique, invariant reference system for
geodetic position is very complicated and has not been solved at present
to the required accuracy for geodynamic calculations. Therefore,
crustal motion at this stage can only be determined from inter-tracking
station baselines., 1If all the possible Earth rotation error sources are
considered, it is reasonable that dynamically determined tracking
station coordinaetes could change by up to 50cm from epoch to epoch. The
criterion for determining the optimum epoch length is to determine that
epoch length for which short period errors cancel out and long period
errors are adequately modelled, Nevertheless, even with this optimum
procedure, geodetic positions will change significantly with time,
Results for tracking station positions have improved dramatically in
recent years (SMITH et AL,1982)., Various alternatives can be used to
minimise errors:

(i) Use arc lengths which are much longer Epan the periods of the
expected errors, so that the errors average out,

(ii) Use short arc lengths and eliminate the errors through
combination of parameters, such as derived baselines.

(iii) Simultaneously estimate the erroneocus models.

There are inherent problemg with each of these methods.

7.4 RESULTS
7.4.1 Gravity Model Errors

Figures 7.2 to 7.4 give the variations in tracking station
position as a result of the simulated gravity model errors alone. The
modelled errors were described in Section 7.3.1. Tracking station
positions (¢,A,h) of Orroral and Yarragadee and a satellite state vector
(XYZ,&Qé) representing arc lengths from one to five days were solved
for., The longitude of Yarragadee was held fixed. The reason for this is

given in Chapter 8,

Table 7.2 gives the mean and r.m.s. for the range residuals from
the previously described solutions. The gravity models described in

100



Section 7.3 were used in these solutions. The GRIM2 gravity field model
(BALMINO et AL,1976) was added to show the effect of a completely
independent model. The r.m.s. of the GEM9 solution was zero (row 1).
This showed that the data fits the a priori dynamic models perfectly.
Note that the two perturbed gravity models resulted in smaller r.m.s.
values than the GRIM2 model.

In Figures 7.2 to 7.4 a dependence of the results on arc length is
immediately apparent. The latitudes of the tracking stations show
similar wvariations over the 5 days (Figure 7.2). The longitudes of
Orroral are grouped around +0,"02 (Figure 7.3), This is the error in the
Yarragadee longitude, which was fixed. The change in height of the two
tracking stations are noticeably less correlated (Figure 7.4)., These
similar wvariations between the estimated latitudes and longitudes
indicate that gravity model errors will propagate "equally” into
coordinates. Relative positions Dbetween tracking stations (ie.

baselines) will be affected less by these perturbations. This is shown

below,

TABLE 7.2

RANGE RESIDUAL RMS and MEAN for
PERTURBED GRAVITY MODELS

GRAVITY TS R.M.S MEAN

MODEL * * (m)

GEMS 1 0.000 0.000
2 0,000 0.000

GEM9 + low 0.140 0.016

(WS I ]

degree terms 0.075 0.013

GEMS + high 0.062 ~-0.001
degree terms 2 0.035 0.007

—

GRIM2 1 1,106 -0.001
2 0.723 -0.048

* ,,.Tracking Stations (1) Orroral
(2) Yarragadee

As would be expected, the higher degree spherical harmonic
coefficients have a smaller effect on positions than the low degree
harmonics, However, in both cases the errors are larger than one
standard deviation for each position determination, which are
represented by error bars in the Figures. Gravity model errors could be
more of a problem than observation noise for these arc lengths,
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The optimum arc length, that is, one for which gravity modelling
errors are minimised, is not clearly evident from these Figures.
Solutions using the same data, but processed as individual one day arcs
show better consistency than the equivalent cumulative longer arc
solution. This is again as expected, because the effect of erroneogus
gravity modelling should become smaller as the arc length is made
smaller and less dependent on orbital dynamics. This may not be the case
if short-period gravity model errors are more dominant in reality. The
short-period errors may not show up in these analyses, because as
previously stated, the modelled errors in the tesseral harmonics were
small (Seclion 7.3.1). The dependence of the results on arc lengths
longer than 5-days was not investigated for the reasons given in

Section 7.2.

The baseline solutions, which were derived from the position
values shown in Figures 7.2 to 7.4, are shown in Figure 7.5. The above
remarks apply to these solutions as well., Since the nature of real
gravity model errors is unknown, it is not possible to select the best
arc length for which gravity model errors propagating into estimated

baselines are minimised.

The single-pass short-arc case was investigated by using nearly-
simultaneous observations from the first 1.5 days of data, Three
tracking station positions and a state vector for each of 5 passes over
the region were estimated. The Yarragadee longitude was again held
fixed. This technigue is called single-pass multi-arc (SPMA). The
gravity model errors for the baseline (Figure 7.6) are significantly
reduced. However, it was necessary to introduce the third tracking
station, namely Darwin (3), in order to achieve a stable solution. The

problem of numerical instability is examined in Chapter 8.

For the SPMA solution, the errors due to the force model are
small, but the baseline precisions are much worse, With all possible
passes observed and with the a priori range precisions used in the
simulations, it would take about three weeks to achieve the same
precision as a one day long-arc. Therefore the problem of minimising
gravity model error is outweighed by the lack of observations and their

precision,

The optimum procedure will minimise both gravity model errors and
effects of observation noise. From these results arc lengths of between
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one pass and one day would seem to be ideal.

Indications from these preliminary results however, are that
errors in GM could be larger than the gravity field coefficients. In
order to study the problem of an erroneous value for GM, the five days
of simulated data were reduced as five separate one-day arcs. Each arc
included an estimate for three tracking station positions and one state-
vector. By affecting the station heights GM errors propagate into long-
arc baselines as a scale error. The error in GM of 4 parts in 107
propagated into the baselines on average as a 3 parte in 107 error.
This is larger than the current error estimate for GM, However it is
smaller than the dispersion of GM values estimated from various methods
(LERCH et AL,1978b). The r.m.s. of the baseline error was itself 1.5
parts in 107, This means means that GM does not propagate as a constant
error for all solutions, Any estimated baseline velocities from
positions estimated with an erroneous GM value will therefore be epoch
dependent, It is unclear if the GM error will become constant and less
data distribution dependent for longer arc lengths, Obviously this
could not be investigated with the current data “and  computer

limitations. The problem needs further study.

It is theoretically possible to estimate GM and perhaps also a few
low degree coefficients in long-arc type solutions (BENDER & GOAD,1979;
VAN GELDER, 1978; SMITH et AL,1982)), GM has been simultaneously
estimated along with tracking station positions from LAGEOS range data
(LERCH et AL,1977: 1978b)., For this reason STOLZ et AL (1981) solved for
GM along with their baseline estimates. For S5SPMA solutions, GM cannot be
estimated  successfully, because of the unstable solutions, The
previously stated advantages of SPMA are therefore nullified if GM is

coneidered to be a dominant error source,

7.4.2 Random Tracking Noise

Figure 7.7 shows the improvement of haseline precigion for arc
lengths longer than one day. Table 7.3 gives the results for the same
baseline for arc lengths less than one day. For arc lengths less than
one day the precisions obtainable were noticeably dependent on the
distribution of the data.

The standard deviations improve dramatically after three passes
(Table 7.2). Improvement in precision is relatively slow after this, As
would be expected the improvement in preéision at 3 passes coincides

with the fulfilment of more stable geometric conditions. A solution
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procedure can therefore be devised which minimises both gravity model
errors and random noise effects, This would be a multi-arc method in
which state vectors, representing arc lengths between 0.5 and 1 day, and
station positions for epochs greater than 5 days, are estimated,

For longer arc lengths the observational procedure does not have
to be rigidly adhered to, because the tracking stations do not have to
be observing simultaneously. All possible passes were assumed to be
observed for this study. This is obviously unrealistic and longer
observing periods will be required to achieve these results from the
actual data. Indeed the real data must be examined before any decisions
can be made about the most feasible computational procedure., This is
especially the case for existing data. About 20 percent of the total
possible passes were observed in 1980. This meant that it was virtually
impossible to obtain enough data for baseline solutions in Australia
with epochs less than three days (Chapter 9; STOLZ et AL,1981).

TABLE 7.3
BASELINE PRECISION for VARIOUS ARC LENGTHS

No, X% . precision*
passes hours (m)

1 2 -

2 5.5 2.962

3 10.5 0.879

4 14.5 0.059

S 18 0.053

6 21 0.047

7 25 0.044

* standard deviation
¥%¥ nearest half hour

7.4.3 Polar Motion

In Section 7.3 it was concluded that the transformation errors,
between the inertial and terrestrial reference systems, can affect
dynamically determined positions, Baselines should however remain

largely unaffected.

The effect of wobble errors on positions and baselines are
examined in this section., Zero values were substituted into the
calculations for the previously used BIH values. Polar motion was
therefore assumed to be non existant, introducing into the calculations
a kinematic error of about 4m with a dominant period of about 14 months.

For the epochs of solution used up to 5 days, this error is therefore



essentially a bias. It should be noted that this error has not been

propagated into the orbit,

The following formula can be used to calculate the corresponding
change in latitude for the pole coordinates (GUINOT & FEISSEL,1968).
A¢ = X cosA - y sinA (7.3
The BIH pole coordinates, used to create the data were
x =0,"1360 and y = 0.7255.
These values substituted in Equation 7.3 give
AP e = —0."243 and,
A e = —0."282,
From the one day long-arc solution
-0."241 and,
0P vemvesoe -0."282
The erroneous pole positions therefore mainly affected the derived
latitudes, as expected. However, most importantly,the baseline between
the two tracking stations remained unaffected., Similar results were

i

AD omone

obtained for a five-day arc and SPMA.

7.4.4 Diurnal Polar Motion

The diurnal polar motion subroutine in GEODYN is based on
McCLURE'S (1973) development, The amplitude of the motion is of the
order of 60cm and also has a predominant 14-day beat period
(NAGEL,1976). The omission of this effect results in the following

errors for a one—day long arc:

A¢d, = 0.70001, Axy = 0,"0201,
Ahy = -0,001m,
A¢, = 0,70001, AXx; = 0,"0200,
Ah, = -0,00%m

The effect on tracking station position is small, possibly because the
diurnal signal has been sampled effectively through a full wavelength,
The baseline discrepancy was -0.001m, This is negligible for geodynamics

calculations,

The results from a five-day arc are;

A¢; = -0,"001, Ax, = 0."0201
Ah; = 0.004m
A¢, = -0."001, AX; = 0."0200
Ah; = -0.007m

Thege results are of similar magnitude to the one-day arc,

although the changes in latitude are slightly larger, The effect of non-
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simultaneous passes, as discussed previously, is a possibility (see
Section 7.3.,2), Since the effect on baselines was negligible, the study
of this effect was not continued at this stage., SPMA solutions similarly

resulted in unaffected baselines,
7.4.5 Common Timing Bias

In order to study the effect of timing biases the same timing bias
was introduced to both tracking stations. One second was added to the
observations at both Orroral and Yarragadee. The longitude of Yarragadee
was held fixed. The most significant changes occurred for Mean Anomaly,
Argument of Perigee and Right Ascension of the Node. The Right Ascension
of the Node changed by 0."004, which is equivalent to 1.0 sec. The
timing bias therefore, propagated into the estimated satellite position,

However, the estimated baseline remained unaffected.

The realistic situation of independent timing biases hopefully
does not exist as it is difficult to remove diring the solution process,
Time should be maintained at tracking stations to better than l0“%sec
(B.GREENE, private communication,1981). Timing errors are hopefully not a

problem,
7.4.6 Data Quality, Quantity and Distribution

In this section, the effect on the station baseline precision of
data quality, quantity and distribution is studied. In Figure 7.7 the
precisions, which are obtainable from long arcs are shown.. Various
combinations of plausible range accuracies were used. The precigion
improves rapidly with the number of observed passes, Beyond five days,
there is little improvement in accuracy. The precision obtainable,
should however be much improved when the second Orroral laser commences

operation,

Results obtained were determined by assuming that one range is
observed every eight seconds at Orroral and every .one second at
Yarragadee. Ranges were only used when the elevation angle of the
satellite is greater than 10 degrees. The elevation restriction is
unrealistic., In Australia the lasers may not be fired below 20°
elevation because of the danger to the aircraft "(MORGAN, personal
communication, 1980), This is not a disadvantage however, because
refraction errors increase significantly on the amount of data
observable and also baseline precision are shown in Table 7.4, The
precisions given in Figure 7.7 deteriorate by factor of two if a 20°
elevation restriction was imposed., Baseline precisions should be at the
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STANDARD DEVIATION, cm

2-4 cm level after two days of tracking if the long-arc method is used
to estimate positions and the NATMAP laser is operating. The dominant
problem therefore is to minimise systematic error from gravity

modelling,
Range accuracies
el- ® Orroral = 1.0 m; VYarragadee = 0.1 m
B Orroral = 0.5 m; Yarragadee = 0.1 m
' A Orroral = 0.1 m; Yarragadee = 0.1 m
41
2_
A
] i ] ] 1
! 2 3 ARC LENGTH,DAYS

Figure 7.7
Precision of Baseline with respect to arc length

TABLE 7.4
DATA LOST AND BASELINE PRECISION for VARIOUS
ELEVATION CUTOFF

Elevation | Data lost | precisiom
Cutoff (%) loss (%)
)
0 0 0
10 22 16
15 34 34
20 47 84

In Table 7.5 the computing time on a FACOM M160S and precision for
the Orrorai—Yarragadee baseline are given with respect to the amount of
data, data rate and a priori range precision, Using normal points to
represent up to 5 minutes of data has little effect on the precision of
baselines, Furthermore, the amount of computer time required to process
a 1 day arc of 100 second duration normal points is smaller by about an

110




Figure 7.8

The Dépendence of Baseline Precisions on the
Azimuth of the Satellite Groundtrack.

(Baseline Precision in metres)
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order of magnitude, compared to that required to process the full amount
of data, There are advantages in compressing the range observations to
normal points before analysis. This has been substantiated (Chapter 9:
MASTERS et AL (1982),

The effect of network geometry on the results obtainable is shown
in Figure 7.8. These solutions were obtained from single passes of data.
The precisions show that along-track baselines are more accurately
determined than across-track baselines. DUNN et AL (1979) and
CHRISTODOULIDIS et AL (1981) arrived at a similar conclusion, East-west
baselines will not be as well determined as north-south baselines,
unless the data are well distributed in the East-west direction.

TABLE 7.5
BASELINE PRECISION and CPU TIMES for
VARIOUS AMOUNTS of DATA and a priori PRECISION

(1) (2> CPU Os
No, ** * Time (m)
Obs, min sec
17985 8 1 40 00 0,041
1,0 0,1
2241 8 100 7 42 0.044
1.0 0,1
2241 8 160 7 42 0.015
0.1 0,1
333 100 100 4 05 0.021
0,1 0,1
167 200 200 3 41 0.030
a,l 0.1
110 300 300 3 32 0.037
0,1 0,1
2241 8 100 0.026
0,5 0,1
2241 8 100 0.022
0,5 0,05
2241 8 100 0.021
0,5 0.02
2241 8 100 0.021
0,5 0,01
2241 8 100 0.015
0.1 0.1

Os.... Precision of baseline

¥  Tracking Stations:- (1) Orroral
(2) Yarragadee

%¥* For each solution:-
The top row gives the data rate (eg., one range every eight
seconds),

The bottom row gives the a priori standard deviation of the data in
metres (eg, 1 m at Orroral; 0.1 m at Yarragadee),
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7.5 ORAN RESULTS
The ORAN program (HATCH et AL,1973) was made available by NASA.

The analyses in the previous sections were checked and augmented using
this program. Some changes in procedure were adopted. In particular the
variances of the GEM9 gravity field (LERCH et AL,1977) were used for the
gravity error model., This is a more realistic assessment of gravity
modelling errors. The effects on baselines of range biases, timing
biases, refraction, Earth tide orbital perturbations and sclid tidal

uplift were estimated.

Error sources, ©other than those due to incorrect gravity
modelling, were found to have significant effects on position
determinations, Table 7.6 shows the effect of the various error sources
on the Orroral-Yarragadee baseline determination, The same data
distribution as previously used was adopted., Only error sources greater
than one centimetre are shown. Timing biases were ignored since they are
not expected to be a problem in practice. The results further emphasise
the previously mentioned problem with GM,

TABLE 7.6

CONTRIBUTION of MAIN ERROR SOURCES*
to the  ORRORAL-YARRAGADEE BASELINE

ERROR SOURCE 1 DAY 2 DAY 3 DAY S DAY SINGLE PASS
M L ] A I3
biases 7 4 4 4 5
gravity 22 16 20 . 18 10
refraction 4 2 2 2 12
tidal uplift 3 4 4 4 6
GM 35 22 23 21 4
TOTAL 42 28 31 28 18
w/o GM 24 17 21 19 17
M.A, multi-arc

* ERROR SOURCE CONTRIBUTIONS (contributions in centimetres)
biases 0.Ilm

GM 1x107

Gravity Model 3 ¥ GEM9 Variances

Refraction 1%

Earth Tides 0.01 in k; Love number

Solar radiation 10% of reflectivity coefficient
Pole position 0."01

Tidal uplift 50% of degree 2 effect
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For the SPMA solutions short-period gravity modelling errors are
at the 10cm level, Surprisingly, the refraction errors are also large.
If GM can be estimated successfully in the longer arc solutions there
is little benefit in using single pass multi-arc solutions., This is
_ especially the case if the baseline precisions (see Figures 7.6 & 7.7)
are included in the error estimate for the baseline. There 1is little
basis for differentiating between the error budgets for arc lengths
between one and five days. The longer arc length is therefore more

feasible as the precisions will be better.
7.6 CONCLUSION

One method of analysis for crustal motion is to reduce
simultaneously observed satellite passes cver the region using a single-
pass multi-arc method, Systematic baseline errors due to gravity
modelling should be small in this case. These short arc lengths however
are not as strong statistically as longer arcs. On the other hand, the
disadvantage with longer arcs is that it is difficult to completely
remove systematic sources of error like that from gravity modelling. The

“pest" procedure is somewhere between these two extremes.

The results are dependent on the adopted error models., It is
evident from the investigation with GEODYN, that if only gravity model
errors and tracking noise are considered, the optimum arc length is
around 0.5 days and should contain at least four passes. The deviation
of one-day long-arc results (Figure 7.5) is about 5 cm. The combined
error budget could therefore be minimised by using a multi-arc technique
with 0.5 to 1 day arcs. Sub-decimetre baselines could be obtained in
less than five days. In practice, high accuracy baselines will take much
longer to obtain, mainly because of weather restrictions and other

ohservational limitations,

The ORAN study showed that the results obtained with GEODYN were
probably optimistic, There is little benefit in selecting arc lengths
between one and five days in order to minimise systematic errors. This
means that longer arc lengths are better as the precision of the
baselines will be better. It was evident that systematic errors and not
tracking noise provide the accuracy bounds for long-arc solutions,
Unless gravity model errors decrease significantly with arcs longer than
five days, the optimum epoch for solutions is about five days. From
these investigations there is also little benefit in using the SPMA
procedure. Short-period gravity model errors are still significant, the
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solutions are not stable and the baseline precisions are not very good.
The precisions obtained for the SPMA solutions indicate that completely
geometric configurations would result in poor baselines over the epochs

considered here,

It must be understood that there is no unique way of processing
data in order to minimise the total error budget. The brief ORAN study
and the results of CHRISTODOULIDIS et AL(1981) show that systematic
error can be kept at an acceptable level if the arc lengths are
increased to 30 days. This allows the orbital dynamics to constrain the
solution and most errors tend to average out. For longer arc lengths,
there 1is also the possibility of simultaneously estimating GM and other
specific gravity field coefficients, which significantly perturb the
orbit, The optimum arc length for 100% tracking efficiency is about five
days. However, SMITH et AL (1982) obtained baselines consistent to
better than 5 cm for monthly solutions. These results suggest that

current error estimates are reasonable.

Care should be taken with kinematic and dynamic Earth rotation
errors. These problems require further study, especially if non-

simultaneous observations are used.

J0-day long-arcs, cannot be processed on University of New South
Wales computers at present, because the CPU time is not available,
Thirty days of data could however be processed using a multi-arc
technique, so that the long computer runs are split up over many days.
Alternatively, they could be deferred until normal point algorithms are
perfected., The possibility of using arcs longer than S-days should be
investigated. These results must be reviewed for the gravity model
tailored to LAGEOS. The tailored model should reduce the gravity model
error by two or three times (LERCH & KLOSKO,1981: LERCH,1982),

If the data are compressed into normal points substantial
reductions in computer time are possible without much loss in precision,
This is an important problem, particularly if the data aquisition rates
of new generation lasers considered. Various research groups are now
investigating possible procedures. Some developmental work has been done

in Chapter 9,

In order to analyse the sensitivity of tracking data to geodynamic
phencmena all the possible error sources need to be included. Hence it

is important to include the latest information on Earth rotation and
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force model accuracies in any sensitivity analysis, These analyses have
provided the basis for the subsequent research program at the University
of New South Wales, which is now well underway (STOLZ & MASTERS,1982),
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CHAPTER 8

ESTIMABILITY of DYNAMIC SATELLITE GEODESY

8.1  INTRODUCTION

Estimability refers to the parameters which can be independently
determined from a given obsepvation type. Estimability of laser ranges
arose in connection with the feasibility study described in Chapter 7. A
description of the problems and relevant background material are given
below. In Sections 8.2 and 8.3 the principles of dynamic solutions for
geodetic position using range measurements are described. Numerical
results for the ranks and conditions of simple dynamic solutions are
presented in Section 8.4. The implications of these results are
described in Sections 8.4 and 8.5.

The problems studied are:
(i) What is reference coordinate system for coordinates which have
been determined with dynamic satellite geodesy?
(ii) What parameters can be estimated with dynamic satellite
geodesy?
(iii) How many independent constraint equations are needed to invert

the observation equations, that is, how many parameters must be fixed?

These importan£ questions need to be answered if dynamiclsatellite
geodesy is to be applied to Earth dynamics, The change in shape of
geodetic networks isvof importance for the determination of strain,
Coordinates and their associated variance-covariance matrix are needed
at different epochs (BRUNNER,1979). The reference systems in dynamic
satellite geodetic theory are defined by the theory and solution
procedures., These definitions must be carefully considered, otherwise
any estimated coordinates will be difficult to interpret. The reference
systems become especially important for the comparison of results from

different measuring techniques.

By examining past dynamic determinations of tracking station
coordinates one notices that the problem of what to constrain has been
avoided (LERCH et AL,1974: SMITH et AL,197%9a,1979b; DUNN et AL,1979).
Recent practice is to hold fixed the longitude of one tracking station
(SMITH et AL, 1979a: CHRISTODOULIDIS & SEIFFERT,1980; TAPLEY et AL,1980),
The lack of concern on the problem was recognised by GRAFAREND &
LIVIERATOS (1978) and alsoc VAN GELDER (1978) who states "questions of
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estimability.... up to recently were ignored, not explicitly stated or
tacitly assumed to be known”. VAN GELDER's'investigations centred on
analysing the estimability of range measurements for a few éimple
dynamic satellite orbits., The results should apply to more complicated
cases, The imprecisely defined rank defects in dynamic satellite
networks clearly show a need for a careful examination of dynamic

estimation procedures,

It is well known that if only the geometry of a range observation
is used to estimate coordinates, the design matrix is rank deficient by
the number of free transformation parameters in the network. For a 3-
dimensional network the free parameters are three translations and three
rotations (BLAHA,197la: BRUNNER,1979). This means that a minimum of six
independent constraint equations are necessary to determine coordinates
from the system of range observation equations. This "minimal set of
constraints” uniquely define the reference system for the estimated
coordinates. They also make the design matrix rank full (BLAHA,197la),
The determination of rank is important because the estimated parameters
and their variance-covariance matrix will be affected by the constraints
used to eliminate rank defects enabling'the équations to be solved. The
determination of the rank of the design matrix defines the rank of the
minimal set of constraints. If more constraint equations than the
"minimal set of constraints” are applied, the system will  be
overconstrained and the estimated parametérs will be distorted. Strain
resulting from solution procedures is obviously undesirable for

geodynamic applications.

The matter is not so straightforward for dynamic satellite
solutions., Several people have examined rank defects of gecadetic
satellite networks over the last decade. Among these are TSIMIS (1973),
ARUR (1977), GRAFAREND & HEINZ (1978), VAN GELDER (1978), GRAFAREND et
AL (1979).

ARUR (1977) studied the rank defects present in the solutions
obtained from the SAGA Doppler tracking reduction program. ARUR
analytically determined the linear dependence between the design matrix
coefficients. His results showed the rank defect to be six, the same as

for the geometric case,

.

The simultaneocus estimation of tracking station positions,
satellite orhital motion and the coefficients of a spherical harmonic
series representing the Earth’s gravity field was given special
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attention by GRAFAREND & HEINZ (1978). A first-order analytical theory
was used in their study. The rank defect was
N(N+2) + 38 + 16 - n
where N is the degree of the spherical harmonic series representing the
gravity field,
5 is the number of tracking stations and,

n is the number of observations.

This implies that the rank defect depends on the number of observations,
VAN  GELDER (1978) studied the parameters estimatable from range
observations for a few simple secular dynamic satellite models. He
expanded the range equation in such a way that the linear dependence
between parameters could be determined. The conclusions are limited
because the analyses were restricted to secular orbit perturbations and
a simple Earth rotation model. These models do not allow the
constraining effect of the neglected terms to be fully appreciated,
However, they do show where weakness or extreme ill-conditioning could
be expected if a more complete dynamic procedure is analysed. High
correlation exists between the longitude, right ascension of the
ascending node for the orbit and thé reference Greenwich Apparent

Sidereal Time (GAST).

" On the surgace these results are all seemingly different. A remark
by GRAFAREND & LLYIERATOS (1978) emphasises the disparity between the
various fields of thought on these matters and also the need for our own
study to clear up what method should be used to define the coordinate
system. They point out "many textbooks state that the advantage of
dynamic satellite geodesy with respect to its geometrical counterpart is
with respect to the supply of absolute coordinates to geodesists.

«....from the analysis of terrestrial networks, one has learnt that
there is no observation to inform about the translation degrees of the
network, that is the datum for origin". However, the reference
coordinate  system in dynamic satellite geodesy is not directly
comparable with that of terrestrial networks. Dynamic theory as shown
later falls between two extremes, "Absolute" means that no constraints
are used to define the reference system for the reference system
invariant range observations. The quotation shows the misunderstanding
that can occur if classical geodetic concepts are applied to dynamic
satellite geodesy without carefully considering the implications, It
should be noted that dynamic reference system is not necessarily fixed.
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In the dynamic formulation range observations can be considered
as a time series sample of the distance between two moving points,
Estimating parameters from this time series can be thought of as
spectral analysis. This means that the data sampling will have a large
effect on the estimatable parameters. Clearly, only relative velocity
between the two points will affect the range measurement with respect to
time. The similarity to range rate observations is therefore obvious.
Nevertheless, even the relative velocity between the two points is
governed by the "laws of motion”. Any dynamic theory by definition has a
reference system. A series of ranges over a period of time between two
points will contain information on the reference system, If this
information is estimatable, constraints are not necessary for estimating
coordinates., Hence, one can conclude that dynamic satellite geodesy can
produce "absolute" coordinates. The provisoc to this conclusion is that
the type of motion for the two points has a significant effect on the
estimability of the observations.

8.2 RANGE EQUATIONS
8.2.1 Analyticaliy Derived Estimability of Range Observations

It is well known that estimability can be gauged by examining the
linear dependence between the coefficients of parameters of the range
equation or range observation equations. This can be done analytically
or numerically. Of course only simple cases can be studied analytically,
A few of these are given below. Numerical methods are used in

Section 8.4 to study complicated cases.

The range p is measured between two moving points A(r) and B(x)

(Fig, 8.1). The range equation is:

P =r2+ x2-2r" x 8.1»
=r?+x-2rx cos a (8.2)
where a = 8p + A8 - wp - Aw (8.3)
r is the tracking station station position vector and,
X is the satellite position vector,
8 is the polar angle of r,
w is the polar angle of x,

the subscripts (0) denote initial conditions

The parametric range observation equation is obtained by differentiation
(Chapter 5):
Po + Vv =pc + dp (8.4)
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where Lo is the observed range
Oc is the modelled (calculated) range
v is the noise

Figure 8.1

Range Observations

Furthermore, the range observation equation at any time t may expanded
to:

Po + vV =p + 3p/3x dx + 3p/dr dr (8.5
where 3p/3r are the partials of range with respect to station
coordinates,

3p/3x are the partials of range with respect to the satellite
coordinates,

For a dynamic system, both r and x vary with respect to time. In
3-dimensional Cartesian coordinates the corresponding partials for the
tracking station and satellite coordinate at time t are equal but of

opposite sign, that is

op/dr = -3p/dx (8.6)
Coefficients derived from Equation 8.6 are used for the design matrix in
the geometric formulation, The position of the satellite and the
tracking station positons are estimated at each observation time from
strictly simultaneous observations. In this way the observation
equations are independent of orbital dynamics. It is clear that the
coefficients for tracking station and satellite coordinates are linearly
dependent., A minimal set of constraints is therefore necessary to obtain
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a solution for these equations, At least six observations from each of
four tracking stations are needed (BLAHA,1971b; TSIMIS, 1973).

The motions of the two points A and B can be defined by laws of
motion. These laws can be in either classical or relativigtic reference
frames. For satellite geodesy the laws would be the Euler-Liouville
equations for the dynamics of Earth rotation and the laws of gravitation
for satellite motion., The determination of position from these laws
requires integration of the force model starting with initial
conditions for position and velocity. The integrated position of A and B
at any time is governed by the starting position, the time and the force
model. Thus

R = f(ry ro,t) (8.7)

1

S = h(sq,So,t) (8.8)
where f and h are functional forms, ’
R and S are tracking station and satellite positions in an

inertial reference system.

Conventionally f is only time dependent, Therefore
R=Tr (8.9

where T is the transformation matrix between terrestrial and inertial
reference systems including contributions from precession,

nutation, wobble and rotation (Chapter 5).
h is also well-defined by the adopted force model.

In GEODYN, the force model includes the Earth’s gravity field, luni-
solar and planetary gravity fields, atmospheric drag, solar radiation

pressure and Earth tide effects (Chapter 5). The range vector is
p=5-R ‘ (8.10)

We are interested in the parameters that can be estimated from p. p is a
function of s, roand t. These parameters can be estimated if their
functional relationship is defined and estimatable. The partials for the
range observation with respect to satellite position can be transformed
to estimate s; as follows.

e 9p 38
ss C 3s 3s d (8.11)

dp/as and dp/dr can be determined directly from the a _priori

tracking station and satellite positions at each observation time. The
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ds/3sg values are determined by solving the variational equations, that

is

s = 35 4s + 38 ds + 98 (8.12)
3So 3s 38 98 dsy  op
where p are explicit forcing parameters such as gravity field harmonic

coefficients.

If simplified force models are used Equation 8.16 has an exact
solution. Analytical expressions for the partials can be developed from
dynamic theory (BROUWER>1959; LYDDANE,1963), KAULA (1966) gives the
partial derivatives for satellite position. He uses simplified two-body
force models for the derivations. On the other hand the numerical
integration procedures incorporated in the GEODYN program can manage
more complicated force models without the analytical derivation of the
solution to the equations of motion and the variational equations.
Indeed, for the force models now used, the equations of motion can only
be solved using numerical methods. In these cases, linear dependence
between the partial derivatives can only be determined by numerical
methods,

The degrees of freedom for these types of solutions will depend on
the epoch length (ie, arc length) and will be much higher than the
geometric case. Precisions for the dynamically estimated parameters will
be much better than for the equivalent geometric solution., However the
accuracy of dynamic solutions must be determined by analysing the formal
precision for the baselines and also the error propagation from the non-
estimated force and rotation models. This was carried out in Chapter 7.
The following examples demonstrate the principles of the dynamic
formulation,
8.2.1.1 General Range Equation

The transformation between polar and Cartesian coordinates is:

i

X [ cos (wp + Aw) ] (8.13)

sin (wg + Aw)

[ cos (89 + A8)

C= T | sin (8, + 48) ] (8.14)



X cosal)dr

and deo = ((r

+(x r cosal)dx

+ r x sina 3a/3wy duwg
+ r X sina da/dbw dAw

+ r x sina da/6s  dbo

+ r X sina da/dA8 dA8}/p (8.15)
The coefficients for the parameters dwp, dfs, diw, dAa8 differ only by
the terms da/wg, da/d8p, dua/dAw, da/dA8, AL this stage, where no
assumptions have been made about the motion of A or B, the parameters
within the range equation or the coefficients in the observation
equations for an epoch of measurements will in general be linearly
independent. For a dynamic formulation it is also feasible for Aw to be
a function of wo, because the gravitational force is . position
dependent, It 1is therefore possible for the initial conditions to be
estimatable due to the definition of the laws of motion. This means that
the reference system is defined by the dynamical theory used to model

the motion of A and B.

The estimability of the initial conditions will depend on their
analytical formulation. It is clear from Equation 8.15 that the partials
will be similar if the motion of the two points is similar, In practice
this will affect the conditioning of the matrix rather than causing rank
defects., However, there is little difference between an extremely ill-

conditioned and a rank defective matrix (Appendix C).
8.2.1.2 Time Dependent Dynamics

The dynamics can be simplified by expressing the terms for Aw and

A8 as functions of time w(t) and 8(t), then
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da/ dwg
aa/aeo

n

and
da/bw = dw(t)/dw;
da/h8 = 238(t)/38; (8.16)
where the subscripts refer to the components of the functional form.

4

R

Upon substitution of the functional relationships for the parameters

Equation 8,15 reduces to
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de = {{(r - x cosa) dr

+(x ~ r cosa) dx

- r X sina dwy

- X sina dw(t)/dw; duw;

+r X sing dé,

+r x sina 36(t)/98, dag; }/p (8.17)

Corrections to the zero degree terms wy and 8, clearly cannot be
estimated independently, However, dw; and d6, can be estimated if
their analytical representations are linearly independent. This will
often be the case for the non-linear models of satellite motion, which
apply over long time periods. However ag the epoch of observations
becomes shorter the equations for satellite motion and Earth rotation
will become analytically similar and closer to being linearly dependent.
This change from linear independence to dependence with the shortened
epoch will cause the design matrix to change from well-conditioned to
ill-conditioned and in the limit, to rank deficient. This explaing why
ARUR (1977) obtained a rank defect of six for his method of analysis of
the short-arc observation equations,

8.2.1.3 Simplified Dynamics

VAN GELDER's (1978) clock analogy stems from Equation 8.17 by
defining the motion of A as

A6 = Bt \ (8.18)

’

B as

bw = wt (8.19)
and assuming r and s to be constant (circular motion). Equation 8,17

then reduces to:

do = {{r - x cosa) dr
+(x - r cosa) dx
- r X sinx dwo
+r x sina dé,
- r X sina t d&
+rxsinat  do) /p (8.20)

Noting that the motions for Aw and A8 are identical, this equation
indicates that only r, X, (dfg-dwy) and (dé - d&) are estimatable,
This result is the same as was obtained by VAN GELDER (1978), that
is, for the circular model of motion adopted, range observations canrot
be used to estimate the starting vectors df, and duwe or the velocities
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dé and dw of the two points,

If the motion is more complicated, the estimetable parameters
change and may become observation dependent. An hypothetical example can
be derived from Equation 8.17 by defining

A8 sin at

Aw = Qt

The estimatable parameters are r, x (dfy- dwe), da, dw. However,
in this case the estimability depends on the sampling of the data. If
the obsgervations sample every t=I/a then da and dwy, cannot be

estimated independently.

Three dimensional cases and more complete dynamic systems were
analysed in this way by VAN GELDER (1978), Sample observation equations
from GEODYN are analysed with numerical methods in Section 8.4, The
dynamic observation equation was developed previously without the
constraining effect of Earth rotation being made obvious, VAN
GELDER (1978) did not study the constraining effect of Earth rotation
in detail. He examined the effect of polar motion on the estimability of
parameters from the range equation and found that polar motion was
estimatable. GRAFAREND & LIVIERATOS (1978) reached this same conclusion.
Both conclude that the observation equations would be extremely ill-
conditioned but thét polar motion is estimatable. All of
VAN GELDER’s (1978) expansions of the range equation show that the GAST
cannot be separated from the right ascension of the ascending node for
the satellite and the longitude of the tracking station, Nevertheless,
the finer st-ucture of the Earth rotation should be estimatable. SCHUTZ
et AL (1979), SMITH et AL (1979b) and CHRISTODOULIDIS & SEIFFERT (1980)
have analysed LAGEOS range data for the fine structure of Earth
rotation. LLR data has been used in a similar manner (MULHOLLAND,1980).

It 1is apparent that the rank defect of the equations depends on
the dynamic theory. Results for analytical rank analyses cannot be

extrapolated from simple to complicated dynamic formulations.
8.2.,2 Summary

Range observations are not sensitive to parameters which exhibit
similar motion, From VAN GELDER’s investigations it is apparent that
GEODYN design matrices for state vectors and tracking station position
should have a rank defect of one, This will be due to the high

correlation between the longitude reference and right ascension of the
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node. If one of these parameters is fixed the matrix will have full

rank.

For the current dynamic models the optimum precision for both
computations and measurements must be chosen. With regard to rank
deficiency, VAN GELDER (1978,p90) states ".... it depends on how
erroneous the initial set of parameters is", ' Roundoff error and extreme
ill-conditioning may still occur. The condition and error sources for a
dynamic satellite solution should therefore be carefully ascertained
before inferring anything from the estimated parameters, Statistics
about the solution are as important as the parameters themselves, The
noise in the system of observation equations will consist of tracking
and modelling noise. This noise will in general bias any estimated
parameters, making it difficult to separate geodynamic phenomena from
inadequate modelling procedures, Many geophysical phenomena, are of the
magnitude of the errors in the tracking data (Chapters 1, 2 and 39 and
therefore have not been modelled accurately, Estimating one geodynamlc
phenomenon therefore involves separating many other geophy31cal effects
from the data. Of course this is the problem to be overcome with dynanmic
satellite geodesy. Hence, it is important to gauge the effect of

systematic modelling errors and noise on solutions.

Apart from trivial cases, such as insufficient parameters, there
is an important category of range adjustment problems for which a unique
solution is impossible (BLAHA,1971a), Linear dependence between
parameters of the range equation or observation equation coefficients
from a range equation does not necessarily reveal all the rank defects
of a network of equations, Critical data distributions may occur similar
to those examined by BLAHA (1971b) and TSIMIS (1973). Potentially
singular network configurations for the range observations have not been
investigated here, They will be apparent when the precision of the
parameters are examined., Rank deficiency can also occur due to the
formulation of the parameters. For example, if the eccentricity is small
the argument of perigee and the true anomaly are highly correlated.
These problems are somewhat artificial and can be circumvented using
different coordinates (KAULA,1966). At this point the solution
procedures are critical to the inferred meaning of the estimated

coordinates, These are examined in the next section,
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8.2.3 The Effect of Solution Techniques

In GEODYN the set of observation equations are solved using a
Bayesian estimation scheme (Chapter 5), in which the quantity

viPv + x7Qx (8.21)
is minimised. Note that

P = 27 and,

Q =37,
where 2, is the a priori variance-covariance matrix for the noise v and,

Z« 1s the a priori variance-covariance matrix of the parameters x,

The solution and variance-covariance matrix for the parameters is
obtained by inversion of

ATPA + Q (8.22)
The parameters and variance-covariance matrix are biased by @, the
a_priori variance-covariance matrix for the parameters (Chapter 5), The
normal equation matrix N is obtained from

N = ATPA, (8.23)
If N is singular, then the solution procedure must eliminate any rank
defects before the inverse can be estimated, The a priori variance-
covariance matrix for the parameters can be designed to achieve this

(Chapter 5), There are many alternatives for inverting N,

For strain calculationg the tracking station positions in the
adjustment should not be overconstrained, A set of constraining
equations with a higher rank than the minimal set of constraints should
not be applied, Otherwise the strain results will be influenced by the
solution procedure as well as the observations, For a conventional
geodetic network, the reference system is defined by the coﬁstraints or
fixed parameters, If a pseudo-inverse is used, the reference system is
defined by the centroid and mean orientation of all coordinates. These
are conventionally referred to as "inner coordinates” for which
baselines are undistorted (BLAHA,197la). If constraints are arbitrarily
assigned they must eliminate rank defects, so that the other parameters
will be referred to the constrained parameters and will be positioned
correctly relative to each other (BLAHA,197la). If more parameters than
necessary are held fixed, the solution will be overconstrained and
baselines will be distorted, A familiar example of the problem occurs
when more than two coordinates and one orientation are held fixed in a

classical dimensional geodetic network adjustment.

Only a few specific a priori variance-covariance matrices will
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give a pseudo-inverse solution (Chapter S). Equation 8,22 can always be
inverted if the off-diagonal elements of the constraint matrix are zero
and the diagonal terms are small. This procedure gives a pseudo-inverse
solution referred to here as infinitesimal bordering (Appendix C). The
Bayesian least squares estimation scheme in GEODYN, will always give a
solution if non-zero a priori variances are used. However, the
confidence levels of the estimated parameters and the effect of the
a priori variance-covariance matrix should be carefully assessed for
this type of procedure before-interpretting the results. Arbitrarily
assigning the a priori variances in a Bayesian estimation procedure is

therefore not recommended.

Another reason for exercising extreme care with Bayesian
estimation is that the a posteriori precisions taken from the inverse
matrix will be optimistic if a priori variances are too small for the
estimated parameters (VAN GELDER,1978: Chapter 5). Unless the residuals
are carefully examined the precisions for the parameters will be

optimistic,

As shown in Section 8.2, it is possible to estimate the rank
defects of simple dynamic observation equations, However, it is not
clear what the rank of the observation equations used in GEODYN is. It
is not valid to blindly adopt the same constraints as apply to geometric
procedures, especially if errors of the order of a few centlmetres are
not acceptable, Extrapolat1ng analytical results to more compllcated
dynamic formulations may not be valid. Hence, numerical methods are used
in this chapter to analyse for rank defects of the GEODYN solutions in
Chapter 7 (Section 8.4).

8.3 SUMMARY

The analytically derived rank defects of the design matrix for
dynamic  solutions are not the same as for the geometric case.
Theoretical analyses of dynamic networks by various authors differ. VAN
GELDER’s (1978) results for the estimability of range observations may
apply to the GEODYN observation equations. Numerical methods are widely
used for the complicated dynamic modelling used in GEODYN, The only
feasible method to analyse the solutions in Chapter 7 for rank defects

and ill-conditioning is by numerical methods.

Estimated parameters depend on the constraint equations used to
make the design matrix rank full, These constraints enable the design

matrix to be inverted, It is better to have a reference system clearly
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defined by the constraints used to eliminate known rank defects, rather
than a system which is implicitly defined and unclear. The determination
of the rank defects of the design matrix and the "minimal set of
constraints” is important. By holding one longitude fizxed, the design
matrix for tracking station coordinates and satellite state-vector are
assumed to have a rank defect of one. If one is the correct rank
deficiency then solutions will be overconstrained and distorted if other

coordinates are held fixed as well,

With Bayesian least squares it is possible to make a poor choice
of the a priori variance;covariance matrix for the parameters. Solutions
will always be obtained, but they will be difficult to interpret. If the
a priori variances of the parameters are too small, the estimated
parameters and their variance-covariance matrix will be overconstrained.
This in turn will produce distorted baselines with optimistic precisions
and will result in erroneous geodynamic interpretations. Alternatively,
if under-constraint occurs the solution will be ill-conditioned. In this

case the estimated parameters will not be accurate.

Coordinates will depend on the force model used to derive the
satellite motion, the Earth rotation mbdel used to derive the motion of
the tracking station and the constraints used to remove rank defects
from the design matrix. The reference systems defined in the dynamic
models obviously should be consistent. Methods of separating dynamic
modelling errors from geodynamic phenomena are needed. Otherwise
dynamically determined coordinates will be time dependent with spectra
similar to the geodynamic phenomena of interest, such as plate

tectonics. This problem was examined in Chapter 7.
8.4 RESULTS USING NUMERICAL METHODS

In this section sample GEODYN solutions for tracking station
position are analysed for rank deficiency and condition. The effect of
overconstraint is also studied. The results were obtained using the
simulated data set described in Section 7.2. One day of data consisted
of approximately 2200 range observations, corresponding to seven passes
over the Australian tracking stations at Orroral and Yarragadee, The

numerical algorithms described in appendix C were employed.

The size of the design matrix was 2200 x 39 in one case. This was
far too large for easy analysis, Calculatiéns were simplified by
analysing the normal equations instead. The largest matrix to analyse
was reduced to 39 x 39. This procedure is justified because the normal
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equation matrix has the same rank as the design matrix (BLAHA,197la).
The Normal Equations also have a condition defined by that of the
design matrix (NOBLE,1973), Moreover, as least squares solutions are
calculated from normal equations, the rank and condition of the normal

equations are more relevant,

As only the design matrix is involved, solution vectors are not
needed for the the determination of pseudo-rank and condition. Since the
"data” exactly fit the GEODYN dynamic models (Section 7.4) the
differences between estimated parameters and the a priori values used to
create the data will indicate the distorting effect of the solution
procedures and any numerical roundoff problems. The effects of ill-
conditioning on computer arithmetic should be negligible, This is
justified in that even the most ill-conditioned solutions with no
constraint whatsoever gave the correct parameters. Changes in the
solution parameters can therefore be used to gauge the effect of the

solution procedures and models on the estimated parameters.
8.4.1 One-Day Long-Arc

The observation design matrix coefficients were calculated for the
¢, X and h of the two tracking stations as well as one epoch state
vector, It was assumed that all possible data were observed, that is

breakdowns and weather disruptions were not allowed for.

Columns 2 to 7 of Table 8.1 give the differences between the
estimated tracking station positions and the a priori values.
Column 1 shows the constraints which have been applied.

Column 9 gives the pseudo-rank, after constraints were applied, as
determined. using a Gaussian elimination algorithm (appendix C). This
indicates if the constraints eliminated the pseudo-rank defects or not,
For this calculation the tolerance level for the pseudo-rank was 13
digits, This a few digits less than the computer accuracy. When the
tolerance was reduced to 8 digits, (the level of accuracy for the
dynamic models), the pseudo-rank dropped by 4 when compared to that for
the previous calculation., This demonstrates that the calculations need
to be carried out to high accuracy. In this instance, at least 13
significant figures were required, otherwise the sensitivity of the
dynamic models is lost. The same results were obtained with the Singular
Value Decomposition (SV) routine (Appendix C). For the SV algorithm 12
parameters were still estimated because the rank defect was removed by
the pseudo-inverse constraint. Interestingly, the rank defect of one is
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the same as expected from the analytical analyses (Section 8.2,

The effect of ill-conditioning is not apparent from Table 8.1
(because the data fit the dynamic models of GEODYN perfectly), For these
data the solution must be extremely ill-conditioned to give incorrect
results, This can be gleaned from row one of Table 8.1, which shows that
the difference between the estimated and a priori coordinates is
negligible and that the relative positiong are preserved. If data was
contaminated with noise, these results were found to be significantly
different. This result was expected as the a posteriori variances were

large (Table 8.2), These are characteristics of an ill-conditioned

solution,

The condition of the system of equations can be obtained from
Table 8.2, which gives the eigenvalues, condition numbers and variances
for the parameters. The highly correlated parameters are shown in
table 8.3. The best solutions, that is the ones which resulted in the
correct relative positions and good condition, were obtained using
singular value decomposition or by holding one longitude fixed., The
longitudes are biased towards the free network constraint of +0."2092 or
the fixed longitude of +0,"02 respectively. These two methods were
essentially equivalent, because both of them had one independent
constraint equation applied. These results confirm that the coordinates
depend on the independent constraints, which are used to remove rank

defects (Section 8.2).

TABLE 8.3
HIGHLY CORRELATED PARAMETERS
(>0,99)+
X ¥ Y Al a2
Y X Y Al A2
X Y Al A2
Y Al A2
Al A2
* (no a_priori constraints)
1 Orroral 2 Yarragadee

Tables 8,2 and 8.3 do not make clear all the deficiencies of the system
of equations. The range of the eigenvalues (K) gives a good indication
whether the numerical inversion of the matrix is feasible or not. If K
is greater than the number of significant tigures used on the computer

arithmetic then the equations are singular for practical purposes. The
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approximations (k;) can only be interpretted in broad terms. However,
they do show the number of significant digits, which are lost in the
calculation of each estimated parameter. For these solutions a
parameter probably loses significance when k; is greater than 108, For
the ill-conditioned, no constraint (column 1) and infinitesimal
bordering (column 3) solutions, X, Y, k, é, A: and A; should lose
significance. Results from these solutions would be meaningless. The
variance-covariance matrix gives an estimate of the precision of and
correlation between parameters. It is difficult to assess rank defects
unless "good" a priori precisions for the solution are available. No
attempt is made to quantify good, as it is easier to calculate the
pseudo-rank. The variances contain similar informalion to the condition
numbers k; , although they are difficult to interpret as compared to the

latter (see rows four and five of column 3).

From these tables the change from pessimistic to optimistic
precisions with the addition of constraints is subtle. Overconstraint
would probably not be noticed under normal circumstances, This
emphasises the difficulty of detecting the overconstrained situation
without calculating the pseudo-rank. Unless a great deal of care is
exercised Bayesian least squares procedures can easily lead to
overconstrained solutions. The effect of overconstraint can be observed
in rows five, six and seven of Table 8,1. Too many fixed parameters
resulted in biased absolute and relative positions, Also, the precisions
are optimistic, as is evident from columns six seven and eight of
Table 8.2,

The difference between the biased relative positions and the
a priori positions is small, However, the differences are in the 0 to
10 cm range. This is of the order of magnitude for the geodynamic
phenomena, which are of interest, The differences would not be a
problem for baseline velocities if the constraint propagated equally for
all data. This was investigated by calculating separate one day arc
solutions over the S5 days of simulated data. The results shoﬁed that the
error propagation from the fixed a priori coordinates was arc dependent,
This problem may be minimised by using longer arc lengths so "that the
data distribution is closer to optimum, Nevertheless, at this'stage one
must conclude that the biases from overconstraint will be epoch

dependent and will distort strain calculations.

With the unconstrained solution (row one of Table 8,1, column one
of Table 8.2 and Table 8.3) the poorly determined parameters were A and
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the XYi? components of the state vector, This indicates high correlation
between tracking station longitude and the right ascension of the
ascending node for the satellite orbit. The remaining parameters, as
expected, were constrained by the dynamic modelling process, leaving the
design matrix and hence the normal equations matrix rank deficient- by
one. The one constraint equation can be introduced by holding one
longitude fixed. Alternatively, a pseudo-inverse technique such as
singular value decomposition can be used. Either procedure will result
in unbiased baseline measurements. These results confirm the claims
previously made in Section 8.2. The actual estimated coordinates depend
on the dynamic reference system and constraining equations. If the
orientation of the coordinate system is important then the solution
technique is important. In this case the problem of maintaining the
reference system also becomes a problem as these "absolute" coordinates

must vary with time for current dynamic models (Chapter 7).

In principle, the conclusions drawn from the one-day arc results
should be applicable to any arc length, especially longer ones. Trial
solutions for a five-day arc verified this. Shorter arc lengths should
be much more susceptible to ill-conditioning and the effects of data
distribution. This was discussed in Section 8.2, In the next section a

single-pass multi-arc solution is analysed,

8.4.2 Single-Pass Multi-Arc

For the long-arc procedure, the satellite orbital dynamics makes
solutions possible with only two tracking stations. This is not the case
with single-passes, A third tracking station was therefore placed at

Darwin to improve solution stability,

A normal equation matrix was determined from about 1,5 days of
data using only simultaneous observations, Simultaneous in this context,
meant that each pass of data must be observed in part by all three
tracking stations. The matrix contained thirty nine coefficients for the

estimation of five state vectors and three tracking station positions,

Table 8.4 shows the differences between the estimated tracking
station positions and the a priori positions. Unbiased relative positions
and well-conditioned matrices were only obtained when one tracking
station longitude was held fixed or the SV algorithm was used with one
independent constraint equation., This is an interesting result as it
differs from ARUR’s (1977) conclusions for the Satellite Doppler system.
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The orbital dynamics for one pass of LAGEQS is capable of constraining
the dynamic solution., Nevertheless, the eigenvalues, condition numbers
and pseudo-ranks indicate that the equations are not as well conditioned
as they are with the longer arc lengths. The k; values show that the

estimated parameters from the single-pass solutions lose one or two more
significant figures in the solution than the one-day long-arc. Many of
the estimated parameters are therefore probably meaningless, although
from Table 8.5 one may conclude that the tracking station positions are
correct. As the orbit was not of specific interest the condition of the
five state-vectors are not shown. These were not well determined. In
general, the parameter precisions are not as good as the equivalent
long-arc solution, mainly because more parameters are estimated, In
order to obtain equivalent precisions much longer periods of data

observation are needed,

Two additional constraint models were adopted in order to show the
effect of the Bayesian estimation procedure with a poorly chosen
constraint matrix (Tables 8.4 and 8.5),

For Constraint Ql, & priori standard deviations of 10 m for the tracking
station positions and state vectors were adopted. These are an order of

magnitude larger than the simulated errors. The estimated parameters are

distorted, but the matrix is well conditioned.

For Constraint Q2, a priori standard deviations of 10 m for the tracking
station positions and 100 m for the state vectors were adopted., These

result in almost correct coordinates. However, the matrix is ill-

conditioned,

These results show the fine line between overconstraint and
underconstraint, The Ql-type solution, which is overconstrained would
distort strain calculations., The Q2 type solution, which is ill-
conditioned would be numerically unstable. Obviously it is important to
estimate the the pseudo-rank for any solutions,- where the rank is not
clearly defined. Great care should be exercised in selecting a priori
variances of the constraint matrix if Bayesian least squares 1is used.
This result reaffirms some researcher’s reservations for the Bayesian
estimation scheme (VAN GELDER,1978,pl05), The implications of these
results for other investigations is interesting as many analysts
arbitrarily apply a priori variances in Bayesian least squares solutions
(MORGAN, 1981), These effects should be carefully analysed and not
assumed to have minimal effect if the a priori information has no real

observational bhasis,
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8.5 CONCLUSIONS

The numerical results, presented in Section 8.3, confirm the
analytically derived results of VAN GELDER (1978)., The pseudo-rank
defect of GEODYN observation equations for the sample solutions is
higher than the dynamic result of GRAFAREND & HEINZ (1978) but less than
that of the geometric formulation. Tracking station longitude and right
ascension of the ascending node for the LAGEOS satellite orbit are
highly correlated. When only the tracking station positions and
satellite state vectors are being estimated, a satisfactory method for
obtaining well conditioned solutions is to fix one longitude, This
procedure was adopted for the investigations presented in Chapter 7 and
also later analyses of LAGEOS range data (STOLZ et AL,1981). The matter
is not so clear if single-pass solutions are used. The same results were
obtained as for the long-arc case. However, the solutions were less
stable., In all these cases the reference system is defined by the

dynamic models and the fixed reference longitude,

Many satellite observations exist for determining position, Here
only topocentric range measurements .to the LAGEOS satellite were
examined. These numerical analyses were made for one specific data set.
The results should be applicable to other satellites and positioning
gystems, though care needs to be exercised, VAN GELDER (1978) found that
range, range rate and range difference systems have similar
estimability. This 1is reasonable as range and range rates are

essentially the same measurement over a period of time.

In estimability studies where the rank defects of design matrices
are sought, conclusions drawn from simplified cases should only be used
as indicators for more complicated problems. Correct results will only
be obtained if the solution procedures are carefully set up and
analysed. With the complicated modelling procedures that are now
commonly used, numerical methods are the only feasible ones for
analysing dynamic "solutions. These procedures are relatively easy to
include in any solution system, Now that coordinates accurate to 10 cm
are a reality (SMITH et AL,1982) careful consideration should be given
to the affects of solution procedures, Great care should be exercised
when interpreting parameters estimated with Bayesian procedures. It is
too easy to include subjective information with these procedures without

realising the effects,



C H A P TE R - =

ANALYSIS OF LAGEOS LASER RANGE DATA
9.1 INTRODUCTION

Preliminary processing and geodetic analysis of laser range data to
LAGEOS are presented in this chapter., The geodynamic goals of this work
are described in Sections 3.4 and 7.1. These analyses represent the
start of an ongoing project to analyse LAGEOS range data (STOLZ &
MASTERS,1982) and include;

D Processing real laser range data rather than simulation studies.
Experience has shown that many unforeseen problems occur during
the analysis of real data. These problems need to be identified
and overcome.

2) Determining the Orroral-Yarragadee baseline as a first step to
fulfilling the geodynamic aims of Chapter 3. The solutions are
not being presented as the optimum way of determining geodetic
baselines from SLR data as results can always be improved upon,
The baselines also provide a basis for examining data quality,
force models, Earth rotation models and solution procedures. The
bagelines can be compared with simulation studies for any
variation in expected accuracies, because the distance between
Orroral and Yarragadee is not expected to move more than a
centimetre per year (DENHAM et AL,1979: WEISSELL et AL, 1980),
During" this process the requirements for computing efficiency can
be determined with a view to analysing all available LAGEOS laser
range data, These requirements will be closely allied to
assessing the computational needs for any continuing Australian

Crustal dynamics program.

3) Determining whether geodynamics results can be estimated from
current data and how long it will take to detect crustal

deformation with a continued measuring program,

The data initially received from the United States National Space
Science Data Center (NSSDC) in connection with the experiment described
in Chapters 3 and 7 contained laser range measurements to LAGEOS for the
first six months of 1980, These data have since been updated to
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February, 1982 and are currently being analysed using the experience
shown in this dissertation. A few results are presented in STOLZ &
LAMBECK (1983),

Examination of these data show that Yarragadee and Orroral have
been observing regularly from late 1979 until early 1982, when the
Orroral SAQ station was closed down. In this period, Yarragadee has

tracked almost an order of magnitude more passes than the other tracking

stations, excluding Orroral and Arequipa, On a few occasions,
Yarragadee as tracked up to 5 passes in one day. However, the average
amount of tracking is in the range 10-30% of the total possible number
of passes, Optimum observation distributions have thus not been

maintained for the "best" determinations of the Orroral-Yarragadee

baseline. However, there are 157 simultaneous passes (between Orroral
and Yarragadee) in the two-year period. These occurred mostly in mid-
1980,

Early analyses of these data and the results given in Chapter 7
show that it would be expedient to prefilter and compress the data to
normal points., These procedures were developed and are described in
Sections 9.2 and 9.3 (MASTERS et AL,1982), Baseline solutions were

determined for nine arcs of less than 4 days duration between January

and May, 1980, The methods and results are described in Section 9.3
(STOLZ & MASTERS,1982) and compared with Doppler positions: and the
terrestrial geodetic networks. The variations of these baselines are

compared with the expected errors as determined in simulation studies in

order to ascertain the accuracy of the data.
9.2 FILTERING AND NORMAL POINTS
9.2.1 Introduction

Preliminary geodetic analyses with LAGEOS range data revealed many
random outliers within passes of usually consistent data. However, it
was apparent that SAO data from Orroral contained few or no outliers.
Outliers must be removed from final geodetic analyses in order to obtain
the best results., Procedures for removing bad data are referred to here
as filtering. Experience has shown that filtering random outliers in
range data sets before geodetic analysis is necessary to optimise
computational efficiency.

In Section 9.2.2 the method adopted by the author for prefiltering
LAGEOS laser range data at U.N.S.W. is described., The effectiveness of
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the procedure is demonstrated in Section 9.2.2.1,

Range data from the global configuration of laser tracking
stations are required for optimum geodynamic calculations., Laser
tracking stations are being upgraded to be more efficient, with improved
precision and faster pulse repetition rates. Data  compression
techniques will have an increasing role to play in order to achieve
geodynamic results in an expeditious manner, Compressed data are
usually referred to as Normal Points, It is generally considered that
the use of Normal Points will become a standard procedure for analysing
SLR data (PEARLMAN,1982), Outliers need to be removed prior to
compressing data, The procedures for'prefiltering and forming normal
points have therefore been considered here as one pre-processing

procedure,

Several filtering techniques are in use (PEARLMAN,1982), By far
the most common approach is to compare each observatioﬁ with a modelled
counterpart obtained from, amongst other things, an orbit computed using
all available data (TAPLEY et AL,1982), This procedure has the
advantage of detecting long period errors in the data and is therefore
very useful for examining the performance of laser trackers, However,
rarge and timing biases of small magnitude, say less than 40cm and
100microsec respectively are basically still impossible to detect
(EANES et AL, 1982).

The purpose of the filter described in this chapter is t6 remove
random outliers in the renge data set. This can be achieved by
utilizing the fact that the range varies with time very nearly as a
quadratic curve, The detection of long period range biases and timing
biases is regarded as part of the later geodetic analysis problem,

Range data in compressed form have been employed by lunar laser
ranging analysts for many years (MULHOLLAND,1980), The nature of the
lunar laser observing process, which requires only a few observations
distributed over what typically amounts to 10 minutes, makes it quite
natural to consider some means of compressing the data into "normal
points”, ABBOT et AL(1973) operate on the difference between the
observed delay and one computed from a high-precision mathematical model
of the positions and velocities of both the laser and the lunar
retroreflector. This residual is usually small and is represented by a
very low-order time polynomial. The order of the polynomial is chosen
in such a way that the information content of the raw data is retained
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and so that the error in representation is much smaller than the

observational uncertainty.

There are several possible approaches to the LAGEOS data
compression problem, For example, one could devise a method based on
range residuals, similar to the LLR procedure. This method has been
adopted by several groups of analysts (e.g. EANES et AL,1982)., However,
the process would be time consuming since it requires a sophisticated
model for the LAGEOS orbit and, if computer resource conservation is an
important consideration, then little benefit would be gained. On the
other hand, one could proceed like GAMBIS (1982), who represents the
range over a pass by a single time polynomial which he then interpolates
to yield 10-15 normal points. The procedure of using high order
polynomials does introduce interpolation problems if the data in the
normal point band is sparse (GAMBIS,1982). Also, normal points within a
pass will be correlated, depending on the interpolating polynomial, This
correlation would require more refined geodetic solution procedures. An
alternative method for compressing raw measurements is presented in
Section 9.2.3 (MASTERS et AL,1982). The method is, in principle, the
same as that of GAMBIS (1982), whose analysis was carried out at the
same time and independently of those in this chapter.

9,2.2 Filtering

Examination of LAGEOS data has shown that the variation of range
with time closely resembles a quadratic curve, (The second derivative
was calculated for a few passes of data and found to vary between zero
and 4m/s?2, The second derivative with respect to time, over short

periods (say 5 minutes) is fairly constant, that is

5 ~ const. 9.1>
Successive differences of the derivative can be easily used to

detect outliers in the range data as given below

Ao = W p (9.2)
where

W = [wy W Wy Wl (9.3)

pT = Lps p2 p3 ool (3.4)
subscripts denote four consecutive observations, and

Wy = —2/At, (At, +AL,) (9.5

w, = 2CAt, +At, +At; /AL, At, (At +Ats) (9.6

ws = —2(At, +At, +At; )/AL, At (AL, +AL,) (9.7

W, = 2/At; (At +At3) ' (9.8)
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At denotes time elapsed between consecutive observafions.

In practice
Ao = t(atb) (9.9
where a represents the effect of random tracking error, and
b the effect of truncation error.

An error bound for Aﬁ may be obtained from

vy (o? + 03 ) (9,10)

1

0'A5=

noM o

i

where

0.2 is the variance of the range measurement, and
oy° is the variance of the truncation error due to using an
incorrect polynomial representation,

0. is generally known, whereas o, must be estimated,

As previously stated, Aﬁ should be almost zero within the error
bounds, due to random tracking errors. In the presence of outliers, Ap
will behave erratically, This fact can be used to identify-and remove
outliers, From Equations (9,5-9.8) it is apparent that the main
contribution to AE is from the 2nd and 3rd observations of the four
observations contributing to the 2nd derivative, It is a simple task to
devise an iterative scheme to determine, pass by pass, which
observations are bad, The method (which readily lends itself to
automation on a computer) is similar to that adopted by astronomers to
detect errors .in ephemeris tables (BROUWER AND CLEMENCE, 1961).

It is also possible to estimate the precision of the tracking data
from a sample of Aﬁ values, Error bounds for the filtering procedure
can therefore be derived from the precision of the data rather than an
a priori estimate, Assuming constant range precision and zero truncation
error in Equation 9,10, we obtain

2 2 2

a= b/ i (9.11)

and
6% = 1/m % Age (9.12)
Ap » | :

If the data is filtered pass by pass, the error bound can be
easily iterated to the estimated precision of the tracking data,

The effect of truncation error was determined by estimating the
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r.m.,s, difference between "perfect" range data and the corresponding
ranges modelled by an order 2 polynomial. "Perfect” refers to the data
having no random tracking errors. These data were determined using the
orbital theory described by MARTIN et AL (1976), with the best available
models for the forces perturbing the LAGEOS motion, The r.m,s.
difference is plotted in Figure 9.1 for time spans of 0-300 secs. This
difference was found to be consistent with the variations of real passes
of data.

Figure 9.1 shows that the filter based on variation in Ao should:
perform well up to 30 sec.: be marginally effective between 30 sec,
and 100 sec,, and fail beyond 100 secs, Large gaps in the data will
thus reduce the efficiency of the filter., Also, it will only be
marginally effective with SAO data due to the lower repetition rate.
However, this lack of effectiveness will not be a problem as experience
has shown that SAO data needs little or no filtering, The relative
contributions of each p;, to AE will also mean that the filter is only

marginally sensitive to errors in the first and last points in a pass.
9,2.2.1 Filtering Results

The filter was tested on real data., Figures 9,2 and 9.3 show the
residuals for two typical LAGEOS passes over the Yarragadee site. The
data and outliers are uniformly distributed over the pass shown in
Figure 9.2, whereas in Figure 9.3 a portion of the outliers occurs at
the beginning of the pass where the data are sparse. The passes, before
filtering, are shown in Figure 9.2a and 9.3a, The same passes after
filtering are shown in Figures 9.2b and 9.3b. The filter determines its
own value for the range precision and the rejection level is set
accordingly. As expected, the filter behaves well except when large data
gaps occur within a pass, Obviously long period trends must also be
present in the filtered data, The filter was used on about six months
of laser range tracking data to LAGEQCS. About 2% of data were rejected

on this filtering basis, The average range precision for Yarragadee and

Orroral was approximately 8 cm and 40 cm respectively, However, the
precision of Orroral varied between 20 cm and 100 cm. The problem with
data gaps is the main limitation with this method, It can be overcome

by including more data for the detection of each outlier or by including
further filtering with the accompanying normal point procedure, The
latter procedure was adopted as it was easy to implement.
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9.2.3 Normal Points
The issues to be considered for normal point procedures are:

1) To select the time-interval over which the raw data are to be

compressed,

2) To decide on the type of polynomial to be fitted to the raw data
over this interval, and to determine the appropriate order of the

polynomial.

3 To choose the point on the curve which best represents the normal
point, and

4) To estimate the accuracy of the normal point.

Chebyshev polynomials were chosen because they are simple to
program and commonly used for interpolation of ephemerides., Standard
least squares procedures were used to carry out a piecewise-fit of these
polynomials to the range data and to determine the precision of the

normal points (see Chapter S). The Chebyshev polynomial representation
is given by:
n
p(x) =% d, C_(x) (9.13)
i=o *+ "

where n is the order of the polynomial, and
Cn(x) = cos n cos_lx 9.10)

Stable solutions are obtained for the coefficients d; . if the

argument x is normalised so that

-1 £x£1

.-

Simple recursives can be used to calculate C,(x)
Ca(x) = 2% Cou(®) - Cpolx) (9.1%)

Experience has shown that one should be wary of interpolating with
high-order polynomials, especially if the data are sparse.
GAMBIS (1982) found this problem when compressing data by fitting high-
order polynomials to complete passes of data. Interpolation problems
were avoided here by estimating the time period for which the polynomial
order could be kept low (say n < 5) and fitting the polynomials
piecewise to passes of data. This procedure also avoids correlation
problems between the calculated normal points, The time-interval over
which the data are to be compressed and the order of the polynomial to
be fitted to the data both need to be determined empirically. The time-
interval should be long enough to significantly reduce the amount of
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data yet not so long as to remove important signals or make the dynamic

solutions ill-conditioned.

In Figure 9.4 the mean square departure of "perfect” MOBLAS range
measurements from Chebyshev polynomials of order 3-9 are plotted as
solid circles. The polynomials have been fitted piecewise to 1 day of
data at intervals of 100 sec. The formal error of the normal point for
a priori range precisions of 5 and 10 cm (MOBLAS) is shown by broken
lines, The combined effect of truncation error (solid circles) and
range measurement error (broken lines) is considered to be an estimate
of the preéision of the normal point, and is smallest for the polynomial

of order 4. These calculations were repeated with real data and for
time intervals of 100, 150, 200 and 250 seconds. The results are
summarized in Table 9.1, On the basis of these calculations, a

compression interval of 150 sec. represented by a polynomial of order 4

is recommended,

TABLE 9.1
R.M.5. CURVE FITS to RANGE DATA

Data Span, sec.

Polynomial
Order 100 150 200 250
3 0.1 0.2 -
4 0.08 0.08 0.09
S \ 0.08 0.08 0.08 0.08
6 0.08 0.08 0.08

There are several possibilities for the time of interpolation

for the normal point:

D) The mean time over which the data are compressed,
2) The time of the observation closest to mean time, or
)] A time in the region where the data ere densest,

There is little to choose between options (1) and (2). Option (2)
has the advantage that the data is not actually being interpolated. Any
errors due to sparse data should therefore be minimised. Option (3) has
the disadvantage of being complicated to program.

Finally, the data forming each normal point can be further
filtered by analysing the residuals of the least squares curve fits,

This is a standard least squares analysis procedure.
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9.2.3.1 Normal Point Results

A typical 1S5S0 sec., order 4 polynomial, normal point residual
pattern for a good pass of LAGEOS data is shown in Figure 9.5, Signals
with periods longer than 300 sec. are not removed. The normal points

were determined at the mean times,

In order to determine whether the Orroral-Yarragadee baseline
measurements are degraded by data compression, several orbital arcs
tracked from Orroral, VYarragadee, Greenbelt (STALAS), American Samoa,
Owens Valley and Goldstone were selected. The latter tracking stations
are MOBLAS sites, This configuration ensured that a strong Orroral-
Yarragadee baseline measurement was obtained. The details are presented
in Section 9.3, The Orroral-Yarragadee baseline was solved for using
the full data rate and from thé same data compressed into 150 sec.
normal points, The number of raw ranges which made up each normal point
varied widely and, therefore, the precision of each normal point was
different, The precision was usually of the order {2 cm} for a priori
range precision of 10 cm, The Orroral SAO data have a lower precision
and slower pulse repetition rate than the NASA tracking stations. As
little would be achieved in CPU savings these data were not compressed
to normal points. Five degrees of freedom are lost in the determination
of the normal points, The rélative weight between the normal points and
raw data can therefore change slightly, that is the relative weighting
between the SAO and MOBLAS/STALAS data can change, In the solutions,
the MOBLAS/STALAS data were weighted to be four times more precise than
the Orroral data. The data set was compressed to about 4% of the
original size, This compression resulted in a 10-20 times reduction in

CPU time poar arc.

In Figure 9.6 the differences between the baseline measurements
obtained from full data rate and from compressed data are given., Each
set differs by less than the baseline measurement precision (error
bars), However, the data for both sets of baselines are meant to be the
same and should therefore give exactly the same answers. Table 9.2 gives
the estimated standard deviations for the baselines taken from the least
squares solution, The differences between the standard deviations
indicate that some information is lost in the compression to normal
points. In order to check that the baseline differences shown in
Figure 9.6 were due to solution instability, or biased normal points,
baseline solutions were recalculated with the orbit fixed to the values
determined with the full rate data. These solutions are well-
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conditioned (Chapter 8) and if differences still occur they must be due
to the normal point calculations, Conversely, if the differences are
negligible, the discrepancies must be the result of ill-conditioning due
to data distribution and pass geometry., With the orbit fixed, the
baseline measurement agreed at the millimetre level. This shows that
the normal point method is sound, but care should be exercised with the
geodetic solutions, especially if longer time bands (re used for the
normal point compression interval.
TABLE 9.2
BASELINE PRECISION FOR SHORT ARCS

Arc no. raw data normal points
¢ (cm) ¢ (cm)
1 3.4 3.5
2 5.7 7.2
3 4,2 4.3
4 3.5 : 4,1
5 3.1 3.2
6 3.2 3.5
7 3.6 ' 3.8
8 4,7 4.7
9 5.0 5.1

9.3 THE BASELINE BETWEEN ORRORAL AND YARRAGADEE
9.3.1 Introduction and Method

Nine arcs of four days' duration or less were chosen over a period
of 130 days, with at last three passes of data from both Orroral and
Yarragadee, These requirements also made easy comparisons with
simulation studies. When available, simultaneous observations between
Orroral and Yarragadee were included. Data was also included for
American Samoa and mainland U.S. stations STALAS, Goldstone and Owens
Valley., The tracking station network is shown in Figure 9.7. The arc
length, data distribution and station configuration were chosen to
ensure that a strong baseline solution between Orroral and Yarragadee
was obtained and that the amount of data was of a manageable size,
These were the first baseline solutions attempted in Australia
(STOLZ et AL,1981),

The U.S. tracking stations are not essential for the solutions
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(see Chapters 7 and 8), However, experience has shown that the
orbit solutions converge faster with a global tracking network.
Geodetic solutions were obtained wusing the GEODYN program
(MARTIN et AL,,1976) (see Chapter S). To scale the solutions the speed
of light was adopted as 299792458 m/s. The GEM10 gravity field model
was used for orbital integration. Other force models included 1luni-
solar potentials, solid Earth tides and solar radiation pressure. BIH
pole and time values were used to model the Earth's wobble, Rigid-Earth
Precession and Nutation series were used,

Solution parameters included tracking station positions, one orbit
epoch state vector and a value for GM. The scale of the solutions will
be dominated by the speed of light because GM is estimated., As discussed
in Chapters 7 and 8, the Orroral longitude was held fixed (see Chapter
8). The models were later changed in order to improve the baseline
results., Specifically, the PGSL1 and GEML2 gravity models were used for
orbit integration,

The arc length for the solutions (3-4 days) is much shorter than
the period of most non-gravitational force model effects. Dominant
errors could be expected from residual short-period gravity model
perturbations, The ORAN program was used to ascertain the effects of
errors on baseline measurements. Plausible errors were adopted for
fixed tracking station positions, solar radiation pressure, refraction,
range biases, pole position and gravity field coefficients. Three times
the variances of the GEM9 gravity field were adopted for the gravity
field errors. These errors are summarised in Table 9.3.

Table 9.3 indicates that baseline variations between independent
solutions should be principally due to the effects of gravity modelling
errors and to a lesser extent errors in the models for atmospheric
refraction, measurement biases and solid tidal uplift, No attempt was
made to duplicate actual data distributions, It is reasonable to assume
that these simulation results are optimistic. Note that the Orroral-
Yarragadee baseline is supposed to be stable for the duration of these

measurements (see Chapter 3),
9.3.2 Results

The Orroral-Yarragadee baseline measurements are plotted in
Fig 9.8a. The values refer to the distance between the optical axes of
the telescope at the two tracking stations., The mean value is
3196328.86m, Individual measurements deviate by up to 0.86m from the
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mean, Without the January solution, the deviation is 0,31lm. This
variation is consistent with the error analysis (Table 9.3) and also the
feasibility study in Chapter 7.
TABLE 9.3
PROPAGATION OF ERRORS INTO BASELINE

BASELINE
ERROR SOURCE error ERROR
(cm)
Gravity Field GEM 9 27
Refraction 1% of refractive index 5
Biases 10cm 8
Tidal Uplift 10% of effect 2
Fixed Station lcm 4
Positions
Random Errors 10em 2

Improved gravity field models have become available since the
computation of these first results. The new models are estimated to have
improved by 2 to 3 times over GEMIO (LERCH et AL,1982). The baselines
shown in Figure 9.8a were recomputed with the PGSL1 (Figure 9.8b) and
GEML2 (Figure 9.8c) gravity field models., Except that the contribution
from gravity field errors can be reduced by about a factor of 3 the
error budget in Table 9.3 still applies, The total for the errors is
therefore reduced to a r.m.s. of 10 cm. Unless long periods between
measurements are adopted this error budget is still too large for
geodynamic analyses, Also, the error budget is no longer dominated by
gravity modelling. Range biases, if.bresent, could become a significant

problem at the subdecimetre level.

The recomputed baselines are shown in Figure 9.8b and 9.8c, For
PGSLl (Figure 9.8b), individual baseline measurements deviate by up to
0.68m from the mean of 3 196 328.75m.,  For GEML2 (Figure 9.8c), the
measurements deviate by up to 0.63m and the mean is 3 196 328.73m. The
deviation of January solution from the mean has not improved with
changes in gravity model. This result is inconsistent with the other
solutions. Apart from the January solution, the r.m.s. of the baseline
variations has improved from 0.26m for GEM10 to 0.17m for PGSLI to 0.10m
for GEML2, Also the r.m.s of the range residuals improved by 20%. The
major discrepancy and also experience with the January solution shows
that the data is not modelled correctly for the arc, The problem needs

lel



m)

(3196320. +

o

-t
)

BASELINE

: ' ‘ ' —] @
[ o ]
- o ]
n— & po
e — — — & ——  — e —_— —_—
_ . .
- ® -
. ® ]
I 1 (b)
N ° -
o . s . e o
A ° e .
5 ® ° i
- 4 (c)
- :
" -
r —e. 2 e —_ — e T
= o s .
i ° ° ;

(] X ] [y ]

F M A M

TIME (months,1980)

FIGURE 9.8
Baseline Solutions
(a) Using GEM10 gravity field model
(b) Using PGSL1 gravity field model
(c) Using GEMLZ gravity field model

162



to be examined further., The other solutions are ¢tonsistent with the
error analyses and the expected improvement in gravity field modelling.

The precision for each baseline as determined from the solutions
is typically of 0{Scm}, Systematic errors are therefore the major
source of inconsistency between baseline measurements. The residuals of
the normal points for Yarragadee have a typical r.m.s. of 3-6 cm, which

further verifies the accuracy of the normal point procedure,

Analyses of longer 30-day arcs have been performed separately
(STOLZ & LAMBECK,1983). These long arc solutions included estimates of
the pole position., When these laser derived pole values were used in
the four-day arc solutions instead of BIH values, the poor January
solution improved dramatically to within 20 cm of the mean., However,
great care should be exercised in interpretting this result, as the
improvement may not necessarily be due to improved pole positions,
Firstly, none of the other solutions changed more than 1 or 2 ecm with
the change of the pole, Secondly, the simulations in Chapter 7 and
Section 9.3 indicated that the baselines should be largely unaffected by
erronecus pole values. A reasonable alternative explanation to that of
erroneous pole values is that there is an unmodelled effect in the
January solution which, due to data distribution is correlated with the
tracking station position. This effect has been absorbed into the pole
solutions for the 30-day arcs, where the station positions are
constrained over 30 days of data. However, it is surprising that the
change in pole position could have such a dramatic effect on only one
solution., These problems are currently under investigation. The data
distribution in the January solution must play a much more important
role than previously expected for the pole to have the large effect,
This discrepancy points to a deficiency in the previous simulation
experiments, but emphasises the discussion in Section 7.3.2., on the
effect of the pole with non-simultaneous and poorly distributed data

sets,

Laser derived pole values from most analysts (BIH,1980) do
indicate a jump in the x pole path at this time period against the
smooth BIH pole path., Therefore the change in pole is not unique to the
30-day arcs from the University of New South Wales.

9.3.3 Discussion

The baseline measurements are in good agreement with those
determined by other investigators as well as with solutions obtained
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from classical techniques and Doppler satellite observations, The

comparisons are described in the following sections,

The comparison with other LAGEQS investigators is straightforward.
The only proviso 1is that the scaling parameters GM and the speed of
light are consistent for the compared solutions. Values for the
Orroral-Yarragadee baseline have been determined at Goddard Space Flight
Center, the University of Texas and Deutsches Geodd8tisches
Forschungsinstitut (CHRISTODOULIDIS & SMITH,1982: TAPLEY et AL,1980:
REIGBER et AL ;1982),

The NAVSAT Doppler position system has been used to augment the
Australian Geodetic Survey (LEPPERT,1977). The Doppler coordinates were
calculated as point positions on the DMA's NWL9D precise ephemeris., The
Division of Naticnal Mapping has made available the connections between
the Orroral and Yarragadee tracking stations and the Australian Geodetic
Datum (STEED, 1980,private communication), A comparison between Doppler

positions and AGD was therefore possible.

The Doppler connection between Orroral and Yarragadee must be
considered as poor for the following reasons, Firstly, Orroral was
observed in late 1975 and Yarragadee in August, 1979. Secondly, only 20
passes were observed at Orroral, A further complication in comparing
Doppler to laser ranging is the inherent scale difference between the
systems, The precise ephemeris has usually been found to be scaled
larger than the scaie of other space and terrestrial techniques due to
the wuse of different values for GM and the centre of mass for the NNSS
satellites, HOTHEM (1979) compared NWLOD positions with SLR and VLBI in
the U.,S. He found the Doppler positions to be scaled too large by
0.4ppm, which agreed with values determined by other analysts. However,
the wvalue he wused for GM with the SLR data in these analyses was
398 600.5 km®/sec?, whereas the commonly accepted value for SLR to
LAGEOS 1is now 398 600,44km®/sec?. The different values for GM
should result in about another .3 ppm scale difference between laser

baseline solutiong and Doppler values.

The problem is complicated further if terrestrial measurements are
compared with Doppler. These comparisons generally indicate a scale
difference of 1 ppm, An Australian comparison, with a value of 1.1 ppm
confirmed this value (ALLMAN & STEED,1980), The scaling problem could
be avoided if consistent models were used to analyse all space

techniques, Needless to say, any comparison which agrees to within 0.5
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ppm with Doppler can be considered acceptable. In this chapter, the
Doppler value for the Orroral-Yarragadee baseline was determined by
calculating the chord distance between the two Doppler positions and
applying the scale factor of 1.lppm derived by ALLMAN & STEED (1980).

Finally, the Orroral-Yarragadee baseline determined by SLR can be
compared with the Australian Geodetic Datum AGD (BOMFORD, 1967) and also
a recent geodetic adjustment (ALLMAN & STEED, 1980). An agreement to no
better than 1 ppm could be expected with the AGD due to basic models
used in calculating the survey. These models include a non-simultaneous
adjustment of the observations, poor estimates of systematic error in
coastal tellurometer traverses and no corrections for deflection of the
vertical, skew normals and geoid spheroid separation. These assumptions
have been corrected in more recent adjustments (ALLMAN AND STEED, 1980),
Agreement to 1 ppm could be expécted for the latter adjustment,

The coordinates in a conventional geodetic datum are latitude and
longitude. The distance between two points on the Earth's surface
calculated from latitude and longitude is scaled by the ellipsoidal
height. The best values for orthometric height and geoid height are
therefore needed in order to obtain reasonable baseline comparisons
between terrestrial and space techniques. In Australia, there are many
complications introduced into this seemingly simple calculation through
legal definitions of the AGD and also the history of the observations
used to determine the datum <(see BOMFORD,1967: FRYER, 1971
ROELSE et AL,1971). For example, the Australian Height Datum was
determined after the AGD (ROELSE, 1971). The GMA8C Datum (ALLMAN &
STEED, 1980) is consistent within itself. The problem of ascertaining
the best geoid heights arises. FRYER"s (1971) geoid values are at
present the best in the Australian region. However, these values need
to be corrected for a datum shift of 10,9 m (at the Johnston Origin)
before being used with the GMA80 latitude and longitudes. (Note, the
geoid heights are correct for the AGD66), The datum change at the

origin is equivalent to a geocentric shift of the ellipsoid of;

dx = -6,71m

dy = 7.15 m

dz = 4.77 m
The change in geoid height at a point (¢, A) can be calculated from
dN = cos¢ cosAdx + cos¢ sinAdy + singdz (9.16)
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with these values:
dN

ORRORAL 10.45

dN 10,47

YARRAGADEE

The spheroid height is obtained by combining these corrections
with Fryer's geoid heights and AHD orthometric heights. The axis to axis
Orroral-Yarragadee baseline was determined.to be 319 6327.0lm using
GMA80 coordinates and 319 6324.63m using AGD66 coordinates. Further
scaling errors could be introduced into these calculations due to the
fact that the AHD heights were constrained to Mean Sea Level and not the
geoid (ROELSE et AL,1971) and also the difference in the speed of light
used for EDM and laser ranging. These errors should be at the 0.1 ppm
level for baseline calculations. Fryer's geoid should be accurate to,
say, 2m. GMA80 should agree with the laser measurement to approximately
0.5 ppm. The values from various investigatiohs are summarised in
Table 9.4. TAPLEY et AL(1980) used about three years of global data
for their SLR solution., However, there are only about six months of
Yarragadee data in their baseline estimate. KOLENKIEWICZ's (1981,private
communication) value is the average of 11 separate measurements obtained
from 30-day orbital arcs acquired in 1980, More recent values for the
baseline determined at GSFC agree to within about 10cm of this value
(CHRISTODOULIDIS & SMITH,1982), REIGBER et AL (1982) also have
presented an average value from January, 1980 to June, 1981, The value

is only a few centimetres different to the GSFC and UNSW values,

TABLE 9.4
BASELINE SOLUTIONS

Solution Baseline (m) Difference from
3 196 300 + UNSW

(m) (ppm)
AGD66 24,63 -4,10 -1.3
GMA8O 27.01 -1,72 -0.5
Doppler 28,52 -0.21 -0.07
Tapley et al. 28.47 -0.26 -0.08
Kolenkiewicz 28.95 0.22 0.07
Reigber et al. 29.06 0.33 0.10
UNSW 28.73 ) - -

The Doppler value is well within 1 ppm of the laser ranging
values. The GMA8O estimate is .5 ppm different to the UNSW laser value.
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This discrepancy is well within the expected tolerance for the
terrestrial survey, geoid heights and levelling  surveys. The
discrepancy with the AGD66 is 1.2ppm, which is reasonable for the

early geodetic datum.

The different measuring techniques are in agreement, One
remaining problem is to reduce the differences between individual
analyses of the same LAGEOS data. REIGBER et AL (1982) obtained 33 cm
r.m.s, for the variation between individual monthly solutions.
CHRISTODOULIDIS & SMITH (1982) obtained 6cm. REIGBER et Al (1982)
obtained a large mean value, However, he used a larger value for GM
than other analysts, His baseline value should be shortened toc be

congistent with the other estimates.
9.4 CONCLUSION

Laser range data to LAGEOS were analysed for the baseline distance
between the Orroral and Yarragadee tracking stations in Australia,
Initial problems involved data management and removing random outliers
in the NSSDC range data. An efficient filter routine was developed
which, except for a few special cases, removed the random outliers,
These special cases could be handled easily in the routine which was
developed to compress the raw ranges to normal points (Section 9.2.3),.
The optimum polynomial order and normal point compression interval was
chosen as 4th order for 150 sec. bands of data. This criterion made
efficient handling of the raw data possible and also significantly
reduced the amount of data used in any subsequent analysis without
removing important signals., Precision of traciing data determined using
these routines was typically 10 cm for Yarragadee, 40 cm for Orroral and

3 cm for Yarragadee normal points.,

The savings in CPU time resulting from the use of these routines
are significant and will make any future geodetic analyses more
efficient, especially when the complete LAGEOS data set is being
analysed. Up to 90 days of data can be analysed in one computer run,

compared to five days previously.

The filter routine does not remove systematic range biases and
epoch timing biases. Neither can these biases be determined accurately
with post analysis techniques. An important problem which needs to be
overcome with SLR for geodynamic calculations is the determination and
elimination of range biases and timing biases with effects on baselines
less than 10cm,
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The loss of baseline precision when normal points are wused
indicates that 1ill-conditioning must be carefully assessed with short
arc lengths.

The actual baseline distance is not essential for geodynamics, as
movements are of interest. However, the mean value for the baseline
agrees with the terrestrial geodetic network and Doppler positions to
within expected tolerances, SLR can be combined with terrestrial data

in order to strengthen terrestrial geodetic networks,

The preliminary estimates of the Orroral-Yarragadee baseline,
except for one case, had a variation over the 130 day period in 1980
which agreed with the estimated error magnitudes, It is impossible to
include every possible error source in a simulation experiment. The
reason for the one poor solution is therefore unknown at this stage and
is currently under examination, The accuracy of the data, force models,
Earth rotation models and effect of data distribution need to be
carefully assessed from the real solutions, Apart from the one poor
soclution, the small variation of the baseline over the 130 days suggests

that the data can be expected to be accurate to 10 cm.

For optimum geodynamic analyses, methods for reducing systematic
errors to subdecimetre level need to be developed. This development
will probably involve using longer arc lengths. With say, monthly
solutions accurate to 10 cm, baseline distortions of 1 cm/year can be
detected after five years in the Australian region (see Chapter 7). The
detection of intra-plate deformation on the geologically stable
Australian continent will need a long period of consistent measurement.
However, the stability of the baseline has proved useful for verifying

the accuracy of the SLR technique.

The determination of intra-plate deformation is important for
understanding the rheology of the Earth and the nature of the forces
that drive the tectonic plates (STOLZ AND LAMBECK, 1983). The
introduction in late 1983 of the NATMAP laser, which has higher accuracy
and a faster pulse repetition rate than the existing SA0 system, is
vital for the continued monitoring of the Orroral-Yarragadee baseline
distance to enable the detection of crustal motion, However, the
analysis of the existing two years of data can be refined to yield more

consistent results.
Deformation of the one baseline distance across the Australian
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continent will, however, vyield little useful geodynamic information,
The propagation of this deformation throughout the tectonic plate is
needed. A combination of many geodetic techniques will therefore have
an important role to play in solving geodetic problems. The use of many
measuring techniques will make correct comparisons between all
techniques an important problem to investigate, The comparisons in

Section 9.3 only touch on the problems involved,

With much help from NASA, the University of N.S,W. now has the
capability of analysing SLR data. In order to have a useful, ongoing
Australian geodynamic program, this facility must be used in close
association other terrestrial techniques and other space techniques like
LLR, GPS, VLBI and NNSS Doppler. Terrestrial methods and Doppler are
fairly well developed and used in Australia. For example, the Markham
Valley Deformation surveys in Papua New Guinea (COOK & MURPHY, 1974:
SLOAN & STEED,1976) and the New Britain Doppler survey (MORGAN,1981).
Geodetic VLBI is currently being investigated (STOLZ et AL,1983) and the
development of GPS techniques is anticipated, The SLR analyses in this
chapter are therefore an important start to an ongoing geodetic program

for geodynamics‘in Australia,
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C HAPTER 10

CONCLUSIONS

Several extra-terrestrial measuring techniques can make
significant contributions to geodynamics., These techniques include
Satellite Laser Ranging, Lunar Laser Ranging, Very Long Baseline
Interferometry, Satellite Doppler, Global Positioning System and Radar
Altimetry. Applications.of Radar Altimetry and Satellite Laser Ranging

were investigated in this thesis.

The GEODYN program was used as the basic computational tool for
most of the calculations., The ORAN program was also used. Detailed
knowledge of satellite geodesy was used to determine the utility of
GEODYN and to ascertain the accuracy of results estimated with it. The
capability of applying GEODYN to specific geodynamic research has
therefore been developed. |

Altimetry measurements are sensitive to the Sea Surface Height
spectrum, GE0S-3 altimetry measurements and ephemerides determined by
laser ranging were used to estimate the M, ocean tide in the Sargasso
Sea. Systematic errors in the LAS79 Sea Surface Height data were too
large for tidal estimation. This is a negative result in that the tides
were not successfully estimated. However, no-one to my knowledge has
succeeded as yet in estimating ocean tides with altimetry data, A few
periodic errors were determined by spectrally analysing the data., After
removing these estimated periods, the variance of the noise signal was
reduced by about 30%, However, assuming that BRETREGER’s (1979) estimate
of 1 m for the minimum amount of systematic noise is correct, the final
crossover residual variance of 4,9 m* was still too large for

estimating the M, tide,

The spectral analysis procedure adopted could be further improved
to estimate orbital errors. However, the large crossover residuals in
the data cannot be attributed to long period orbital error. The "bias
and tilt" filtering technique successfully reduces systematic errors.
The different results between the bias and tilt and spectral analysis
techniques indicate that systematic errors have shorter periods than one
revolution of the GE0S-3 orbit, but longer periods than one pass
(approximately 20 min.). Little can be done therefore to separate
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systematic noise from the diurnal and semi-diurnal ocean tidal signals,
without recomputing the ephemerides with more accurate gravity models,
The sampling of the GE0S-3 orbit also precludes optimum tidal
estimation, as regional areas are sampled at most every half day.
Procedures need to be developed to reduce gsystematic noise from
altimetry data before the ocean tides can be determined successfully,
More use can be made of orbit theory for analysing altimetry derived SSH
data,

Satellite laser range data can be used to determine accurate
tracking station coordinétes and satellite orbits. Laser range data were
used by LERCH et AL (1978c) to determine the ephemerides, which were
used to reduce the GEOS-3 altimetry data to Sea Surface Height data,

Deformation of the lithosphere can be obtained from accurate
geodetic positions of tracking stations. It is feasible to undertake
crustal dynamic research at the University of New South Wales with the
existing computing facilities. Error analyses show that sub-decimetre
precisions can be obtained from long-arc solutions for baselines using
only a few days of observations, Range tracking precision does not
provide the limit for the accuracy of fhe tracking station coordinstes
and baselines., The accuracy of baselines is limited by the accuracy of
the dynamic models. The dominant error sources are biases and
geopotential model, There is little difference between the gystematic
errors propagated into arc lengths of one to five days. Longer arc
lengths will produce the best results if significant parameters like GM
can be simultaneously estimated with the state vectors and tracking
station coordinates, In this case there is no benefit in Single-Pass

Multi-Arc solutions,

Other conclusions from the feasibility study are:

— Computer times are mainly dependent on the amount of data, In
these cases if large amounts of data are collected such as is the case
with new systems 1like the TLRS, or if longer arc lengths are
desired, compressing range data to normal points may be necessary:

~ East-west baselines will not be as well determined as north-
south baselines due to the almost north-south LAGEOS orbit:

- Baseline precisions will improve when the National Mapping laser
becomes operational at Orroral Valley,

Further investigationg are necessary. These are in progress and

include:
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- error analysis of arc lengths longer than five days.
- error analysis of dynamic models not previously investigated.
- error analysis of solutions with strictly simultaneous data.

The estimability of dynamic satellite geodesy was investigated.
The results confirm those of VAN GELDER (1978). For long-arc solutions
only one tracking station longitude needs to be fixed to obtain
undistorted geodetic coordinates. The other parameters are constrained
by the satellite dynamics and Earth rotation, This means that the
reference system for geodetic coordinates is defined by the dynamic
models and the fixed reference longitude,

Analytical determinations of the estimability of range
observationg are useful, However, results cannot always be extrapolated
from simple to dynamic cases, The dynamic theory must be carefully
formulated to obtain reliable results, otherwise the problem may be
oversimplified, For this reason concepts of estimability for
conventional geodesy cannot be applied directly to dynamic satellite
geodesy. '

For geodynamic applications where centimetre accuracy is required
the effects of solution procedures on results must be carefully
ascertained. Bayesian least squares procedures have inherent dangers of
introducing subjective a priori information into solutions, With these
procedures decimetre errors for geodetic coordinates can also be
introduced because solutions are easily overconstrained or left ill-
conditioned. Information on pseudo-rank and condition of least squares
solutions is important for reliable interpretation of any results,

Laser range data to LAGEQOS have been analysed for the baseline
between Orroral and Yarragadee. Software has been developed to filter
the data and compress it to normal points. Baselines calculated with 3-
day arcs are consistent to 10cm if the data distribution is good. These
results are congistent with error analyses and compare well with doppler

positions and the Australian Geodetic Network.

It is important for us to improve baseline solutions to sub-
decimetre consistency before any meaningful geodynamic results can be
obtained over short time periods. In Australia combinations of - various
space and terrestrial techniques will also be important for deriving
geodynamic information. Further work needs to be done on:

- improving dynamic models

- uging longer arc lengths
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- minimising range and timing biases
- analysing all the available data in the Australian region
- combination of space and terrestrial techniques

Comprehensive knowledge of satellite geodesy and geodynamics makes
optimum investigation of specific geodynamic phenomena, such as ocean
tides and crustal strain, possible. One aim of this dissertation, to
develop an expertise in satellite geodesy which can be applied to
geodynamics, has been achieved. This expertise is now being used to
investigate the large-scale crustal deformation of RAustralasia by laser
ranging to LAGEOS (STOLZ & MASTERS, 1982; STOLZ & LAMBECK,1983),
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A P P E ND I X A

A.1  SPECTRAL ANALYSIS

Non-periodic functions can be represented by periodic functions
(JENKINS & WATTS,1968), In Fourier analysis, the periodic functions are
sines and cosines. They have the following important properties:

(i) an approximation consisting of a given number of terms
achieves the minimum square error between the signal and the
approximation,

(i1) they are orthogonal sno that the coefficients can be

determined independently of one another (JENKINS & WATTS,1968),

The mean square average power of a signal s sampled at

intervals A for a period T producing N sample values s; is

n-1 n-1
1/N = Sy = Rgz + R,.,2 + 2 = R-2 (A.1)
i=-n m=1

where R, are amplitudes for the m-th harmonic of the time series,
Ry is the mean,
R, is the amplitude for fundamental frequency.

The average power can be decomposed into contributions from each

harmonic.

A measure of s; about the mean is the variance

2 = 1 n_l 2
gs = ﬁ = (31 "Rg) (A.2)
i=-n
n-1
=R2+ 2= RZ (A.3)
i=-n

For the continuous infinite case the Fourier transform of s(t) is

SCE) =J sty o J2MEL 4 (A.4)

—00

where f is frequency and
j = {-1

S(f) represents the distribution of signal strength with frequency

and is therefore useful for analysing time series.

Due to the orthogonal properties for equi-spaced data sets, the
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calculation of R, is straightforward:

R = A + BS (A.5)
where X -1
A, = N =>. s cos 2lmi/N (A.6)
i=-n
1 n-1 .
B, = N > s;sin 2Mmi/N (A.7)
i=-n

Computer programs which are used to calculate Fourier transforms can be
made much more efficient by taking advantage of the periodic properties
of the sine and cosine functions. The Fast Fourier transform uses this
property. The number of operations (N2> for a conventional Fourier
transform), is reduced by N log N (KANASEWICH,1975), Fast Fourier
techniques reduce computation time by about two orders of magnitude,

A.l.1 Aliasing

As the power spectrum is obtained from discrete time series
sampling of a continuous signal, there is a high frequency limit to the
estimated power spectrum. All the spectral information is contained

within the principal interval
0D £f £ £y

where fa is the Nyquist or folding frequency defined by
fN = 1/24,

Frequencies higher than the Nyquist frequency are not sampled by a
discrete time series, It is therefore impossible to distinguish
frequencies above the Nyquist frequency from those in the principal
interval., If signals with higher frequencies than the Nyquist frequency
are present, their power is reflected or aliased into the power spectrum
over the principal range (KANASEWICH,1975). Figure A.l illustrates that
at least two signals fit discrete data points (%), This in principle
shows the problem of distinguishing between signals above and below the

Nyquist frequency after digitization,

Harmonics above the Nyquist frequency must be attenuated by a high
cut filter before calculating the power in order to eliminate aliasing.
Alternatively the frequencies, which are contributing to the power at a
set frequency should be determined. 1If as occurs in many physical
applications, non equi-spaced data are obtained the fundamental concepts
of spectral analysis are not clearly defined. This remark applies in
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particular to the Nyquist frequency.

FIGURE A.1

A.1.2 Confidence Limits

Confidence limits for the estimated spectrum can be obtained in

several ways.

The x? test is defined by

5§££> < T(E) £ ;Fﬁﬁ’ (A.8)
v,l-a/2 v,a/2
v is degrees of freedom
C(f) is the sample spectrum
I'(f) is the spectrum

Tabulated values for statistical distributions are usually not available
for large amounts of data. An approximation to the x? distribution
is given by (KREYZIG,1970)

1

o =3 (g o + 4D (A.9)
or
=1 - -
g o= 3 (tgg e — 420D (R.10)

The F test can also be used to determine which are the significant
peaks in the estimated spectrum (NOWROOZI,1967)., A function f£(x) can be

decomposed as

m
f(x) =ag + = {axCcos WX + bysin wx} (A.1D1)
k=1

where w, = 2lkx/n and
n = 2m+l,
The probability that
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max(az + b2 /208 > g (A.12)
is a. This probability can be calculated from
a=zm{l-g)t (A.13)

A.2 LEAST SQUARES SPECTRAL ANALYSIS

VANICEK's (1971) spectral analysis program includes estimates of
the contribution of a frequency w to the overall variance of a time
series F(t), Let

S2(F,T) = = {F(t)-T(t)}*? (A.14)
t
and

T(E) = cos wt + sin wt
then the contribution of P to S from the frequency w is given by
(VANICEK,1971)

P, = = F(t)2 - &2 (A, 15)
t

The calculation of the maximum contribution of w to S leads to the
minimisation of S2, This is a standard least squares problem, which can
be solved using a set of normal equations, If F(t) is sampled at
equidistant time intervals, P, is the contribution of the frequency w
to the n-times variance of F (JENKINS & WATTS,1968), A specific choice
of frequencies to represent the harmonic constituents of the time series
results in the norma; equations matrix being diagonal. In this case the
method is equivalent to the conventional Fourier transform
(VANICEK, 1971, The program was specifically designed 'to analyse

irreqularly spaced and noisy data.

The calculation speed was improved for this dissertation by
introducing recursive formulae for the summation terms in the formation
of the normal equations, If data is equi-spaced the Fast Fourier
Transform is the most appropriate method. However, only the set of
frequencies (w) is equi-spaced. Nevertheless speed can be gained over
individual spectral point calculations by introducing the following well

known recursives for sine and cosine terms.

k cos mx = 2k cos x cos (m-1)x - k cos (m-2)x
k sin mx = 2k cos ¥ sin (m-1)x - k sin (m-2)x
(A.16)

k is a constant and m is an integer.
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Any sin and cos terms can be expressed in the following matrix form

[cos wt} - [cos mAwt -sin mAth[cos wot]
sin wt sin mAwt  cos mAwt] [sin wpt (A.17)
where w = wp, + mAw

= 21/T

and T is the period,
Wwo 1s the initial period.

The order of the loops in the Fourier algorithm were changed so
that all spectral values were accumulated for every data point, rather
than separately. This is possible because usually only a relatively
small number of spectral values need to be calculated in comparison to
the amount of data. These spectral values can therefore be accumulated
in core for the whole calculation, The efficiency of the algorithm
depends on the number of spectral values which can be accumulated in
core. The recursive routine was found to be about 2.5 times faster than
the non-recursive routine. This was significant for the analyses in this
dissertation,
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A P P ENUD I X B

SPHERICAL HARMONICS and POTENTIAL

A function which is defined over a sphere can be represented by a
series of spherical harmonics (HOBSON,1931), that is

o n
F(¢,A) = 2 1/R™ 3 P, (u){AmcosmA + B, sinm)} (B.1)
n=0 n=0 .

where P,(u) are the Legendre functions of degree n and order m, and
R is the radial distance to the point of evaluation.
For a continuous distribution of density the Earth’s gravitational

potential may be written

We = GJIJ o/t dv (B.2)
v

where p is the density of mass within the Earth,
r 1is the distance from the point of evaluation to the volume
element dv and

G is the gravitational constant.

The force vector, F, due to the gravitational potential is given
by the gradient of the poteﬁtial (HEISKANEN & MORITZ,1967)
Fe = -V WG (B.3)

3
axi

The Geopotential W, is the sum of the potentials due to
gravitation Ws; deformation W,, from other masses and Earth rotation

where V =

We, that is
W=Ws + W, + Wy (B.4)
The gravity force vector, g, is the gradient of potential
g=-VW (B.5)

The second derivative of geopotential is discontinuous at the
surface of the Earth, For regions exterior to the Earth and its
atmosphere the second derivative of geopotential is continuous and
satisfies Laplace’s equation. Hence .

V2w =20 (B.6)

32
. axl_Z

Equation B.l1 is a solution of Laplace’s equation (HEISKANEN &

where V2 = i
MORITZ,1967). Spherical harmonics therefore represent a convenient

method of describing the geopotential on a global scale. Furthermore
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they provide a particularly convenient method of computing the force
model required for integration of the equations of motion for

satellites,

There are (n+1)? coefficients of degree n. Hence a large number
of Legendre polynomial evaluations often need to be evaluated. This
means that spherical harmonics are not very efficient for high degree
and orders, However, calculation times can be significantly reduced by
using some recursive formulae when gridded data 1is involved. These
formulae are similar to those employed for the Fast Fourier Transform
(COLOMBO, 1979; COLOMBO & RIZ0S,1979). ’

The surface harmonic series are conventionally divided into three
classes.

(1) Zonals ( order m=0, and the degree n) give rise to n+l bands
between n nodal parallels of latitude. Even degree harmonice are
symmetrical about the equator, while those of odd degree are
asymmetrical about the equator.

(2) Tesserals (0<m<n) give rise to n-m nodes along parallels of
latitude. In addition the cos mA term has m zeros in the range 0<A<II
which results in nodal lines coinciding with meridians spaced A/m apart.

(3) Sectorials (m=n) give rise to m longitude dependent nodal

lines in the range 0<A<II,

The low degree and order coefficients have specific physical
significance (HEISKANEN & MORITZ,1967). These are important for
reference system definitions, The geopotential at a point P may be

written in two ways, that is

We = G HJ 1/r dm (B.7)
and
o n
We =2 1/R™MZ pai(sing) {amcosmA + by sinmi} (B.8)
n=0 m=0

The 1/r term in Equation B,7 can be expressed in terms of Legendre
polynomials., If this is done and coefficients are compared one finds
that for

n=0

GMX3

I

o
B
I

ay = Iy = GM)-Ei



by = I = GMX;

where ii are the coordinates of the centre of mass and I is

the first order inertia tensor.

n=2

8 = G{(Ipy+1on/2)~1xg

axn = 2Gl.g ba = 2GIz

G{ITx}/2 bz = Gl

where Iy is the j-th row, k-th column of the i-th order

Az

inertia tensor.

Tay is given by
Ly = [[[ 5 - X% 0 av (B.9)
where 8;; is the Kronecker delta,
lz; are the moments of inertia about the X; axes.

If the coordinate axes are aligned with the principal axes of
inertia, then the off diagonal terms of the inertia tensor are zero,
Setting

8x = bny =0
in the expression for the geopotential therefore aligns the polar
inertia tensor with the reference system axis. Similarly, ax and bg

define the position of the inertia tensor in the equatorial plane.

The coefficients a° and b are related to the C and S by the formula
(MATHER, 1971)

Cm = am/GMa,"
where a. is the equatorial radius of the Earth
Specifically of interest in geodesy are Cm, Cyg, Cau, Su, Cxu, Sa.
They define reference systems in the context of astronomy and satellite
geodesy. Thus, if the reference ellipsoid is to be geocentric and ths
reference axes are to be aligned with the Earth’s principal axis of

inertia, the Cy, Cyu, Si and Cx, Sx will be zero.

The flattening f of the reference ellipsoid, which best fits the
geoid is of relevance to geodesy and is defined by (MATHER,1971)
Cao = m/3-2£/3-3mE/7+£%/3 + 0{£3)
and
Co = A£%/5 - 4mf/7 + 0{f3)
where m = a2w? /GM and

w is the Earth’s angular velocity.
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A P P ENUDI X C

NUMERICAL METHODS
C.l  ILL-CONDITIONING and RANK DEFICIENCY

The solution of a set of observation equations

Ax +b = 1+v (c.D
using floating-point arithmetic is that of a perturbed set of equations
(NOBLE, 1973):

(AMEd)DXx +b=1+v + § (C.2)
where E and f are small perturbations to A and 1 respectively. If E is
non-zero the rank of A does not necessarily equal the rank of (A+E),
Therefore it is possible for a theoretically singular matrix to be
numerically non-singular. The conclusion can be drawn that a seemingly
"good"” inverse can be obtained for a theoretically singular design
matrix, To infer physical meaning to the estimated parameters under
these conditions would not be valid., Detecting this occurrence is one

problem with practical calculations,

In computing terms, ill conditioning and rank deficiency are often
synonomous (FORSYTHE & MOLER,1967)., Theoretically speaking, constraints
are necessary to remove rank defects, whereas condition can be improved
by including higher quality and more well distributed observations and
adding constraints, However the use of constraints to improve ill-
conditioned matrices introduces problems of interpretation for the
estimated parameters, With regard to satellite networks, where the
observation quality and distribution are basically fixed, there is a
problem of deciding between the effects of overconstraint and ill-
conditioning. This will involve a decision about the rank of the design

matrix and the effect of noise on the estimated parameters,

C.2 NUMERICAL ALGORITHMS for SOLVING EQUATIONS and DETERMINING RANK

As the outcome of numerical rank determinations is algorithm
dependent and may not represent the true algebraic rank, it is referred
to as pseudo-rank (LAWSON & HANSON,1974), Algorithms for pseudo-rank
determination are essentially based on the calculation of a threshold
tolerance level where extreme ill-conditioning degenerates into rank

deficiency in the computer.

The 1logic of any pseudo-rank determination procedure is as
follows., If +two computer registers, a and b contain values which are
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nearly identical, that is if a = b + 10™, then the finite calculation
of a-b to n digit accuracy will be zero and not 10™, If this situation
occurs for a solution algorithm the equations are pseudo-rank deficient,
The number of pseudo-rank defects will show the minimum number of
independent constraint equations, which are necessary to make the system
of equations non-singular. The determination of pseudo-rank can
therefore provide a basis for practical solution of equations without

over or under-constraint,

In the Gaussian elimination technique, the system of equations
Ax=b is solved by reducing A to upper triangular form. This is achieved
by means of the algorithm
bik = ax ~- nza/ny; (C.3)
where n; is the pivot element and
the i, k subscripts refer to the i-th row, k-th column in the

matrix A,

For full pivoting elimination, the rows and columns are
interchanged so that n; is the largest remaining element, Thus if
Ny/Ny44  is less than the set tolerance or machine precision, the
remaining rows and columns are considered to be linearly dependent. This

is a common procedure for determining pseudo-rank (IBM, 1966),

Singular Value Decomposition (SV) is one of many orthogonal
decomposition pseudo-inverse techniques for solving linear equations,
The technique was developed in the 1960’s and is described in LAWSON &
HANSON (1974), Numerical analysts regard it as being the least
susceptible to ill conditioning (NOBLE,1973: LAWSON & HANSON,1974), but

the method is not the most efficient,

The design matrix A (equation C.l1) can be decomposed so that
(LAWSON & HANSON, 1974)
A = Usv’ (C.4
where S 1is the diagonal matrix of singular values of A
U, V correspond to the orthogonal eigenvectors of at ATA and
AAT respectively,

Since the matrices U and V are orthogonal by definition the pseudo-
inverse is
At = ysr (C.5)
The system flow for determining A* involves: decomposing A into

the component matrices of singular values S and eigenvectors U, V:
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deciding which singular values should be zero and setting them to
zero: and calculating the pseudo-inverse (equation C,5), Since S is
diagonal, it is easily inverted. The last calculation ig therefore
fairly trivial, If the zero singular values are correctly chosen the
solution obtained from this inverse will minimise the norm of the
a posteriori wvariance covariance matrix and hence give a pseudo inverse

(LAWSON & HANSON,1974). The technique can therefore be used for

determining least squares estimates of parameters.

The pseudo-rank of A is implicitly determined by the choice of
zero singular wvalues. LAWSON & HANSON (1974) give four methods of
achieving this. Any of‘these_are suitable. The technique employed in
this dissertation is to compare the cumulative sum of the squares of the
singular values to a preset tolerance level, which depends on the

estimated roundoff error in the calculation, and also on the size of the

matrix.

An alternative method of obtaining a pseudo-inverse 1is by
appending an orthogonal border to the design matrix, This is one way of
obtaining the geodetic free network or inner coordinate
adjustment (BLAHA,197la; BOSSLER,1972)., The matrix of normal equations
is |

ATA + D'D ’ (c.6)

The minimal set of constraints D, preserves the position of the centroid
and the mean orientation of all coordinated points (BLAHA,1971a). The
similarity of D'D to the Bayesian constraint matrix is apparent. The

free network adjustment is therefore a special case of general Bayesian

estimation.

An approximate pseudo-inverse referred to as Infinitesimal
Bordering can be obtained by using the Bayesian formula (Equation 8.22)
with W =3I where § is a small constant and I is the identity matrix
(BJERHAMMAR, 1973). This method is extremely ill-conditioned and is only
recommended for estimating variances (BJERHAMMAR, 1973),

C.3 STATISTICS and CONDITION

Confidence levels for the estimated parameters are important for
any analyses. These are usually obtained from the variance-covariance
matrix. The inverse of the normal equation matrix is the matrix of
weight coefficients called a co-factor matrix (MIKHAIL,61976), If the
a priori estimate of the observation noise variance is correct then the
co-factor matrix will be the variance-covariance matrix for the
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parameters. Otherwise, the variance-covariance matrix must be derived
using estimates of the variance factors with the co-factor matrix.
BOSSLER (1972) gives formulae for determining the a posteriori variance-

covariance matrix for Bayesian least squares estimation.

The effect of ill-conditioning is that the estimated parameters
lose significance because of the accumulation of errors, that is almost
any parameter wvalue will satisfy the least squares condition, The
inverse does not exist if the equations are singular. The a posteriori
variance-covariance matrix therefore indicates the effect of observation
noise and data distribution on parameters, but does not clearly show if
the matrix is singular. An indication that all is not well is that a few

parameters may have unusually large variances,

The most common procedure employed to determine the condition of a
matrix is to examine the eigenvalues e, The condition number K for a
matrix is given by

K= em / emn (C.7)
where ew and emy are respectively the maximum and minimum eigenvalues

FORSYTHE & MOLER (1967), BJERHAMMAR (1973), LAWSON & HANSON (1974) and
most least squares analysis texts give the derivation of this condition
number,

A different approach was adopted for the SOLVE program (Computer
Sciences Corporation,1976) and " has now been incorporated in GEODYN
(MARTIN et AL,19765, A condition number k; is calculated for each
barameter. This number is an estimate of the ratio of the expected
estimated parameter value to the true value and is obtained from

ki = NV (C.8)
where N;, V, are the diagonal elements of the normal matrix and it’'s

inverse respectively,

It is assumed that V can be calculated to the same accuracy as N,
Ill-conditioning results in large condition numbers. Moreover, because
this condition number is an estimate of the expected relative error for
a parameter, the number of significant figures lost in the calculation
of the parameter is obtained from the logarithm of k;. This condition
number is compatible with the definition of ill-conditioning
(NOBLE,1973), that is, small changes in the original matrix result in
large changes for the inverse. The advantage of this technique is that
the statistical significance of the estimated parameters is easily
estimated without calculating the eigenvalues,
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