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ABSTRACT

The Global Positioning System (GPS) is being used to determine ellipsoidal height
differences (As) over baselines by organisations who are attracted to its efficiencies in use
and accuracy of results compared to conventional surveying techniques. For these heights
to be physically meaningful they must be integrated into the Australian Height Datum
(AHD) to be compatible with other spirit levelled heights (AH). The GPS heights are
referred to the reference ellipsoid of the satellite system whilst the reference surface of the
AHD is observed mean sea level at 30 tide gauges around the Australian coastline being a
close approximation of the geoid. The difference between the two surfaces at a point is the
geoid-ellipsoid separation (V), or more commonly and more accurately, the difference in the
geoid-ellipsoid separation (AV) when expressed over a baseline.

This study investigates the three components of the equation used to transform GPS
heights into the AHD,

AH =Ah — AN
and finds that,
* heights in the AHD should be referred to as normal orthometric heights because
normal gravity is used in the orthometric correction,

* heights in the AHD are referred to a warped surface not coincident with the geoid
or any other equipotential surface because the levelling was adjusted between the
mean sea level heights at 30 tide gauges around the Australian coastline,

* the difference between mean sea level and the geoid at each tide gauge station is
equal to the sea surface topography at the tide gauge,

* there is a high probability that compensating gross errors in heights remain
undetected in some levelling loops.

The principal systematic error sources in the GPS heights were found to be,

* the troposphere delay error,

* the a priori coordinates of the fixed station,

* the residual ionosphere delay error,

* errors in the satellite ephemerides.

Simulation studies show that with an appropriate observation and computation
strategy the precision of GPS heights is 2-4 ppm. It was also found that there was no
benefit in resolving the cycle ambiguities because the heights were not improved if the

integer ambiguities were solved for correctly, which must be weighed against the risk of
degrading the heights if the ambiguities are resolved incorrectly.



The precision requirements for the computation of the geoid-ellipsoid height
differences vary with the application and the remoteness of the location. For the most
precise heighting applications it is necessary to compute AN to the same precision as that of
the GPS heights. The methods investigated in this study include,

* geometrical methods such as contouring N values and analytically fitting a plane
surface to height control points,

* using high order geopotential models such as OSU81, GPM2 and OSUS6E,

* using ring integration (RINT), which uses a high order geopotential model
combined with integration of the local gravity field using Stokes’ formula.

Each of these methods is evaluated by computing AV in two GPS observed networks,
one in Western Australia and the other in South Australia. The relative precision of the
results and complexity of computation are compared. It was found that GPS heights can be
integrated into the AHD without loss of accuracy and that GPS heighting is a viable
alternative to spirit levelling for all but the most accurate applications.






1 INTRODUCTION

Historically, surveyors have treated the observation of horizontal and
vertical control networks quite separately. Horizontal coordinates,
determined by classical surveying techniques such as triangulation,
trilateration and traversing, are referred to either a local or global ellipsoid.
The vertical coordinate, whether it be dynamic, orthometric or normal
height is determined by spirit levelling and referred to mean sea level
which is assumed to be coincident with the geoid. Both horizontal and
vertical networks have also been adjusted separately.

The advent of the Global Positioning System (GPS) now means that
the determination of position and height is possible both accurately and
simultaneously. However the three dimensional GPS coordinates will be
referred to the same global geocentric ellipsoid as that used for the satellite
tracking. This will not usually be the same as the reference ellipsoid of the
geodetic control network.

The transformation of GPS observed coordinates into the existing
horizontal control network is achieved by the application of continental or
regionally derived transformation parameters. These transformation
parameters are determined empirically by comparison of coordinates in
both systems at common points (Eckels, 1987).

The transformed coordinates will be consistent with the horizontal
coordinates in the local geodetic network but the height component will not
be with the vertical network as it is not referred to an equipotential surface,
usually the geoid. If the separation at a point between the reference
ellipsoid of the satellite datum and the geoid is known, then the GPS height
can be transformed into a height in the Australian Height Datum (AHD).

This study investigates various methods of transforming GPS heights
into the AHD, with emphasis on a gravimetric solution, and illustrates each
procedure by analysis of two very different GPS observed networks. The
first network, in the south west seismic zone in Western Australia consists
of 10 stations, all of which have first or second order heights which were
used as control against which the transformed heights were compared. The



second network, in the Mallee region in the south east of South Australia
consists of 107 stations some of which have third order and fourth order
heights which were again used as control.

Chapter 2 shows how levelled height differences, gravity and gravity
potential are related and looks at the conceptual and practical differences
between different height systems that are in use around the world. The
chapter concludes by answering the question, "In which height system is
the AHD?"

Chapter 3 reviews the history of the evolution of the AHD, the levelling
accuracies, the adjustment and the departure of mean sea level from the
geoid.

Chapter 4 describes the GPS system and looks at the origins and
effects of the principal error sources in the transmission, propagation and
reception of the satellite signal by reviewing the current literature. The
behaviour of systematic errors in the GPS system, the instrumentation and
the propagation medium and how they affect the final ellipsoidal heights is
investigated by performing computer simulations.

Chapter 5 reviews the concepts and theoretical basis of various
methods of transforming GPS heights into the AHD. The methods
investigated are astro-geodetic, geometric, high order geopotential models
and gravimetric solutions for the geoid-ellipsoid separation. The advantages
or disadvantages and expected accuracies of each method are also
discussed. An examination of the density and coverage of the gravity data
over the Australian continent and near offshore areas is presented and also
how well the gravity anomalies are able to be recovered using the high
order geopotential model OSUSL.

Chapter 6 looks more closely at a solution for the geoid-ellipsoid
separation using ring integration (RINT, Kearsley, 1985) which involves
the combination of an outer zone solution using a high order geopotential
model with an inner zone solution integrating gravity data using Stoke’s
theorem. A system of computer programs to compute geoidal heights using
the RINT technique has been developed at the University of New South
Wales and is presented here.



Chapter 7 tests the various methods of determining the geoid-ellipsoid
separation in the Western Australia and South Australia networks and
presents the results. These techniques vary in complexity of computation,
data requirements and accuracy of results. The user can decide which
technique is the more appropriate for his application. He can, using only
pen and ruler, graphically determine an interpolating surface to scale off
geoid heights or determine the same surface analytically using program
LESQPL (Annex D). High order geopotential models OSU81, GPM2 and
OSUBSGE can be used to compute absolute geoid heights or, more accurately,
differences in geoid heights. For the most precise applications, the RINT
technique may be used.

The surveyor’s office of the future, envisaged by Holloway and
Williamson (1987), will soon be upon us and GPS will be an essential tool in
that scenario. To obtain the full potential of this system, GPS heights will
have to be transformed into heights in the AHD, as long as the reference
surface for our height system is the geoid or our best estimation of the
geoid. It is hoped that this study increases the understanding of the
problems involved and provides a strategy to compute geoidal heights.



2 HEIGHT SYSTEMS

The Oxford English Dictionary defines height as "measure from base to
top; elevation above ground or other (esp. sea) level." A more formal
definition is given by Mueller and Rockie (1966) as "the distance between a
surface (usually an equipotential surface) through the point in question and
a reference surface, measured along a line of force or along its tangent."

When talking of the height of a point it is implicit with the figure
quoted that the height is referred to a particular height system. A number
of different height systems exist which differentiate measuring techniques
and concepts. Some of these height systems can be considered "natural" and
are based on physical mensuration. Therefore the natural height systems
will incorporate measured gravity and be referred to the geoid. They have
the inherent attribute of being able to show in which direction water will
flow.

Other height systems can be considered "artificial” in that they have
evolved as a mathematical approximation of the real earth to simplify
calculations on an otherwise very complex shaped earth. Therefore the
height in an artificial height system will refer to an ellipsoid closely
approximating the geoid or incorporating normal gravity found by
definition.

The difference in heights between height systems may not be
numerically very large, as an ellipsoid of best fit to the geoid approximates
the earth’s surface within 0.03%. However, conceptually, they are different.

We must understand the different height systems to appreciate their
strengths and weaknesses. This is particularly important at present when
an increasing number of advocates are proposing we change from gravity
inferred heights to earth-fixed geocentric heights because of the advent of
satellite positioning systems (Schodlbauer, 1986).

It is also important we understand the concepts behind the Australian
Height Datum (AHD) and the history of its evolution before we can



integrate heights from the Global Positioning System (GPS) into the AHD.
Thus the first step in this treatise is to review the various concepts of
height and definitions that are in use.

2.1 Geopotential Numbers.

An equipotential level surface (see Vanicek and Krakiwsky, 1986;
Heiskanen and Moritz, 1967) can be considered to be a level surface at
which the gravity potential anywhere on that surface will be constant and
is normal to the direction of gravity everywhere. The gravity field of a point
P on that surface will represent the gravity force (3) of the equipotential
surface whilst the gravity geopotential of the point P is the amount of work
needed to overcome the force of gravity to remain stationary.

W=const
\/
W=const :

v
vy v {34 v 'Y
W=const

Figure 2.1 Gravity on an equipotential surface

There are an infinite number of equipotential or geopotential surfaces,
each one unique and separate. The geopotential surfaces are not parallel to
each other because they converge towards the poles due to the earth’s
oblateness in the global case and can converge or diverge due to mass
irregularities inside the earth in the regional case.



However only one geopotential surface passes through any point and,
there is only one value of potential (W, associated with each point.
Therefore the geopotential represents one possible way of defining a unique
height as a negative potential difference relative to a datum geopotential
surface, usually the geoid, denoted W,.

For a levelled point (P) on the earth’s surface relative to the
corresponding point on the geoid, the geopotential number (C) is given by
(Heiskanen and Moritz, 1967, p. 162),

C=W,-W,

P
= ["aw
0

=f0pg.dh @.1)

As a potential difference, the geopotential number is said to be "route
independent", that is the sum of the increments in height (dh) determined
by perfect levelling will always be zero, no matter which route is used to
find the total height difference. Mathematically, route independence can be
shown as,

{ dh =misclosure =0

The geopotential number, C, is measured in geopotential units (gpu),
where

1 gpu =1 kGal metre, and since

g = 0.98 kGal
C=g.H
~0.98 H 2.2)

The geopotential number is not expressed in length units, but kilogal
metres (kGal m) the difference being approximately 2%.



The calculation of geopotential numbers, in practice, does not require a
knowledge of the value of gravity at each bench mark, but may be
interpolated with sufficient accuracy from surrounding values of gravity
points providing the spacing is 2-3 km in flat country and every 1 km in
high, mountainous country (Angus-Leppan, 1982).

2.2 Dynamic Heights.

To eliminate the "fault” of geopotential numbers not being expressed in
length units (i.e. height in metres), dynamic heights (H?) have been
introduced. The dynamic height is found by scaling the geopotential
number by a constant reference gravity g,, i.e.,

p_1 (°F
H =§; J(;g.dh

¢ 2.3)
Yo

The reference gravity is usually the normal gravity associated with the
mean reference ellipsoid at a reference geographic latitude (). The normal
gravity at sea level for latitude 45° is commonly used in Europe, whilst a
convenient reference latitude can be chosen to suit the area of interest. This
can be viewed as the scale factor needed to convert the geopotential number
in units of potential to units of height in metres.

The normal gravity is calculated by an analytic function defined by the
International Association of Geodesy (IAG). The first attempt to define the
normal gravity field was proposed by Bowie and Avers (1914) as,

Yo = 980.624 (1 —0.002 644 cos 2¢ +0.000 007 cos?20) Gal @.4)

As can been seen it is a function of latitude (¢) only. A more accurate
normal gravity formula was adopted by the IAG General Assembly in
Stockholm in 1930 and became known as the International Gravity
Formula 1930. 1t is,

Yo = 978.0490 (1 +0.005 288 4 sin’ ¢ — 0.000 005 9sin’2¢) Gal (2.5)



A third normal gravity formula was adopted by the IAG and became
known as the International Gravity Formula 1967. It was considered to
have a maximum error of 4 nGal.

¥, = 978.031 85 (1+0.005 278 895 sin® +0.000 023 462 sin*®) Gal (2.6)

This formula was replaced by the meeting of the IAG General
Assembly meeting in Canberra by the International Gravity Formula 1980
which is the latest. This formula has a maximum error of 0.7 nGal.

Yo=978.0327 (1+0.005 279 041 4 sin® ¢ + 0.000 002 327 18 sin* ¢

+0.000 000 126 2sin°9) Gal Q.7

The dynamic height of a point will not be the correct geometrical
height above the geoid, except at the reference latitude of the normal
gravity. However all points on the same geopotential surface will have the
same dynamic height.

2.3 Orthometric Heights.

Another system in common usage is the Orthometric Height (H¢). The
orthometric height of a point P is the geometric distance between the geoid
and a point on the earth’s surface, measured along the curved plumbline of
P. The units of orthometric height are metres.

The equation for orthometric height is

o_1(F
H =§j(; g.dh

_¢

2.8
2 (2.8)

where g is the mean gravity on the plumbline between the geoid and P
on the earth’s surface. This cannot be measured practically as it lies inside
the earth, and so some assumptions as to the density of matter within the
earth have to be made.
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Figure 2.2 Orthometric height.

However, there are some methods to approximate g, which will lead to
a special kind of orthometric height.

If the normal gravity (y) is used to calculate the mean normal gravity
(v) from (2.8) instead of the mean gravity (g), the height system is called
Normal Orthometric height (Bomford, 1971, p. 230)

o
HY == 2.9)
3 (

Another method proposed by Helmert is called the Helmert
Orthometric height (H®) and takes the form

HY = < (2.10)

where g = g + 0.0424 H.

and g is the gravity, in Gal, observed on the earth’s surface. H is the
height of the mid-point, in km, between the geoid and the earth’s surface.
The numerical coefficient follows directly from the use of the simple Prey



gravity gradient for terrain with an infinite Bouger plate of constant
density (Vanicek and Krakiwsky, 1986, p. 371; Heiskanen and Moritz, 1967,
p. 167).

It is evident that the orthometric height is closely associated with the
geopotential number. However two points with the same orthometric height
may not necessarily lie on the same geopotential surface, especially at high
altitudes because of the uncertainty of the earth’s density and hence the
value of the mean gravity on the plumbline. The heights will be equal at sea
level (i.e. on the geoid).

2.3.1 Orthometric Correction.

Heights are usually determined by observing successive height
increments (dh) using a level and staff. However, as has already been
mentioned, summing the observed height increments around a loop will not
necessarily sum to zero. Therefore an orthometric correction can be applied
to levelled height increments to convert them to orthometric height
differences

AHg = dhs® + OC (2.11)

where OC = orthometric correction between points A and B on the
earth’s surface and is given by Heiskanen and Moritz, (1967, p. 168),

B — A -— B —
oC,, =f 8% 4 f 8% gy, — f % . 2.12)
A Y o Y o Y
38— gA"'Y.» EB‘%
0C,=S2"% an H, - H 2.13)
AB " '}’.1, Yq, A ,Y¢ B

where (g,) and (g;) is the mean value of gravity along the plumbline at
point A and B on the earth’s surface and the geoid, and Y, is the normal
gravity at a reference latitude.

Once again, a knowledge of the mean value of gravity on the plumbline
is required. However an error analysis shows that for a point in the Swiss
Alps with an altitude of 2504 metres, an error in the mean value of gravity

-10 -



on the plumbline &g of 1 mGal will correspond to an error in the height of
3mm. An error in the value of the density of matter (5p) inside the earth for
the point in the Alps between the surface and the geoid of 0.1 gem* results
in an error in the mean gravity of 10.5 mGal. This causes an error in the
height of 10 mm (ibid, p 169).

The mean terrain height in Australia is approximately 500 metres,
with few places attaining a height of that used in the example above.
Therefore the errors caused by an inexact knowledge of the density inside
the earth or of the mean gravity value on the plumbline will be small. The
orthometric heights can be found with a high accuracy by applying an
orthometric correction using these simple models.

2.4 Normal Heights.

In 1954 Molodenski proposed a new system of height which obviated
the need for a knowledge of the value of gravity between the earth’s surface
and the geoid. Normal heights (H¥) would equal orthometric heights if the
geoid coincided with the reference ellipsoid, and if the gravity was normal.
While the orthometric height system uses the mean value of gravity along
the plumbline between the geoid and the earth’s surface, normal heights
use mean normal gravity along the normal of the reference ellipsoid
between the reference ellipsoid and the telluroid. (The telluroid being a
point below the earth’s surface along the normal plumbline from the
reference ellipsoid at which the spheropotential is equal to the geopotential
of a point on the surface.) See Heiskanen and Moritz, (1967, p. 292) and
Vanicek and Krakiwsky, (1986, p. 372) for a detailed discussion.

The equation for normal height is written,

P
C =f g.dh
0
C
HY== (2.14)
Y

where 7is the mean normal gravity between the reference ellipsoid and
the telluroid.

-11 -



Terrain

Telluroid
H N 17
Quasigeoid !
—
DT
Reference 4

/ \
Ellipsoid Yo \

Figure 2.3 Normal height.

A simpler method of determining the mean normal gravity 7 was
proposed by Vignal in which the mean normal gravity was evaluated by
applying a vertical gravity gradient to the normal gravity at the reference
ellipsoid. The gravity gradient he chose was the free-air gravity gradient
(Vanicek and Krakiwsky, 1986, p. 373).

v C
" = L 01saH @.15)
The normal and Vignal heights are numerically quite close. Vignal
heights have been adopted for the unification of the European levelling
networks, while normal heights are used extensively in the USSR and the
east European countries (ibid). Both height systems are probably less
appropriate today, however, because of the density of observed gravity
stations in developed countries and the availability of low cost, accurate
and portable gravimeters.

-12-



2.5 Ellipsoidal Heights.

The ellipsoidal height (h) of a point P on the earth’s surface can be
defined as the linear distance of that point above or below the reference
ellipsoid measured along the normal of that ellipsoid. The heights are
unique to the reference ellipsoid, being directly related to the defining
parameters and orientation of the ellipsoid. The reference ellipsoid may be
geocentric with it’s centre coinciding with the centre of mass of the earth
and the axes coincident with the poles and equator or the reference ellipsoid
may be locally defined, such as the Australian National Spheroid! (ANS) to
give a "best fit" to a region. Figure 2.4 shows ellipsoidal heights h, and h, for
a point P on the earth’s surface with respect to different geocentric
ellipsoids E, and E,.

Ellipsoid 2 Ellipsoid 1

Figure 2.4 Different ellipsoid heights h, and h,.

Ellipsoidal heights have no relation with the actual or model gravity
field of the earth. Therefore they are purely geometrical in concept and are
unable to tell in which direction water will flow.

1 The terms ellipsoid and spheroid are often used synonymously. However the literal meaning of spheroid is a
sphere-like body rather than a biaxial ellipsoid.
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The height differences obtained from GPS baseline observations will be
ellipsoidal heights referenced in the same ellipsoidal coordinate system as
the satellites are in, currently World Geodetic System 1984 (WGS84).
However, the GPS heights cannot strictly be considered to be WGS84
ellipsoidal heights because of

* errors in coordinates of the satellite tracking stations defining
the satellite datum,

* errors in the absolute heights, usually found by pseudo-range
observations, of the GPS stations (see origin error, Section 4.3).

The ellipsoidal height, referred to the ellipsoid of the geodetic reference
system (the ANS in Australia), between two points on the earth’s surface
can be found by vertical angle observations between the stations and a
knowledge of the components of the deflection of the vertical in the
direction of the line (Heiskanen and Moritz, 1967, p.173). Alternatively,
ellipsoidal heights in the satellite system can be transformed into heights in
the geodetic reference system if the transformation parameters are known
(Eckels, 1987, p. 140).

2.6 In Which Height System is the AHD?

We have now examined all the major height systems and it can be seen
that they differ in only how they scale the geopotential number. The
geopotential number is of more interest to the scientific community because
it uniquely defines an equipotential surface. However, its units of kGal m
means that it is not a height in a geometrical sense.

The dynamic height has at least the dimension of height, but no
geometrical meaning. One advantage is that points on the same level
surface have the same dynamic height. The dynamic correction for points
with a large separation in latitude from the reference latitude, at which the
normal gravity is calculated, will be very large.
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"Orthometric heights are the natural heights above sea level, that is,
heights above the geoid. They thus have an unequalled geometrical and
physical significance" (Heiskanen and Moritz, 1967, p.172). The
computation is relatively laborious and requires a knowledge of the gravity
gradient inside the earth between the geoid and the surface unless the
simpler Helmert orthometric height is used.

"The physical and geometrical meaning of the normal heights is less
obvious; they depend on the reference ellipsoid used. They have a somewhat
artificial character as compared to orthometric heights, but are easy to
compute rigorously” (ibid).

The Australian Height Datum corrects measured height differences by
applying an orthometric correction (OC) as in (2.11). However the
orthometric correction does not depend upon a knowledge of the mean value
of gravity along the plumbline as in (2.12) and (2.13). The orthometric
correction is found by the expression (Rapp, 1961)

OC =(A.H +B.H*+C.H? & (2.16)

where H =mean height of the two end points of the section
3¢ = difference in latitude of the end points
A, B and C are coefficients varying with latitude.

However, the C term was considered to be negligible under Australian
conditions and so (2.16) was reduced to (Roelse et al, 1975)

OC =(A.H +B.H» ¢ (2.17)

and the values of A and B were defined as (Rapp, 1961)

A =2sin2¢ oc’(l +cos 2¢(0c' -—i—lf) -3k cos’ ¢j .0 (2.18)

. ’ t4 3 , 2Kt3
B =2sin2¢a’t, t3+§?+cos2¢ 5t4+20ct3—7 .0 (2.19)

where; @ =value of 1’ of arc in radians = 0.000290888209
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, B

C =2+ Br2e
o 2€
T 2+B+2e
_2(1+a+c)
a(1+§+e)
Ba-2.5¢")
f=1-"
t,=1-1,

and parameters a, o B, & ¢’ are defined or derived constants on
the Geodetic Reference System 1967 (GRS67) with,

a = semi-major axis = 6378160

a = flattening = (298.247167427)1
B = gravity constant = 0.005278895
€ = gravity constant = 0.000023462
¢’ = constant = 0.00344980143430

Heights in the Australian Height Datum are popularly thought of as
being orthometric heights. However it is obvious from the foregoing
definition that the orthometric correction does not include any measured
gravity either on the earth’s surface or reduced to a mean gravity on the
plumbline between the surface and the geoid. This is contrary to the
fundamental definition of orthometric heights and so it can be concluded
that the AHD is not an orthometric height system.

That the orthometric correction is dependent upon normal gravity
referred to the GRS 67 ellipsoid at a mean height H suggests that the
criteria of (2.9) is satisfied and that heights in the AHD should be correctly
referred to as normal orthometric heights. However, even though
orthometric heights and normal orthometric heights are conceptually quite
different they are numerically very similar (see Section 3.2).
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3 THE AUSTRALIAN HEIGHT DATUM

Before 1972 Australia had a multitude of levelling datums, each of
which was adopted by a government utility to suit its own particular need
in a region. The levelling datums were usually based upon a local tide
gauge and used for engineering projects or the determination of waterbound
cadastral boundaries. Blume (1975) records the existence of five such
datums in Sydney in the 1800’s with different datums again, in Newcastle
and Wollongong. The existence of many levelling datums caused much
confusion and loss of accuracy for surveyors at the time. Figure 3.1 shows
some of the levelling datums that have been used in Sydney based upon the
tide gauge at Fort Denison.

5.86| Railways & Water Irrigation Datum (Prior to 1940)

Q8O it N e e EREE IR IS Ya vt 513

"~ |Sewerage & Health Boal{Maps Mean High Water Level (MHWL) | 4 24

4.63| Former Sydney Water BoaXd....................... Mean High Water Neaps (MHWN) | 4 33
Harbours and Rivers level

o g3 StandardDatum . deoooooo..... Mean Seal Level (MSL) 293
) : Australian Height Datum

Mean Low Water Neaps (MLWN) 160

...................................... . 0.80

0-0 .Ma.r-it.i;_n.e. S..e.r.v.i.c.e.é.-B-o--ara ............................................................. 0.0

Heights
Heights

All heights are in feet

Sea

Land

Figure 3.1 Levelling datums that have been used in Sydney.

In 1972 the National Mapping Council of Australia adopted the
Australian Height Datum as the primary national levelling datum over
mainland Australia. The simultaneous adjustment of 97,320 km of primary
levelling observed between 1945 and 1970 was "fixed" at a mean sea level
height of 0.000 metres to 30 tide gauge stations around the Australian
coastline to form a single homogeneous levelling network (Roelse et al,
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1975; Granger, 1972). It is the adjusted heights of 497 junction points
forming 261 independent loops that define the Australian Height Datum to
which all vertical control for mapping is to be referred.

Concurrent with the fixed adjustment, a "free" adjustment of the
levelling network was performed holding the Johnston Geodetic Station in
the centre of Australia to an arbitrary height. A comparison of the fixed and
free adjustments by Roelse et al (1975, Annex D) shows the strain put on
the mathematical model of the land-based levelling by the introduction of
the height constraints of the 30 tide gauges. It is particularly evident that a
north-south gradient in the difference contours exists with the worst case
of 1.7 metres being up the north Queensland coast to Cape York.

The discrepancies between heights from geodetic levelling and the
heights on tide gauges has become known as the "sea slope problem" and is
of particular concern to potential users of GPS as a heighting tool because
the reference surface of the AHD, mean sea level, is not coincident with
the geoid.

An evaluation of the sea slope problem requires an investigation into
the sources and magnitude of the errors in the three basic measurements:

1) the levelled height differences between tide gauges,
2) the determination of local mean sea level at the tide gauges, and
3) the sterically determined height differences between tide gauges.

The problem is further compounded in that geodetic levelling is "time
consumptive” and that "various discrepancies are due chiefly to intrasurvey
movement,” particularly in tectonically active areas such as the Pacific
coast of the United States, with "resultant distortion of geodetically defined
height differences between tide stations" (Castle and Elliot, 1982).

3.1 Errors in the Australian Levelling Network.

Apart from some first order levelling in eastern New South Wales,
parts of Victoria and south and east of Perth in Western Australia, most of
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the levelling in the Australian levelling network was observed to third
order standard, where the orders of tolerances refer to the agreement
between a forward and backward level run. These tolerances are prescribed
in the specifications for levelling by the National Mapping Council of
Australia, (1970) as,

First Order 4 vk mm.

Second Order 8.4 Vk mm.

Third Order 12 vk mm.

where % is the distance levelled in kilometres.

These orders were used to weight the a priori variance factor s? in the
adjustment according to the ratio (Roelse et al, 1975, p. 76),

g, = 9 %D for first order levelling,
g, = 2 s%/D for second order levelling,
g, =1 s%D for third order levelling,

where g, g, and g, were the weights used and D is the distance levelled
in miles.

A variance factor (s?) of 0.001256 (imperial units) was adopted giving a
precision of the adjusted levelling (16) of 8.1vk mm. The estimate of the
precision of relative height differences in the adjustment between the
centre of Australia and the coastline is given by Granger (1972) and Roelse
et al (1975) as 0.34 metres. This figure agrees closely with the global
- empirical formula developed by NASA to find the standard deviation in the
height H as it propagates over distance S kilometres (Vanicek and
Krakiwsky, 1986, p. 99),

2
0, =0.00188°  metres (3.1)
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Substituting in the above equation a distance S=3000km
approximately equal to the distance from the centre of Australia to the
coastline, 6, = 0.37 metres. However these figures are an estimate of the
internal precision of the modelled parameters only and do not account for
any unmodelled external errors.

The unmodelled errors in levelling, as with all survey measurements,
can be classified as being gross, systematic or random errors. Gross errors
should be easily detected and eliminated by the use of self checking
procedures for all observations and reductions. However, compensating
gross errors (that is, two errors of approximately the same magnitude and
of opposite sign) within the same loop can remain undetected.

Rush (1986) reports the detection of a number of compensating errors,
one of them being 0.4 metre in a project in central Queensland caused by
three transcription errors from analysis sheet to printout. In 1975 the
Department of National Mapping reobserved the same level lines along the
north Queensland coast as in the 1971 adjustment. The new levelling found
differences with the original levelling of 0.727 metre between Rockhampton
and Mackay and 0.539 metre between Mackay and Townsville, but had
little effect on the closes of the network loops when the new levelling was
incorporated (Department of National Mapping internal report, undated).
There must remain other undetected gross errors within the Australian
levelling network, degrading the AHD, which may be caused in part to the
haste in which the original levelling was done.

The origins of systematic errors in levelling are well known and
detailed in Prijanto (1987), Jeremy (1973) and Cumerford (1987). They may
be categorised as instrumental errors, environmental or personal error.

Instrumental errors such as compensator error in an automatic level,
misalignment of the plate in a parallel plate micrometer, collimation error
and staff calibration error can be minimised or even eliminated by
adherence to correct levelling procedures. Similarly for environmental
errors such as the earth’s curvature or refraction effects can be minimised
by observing equal backsights and foresights, although a residual refraction
effect may occur depending upon the terrain slope, vegetation or
meteorological conditions.
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The effect of the use of normal gravity instead of observed gravity in
the orthometric correction (see Section 2) to the measured height
differences has been investigated by Mitchell (1973, p.56) over the
Australian continent and found to be negligible. He found the difference to
be 1.1 cm north-south and 1.9 cm east-west across the continent.

The presence of an hitherto undetected systematic error or
non-adherence to correct levelling procedures of the magnitude of 0.07 mm
in observed height for each levelling set-up, assuming a staff separation of
100 metres, will result in differences in height of 2 metres over a distance
equal to that as along the north Queensland coastline (Mitchell, 1973,
p. 205). This systematic error, if present, would remain undetected until
level connections are made to tide gauge stations or the lines observed with
GPS.

3.2 Tide Gauges, MSL and the Geoid.

The adjustment of the Australian levelling network was constrained to
fit mean sea level by level connections to 30 tide gauge stations around the
Australian coastline from records over three years, 1966-68, of
simultaneous data. This was based on the premiss that the surface of the
oceans at rest, mean sea level, is coincident with the geoid.

However the oceans are not homogeneous and not in hydrostatic
equilibrium and therefore the ocean surface will depart from the geoid by
an amount equal to the sea surface topography (SST). Also, the tide gauges
themselves are subject to errors in their readings due to their supports
sinking or being sited in estuaries with the water level not being
representative of mean sea level (see Wyndham tide gauge; Roelse et al,
1975, p. 26).

There are a number of physical phenomena that can influence the local
height of mean sea level at a tide gauge station. These include

* changes in sea level due to variations in water density of the ocean. This
can be caused by a change in gravity due to uplift or subsidence or
changes in water temperature, salinity and air pressure.
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* changes in sea level due to wind effects. Wind effect has three
components; wind stress caused by the friction of moving air on the water
surface, wind pile-up results in water moved by the wind being piled
against a coastline, and storm surges.

* apparent changes in sea level due to local changes to the gauge station if
sited in a harbour or estuary, such as a change in the topography of the
sea floor caused by dredging operations or silting or changes to the
amount of fresh water inflow during periods of drought or high rainfall.

* changes in sea level due to "tsunamis" or tidal waves.

* changes in sea level due to secular changes such as a rise or fall in the
land level due to tectonic movements or post-glacial uplift, or changes in
the volume of sea water as a result of evaporation, precipitation or
melting of the polar ice caps.

* changes in sea level due to long term periodic astronomic effects such as
the semi-annual tide (period of 182.6211 days), the solar annual tide
(period of 365.2422 days), the pole tide (period of 428 days) and the nodal
tide (period of 18.6 years).

"A one year measurement interval is the shortest period that could be
conveniently chosen as a basis for the calculation of local sea level" as
"shorter periods would introduce a seasonal bias for the calculation of local
mean sea level” (Castle and Elliot, 1982, p. 6991). Mitchell (1973, p.168)
concludes that the nodal tide has a range in magnitude of between 1 mm
and 32 mm and that differences in mean sea level calculated from 5 years of
tide data than from 19 years of tide data is negligible.

Castle and Elliot (1982, p.6995) suggest that the discrepancies
between the height of the tide gauge stations and the geodetic levelling,
particularly up the north Queensland coast, is due to the quality of the
levelling and that the length of some of the network loops, up to 3000 km,
may contain large errors whilst still satisfying the rejection criteria.
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4 THE GLOBAL POSITIONING SYSTEM

That the Global Positioning System has already had an enormous
impact on the surveying, navigation and geodetic communities is evident
from the amount of interest expressed by current users. Research into
processing software, equipment design and evaluation and field testing to
find optimal methods and new applications is happening at a frenetic pace.
However, I believe this is only the tip of the iceberg and that in the future
the impact of GPS will be even greater. Receiver costs are dropping as the
receivers are getting physically smaller and more sophisticated so that even
more position related problems can be solved with GPS.

Looking at the evolution of satellite positioning systems, we can trace
the first attempt at positioning on the earth’s surface by measurements to
an artificial orbiting satellite to SPUTNIK I which was launched on 4th
October, 1957.

Some of the other systems developed since then have included
photographing satellites against the star background, satellite laser
ranging (SLR) to the satellite LAGEOS and the US Armys SECOR
(sequential collation of range) system. These systems have generally been
replaced by the next generation of satellite positioning system because of
the cost of receivers, their portability, complexity of the computations
involved or the accuracies obtained.

The TRANSIT system, in 1967, became the first commercially
available satellite positioning system that could be used by non-government
agencies. A detailed description of TRANSIT positioning can be found in
Hoar (1982) and Eckels (1987), but a brief comparison with GPS is relevant.

The TRANSIT system consists of six satellites in polar orbits at an
approximate altitude of 1100 kilometres with one complete orbit taking 107
minutes. An observer has to wait 1 to 1!/, hours between each satellite pass,
with many passes required to obtain an accurate geodetic position.
Typically this can take approximately two days, compared to a GPS
observation period of about 1 hour.
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The relatively low altitude of the orbiting satellites in the TRANSIT
system, compared to the the 20,200 km orbits of the GPS satellites, makes
it difficult to model and then predict future orbits because the perturbing
effect of the gravity field is greater close to Earth and not as well known.
The atmospheric drag is also much greater at the lower altitude. Therefore
the broadcast ephemerides, which is the "extrapolated" position of the
satellite using prior tracking data and an orbit model, will reflect these
errors. The user can use the precise ephemerides, which is the
“interpolated” position of the satellite from tracking data concurrent with
the observing session. However, there will inevitably be a delay in the
dissemination of the precise ephemerides or it may even be restricted to
military users only.

The advantages of GPS over other systems make it the preferred
satellite positioning system of the surveying, navigation and geodetic
communities for the remainder of this century and into the next. That the
full constellation of GPS satellites will not be launched and in place until
1991-92 (see Table 4.1) has prompted the US Department of Defence (DoD)
to announce that the TRANSIT system will be supported until 1995, after
which it will be phased out.

There are a number of other satellite positioning systems proposed or
already in operation which may or may not affect the future use of GPS.
The Russian Global Navigation Satellite System (GLONASS) first launched
on 12th October 1982, is very similar to the GPS system. It is intended to be
available to the military of the USSR only. Despite this, it has been
reported by Klass (1987) that it is possible to design a single receiver
capable of using both GLONASS and NAVSTAR GPS signals for civil users
who are reluctant to depend solely on a single system operated by the
military establishments of the two superpowers.

The European Space Agency (ESA) is exploring the possibilities of
NAVSAT, a civilian targeted system involving continuous two way
communications between ground control stations, the satellites and ground
receivers. There would be 6 geostationary satellites in an equatorial orbit
and up to another 12 in highly elliptical orbits to provide world wide
coverage. There are, however, no firm deployment plans yet.
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SAT # GPS # CARRIER DATE
1 13 MLw OCT 1988
2 14 MLV JAN 1989
3 16 MLV APR
4 17 MLV JUN
5 18 MLV JUL
6 19 MLV SEP
7 20 MLV ocT
8 21 MLV JAN 1990
9 15 MLV MAR
10 22 MLV JUN
11 23 MLV AUG
12 24 MLV SEP
13 25 MLV NOV
14 26 MLV JAN 1991
15 27 MLV MAR
16 28 MLV APR
17 29 MLV JUN
18 30 PAM-DII: AUG
19 31 MLV OoCT
20 32 MLV JAN 1992
21 33 MLV APR
22 34 PAM-DII JUL
23 35 MLV oCT
24 36 MLV JAN 1993
25 37 MLV APR
26 38 MLV JUL
27 39 MLV JAN 1994
28 40 MLV JUL

Table 4.1 Proposed GPS launch schedule of Block II satellites.

Another system proposed by commercial interests in the United States
is the STARFIX described by Dennis (1986). It will be a user pays system
utilizing differential pseudo-range measurements to three geosynchronous
satellites giving initial coverage of the US continent which could be

extended later on.

4.1 GPS System Description.

The Navigation Satellite Timing and Ranging Global Positioning
System (NAVSTAR/GPS) was introduced with the launching of the first
satellite on the 2nd February 1978. It has been described by Wooden (1985)
as a "space based radio positioning, navigation and time transfer system"

(GPS Bulletin, 1988)

1MLV = Multiple Launch Vehicle (Delta II rocket).
2 PAM = Payload Assist Module (Shuttle)
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which provides "highly accurate three dimensional position and velocity
information along with Coordinated Universal Time (UTC) to an unlimited
number of suitably equipped users under all weather conditions,
continuously, anywhere on or near the surface of the Earth."

The system was designed and financed by the US Department of
Defence to satisfy their requirements for a positioning system that it

* is capable of 50 metre point positioning accuracy in real time
anywhere in the world,

* can determine the velocity vector of a vehicle and work in
a high kinematic situation,

* is independent of weather conditions,

* uses compact, inexpensive receivers,

* is not jammable by the enemy,

* can combine military and civilian use in one system.

It has never been the intention of the U.S. DoD to develop GPS to
satisfy the needs of the surveying and geodetic communities. Nevertheless,
they have been able to develop techniques for high precision applications
that are essentially outside the initial intention of the system.

The GPS system will, in its final configuration consist of a satellite
constellation with 18 satellites in 6 orbital planes with an inclination of 55°
plus 3 spares. This means there will be 3 satellites in each orbital plane and
will be spaced 120° apart. The satellites will orbit the earth at an
approximate altitude of 20,200 km taking 12 hours to complete one orbit.
There will be between 4 and 7 satellites "visible" above the horizon at any
instant with a pass lasting up to 5 hours. Table 4.2 shows the planned
positions of the 18 satellites in their GPS orbits expressed in Keplerian
elements.

Each satellite transmits a unique signal on two L-band frequencies
which are exact multiples of the satellite’s fundamental frequency of 10.23
MHz, kept by the onboard oscillator. The L1 frequency of 1575.42 MHz is a
carrier onto which a C/A (Coarse Acquisition) Code of 1.023 MHz and a P
(Precise) Code of 10.23 MHz are modulated. The L2 frequency of 1227.60
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MHz is a carrier for the P-Code only, and depending on future US
government policy may be restricted to military use only by encrypting the

signal (see Scherrer, 1985).

Sat. a e ) i Q M
No. (m) (deg) (deg)
(deg) (deg)
1 26 560 001.0 0.003 0.0 55.0 0 0
2 26 560 002.0 0.003 0.0 55.0 0 120
3 26 560 003.0 0.003 0.0 55.0 0 240
4 26 560 004.0 0.003 0.0 55.0 60 40
5 26 560 005.0 0.003 0.0 55.0 60 160
6 26 560 006.0 0.003 0.0 55.0 60 280
7 26 560 007.0 0.003 0.0 55.0 120 80
8 26 560 008.0 0.003 0.0 55.0 120 200
9 26 560 009.0 0.003 0.0 55.0 120 320
10 26 560 010.0 0.003 0.0 55.0 180 120
11 26 560 011.0 0.003 0.0 55.0 180 240
12 26 560 012.0 0.003 0.0 55.0 180 0
13 26 560 013.0 0.003 0.0 55.0 240 160
14 26 560 014.0 0.003 0.0 55.0 240 280
15 26 560 015.0 0.003 0.0 55.0 240 40
16 26 560 016.0 0.003 0.0 55.0 300 200
17 26 560 017.0 0.003 0.0 55.0 300 320
18 26 560 018.0 0.003 0.0 55.0 300 80

where; a is the semi-major axis of orbit.

Table 4.2 Future GPS 18 satellite constellation.
(Nakiboglu et al, 1985)

e is the eccentricity of orbit.

o is the argument of perigee.
iis the angle of inclination between the orbital and equatorial

planes.

Q is the right ascension of the ascending node.

M is the Mean Anomaly, the position of the satellite in the
orbital plane.

The wavelengths of the C/A and P code on the L-band frequencies are
found by the relation,

r=S
f
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where; A = carrier wavelength in metres
¢ = speed of light in a vacuum (299,792,458.0 msec?)
f = code or carrier frequency in hertz.

These frequencies are equivalent to nominal wavelengths of 19 cm and
24 cm for the L1 and L2 carrier signal compared to 29.3 metres and 293
metres for the P code and C/A code. They are nominal because the signal is
retarded or "delayed" as it travels through the atmosphere and also the
doppler effect on the carrier frequency due to the relative motion of the
satellite with respect to the receiver. The wavelengths are therefore
inexact.

GPS receivers use a number of different techniques to record the
transmitted satellite signals. The collected data are known as observables,
and can be processed according to the observation type to determine a
receiver’s position or baseline vector between two receivers. A detailed
analysis of GPS signal structure can be found in Eckels (1987),
King et al, (1985) and Wells et al, (1986).

The intended method of measurement, for which GPS was designed, is
to use the P and C/A code signals to measure ranges to the satellites. This
is known as the "pseudo-range" observable because the ranges contain an
error due to oscillators in the satellites and the receivers not being
synchronised. The pseudo-range is found by scaling the time delay of the
signal from the satellite to the receiver by the speed of light. By measuring
the pseudo-range to four satellites simultaneously the observer can solve for
the three positional elements of the receiver’s location plus the clock offset
to GPS time.

This is analogous, in the surveying sense, to a resection for the
receiver’s location, by distance measurements to four surrounding control
points whose positions are known. The satellites can be considered to be
those control points whose instantaneous positions are determined by
interpolating the satellite orbits, found from the Broadcast Ephemeris or
the Precise Ephemeris.
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The resolution of the pseudo-range measurement depends on the
accuracy of the time measurement made by aligning the satellite’s
transmitted P or C/A code with the receiver’s generated code. The relatively
longer wavelengths of the code signals to the L band signals make accurate
signal alignment not possible. The P code was designed for point positioning
to the 10 metre level while the C/A was designed to achieve point
positioning at the 100 metre level (King et al, 1985, p4).

The accuracy from pseudo-range observations is generally
unacceptable for surveying and geodetic applications and so this technique
will not be mentioned further in this study (see section 4.2.7). The preferred
observation is the measurement of the L band carrier waves with two or
more suitably equipped receivers in a relative mode.

The principle of carrier wave phase measurement is that the range
between the satellite and the receiver consists of an integer number of
carrier waves (the ambiguous term) and a residual fractional part of a cycle
of the carrier wave. The ambiguous term can be resolved using
post-processing techniques providing sufficient observations are available
to resolve the integer cycle biases. The "sufficient” number of observations
relates to the length of the arc the satellite travels during the observation
period as well as the actual number of measurements made.

The remaining fractional part of the carrier wave cycle is found by
comparing or "beating” the reconstructed carrier wave with another carrier
wave of the same frequency generated by the receiver. The resultant carrier
beat phase when multiplied by the wavelength of the L1 or L2 carrier wave
gives the fractional part to an accuracy of millimetres.

The fundamental carrier phase observation equation can be expressed
as,

AD; =—pf —dlf —dT} + cAtt +0Cf + ¢ (4.2)

where A = carrier wavelength in metres
@ = observed carrier beat phase in cycles
i = geometric range between satellite and receiver
dlf = ionosphere phase delay

-929.



dTt = troposphere phase delay

aif = time difference between satellite and receiver clock
CF = integer carrier phase ambiguity term

e = error associated with the observation

i and % refer to receiver i and satellite k.

It is apparent from the above equation that the error sources, such as
satellite orbits, satellite and receiver clocks and atmospheric propagation
errors, will be strongly correlated between receiver sites. If the carrier
phase measurements are differenced between receivers, between satellites
or between epochs, the errors common to the measurements being
differenced will be removed. However if the correlation is not perfect, there
will be an unmodelled residual error which will propagate into the solution
adversely affecting the result. The next section attempts to identify and
quantify these error sources and particularly how they affect GPS heights.

4.2 Error Sources in GPS Heights.

Historically, estimates of the magnitude of height errors in networks
observed with GPS have been made after examination of height loop
closures. This has led to claims of differing precisions for GPS heights by
various authors, for example,

"relative geocentric spheroidal heights to Rush (1986)
within a few millimetres"

"3 ppm” Schwarz et al, (1985)
"2-3 ppm for lines 10-70km length" Delikaraoglou et al, (1985)
"cm, or even sub-centimetre accuracy Hein, (1985)
over distances of the order of 100km"
"2 ppm horizontal, 4 ppm vertical" Stolz, (1987)
"lem + d(1 ppm) d = length in km" Hothem et al, (1985)
"about 1.6 ppm”" Engelis and Rapp,

(1984)
"half the precision of horizontal GPS Users Group
coordinates"
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"ellipsoidal height differences with cm Denker et al, (1986)
order accuracy for distances up to 100
kmll

"1 ppm over baselines 50-100 km andin  Hein, (1986)
the near future perhaps 0.1 ppm"

"+ (0.5mm + 1-2 ppm )" Zilkoski and Hothem, (1988)

Here the error being quoted is the error in height over the baseline
length expressed in parts per million (ppm). This method is the most
common in usage and will be adhered to in this study.

The errors in GPS observed heights can be subdivided into random
errors and systematic errors (or biases). Random errors are a result of the
observation process itself and neither the magnitude nor the sign of the
error is known. However, repeated observations will allow an estimate to be
made of the error source which can statistically be propagated into the final
solution.

Biases have the same, but often unknown, magnitude and sign under
the same observation conditions because the mathematical model
accounting for them is in error or incomplete. They can be greatly
minimised or even eliminated as an error source by modelling the error in
the solution or differencing the observations.

The accuracy of heights obtained by GPS is dependent on both the
random errors and biases inherent in the observation and the geometric
strength of the satellite configuration being observed. This determines how
the errors propagate into the final solution.

The errors that influence GPS measurements fall into the following
categories (Wells et al, 1986)

BIASES
Satellite Dependent
* Orbit errors due to an incorrect satellite ephemeris.
* Satellite clock model biases.
Station Dependent
* Receiver clock biases.
* Station coordinates.
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Observation Dependent
* Tonospheric delay.
* Tropospheric refraction.
* Carrier phase ambiguity.

RANDOM ERRORS
* Residual biases.
* Cycle slips.
* Multipath.
* Antenna phase centre movement.
* Random observation error.

The user, by his choice of observation procedure and processing
strategy, has control over the propagation of some errors into the final
solution. These include orbit errors, ionospheric delay, tropospheric delay
and to some extent, multipath. Other errors are dependent on instrument
type or are inherent in the GPS system. To this extent the user is somewhat
at the mercy of the equipment manufacturers and the operators of the GPS
space and control segments. These error sources are investigated in greater
detail below.

4.2,1 Ionosphere.

The signal from a GPS satellite passes through 5 distinct layers in the
Earth’s atmosphere. These layers and the corresponding heights in which
they occur are shown in Table 4.3.

ATMOSPHERIC APPROXIMATE REFRACTIVE
LAYER HEIGHT INDEX
(km) (n)
Troposphere Otol1 n>1
Stratosphere 11 to 30 n>1
Mesosphere 30 to 70 n=1
Tonosphere 70 to 1000 n<l
Exosphere > 1000 n=1

Table 4.3 Layers of the atmosphere.
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The signals transmitted by the satellite are "delayed" as they pass




through these layers in the atmosphere. This increases the transit time of
the signal from the satellite to the receiver and hence the range. Therefore,
GPS measurements must be corrected for the ionospheric phase delay (4%
and tropospheric delay @7} from (4.2).

In the ionospheric region, the ultra-violet radiation from the sun
ionizes the gas molecules releasing free electrons into the ionosphere
causing the region to become negatively charged. The correction for the
ionospheric phase delay is dependent on this number of free electrons in
the ionosphere, called the Total Electron Content (TEC), measured at the
zenith. The units of TEC are expressed as N,, the number of free electrons
per square metre (el m2). Typical values for TEC range from a maximum of
2000 x 10 el m* to a minimum of 10 x 1015 el m=.

The TEC is a function of,

* latitude - maximum TEC occurs at low to mid latitudes, the
minimum at the poles.

* diurnal cycle - maximum occurs early afternoon, minimum in
the early morning.

* sunspot cycle - 11 year cycle of solar activity.

* sudden ionospheric disturbances.

Figure 4.1 shows the typical range in the diurnal ionospheric delay for
2 two day periods, one in September 1980 and the other in May 1983. The
first occurs during a peak in solar activity, whilst the second occurs towards
a minimum. The 11 year cycle of solar activity is clearly seen in Figure 4.2.
It can also be seen that isolated peaks of activity also occur which are
overlaid on the longer period cycle.
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Figure 4.1 Typical diurnal variations in TEC.
(Campbell and Lohmar, 1985)
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Figure 4.2 Monthly sunspot numbers 1950-1985.
(Campbell and Lohmar, 1985)

Observations made to the GPS satellites will, typically, be away from
the zenith which will increase the value of the TEC and hence amplify the
ionospheric phase delay. The amount of amplification is approximately
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proportional to the secant of the zenith angle of the geometric path from the
receiver to the satellite. At a zenith angle of 75° this is about 3.9 times the
TEC at the zenith.

Various strategies have been devised to correct phase observations for
the ionospheric phase delay. They differ greatly in complexity and
attainable accuracy. Table 4.4 shows the expected accuracy of the vertical
ionospheric range error of several models and in comparison the accuracy
expected from dual frequency observations.

Ionospheric
Range Error

Without correction 2-15m
Klobuchar model 1-8m
Bent model 0.5-4m
Bent model + updating 0.25-2m
Two-frequency observations < 0.0l m

Table 4.4 Expected residual error for different ionospheric correction
methods in the zenith direction.

Depending upon the separation of the two receivers and the stability of
the ionosphere, double differencing phase measurements between station
sites will tend to cancel most of the ionospheric delay. For example, two
GPS receivers 10 km apart access the signal simultaneously from a
satellite. The signal paths will be virtually the same and so double
differencing will tend to cancel the ionospheric effects. However, if the two
receivers have a large separation the signal paths will be very much
different causing a relative residual ionospheric error after double
differencing.

A residual error in the absolute ionospheric delay tends to propagate
into the final solution of a baseline or network more as a scale error and
does not significantly affect height determination. Georgiadou et al, (1988)
report a reduction in baseline length of 0.25 ppm for a 1 m residual
ionospheric delay whilst Beutler et al, (1987) state that a "network
contracts by 0.7 ppm if a TEC of 10'" in the zenith direction is neglected.”
However, a residual error in the relative ionospheric delay between two
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stations will be reflected as an error in the GPS height differences. This
would tend to occur over long baselines, particularly those oriented
north-south.

4.2.1.1 Dual Frequency Observations.

The ionospheric delay is frequency dependent owing to the dispersion
effect of radio waves in the ionosphere and so measurements made
simultaneously on both L1 and L2 frequencies will eliminate most or almost
all of the ionospheric correction. This is the most accurate method of
correcting carrier phase observations. From King et al, (1985, equation
5.83),

O = py ~ 1.984(0,, — 0.779¢,,) (4.3)

The "combined, ionosphere free, phase observable ¢, can be used for
geodetic positioning in exactly the same manner as single frequency
observables." For short baselines affected by multipath, however, the
ambiguity biases may be harder to resolve for the combined ionosphere free
phase observations than single frequency observations because the signal

noise is amplified.

4.2.1.2 Broadcast Ionospheric Correction Model.

Most GPS receivers used today are single frequency only. This is
because of the uncertainty of future US DoD plans for access denial of the
P-code on the L2 frequency and also the extra cost involved in building a
dual frequency receiver. Therefore, the L1 carrier phase observable has to
be corrected by application of a model that represents the ionospheric phase
delay, to obtain geodetic accuracies. One ionospheric correction model is
broadcast in the GPS navigation message on subframe 4.

This model was developed by Klobuchar in 1982. It is a compromise
between accuracy and an acceptable level of complexity. It uses an
algorithm containing eight coefficients to model the ionospheric delay. The
model is quoted as having an accuracy of 50% root sum square (RSS) of the
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correction on a global basis (Klobuchar, 1986). However, at this accuracy,
the model is unable to accurately fit significant day-to-day fluctuations and,
indeed, there could be periods when the model actually degrades the
observations (Campbell and Lohmar, 1985).

4.2.1.3 Other Ionosphere Correction Methods.

There are other methods to correct for the ionospheric delay which
have shown encouraging results but have not gained universal acceptance
because of their complexity or cost. One method described by Campbell and
Lohmar, (1985) and Partis, (1988) is to use dual frequency Doppler data
from the NAVSAT satellites transmitted at 150 and 400 MHz and then
used to calculate the ionospheric delay at the GPS frequencies.

Henson and Collier, (1986) report on combining the group delay
obtained from pseudo-range measurements with the phase delay from
carrier phase measurements. These delays are nearly the same but of
opposite sign, in common distance units, the difference being the
ionospheric correction.

A number of empirical regional and global models have been developed
to model the TEC from data from ionosonde observations by means of
vertical looking HF-radar to measure peak electron density. Two global
models that have found wide interest are the Bent Ionospheric Model
(Llewellyn and Bent, 1973) and the International Reference Ionosphere
(IRI) (Rawer et al, 1978).

4.2.2 Troposphere.

The troposphere, sometimes referred to as the neutral atmosphere, is a
non-dispersive medium, unlike the ionosphere. Therefore the tropospheric
propagation delay is dependent not the transmitting signal frequency but
on the refractive index (n) of the medium along the signal path. The
refractive index can, alternately, be expressed as refractivity (N) by the
expression
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N =104n-1)

The refractivity is the sum of a dry component (N,) and a wet
component (Ny,) and depends on the temperature (7) in degrees Kelvin, air
pressure (P) in mbar and the pressure of the water vapour (e) mbar of the
troposphere. The formula of Smith and Weintraub (1953) give this as

N=N,+N,  where;
N,=776P/T and N,=3.73x10%(e/T?)

The tropospheric delay (dr) is then expressed as the integral of the
refractivity along the line of sight (LOS) from the satellite to the receiver.

dr = f (Np +Ny) dh 4.4)
Los

Typically, the dry component makes up between 80-90% of the zenith
range delay of approximately 2.3 metres in the first 7 km above the earth’s
surface. Close to the horizon, the range delay can be up to 20 metres. This
can be modelled within 2-5% using surface meteorological data (Landau
and Eissfeller, 1986).

However, the wet component, which typically contributes a zenith
range delay of 10-20 cm, depends on the atmospheric conditions along the
signal path from the receiver to the upper level of the troposphere. Under
some conditions, it is questionable whether the surface temperature or the
water vapour pressure truly reflects the meteorological conditions at higher
altitudes or that horizontal variations in the water vapour content do not
exist.

For example, the surface water vapour pressure measured in fog or in
an inversion layer would be very different to measurements taken only a
few hundred metres above the ground. Also Rothacher et al (1986) report on
a GPS observed network in the Swiss Alps with station height differences of
up to 900 metres exhibiting very different meteorological conditions at each
station. It is for this reason that researchers have taken a great interest in
the determination of the water vapour pressure along the line of sight from
satellite to receiver.
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The various options that are available to correct GPS range or phase
measurements for the troposphere delay are,

* No correction - that is, ignore the tropospheric delay, hoping
that the double difference observations will tend to cancel. This
will be essentially true for short baselines in flat topography
under stable weather conditions.

* Model the tropospheric delay using a standard model based
upon a standard atmosphere or upon surface weather data.
Table 4.5 shows various tropospheric correction models
available for the zenith correction (Coco and Clynch, 1982).
These models generally give accuracies of a few centimetres.

* Radiosonde data - measuring temperature and water vapour
pressure profiles from balloon launches at a nearby weather
station.

* Water Vapour Radiometer (WVR) observations - these measure
very accurately the microwave radiation emitted by the water
vapour in the atmosphere along the line of sight. The WVR’s are
very expensive, however, and generally beyond most operator’s
budgets.

The most common method for commercial GPS processing software to
correct for the tropospheric delay is to use one of the models in Table 4.5.
The Wild-Magnavox GPS processing software, PoPSw=, (WM Satellite
Survey Co., 1987) allows the user to select from a choice of three models,
Saastamoinen, Hopfield I and Hopfield II or use no model at all, whilst the
Trimble software, TRIMVECt=, (Trimble, 1986) uses the Marini or modified
Hopfield model. Both programs allow the user to input measured surface
temperature, pressure and relative humidity readings or use a default
standard atmosphere.
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MODEL NOTES

Hopfield Based on a quartic model of the
refractivity.
Black empirical model, no surface

measurement inputs, depends
only on latitude.

Berman empirical model with different
parameters for day and night
cases.

Chao 73 assumes adiabatic law rather
than perfect gas law,
semi-empirical model

Saastamoinen assumes a linear decreasing
temperature as a function of
altitude.

Sadastamoinen/ a variation of the

Marini Saastamoinen model

Table 4.5 Tropospheric correction models.

A differential residual error in the tropospheric correction between two
stations is the major source of GPS height errors, (assuming the orbit errors
or the error in the ionospheric delay are not abnormally large). This is in
agreement with Beutler et al, (1987) who state "a bias of 1mm in the zenith
direction of" (the relative) "tropospheric correction causes a height bias of
approximately 2.9mm.”" However, an absolute error in the tropospheric
correction causes a scale error in the baseline, the effect being to stretch the
baseline if the troposphere is neglected altogether.

Two methods have been suggested by Grant (1987) to minimise the
error in the heights due to a differential residual error in the tropospheric
correction between two stations. The first is to model this error at each
station as a time invariant bias in the solution. The success of this method
will depend on how stable the troposphere was during the observing
session. The second method is to model the residual error at each station
and at each epoch using a Kalman filter. The success of this method will
depend on how well the dynamic model reflects the changing troposphere.
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4.2.3 Orbit Errors.

The satellite emphemeris is a set of coordinates describing the position
of an orbitting satellite with respect to the earth’s centre of mass as a
function of time. The satellite orbit obeys Kepler’s three laws of planetary
motion but is "perturbed" from an idealized orbit by gravitational and
non-gravitational disturbing effects upon the satellite. These are,

* gravitational perturbations caused by the earth’s non-sphericity,
the mass of the sun and the moon, earth and ocean tidal effects.

* non-gravitational perturbations caused by atmospheric drag on
the satellite, solar radiation pressure and Albedo.

An orbit generation program involves tracking a satellite’s orbit from
tracking stations around the world, using an appropriate force model
reflecting the disturbing effects on the satellite and then predicting future
orbits which are then uploaded from the ground Master Control Station to
become the broadcast ephemeris. Errors in the broadcast ephemeris are
caused by,

* errors in the defining elements of the reference ellipsoid (WGS84).

* errors in the positions of the tracking stations.

* errors in the position and velocity of the satellite (the initial state)

caused by tracking errors.

* errors in the force model of the disturbing effects.

An error in a satellite’s orbit may be described in the HCL system. The
L or along-track error is in the direction of the satellite’s motion, the
across-track error, C, is perpendicular to the along-track error and the
radial error, H, is mutually perpendicular to the other two and in the
direction from the satellite to earth. Typically, the along-track error is the
largest of the three (Grant, 1988).

No matter how accurately the ranges between the receivers and the
satellites are determined, an error in the satellite orbit will result in an
incorrect receiver position, scaled by a factor dependent upon the strength
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or weakness of the satellite geometry. As a general rule, the relationship
between an error in the satellite’s orbit and the error in a measured
baseline will obey the approximate law (King et al, 1985; Colombo, 1986)

baseline error (ppm) = ephemeris error/altitude of satellite

That is, an error of 20 metres in the satellite orbits will result in a
baseline error of approximately 1 ppm. The effect of an along-track error
has been investigated geometrically by Beutler et al, (1987) who looked at
the particular case of a single satellite passing through the zenith of a
ground station. They found that an along-track error of 1" in the plane of
the observer as viewed from the ground station will affect the height
component by an amount caused by a rotation of the network by 1" about an
axis perpendicular to the orbit plane. The error achieves a maximum when
the direction of the baseline is the same as the motion of the satellite.

4.2.4 Receiver and Satellite Clock Errors.

The satellite and receiver clock biases for differential positioning have
three components,

* an epoch offset from Universal Coordinated Time (UTC),

* an epoch difference between the two receivers,

* and a time rate difference between the two receivers and the

satellites.

An epoch offset from UTC, common to both receivers, will result in the
satellite emphemerides being interpolated for the incorrect time. The error
is a function of the time bias from UTC and the satellite along-track
velocity. The receiver clocks need to be synchronised to UTC within 7
milliseconds for a baseline error below 1 ppm (King et al, 1985) and if the
two receiver quartz clocks are synchronised to each other within 3
microseconds that error reduces below 1 cm (ibid).

The frequency stability of the satellite and receiver clocks depends on
the type of clocks used. The measure of this stability is the Allan Variance
(cy (1) (Stolz, 1987). The stability of the various clocks used in the GPS
satellites is given in Table 4.6.
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STABILITY AT 1 QUARTZ RUBIDIUM CESIUM
DAY

6y (D) 1x10° 1x107%/1023 2x103
secs secs secs

Table 4.6 Allan variance of satellite clocks.

The types of clocks in the present (Block 1) satellites are given in Table
4.7 (King et al, 1985).

NAV ID # SV ID # LAUNCH DATE CLOCK TYPE

1 4 22/02/78 Quartz
3 6 7110/78 Rubidium
4 8 11/12/78 Rubidium
5 5 9/02/80 Cesium
6 9 26/04/80 Cesium/Rubidium
8 11 14/07/83 Rubidium
9 13 13/06/84 Cesium

10 12 10/09/84 Cesium

Table 4.7 Satellite clocks.

The satellite and receiver clock biases are eliminated by the
differencing in the solution for the baseline components. A single difference
is the difference in phase of a "simultaneous" measurement between one
satellite and two receivers. A double difference is the difference of two
single differences (between station differences) related to two different
satellites at the same epoch. These methods cancel any clock biases and any
instabilities in the receiver and/or the satellite clocks.

4.2.5 Carrier Phase Ambiguity.

The ambiguity term ¢} in the carrier phase observation equation 4.2 is
the unknown integer number of cycles between the satellite and the
receiver. The ambiguity is unique to each satellite-receiver combination and
will not change during an observing session unless a cycle slip occurs or the
receiver loses lock.
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The process of ambiguity resolution involves the selection of the
nearest integer value of the ambiguity parameters based on the estimate
from a first ambiguity free solution. This estimate of the bias free
ambiguities may not be well determined if the observations contain

* unmodelled ionospheric effects,
* unmodelled tropospheric effects,
* instrumental errors such as multipath,

and will also depend on the

* length of the observation session,
* length of the baseline,
* and, the number of satellites observed.

After the integer values of the cycle ambiguities have been resolved, a
second ambiguity fixed solution for the geodetic parameters only, can be
performed holding the ambiguities fixed to their estimated integer values.
If the ambiguities have been fixed to their correct integer values then a
increase in precision of the solution for the geodetic parameters of interest
will occur. However, the solution will be degraded if incorrect values are
chosen in the ambiguity fixed solution. In these cases an ambiguity free
solution will give a more accurate estimate of the geodetic parameters
(King, 1987; Henson and Collier, 1986).

An alternative method to estimating the ambiguity bias is to eliminate
it using triple differences, i.e. double differencing between measuring
epochs. However, the favoured method which gives the most accurate
results (Eckels, 1987, p. 115) is the first method. This reduces the number
of parameters in the solution which increases the redundancy and hence
increases the precision of the results.

4.2.6 Multipath.

Signal multipath errors occur if the received signal at the antenna is
composed of two or more constituents which have propagated along paths of
different length causing the signals to interfere at the receiver. The
different propagation paths is usually caused by part of the signal being
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reflected off some nearby structure, the ground or body of water. Multipath
effects are site and antenna independent and therefore the effects will not
cancel when double differenced between receivers.

Reducing the effects of multipath can be achieved by the use of a well
designed antenna that minimises interference and possibly incorporating
an absorbent ground plane to cut out signal reflection. If suspected
multipath errors are still thought to exist the receiver can be resited away
from the suspected reflective surface. Unfortunately, too often during GPS
campaigns, unexplained errors are attributed, perhaps unjustly, to
multipath. Proof that a suspect error source is caused by multipath
contaminating the GPS signal will be made if the error repeats one sidereal
day later when the satellite-reflector-antenna geometry is the same.

4.2.6.1 Antenna Phase Centre Movement.

Antenna phase centre movement is the difference between the
electrical phase centre and the geometrical phase centre of an antenna. The
range of the incoming signal from the satellite will vary around the phase
centre according to the azimuth and elevation of the satellite. The range
error caused by the phase centre movement will be the projection of the
deviation of the actual phase centre from the nominal centre onto the line of
sight from the antenna to the satellite.

Experiments by Kleusberg (1986b) on the variability of phase centre
with rotation and inclination of a TI-4100 antenna show a difference of
1.9 cm for the L1 frequency and 3.3 cm for the L2 frequency.

This error source can only be overcome by good antenna design. Collins
(1986) suggests that the crossed dipole antenna used by Macrometert "has
consistently provided the greatest accuracy under extreme conditions."

4.2.7 Random Observation Errors & Residual Biases.

GPS measurements contain additional observational random errors
other than those described above. They are due to the limitations of the
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electronics in the receivers, in the system and round off errors in the
processing software. As a general rule, they are proportional to about 1% of
the signal wavelength (Wells et al, 1986). Therefore they will be much
greater for code measurements than carrier phase.

GPS SIGNAL WAVELENGTH 1% OF A
A
C/A Code 300 m 3m
P-Code 30m 30 ecm
Carrier 20 cm 2 mm

Table 4.8 Magnitude of random observation errors.

The observations will also contain unmodelled residual biases which
have not been accounted for. They are systematic and present because the
model used to account for the error is either incomplete or incorrect. The
purpose of much of the current GPS research is to investigate more
complete error models that will account for all the errors, if this is possible.
It may be found that the increased complexity of a better error model may
not be warranted by all but the most demanding of users.

They can also be caused by differencing observations that do not
contain common errors as in the case of differing ionospheric refraction at
the ends of a long baseline due to the signal passing through a different
part of the ionosphere. Another case could occur in the tropospheric delay,
even on a short line, if observations are made under severe and changing
weather conditions.

4.3 Simulations.

One method of looking at the effect of systematic errors on a GPS
adjustment is to observe GPS under the conditions which are being
investigated and comparing these results with known ground truth. The
main disadvantages of this method are the time and cost involved in
collecting the data, the uncertainty that the ground truth, "the yardstick",
is error free and the difficulty in separating different error sources from
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Figure 4.3 Skyplot of satellite constellation for simulation.
The errors considered in this study are,

1) errors in the station coordinates with respect to the earth fixed reference
frame. The GPS baseline solution is with respect to a fixed station, the
a priori coordinates of which are usually obtained from a pseudo-range
solution or converting AGD84 coordinates to WGS84. The given error
figures are o,, 6,, 6, = 10 metres and are assumed to be uncorrelated.

2) errors in the satellite orbits. The errors are given in the HCL system
with the along track component L being the worst determined than the
other two (Grant, 1988). Typical values are 6 m, 6 m and 18 m (HCL)
giving a total error of 19.9 m. It is also assumed that these errors are
uncorrelated and that there is no correlations between satellites.

3) the residual tropospheric delay error after the observations have been
corrected a priori using surface meteorological data and a tropospheric
model such as Hopfield or Saastamoinen. The zenith tropospheric delay
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is estimated as a constant parameter which assumes the troposphere is
stable during the observing session. The residual error of the zenith
delay at a point is ¢,,, with a correlation distance D,,, for a spatial
correlation function given below (4.5). The values of 6,,, = 0.048 m,
approximately equal to a residual error of 2% and D,,,= 75 km have been
adopted for this simulation (Grant, 1988).

4) the error caused by the ionospheric delay of the signal from the satellite
to receiver. For dual frequency receivers the error is negligible. However,
most observations will be made with single frequency receivers as they
are less expensive than the others. The values of 6,,, =1 m and
D,,,=1000 km given below (4.6) have been adopted for this simulation.
This appears to be a reasonable value for observations made near a solar
minimum, at night-time or corrected with the ionospheric model by
Klobuchar (1986).

5) random observational errors and residual biases in the observation
process. These errors include multipath, antenna phase centre
uncertainties, inter-channel biases and random noise in the electronics
of the receivers. The effects of these errors will be independent of the
length of the baseline and will thus be most noticeable on short baselines
where the errors due to orbits and atmospheric propagation delay are
smallest. An error of 5§ mm in the undifferenced phase observations with
one observation every 2 minutes has been adopted for this simulation.
This is equivalent to a 10 mm uncertainty for observations taken every
30 seconds and is a conservative estimate (Grant, 1988).

The spatial correlation function used for the tropospheric and
ionospheric delay D, , and D, is given by the Gaussian function (ibid)

b2

p (b) =exp Y J 4.5)
trop
b2

p () =exp —])7) (4.6)
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where p (b) is the correlation between the two stations, b is the length
of the baseline and D,, and D,, have already been defined. This
corresponds to correlations for the simulated 5 km and 50 km baselines of,

Troposphere 5 km line p =0.996
50 km line p=0.641
Ionosphere 5 km line p =1.000
50 kmline p=0.998

Two cases were investigated in the simulation. First, the case where
the ambiguities were not able to be resolved at all for both lines. The second
case where the ambiguities were able to be resolved correctly for the 5 km
line. It was thought that this was the more realistic situation as the
observational errors in the longer line would make it unlikely for the
estimate of the ambiguities to be correctly fixed to integers.

It is understood that the ionospheric and tropospheric delay errors
and the orbit errors will be anisotropic, that is azimuth dependent, to a
certain extent. The ionospheric delay is dependent upon the TEC which
exhibits a steep gradient from the equator to the poles. The propagation of
orbit errors depends upon the relationship between the direction of the
baseline to the direction of the groundtracks of the satellites (Beutler et al,
1987), whilst the residual tropospheric error is influenced by local
topographic and climatic conditions. This study did not investigate the
spatial behaviour of errors any further other than acknowledging some
azimuth dependency. All errors in the simulation are considered isotropic.

Figure 4.4 shows that when the ambiguities are not resolved the
dominant height error is the tropospheric error and is proportionally much
the same for both baselines. The receiver noise error is constant and
therefore has a much greater influence on the shorter line. The other errors
are proportionally very similar to each other.
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Figure 4.4 Simulated errors in 5 km and 50 km baseline.

Figure 4.5 shows that by resolving the ambiguities correctly the error
in the easting coordinate is improved dramatically. The total receiver noise
error has also been improved. The dominant error for the height component
is still the residual tropospheric error with the errors in the ionosphere and
the fixed station coordinates also being significant. It is also apparent that
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the total height error is not improved whether the amiguities are able to be
resolved or not, although the errors in the easting and northing components
are improved.
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6 Satellites Observed, 2 hours duration, 15 degree elevation mask.

Figure 4.5 Simulated errors in 5 km baseline.

It can be concluded from the foregoing error simulations that GPS
surveys observed primarily to obtain heights, such as connections between
tide gauges or densification of levelling networks, that there is very little
benefit in resolving the cycle ambiguities. The risk that the cycle
ambiguities may be resolved incorrectly and degrade the observations must
be weighed up against the very little improvement that correct ambiguity
resolution brings.

When observing high precision GPS surveys for height, care should be
taken to control the tropospheric error primarily and the ionospheric delay
error and errors in the fixed station coordinates secondary. This can be
achieved by a better determination of the wet component of the troposphere
with the use of WVR’s, the use of dual frequency receivers and perhaps a
connection to a VLBI or TRANSIT doppler site.
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5 METHODS OF TRANSFORMING GPS HEIGHTS TO
AHD HEIGHTS

The determination of height by levelling is intrinsically more accurate
than geodetic positioning by terrestrial measurements, but how accurate is
levelling when compared to heights from GPS?

The simulation of systematic errors in the GPS system in Section 4.3
gives a standard error for heights of 4 ppm of the baseline length. This
figure may be a little conservative as analysis of loop misclosures in a
number of networks and the experience of researchers (Section 4.2) shows
that the error in GPS heights is closer to 2-3 ppm.

To compare the accuracy of GPS heights with spirit levelling, we have
to use the standard error (s.e.) of the levelling and not the prescribed
tolerances. This can be found using Lallemand’s formulae (Bomford, 1977,
p. 244),

s.e. =Mk + 02 k?) G.1)

where £ is the distance levelled in kilometres,
n is the random error in mm/km?!2,
o is the systematic error in mm/km.

Bomford gives figures for n and ¢ of 0.35 mm/km2 and 0.04 mm/km
based on analysis of the second geodetic levelling of Finland 1935-1955.
These figures appear to be too optimistic to be used in the Australian
situation. Roelse et al (1975, p.76) estimated the precision of the
Australian levelling after adjustment as 8.1vkmm. This figure does not
account for any systematic errors in the levelling but is the best estimate
available for the Australian levelling. This error figure is also quite close to
the tolerance for second order levelling. Therefore, as an illustration only,
table 5.1 is given which compares the accuracy of GPS heights, adopting an
accuracy figure of 2 ppm, to the prescribed tolerances of first, second and
third order levelling.
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The figures above the dark solid line show at which distances GPS
heights are more accurate than spirit levelling whereas for the figures
below, the reverse is true. By inspection, first order levelling is more
accurate than GPS heights over all distances, while third order levelling is
not as accurate as GPS heights up to a distance of 35 kilometres. As most of
the levelling in the Australian levelling network is of third order standard
(Roelse et al, 1975, p. 75), GPS can be considered a valid alternative to
spirit levelling for all heighting other than the most precise applications.

Baseline GPS LEVELLING
Length Heights
Accuracy | First Order | Second Order | Third Order

2 ppm 4Nk 8.4k 12Vk

km mm mm mm mm

5 10 8.9 18.8 26.8

10 20 12.6 26.6 37.9
15 30 154 32.5 46.5
20 40 179 37.6 53.7
25 50 20.0 42.0 60.0
30 60 21.9 46.0 65.7
35 70 23.7 49.7 71.0
40 80 25.3 53.1 75.9
45 90 26.8 56.3 80.5
50 100 28.3 594 84.9

Table 5.1 Comparison of GPS heights with levelling.

However the normal orthometric heights of the AHD are measured
with respect to the geoid (Section 3) whilst GPS heights are referred to an
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ellipsoid (WGS84). The difference between the orthometric height (H) and
the ellipsoidal height (%) is the geoid-ellipsoid separation? (N). The relation
between the two is shown in Figure 5.1.

TOPOGRAPHY

ELLIPSOID

Figure 5.1 The geoid-ellipsoid separation.
(Scherrer, 1985)

From Figure 5.1,
H = h - N (5.2)

H is measured from the geoid along the curved plumbline and A is
measured normal to the ellipsoid. The difference in direction is the
deflection of the vertical. For small deflections of the vertical, equation 5.2
holds true and the two can be considered coincident.

However, GPS heights are most accurately determined in the
differential mode as many of the systematic errors inherent in the system
are minimised when observations from two stations are differenced. Spirit
levelling is also most accurate in the determination of relative height

3 The geoid-ellipsoid separation can also be called the geoidal height or geoidal undulation.
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differences because mean sea level is not coincident with the geoid. The
absolute orthometric height of a point on the coast will be in error by an
amount equal to the sea surface topography at that point. Likewise, the
determination of relative geoidal heights AN will be much more precise
than the determination of absolute N because many of the systematic errors
will cancel.

Equation 5.2 now becomes,
AH = Ah - AN (5.3)

The precision required for H will depend upon the purpose for which
the heights are being used. Some tasks will only require H to a few metres,
in which case the constraints on the determination of A and N can be
relaxed. For the highest order requirements, the precision to which A% can
be found limits the precision of AH, and dictates the precision requirements
for AN. AN will need to match Ak in precision, 2 to 4 ppm, so that the
precision of AH will not be seriously eroded (Kearsley, 1984 and Kearsley,
1988a).

The sections below outline different methods for determining N and
AN and will refer to a worked example of each method for two GPS
observed networks, one in South Australia and the other in Western
Australia.

5.1 Astro-geodetic Methods.

The major control network that extends over the Australian continent
has been computed on the Australian Geodetic Datum (AGD) which is
referenced to a local best-fitting ellipsoid, the Australian National Spheroid
(ANS). A station referenced to this ellipsoid by measurement of directions
and distances will have geodetic coordinates ¢ and A.

To control the orientation error throughout the network, astronomical
observations were made at junction points and astronomical coordinates @
and A calculated. The relationship between the geodetic coordinates
referenced to the local ellipsoid and the astronomic coordinates observed in
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the local gravity field and therefore referenced to the geoid, gives the
deflection of the vertical. The two components of the deflection of the
vertical in the meridian (¢) and prime vertical m) are found by direct
comparison (Heiskanen and Moritz, 1967),

E=d-¢ (5.4)

and,
N=(A-A)cosd (5.5)

The total deflection of the vertical, (8), between the plumbline and the
ellipsoidal normal is given by (ibid),

0=VE>+1? (5.6)

and the deflection component, (¢), between surface points A and B,
whose azimuth is «,

e=&cosoy, +Msinay, 5.7

The geoid-ellipsoid separation of point B with respect to A is (ibid),
B
AN, =—f e.ds (5.8)
A

A profile of geoidal heights is found when this calculation is repeated
between a series of stations. If the density of the stations is sufficient,
geoidal heights can be interpolated between the stations to form a geoid
map.

It is interesting to note a further application of this method is in the
determination of a best-fitting ellipsoid for a region. If the geodetic positions
are observed and adjusted with respect to an arbitrary initial point G.e.,
Johnston Geodetic Station) with an assumed deflection of the vertical and
geoidal height equal to zero, the position and inclination of the local
ellipsoid with respect to the earth can be found by a least squares
adjustment such that,

Y€ +n%) = minimum (5.9)
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and,
> N?=minimum (5.10)

The least squares adjustment would be extended over many
astronomical points covering the continent.

The astro-geodetic determination of geoidal heights would refer to the
ANS reference ellipsoid. This is not particularly helpful if we wish to
transform GPS observed heights referred to WGS84. Therefore the geoidal
heights would have to be transformed using appropriate transformation
parameters such as those by Higgins (1987). The geoidal heights would
then relate to the WGS84 ellipsoid and could be transformed to AHD
heights using equation 5.3.

In practice, this method is unsuitable for the transformation of GPS
heights to heights on the AHD because astronomic determinations of
latitude and longitude are labour intensive and time consuming and hence
very expensive. Also, it is questionable whether astro-geodetic N values are
actually representative of the local geoid-ellipsoid separation as the
astronomic observations are usually made on the top of the highest
mountains in a region and thus £ may not represent the general slope of the
geoid in the locality.

5.2 Geometric Methods.

If a number of control stations exist in a height network which have
both GPS and AHD heights, then geoidal heights can be found directly at
the control stations using equation 5.2. Three or more noncolinear control
stations will define a surface of geoidal heights from which N values can be
determined for other stations. If the control stations surround the other
stations then the process is one of interpolation or if the stations are outside
the control stations then the process is one of extrapolation.

The surface of V values can be defined graphically which is described
in Section 5.2.1, or it can be defined analytically which is described in
Section 5.2.2. The surface will contain datum errors due to the adoption of
incorrect ellipsoidal coordinates for the origin station used in the GPS
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relative mode. The "absolute" ellipsoidal coordinates of the origin station
are usually found by a pseudo-range solution which will be contaminated by
errors in the satellite ephemerides and errors in the coordinates of the
tracking stations. The rest of the network is built up by processing and
adjusting baselines or multi-station networks relative to the origin station.
Therefore the surface of N values can only be used to interpolate AHD
heights from GPS heights for stations observed and adjusted in the
same campaign.

The main advantages of the geometric methods of determining N
values is that they are conceptually simple and also quick and easy to
implement. However it is very much a case of user beware as there are
few checks with geometric methods to detect errors. An error in either the
GPS or AHD height will result in an erroneous value for N which
propagates directly into the definition of the interpolation surface.

Geometric methods make the assumption that the geoid is regular
between the data points defining the interpolation surface. This is why
researchers usually impose areal limits, determined empirically, on the
suitability of these methods such as, "adequate for areas up to 50 x 50 km
where the geoid is smooth" (King et al, 1985, p.94). This should be
tempered with the warning from Gilliland (1986, p 279) that "linear
interpolation over distances as small as 25 km could result in errors much
greater than 10 cm” (> 4 ppm). It is therefore advantageous for the user to
have some knowledge of the nature of the geoid in the area in which he is
performing the calculation as well as the precision of the result he desires.
The behaviour of the geoid is not always dependent on the roughness of the
terrain as for example, the Officer Basin in central Australia exhibits large
geoid undulations while the terrain is quite flat.

5.2.1 Contouring.

One geometrical method of defining an interpolation surface is to
contour N values established from control points which have both GPS and
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AHD heights. The method is very simple and convenient, requiring no
computer resources, just a pencil and ruler. The accuracy of the method is
limited to,

* the scale of the drawing and the plotting accuracy,

* the contour interval,

* the behaviour of the geoid between the data points,

* the presence of errors in either the GPS or AHD heights.

This method was adopted by Collins for a GPS survey of 42 stations in
Montgomery County (PA), although no accuracies were given (Collins and
Leick, 1985, p 688). Ladd (1986, p. 1114) also used contoured geoid heights
for a survey of 21 stations in California and said, "interpolation can be
performed successfully at the few centimetre level if the vertical control
used to originally generate the contours comes from the same levelling
campaign and levelling adjustment."

5.2.2 Least Squares Plane Fits.

The interpolating surface can be defined analytically if three or more
noncolinear points exist with both AHD and GPS heights. The simplest
surface to generate is a first-order plane surface. This often gives the wrong
impression that the plane surface is flat. Actually, it represents the linear
relationship between the plane and the curved geoid. The analytical
function of a plane surface will be of the form (Eckels, 1987, p. 160),

N=Ae+Bn+C (5.11)

where; A, B and C are coefficients defining the plane.
e and n are the easting and northing in an UTM system.
N is the geoid-ellipsoid separation at point (e,n).

If more than three points exist then the plane is overdetermined and
the coefficients A, B and C can be solved for by Least Squares and takes the
form,

£=@ATA)" @’ (5.12)
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where £ is the least squares estimate of the coefficients, A, B and C,
and matrix A is the design matrix of parameter coefficients and [ is the
geoid-ellipsoid separation at each control station. It is assumed, in this
case, that the weight matrix of the observations is an identity.

A
£=|B (5.13)
C
e, ny 1.0
e, n, 1.0
a=| ™ 10 (5.14)
e, n, 1.0)
Nl
N2
1=(Ns (5.15)
Nn

This strategy has been adopted for program LESQPL listed in
Appendix D. The program reads data from an input file in two sections. The
first section contains the control points that have both GPS and AHD
heights which are used to determine the coefficients A, B and C defining the
plane. The size of the residuals at each point and the standard deviation of
the residuals gives an indication of how well each point fits the plane. Other
elements computed are the deflections of the vertical in the meridian and
prime vertical and the maximum slope and direction of the geoid. The
second section of the data file contains the points with GPS heights only,
which are transformed to AHD heights by back substitution.

It is possible to generate higher order surfaces such as second order
surfaces, trigonometric functions or bicubic splines fitted to the control
points to interpolate N values. However, these methods tend to become
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unstable when the point data is irregularly spaced. Cases have occurred in
which "height values have been interpolated which are hundreds of metres
above the highest point on the mountain" (Kearsley, 1985, p. 88).

5.3 High Order Geopotential Models.

In the past few years the description of the earth’s gravity potential in
terms of spherical harmonic coefficients has been extended to degree and
order n, =360. These high degree expansions can be used to evaluate
quantities such as geoidal heights, gravity anomalies, gravity disturbances
and deflections of the vertical with respect to a geocentric ellipsoid. The
theory of spherical harmonics used to determine the potential of the earth
is given in Heiskanen and Moritz (1967, p. 57) and Torge (1980, p. 26).

The coefficients, C,, and S, ,, up to degree (n) and order (m) for a high
order geopotential model are determined by a combination of data from
analysis of orbit perturbations of satellites, mean terrestrial gravity values
for different sized blocks and N values at crossover points in ocean areas
measured by satellite altimetry. The long wavelength geoidal features
determined from satellite analysis are found in the low order terms of the
model whilst the short wavelength, higher frequency information found
from the satellite altimetry and terrestrial gravity is reflected in the higher
order terms. Geopotential models to degree 180 are capable of detecting
geoidal features with a half wavelength of 1°, or 110 km, to an accuracy of
10.2 m (Kearsley, 1984, p. 94) and 0.5 m in Canada (Schwarz and Sideris,
1985, p. 16).

The most commonly used high order geopotential models and the input
data used to determine them is given in Table 5.1.

Geopotential model OSU86E excludes geophysically predicted gravity
anomalies and OSUS86F includes such gravity anomalies over areas where
there is no terrestrial gravity data such as Africa, South America and
USSR. The use of either model should make little difference over Australia
because of the good coverage of gravity data over the continent.
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MODEL |DEGREE| ORIGIN |DATE INPUT DATA

OSuUs1 180 Rapp 1981 |GEOS 3 data + 1°
surface gravity +
SEASAT altimetry
GRIM 3 36 Reigber 1983
GEM-L2 20 Lerch 1984 |SLR + GEM 9 data
GPM2 200 Wenzel 1985 |GEM-L2 + 1° surface

gravity + altimetry

OSU 86C, D 250 Rapp, Cruz| 1986 |as above

OSU 86E, F 360 Rapp, Cruz| 1986 |as above + 30’ surface
gravity

Table 5.1 Earth gravity models.

The geoidal height () and gravity anomaly (Ag,) of a point, in
spherical harmonics, is (Rapp, 1982)

Pax 2,
N =S (—‘-‘—j Y P, (cos8) (C,,cosm+S, sinmd) (5.16)
'YR n=2\R | m=0
kM nmﬂx n .
AgL:F 2 @m-1) X P,,(cos0)(C,,cosmA+S,, sinm) (5.17)
n=2 m=0

where; kM is the gravitational constant,
R is the geocentric radius,
vis the normal gravity from (2.7),
0 is the geocentric latitude,
A is the geocentric longitude,
a is the equatorial radius of the reference ellipsoid,
C,.and S,, are the fully normalised potential coefficients,
n and m are the degree and order of the geopotential model,
P, (cosB) are the associated Legendre functions of the first
kind.
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The computation must be performed on a computer as there are 16,471
coefficients each for C,, and S,,, for a geopotential model with n__=180, such
as OSU81 and 65,341 coefficients for a geopotential model with n,.=360,
such as OSUS86E,F.

Intuitively we would expect that with higher order models the geoidal
heights would be more accurate. This is generally, but not always, so. The
accuracy of geoidal heights varies from region to region throughout the
world. The principal error sources in the high order terms of the
geopotential coefficients comes from the gravity data itself, the sampling
and smoothing techniques. Rapp and Cruz (1986, p. 10) estimate that the
magnitude of the noise is equal to the signal near degree 175 and that there
is a 100% uncertainty in the coefficients above that degree for models
OSUS8GE,F.
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Figure 5.2 Australian geoid based on OSUS6F to degree 360.
(Rapp and Cruz, 1986)

-64 -

-10°

-15°

-20°

-25°

-30°

-35°

4 -uo’

-45°



They also warn that "just because we have a high degree field, it does
not mean we have a highly accurate high degree field" (ibid, p 21). However,
it is still the best estimate of the higher order coefficients we have and can
be used to recover a lot of useful information. Figure 5.2 shows a geoid map
of Australia generated on a 1°x1° grid using geopotential model OSUS6F to
degree 360 showing very fine detail.

The agreement between gravity anomalies generated from geopotential
model OSUS81 at degree 180 and observed gravity anomalies for a 2°x2° grid
over the Australian continent is investigated in Section 5.4.1.

5.4 Gravimetric Methods.

The first gravity measurement made in Australia was in 1819 by a
Frenchman named Freycinet in Sydney using a one second pendulum
(Dooley and Barlow, 1976). Very few gravity observations were made
thereafter until the 1950’s when the government introduced the Petroleum
Search Subsidy Act which offered financial assistance to private oil
exploration companies and the Bureau of Mineral Resources (BMR) to
search for oil. Helicopters were also able to be used to gather data which
greatly increased the number of observations that could be made.

Gravity observations were connected to first order gravity base
stations across Australia which were then tied into the international
gravity network called the Potsdam system. All the gravity traverses were
adjusted by least squares to form the Australian National Gravity Network
(ANGN) Isogal 65. In 1971 the International Union of Geodesy and
Geophysics (IUGG) adopted a new international gravity reference system,
the International Gravity Standardization Net1971 (IGSN 71), which
differed from the old system at Potsdam by -14.0 mGal. A provisional
formula allows gravity data in the Isogal 65 system to be converted to the
IGSN 71 system in Australia (ibid, p 268).

All onshore and offshore gravity data observed by the BMR and private
companies has been collected together to form the Australian gravity
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database and is in the custody of the BMR. The gravity data is kept in two
formats, the first is a file of all gravity stations with each record containing
the following information,

1) the BMR gravity station number,

2) the latitude and longitude of the station,

3) the observed gravity value, adjusted and referenced to the Isogal 65
system,

4) the terrain and station height adjusted to AHD (they are usually
the same).

The second format gives mean Bouger gravity anomalies on a 6’x6’ grid

covering the continent and near offshore areas.

The School of Surveying at the University of New South Wales
(UNSW) has an edited version of the BMR point gravity database which is
used for all gravimetric geoid solutions. The editing has purged all detected
gross errors from the BMR gravity data and grouped the data into
geographically defined files. Data purged from the BMR database falls into
one of the following categories,

* all header information,

* all duplicate points,

* all records with missing information,

* all points with a ground height greater than Mt. Kosciusko,
* all points north of latitude 8°,

* all points where the free air gravity anomaly is greater than
250 mGal.

The UNSW version of the gravity database contains 443,754 gravity

data points in 7 files ordered in approximately 5° latitude bands across
Australia.
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FILE LATITUDE GRAVITY
LIMITS POINTS
(degrees)
1 -46.23 to -40 15,616
2 -40 to -35 35,682
3 -35 to -30 68,265
4 -30 to -25 130,459
5 -25 to -20 92,766
6 -20 to -15 72,181
7 -15t0- 8 28,785
TOTAL 443,754

Table 5.2 Gravity data in the UNSW gravity database.

The density of gravity stations over the Australian continent varies
greatly from no gravity data at all in the Gulf of Carpentaria, sparse
coverage off the south east coast of Australia to very dense coverage off the
north west Australian coast, Kimberely region and centre of the continent.

The average spacing between gravity stations is 11 km except in South
Australia and Tasmania where the average spacing is 7 km (Gilliland,
1987, p. 5678). Figure 5.3 shows the number of gravity data points in 2°x2°
blocks over the continent and near offshore areas.

The accuracy of the gravity data in the national network is estimated
to have a standard error of + 0.2 mGal (Anfiloff et al, 1976, p. 275) to + 0.5
mGal (Gilliland, 1987, p.579) relative to the network as a whole. The
precision of the marine surveys is estimated from the differences of gravity
misties at line intersections to be + 2-6 mGal (Anfiloff et al, 1976). With
these accuracies the gravity data fulfils the requirements for the
computation of a gravimetric geoid to an accuracy of 5cm outlined by
Kearsley (1986, p. 9200) providing there is no significant deterioration in
accuracy when estimating mean values for 10km x 10km blocks.
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5.4.1 The Agreement Between OSUS1 and the ANGN.

It was said in Section 5.3 that the ability of high order geopotential
models to model the geoid and terrestrial gravity varies according to the
model used, the degree and order of the model and the behaviour of the
geoid in the region in which the computation is made. We have investigated
this further by computing gravity anomalies using model OSU81 to degree
180 and comparing them to terrestrial gravity anomalies over the
Australian continent. The comparisons were made at all gravity points and
grouped into the same 2°x2° blocks in Figure 5.3. An average value was
then computed for each block.

The procedure used was to compute gravity anomalies (Ag) using
equation (5.17) and the coefficients from geopotential model OSUS81 to
n,.=180 on a 0.1°x0.1° grid. A computer program by Rizos (1979) was used
to compute the mesh of Ag;.

Each terrestrial gravity point at a height H in a block was reduced to
the geoid by applying the free air correction,

g’ =g +0.3086H (5.18)

and the free air anomaly computed by subtracting the normal gravity
(y) found from equation (2.7),

Ag =g’ -, (5.19)

A model gravity anomaly was then interpolated from the gravity
anomalies at the grid intersections for the same position as the gravity
point. A surface was used whose equation is

Ag, =ax +bxy +cy +d (5.20)

where x and y are the local coordinates of the gravity point in a block, and
a, b, c and d are the coefficients defining the surface.

The grid intersections of a block were assigned local coordinates,

(Ovl’AgZ) (l’laAg4)
(OyoaAgl) (1 3O,Ag3)

so that the coefficients a, b, ¢ and d could be easily solved,
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a =Ag,—Ag,
b =Ag,—Agy— Ag, + Ag,
c =Ag,—Ag,
d=Ag,
The residual gravity anomaly (Ag’) was then found by simply
subtracting the two,

Ag'=Ag —Ag; (5.21)
This procedure was repeated for each gravity point in a block and a

mean residual gravity anomaly calculated by,

Ag’
i=1 n

M=

Ag' = (5.22)

where 7 is the number of gravity points in each 2°x2° block. The means
of all the blocks were then placed into four categories in increasing
magnitude. We have found from experience that these categories
approximately relate to differences in geoidal heights differences (6¥), found
using Equation (6.4), expressed as a fraction of the baseline length in parts
per million (Kearsley and Holloway, 1987),

Categoryl 0-5m Gal — 38N =0-5 ppm,
Category 2 5-13 mGal — N =5-10 ppm,
Category 3 13-21mGal — &N =10-15 ppm,
Category4 >21 mGal —&NV >15 ppm.

The results are presented in Figure 5.4. One can see that OSUS1 is
able to model gravity anomalies over 60% of the Australian continent to
within 5 mGal and over 90% of the continent to within 13 mGal. However,
the west coast of Australia, near Perth and the centre of the continent are
very poorly represented by OSUS81. This is probably due to short
wavelength geoidal features in these areas not being detected by the
geopotential model. There is also a noticeable decay on the east coast of
Australia at the coastline which is probably due to the land-water boundary
and the mountain ranges that run parallel to the east coast.
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5.5 Stokes’ Theorem.

The classical form of the geodetic value problem can be expressed by
the disturbing potential (7)) defined by,

T=W-U (5.23)

where W is the actual gravity potential and U is the potential
referenced to an ellipsoid. If the centrifugal forces of the geoid and ellipsoid
are equal, then the Laplace equation

VT =0 (5.24)
is satisfied external to all the masses of the earth. This presupposes

that all gravity measurements have been reduced to the geoid. The height
N of the geoid above the reference ellipsoid is given by Bruns’ formula4,
N =TP_(WP_Uq)
14 Yq
the subscripts p and ¢ denoting the points on the geoid and ellipsoid
respectively and vy, is the normal gravity on the ellipsoid. However, if a
value of U, is chosen to be equal to W, (as the position of the reference
ellipsoid can be selected arbitrarily without changing the gravity field),
equation (5.25) reduces to,

(5.25)

N, =— (5.26)
and N will refer to a "best fitting" geocentric reference ellipsoid.

The solution for the disturbing potential (T) can be accomplished by
the Stokes’ integral® (Torge, 1980, p.157). However, by incorporating
equation (5.26), it is more common for it to be used to solve for the geoidal
height,

R
N, =y, flAg S(y)do (5.27)

4 Bruns’ Theorem in 1878.
5 George Gabriel Stokes (1819-1903) was an English physicist.
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where R is the radius of the spherical model of the earth,
Y. is the mean gravity of the earth,
Ag is the free air gravity anomaly associated with do,
y is the spherical distance between p and do,
S(y) is the Stoke’s function, equation (5.28)
do is the element of surface area ¢ over which the integration is

performed.
The function S(y) is
S(y) = cosecg -6 sin%’ +1-5cosy -3 coswln(sin%[ + sinzg) (5.28)

The integration is, in theory, performed over the whole earth. This
assumes we have a perfect knowledge of the continuous gravity field over
all the oceans and land masses. However this is not so, as our knowledge of
the gravity field is in the form of discrete points limited to only some of the
oceans and land masses. Therefore, in practice, the surface integrals are
replaced by a finite summation restricted to a limited area defined by
geographical blocks or to a cap defined by rings and radial lines.

The former method of subdivision by grid lines fixed by geographical
coordinates ¢ and A is described in Heiskanen and Moritz (1967, p-117-119)
and is favoured by Gilliland (1982;1983) and others. The gravity anomalies
(Ag,) are replaced by the mean gravity anomaly (Ag,) for the midpoint of
compartment i. Equation (5.27) becomes,

R
N =

P = Iy, 25 W Agido, (5.29)

The behaviour of the Stokes’ function S(y) is non-linear and tends to
infinity close to the computation point (see Figure 5.5). To reduce the error
in the S(y) term the earth’s surface is divided into several zones. The
compartment size within each zone is reduced so that a finer and finer
mesh of mean gravity anomalies is used as the summation approaches the
computation point, that is, as y— 0. Table 5.3 gives a typical computation
strategy.
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Zone Range of ¥ Compartment size within zone
Outer v > 20° 5° equal area blocks.
Middle 5°<y<20° [1°x1° geographical blocks.
Near 1.5°<v¥<5° 10.5°%0.5° geographical blocks.
Inner 0.2° <¥<1.5° [0.1°x0.1° geographical blocks.
Innermost y<(0.2° 0.1°x0.1° geographical blocks
and point values.

Table 5.3 Compartment sizes of geographic blocks.
(Gilliland, 1982, p. 50)

This method has the advantage that once the mean gravity anomalies
have been computed for each compartment they can be stored efficiently in
a computer and used again and again in subsequent computations.

An alternative method of computing N using the Stokes’ formula is to
perform the integration over a spherical cap centred on the computation
point P with a maximum radius y,. The compartments are formed by radial
lines with azimuth o and concentric rings in increasing radius from 0 to v,.
Equation (5.26) now becomes,

_ R
P Amy,

j zf Ag F(y) dyda (5.30)

y=0a=0

where the kernel function F(y) is (Kearsley, 1985, p. 80)

F(y)=S8(y)siny (5.31)

and alternately,
F(y)=2cos¥ —sin w(s sin¥ — 1+ cos v(s +3 1n(sin“5’ + sin”E’JD (5.32)

Both the Stokes’ function S(y) and the modified Stokes’ function F(y)
may be viewed as a weighting function that scales the gravity anomalies.
They both go to zero near y=39° and y=118°, but as y -0 S(y) — « whilst
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F(y) —2.0. Therefore F(y) has the great advantage over S(y) in that it is
much more stable as y — 0. This means that any errors in the point gravity
data or in the mean gravity anomalies of the compartments or blocks, and
especially near the computation point, are contained.

+4
+3
+21

+1Y

1

I { : 1 ! " " 1 1 1 3
60° 90° 120° 150° 180°
Flvl2

Figure 5.5 Behaviour of S(y) and F(y)/2.
(Heiskanen and Moritz, 1967, p. 96)

This method of ring integration also has the great advantage of being
both flexible and simple. Before the advent of the electronic computer the
computation was performed partly graphically using a a template made by
drawing rings on transparent material and placing it over a gravity map.
The contribution of each compartment to the geoid height at P could then
be calculated for all gravity points inside the rings on the template
(Heiskanen and Moritz, 1967, p.117). Today a computer can generate the
rings at each point quickly and calculate the mean gravity anomalies for
each compartment without the need to "precompute” mean gravity values
for different sized zones as in the first method.
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5.6 Collocation.

Least squares collocation (Lat.: collocare - to place together, combine),
is a method of determining any quantity in the earth’s anomalous gravity

field by combining geodetic measurements of different kinds. The main

purpose of collocation is to predict signal quantities from measurements

that contain observational errors (noise) and filter the observations to

estimate and then remove the noise.

The basic equation of the least squares adjustment can be written as,

measurement = mathematical model + noise + signal

which can be written in general vector notation (Torge, 1980, p. 193),

where

The
that,

where

X=AX+n+s (5.33)

£ is the vector of observations, such as gravity anomalies,

A is the design matrix from the mathematical model,

X is the vector of unknowns, such as geoidal heights and
deflections,

n is the vector of random measuring errors (noise),

s is the vector of signal components in the observations,

AX is the systematic part, such as the ellipsoid reference system
and modelled systematic errors.

least squares estimates of X and s can be obtained by demanding

VPV = minimum

V is the vector of residuals,( + s),
P is the weight matrix,
VT is the transpose of V.

The parameter vector X can be an estimate of the geoidal height N by,

N=@ATC'A)" AC'Ag (5.34)
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where C is the covariance matrix, derived from the covariance function of
the gravity anomalies (Ag) in the region of the computation.

Collocation is a very flexible method that has been used successfully by
a number of researchers (Tscherning and Forsberg, 1986; Schwarz et
al, 1987; Hein, 1985; Engelis et al, 1984) to compute geoidal heights. Its
strength lies in the fact that it can use heterogeneous data such as gravity
anomalies, deflections of the vertical and satellite altimetry together in the
same prediction. However, instabilities may result when there is a large
number of data points very close together creating a large covariance
matrix which has to be inverted. In rugged terrain, collocation gives poor
results unless the topography is accounted for by using a Digital Terrain
Model (DTM) (Tscherning and Forsberg, 1986).
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6 A COMBINED SOLUTION - RINT.

The technique in equation (5.30), preferred by Mather (1973) for high
precision evaluations and shown by Kearsley (1984) to be capable of
evaluating AN to a similar precision as that of Ak from GPS, is a combined
solution called "ring integration" or RINT.

This method involves the evaluation of the Stokes’ integral over an
inner spherical cap to solve for the short wavelength contribution N, which
is combined with a remote zone contribution from a high order geopotential
model to provide the medium to long wavelength contribution N,. The total
geoidal height will be the sum of the two components (Kearsley, 1988b)

N =N, +N, (6.1)

The remote zone contribution to the geoid height N, is found using
geopotential model OSUS81 and evaluated using equation (5.17) to degree
n,.=180,

kM 'max 2,
N, = ? > ( ) 2 P, (cosB)(C,,cosmr+S, sinmh)
=2 m=0

It is possible, in the future, that much higher order geopotential models
may be able to compute N to sufficient accuracy by themselves. It is only
the inconsistent coverage of gravity data in some parts of the world and the
unavailability of a supercomputer, needed to compute the coefficients, that
is retarding progress in this field.

The half wavelength signal in N is theoretically wn_,, so that OSUS81 at
n....=180 can recover geoidal features with half wavelengths of 1°. Therefore
it is theoretically correct to compute N, over a spherical cap with maximum
radius y, = 1° using Stokes’ formula and the modified Stokes’ function F(y)
from equation (5.32),

VYo 2m

f ng F(y)dydao (6.2)

y=00=0

§s=

41r Y
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where the residual gravity anomaly (Ag”) is found by subtracting the
modelled gravity anomaly (Ag,) generated by OSUS81 using equation (5.17)
from the terrestrial gravity anomaly (Ag) using equation (5.19),

Ag’=Ag - Ag, (6.3)

The use of residual gravity anomalies avoids duplication of the signal
when the inner zone is combined with a remote zone which would cause a
"double counting" effect. An alternative method would be to omit the
contribution of N, inside the spherical cap.

The Stokes’ integral is evaluated in compartments generated by
concentric rings with radius 0 <y <y, incrementing in =~ 0.1° steps and radial
lines radiating from the computation point with a constant change in
azimuth (do) of 10° (Kearsley, 1985, p. 83). The contribution per mGal to N,
for each compartment inside the cap is C,, determined by Kearsley (1988b)
to be 0.3 mm/mGal which reflects the density of gravity data available.

If N is evaluated at each end of a GPS baseline and then differenced,
we call the change in geoid height aN,,. By differencing over typical
baseline lengths systematic errors will tend to cancel. Such errors may
include,

* the assumption of a spherical earth adopted for the Stokes’
formula,

* the reference surface of the levelling network not being
coincident with the geoid introducing an error in the reduction
of gravity data to the geoid,

* any errors in the high order terms of the geopotential model.

AN, is then compared with ANy _,,,.m, acting as control, using equation

(6.3), at GPS stations that also have levelled heights,

ON = AN, GPS ~levelling AN, 6.4)

grav

The difference (8V) can be expressed as a fraction of the baseline length
(s), in parts per million (ppm),
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ON
p=1—=110° (6.5)

AB

and the mean of the differences for n baselines in the network can be
calculated by
x Di

m= 3 — (6.6)
i=1h

The flexibility of RINT is evident as accumulated ring contributions for
successive rings, coupled with the remote zone contribution, can be
analysed for all ring combinations from 0 (at which only the geopotential
model is being tested) to y,, to determine the smallest mean differences in
m and hence the optimum cap size.

6.1 UNSW Gravimetric Geoid Programs.

The foregoing strategy to compute gravimetric geoids using RINT has
been implemented in a suite of programs written in FORTRAN 77 and
running on a VAX computer. A flowchart of the logic behind the programs is
shown in Figure 6.1.

GRAVO00 - is based on a program by Rizos (1979), calculates gravity
anomalies (Ag,) using a geopotential model on a 0.1°x0.1° grid
covering the GPS network. The input parameters, such as the
south west corner of the network, the extent of the network,
grid interval and geopotential model used are read in from a

and S, for the

geopotential model, usually OSUS81, are also read in from a

separate file. The coefficients n, m, C

nm

separate file.

GRAV06 - by Donnelley (1988), extracts the gravity data from the
Australian gravity database for an area covering the GPS
network. The gravity data is converted into the IGSN 71
system, reduced to the geoid and the normal gravity subtracted
to give point gravity anomalies. A point gravity anomaly from
the geopotential model is interpolated from the 0.1°x0.1° grid,
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using equation (5.20). The residual gravity anomaly for all
points in the network is then found using equation (6.3) and
written to a file.

GRAVO01 - by Kearsley (1985), generates the rings and performs the ring
integration in the residual gravity anomaly field, output from
GRAVO06, using the Stokes’ formula and the modified Stokes’
function from equation (6.2). The residual gravity anomalies
can be optionally supplemented with terrain height
information from a DTM. An input parameters file tells the
program the number of rings to generate, the contribution to N
for each compartment per mGal (C,) and the geographic
coordinates of each station in the network. Output from the
program is the accumulated contribution for each ring, at each
point, to N..

GRAV02 - based on a program by Rapp (1982), calculates the remote zone
contribution N, at each point using the same geopotential
model used in GRAVO00. The input parameters file specifies the
flattening factor of the reference geocentric ellipsoid, the degree
and order of the model and the geographic coordinates of each
station in the network.

GRAVO08 - compares AN,,, for all points in the network with AN_ leveiting AL
those stations that have both GPS heights and AHD heights.
An input points file gives the point number, geographic
coordinates and GPS height for all points in the network. The
lines file specifies each line to be analysed as the difference
between two points. The statistics generated include the
individual baseline lengths, the differences in &N, the
differences in 8N as a fraction of the baseline length in ppm and
the means and standard deviations of all of the above.

The UNSW gravimetric geoid programs have been used successfully to
calculate AN for GPS networks in New Mexico and Ohio, USA (Kearsley,
1985), Ontario and Manitoba, Canada (Kearsley, 1988b) and Western
Australia and South Australia detailed in Section 7.
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7 NETWORKS ANALYSED

The accuracy requirements for users of height information, the
precision of oy or o,,, vary with the type of application, the region in which
the heights are required and the user’s access to geopotential models and
terrestrial gravity data. The models are readily available from their authors
and the gravity data from the BMR, at a cost, and so should not inhibit the
evaluation of AN to the highest possible precision.

Usually heights are not needed to the same precision in remote areas
of Australia as in urban areas and therefore a strategy to compute AN
should reflect this. Either a lower order method could be selected, or gravity
databases computed on a grid interval matching the requirements and
needs of the region, similar to the "red line" concept advocated by Kearsley
(1988a, p. 16) which has been used for standard mapping in Australia.

For users of height information, the orders of accuracy required and
possible methods of evaluating N or AV have been summarised by Kearsley
(1988a,p 17), and reproduced in Table 7.1.

N used for

Accuracy specification
for N

Possible means of
evaluating N

. geophysical exploration
and reconnaissance
surveys

Low:
Oy=15-10m

Low order (n,_=36)
geopotential models

. Transforming between 3rd order: High order (n,_=180)
geodetic datums Oy =11-2 m geopotential models
. Control surveys for large | 2nd order: a) Surface fitting of N

scale mapping,
engineering projects

O =110-20 cm
over 20 km (5-10 ppm)

- program LESQPL
b) Detailed gravimetric
solution - RINT

. Height control

1st order:
Oav =120-30 cm
over 110 km (2-3 ppm)

Detailed gravimetric
solution - RINT

Table 7.1 Geoid requirements and methods of evaluation.
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A comparison of these methods to first, second and third order
accuracies was undertaken for this study for two very different GPS
observed networks. The GPS networks are situated in Western Australia
and South Australia.

The Western Australian network is situated in the south west seismic
zone, approximately 110 km from Perth and consists of 10 stations (see
Appendix A). The extent of the network is approximately 76 km north-south
and 40 km east-west, the bounds being,

-31.5°< ¢ <-30.8°
116.5°<A<117.0°

All the stations have been observed previously by conventional
surveying techniques at different epochs in order to determine tectonic
movements in the area. The stations have first or second order heights
which were used as control to determine ANg_ levelling

The South Australian Phase 1 GPS network is situated east of
Adelaide in the Murray Mallee region which abuts the state border with
Victoria. The network was observed to extend the major first order geodetic
network over this region. There are 107 stations in the network, of which
only the northerly 73 stations were used in this study (see Appendix B). The
extent of the network is approximately 170 km north-south and 125 km
east-west, the bounds being,

-35.8°<¢$p <-34.3°
139.5° <A < 141.0°

Height control within the network was sparse, with those stations on
the northern, western and southern perimeter of the network having AHD
heights. The heights were generally of third or fourth order accuracy spirit
levelling and also with some trigonometric heights. These heights were
supplemented, after the completion of the GPS survey, by additional spirit
levelled heights by the Australian Survey Office (ASO) throughout the
network. These additional heights were generally of second order accuracy.
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Both the Western Australian and South Australian networks were
observed in October-December, 1985 by Geo/Hydro, Inc. for the Western
Australian Department of Land Administration and the South Australian
Department of Lands using three to four Macrometer V-1000 GPS receivers
and a Trimble 4000A time receiver which was used to obtain UTC for the
synchronisation of the other receivers (Geo/Hydro, 1986; Larden et al,
1986).

7.1 Western Australian Network.

The Western Australian GPS network consists of 10 stations, making
19 lines observed (see Figure 7.1). The GPS observations were processed
using Macrometer programs INTRFT and LSQT on a baseline by baseline
basis using the broadcast ephemerides. The computed baseline vectors were
given in spherical coordinates as latitude (y), longitude (1) and radius (R)
from the centre of the earth to the station in the WGS72 system
(Geo/Hydro, 1986). The geodetic coordinates (¢,A.k), were found by
converting the spherical coordinates first to cartesian coordinates (x,y,z)
using (Heiskanen and Moritz, 1967, p. 40),

X =R cosy cosA
Yy =R cosysinA
z =R siny (7.1)

and then iteratively finding the inverse solution for ¢,\,z (Heiskanen and
Moritz, 1967, p. 182),

x=(V+h)cosdcosA
y=(V+h)cosdsinA
z=(v({1-ed)+h)sind (7.2)

where v is the radius of curvature in the prime vertical,

a
V=
V(1 - e?*sin*¢)
and a and e? are the radius of the semi-major axis and the first eccentricity
of the reference ellipsoid (WGS72). The difference in GPS heights (A#)
between stations is found simply by subtracting the two.

(7.3)
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By repeating this procedure, the observed height differences and the
height misclosures were found for all identifiable loops. Lines MRAS to
NMF705 and NTH TOODYAY to KARRABEIN were observed twice on
different days. The difference between the two observations was 0.026 m
and 0.169 m respectively. A mean value for both these lines was used for all
calculations. Figure 7.2 shows the observed height differences and the loop
misclosures. The mean height misclosure for the 11 most obvious loops was
1.2 ppm with a range from 0 to 3.1 ppm.

7.1.1 Interpolation of N from Contours.

By determining N, using equation 5.2, at the three northerly stations,
MRAS8, NMF705 and HD9 and also at the two southerly stations
NTH TOODYAY and KARRABEIN a contoured surface was able to be
drawn. In Figure 7.3 the contours, drawn with a contour interval of 5 cm,
show that the geoid is rising uniformly to the north east from -24.9 m to
-23.5 m.

Geoidal heights were interpolated from the contour plot for the
remaining 5 intermediate stations, PTH135, HD8, HD9, HD10 and
BERRING and compared to Ngps_jpm- The mean differences between the
interpolated geoidal heights and the control was 11 cm.

7.1.2 Interpolation of N from a Least Squares Fitted Plane.

Another method of determining N values, is to interpolate them from a
plane surface fitting the same five control points used for the contour plot in
the previous section. This method was described in Section 5.2.2.

Program LESQPL was used to determine the coefficients A, B and C of
the plane as (see Appendix E),

A = +2.0386494E-05
B = +1.2325885E-05
C=-114.6127

with a standard deviation of the residuals being 0.016 m.
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The a posteriori variance is unrealistically low because the weight
matrix is assumed to be an identity which also assumes the a priori
variance for each height is 1 metre. Realistic relative weights would be
difficult to assign to the heights because there is no information of their
precisions. The slope of the geoid, with respect to the plane, was calculated
and found to rise 23.8 mm/km in the direction 59° (i.e., nearly north east).

The coordinates of the five intermediate stations were next substituted
back into the equation of the plane to give N values at those stations. The N
values were subtracted from the GPS heights to give interpolated AHD
heights and compared with the actual AHD heights of the stations in
Table 7.2.

Station N N Difference
(levelling) {(interpolated)

PTH135 338.041 338.182 -0.141
PTH136 297.256 297.371 -0.115
HDS 338.010 338.057 -0.047
HD10 365.463 365.369 +0.094
BERRING 313.307 313.161 +0.146

mean 0.109

(without sign)

Table 7.2 Interpolated heights from Least Squares Plane.

The methods of contouring and LESQPL used to determine N in the
Western Australian network gave very similar results. The contouring
method was simple and required very little equipment but was time
consuming in its application. The LESQPL method, on the other hand,
required a computer and was very quick. An indication of how well the
plane "fits" the control points is also given by the size of the residuals,
which is not given by a contour plot.

With the height information available, the behaviour of the geoid
within the region of the Western Australian GPS network appears to be
benign, making it an ideal surface to interpolate geoidal heights. The geoid
rises uniformly, the AHD heights are of first or second order specifications,
the GPS heights have an average loop misclosure of 1.2 ppm and the extent
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of the network is small enough that the approximation of a plane surface is
adequate. However, I would suggest that all these conditions occurring
together is not common and users of these techniques must bear in mind
that an error in the height of a control station will propagate directly into
the interpolating surface.

7.1.3 Evaluating N Using a Geopotential Model.

A method of computing geoidal heights for low and third order
requirements is to use a geopotential model (see Section 5.3). Equation
(6.17) is evaluated to the maximum degree and order of the model using the
coefficients C,, and S, for that model.

N values were calculated for the Western Australian network using
geopotential models, OSU86E, OSU81 and GPM2, all to n =180 and
compared to Neps_yonn in Table 7.3.

It is evident that a bias of 1-2.5 m exist in the models when compared
0 Nips_tevenings Which probably reflects the differences in the values for @ and f
adopted for the WGS72 (a=6378135.0, [=1/298.26) and GRS80
(@=6378137.0, /=1/298.257223563) reference ellipsoids. These "errors in the
geopotential solution can be considered as a type of datum error" (Schwarz
and Sideris, 1985, p. 5).

Station N N N N
OSUS6E OSUs1 GPM2 GPS-levelling
MRAS -26.69 -26.37 -24.90 -23.92
NMF705 -26.11 -25.75 -24.26 -23.65
HD9 -25.82 -25.43 -23.90 -23.45
PTH135 2717 -26.79 -25.29 -24.07
HD10 -26.20 -25.76 -24.25 -23.83
PTH136 -27.36 -26.95 -25.45 -24.24
BERRING -26.48 -26.03 -24.54 -24.12
KARRABEIN -26.83 -26.38 -24.96 -24.37
NTH TOOD -28.11 -27.70 -26.26 -24.90
HDS8 -26.46 -26.05 -24.55 -23.81

Table 7.3 Comparison of N from Geopotential Models at degree 180.
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The accuracy of the geoidal heights from geopotential models will be
greatly improved if we look at the differences in geoidal heights (AN) as the
biases will tend to cancel.

Figure 7.4 shows the mean differences (errors) in AN, evaluated using
OSUS86E, OSU81 and GPM2 from degree 30 to their n,., over all GPS
observed baselines in the Western Australian network. These differences
were found by comparing AN, ., to ANg_ veting 10T all the baselines. The error
was expressed as a fraction of the baseline length in ppm for each line and
then averaged for all lines in the network (Equations 6.5 and 6.6). This
error reaches a maximum of approximately 15 ppm at degree 180 for all

models.
WESTERN AUSTRALIA

16
14 -

Mean 12 ,,'/

AN -

Error 8 /,/'/

(ppm) ¢ | OSUS6E
4 - — — 0OSU81
) —— GPM2

T T T T T T T T T T 1
360 330 300 270 240 210 180 150 120 90 60 30

Model degree and order
Figure 7.4 Comparison of OSUS6GE, OSU81 and GPM2.

This is also demonstrated in Figure 5.4 where the disagreement
between gravity anomalies and the gravity anomalies generated by OSUS81
at degree 180 is large in the region of the Western Australian network. We
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can also see that from degree 180 down to degree 30 the three geopotential
models behave in a very similar fashion but, unexpectedly, the error in AN
actually improves with the geopotential models evaluated to lower orders.
From degree 180 to 360, the error in AN using OSUS6E steadily become
less, reaching a minimum at degree 360 of 6 ppm.

At this stage one can only speculate as to the reasons for the large
errors in AN and the behaviour of the geopotential models in the region of
the Western Australian network. Perhaps the near vicinity of a plateau in
the geoid, evident in Figure 5.2, is being reflected in the geopotential
models or some erroneous data has gone into determination of the
geopotential coefficients in this area.

7.1.4 Evaluating N Using RINT.

Heighting applications requiring the highest possible accuracy for AN
may be computed using a combined solution, RINT, discussed in Section 6.
The UNSW computer programs (see Section 6.1) compute the long
wavelength component N, using geopotential model OSU81 to n, =180
which is combined with the short wavelength component N; by evaluating
the Stokes’ integral in compartments bounded by rings, using point residual
gravity anomalies.

AN,

grav

is the difference in N between the terminal points of a baseline.
This can be compared to ANgps_p,.i,, along the same baseline for each ring
increment from ring 0 (using the geopotential model only) to ring 26
(Wo=2.6° from the computation point).

The gravity data inside the rings should contain a sufficient number of
gravity points with an even distribution that the mean gravity anomalies
calculated for each compartment is truly representative of the gravity field
in that compartment.
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Figures 7.5 and 7.6 show the ring structure and the point gravity data,
each marked with a cross, that was used to evaluate the Stokes’ integral at
station MRAS, in the north west of the network and station KARRABEIN ,
in the south east of the network. It can be seen that the gravity coverage in
the region of the Western Australian network is complete and uniformly
distributed. In the background, gravity has been observed on an evenly
spaced grid which has been supplemented by gravity traverses along the
coastline. The typical ships’ tracks show the offshore gravity data.

The results of this analysis, computed using program GRAVO0S, is
listed in Appendix C and also presented in Figure 7.7. The abscissa, or
x-axis, shows the number of rings included in the integration while the
ordinate, or y-axis, shows the mean error in ANy, 4 = ANGps 1o from Equation
(6.6), for all lines in the network.

16 - WESTERN AUSTRALIA
14 -
12 -
Mean
10 -
AN
Error 8 A
(ppm) g
4 4
2 -
] T T T L
0 5 10 15 20 25
Rings

Figure 7.7 Results of tests using RINT in Western Australia.

It can be seen that at ring 0, using the geopotential model only, the
error is quite large (>15 ppm), but the inclusion of even a small inner cap
significantly improves the solution of AN. The curve is bimodal, exhibiting a
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"W" shape that appears to be characteristic of RINT (Kearsley, 1988b). The
two minima occur at ring 3 (3.5 ppm) and ring 14 (4.2 ppm), the first being
quite definite whilst the second being a much flatter curve. Tests performed
to investigate the cause of the "W" curve suggest that it is reflecting small
errors in the higher order terms of the geopotential model (ibid).

7.2 South Australian Network.

The South Australian Phase 1 GPS network, shown in Figure 7.8, was
observed in October-December 1985 using Macrometer V-1000 receivers.
These receivers are independent of the codes because they square the L1
frequency signal to obtain the raw carrier wave phase. This makes it
necessary for the receiver clocks to be synchronised by an external timing
device. A Trimble 4000A GPS navigation receiver was used for the South
Australian campaign. Also the satellite ephemerides had to be obtained
externally from Litton Aero Service (Larden et al, 1986).

The strategy for processing the observations and performing the 3D
network adjustment was outlined by Jones et al, (1987). The integer cycle
ambiguities were not resolved because the majority of baselines were
greater than 20 km making it impossible to model the atmospheric errors
with certainty. This should not affect the accuracy of the ellipsoidal heights
(see Section 4.3). ‘

The processing of all GPS observations was done using
BATCH_PHASER, a multi-station reduction program which also outputs a
variance-covariance matrix that is used in the 3D adjustment of the
network. The network adjustment was computed using program NEWGAN
by Allman (Jones et al, 1987). The WGS72 ellipsoidal heights used in this
study came from the adjusted coordinates output from NEWGAN.

A statistical analysis of the precision of the GPS data in the network
was performed by Morgan et al, (1986) for the South Australian
Department of Lands. This study included 172 independent baselines
forming 72 geometrically independent loops. They found that the mean loop
misclosure of the baseline vectors was 3.2 ppm (Morgan et al, 1986, p. 7).

-97-



SOUTH AUSTRALIA

GPS NETWORK — PHASE 1

o L]
< X
4
06
39
71
*0
T~ s
35 02 /105‘
34 68/ 4
ca fo] /97‘
£ \
6 98
3
35
6 —] ! ]
61 108
20 96
5 9
V2 I— 94
93
57
25
2
7 — I 90
o 89
— (T 55
Pd
& s B
/ 19 52
86
A— 2 22
48
O -l
M b
Scale
A et
0 10 20 30 40



w\\

\\\\
\\\\ \\\\\\\ |

)

7

\§
~ \\\\\
’00\\\

VN,
W20,
/




Unfortunately separate height and horizontal loop misclosures were
not computed and therefore we don’t know the precision of the heights by
themselves.

7.2.1 Interpolation of N from Contours.

There are 45 stations in the South Australian network that have both
GPS and AHD heights. From the N values calculated at these stations a
geoid plot was drawn with a contour interval of 10 cm. Figure 7.9 shows the
geoid rising to the north east from 0 m to +4.7 m.

The slope of the geoid is irregular. This makes interpolating geoid
heights for intermediate stations, especially at this scale and contour
interval, uncertain over such a large area.

The Australian Survey Office in South Australia relevelled many of the
existing control points in the network after the completion of the GPS
survey to monitor any movements in points sited in sand dunes and to
upgrade stations with fourth order or trigonometric heights. The relevelling
revealed some differences with previously published heights, for example

Point 72 (6929/1397) -0.323 m
36 (6828/1264) +0.117
6 (6727/1099) -0.225
90 (7027/1051) -0.343
48 (6926/1548) -2.024
86 (7026/1353) -1.426

which, if used, as fixed stations for interpolation would have propagated
directly into the interpolating surface.

7.2.2 Interpolation of N from a Least Squares Fitted Plane.
Program LESQPL was used to calculate a least squares determined

plane surface through the South Australian network using the same 45
stations as before which had both GPS and AHD heights (see Appendix F).
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The coefficients A, B and C of the plane were computed to be,

A = +1.0727929E-05
B = +1.7652649E-05
C =-109.5566

with the standard deviation of the residuals being 0.352 m. The range in
the residuals was 1.80 m, indicating that the "fit" of the plane to the control
was not very good. The extent of the South Australian network, the
irregular nature of the geoid and the poor quality of some AHD heights
suggest that if geoid heights are interpolated they should be treated with
caution and have a large error figure attached to them.

7.2.3 Gravimetric solution of N.

Tests were conducted to determine the agreement in AN using
geopotential models OSU86E, OSU81 and GPM2 from degree 30 to their
n,..in the South Australian region. Program GRAV08 was used to compute
the differences (errors) with ANgps_ .., for all lines that had both a GPS and
AHD height. This resulted in 527 line combinations generated for the whole
network. If only those lines that had been observed with GPS had been
used the sample size would have been too small because many lines
involved stations that did not have an AHD height. Figure 7.10 shows the
results.

We can see that the three geopotential models agree closely with each
other from degree 180 down to degree 30, which is similar to the Western
Australian experience. However, unlike the Western Australian region, the
error in AN behaves more to expectations as it increases from 3.5 ppm at
degree 180 to ~15 ppm at degree 30. The error in AN decreases from degree
180 to degree 360 reaching a minimum of 2.4 ppm using model OSUS6E.
This is probably of sufficient accuracy, without including local gravity, for
most users requirements, especially as this agreement is probably at the
noise level of the GPS and AHD heights.
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Figure 7.10 Comparison of OSU8SGE, OSU81 and GPM2.

The ability of OSUS81 to recover gravity anomalies in the region of the
South Australian network, shown in Figure 5.4, also reflects the agreement
between the geopotential model and the gravity field.

7.2.4 Evaluating N Using RINT.

As for the tests in the Western Australian network (Section 7.1.4), the
RINT method (Section 6) was used to compute AN for all lines in the South
Australian network. The UNSW gravity programs were used to compute
the long wavelength contribution N, using OSUS81 to degree 180 and the
short wavelength contribution N; by evaluating the Stokes’ integral in
compartments formed by concentric rings and radial lines.
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The gravity data available in the South Australian region, and used by
program GRAVO1 for station 7029/1099 (106) in the extreme north of the
network and station 6926/1548 (48) in the south of the network is shown in
Figures 7.11 and 7.12. They show the ring structure superimposed on a
map with each gravity data point marked with a cross. It can be seen that
the gravity coverage is complete within the rings. There is an even
distribution of "background" gravity data observed on a systematic grid
which has been supplemented by gravity traverses providing more intense
gravity data in areas of geological interest. The offshore gravity coverage is
also good, even up into Spencer’s Gulf. However there appears to be no
gravity data on Kangaroo Island but this is towards the extremity of the
rings and shouldn’t degrade the computation.

It can be seen that the computation of N, for stations 7029/1099 and
6926/1548, even in this extreme case, involves gravity data within each ring
system that is common to both stations. Therefore any systematic errors in
the common gravity data within the overlapping areas will cancel when N
is differenced between the two stations.

The computed AN, for all lines in the South Australian network were
then compared for each ring contribution to ANGps_revening for the same lines
using program GRAVO08. The lines were generated between all points that
had both a GPS and AHD height in the network, making 527 combinations.
The results are presented in Figure 7.13.

It can be seen that at ring 0, using the geopotential model only, the
error in AN is 3.5 ppm, reflecting the good agreement between OSU81 and
the gravity field in this area. The inclusion of even a small inner zone
immediately improves the solution which reaches a minimum at ring 3
(Wo=03°). The slope of the curve is fairly flat and constant in the region from
ring 3 to ring 20 making the choice of v, not critical. It is not until ring 15
that the error in AN is greater than 4 ppm.
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Figure 7.13 Results of tests using RINT in South Australia.

It is interesting that the "W" curve evident in the Western Australian
network and in Canadian networks (Kearsley, 1988b) is not as obvious in
the South Australian network. This may be due to small errors in the AHD
heights of some stations.

Concurrent with the computation and analysis of AN for the South
Australian network the Australian Survey Office were relevelling many
existing stations in the region of the GPS network. A number of lines were
isolated, containing common points, which were suspected of being outliers
as the error in AN was much greater than the population. The ASO
conducted field checks at these stations and did find errors in the heights
(Section 7.2.1) which could have been caused by errors in the original
levelling or settlement of the stations in sandy soils. The new heights were
used in the analysis presented here.
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7.3 The Future of Gravimetric Geoid Computations.

The computation of geoidal heights to a similar accuracy as that of
GPS is now possible using techniques such as RINT provided there is
sufficient gravity data that fulfils the conditions outlined by Kearsley (1984,
p.101). These conditions appear to be satisfied in the Australian region,
except for the south east coast and the Gulf of Carpentaria (see Figure 5.3).

The precision of AN computed for networks in Western Australia and
South Australia was between 2 ppm and 3 ppm. This is in agreement with
the computed precision of networks in Manitoba and Ontario (Kearsley,
1988b, p. 6567) and appears to be about the noise level of the GPS and
spirit levelled heights with which they are compared. Therefore there is
little likelihood in the future for any improvement in the precision of
computed geoid heights. However the use of higher order geopotential
models, such as OSU86E, will enable a smaller cap to be used in which
Stokes’ integral is evaluated. The requirements of density and coverage for
gravity data will be not so stringent because of the smaller cap used and
because the geopotential model will give a much better estimate of the
gravity field.

GPS, coupled with a method of accurately computing geoidal heights,
will offer an independent method of detecting errors in existing levelling.
Until now, the only statistics on the precision of levelling has been the
agreement between a forward and backward levelling run and the height
misclosure around a closed loop. Errors in heights could go undetected if
two compensating errors were made or if the length of the perimeter of the
closed loop was so great that an isolated error was insignificant when
expressed as a fraction.

The South Australian experience shows that errors were able to be
detected in existing levelling lines using GPS. Suspect lines were isolated
by comparing an,,, to ANGps_1evening Which was subsequently confirmed by
relevelling of those lines by the Australian Survey Office. This is much
more efficient than relevelling all lines in an area to find an error.
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I understand the South Australian Lands Department propose to
occupy stations at the junction points used in the levelling adjustment for
the AHD in the next stage of their GPS observed control point densification
survey in 1988-1989. It is hoped that this will isolate any errors, if any, in
the primary network. I will view those results with interest.

7.4 GPS and the Australian Height Datum.

The logical extension of these techniques is to incorporate GPS heights
and computed geoidal heights into a readjustment of the Australian
levelling network as independent observations. Tide gauge information for
the 30 sites around the coastline, spanning a much longer period than
before, should also be used with the best estimate of the sea surface
topography at each gauge from models and satellite altimetry. This would
be similar in practice to the readjustment of the Australian geodetic
network (AGD66 - AGD84) incorporating Doppler stations to upgrade the
whole network.

The observation equation between tide gauge sites would be of the
form,

GAUGE HEIGHT,, + SST,, + AH, , + (Ak,_,—AN,_) =0

with each data type having an independently determined a priori
variance used to weight the observations. The advantages of a combined
adjustment using heterogeneous data from spirit levelling, GPS, computed
geoid heights, tide gauge readings and an estimate of the sea surface
topography at each tide gauge would be great. Such a combined adjustment

* would be able to detect any systematic errors in the original
levelling,
* would be able to detect any gross errors in the original levelling,

* would mean the reference surface for all heights would be much
closer to the geoid,

* would upgrade the accuracy of the whole height network.
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This new height network (AHD89?) would have a much greater
integrity than the existing AHD and would facilitate the inclusion of
additional GPS heights into the height network. The reduction of observed
data to the geoid, such as gravity, would also be closer to the truth.
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8 CONCLUSIONS

This study shows that the Global Positioning System, with an

appropriate computational strategy to determine the geoid-ellipsoid
separation, can be used to obtain heights referred to the Australian Height
Datum. We have looked at each of the three components in the equation,
the Australian Height Datum, GPS ellipsoidal heights and the
geoid-ellipsoid separation connecting the two.

The main points regarding the Australian Height Datum are

summarised below.

sk

Heights in the AHD should be referred to as normal orthometric heights,
and not as orthometric heights, because the orthometric correction
applied to levelled height differences uses normal gravity and not
observed gravity. The difference between the two, however, is quite
small reaching a maximum of 1.9 cm across Australia.

Heights in the AHD are referred to a warped surface not coincident with
the geoid or any other equipotential surface. This is because the levelling
network was adjusted between the mean sea level heights, held fixed, at
30 tide gauges around the Australian coastline based on three years of
tide data.

The difference between mean seal level and the geoid at each tide gauge
station is equal to the sea surface topography at the tide gauge. This will
be different at each tide gauge and is very much dependent on local
conditions in the vicinity of the tide gauge site.

The precision of the adjusted levelling is very close to second order
specifications being 8.1vk mm. This gives the precision of relative height
differences between the centre of Australia and the coastline of 0.34 m.

There is a high probability that compensating gross errors in heights
remain undetected in some levelling loops.

Accuracies of 2-4 ppm for GPS observed ellipsoidal heights using single

frequency receivers are possible under the following conditions.
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* The dominant error source is the delay of the signal through the
troposphere. This error can be minimised, if WVR’s are unavailable, by
observing in stable weather conditions, keeping inter-station distances to
a minimum and using a tropospheric model such as Hopfield or
Saastamoinen.

* On short baselines the determination of the a priori coordinates of the
fixed station is important. They can be found by transforming the
AGDB84 coordinates of a station in the geodetic network to WGS84
coordinates or by averaging pseudorange solutions over a long period.

* The residual error in the ionospheric delay can be minimised if the
observations are made during night time and the broadcast ionospheric
model is used.

* The user has very little control over the error in the satellite orbits. The
error is approximately 20 metres currently which is satisfactory for
ellipsoidal height determination at the 2-4 ppm level. Hopefully the
orbits will not be degraded in the future when all the satellites have
been launched.

* There is no improvement in the heights if the cycle ambiguities are
resolved correctly weighed against the risk, especially over longer lines,
that the heights will be degraded if they are resolved incorrectly.
Therefore, there is no benefit in fixing the cycle ambiguities to integer
values.

The accuracy requirements of users of geoid heights vary. A number of
techniques of determining geoidal heights with differing accuracies were
investigated.

* The simplest method, using only a pen and ruler, is to draw a contour
map of geoid heights. Three or more stations with both GPS and AHD
heights surrounding the network act as control from which the
interpolating surface can be drawn. The accuracy of the interpolated
heights is very much dependent on the scale of the drawing, the plotting
accuracy, the accuracy of the heights at the control stations, the area of
the network and the behaviour the the geoid within that area.
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* The interpolating surface can be defined analytically, instead of
graphically as above, using program LESQPL. An indication of how well
the plane "fits" the control stations is given by the size of the residuals at
each station.

* These two methods gave most satisfactory results in the Western
Australian network because the AHD heights at the control stations
were all first or second order and the area enclosed by the network is not
very large. However, the results for the South Australian network were
unsatisfactory because of the large extent of the network, the
uncertainty of heights at some control stations and the irregular nature
of the geoid in that area.

* The geoidal heights computed using high order geopotential models
OSU81, GPM2 or OSUS6E were much more accurate when differenced
than the absolute values. A datum error occurs because the geopotential
models refer to the GRS80 ellipsoid instead of the reference ellipsoid for
GPS, WGS72, which has different defining parameters.

* The computed AN from the three models agree with each other very
closely from degree 30 to 180. However, the agreement of the models
with ANges s, varies with the degree of the model and the region in
Australia. The agreement of the models in the Western Australian
network was poor, being 15 ppm, but in the South Australian network it
was 4 ppm. There was significant improvement in AN for both networks
when OSUS6E was used at degree 360.

* The RINT technique was found to be most suitable for the precise
computation of AN. Even if the agreement of AN using the geopotential
model only was poor, as in the Western Australian network, the
inclusion of even a small (< 0.5°) inner zone integration gave a significant
improvement to the solution.

* The optimum size of the cap used for the inner zone integration is
0.5°<y,<12° which is in agreement with expected theoretical value of
180°/n,,,, using OSUS1 to n,,=180.
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This study shows that it is possible to compute AN to an accuracy
similar to that of GPS heights and that these heights can be used to
supplement orthometric heights in the Australian Height Datum to an
accuracy comparable to third order levelling. These techniques could also be
used as an efficient means to isolate any errors in the existing levelling
network or included with levelling, tide gauge heights and estimates of the
sea surface topography at each tide gauge, in a new adjustment of the AHD.
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10 APPENDIX A

Western Australia GPS Network - South West Seismic Zone

No. Name Latitude Longitude Height | Height
(WGS-72) (WGS-72) |(WGS-72)| (AHD)
1 |MRAS8 -30.836005 | 116.639220 { 393.015 | 416.931
2 |INMF705 -30.852247 | 116.795533 | 359.979 | 383.632
3 |HDO09 -31.003169 | 116.983791 | 377.135 | 400.589
4 |PTH135 -31.027971 | 116.624541 | 313.975 | 338.041
5 |HD10 -31.120361 | 116.929872 | 341.630 | 365.463
6 |PTH136 -31.147490 | 116.631130 | 273.014 | 297.256
7 |BERRING -31.275797 | 116.918182 | 289.188 | 313.307
8 |KARRABEIN -31.524803 | 116.895302 | 273.112 | 297.482
9 |NTHTOODYAY| -31.448026 | 116.557939 | 342147 | 367.045
10 |HDOS8 -30.994752 | 116.782171 | 314.202 | 338.010
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11 APPENDIX B

South Australian GPS Network - Phase 1

No. Name Latitude Longitude Height Height
(WGS-72) (WGS-72) | (WGS-72)| (AHD
4 |6726/1099| -35.6857338 | 139.3526459| 36.225 36.125
5 |[6727/1063| -35.1455841 | 139.4593506| 100.723 98.721
6 |6727/1099( -35.0630798 [ 139.3719940| 84.712 82.424
7 16727/1819] -35.3580170 | 139.3833923| 25.978 24.756
8 |6727/1820( -35.1798820 |139.3665161 | 66.206 64.412
18 |[6826/1001 | -35.5381050 | 139.5683441 | 110.078
19 [6826/1120] -35.5906181 [139.9694824( 92.879
21 |6826/1122] -35.6762772 |139.6489410| 169.207 | 168.578
22 16826/2001 | -35.6797028 | 139.8739471| 35.711
23 16826/2002( -35.5280685 | 139.8483734| 55.002
24 16827/1003| -35.1786156 |139.6112061 | 116.439 | 114.048
25 |6827/1065| -35.3042297 | 139.9644470| 136.893 | 134.646
26 |6827/1066| -35.4261856 |139.7705383| 29.054
27 [6827/1067] -35.3499260 | 139.5572662| 41.590
28 16827/1701( -35.2385559 [ 139.8657990 | 135.767
29 |6827/1702f -35.1916618 [139.7593079( 135.856
30 |16827/1703| -35.1159477 1 139.8228455| 119.885 | 117.184
31 |6827/1704| -35.0458069 | 139.5584869| 131.155
32 |6827/1705| -35.0178642 [139.7082977| 99.420
33 |6828/1003( -34.9389915 | 139.6469116| 143.474 | 140.270
34 [6828/1157] -34.9788933 {139.8356628 | 137.832 | 134.661
35 16828/1256| -34.5741768 | 139.7383881 | 74.583 70.463
36 |6828/1264| -34.6751976 [ 139.9528046 | 176.203 72.358
37 |6828/1701| -34.8336487 | 139.8615417| 100.421
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South Australian GPS Network - Phase 1

No. Name Latitude Longitude Height Height
(WGS-72) (WGS-72) | (WGS-72)| (AHD
38 |6828/1702| -34.5209160 |139.8903198| 83.623
39 |6829/1301] -34.3140182 | 139.9770966| 68.277 63.587
46 16926/1501( -35.5057907 | 140.4513550| 139.696 | 137.016
47 |6926/1540] -35.5093842 [140.1715851 | 114.425 | 112.376
48 [6926/1548| -35.7859192 | 140.0483398| 96.178 94.676
52 16926/1570]| -35.6032295 | 140.1924744 | 115.928
53 |6927/1055( -35.0130157 | 140.4828644 | 114.316 | 110.845
54 |6927/1056( -35.4198799 |{140.0293427| 90.419
56 |6927/1301( -35.4105873 | 140.2976227 | 106.398
56 16927/1302| -35.3976860 | 140.1377411| 130.577 | 128.338
57 16927/1303( -35.2880974 | 140.2886353 | 123.449
58 16927/1304| -35.2627907 | 140.1167450| 119.770
59 16927/1305| -35.1517487 | 140.2927551 | 123.687 | 120.601
60 |6927/1306( -35.1195297 | 140.4469910| 143.768
61 |6927/1307( -35.1007690 | 140.0234375| 93.741 90.623
62 16928/1067| -34.9851913 | 140.1129913| 101.431 98.271
63 |6928/1070| -34.7756805 | 140.4885254| 72.464 68.628
64 (6928/1092] -34.7961159 | 140.2258301 | 78.558 74.872
65 |6928/1116| -34.5347748 | 140.4714050| 70.974 66.833
66 |6928/1118]| -34.9804649 |140.0113525| 90.484 87.376
67 [6928/1301 -34.8896408 | 140.0265503 | 101.101
68 16928/1302] -34.7107735 | 140.3435669| 82.575
69 |6928/1303| -34.6530228 | 140.1966858| 82.355
70 16929/1232] -34.4782257 | 140.0172272| 79.345 74.854
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South Australian GPS Network - Phase 1

No. Name Latitude Longitude Height Height
(WGS-72) (WGS-72) | (WGS-72)] (AHD
71 16929/1394| -34.3911324 [ 140.3711853| 58.998 54.586
72 16929/1397| -34.4808083 | 140.2935944 | 70.967 66.734
73 16929/1399]| -34.3440399 | 140.1356812| 92.206 87.473
85 | 7026/ 24 | -35.5684128 | 140.8929596| 163.105
86 |7026/1353| -35.6427422 | 140.8639984 | 145.414 | 141.926
89 |7027/1049| -35.3904076 {140.9904175| 149.161
90 [7027/1051] -35.3703270 | 140.6757355| 132.071 | 128.800
91 |7027/1124| -35.0901031 |140.6653900| 83.648 80.070
92 |7027/1758| -35.3517075 | 140.5202942| 107.110
93 |7027/1759| -35.2700615 | 140.5704956 | 114.281 | 111.106
94 |7027/1760( -35.2917137 {140.7700348 | 125.851
95 |7027/1761| -35.2350960 [140.9714813| 116.981
96 [7027/1763| -35.1150856 | 140.8320465| 123.017
97 [7028/1004| -34.7892761 | 140.9897766 | 105.444 | 101.234
98 |7028/1089| -34.8641129 (140.8347931| 57.890 54.012
99 |7028/1098| -34.9992752 [ 140.7720642| 173.975 70.206
100 |7028/1104| -34.5295906 | 140.7901154| 71.056 67.114
101 [7028/1113| -34.7683372 | 140.6854706| 90.869 86.973
102 |7028/1144| -34.5941467 | 140.6858521 | 74.167 70.060
103 |7028/1304| -34.6849403 | 140.5495453 | 81.397 77.447
104 |7028/1305| -34.6775169 | 140.8045349| 68.713
105 |7028/1306{ -34.5894394 | 140.9633789| 64.570 60.100
106 [7029/1099| -34.2829933 | 140.8927917| 54.098 49.329
107 |7029/7282| -34.3563766 | 140.9431458| 64.304 59.528
108 |7127/1100| -35.1057587 | 141.0222473| 115.737 | 111.590
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12 APPENDIX C

WESTERN AUSTRALIA GPS NETWORK
SOUTH WEST SEISMIC ZONE

RESULTS FROM PROGRAM GRAV08
COMPARISION OF AN FROM GRAVIMETRIC SOLUTION AND AN FROM THE
DIFFERENCE BETWEEN GPS AND AHD HEIGHTS FROM RING 0 TO RING 26.

SCHOOL OF SURVEYING, U.N.S.W. DELTA N ANALYSIS
GRAVO08 Ver 1.5 WA.DAT 19-MAY-88

WESTERN AUSTRALIA HEIGHT NETWORK
UNIVERSITY OF NEW SOUTH WALES

Control File: WAPTS.DAT Lines File: WALINES.DAT
Inner Zone File: WAIN.SUM Remote Zone File: OSUS81_18.0UT

Number of Rings in Inner Zone: 0

LINE FROM TO DIST GRAVITY G.P.S.- DIFF PPM
NO. (km) REMOTE INNER SUM LEVEL (cm)
1 1 2 15.06 62.0 .0 62.0 26.3 -35.7 23.7
2 1 3 37.79 94.0 .0 94.0 46.2 -47.8 12.6
3 1 4 21.33 -42.0 .0 -42.0 -15.0 27.0 12.7
4 2 3 24.57 32.0 .0 32.0 19.9 -12.1 4.9
5 2 4 25.43 ~104.0 .0 -104.0 -41.3 62.7 24.7
6 3 10 19.28 -62.0 .0 -62.0 -35.4 26.6 13.8
7 3 5 13.98 -33.0 .0 -33.0 -37.9 -4.9 3.5
8 4 10 15.50 74.0 .0 74.0 25.8 -48.2 31.1
9 4 6 13.27 -16.0 .0 -16.0 -17.6 -1.6 1.2
10 5 6 28.65 -119.0 .0 -119.0 -40.9 78.1 27.3
11 5 7 17.27 ~-27.0 .0 -27.0 -28.6 -1.6 .9
12 5 10 19.82 -29.0 .0 -29.0 2.5 31.5 15.9
13 6 10 22.24 90.0 .0 90.0 43.4 -46.6 21.0
14 6 7 30.83 92.0 .0 92.0 12.3 -79.7 25.8
15 6 8 48.81 57.0 .0 57.0 -12.8 -69.8 14.3
16 6 9 34.04 -75.0 .0 -75.0 -65.6 9.4 2.8
17 7 8 27.69 -35.0 .0 -35.0 -25.1 9.9 3.6
18 7 9 39.24 -167.0 .0 -167.0 -77.9 89.1 22.7
19 8 9 33.17 -132.0 .0 -132.0 -52.8 79.2 23.9
MEAN: 3.4 S.D. 50.7 R.M.S. 49.4 MEAN PPM: 15.1 RMS PPM: 17.9
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SCHOOL OF SURVEYING, U.N.S.W. DELTA N ANALYSIS
GRAVO08 Ver 1.5 WA DAT

UNIVERSITY OF NEW SOUTH WALES
Control File; WAPTS.DAT

Inner Zone File: WAIN.SUM

LINE FROM TO DIST
(km)

[
(=]
NN NUIBRBWWNDNRERERE

H R

R
VOO ICOJIRNOUIORWRWN

15.
37.
21.
24.
25.
19.
13.
15.
13.
28.
17.
19.
22.
30.
48.
34.

.9

Lines File:
Remote Zone File: OSU81_18.0UT

19-MAY-88
WESTERN AUSTRALIA HEIGHT NETWORK

WALINES.DAT

Number of Rings in Inner Zone: 2

REMOTE

62.
94.
-42,
32,
-104.
-62.
-33.
74.
-16.
-119.
~-27.
-29.
90.
92.
57.
~75.
-35.
-167.
-132.

[=RejelefaleofoNoNoo oloYeloNooYo e Yo

R.M.S.

GRAVITY
INNER SUM
~24.9 37.1
-28.9 65.1

14.8 -27.2

-4.0 28.0

39.7 -64.3

13.4 -48.6

1.8 =-31.2
-30.3 43.7
6.0 -10.0

47.9 -71.1

-3.8 -30.8

11.6 -17.4
-36.3 53.7
-51.7 40.3
-58.5 -1.5

12.3 -62.7

-6.7 -41.7

64.0 -103.0

70.8 -61.2

16.4

MEAN PPM: 5.9
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G.P.S.-
LEVEL

26.
46.
-15.
19.
-41.
-35.
-37.
25.
-17.
-40.
-28.
2.
43.
12.
-12.
-65.
-25.
-77.
-52.

COHADWRUIONOARPOBWOONW

DIFF
(cm)

-10.
-18.
12,
-8.
23.
13.
-6.
-17.
-7.
30.
2.
19.
-10.
-28.
-11.
-2.
le6.
25.
8.

RMS

BREFAOVWOWONNOMANONINORERNOV®

PPM:

PPM

[
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[
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SCHOOL OF SURVEYING, U.N.S.W. DELTA N ANALYSIS

GRAVO08 Ver 1.5 WA.DAT 19-MAY-88
WESTERN AUSTRALIA HEIGHT NETWORK
UNIVERSITY OF NEW SOUTH WALES

Control File: WAPTS.DAT Lines File: WALINES.DAT
Inner Zone File: WAIN.SUM Remote Zone File: OSU81_18.0UT
Number of Rings in Inner Zone: 4
LINE FROM TO DIST GRAVITY G.P.S.~ DIFF PPM
NO. (km) REMOTE INNER SUM LEVEL (cm)
1 1 2 15.06 62.0 -46.0 16.0 26.3 10.3 6.8
2 1 3 37.79 94.0 -70.6 23.4 46.2 22.8 6.0
3 1 4 21.33 -42.0 23.6 -18.4 =15.0 3.4 1.6
4 2 3 24.57 32.0 -24.6 7.4 19.9 12.5 5.1
5 2 4 25.43 -104.0 69.6 -34.4 -41.3 -6.9 2.7
6 3 10 19.28 -62.0 34.9 -27.1 -35.4 -8.3 4.3
7 3 5 13.98 -33.0 6.5 -26.5 -37.9 -11.4 8.2
8 4 10 15.50 74.0 -59.3 14.7 25.8 11.1 7.2
9 4 6 13.27 -16.0 5.7 =-10.3 -17.6 -7.3 5.5
10 5 6 28.65 ~119.0 93.5 -25.5 -40.9 -15.4 5.4
11 5 7 17.27 -27.0 -2.1 -29.1 -28.6 .5 .3
12 5 10 19.82 -29.0 28.4 -.6 2.5 3.1 1.6
13 6 10 22.24 90.0 -65.0 25.0 43.4 18.4 8.3
14 6 7 30.83 92.0 -95.5 -3.5 12.3 15.8 5.1
15 6 8 48.81 57.0 -104.0 -47.0 -12.8 34.2 7.0
16 6 9 34.04 -75.0 22.3 -=52.7 -65.6 =-12.9 3.8
17 7 8 27.69 -35.0 -8.5 =-43.5 -25.1 18.4 6.6
18 7 9 39.24 -167.0 117.8 -49.2 -77.9 -28.7 7.3
19 8 9 33.17 -132.0 126.3 -5.7 -52.8 -47.1 14.2
MEAN: .7 S.D. 19.4 R.M.S. 18.9 MEAN PPM: 5.6 RMS PPM: 6.4
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SCHOOL OF SURVEYING, U.N.S.W. DELTA N ANALYSIS

GRAVO0S8 Ver 1.5 WA.DAT

LINE FROM TO

NO.

ONJOAOAAVUIRBWWNNRRER

Control File: WAPTS.DAT

Inner Zone File: WAIN.SUM

B R

R
VWOPOVWOIOONIOMCUOBRWEWN

.7

Lines File:
Remote Zone File: OSU81_18.0UT

19-MAY-88
WESTERN AUSTRALIA HEIGHT NETWORK
UNIVERSITY OF NEW SOUTH WALES

WALINES.DAT

Number of Rings in Inner Zone: 6

REMOTE

62.
94.
-42.
32.
104.
-62.
-33.
74.
-16.
-119.
-27.
=29,
90.
92.
57.
-75.
-35.
-167.
-132.

COO0OOCO0OO0O0DOODOCOOOOOOOO0O

R.M.S.

1.
2.

WONONHNOUOANORAMANDRR

GRAVITY
INNER SUM
-59.9 2

-111.1 -17.

22.6 -19.
-51.2 -19.

82.5 -21.

61.6 -

9.9 -23
~-72.1

-2.2 -18.
121.6

-2.5 -29.

51.8 22.
~69.8 20.

-124.1 -32.
-127.7 -=70.

18.2 -56.

-3.6 -38.
142.2 -24.
145.8 13.

G.P.S.~
LEVEL

26.
46.
-15.
19.
~41.
-35.
-37.
25.
-17.
-40.
-28.
2.
43.
12,
-12.
~65.
-25,
=77.
-52.

VOHFOAOWRUIAVAOACOBWWONW

35.7 MEAN PPM: 10.9
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DIFF PPM

(cm)
24.2 l6.
63.3 ls6.
4.4 2.
39.1 15.
~19.8 7.
-35.0 18.
-14.8 10.
23.9 15.

.6
-43.5 15

.9
-20.3 10.
23.2 10.
44.4 14
57.9 11.
-8.8 2
13.5 4.
-53.1 13.
-66.6 20

RMS

PPM: 12.

3] HUOONOARRNUONUAANOOR ®OR



SCHOOL OF SURVEYING, U.N.S.W. DELTA N ANALYSIS

GRAV08 Ver 1.5 WA.DAT

LINE FROM TO

NO.
1 1
2 1
3 1
4 2
5 2
6 3
7 3
8 4
9 4
10 5
11 5
12 5
13 6
14 6
15 6
16 6
17 7
18 7
19 8
MEAN: 2.8

o

BB
COROEIOOIANOUICRWHEWN

.5

19-MAY-88

WESTERN AUSTRALIA HEIGHT NETWORK
UNIVERSITY OF NEW SOUTH WALES

Control File: WAPTS.DAT
Inner Zone File: WAIN.SUM

Lines File:

WALINES.DAT
Remote Zone File: OSU81_18.0UT

Number of Rings in Inner Zone: 8

REMOTE

62.
94.
-42,
32.
-104.
-62.
-33.
74.
-16.
-119.
-27.
-29.
90.
92.
57.
-75.
-35.
-167.
-132.

COO0O0OOO0O0OOOOOLOOOOOCOOO

R.M.S.

GRAVITY
INNER SUM
~36.5 25.5
-92.2 1.8

13.8 -28.2
-55.7 -23.7

50.3 -53.7

57.4 ~4.6

11.1 -21.9
-48.6 25.4

-3.6 -19.6

91.4 -27.6

-3.0 -30.0

46.3 17.3
-45.0 45.0
-94.4 -2.4
~-99.3 -42.3

10.9 -64.1

-4.9 -39.9
105.2 -61.8
110.1 -21.9

20.9

G.P.S.~-

LEVEL

26.
46.
-15.
19.
-41.
-35.
~37.
25.
-17.
-40.
-28.
2.
43.
12.
-12.
-65.
-25.
-77.
-52.

QOO WRUAROMNOPORWOOMNMW

MEAN PPM: 6.
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0

DIFF
(cm)

44.
13.
43.
12.
-30.
-16.

2.
-13.
1.
~14.
-1.
14.
29.
-1.
14.
-16.
-30.

OCHEHOoOUUNOA®OBWOAODOENNB®

RMS PPM:

PPM

11.
17.

ls.
11.

~J o0 [ ] ~ Lo ]
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SCHOOL OF SURVEYING, U.N.S.W. DELTA N ANALYSIS

GRAVO08 Ver 1.5 WA.DAT 19-MAY-88
WESTERN AUSTRALIA HEIGHT NETWORK
UNIVERSITY OF NEW SOUTH WALES

Control File: WAPTS.DAT Lines File: WALINES.DAT
Inner Zone File: WAIN.SUM Remote Zone File: OSU81_18.0UT

Number of Rings in Inner Zone: 10

ORPWKHFAANJONAIROONOOO®

LINE FROM TO DIST GRAVITY G.P.S.- DIFF PPM
NO. (km) REMOTE INNER SUM LEVEL (cm)
1 1 2 15.06 62.0 -27.0 35.0 26.3 -8.7 5.
2 1 3 37.79 94.0 -51.5 42.5 46.2 3.7 1.
3 1 4 21.33 -42.0 16.4 -25.6 -15.0 10.6 5.
4 2 3 24.57 32.0 -24.5 7.5 19.9 12.4 5.
5 2 4 25.43 -104.0 43.4 -60.6 ~-41.3 19.3 7.
6 3 10 19.28 -62.0 26.5 -35.5 -35.4 .1 .
7 3 5 13.98 -33.0 6.3 -26.7 -37.9 -11.2 8.
8 4 10 15.50 74.0 -41.4 32.6 25.8 -6.8 4.
9 4 6 13.27 -16.0 -2.5 -18.5 -17.6 .9 .
10 5 6 28.65 -119.0 59.1 -59.9 -40.9 19.0 6.
11 5 7 17.27 ~27.0 -10.0 -37.0 -28.6 8.4 4.
12 5 10 19.82 -29.0 20.2 ~8.8 2.5 11.3 5
13 6 10 22.24 90.0 -38.9 51.1 43.4 -7.7 3.
14 6 7 30.83 92.0 =-69.1 22.9 12.3 -10.6 3.
15 6 8 48.81 57.0 -85.1 -~28.1 -12.8 15.3 3
16 6 9 34.04 -75.0 10.6 -64.4 -65.6 -1.2 .
17 7 8 27.69 ~-35.0 -16.0 -51.0 -25.1 25.9 9.
18 7 9 39.24 -167.0 79.7 -817.3 ~77.9 9.4 2.
19 8 9 33.17 -132.0 95.7 -36.3 -52.8 -16.5 5.
MEAN: 3.9 S.D. 12.7 R.M.S. 12.4 MEAN PPM: 4.3 RMS PPM: 5.0
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SCHOOL OF SURVEYING, U.N.S.W. DELTA N ANALYSIS

GRAV08 Ver 1.5 WA DAT

LINE FROM TO

NO.

[
(=]
odJdoaaoannnUuINA&aRWWNNRER

UNIVERSITY OF NEW SOUTH WALES
Control File: WAPTS.DAT

Inner Zone File: WAIN.SUM

MR

(g
COPOOIOONANOUOBWBWN

.4

Lines File:

Remote Zone File: OSU81_18.0UT

19-MAY-88
WESTERN AUSTRALIA HEIGHT NETWORK

WALINES.DAT

Number of Rings in Inner Zone: 12

GRAVITY
REMOTE INNER SUM
62.0 -29.4 32.6
94.0 -42.4 51.6
-42.0 17.3 -24.7
32.0 -13.0 19.0
-104.0 46.7 -57.3
-62.0 16.7 -45.3
-33.0 .5 -32.5
74.0 -43.0 31.0
-16.0 -2.3 -18.3
-119.0 56.9 -62.1
-27.0 -9.0 -36.0
-29.0 16.3 -12.7
90.0 -40.6 49.4
92.0 -65.8 26.2
57.0 -82.5 -25.5
~75.0 8.0 -67.0
-35.0 -16.7 -51.7
-167.0 73.9 -93.1
-132.0 90.6 -41.4
R.M.S. 12.1 MEAN PPM:

-133 -

G.P.S.-

LEVEL

26.
46.
-15.
19.
-41.
-35.
-37.
25.
-17.
-40.
-28.
2.
43.
12.
-12.
-65.
=25,
-77.
-52.

o POHAODWRUANOAAODOBWOLONW

4.

DIFF
(cm)

|

L N

W Ll
BNNOABJOONBNINARAOLOOVIAW

PPM

4.

WWO NENdBY LW BEREH
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SCHOOL OF SURVEYING, U.N.S.W. DELTA N ANALYSIS

GRAV08 Ver 1.5 WA.DAT

19-MAY-88

WESTERN AUSTRALIA HEIGHT NETWORK

UNIVERSITY OF NEW SOUTH WALES
Control File: WAPTS.DAT

Inner Zone File: WAIN.SUM

LINE FROM TO DIST
(km)

NO.

HRRHp
WNhFRoOOVOIOAUTARWNKR

14

OB BARWWNNRE KRR

e

=
VCORWDOIOOTINANCOUO D WIdWN

15.
37.
21.
24.
25.
19.
13.
15.
13.
28.
17.
19.
22.
30.
48.
34.
27.
39.
33.

.8

Lines File:

WALINES.DAT
Remote Zone File: OSU81_18.0UT

Number of Rings in Inner Zone: 14

GRAVITY
REMOTE INNER SUM
62.0 -35.8 26.2
94.0 -52.1 41.9
-42.0 18.9 =-23.1
32.0 -16.3 15.7
-104.0 54.7 -49.3
-62.0 20.3 -41.7
~33.0 2.7 -30.3
74.0 -50.7 23.3
-16.0 -3.1 -19.1
-119.0 65.2 -53.8
-27.0 -9.5 -36.5
-29.0 17.6 -11.4
80.0 -~47.6 42.4
92.0 -74.7 17.3
57.0 -%2.1 -35.1
-75.0 10.0 -65.0
-35.0 -17.3 -52.3
-167.0 84.8 -82.2
-132.0 102.1 -29.9
R.M.5. 11.5

G.P.S.-

LEVEL

26.
46.
-15.
19.
-41.
-35.
-37.
25.
-17.
-40.
~-28.
2.
43.
12,
-12.
~-65.
-25.
-77.
-52.

COHMAOWARUNIOAOVAODORWOONW

MEAN PPM: 3.3
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DIFF PPM

(cm)

[ant 1
NNEHENJOY I 00D

1
tuRWw
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N
N

N
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RMS PPM: 4.2
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SCHOOL OF SURVEYING, U.N.S.W. DELTA N ANALYSIS

GRAV08 Ver 1.5 WA.DAT

LINE FROM TO

NO.

ONJOONONAUTNUNADWWNNR R

BB

oy
COWEVOEJoONOMACUTORWE WN

19-MAY-88

WESTERN AUSTRALIA HEIGHT NETWORK

UNIVERSITY OF NEW SOUTH WALES

Control File: WAPTS.DAT
Inner Zone File: WAIN.SUM

Lines File:

WALINES.DAT

Number of Rings in Inner Zone: 16

REMOTE

62.
94.
-42,
32.
104.
-62.
-33.
74.
~-16.
119.
-27.
-29.
90.
92.
57.
-75.
-35.
-167.
-132.

COO0OO0OO0O0OOCOCOOOLOOOOOOO

.1 R.M.S. 13.

GRAVITY
INNER SUM
-44.3 17.7
~-69.0 25.0

19.5 -22.5
-24.7 7.3

63.8 -40.2

28.7 -33.3

1.2 -31.8
-59.9 14.1

-3.9 ~-19.9

83.4 -35.6

-5.7 =-32.7

27.5 -1.5
-56.0 34.0
-89.1 2.9

-103.4 -46.4
1.2 -73.8
-14.3 -49.3

90.3 -76.7

104.6 -27.4
8 MEAN PPM:

-135 -

G.P.S.-

LEVEL

26.
46.
~15.
19.
-41.
-35.
-37.
25.
-17.

2
0
9
3
4
9
8
6
.9
.6
5
4
3
8
6
1
9
8
9

3

Remote Zone File: OSU81_18.0UT

DIFF

1
(8]
BOONOABRRORWWNRHREPHEOOADGRNDOG

RMS PPM:

PPM

4.

~ ONAOAWBRNNEFJB owonwm
NWOROWONOMONULIARMHE U
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SCHOOL OF SURVEYING, U.N.S.W. DELTA N ANALYSIS
GRAVO08 Ver 1.5 WA.DAT

Control File: WAPTS.DAT
Inner Zone File: WAIN.SUM

LINE FROM TO

NO.

odoudwWNhERE

[
o
NN NUIUIRBWWNNRER

[

[

B
VYOIV OICONNAACUIORWBRWN

19-MAY-88

WESTERN AUSTRALIA HEIGHT NETWORK

UNIVERSITY OF NEW SOUTH WALES

Number of Rings in Inner Zone: 18

GRAVITY G.P.S.-
REMOTE INNER SUM LEVEL
62.0 -43.2 18.8 26.3
94.0 -82.9 11.1 46.2
-42.0 11.8 -30.2 -15.0
32.0 ~-39.7 =-7.7 19.9
-104.0 55.0 -49.0 -41.3
-62.0 42.5 -19.5 ~35.4
-33.0 5.1 -27.9 -37.9
74.0 -52.1 21.9 25.8
-16.0 -5.5 -21.5 -17.6
-119.0 84.0 -35.0 -40.9
-27.0 -7.1 -34.1 -28.6
~-29.0 37.4 8.4 2.5
90.0 -46.6 43.4 43.4
92.0 -91.1 .9 12.3
57.0 -110.5 -53.5 -12.8
-75.0 -7.5 -82.5 -65.6
-35.0 ~-19.4 -54.4 -25.1
-167.0 83.6 -83.4 -77.9
~132.0 103.0 -29.0 -52.8
.8 R.M.S. 18.3 MEAN PPM: 5.3

-136 -

Lines File: WALINES.DAT
Remote Zone File: OSU81_18.0UT

DIFF
(cm)

7
35.
15.
27.

7.

~15.
-10.

3.

3.
-5.

5.
~5.

11.
40.
16.
29.
5.
-23.

CUWONPOOVWUIVWYWOVOOIANEWU

RMS PPM:

PPM

[
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SCHOOL OF SURVEYING, U.N.S.W. DELTA N ANALYSIS

GRAV08 Ver 1.5 WA.DAT 19-MAY-88
WESTERN AUSTRALIA HEIGHT NETWORK
UNIVERSITY OF NEW SOUTH WALES

Control File: WAPTS.DAT Lines File: WALINES.DAT
Inner Zone File: WAIN.SUM Remote Zone File: OSU81_18.0UT
Number of Rings in Inner Zone: 20
LINE FROM TO DIST GRAVITY G.P.S.~- DIFF PPM
NO. (km) REMOTE INNER SUM LEVEL {cm)
1 1 2 15.06 62.0 -37.5 24.5 26.3 1.8 1.
2 1 3 37.79 94.0 -84.2 9.8 46.2 36.4 9.
3 1 4 21.33 -42.0 4.2 -37.8 -15.0 22.8 10.
4 2 3 24.57 32.0 -46.7 -14.7 19.9 34.6 14.
5 2 4 25.43 -104.0 41.7 -62.3 -41.3 21.0 8.
6 3 10 19.28 -62.0 43.9 -18.1 -35.4 =-17.3 9.
7 3 5 13.98 -33.0 7.8 =-25.2 -37.9 =12.7 9.
8 4 10 15.50 74.0 -44.6 29.4 25.8 ~-3.6 2.
9 4 6 13.27 ~16.0 -9.4 -=-25.4 -17.6 7.8 5.
10 5 6 28.65 -119.0 71.2 -47.8 ~40.9 6.9 2.
11 5 7 17.27 -27.0 -12.8 -39.8 -28.6 11.2 6
12 5 10 19.82 -29.0 36.0 7.0 2.5 -4.5 2.
13 6 10 22.24 90.0 -=-35.2 54.8 43.4 -11.4 5.
14 6 7 30.83 92.0 -84.0 8.0 12.3 4.3 1.
15 6 8 48.81 57.0 -112.3 ~55.3 -12.8 42.5 8.
16 6 9 34.04 -75.0 -10.9 -85.9 -65.6 20.3 6.
17 7 8 27.69 -35.0 -28.3 -63.3 =-25.1 38.2 13.
18 7 9 39.24 -167.0 73.1 -93.9 =-77.9 16.0 4.
19 8 9 33.17 -132.0 101.4 -30.6 -52.8 -22.2 6.
MEAN: 10.1 sS.D. 22.1 R.M.S. 21.5 MEAN PPM: 6.7 RMS PPM: 7.

~ NHooONRRWLWRROBRHOWRIOON
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SCHOOL OF SURVEYING, U.N.S.W. DELTA N ANALYSIS

GRAV08 Ver 1.5 WA.DAT

LINE FROM TO

B
VEERVOEIOONNAOUOPRWEWN

[
o
odJoaUIUIUTER BWWINNKMPBPRP

MEAN: 12.1

[y

[

19-MAY-88

WESTERN AUSTRALIA HEIGHT NETWORK

UNIVERSITY OF NEW SOUTH WALES

Control File: WAPTS.DAT
Inner Zone File: WAIN.SUM

s.D. 27.9

Lines File:
Remote Zone File: OSU81_18.0UT

WALINES.DAT

Number of Rings in Inner Zone: 22

REMOTE

62.0
94.0
~42.0
32.0
-104.0
-62.0
-33.0
74.0
-16.0
~-119.0
.0
0
0
0
0
0
0
0
0
M

=27

-29.
90.
92.
57.

-75.

-35.

-167.
-132.

R.

GRAVITY G.P.S.-
INNER SUM LEVEL
-27.7 34.3 26.3
-76.1 17.9 46.2

1.6 -40.4 -15.0
-48.4 -16.4 19.9

29.3 -74.7 -41.3

34.8 -27.2 -35.4

11.5 -21.5 -37.9
-42.9 31.1 25.8

-3.3 -19.3 -17.6

63.0 -56.0 -40.9
-10.5 -37.5 -28.6

23.4 -5.6 2.5
-39.7 50.3 43.4
-73.5 18.5 12.3

-125.4 -68.4 -12.8

-9.5 -84.5 -65.6
-52.0 -87.0 -25.1

64.0 -103.0 -77.9
116.0 -16.0 -52.8

.8. 27.2 MEAN PPM: 7.9
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DIFF
(cm)

-8.
28.
25.
36.
33.
-8.
-16.
=-5.
1.
15.
8.
8.
-6.
-6.
55.
18.
61.
25.
~-36.

OHOOANVHEFORNWRANNRLWAWO

RMS PPM:

PPM

11.
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N
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=
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SCHOOL OF SURVEYING, U.N.S.W. DELTA N ANALYSIS
GRAV08 Ver 1.5 WA.DAT

LINE FROM TO

NO.

(o

Voo WN P
[

ol
CORVEIOCONOAMOUOBRWEWN

[
o
oNdJdoaoaoUuTUINERWWNNNRRERE

DIST
(km)

15.
37.

21

06
79

.33
24.
25.
19.
13.
15.
13.
28.
17.
19.
22,
30.
48.
34.
27.
39.
33.

57
43
28
98
50
27
65
27
82
24
83
81
04
69
24
17

19-MAY-88

WESTERN AUSTRALIA HEIGHT NETWORK

UNIVERSITY OF NEW SOUTH WALES

Control File: WAPTS.DAT
Inner Zone File: WAIN.SUM

Lines File:
Remote Zone File: OSU81_18.0UT

WALINES.DAT

Number of Rings in Inner Zone: 24

REMOTE

62.0
94.0
-42.0
32.0
104.0
-62.0
-33.0
74.0
-16.0
119.0
-27.0
0
0
0
0
0
0
0
0

M.

-29,
90.
92.
57.

-75.

-35.

-167.
-132.

S.D. 38.0 R.

GRAVITY G.P.S.-

INNER SUM LEVEL
-29.6 32.4 26.3
-78.0 l6.0 46.2
10.5 -31.5 -15.0
-48.4 -16.4 19.9
40.1 -63.9 -41.3
35.0 -27.0 -35.4
10.4 -22.6 -37.9
-53.5 20.5 25.8
-6.1 -22.1 -17.6
72.0 -47.0 -40.9
-5.0 =32.0 -28.6
24.6 -4.4 2.5
-47.4 42.6 43.4
-77.0 15.0 12.3
-142.1 -85.1 -12.8
-65.6 -140.6 -65.6
-65.1 -100.1 -25.1
11.5 -155.5 -77.9
76.6 -55.4 -52.8
S. 37.0 MEAN PPM: 8.4
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SCHOOL OF SURVEYING, U.N.S.W. DELTA N ANALYSIS

GRAVO08 Ver 1.5 WA.DAT

Control File: WAPTS.DAT

Inner Zone File: WAIN.SUM

LINE FROM TO DIST
(km)

NO.

oNJoaoaaaUINUTRBbWWNNDNRRER

L

=R
VOPOVWONIoOONAOCCUORWBRWN

15.
37.
21.

25.

06
79

.5

Lines File:
Remote Zone File: OSU81_18.0UT

Number of Rings in Inner Zone: 26

GRAVITY
REMOTE INNER SUM
62.0 -39.9 22.1
94.0 -82.0 12.0
-42.0 11.9 -30.1
32.0 -42.1 -10.1
-104.0 51.8 -52.2
-62.0 41.0 -21.0
-33.0 13.0 -20.0
74.0 -52.9 21.1
-16.0 .5 -15.5
-119.0 81.4 -37.6
-27.0 8.4 -18.6
-29.0 28.0 -1.0
90.0 -53.5 36.5
92.0 -73.1 i8.9
57.0 -137.5 -80.5
-75.0 -16.2 -91.2
-35.0 -64.5 -99.5
-167.0 56.9 -110.1
-132.0 121.3 -10.7

R.M.s. 29.7

-140 -

MEAN PPM: 7.6

G.P.S.-
LEVEL

26.
46.
-15.
19.
-41.
-35.
-37.
25.
~-17.
-40.
-28.
2.
43.
12.
-12.
-65.
-25.
-77.
-52.

COUHMAOWPRUIONKLVLOAOOBMWOONDW

19-MAY-88
WESTERN AUSTRALIA HEIGHT NETWORK
UNIVERSITY OF NEW SOUTH WALES

WALINES.DAT

DIFF
(cm)

4.
34.
15.
30.
10.

-14.
~17.

4.
-2.
-3.

-10.

3.

6.
~-6.
67.
25.
74.
32.

-42.

BPNAEOATOOUVIOWRJOMODORNN

RMS PPM:

PPM

[
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CHANWNWRURRERWNNIANION

[
N

0
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13 APPENDIXD

PROGRAM LESQPL
PARAMETER (MAXOBS=50)
C
C PROGRAM TO FIT AN OVERDETERMINED LEAST SQUARES
C PLANE TO A GPS HEIGHT NETWORK.
C ROBERT HOLLOWAY, UNSW. 13-MAR-1987
C
IMPLICIT REAL*8 (A-H,0-Z)
IMPLICIT INTEGER*2 (I-N)
INTEGER*2 IN, IOUT, ISCRN, IKBD, ICHK
INTEGER*2 NOBS, NUMB
CHARACTER*10 MATID(MAXOBS), STNID, SNAME
CHARACTER*20 FILEIN, FILEOUT
CHARACTER*3 END
REAL*8 MATA(MAXOBS,3), MATL(MAXOBS)
REAL*8 MATRAN(3,MAXOBS), MATINV(3,3), MATEMP(3,3)
REAL*8 MATD(3), MATRESULT(3),MATV(MAXOBS), MATVCV(MAXOBS)
REAL*8 EAST,NORTH,GPSHGT,AHDHGT
REAL*8 VAR,APOST,AHD
REAL*8 PI, GRAD,DIRN,DEFLNE,DEFLNN,SEC
COMMON /DEVICE/ FILEIN, FILEOUT
COMMON /INOUT/ IN,IOUT,ISCRN,IKBD
C INITIALIZE DEVICE UNITS
IN=1
I0UT=2
ISCRN=0
IKBD=0
C INITIALISE VARIABLES
NOBS=0
NUMB=0
PI=DACOS(-1.0D0)
C
C PROMPT FOR INPUT FILE NAME, OUTPUT FILE NAME
C
WRITE (ISCRN,30)
30 FORMAT (//,12X,Program LESQPL (LEast SQuares PLane fit).")
WRITE (ISCRN,50)
50 FORMAT (//,12X,’ Input file name : ? ’,$)
READ (IKBD,100) FILEIN
100 FORMAT (A20)
OPEN (IN,FILE=FILEIN,STATUS="OLD’,FORM="FORMATTED’,
#IOSTAT=ICHK)
IF ICHK.NE.0) GO TO 1500
WRITE (ISCRN,150)
150 FORMAT (12X, Output file name : ? *,$)
READ (IKBD,100) FILEOQUT
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WRITE (ISCRN,175)
175 FORMAT (//12X,’T am working .....")
C
C COUNT THE NUMBER OF OBSERVATIONS
C

200 READ (IN,250,ERR=1375) STNID,AMGE,AMGN,GPSHGT,AHDHGT

250 FORMAT (A10,F10.3,F12.3,2F8.3)
IF (STNID.EQ.’999") GO TO 300
NOBS=NOBS+1
GO TO 200

300 CONTINUE

IF (NOBS.LT.3) GO TO 1400
305 CONTINUE
READ (IN,310,END=320) SNAME,EAST,NORTH,ELLIPHT

310 FORMAT (A10,F10.3,F12.3,F8.3)
NUMB=NUMB+1
GO TO 305

320 CONTINUE

REWIND IN

C

C CLEAR ALL ARRAYS OF EXTRANEQUS DATA

C

DO 7100 J=1,NOBS
MATL(J)=0.0
MATV(J)=0.0
MATVCV(J)=0.0
DO 7050 K=1,3

MATA(J,K)=0.0
MATD(K)=0.0

7050 CONTINUE

7100 CONTINUE

DO 7250 N=1,3
MATRESULT(N)=0.0
DO 7200 I=1,NOBS

MATRAN(N,D=0.0

DO 7150 M=1,3
MATEMP(N,M)=0.0
MATINV(N,M)=0.0

7150 CONTINUE

7200 CONTINUE

7250 CONTINUE

C
C READ IN DATA FROM INPUT FILE
C
DO 7350 K=1,NOBS
READ (IN,7300) STNID,AMGE,AMGN,GPSHGT,AHDHGT
7300 FORMAT (A10,F10.3,F12.3,2F8.3)
UNDUL = GPSHGT-AHDHGT
MATI(K) = UNDUL
MATID(K) = STNID
MATA(K,1) = AMGE
MATA(K,2) = AMGN
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MATA(K,3) =1.0D0
7350 CONTINUE
C
C LEAST SQUARES EQUATION IS X=(INV(A(T)*A)) (A(T)*L)
C
CALL TRANSPOSE (MATA,MAXOBS,3,MATRAN)
CALL MATMUL (MATRAN,MATA,3,MAXOBS,3,MATEMP)
CALL INVERT (MATEMP,MATD,3)
CALL MATMUL (MATRAN,MATL,3,MAXOBS,1,MATINV)
CALL MATMUL (MATEMP,MATINV,3,3,1 MATRESULT)

C

C CALCULATE RESIDUALS

C
CALL MATMUL (MATA,MATRESULT,MAXOBS,3,1,MATV)
CALL MATSUB (MATV,MATL,MAXOBS,1,MATVCV)

C

C PRINT OUT RESULTS

C

OPEN (IOUT,FILE=FILEOUT,STATUS="NEW ,FORM="FORMATTED’)
WRITE (IOUT,322) FILEIN, FILEOUT
322 FORMAT (3X, Input data file is ’,A20,1X,’Output file is >,A20,/)
WRITE (I0UT,325)
325 FORMAT (3X,72(-),//,7X,FIT AN OVERDETERMINED’,
# LEAST SQUARES PLANE TO A GPS HEIGHT NETWORK’,/12X,
#GENERAL EQUATION OF PLANE IS N = Ae + Bn + C//,3X,72(-),/))
WRITE (IOUT,350) MATRESULT(1)
350 FORMAT (15X, CO-EFFICIENT A =’,F18.12)
WRITE (I0UT,400) MATRESULT(2)
400 FORMAT (15X, CO-EFFICIENT B =’,F18.12)
WRITE (1I0UT,450) MATRESULT(3)
450 FORMAT (15X, CO-EFFICIENT C =’,F10.4,//)
WRITE (I0UT,475)
475 FORMAT (5X,STATION ID’4X,’EASTING’,4X,NORTHING’,3X,
# 'UNDULATION’,2X’RESIDUAL’/)
C
C PRINT OUT CO-ORDINATES, UNDULATIONS AND RESIDUALS
C
DO 550 J=1,NOBS
WRITE (IOUT,500) MATID(J),MATA(J,1), MATA(J,2), MATL(J), MATVCV(J)
500 FORMAT (5X,A10,2X,F10.3,F13.3,F9.3,2X F7.3)
550 CONTINUE
C
C CALCULATE STANDARD DEVIATION OF RESIDUALS
C
STDEV=0.0D0
DO 560 K=1,NOBS
STDEV = MATVCV(K) * MATVCV(K) + STDEV
560 CONTINUE
STDEV = DSQRT(STDEV/(NOBS-1))
WRITE (I0UT,570) STDEV
570 FORMAT (/,30X,’STD DEV OF RESIDUALS ="F5.3)
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C CALCULATE APOST VARIANCE VTV/n-r
C
APOST=0.0
VAR=0.0
IF (NOBS.EQ.3) GO TO 625
DO 600 N=1,NOBS
APOST=MATVCV(N) * MATVCV(N) + APOST
600 CONTINUE
VAR = APOST/(NOBS-3)
C
625 CONTINUE
WRITE (IOUT,650) NOBS, VAR
650 FORMAT (/,5X,NUMBER OF COMMON POINTS IS ’,12,4X’APOST’,
#VARIANCE =",F10.7) ’
C
C CALCULATE MAXIMUN GRADIENT OF PLANE AND DIRECTION
C
GRAD=DSQRT(MATRESULT(1)*MATRESULT(1)+MATRESULT(2)*
#MATRESULT(2))
GRAD=GRAD*1000000.0D0
DIRN=DATAN(DABS(MATRESULT(1)MATRESULT(2)))
IF (MATRESULT().LT.0.0) GO TO 750
IF (MATRESULT(2).LT.0.0) GO TO 700
GO TO 850
700 DIRN=PI-DIRN
GO TO 850
750 IF (MATRESULT(2).LT.0.0) GO TO 800
DIRN=2*PI-DIRN
GO TO 850
800 DIRN=PI+DIRN
850 CONTINUE
CALL RAD2DEG (DIRN, IDEG, IMIN, ASEC)
WRITE (I0UT,900) GRAD,IDEG,IMIN,ASEC
900 FORMAT (5X’MAXIMUM SLOPE =",F7.2,’ mm/km’,4X,DIRECTION’,
#0F MAX SLOPE =,14,13,F5.1)
C
C CALCULATE DEFLECTION OF THE VERTICAL
C
DEFLNE = MATRESULT(1)/PI*180.0D0*3600.0D0
DEFLNN = MATRESULT(2)/PI*180.0D0*3600.0D0
DEFLNE = -DEFLNE
DEFLNN = -DEFLNN
WRITE (I0UT,950) DEFLNE, DEFLNN
950 FORMAT (5X,DEFLECTIONS OF THE VERTICAL Eta(E) =,
#F6.2,"" 3X,’Xi(N) =",F6.2,"" //)
C
C CALCULATE AHD HEIGHT FOR INTERPOLATED POINTS
C
IF (NUMB.EQ.0) GO TO 1600
WRITE (I0UT,1000)
1000 FORMAT (5X,TABLE OF INTERPOLATED POINTS TO AHD’/)
WRITE (I0UT,1050)
1050 FORMAT (5X,STATION ID’,4X,EASTING,4X,’NORTHING’,3X,’AHD HEIGHT’,)
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C
READ (IN,1100) END
1100 FORMAT(A3)
1150 READ (IN,1200,END=1300) SNAME,EAST ,NORTH,GPSHGT
1200 FORMAT (A10,F10.3,F12.3,F8.3)
AHD =
GPSHGT-(EAST*MATRESULT(1)+NORTH*MATRESULT(2)+ MATRESULT(3))
WRITE (I0UT,1250) SNAME, EAST, NORTH, AHD
1250 FORMAT (5X,A10,2X,F10.3,F13.3,F9.3)
GO TO 1150
1300 CONTINUE
WRITE (I0UT,1350) NUMB
1350 FORMAT (/,5X;NUMBER OF INTERPOLATED POINTS IS ’,12)

C

C CLOSE OUTPUT FILE

C
ENDFILE IOUT
CLOSE (I0UT,STATUS="KEEP’)
CLOSE (IN,STATUS="KEEP’)
GO TO 1600

1375 WRITE (ISCRN,1380)

1380 FORMAT (8X,’ *** ERROR *** Input file wrong format.’)
STOP

1400 WRITE (ISCRN,1450)

1450 FORMAT (8%, *** WARNING *** Less than 3 control points. ’
#Unable to solve for plane.”)
STOP

1500 WRITE (ISCRN,1550)

1550 FORMAT (12X, *** WARNING *** Input file does not exist.”)
STOP

1600 WRITE (ISCRN,1650) FILEOUT

1650 FORMAT (/////,12X,’ Program finished successfully’,

#’....0utput file is °,A20,/////)

END

SUBROUTINE INVERT(A,D,M)
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 A(M,M),D(M)
C  INTEGER*2 M
C
C INVERTS A SQUARE MATRIX
C (MAT A)INV = MATA (M COLS, M ROWS)
C D IS A MATRIX DEFINED AT BEGINNING OF PROGRAM - TEMPORARY
C
C SCALE MATRIX TO AVOID OVERFLOW AND IMPROVE CONDITION
C NUMBER THE SAME WAY AS CALCULATING CORRELATION MATRIX
C STORE SCALE FACTORS (SQ ROOT OF DIAGONAL) IN D.
C
DO 101=1,M
D(I) = DSQRT(A(LI))
IF (DABS(D(I)).LT.1.0D-18) GO TO 100
10  CONTINUE
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C

C THIS TESTS IF ONE OF THE DIAGONAL TERMS IS ZERO,

C IF IT IS, MATRIX CANNOT BE INVERTED AND PROGRAM STOPS
C

C REDUCE A
DO 30 I=1,M
DO 20 J=1,M
AJDH=A,J/DAYDJ)
20 CONTINUE
30 CONTINUE
C
DO 701=1,M
F=A(LI)
A(I,D)=1.0D0
DO 40 J=1.M
AQD=AJ)F
40 CONTINUE
DO 60 J=1,M
IF(LEQ.J) GO TO 60
F=AWJ,D)
A(J,1)=0.0D0
DO 50 K=1,M
AW, K)=AWJ,K)-A(LK)*F
50 CONTINUE
60 CONTINUE
70  CONTINUE
C
C RESCALE TO GIVE TRUE INVERSE
C
DO 90 I=1,M
DO 80 J=1,M
AQN=AIJ/DA/DW)
80 CONTINUE
90 CONTINUE
RETURN
C

100 WRITE(*,110) LF

110 FORMAT( FATAL ERROR. DIAGONAL TERM ’,12;’ EQUALS ’,D10.3)
STOP 'STOPPED IN INVERT
END

SUBROUTINE TRANSPOSE (RMATB,IR,IC,RMATA)
C TO TRANSPOSE MATRIX IN SITU
C LOCAL VARIABLES

INTEGER*2 L,J

INTEGER*2 IR,IC

REAL*8 RMATB(R,IC)

REAL*8 RMATA(IC,IR)

DO20I=1,IR

DO10J=1,IC
RMATA(J,I) = RMATB(,J)

- 146 -



10 CONTINUE
20 CONTINUE
END

SUBROUTINE MATMUL (RMATB,RMATC,IRB,ICB,ICC,RMATA)
C MULTIPLICATION OF TWO MATRICES
C
C LOCAL VARIABLES

INTEGER*2 I,J.K

INTEGER*2 IRB,ICB,ICC

REAL*8 RMATB(IRB,ICB), RMATC(ICB,ICC)

REAL*8 RMATA(IRB,ICC)

DO301=1,IRB
DO 20J =1,ICB
DO10K=1,ICC
RMATA(I,K)=RMATA(ILK)+(RMATB(I,J)*RMATC(J ,K))
10 CONTINUE

20 CONTINUE

30 CONTINUE
END

C

SUBROUTINE MATSUB (RMATB,RMATC,IR,IC,RMATA)
C SUBTRACTING TWO MATRICES; MATB - MATC = MATA
C
C LOCAL VARIABLES

INTEGER*2 1J

INTEGER*2 IR,IC

REAL*8 RMATB(IR,IC),RMATC(IR,IC)

REAL*8 RMATA(IR,IC)

C
DO 20I=1,IR
DO10J=1,IC
RMATA(I,J) = RMATB(L,J) - RMATC(,J)
10 CONTINUE
20 CONTINUE
END
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SUBROUTINE RAD2DEG (RAD,IDECDEG,IMIN,SEC)
C
C CONVERTS RADIANS TO DEG, MINS AND SECONDS
C

IMPLICIT REAL*8 (A-H,0-Z)

IMPLICIT INTEGER*2 (I-N)

REAL*8 MIN

PI=DACOS(-1.0D0)
FACT=180.0D0/PI

DDMS=RAD*FACT
DECDEG=DINT(DDMS)
MIN=DABS((DDMS-DECDEG)*60.0D0)
SEC=DABS((MIN-DINT(MIN))*60.0D0)
IDECDEG=INT(DECDEG)
IMIN=INT(MIN)
C
C TEST IF DEGREES ARE GREATER THAN 360 AND
C MINS AND SECS ARE NOT GREATER 60.

C
100 IF (IDECDEG.GT.360) THEN
IDECDEG=IDECDEG-360
GOTO 100
ENDIF

IF (SEC.GE.59.99995) THEN
IMIN=IMIN+1
SEC=SEC-60.0
ENDIF
IF (IMIN.GE.60) THEN
IF (IDECDEG.LT.0) THEN
IDECDEG=IDECDEG-1
IMIN=IMIN-60

ELSE
IDECDEG=IDECDEG+1
IMIN=IMIN-60

ENDIF

ENDIF

RETURN

END
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14 APPENDIX E

WESTERN AUSTRALIA

FIT AN OVERDETERMINED LEAST SQUARES PLANE TO A GPS
HEIGHT NETWORK
GENERAL EQUATION OF PLANE IS N=Ae +Bn+C

CO-EFFICIENT A = .000020386494
CO-EFFICIENT B = .000012325885

CO-EFFICIENT C =-114.6127

NORTHING

STATION ID EASTING

MRA 8 465374.677
NMF 705 480325.935
HD 9 498328.152

KARRABEIN 489934.988
NTH TOOD 457872.171

6588373.432
6586611.166
6569903.015
6512086.189
6520516.113

N RESIDUAL
-23.916 -.002
-23.653 +.018
-23.454 -.020
-24.370 +.013
-24.898 -.009

NUMBER OF COMMON POINTS IS 5

MAXIMUM SLOPE = 23.82 mm/km

DEFLECTIONS OF THE VERTICAL

STD DEV OF RESIDUALS = .016

APOST VARIANCE = .0004831

DIRECTION OF MAX SLOPE = 58 50 32.7

Eta(E) = -4.21" Xi(N) = -2.54"

TABLE OF INTERPOLATED POINTS TO AHD

STATION ID EASTING

PTH135 464042.484
PTH136 464715.309
HD 8 479079.076
HD10 493188.937
BERRING 492086.875

NUMBER OF INTERPOLATED POINTS IS 5

NORTHING

6567094.202
6553850.296
6570815.757
65656913.253
6539685.494
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AHD HEIGHT

338.182
297.371
338.057
365.369
313.161



15 APPENDIX F

SOUTH AUSTRALIA

FIT AN OVERDETERMINED LEAST SQUARES PLANE TO A GPS
HEIGHT NETWORK

GENERAL EQUATION OF PLANE IS N=Ae+Bn+C

CO-EFFICIENT A =
CO-EFFICIENT B =

CO-EFFICIENT C = -109.5566

STATION ID EASTING

350933.713
359601.401
3561548.191
3563119.811
351261.393
377732.183
373541.377
405853.801
392905.713
376432.914
393722.553
384278.589
404063.751
405885.101
450245.358
424876.333
413996.565
452818.535
421331.388
435708.168
410537.644
419042.576
453551.044

.000010727929
.000017652649
NORTHING N RESIDUAL
6049643.037 0.100 +.900
6109592.523 2.002 +.150
6118735.766 2.288 -.061
6086039.374 1.222 +.444
6105772.674 1.794 +.201
6051101.604 0.629 +.685
6106252.061 2.382 -.140
6092712.461 2.247 +.103
6113296.301 2.701 -127
6132872.951 3.204 -.461
6129664.534 3.171 -.299
6173440.791 4.120 -.577
6162462.998 3.845 -.283
6202537.989 4.690 -401
6070711.595 2.680 -.242
6070136.354 2.049 +.106
6039363.762 1.502 -.007
6125376.911 3.471 -.041
6082164.211 2.239 +.091
6110216.514 3.086 -107
6116156.053 3.118 -.322
6128225.918 3.160 -.042
6151336.215 3.836 +.060
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STATION ID EASTING

64
65
66

NUMBER OF COMMON POINTS IS 45
MAXIMUM SLOPE =
DEFLECTIONS OF THE VERTICAL

429202.612
451493.035
409761.311
409753.488
442196.836
435132.623
420503.756
487686.521
470543.871
469524.171
460041.880
499064.566
484695.946
479389.802
480737.852
471218.187
471191.792
458049.951
496651.694
490132.330
494836.525
502028.340

20.66 mm/km

NORTHING

6149317.908
6178406.164
6128663.160
6184365.247
6194281.931
6184290.721
6199344.298
6055652.682
6085825.012
6116924.565
6097347.171
6150310.824
6142059.611
6126742.796
6179087.742
6152588.033
6171904.223

6161344.510°

6172877.578
6206446.964
6196093.975
6115214.025

N

3.686
4.141
3.108
4.491
4.412
4.233
4.733
3.488
3.271
3.578
3.175
4.210
3.878
3.769
3.942
3.896
4.107
3.950
4.470
4.769
4.776
4.147

RESIDUAL

-.086
+.211
-.082
-.481
+.121
+.048
-.344
-.914
-.349
-118
-.162
+.157
+.189
-.030
+.736
+.212
+.342
+171
+.269
+.493
+.353
-.368

STD DEV OF RESIDUALS = .352
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APOST VARIANCE = ,1299424
DIRECTION OF MAX SLOPE = 3117 16.9
Eta(E) = -2.21" Xi(N) = -3.64"
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