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ABSTRACT

The theory of mathematical filters has mainly been developed by statisticians
and electrical engineers. The description of the filter type most commonly
used presently for scientific and engineering applications is by KALMAN
(1960). It took about ten years for the importance of those principles to be
recognised and applied by the surveying community, but at present Kalman
filtering is widely used for positioning, especially for hydrographic surveys.
Kalman filtering is treated here as an extension of the least squares estimation
methods traditionally used by surveyors, but where a kinematic model is
added to the measurement model. The kinematic models relevant for
navigation using the Global Positioning System (GPS) are classified
systematically, and the importance of Kalman filtering in different aspects of
GPS data processing is outlined. Refinements such as smoothing and the
capability of including constraints on the adjusted parameters are discussed,
and new algorithms are proposed for this purpose.

The software package DYNAMO, recently developed at the School of
Surveying, University of New South Wales, incorporates Kalman filter and
optimal smoother algorithms and is capable of accomodating different choices
of kinematic models for relative kinematic positioning using GPS. As well as
coordinate and receiver clock parameters for any number of stationary and
moving receivers, one bias parameter per satellite can be included in the
solution. In such a set-up, the differential corrections in either the
measurement or solution domain can be computed and applied, by merely
changing the filter "settings". Indeed, these two approaches are particular
applications of the more general implementation that allows for simultaneous
filtering in both domains, using a single filter. This flexibility sets DYNAMO
apart from other differential kinematic programs. Examples highlight the
dangers inherent in the filtering process, if the models are improperly defined.

DYNAMO has been tested on a number of GPS datasets. Differential GPS
positioning results using pseudo-range and phase-rate data collected in
various experiments, and processed using different model options, are
discussed. The improvement in the quality obtained by filtering is
demonstrated, and the high reliability of filtering and smoothing techniques, as
compared with other data processing techniques, is shown.
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NOTATION

As far as possible, the notation is in line with that used in most textbooks on
least squares procedures. However, due to the larger number of estimation
steps in filter/smoother techniques than in classical least squares, a clear
distinction between various quantities, such as the "residuals", is therefore
necessary. This is accomplished by a consistent use of centred superscripts,
for both parameters and residuals, to denote the stage of the computations.

The following rules for style apply throughout the text:

General: lowercase normal: s scalar
lowercase bold: 3 vector
uppercase bold: S matrix

Some important symbols used consistently throughout the text are:

4 vector of measurements

X state vector, that is, vector of parameters

initial or previous state vector (with epoch subscript)
increment of the state vector

vector of residuals

approximate state vector, respective residuals

predicted state vector, respective residuals

adjusted (filtered) state vector, respective residuals
smoothed state vector, respective residuals

covariance matrix of the measurements

weight matrix of the measurements (subscript I is omitted)
covariance matrix of the predicted state vector

weight matrix of the predicted state vector

covariance between the measurements and the filtered state vector

Xl Xo < O X
- - x o
< <o

» X>
<» <>

0TV O T PO
L I Y1 -~
b3 ~

-~
x

>

design matrix for parametric adjustment

design matrix for condition adjustment

transition matrix

vector of misclosures or system noise (depending on context)
Kalman gain matrix

A E ST >
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1. INTRODUCTION
1.1.  SURVEYORS, SATELLITES AND FILTERS

The Global Positioning System (GPS) has emerged as a revolutionary satellite
range measurement and positioning technology, and its impact on the
surveying profession is already considerable. More importantly, the advent of
this new technique reflects the fundamental changes that our profession has
undergone in the last few decades, which are twofold:

+ The times of Heinrich Wild are over and surveyors no longer design their
own instruments.

+ As instruments become more complex, their designers strive to make
their operation easier, and nowadays collecting accurate measurements
does not require skilled operators. Using a GPS receiver in the field
allows one the time to ponder this implication!

In short, the survey operation is losing its mystique. The decline in the image
of the surveying profession is particularly obvious in Australia. Whereas the
early surveyors played a leading role in the exploration and opening up of the
country, they now form a tightly structured and rather conservative corporation
of professionals. However, the intrusion of other professionals, skilled and
unskilled, into the positioning professions is in line with the modernisation of
our society, and the situation is no different in the case of many other technical
professions. Trying to set back the clock by protecting a specific part of our
trade, for example cadastral surveying or geodesy, is a negative attitude.
More reasonable is the acceptance of the challenge offered by the new
technology: foster our strengths and search for new applications of our
measurement and analysis skills.

GPS has the potential to irrevocably change the surveying profession. While it
is tempting to restrict the application of GPS to geodetic problems, it is
preferable to widen our expertise to areas that could benefit from a strong
background in estimation theory. One such application is the positioning of
moving objects, also called "kinematic" positioning. In sea navigation for
example, the variety of instrumentation available has increased dramatically in
recent times. Generally, the integration of these sensors and the interpretation



of the results still relies on sub-optimal procedures, such as the arbitrary
selection of results from a preferred or "master" sensor, combined with graphic
extra- or interpolation. At the School of Surveying, University of New South
Wales (UNSW), the first contribution in this field was by CHISHOLM (1987)
with a study of the integration of GPS into hydrographic survey operations.
Although the navigator's experience is invaluable, the complexity of modern
navigation systems is now such that an optimal combination of data from
different instrument sensors requires elaborate computational support.
Furthermore, although an electronical engineer is required to design GPS
receiver hardware, a surveyor is certainly more familiar with the processing of
heterogeneous data than a traditional navigator.

The aim of this thesis is therefore to present the estimation
techniques required for kinematic positioning as an extension of
the traditional geodetic adjustment methods. The emphasis is on
presenting the concepts, an overview and discussion of existing procedures,
as well as the development of some new algorithms. Topics from "signal
processing" (traditionally associated with electrical engineering) are also
included. Of course, mathematical expressions are necessary to illustrate the
words, and a special effort has been made to use consistent notation.

Whilst GPS has been the main motivation for this work, because this
technology presents definite advantages for kinematic positioning, it is merely
the sensor systematically used to illustrate the concepts and apply the
estimation techniques presented. Very little background information regarding
GPS is presented here, and only characteristics of the system relevant to the
design of the estimation algorithms are discussed. These will mainly be
problems of time and clocks, rarely encountered in traditional surveying. If the
reader is not acquainted with GPS, an excellent background can be found in
previous publications of the School of Surveying, UNSW, for example KING et
al (1987), ECKELS (1987), CHISHOLM (1987) and GRANT (1988).

The present work is intended for the user of GPS, not the orbit determination
specialist. The position of the GPS satellites is taken as error free at all times,
and orbital adjustment is not attempted. The motion of interest in this thesis is
that of the receiver(s).



1.2. PREDICTABLE MOTION
1.2.1. Static and Kinematic Modes

In the purely random kinematic mode, each determination of the position is
independent of the others. Assuming that all other factors influencing the
positioning system are constant, the precision of a "fix" is also constant. On the
other hand, in the static mode, each new measurement contributes to the
determination of the same position parameters. Extending an observation
~ session makes more data available for the estimation of the same number of
parameters, hence improving their precision. This behaviour is illustrated in
Figure 1.1.

mean error

'

random kinematic

N,
0
.b
.

-----
....................................

static

time

Figure 1.1: Precision of Positioning under Various Conditions

However, the difference in the behaviour of the static and kinematic solutions
is not due to the movement itself, but to the a priori knowledge of the
movement. If we could predict the movement of a vehicle as well as that of a
survey mark, the positions at the different measurement epochs could be
perfectly related to one another and the precision obtainable would approach
that of the static case. This applies, for example, to an object moving along a
known trajectory with known velocity. Therefore, it is the predictability of the
object's motion that permits the link between static mode (surveying) and well-
behaved kinematic mode (most navigation) to be established. In addition, this
predictability of the motion makes it an ideal candidate for filter estimation



methods. The resultant improvement in the quality of the position
determination can be represented by the dashed line in Figure 1.1.

1.2.2. Role of the Kinematic Model

Basically, the kinematic model is the mathematical expression for the
predictability of the motion. This predictability is another way of saying that the
position parameters (the coordinates) are not entirely random, but have values
that are, within certain bounds, related to their values at an earlier epoch. This
can be illustrated by considering a vehicle travelling along a straight line. After
a couple of positions have been determined, future positions can be predicted
by extrapolation. Of course, the uncertainty associated with this prediction
grows with time. Whilst a position predicted a few seconds ahead may be
more accurate than a determination based solely on new measurements, this
will certainly not be the case if positions are predicted over some hours.
Therefore, the kinematic model comprises two components:

+ the functional part -- the prediction of a position based on previous
results,

+ the stochastic part -- the estimation of the precision associated with the
predicted position, depending on influences not, or imperfectly,
accounted for in the functional part.

Thus, the outcome of the kinematic model takes the form of a direct
measurement of some or all of the position parameters, with associated
precision estimates. The aim of a filter is to optimally combine these "pseudo-
measurements"” with new actual measurements, or in other words, combine
the position predicted via the kinematic model with a new position
determination derived from subsequent measurements.

Often the underlying cause of the system movement is not important, only the
resultant trajectory. In these circumstances, it is therefore more appropriate to
refer to a kinematic process rather than a dynamic process. Systems in
which parameters change with time will be referred to as kinematic processes
or systems, and the relation between parameter estimates at successive
epochs will be described by a kinematic model. Unfortunately, the term
"dynamic model" is often (mis-)used to describe this relation, even though the

4



model may not explicitly involve the forces acting on the system and causing
the motion.

1.2.3. Types of Kinematic Models
There are two positioning modes involving motion:
(1) positions are required only at selected discrete locations,

(2) a continuous trajectory is desired. Generally, discrete positions are
also computed, but their location on the trajectory is arbitrary, as long as
they are distributed in such a manner that reliable inter- or extrapolation
is possible.

In the first case, the path between the locations is irrelevant, and no modelling
of the trajectory is therefore attempted. For example, the integration of the
accelerations measured by (perfect) inertial sensors (INS) along different
paths between two stations yields the same difference in coordinates. Indeed,
the link between the two locations is established exclusively by the
measurements. This positioning mode is gaining in importance with the
advent of GPS, and many new terms are used to designate it: intermittent
positioning, semi-kinematic positioning, "stop and go positioning”, etc. More
details will be given in Section 1.5.

Two classes of approaches for modelling a trajectory can be distinguished,
whether emphasis is:

(a) on functional modelling -- whereby functions of time are associated
with the trajectory. Instead of positions, parameters of the functions are
estimated from which positions at any time can be derived. Polynomials
are commonly used but there are many other possibilities. For example,
a sinusoidal function can be defined by estimating its amplitude, period
and initial phase.

(b) on stochastic modelling -- whereby the uncertainty in extrapolated
positions is defined by a suitable "noise" affecting the motion. No
predefined analytical form of the trajectory is assumed.



In fact, both approaches involve a functional and a stochastic model. In
functional modelling, the stochastic properties of a predicted position are
derived from the precision of the estimated parameters (obtained, for example,
from previous measurements). For stochastic modelling, a position for which
the assumed uncertainty applies must be computed as a function of previous
position estimates.

The choice of stochastic modelling as the preferred technique for this research
will be justified in Section 2.3.

1.3. POSITIONING USING GPS
1.3.1. Essential Features of the System

GPS range measurements are made using coded time signals transmitted by
the satellites. Each GPS satellite transmits a unique signal on two L-band
frequencies: L1 at 1575 MHz and L2 at 1227 MHz (equivalent to wavelengths
of approximately 19 and 24cm respectively). The satellite signals consist of
the L-band carrier waves modulated with a "Standard" or S code (also referred
to as Coarse Acquisition or C/A code), a "Precise” or P code and a Navigation
Message containing, amongst other things, the coordinates of the satellites as
functions of time: the so-called "Broadcast Ephemeris". The S code is
intended mainly for civilian use and yields a range measurement precision of
about 10m. Once the GPS satellite constellation is fully implemented, the
system may be intentionally degraded, according to the selective
availability policy of the U.S. Department of Defense. However, it is
expected that a position precision of 100m will be guaranteed (see, for
example, TALBOT, 1988). The P code is intended for military and selected
civilian use only, and yields a measurement precision of about 1m.

1.3.2. Types of GPS Observables
Three principal types of observables can be used for GPS positioning:
+ The pseudo-range -- This measurement is made with the aid of the
pseudo-random noise codes modulated on the L-band carriers. The

code of most interest to civilian users is the S code (frequency of 1.023
MHz) modulated on the L1 carrier. The code allows the time of



transmission of a signal to be unambiguously determined by the receiver,
and the offset with respect to the reception time measured by the receiver
gives a measure of the transit time. The range is obtained by scaling the
transit time into distance by the speed of light. However, the local
receiver time is not perfectly synchronised with the time kept by the
satellites (and the transmitted code), and the range derived from the
transit time measurement is known as "pseudo-range" because it
contains the receiver clock offset from GPS satellite time (a constant for
all ranges measured simultaneously to all tracked satellites). The term
"code measurement" is also frequently used for the pseudo-range.

+ the Doppler count is the difference in the number of cycles of the carrier
wave between the received signal and a locally generated signal with the
same nominal frequency, as measured over a short time interval (usually
less than 1sec). The phase-rate is the ratio of the Doppler count and
the time interval over which it is accumulated.

D(t)

other biases

other biases

Figure 1.2: Integrated Carrier Phase and Cycle Ambiguity

+ the carrier phase (or carrier beat phase, or integrated Doppler count) is
the difference in phase of the carrier between the received signal and the
locally generated signal, measured continuously over a longer period
(5min to 3hrs). The full number of cycles is accumulated, but the range is
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ambiguous: as the carrier phase measurement is only possible within
one wavelength, the initial number of whole wavelengths in the satellite -
receiver range, the so-called (integer) cycle ambiguity, is not known.
Therefore, the carrier phase gives information about the change in range,
and not the range itself. This is illustrated in Figure 1.2, where ®(t) is the
carrier phase measured at time t, t, is the initial epoch and n is the

cycle ambiguity term.

A more detailed description of the GPS observables is given in ECKELS
(1987) and GRANT (1988). The modelling of GPS observables is affected by
a number of biases. The source and the mathematical nature of these biases
is briefly discussed here in order to highlight the constraints that they may
impact on observation modelling. Three classes of GPS biases can be
identified.

1)

Satellite biases; common to all observables involving that satellite at
a particular epoch:

+ satellite clock offset -- caused by instabilities of the onboard
oscillator,

* satellite position error -- due to erroneous orbit parameters in the
Broadcast Ephemeris,

+ degradation of the satellite operation -- either accidental or
intentional.

Site biases; common to all observables involving that site at a
particular epoch:

* receiver clock offset -- caused by instabilities of the local receiver
oscillator,
* site position error -- coordinates fixed at erroneous values.

Range biases; the most difficult to model as they are only present in
observables involving a particular satellite - site pair:

* atmospheric delay -- caused by the ionosphere and the
troposphere,
« multipath -- signal incoming by an indirect path.

8



These error sources do not affect the different GPS observables in the same
manner. For the carrier phase only, two types of range biases must also be
considered:

» the cycle ambiguity -- constant over a session,
+ cycle slips -- due to occasional losses of lock on the satellite.

A large number of parameters would be required to fully model all these
biases, or alternatively, special processing procedures need to be developed
to eliminate or minimise some of them (see GRANT et al, 1989).

1.3.3. Accuracy of GPS Observables

Table 1.1 shows the effect of various error sources on pseudo-ranges. Many
of these biases are systematic errors, and most of their sources are associated
with the satellites. For short GPS receiver separations, some range biases,
such as those due to atmospheric delay, equally affect the measurements
recorded at two close sites. Therefore, the difference between a pair of site
positions is significantly more accurate than a single site position. This is the
fundamental principle underlying Differential GPS (DGPS) techniques. With
one receiving antenna placed at a known location, it is possible to compute
coordinate or range corrections valid for any other site in the vicinity. DGPS is
the standard method used to reduce the effect of unmodelled error sources
and can be used with any type of measurement. For longer baselines
however, refinements in the mathematical modelling of different biases may
become essential, as shown in the two right columns in Table 1.1.

The carrier phase is affected by the same sources of systematic errors, though
not always in the same manner, and the benefits of DGPS also apply.
However, the discussion of the respective characteristics of the pseudo-range
and carrier phase observables is more involved.

The pseudo-range is strongly affected by multipath, especially in a highly
reflective environment. EVANS (1986) reports that errors caused by multipath
can increase from about 1m (rms) in a desert-type location to over 4m (rms) for
a rooftop or shipboard installation. On the other hand, losses of lock do not
reduce the geometric strength of previous or subsequent measurements. The



noise level in the measurement is a limitation on the precision at any time, but
an unambiguous range can be derived whenever the coded message is
received, without respect to other measurements. This makes the position
information gained through pseudo-ranges reliable, unless the satellite
constellation geometry is poor or the system is degraded.

Table 1.1: User Equivalent Range Errors (UERE). (from CHEZELLES, 1988)

T
SEGMENT | ERROR ERROR | ERROR DIFF. MODE
SOURCE | SOURCE S-CODE |P-CODE P-CODE
(1oym | (1o)m NEAR FAR
Clock & Nav Sub- 3.4 3.4 0 0
system Stability
SPACE Predictability of Space| 1.0 1.0 0 0
Vehicle Perturbations
Other 0.5 0.5 0 0
Ephemeris Prediction 4.2 4.2 0 0
CONTROL | Model Implementation
Other 0.5 0.5 0 0
lonospheric Delay 5.0-10 2.3 0 2.3
Compensation
Tropospheric Delay 2.0 2.0 0 2.0
Compensation
USER
Receiver Noise 7.5 1.5 2.1 2.1
and Resolution
Multipath 1.2 1.2 1.7 1.7
Other 0.5 0.5 0.5 0.5
16 UERE 10.8-13.9| 6.6 2.7 4.1

The carrier phase observation is far less subject to multipath and can be
measured much more precisely, to a few mm (rms), but is only useful if
accumulated over a certain time interval, so that the cycle ambiguity can be
estimated reliably. This problem, together with proposals for the determining
of appropriate durations of the tracking sessions, is discussed in MERMINOD
(1988) and the efficiency of these proposals is demonstrated in GRANT
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(1988). Losses of lock on the satellite do weaken the geometric significance of
all the data collected, unless the number of cycles lost can be recovered by
other means. However, this is only possible when the observables can be
modelled to a precision better than a wavelength of the carrier, 19 and 24cm
for the frequencies L1 and L2 respectively.

The problem is therefore: how to take advantage of the precision of
the carrier phase measurement yet minimising the problems of
cycle slips and ambiguity? The benefits of combining pseudo-range and
carrier phase measurements have long been recognised, for example by
JORGENSEN (1980), and HATCH (1982) proposed an algorithm to use the
synergistic properties of both types of observables. Basically, the pseudo-
ranges provide a rough, but reliable position, whilst the noise on the pseudo-
ranges is smoothed using the more stable carrier phases. The computed
positions may not be more accurate than pure pseudo-range solutions, but the
relation between positions at adjacent epochs is markedly improved. Over the
years, many refinements to this procedure have been proposed, for example
KLEUSBERG (1986), ABIDIN (1988), LOMMIS et al (1988). Obviously,
incorporating phase and phase-rate data can improve the quality of position
and velocity determinations, but there is still a lot of development effort
required before such techniques can be used for reliable real-time operations.

1.3.4. Modelling Requirements

Modelling is central to any estimation process, and the choice of a data
reduction technique is mainly influenced by the modelling complexity that can
be afforded. An increase in the quality of GPS positioning results can be
achieved in three principal ways:

1) Add other types of measurements -- This could be any range,
position, velocity, heading or pitch and roll information, from a variety of
sensors such as Inertial Navigation Systems (INS), gyro compass, ship's
log, shore-based range or phase measurements, etc. However, as
pointed out in Section 1.3.1, GPS provides several types of
measurements, and all these types should be used before considering
augmenting GPS with data from an other navigation sensor.
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Improve the modelling of the measurements -- The modelling of
systematic errors affecting GPS measurements is rather difficult, but
DGPS allows for a dramatic simplification, as most biases can be
accounted for without requiring any mathematical expression. For
example, the difference in simultaneous measurements involving one
satellite and two close sites is modelled, rather than each measurement
separately. For long baselines however, refinements in the modelling of
atmospheric delays and orbits may become necessary.

Improve the modelling of the parameters -- Some information
about the parameters can be obtained from sources other than the
measurements. Depending on the nature of this information, it can be
expressed as constraints on the parameters (for example when two
points maintain the same height at all times), and/or via a kinematic
model describing the behaviour of the parameters over time.

Very often several of these options must be resorted to. Some attempts have
been made to classify positioning processes according to their accuracy. As
the emphasis here'is on concepts, a strict classification is not proposed, but
two extreme, albeit classical, applications are considered:

(a)

Open ocean navigation; for the required accuracy of about 100m,

instantaneous single point positions using pseudo-ranges are sufficient,
and the carrier phase measurement need not be considered at all.

Geodetic positioning; for the centimetre accuracy desired, the pseudo-
ranges cannot make any significant contribution, except to produce initial

approximate positions for the phase adjustment. The modelling accuracy
required for cycle ambiguity resolution and cycle slip recovery, however,
entails two major limitations in the use of the carrier phase :

« The differential positioning mode is necessary for an accurate
measurement model,

 The static receiver mode is almost inevitable because it is the only

"motion” that can be both easily and accurately modelled (using
time-invariant position parameters).

12



These modelling constraints explain why the carrier phase has only played a
central role in GPS surveying, for which purpose special hardware, software
and processing strategies have been developed. On the other hand, the
operation of GPS as a navigation aid is very straightforward and largely
automatic. To summarise, the classical surveying and navigation applications
of GPS can be described in terms of 3 attributes, as shown in Figure 1.3.
These attributes are not necessarily exclusive. As discussed in Section 1.2.1,
there is a continuous graduation between random kinematic and static
positioning modes. Furthermore, a single point can be regarded as a
degenerate network. Finally, the use of the carrier phase does not preclude
that of the pseudo-range.

SURVEYING Static Network Carrier Phase

NAVIGATION Kinematic Single Point | Pseudo-range

Figure 1.3: Attributes of Surveying and Navigation Applications of GPS

For all applications that require an accuracy somewhere between (a) and (b),
such as for harbour navigation and geophysical exploration, neither of these
two well defined methods is suitable and an optimum integration of hardware,
special software and appropriate processing strategies is required in order to
satisfy the particular accuracy, reliability and operational demands. If we focus
our attention on those positioning applications requiring accuracies in the
range from the submetre to dekametre level -- whether involving a moving
GPS receiver or not -- we may pose the following questions:

+ Can we satisfy the accuracy requirements using a single GPS receiver?
Or do we require other receivers?

+ Can we satisfy the accuracy requirements with the processing of pseudo-
range data? Or must we process other data such as carrier phase

observations instead (or as well)?
» Do we require the results in real-time? Or can we post-process the data

after the data collection is completed?
* What is the benefit of combining data from other sources?

Depending on the problem at hand a number of techniques have been
developed, generally based on the differential positioning mode.
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1.4. DIFFERENTIAL GPS PROCEDURES

The rationale behind the differential or relative GPS positioning techniques
was briefly outlined in Section 1.3.3. In the case of differential kinematic GPS
the coordinates and velocities of one or more moving receiver are determined
relative to a fixed "reference" station (or stations) to a higher degree of
accuracy than the absolute position and velocity. There is a wide variety of
schemes for implementing differential kinematic GPS, but they can be
classified according to a number of attributes:

(1) Data type processed; and if more than one data type is used, the manner
of their combination.

(2) Processing strategy adopted; whether the data reduction is executed
within the GPS receiver itself (internal processing) or by an external
computer (external processing), and whether the processing is
distributed or centralised.

(38) Estimation algorithms used; whether the reliance on determining
changes in position (and velocity) is placed on the analysis of the
measurements alone, or on a priori knowledge of trajectory and other
parameters, or both as in a Kalman filter algorithm.

Each of these is discussed below in a little more detail.
1.4.1. Data Type

The various types of measurement data that can be used for differential
kinematic GPS have already been mentioned. In this section however, the
type of measurement data is not only relevant, but also the type of data used to
relate the measurements and/or positions obtained at different sites. All GPS
receivers measure pseudo-range. It is the ideal observable for determining
instantaneous position as 4 pseudo-range observations made simultaneously
to 4 satellites permit a navigation solution or "fix" to be obtained: the 3-
dimensional coordinates of the receiver and the receiver clock offset from GPS
time. There is no redundancy in such a solution, and the GPS receiver will
select (automatically or through operator command) the "best" 4 satellites for
the strongest solution. If 5 or more satellites are observed simultaneously it is
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possible to obtain an optimum solution using a least squares estimation
procedure. The major disadvantage of using pseudo-range data is that the
measurement precision (and hence the navigation fix) is relatively low for
absolute or single point positioning. Two techniques can be distinguished, in
which GPS pseudo-range data can be used for differential kinematic
positioning:

(1) Ground station reference schemes; they are essentially of two
varieties:

(1a) Ground Truth Method, also referred to as differential correction in

(1b)

the solution domain. A stationary GPS receiver monitors the errors
influencing the GPS navigation fix by comparing the stationary
receiver position estimate -- the so-called "navigation solution" -- to
the known, surveyed coordinates of the point, and informs GPS
(mobile) users of the discrepancies. As the navigation solution is
sensitive to the satellite constellation used to derive the position, the
mobile receiver which receives the correction information to be
applied to its own navigation fix should be observing the same
satellites as the reference station. When only 4 satellites are visible,
only one 4 satellite combination can be selected by users. With 5
satellites visible, 4 combinations are possible. However, with 8
satellites (the maximum expected to be visible) there are 70
combinations of 4 satellites, and 163 combinations of 4 or more
satellites ! As each combination corresponds to a set of at least 3
correction factors, a lot of data must be transmitted to ensure that the
mobile user can select the appropriate position corrections in any
case.

Corrected Pseudo-Range Method, sometimes referred to as
differential correction in the gbservation domain. Using the known
(surveyed) position of the reference station, ranges to the satellites
can be derived and the offset from the actually observed pseudo-
ranges can be computed. If 8 satellites are visible, the reference
receiver need only provide corrections to the 8 pseudo-ranges.
However, the mobile user's receiver must apply the corrections to
the measured pseudo-ranges before they are used to obtain a
navigation solution.
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Both implementations yield virtually identical navigation solutions. These
schemes are the most oft used techniques because they are relatively
simple to implement, and hence they are the key to real-time differential
Kinematic applications. The reference station need not even be aware of
the other users, as it merely broadcasts correction data. No "raw"
measurement data is transmitted either by the reference station or the
mobile stations.

Ground station methods rely on a data link between the reference station
and all mobile receivers wishing to take advantage of the correction
factors derived by the reference station.

(2) Simultaneous data processing schemes; these require that the
data be transmitted from one or more GPS receiver to a central location
(for example the ground reference station), where all the data can be
processed together. Such processing can be based on the data
differencing techniques used by surveyors to process carrier phase data,
or simpler schemes which nevertheless take into account the between-
station correlations present in the data from a number of simultaneously
operating receivers.

The latter schemes rely on some centralised processing of the observed
pseudo-range data. Therefore the "raw" measurements need to be transmitted
between receivers, if (near) real-time results are required. For example,
simultaneous processing allows several stations to be considered as
references and, indeed, ground station reference schemes can be regarded
as particular applications of the simultaneous data processing. The main
purpose of this thesis is to describe a simultaneous data processing scheme
based on a Kalman filter algorithm.

1.4.2. Processing Strategy

There are a number of processing strategies possible, each based on a
different combination of internal processing (within the GPS receiver) and
external processing, generally using a personal computer (PC). There is an
obvious trade-off between a differential kinematic positioning system based
exclusively on internal receiver processing (a capability provided by
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instrument manufacturers at an additional cost over and above the "basic"
GPS unit) and one which uses the GPS receiver(s) as sensors alone, and in
which the data is externally processed. The latter can also be relatively
expensive as it requires additional hardware and software. In the case of real-
time applications, there are further constraints on the processing strategy, and
a distributed processing system is preferable to a centralised one. The range
of possibilities is best illustrated with some examples:

(a)

Internal / Distributed / Real-time Processing System: Each
GPS receiver would have its own processing software. However,
because any external processing is to be avoided there would need to
be different software for the reference station, and for the mobile user
receivers. This processing strategy is closely associated with the
ground station reference schemes. Each of the mobile receivers must
be capable of decoding the received correction message, and
applying the corrections either before the navigation fix is computed
(for the observation domain correction scheme) or after the navigation
fix is computed (for the solution domain correction scheme). Note that
the transmitted signals may not be in synchronisation with the
computation cycle of the receivers, and a certain amount of
"intelligence” has to be built into the differential software.

External / Distributed / Real-time Processing System: This
would give equivalent performance to the scheme described above
except that the internal processing would not need to be of a
specialised nature. Off-the-shelf GPS receivers (which would be
expected to be cheaper than those specifically designed with a built-in
differential positioning capability) would be attached to PC's. The
differential corrections in either the measurement or solution domain
could be received by a device independent of the GPS receiver and
directly connected to the PC. Other configurations are possible, for
example, the reference station may have all its functions built into its
internal processor, whereas the mobile receivers may be of many
varieties each with their own peculiar approach to utilising the
transmitted correction information. Hence, the principal advantage of
external processing is the flexibility offered to the mobile user.
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(c) External / Centralised / Off-line Processing System: All
schemes that rely on carrier phase data only are of the off-line variety.
The data must be transmitted (or transported) to a central facility where
specialised software is used to derive the position (and velocity)
information well after data collection has been completed. When the
capability of transmitting quickly and efficiently the observations is
developed then real-time high precision kinematic positioning may
become a reality. However it is likely that the "package" (hardware
and software) will be expensive, and certainly not as "robust" as the
differential positioning techniques based on pseudo-range.
Approaches that take advantage of the synergy between pseudo-
range and carrier phase data show greater promise (see
KLEUSBERG, 1986; SEEBER et al, 1986; ABIDIN, 1988), due to their
lower sensitivity to cycle slips. In time such combined pseudo-range
and phase data techniques are likely to evolve into internal /
distributed / real-time systems.

The processing strategy developed in this thesis can be considered as
occupying a niche between the post-processed carrier phase methods and the
real-time pseudo-range data methods.

1.4.3. Estimation Algorithm

There is a wide range of algorithms applicable to derive the required position
and velocity information from the GPS measurements. Some simply select 4
simultaneously observed pseudo-ranges and solve the 4 equations for the 4
position unknowns (3 coordinates and the receiver clock offset) in a direct
analytical manner, then compute the velocity by dividing the change in
position by the time elapsed. When more than 4 satellites are observed, it
makes no sense to reject some measurements in order to avoid over-
determined systems of equations, as these can be elegantly solved using the
principle of least squares. When the precision requirements increase, the
modelling must also be improved, according to the principles presented in
Section 1.3.4. One such improvement is the use of the predictability of the
motion, expressed by a kinematic model, thus yielding information on the
parameters prior to the adjustment of the measurements. The class of least
squares estimation algorithms that make use of a priori information are
generally referred to as Bayesian Least Squares, and Kalman filters when
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the processing is sequential (MERMINOD & RIZOS, 1988). Most GPS
receivers in fact use a Kalman filter to obtain the standard (single point)
navigation solution. Such estimation techniques have a number of
advantages:

+ data from different sensors can be easily incorporated in a rigorous
mannetr,

+ they permit interpolation of position (and velocity) to times other than the
discrete observation epochs,

+ they can be "tuned" to a particular expected motion,

» they are optimal (in the least squares sense).

As the Kalman filter is a sequential data processor, the results obtained are
based only on the previous observations. However, at the completion of data
collection, it is possible to go back (if the data has been stored) and process
the data sequentially back in time, using the principles of optimal
smoothing. The development of a Kaiman filter / smoother algorithm suitable
for differential GPS is the basic aim of this thesis project.

1.4.4. Classes of Differential Kinematic GPS Procedures
A classification of the differential techniques can now be attempted:

(1) Differential Navigation Techniques: These are basically the
pseudo-range techniques, both the solution domain and observation
domain correction approaches, but include the new techniques of
combined pseudo-range and carrier phase processing (KLEUSBERG,
1986), in which the carrier phase data is often used only to smooth the
ranges prior to their use. They all rely on distributed processing, each
receiver doing a considerable amount of its own processing. Although
the internal processing may be relatively sophisticated (using, for
example, a Kalman filter), the differential component is simple, consisting
only of the transmission of correction factors. It is therefore comparatively
robust, and ideal for real-time applications.

(2) Carrier Phase Processing Techniques: These techniques rely on
centralised external processing. The data must be transmitted or
transported to a central facility, and preprocessed to identify, and if
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possible, repair cycle slips. The results are potentially of a very high
accuracy, but are only available post-mission (REMONDI, 1985; MADER,
1986). No Kalman filtering is normally carried out, although the cycle slip
detection and repair may make use of these techniques, see Section 1.5.

(3) Differential Kalman Filter Technique: In this approach there is only
one Kalman filter (and smoother) and all the data is processed together.
The data may be any of the GPS observables, as well as any other
sensor data such as INS, heading, etc. As in the techniques above, the
data must be transmitted or transported to a central facility for processing.
It is therefore not very suitable for real-time applications. It is however the
most "general" of the differential processing techniques in that all other
techniques can be considered as being special cases, or simplifications,
of the Differential Kalman Filter Technique.

1.5. FILTERING AND GPS
1.5.1. Expected Benefits

Navigation, mainly sea and air, is the traditional field of application of Kalman
filtering, and GPS can simply be regarded as a new sensor. The present trend
includes a development of techniques for navigation on land. The benefit of
incorporating a kinematic model in the estimation procedure to account for the
predictability of the motion can be illustrated by comparing static pseudo-
range tracking sessions of various durations. The precision of position fixing
using GPS, either in the static or kinematic mode, undergoes strong variations
with time. This is depicted in Figure 1.4, where the future constellation of 18
GPS satellites is considered over a 12 hour period for Wellington, New
Zealand. BDOPS3 is an extension of the concept of PDOP (Position Dilution Of
Precision) to an observation session in the static case (MERMINOD, 1988). In
other words, PDOP is nothing more than an instantaneous BDOP3. The value
of these indicators of precision is the ratio between the precision of the
position and that of the pseudo-range measurements. In respect of Figure 1.4,
the filtered solution may be compared with the results of a short static
observation session (say 3 min in length). That is, we may substitute a PDOP
precision indicator for the BDOP3 indicator, and the solution is smoothed
through geometric trouble spots while information and strength are added
throughout.
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Figure 1.4: Improvement of the Positioning Precision with
an Extension of the Tracking Session

1.5.2. Possible Applications

Filtering algorithms have been used long before the emergence of GPS. They
have first been applied to the guidance of spacecrafts in the early 60's, see for
example BUCY & JOSEPH (1968). The merits of Kalman filtering techniques
for marine navigation have also long been recognised (DOVE, 1977). In this
type of applications, a kinematic model for the trajectory of the vehicle is
incorporated (that is, filtering occurs in the solution domain). GPS data is well
suited for this type of processing and, as additional satellites are launched, will
tend to become the major input for position determination. Apart from these
applications, Kalman filtering techniques have been used for many

investigations involving GPS, including:

* Range processing

* Orbit computation

¢ Ambiguity resolution
* Integrity monitoring
+ Cycle slip editing

These applications are discussed briefly below.
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Range processing: The range from a GPS satellite can be predicted, as
long as the movement of both the satellite and the receiver can be modelled.
In this case, it is possible to apply the filter to the residuals of the range
measurements. The filtered ranges can then be used to compute the position
of the receiver through a resection. This procedure is sometimes referred to as
filtering in the observation domain.

Orbit computation: Kalman 'filtering is a technique used by the GPS Control
Segment for the computation of the orbital elements and satellite clock
corrections contained in the Navigation Message. The procedure is outlined
by RUSSELL & SCHAIBLY (1980). At the end of each day, the tracking data
acquired by the GPS Monitor Stations are combined with predicted orbital
elements in a Kalman filter, in order to provide current estimates of the satellite
positions and velocities. In other words, new tracking data are used to update
the orbit estimation. After this update, orbits are extrapolated in the future and
the orbital information transmitted by the satellite is based on curve fits to the
extrapolated ephemerides. Although single-satellite orbit fits were initially
used, SWIFT (1985) describes a multi-satellite filter/smoother implementation.

The use of GPS has also been advocated for tracking satellites other than
those of the GPS (but equipped with a GPS receiver), and Kalman filtering has
been investigated as an alternative to standard batch data processing
procedures for high precision satellite orbit determination. In this context,
YUNCK et al (1987) describe a " reduced dynamic strategy" and claim that
sub-decimeter accuracy can be achieved even for low orbiting satellites such
as TOPEX. AXELRAD & PARKINSON (1988) propose a similar Kalman filter
approach for the support of satellite manoeuvres. Note that the motion of a
satellite in its orbit is very well behaved, and can thus be accurately predicted.

Ambiguity resolution: This application of Kalman filtering is specific to
static positioning using GPS carrier phase. The commercial post-processing
software NOVAS (WANLESS & LACHAPELLE, 1988) includes a multi-
hypothesis testing scheme based on Kalman filtering algorithms for the
resolution of the cycle émbiguities, following a proposition by HWANG &
BROWN (1985). This task may soon be carried out in real-time, and data
collection could then stop as soon as a reliable set of integer biases is
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determined. This would result in time savings and provide a useful field
assessment of the quality of the data.

Integrity monitoring: The reliability of the GPS system is a cause for
concern for all users, and integrity monitoring is becoming a major area of
research. The problem is to test the reliability of the signals transmitted by the
satellites. In case of a system degradation, the erroneous satellite(s) must be
identified and health information provided, so that appropriate action can be
taken. If 3 coordinates and the receiver clock must be estimated, there is some
redundancy in the adjustment when 5 satellites are available. In addition, for a
gross error caused by any one satellite to be detected, each subset of 4
satellites must provide a strong geometry. Even when the full GPS satellite
constellation is implemented, this requirement will often not be fulfilled. This is
why filtering can contribute to this task. Some implementations also include a
multi-hypothesis testing scheme (McBURNEY & BROWN, 1988).

Cycle slip editing: Using GPS carrier phase data alone, MADER (1986)
reports an airborne experiment in which agreement with a laser altimeter at
the decimetre level was obtained. Also using the GPS carrier phase, but in a
differential [ntermittent mode (see Section 1.2.3), REMONDI (1985) reports
survey tests where centimetre accuracy was achieved within seconds. Once
the cycle ambiguities have been determined on a pair of static sites, and as
long as lock is kept on all satellites, it is sufficient to set the roving antenna for
a few seconds on each survey mark. Even the initial determination of the cycle
ambiguities can be accelerated by "swapping" the antennae between a site
pair, yielding the double of the vector between the two sites.

As a result of improvements in the reliability of GPS receivers, and under
favourable observing conditions, the occurrence of losses of lock can be
minimised. However, it is worth pointing out that these techniques place a
complete reliance on the carrier phase measurements. In effect, no
assumptions are made as to the nature of the motion, rather it is assumed to
be random. Cycle slips result in a systematic positioning error that can only be
discovered by resetting the roving antenna back at a known location. The
effect of a cycle slip on the estimated mean error and on the true error in
position is illustrated in Figure 1.5. The relative position of both antennae is
known at epochs e, and ey.
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Figure 1.5: Cycle Slip in Intermittent Mode

The problem of cycle slip repair is therefore a critical one for such GPS
kinematic positioning strategies. Indeed, unlike the situation of GPS integrity
monitoring, the degradation has its origin in the user segment, but the problem
is very similar, albeit at a higher precision level. Again, an abundance of
available satellites provides error detection capability, but cycle slip recovery
techniques can be developed that do not rely on GPS measurements alone:

 Incorporating an inertial sensor into the system -- the very predictable
short term behaviour of data from such sensors provides an ideal
counterpart to the GPS carrier phase observations (WONG et al, 1988).
However, the measurement model for a strapdown inertial sensor is
rather complicated, and the integration of the different types of data in a
Kalman filter is not a simple task.

+ Filtering the phase residuals -- to be efficient, the unmodelled phase
residuals must be well behaved, so that a kinematic model can be used.
This method is only applicable with dual frequency receivers, because
the variations in the ionospheric delay must be accounted for. At this
level of precision in the modelling, the range residuals are often called
ionospheric residuals, as the ionosphere contributes the major
component. Additional difficulties arise, however, when cycle slips occur
on both frequencies at the same time (STOLZ & HEIN, 1988).
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Both methods resort to filtering techniques. They have been tested in a
research environment, but it may take some time before they are truly
operational.

1.5.3. Approach Selected

The solution chosen in the present work consists of considering the phase-rate
observable instead of the carrier phase. Therefore, the cycle ambiguity need
not be resolved and short losses of lock on a satellite do not affect the
processing of previous and subsequent valid measurements. It is clear that
this technique cannot deliver the ultimate accuracy that GPS may provide, but
this is a concession that must be made for a technigue that is more robust and
relatively simple.
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Figure 1.6: Phase-rate and Prediction

The phase-rate observation is almost independent of the position of the
receiving antenna, but is closely related to its velocity. By estimating the
velocity of the antenna, together with its position, and relating them through a
kinematic model, the redundancy in the determination of the position is
increased. In addition, the position at a subsequent epoch can then be more
accurately predicted. This predicted position is used to model the incoming
observations. If an actual observation differs greatly from its predicted value, it
may then be rejected. Thus, the kinematic model provides a plausibility test for
the measurements. Figure 1.6 shows the evolution of the mean and true
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errors in position during a step-by-step estimation procedure that includes a
kinematic model. The increase in position uncertainty associated with its
prediction is balanced by a decrease due to new measurements. The
capability of rejecting erroneous measurements ensures consistent results.

Figures 1.5 and 1.6 represent different approaches to ensuring the continuity
of the positioning process: the integration of the GPS carrier phase or the use
of the phase-rate, together with a kinematic model for the position parameters.
The comparison is further illustrated in Figure 1.7, where shaded rectangles
represent the epochs of carrier phase measurement.

—» Time

e, e,

' Figure 1.7: Two Ways of Connecting Epochs

The method used in this work can be described as the filtering approach to
computing phase smoothed pseudo-ranges, and has already been
implemented by SCHWARZ et al (1987). The software package DYNAMO for
differential kinematic GPS positioning developed during the present thesis
project incorporates this capability. A justification for this choice is also
provided by ABIDIN (1988): the use of the phase-rate data, together with a
prediction model, has proven efficient during periods of cycle slips. Figure 1.8
presents the situation of DYNAMO with respect to the 3 attributes generally
associated with either surveying or navigation techniques, and introduced in
Section 1.3.4.

SURVEYING Static

NAVIGATION

Single Point

essential auxiliary possible

Figure 1.8: Present Implementation of DYNAMO
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Future developments will permit the incorporation of the carrier phase as an
observable. This was borne in mind throughout the software development, so
that the structure of the package will not require any substantial change when
this extension is undertaken. The carrier phase data will then assume the
major role and the pseudo-range will only assist in the determination of the
cycle ambiguities and the detection of cycle slips. The consequence is
illustrated in Figure 1.9. Clearly, improvements in the modelling bring the
approach closer to the surveying methodology, especially regarding the field
and data processing procedures. Indeed, the only strictly navigation attribute
that remains is the fact that the object is moving !

SURVEYING Static

NAVIGATION Single Point

essential

auxiliary possible

Figure 1.9: Future Implementation of DYNAMO

The evolution from Figure 1.8 to Figure 1.9 is not surprising: in the coming
years, the greatest impact of carrier phase processing is likely to remain in
surveying applications, even in the kinematic mode. Examples are the fast
capture of survey data on land (in intermittent mode), precise positioning of
platforms at sea, and aircraft positioning in support of aerial photography.
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1.6. SYNOPSIS

Chapter 2 presents a short revision of the least squares methodology and a
classification of the different estimation procedures. Some useful derivations
are in Appendices A and B.

Sequential estimation methods are developed in Chapter 3. Most derivations
have been placed in Appendices (C through E). In the main text, emphasis is
therefore on principles rather than mathematical details.

In Chapter 4, the scope of navigation filters is introduced and the different
functional and stochastic models -- as implemented in the software package
DYNAMO -- are described in detail. These include the modelling of the motion
of the receiver, the GPS observations and some constraints applicable for
position and velocity parameters.

The software package DYNAMO is described in Chapter 5. In particular, the
data-flow through the different components is shown.

Procedures for monitoring and testing filter performances are discussed in
Chapter 6, where results using simulated data are also presented.

Chapter 7 presents results obtained with DYNAMO, using real data collected
during experiments on land and at sea.

Chapter 8 draws the conclusions and indicates areas where further research
is needed.
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2. LEAST SQUARES PROCEDURES
2.1.  LEAST SQUARES IN GEODESY

The basic concepts of modelling a physical system, of making measurements
in such a system, and of carrying out an adjustment in order to obtain best
estimates for the model variables of the physical system are central to all
experimental sciences. In the case of surveying, almost all operations are
essentially concerned with estimating such properties of a system as position,
orientation, size and shape to a high precision using direct and indirect
measurements. In addition, surveyors are generally known for dedicating their
attention to remarkably static objects, such as hilltop trig stations and property
boundaries. Traditionally, the analysis of movements is limited to those slow
enough to be neglected during the actual measurement process but which
may be evident only over a long period of time. A typical example is the
monitoring of the deformation of a dam wall. This approach certainly restricts
the field of applications of a surveyor's measurement and analysis expertise to
those that are essentially static in nature. On the other hand, this has resulted
in surveyors having a special committment to ensure that the results obtained
are of high precision and good quality. Some characteristics of survey
operations therefore are:

* Measurement accuracy -- these usually have an accuracy (relative to
the system dimensions) greater than in most other sciences. Geodesy is
therefore, in many respects, a "measurement science".

* An insistence on obtaining redundant observations -- encapsuled in
such dictums as "one measurement is no measurement".

+ The importance placed on error analysis -- a committment to precision
and reliability requires that the quality of the results be assured. Results
without an accompanying "quality assessment" are held in suspicion.

These factors have tended to stimulate the development and refinement of a
number of procedures, based on the principle of least squares, that are
designed to give the most precise and reliable results possible from a set of
observations.
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Although much of the pioneering work on least squares methods was done by
applied mathematicians and astronomers, the role of the geodesist has
nevertheless been, and continues to be, important. Geodetic studies were
amongst the first practical applications of the method of least squares. Within
the context of "classical" geodetic adjustment, generations of surveyors have
been trained in the correct application of techniques such as adjustment by the
parametric or condition method, with a minimum attention paid to the
underlying statistical concepts. However the scope of least squares is much
wider and the selection of the quadratic form to minimise is open to some
choice, even in a limited static process such as a geodetic network adjustment.
This chapter reviews the traditional parametric and condition methods of
adjustment, as well as introducing some generalisations of the least squares
principles.

Classical least squares formulations have been found wanting as the bases
for data processing procedures for new technologies such as the Inertial
Surveying System (ISS) and the Global Positioning System (GPS). The
underlying mathematical models of both of these positioning technologies
contain variables that change with time, and hence rely on new (for geodesists
and surveyors) estimation techniques such as least squares filtering and
smoothing, which constitute the topic of Chapter 3.

2.2. METHODOLOGY
2.2.1. The Two Models

The least squares approach is based on two models being assigned to the
measurements:

+ the functional model, relating the measurements and the parameters,
for example, range = f(coordinates of 2 points, characteristics of the
medium, etc.).

+ the stochastic model, describing the statistics of the measurements, for

example, all measurements are independent and have the same
precision.
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Neither the measurements, nor the functional model are perfect, and
redundant measurements are not usually compatible with the chosen
functional model. After the adjustment is completed, there remains a fraction
of the measurements that cannot be accounted for by the estimated
parameters: the residuals. Any sufficient subset of functionally independent
observations can be used to assess the functional model (for example, derive
the parameters of interest in the model), but each minimum subset would yield
a different result. In order to obtain a unique result from redundant
observations, it was necessary to introduce an optimality criterium that the
model variables had to satisfy. "l east Squares" is a group of well defined
methods used to obtain a unique and "optimal" solution from redundant
measurements containing observational errors.

The principal advantage of Least Squares is the capability of checking the
validity of the models: assumed measurement errors are propagated into the
parameters and residuals via the functional model, yielding their expected
stochastic properties. Discrepancies between the expected and actual
statistics of the residuals reveal shortcomings in either the functional or the
stochastic model. This provides a check of both models, and the notion of
feedback is therefore inherent to the least squares estimation method.

2.2.2. The Criterion

It is worth emphasising that least squares is inherently deterministic in
nature. It is a rigorous method by which a unique result to an overdetermined
problem can always be obtained, no matter what the error characteristics of
the observations are. Least squares adjustment does not require the
observations to have errors that are normally distributed, or to have any other
type of distribution for that matter. The least squares estimates of the model
variables are defined as those which minimise a specific quadratic form of the

residuals:
vl P v = minimum

where P is the matrix that selectively weights the observations according to
their respective quality, and v are the "corrections" to the observations
necessary for the functional model to be satisfied. The least squares estimate
is known as the Best Linear Unbiased Estimate (BLUE). Although it is
fashionable these days to develop the theory of least squares by first defining
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the statistical properties required of the estimates and then to derive the least
squares process (including the minimum quadratic form), the end result is
identical.

2.2.3. The Parameters

Parameters in the models can, in principle, be divided into a number of
classes:

« unadjusted parameters -- they are considered fixed and remain
unaffected by the estimation procedure (for example, the speed of light),

¢ nuisance parameters -- they are considered as variables in the
functional model and estimated, but their estimated value is irrelevant (for
example, GPS clock errors),

* parameters of interest -- the desired output of the estimation
procedure (for example, the coordinates of the GPS antenna).

Of course, any particular parameter can be associated with any of the above
classes. For example, GPS satellite orbital parameters are considered
unadjusted parameters for the navigator, but nuisance parameters for the
geodesist and parameters of interest only for the orbit determination
specialists. This does not alter the basic structure of the least squares
approach, only the models. For navigation applications, typical parameters of
interest are latitude, longitude, heading and speed. Although heading and
speed can be estimated directly, it is often more convenient to derive them
from the estimated rate of change in latitude and longitude. Other parameters
such as height and slope are only estimated in land surveying operations.

2.2.4. Redundancy

Surveyors who regularly use the GPS positioning technology invariably
process the carrier phase measurement, because of its high resolution. This
observable contains one unknown constant -- the cycle ambiguity (Figure 1.2)
-- which can only be estimated reliably after all the sources of variations in the
ranges to the satellites have been accounted for with a precision better than
the wavelength of the carrier signal. This can only be achieved in the static
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differential positioning mode during which data is collected over a finite time
period. Indeed, it is because of the high redundancy available in the
adjustment of measurements acquired in the static mode that the rather
complicated modelling of the carrier phase observable can be attempted.

On the other hand, not all surveys need to deliver the highest accuracy. In
some cases (for example, prospected points in a geophysical exploration
survey), use of the pseudo-range observable is adequate. The reduced
number of unknowns (no cycle ambiguity parameters in the solution) is an
advantage, particularly when the redundancy in the measurements is low.
This is also the case for most kinematic applications. The gain in redundancy
realised by using an observable that is easier to model (less nuisance
parameters) is virtually lost when kinematic applications are considered (as
there are in effect more position parameters, for example, one set for each
epoch). That is why the predictability of the motion is so precious. By adding
positioning information -- the term "pseudo-observations" is appropriate --
redundancy can be improved and the least squares techniques can be
applied.

In summary, the principle of least squares yields efficient estimation
procedures as long as there is sufficient scope for varying the complexity of the
models and enough adjustment redundancy can be assured.

2.3. CLASSIFICATION OF LEAST SQUARES PROCEDURES

2.3.1. From Static to Kinematic Estimation

In order to relate the various least squares procedures used by geodesists, an
attempt is made to classify them with respect to three criteria:

- the available data -- either measurements only, or, in addition,
available a priori estimates of the parameters,

» the processing mode -- either batch (that is, all of the data at once) or
step-by-step (sequential),

» the system state behaviour -- either static or time-varying (kinematic).
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The most common example of a time-varying system that is likely to be
encountered by surveyors is one in which the instantaneous position of a
moving platform is to be estimated using GPS or ISS. For such kinematic
applications, step-by-step procedures are the key to the delivery of results in
real-time. However, the two concepts should not be confused. The choice of
the processing mode is not imposed by the system behaviour, but rather it is
often a matter of data organisation. Step-by-step estimation procedures can
be very useful even in the static case. They have proven to be very efficient for
upgrading geodetic networks as new survey data becomes available, as for
example the incorporation of EDM measurements into a previously
triangulated network. Estimation procedures appropriate for static case and
kinematic systems are presented in Figure 2.1.

STATIC Data

measurements | measurements + parameters
M batch Classical ‘ Bayesian
o
S step-by-step | Sequential Bayesian Sequential
KINEMATIC Data

measurements | measurements + parameters
M batch Classical Bayesian
o
d .
e step-by-step| Step-Classical | Filter

Figure 2.1: Least Squares Estimation Procedures for Static and Kinematic Systems

Considering a set of n observations and u parameters at each of e epochs,
the change from a static system process to a kinematic system process can be
summarised for the different cases:

« Classical and Bayesian: The number of parameters increases.
However, a relation between the parameters at different epochs can be
modelled. Typically, truncated time polynomials are used for such a
purpose. The total number of parameters therefore is between u (static)
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and u - e (independent states at all epochs). Thus, even if n is smaller
than u, it is possible to model the system with enough epochs and a
limited complexity of the kinematic parameter model (for example, by a
moderate order of polynomial).

« Step-Classical: By definition, only measurement data are used. The
parameters of the measurement model are not related between steps,
and no kinematic model can be considered. Thus, n must be larger than
u at all epochs. This procedure can be considered as a succession of
classical adjustments. However the stringent requirements on the
number of measurements makes this method of limited use for many
applications other than real-time navigation.

« Filter: The state vector at one epoch can be related to the previous
ones. Thus, n may be smaller than u. A filter can be defined as
Bayesian sequential estimation in a kinematic environment. Filters are
therefore considered here as the most general process. A filter with
weights attributed only to measurements reduces to sequential least
squares and one step of the filter is equivalent to Bayesian least squares.

2.3.2. Why Filtering ?

From the brief discussions in Sections 1.2.3 and 2.3.1, it is clear that there are
different ways of modelling time-varying parameters. The rationale behind the
functional approach to kinematic modelling is to replace the time-varying
parameters of interest (for example the coordinates), by auxiliary constant
parameters (for example the coefficients of a polynomial). Therefore, with
regard to the estimation procedure, the kinematic system becomes a
static one ! The auxiliary parameters replace the parameters of interest in
the functional model of the measurements. Thus there is no distinct kinematic
model, but it is included in the measurement model. However, it must be
noted that step-by-step processing of the measurements is still possible, as for
any other static problem. All information from previous measurements is
contained in the estimated auxiliary parameters and their covariance matrix,
and can be input as a priori parameter data in the next processing step. This
combination of Mode and Data results in a Bayesian Sequential procedure,
see Figure 2.1. A number of drawbacks result from such a functional
modelling of kinematic systems:
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+ The parameters of interest must be substituted for auxiliary parameters in
the functional model of all (types of) measurements.

+ The parameters of interest are not output directly by the least squares
algorithm, but must be computed for each selected epoch, from the
estimated auxiliary parameters. The same applies for their precision.

+ |f the signature of substituted parameters does not match the expectation
(for example, the sign of the trend changes more often than expected),
the entire processing must be repeated with other auxiliary parameters
(for example, a higher order of polynomial).

In summary, this approach is only appropriate for very well-behaved motions.

By comparison, stochgstic modelling allows for a selective weighting of the
information. The noise added in each extrapolation progressively reduces the
weight attributed to previous position determinations. This "fading memory",
together with the absence of predefined signature for the trajectory, increases
the ability to adapt to a new system behaviour. This characteristic is highly
desirable for navigation. The stochastic approach to kinematic modelling is
the basis of filtering techniques. Measurement and kinematic models are
independent and the drawbacks of the functional approach listed above
disappear. The main difficulty in filtering is the choice of the appropriate
system noise model, and this problem will be addressed in Chapter 4.

2.4, PRINCIPAL FORMULATIONS OF CLASSICAL LEAST
SQUARES PROCEDURES

2.4.1. Condition Method

Condition equations express properties that the observations should satisfy.
The general form of a condition equation is f (I) = 0, where 1 is the vector of
observables (ideal observations). Actual observations I are generally biased
by a number of errors and therefore do not satisfy this condition. A vector of
misclosures can be computed as f (I) =w. The adjustment aims at
computing corrections -v to the observations such that the corrected
observations satisfy both the relation f (I -v) = 0 and the least squares
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condition vTPv — minimum. The convention used in this thesis is that a
correction must be added to the observation, and that the correction has the
same magnitude as the residual but is of opposite sign.

The linearisation of the condition equation is based on a Taylor's series
expansion to the first order:

f@-v)y=7@)-Bv

where B is the design matrix, containing partial derivatives of f (1) with
respect to 1 about the actual observations I. The covariance matrix Q;; of

the observations is assumed known. The computational procedure can be
summarised in a few steps:

Linearised form: Bv = w with weight matrix: P = Q,,‘1 (2-1)

Q,B" (BQ;B")'w (2-2)

<>
]

Solution for the residuals:

Covariance matrix of the residuals: Qg; = Q,;BT (B Q;;B")'B Q;; (2-3)

Covariance of the adjusted obs.: Q3= Q; - Qg (2-4)

The advantage of the condition method is that the unknown terms are simply
corrections to the observations. The size of the matrix B Qj; BT toinvertis rx
r, where r is the number of conditions, which is in fact equal to the number of
redundant observations. However, there are a number of drawbacks. The
derivation of adjusted values for functions of the observables (for example, the
coordinates) is tedious, as is the derivation of their respective precisions and
correlations. Furthermore the construction of (2-1) requires a sound
geometrical understanding of the situation, as only independent conditions
must be used. Consequently, the setting-up of the equations is not easily
automated for a computer. However this method was especially popular for
geodetic network adjustments when computers were not available.
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2.4.2. Parametric Method

This method of adjustment makes use of observation equations, where
observables are expressed as a function of some or all of the parameters, in
the general form: I = f (x). To satisfy this relation, actual observations need to
be corrected or "adjusted”. The linearisation of the relation is performed about
an approximate set of parameters X:

I-v=f(x)

[-v=7f(+ 8x)

I-v=Ff(X + Adx
(I - (X)) - v=ASX

The expression in brackets on the left hand side of the equation is the
"observed minus computed term", or approximate residual, and is denoted by
V. The covariance matrix Q;; of the observations is assumed known. As ¥
differs from [ only by a constant, it has the same stochastic behaviour. The

computational procedure therefore is:

Linearised form: V-v= ASX with weight matrix: P = Q,;'  (2-5)
Solution for the parameters: 8x = (ATPA)Y'ATPV (2-6)
with covariance matrix: Qz; = (ATPA)! (2-7)

The adjusted observation residuals can be computed in two different ways:

+ The direct approach, by including the adjusted state vector in the
functional model of the observations:

v=1I-f(X), where X = X + 8X

« The indirect approach, by including the adjusted state vector increment in
the linearised functional model of the observations (2-5):

~

V =V - AdX
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The second method clearly illustrates the relation between the approximate
and adjusted states. Indeed, this is the main justification for the choice of the
unusual symbol V to denote the vector of approximate residuals, hence
ensuring complete consistency between quantities related either to x or v.
The covariance matrix of the residuals is derived from the indirect computation
of the residuals using the "law of propagation of variances", and assuming the
stochastic independence of the measurements and the approximate state
vector:

Qiy = Q; - AQy AT (2-8)

If the desired results (for example, the coordinates) are selected as the
parameters, the solution of the system leads directly to the answer. There is
exactly one equation per observation, and its form can easily be defined
according to the type of observation. The size of the matrix to invertis uxu,
where u is the number of (unknown) parameters, and the setting-up of the
equations can easily be automated in a computer program. The linearisation
of the problem requires some a priori approximate knowledge of the
parameters, which is usually available. For geodetic purposes, it is generally
no problem to obtain a converged solution of a non-linear problem through an
iterative process.

2.4.3. Relations Between Both Approaches

If any problem can reduce to either the condition or parametric case, there is
actually a choice between the two methods of setting-up and solving the least
squares problem. A demonstration of the passage from the parametric to
condition equation method is given in, for example, BJERHAMMAR (1973).
Given n linear observation equations with u (unknown) parameters, the
elimination of all the parameters leads to a system of r = n - u condition
equations. The reverse of this process is much harder because there is an
almost infinite number of possible parametrisations. A formal proof is of no
practical importance: if a parametrisation has to be chosen at this stage, it
could also be defined at the time of constructing the equations, thus leading to
the parametric case. This indicates that the condition equation approach in
fact represents a more fundamental concept, because it is based solely on
intrinsic geometric properties of the observables. In some cases, for example
if there are fewer redundant observations than unknown parameters, the
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condition method offers computational advantages. However, the dramatic
improvement in the power of computers has made these advantages largely
irrelevant and the adjustment by parameters is now the standard solution
approach to almost all overdetermined systems. Unfortunately the practical
importance of the condition equation approach has been reduced to such an
extent that not only its use, but also its fundamental features, are now often
overlooked.

2.4.4. The Combined Case

It is also possible to formulate relations involving both observables and
parameters. Functions of the observables are related to functions of the
parameters, through the general form: f (I, x) = 0. For example, this method is
useful when solving for transformation parameters (HARVEY, 1985). A linear
relation is obtained following the usual procedure:

FU.0=w

FU-v,Xx+8x) = f(I,%X) + ASx - Bv = 0
Linearised form: - Adx + Bv = w _ with weight matrix: P = Q' (29
Adjusted parameters: 8x = - (AT(B Q;,BT)'A)" AT(B Q;; BT)'w (2-10)
Covariance matrix: Qz; = (AT(B Q;;BT)'A)" (2-11)

Formulae for the residuals are given, for example, in CROSS (1983). This
case is also sometimes referred to as "condition equations with parameters"
(PACHELSKI, 1980), which has the merit of indicating that such a hybrid form
is basically a condition equation. In fact, the condition and parametric
methods can be thought of as two special cases. To demonstrate the
equivalence between these two approaches, it suffices to rearrange (2-9) and
consider particular design matrices:

Condition: Bv = w + Adx with A=0
Parametric: -w + Bv = Adx with B = -1
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In the parametric case, the misclose vector w has the same magnitude as v,
the observation residual computed using the approximate parameters X, but is
of opposite sign.

2.4.5. Decomposition in Least Squares

It may be impossible to express all relations according to one of the models
discussed above. In many cases however, it is possible to decompose a
complicated processing step into elementary ones. This concept is best
illustrated by examples. For the two cases presented here, the full derivation
is given in Appendix A.

a) Th mbin
The linearised form (2-9) can be written as a condition equation:
Bv = w + AdX with weight matrix: P = Q;; (2-12)

In a first step, no attempt is made to estimate 'x. Instead, a standard condition
adjustment Bv =w is performed. The residuals of the adjusted
measurements are obtained using (2-2). [n a second step, the relation
between the residuals and the parameters is expressed as a system of
observation equations. The parametric method is applied, and the adjusted
increments 3x are obtained using (2-6). The final result is equivalent to (2-

10), as shown in Appendix A. Thus the combined case can been solved by
applying the condition and the parametric equation methods in succession.

b) justm i rai Par

Let x be a vector of parameters, to be determined from observations 1, with
covariance matrix Q;;. In addition, the parameters are subject to a constraint.

The situation can be described by the following system of equations:

(o]

V- v = AdX with weight matrix: P = Q,; (2-5)
Usx = t (2-13)

This parametric system of equations can be solved by minimisation of the
quadratic form vTPv , subject to the constraints defined by the second
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equation. Appendix A illustrates how the problem can also be solved by
applying the parametric and the condition equation methods successively.
This approach is easier to implement than a first look may suggest. The
different steps are:

1) From the unconstrained parametric adjustment: Vv - v = A8y
compute the unconstrained solution to yield: 8y, Qjy

2) Consider the parameters adjusted without constraints as observations
of the constrained parameters, that is:

dy - z = 6x where z is the vector of residuals.
The constraint condition on the parameters becomes: U8y - Uz = t

3) Form the misclosure vector: w = (U8y - t), compute the condition
adjustment: Uz = w. The solution yields z and Qj;

4) The constrained solution is thus obtained as:
X =y -zand Qi = Qjy - Qz (2-14)

If the condition equations are linearised around y , the expression for the
misclosure vector simplifies to w =-t. An example of a constraint that may be
applied to the parameters is that a distance between two points on a ship is to
remain unchanged, whatever the overall movement of the ship may be. Note
that in such a case the condition could also be replaced by a fictitious
observation of the distance, equal to the specified value and with an infinite
weight. This method is not rigorously applicable as weights must be finite for
computations, though it is possible to consider quite large weights without
causing numerical problems.

This method of decomposition in least squares therefore yields an elegant and
rigorous solution. The computation burden can be kept within limits as the
dimension of the matrix to invert is equal to the number of conditions on the
parameters. For example, if one distance is to be kept fixed the central
operation degenerates to a scalar inversion. Furthermore, any condition on
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the parameters can be enforced, such as four points on a circle or fixed area of
a polygon.

What makes this method particularly attractive is the possibility to apply a
constraint on the parameters after the adjustment has been completed,
without having to perform the entire adjustment again. In fact, constraints may
be applied according to the principle of least squares to any set of parameters
9, as long as the full covariance matrix QW is available. This information

usually results from a previous adjustment, but this need not be the case.

2.4.6. Bayesian Least Squares

In many cases, a fairly good a priori knowledge of the parameters is available.
Thus, it is reasonable to require that the adjusted value of a parameter should
not be too different from its a priori value. This condition can be imposed in a
number of ways:

+ The a priori values of the parameters are considered as observations.
Suitable weights, relative to that of the~measurements, are required.
Consequently, the size of the system of parametric equations is
augmented, but not that of the normal equations, as the number of
parameters remains unchanged.

+ The increments of the a priori values of parameters are included in the
quadratic form to minimise, with appropriate weights.

The formal proof of the equivalence of both approaches for the parametric
case is given in Appendix B. The resultant normal equations are:

(ATPA + Py)8x = ATPV (2-15)

The extension of the quadratic form to v Pv + 8x'P3dx represents a
generalisation of the classical least squares method. With Pg=0, that is, no a
priori information on the parameters is available, Bayesian least squares
reduces to the classical definition. The minimisation of the extended quadratic
form can also be applied to the combined case. However, Bayesian least
squares is not defined in the pure condition case, due to the absence of
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parameters. Two examples will illustrate the effect of the generalisation of the
quadratic form.

a) Th in

The complete derivation for the combined case is given in, for example,
KRAKIWSKY (1975). Compared with the solution for the classical method (2-
11), the covariance matrix of the parameters is slightly modified:

Qi = (ATBQ,;BT)Y'A + Py (2-16)

The solution for the parameters is modified accordingly and becomes,
compare with (2-10):

5x = - (AT(BQ,;BTY'A + Py AT(BQ,;BT)'w (2-17)

These expressions are correct as long as the a priori estimates of the
parameters are also used for the linearisation of the equations, otherwise
correction terms must be considered. The appropriate formulae are found in
BOSSLER (1972).

b) Adj nt with Constrained Parameter

If 8xTP;6x is added to the quadratic form in (A-3), the second diagonal term of
the 4 x 4 matrix in (A-4) is replaced by Pg. Following the same procedure
from (A-4) to (A-8), it appears that the following substitution should be made:
8y = (ATPA + Py ATPV and Qg = (ATPA + P! (2-18)
This is exactly the form of the solution of the Bayesian parametric case. It

suffices to compare with (2-16) and (2-17) replacing B =-I and w =-v. Thus
the procedure developed in Appendix A.2 is still applicable.

In both examples, it was shown that adding the a priori weight matrix of the
parameters Py to the normal matrix of the observations leads directly to the
normal matrix of the Bayesian adjustment. In (2-18), it is assumed that the a
priori estimates of the parameters are also used for the linearisation of the
equations, that is, X is used to compute V.
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2.4.7. Sequential Least Squares

We can differentiate between batch and sequential (or step-by-step)
processing modes. The batch processing mode is the one most commonly
encountered in classical geodesy. The least squares adjustment is carried out
once all the data has been acquired. However, a sequential treatment of least
squares problems may be preferable for several reasons:

+ it divides a large computing burden into smaller parts, and reduces the
requirements on both processing capability and storage.

» it is the key to real-time applications.

It is therefore tempting to treat successive batches of measurements
sequentially, though it should be kept in mind that the results of a sequential
least squares adjustment will be identical to that of a batch solution once all
the data has been processed. However, this approach to the processing of
data may influence other options in the formulation of the least squares
problem, such as the choice between the condition and the parametric
method. The formulae used in sequential least squares estimation are given
in, for example, CROSS (1983). The primary considerations that should be
borne in mind when using sequential least squares vis a vis other estimation
procedures are briefly discussed below.

Storage: The use of a sequential adjustment process makes sense if it is
possible to condense the information gained from some observations and
make it available at the next processing stage. A very handy condensed form
is a set of parameters and their associated covariance matrix. Apart from
testing the consistency of the observations, this is the main reason why
surveyors compute networks: coordinates and their covariances include the
contributions of all observations, but usually are much more convenient to
handle than a list of measurements. Nevertheless, archiving the original
observations allows for a later modification of their respective weights, which
would not be possible if only coordinate information were available.

Partitioned Parameter Set: Sequential processing is particularly useful if,
in a set of observations, some parameters are not related to subgroups of
observations. An example are the so-called local or epoch parameters which
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describe the behaviour of a GPS satellite clock. Parameters of this kind can
be eliminated from the normal matrix once the group of observations have
been processed using, for example, Helmert-blocking techniques (CROSS,
1983). This reduces the amount of data and parameters needed for
subsequent computations.

Heterogeneous Data: Measurements of different types, such as distances,
directions and azimuths, can be modelled as functions of the same set of
parameters. Furthermore, when it comes to kinematic applications, it is
necessary to relate the observations and the movement. This is best achieved
by expressing both the measurement and kinematic models with common
parameters. Thus a suitable parametrisation allows for the processing of
heterogeneous data in a step-by-step basis. Positions can be determined first
using one type of measurement data, and then another, and so on.

Choice of the Functional Model: The choice of a parametrisation is more
critical for sequential adjustments as the parameters are the link between the
different groups of observations. In this respect, the evolution of adjusted
observations, as obtained from condition adjustments, has limited value. Its
explicit use is restricted to some particular applications like monitoring the
deformation of a triangle by checking the variation of its angles. Writing a
condition equation implies the simultaneous availability of several
measurements. If one is missing, others may become useless, or other
conditions need to be formulated. The parametric method, on the other hand,
allows for more flexibility, as any measurement can be incorporated into an
observation equation.

Correlation Between Steps: In some cases, measurements at different
epochs are correlated. Whilst this simply results in a non-diagonal weight
matrix in the batch processing mode, the effect is more difficult to deal with in a
step-by-step adjustment. Two possible remedies are:

* decorrelate the measurements, that is, compute a set of linear
combinations of the measurements so that its weight matrix is diagonal.
Such a procedure, known as Gram-Schmidt orthogonalisation, is
discussed in, for example, KING et al (1987).
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+ consider the measurement noise, which causes the correlation, as a
"disturbance" of the state parameters. A suitable relation between the
disturbance at different epochs is then input as a "pseudo-observation” in
the functional model (see, for example, GELB, 1974).

The second method is preferable because it requires an increase in the size of
the state vector rather than a new algorithm. Furthermore, being part of the
estimation process, the correlation can be more easily adapted to changing
circumstances, for example by modifying the weight of the pseudo-
observation. However, this method is relevant only in the context of Bayesian
estimation (Section 2.4.6).
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3. PREDICTION, FILTERING
AND SMOOTHING

For many applications of new surveying technology such as ISS and GPS the
parameters of interest (usually position and velocity), or the dominant system
errors, or both, are time-varying. Furthermore, the time variation is more or
less predictable. For such applications, the data processing techniques that
are the most efficient and optimal, and therefore the most appropriate, are
those based on the principles of least squares prediction, filtering and
smoothing.

Least squares filtering has its origins in electrical signal processing, and
consequently the literature mainly reflects a preoccupation with signal
processing and communication engineering applications. The Kalman filter is
perhaps the best known of the technigues that have gained wide acceptance
across a wide spectrum of physical and engineering sciences. The synergy
between classical least squares procedures used in geodesy (and briefly
discussed in Chapter 2), on the one hand, and the new filtering techniques on
the other hand, has been recognised for over a decade (KRAKIWSKY, 1975).
However, it was only with the advent of ISS and GPS that considerable
interest has been aroused by geodesists in least squares filtering as a data
processing tool.

3.1. PRINCIPLES

The three concepts of prediction, filtering and smoothing are closely related
and are best illustrated through an example. Let us assume a moving vehicle,
and that the parameters of interest are its instantaneous position at some time
t. The process of computing the vehicle's position in real-time (that is,
observations are taken at time t, , position required at t, ) will be referred to

as filtering. The computation of the expected position of the vehicle at some
subsequent time t, , based on the last measurements at t,_, is properly

termed prediction, while the estimation of where the vehicle was (say at time
t ), once all the measurements are post-processed to time 1,4, is referred to

as smoothing. The three steps of the estimation procedure are illustrated in
Figure 3.1.
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» the prediction step: based on past positioning information together
with a kinematic model, the expected position and its precision at the next
epoch of measurement is computed. The kinematic model is therefore
composed (as is the measurement model) of functional and stochastic
components.

« the adjustment or filtering step: this is a classical least squares
adjustment, except that a fairly good a priori estimate of the parameters
is already provided from the prediction step. Basically, the resulting
parameter estimates are weighted combinations of predicted quantities
and measurement data. As both the kinematic and the measurement
model are composed of functional and stochastic components, four
models must be considered. Given a particular application and a certain
data type, the filter design process is therefore one of selecting the
appropriate models. The Kalman filter is a particular form of this general
least squares filter.

+ The smoothing step: by which all the measurements are reprocessed
after the last measurement has been made and the filtering step has
been completed.

prediction

filtering

smoothing

to b1 ty LI

Figure 3.1: The Concepts of Prediction, Filtering and Smoothing

The estimation procedure is described in this chapter, and each new concept
is introduced with as few definitions as possible in order to highlight the actual
preconditions necessary for that concept. Assuming an initial state vector and
a kinematic model, the prediction of parameters is first presented,
independently of any other consideration. This prediction is then merged with
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measurements and the derivation of an optimal filter based on least
squares principles is given. The term optimal is precisely defined in this
context: the filtered parameters must be unbiased and the trace of their
covariance matrix must be a minimum. This algorithm is called the "Basic
Least Squares Filter" and its most important features can be demonstrated
using only an estimate of the state vector at one epoch, a kinematic model and
a set of observations at a later epoch. The equivalence of the Kalman form
is then demonstrated. Relations involving the filtered estimates are presented
in order to permit comparisons with results from classical least squares
adjustments to be made.

The concept of smoothing is perhaps the most difficult to grasp. However, it
suffices to say that the initial estimate may be somehow improved by future
measurements and the equations for smoothing can be obtained in a rigorous
manner, as a logical extension of the previous developments. As the
parameters at different epochs are related through a kinematic model, the
filtered estimate is no longer optimal once subsequent measurements become
available. A new estimate that includes the contributions of the later
measurements can be computed. Improving previous estimates via a new
measurement is therefore smoothing and, as in the case of filtering, is referred
to as optimal smoothing if optimal estimation methods are employed. An
important point to note is that a filter always has the potential of smoothing,
even if this capability is not explicitly stated.

Several derivations for the Kalman filter equations have been given in terms of
the least squares principle. KRAKIWSKY (1975) proved the equivalence of
Kalman filtering and sequential least squares for the combined case. In a
similar manner CROSS (1983) derives the Kalman expressions for the
parametric case. The problem is treated as a minimisation under constraints
with the Lagrange method of undetermined multipliers (see examples in
Appendices A and B). This procedure is easily applicable to the combined
case. However, additional unknowns are introduced, the "correlative
constants”, that need to be eliminated later on. Both authors consider two
epochs of measurements, which is rather confusing as the contribution of the
observations at the first epoch can be considered as a part of the a priori
knowledge of the initial state vector. It is hdped that the approach chosen here
will make the relationship between filtering and smoothing more apparent.
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All the processes described are recursive in nature, and hence only two
epochs t, and t are considered. This reduces the use of indices and hence
contributes to the clarity of the mathematical expressions. An extension to
more epochs is, except perhaps for smoothing, obvious.

3.2. PREDICTION
3.2.1. Initial State Vector

The state vector contains some of the parameters needed to describe the
system. For kinematic applications its main components are usually position
and velocity. Additional parameters can be included, depending on the task at
hand and the measurement type available. Attime t,, the state vector and its
covariance matrix are represented by X, and Q; %, Knowledge of the initial

state vector may have been derived from measurements, or as a result of a
previous (filter) adjustment.

3.2.2. Kinematic Model

The kinematic behaviour of the system between two epochs is modelled by a
relation between the system parameters at two different epochs. The linear
form (3-1) is valid for all the kinematic models considered in this thesis.

DXy + W = X (3-1)

where X, isthe state vector at time t,
X is the state vector at time t
® is the transition matrix
w  is the system noise

The derivation of appropriate transition matrices, for various assumptions
regarding the GPS receiver motion and system noise, will be carried out in
Chapter 4. In most other cases, a linear form can be obtained, at least as an
approximation. The noise term w accounts for unmodelled forces affecting
the system behaviour. In other words, the noise term represents the
unpredicted (unpredictable?) component of the motion. w is assumed to have
mean zero, and mainly affects the stochastic component of the kinematic
model, through its covariance Q,,,. Because (unmodelled) forces are
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responsible for the noise, the term "dynamic" model is also commonly used,
but "kinematic" is preferred here because the underlying forces governing the
behaviour of the system never appear explicitly in the model.

3.2.3. Parametric Expression

Implicit in the kinematic model is the capability to estimate the state vector at
future epochs. If x has been estimated at time t,, as w has mean zero, the

predicted value at time t is simply:
i = d)xO (3-2)

(3-2) is the functional component of the kinematic model. According to the
law of propagation of variances, and assuming that X, and w are

independent, the covariance matrix of the predicted estimate is:

Qxx = CDQ;(O;(OCDT + Quw ; (3-3)

(3-3) is therefore the stochastic component of the kinematic model. The

predicted estimate of the state vector can be regarded as an observation of its

true value, with random error v, and weight Py = Qgz™':

»?
1
><<
i

X
X + oX with weight matrix Py (3-4)

»2
'
<
»

il

Although it is very tempting, and usually possible, to choose X = X, thus
reducing relation (3-4) to 6x = - v, such a substitution will only be considered
as a particular case of a more general presentation. Nevertheless, relation (3-
4) can be slightly modified:

X +8X-v, = X + X
X - vy = dx with weight matrix Py (3-5)
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3.3. FILTERING
3.3.1. Measurement Model

Considering the parametric case after linearisation, a vector of observations I,
with covariance matrix Q;, is related to the parameters by:

<0
1
Il

A 5x with weight matrix P (2-5)
A(X - X)

<o
]
i

The weight matrix depends entirely on the stochastic model of the
observations and is defined by P =Q;;'. The matrix P is not necessarily
diagonal. When measurements are made at time t, a predicted state vector is
computed. This is often the best estimate of the parameters available at this
time. Hence, it is logical to linearise the measurement model around the
predicted state, and compute the predicted residuals V:

V=1-f(@X)

Because the measurements and the predicted state are involved, the
predicted residuals are of great interest for the monitoring of the filter.
Shortcomings in either the measurement or the kinematic models will show up
as systematic errors in V. Furthermore, predicted residuals are available prior
to the adjustment step, and this enables the testing of the measurements and
the rejection of cutliers. Ideally, the predicted residuals, also referred to as
"innovation sequence", should not be correlated between epochs, and should
be normally distributed with mean zero. If this is not true, some measurements
or modelling assumptions must be held in suspicion. Some authors, for
example TEUNISSEN & SALZMANN (1988), base the performance analysis
of Kalman filters entirely on the inspection of the innovation sequence, using a
number of statistical tests. The test for zero mean is the most widespread in
practice. The relation (2-5) can be modified to include the predicted state,
rather than the a priori state vector used for linearisation, as the reference for
state vector increments.

A(x - X)
A dx with weight matrix P

<t 7
[} t
< <
o

53



In this last expression, the increment vector 8x is related to the predicted
state: 8x = (x - X). This situation is often encountered in practice, but it is
preferable to make a clear distinction here between X and X , because they
represent different concepts and have different stochastic behaviours, even if
the parameters contained in both state vectors are identical. Relation (2-5) is
therefore the more general expression.

3.3.2. Basic Least Squares Filter

The requirements for a least squares filter can now be explicitly stated. Both
the predicted state (through the kinematic model) and the measurements can
be fully described by their functional and stochastic models, a total of four
models. Equations (2-5) and (3-5) can be grouped into a system of parametric
equations:

[8\"3] ) [‘(/x:l = U\J ¢ with weight matrix: [F:);‘ g] (3-6)

This system can be rewritten in the usual form of parametric equations (2-5),
by simply replacing each matrix such that:

V. - v = A" 8x  withweight matrix;: P"
The solution follows immediately from (2-6):
8 = (ATP'A")YT APV

Back-substituting the matrices A", P* and V' through their original
expressions in (3-6) leads to:

8x = (Px + ATPA)! (P 8% + ATP V) (3-7a)

This is now the expression for the filtered estimate. The minimisation of the
extended quadratic form vTP v + 8x"Pg 8x would yield identical results, as
demonstrated in Appendix B, and could therefore replace the adjunction of the
"pseudo-observation" (3-5) to the measurement (2-5). For most practical
applications, the measurement model is linearised around the predicted state.
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Explicitly, X is chosen equalto X, and this implies X = 0 and ¥ = V. Thus,
the most commonly used expression for the computation of the filtered state
vector, though not the most general, is:

X =X + (Pg + ATPA)TATPV (3-7b)

An important restriction on the use of this simplified formula is in the case of
solution iterations. It is straightforward to select the set of parameters X = X for
the initial linearisation. For subsequent iterations however, X is changed and
the complete relation (3-7a) should be used. This considerably reduces the
efficiency of the filtering algorithm, hence iterations should be avoided as far
as possible. Indeed, if the predicted state vector is so biased that iterations are
necessary, the kinematic model itself should be reassessed. Such problems
may also be caused by an inappropriate selection of the parameters, as for
example when a small change in a measurement leads to a large change in
the state vector, which causes large changes in the measurement model
(partial derivatives in A and observation residual V). Such instabilities have
always been a problem in surveying (for example, due to poor network
geometry), and filtering is not a miracle cure for deficiencies in the
measurement design.

The covariance matrix of the filtered estimate can be computed by applying the
law of propagation of variances to (3-7a), assuming the stochastic
independence of X and I:

Qzz = (Px + ATPA)" (3-8)
The covariance matrix of the residuals is obtained by the same method:
Q{;\’i = Qll - AQ)'E)'(‘ AT (3'9)

This expression is identical to the standard parametric case, as stated in (2-8),
though the definition of Qgz; is somewhat different. All derivations are

presented in more detail in Appendix C. In this form, the algorithm is called the
Bayes filter. The contributions of the predicted and observed components
are easily identified. Comparing (3-7a) with the standard solution for the
parametric case (2-6):
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5x = (ATPA)YTATP V

it appears that the filtered estimate is fairly easy to compute. It is sufficient to
add the weight of the predicted estimate to the classical normal matrix ATPA,
add the weighted predicted estimate to the constant term ATP v, and proceed
as usual. The drawback of this procedure is that it always requires the
inversion of a normal matrix of dimension u x u, where u is the size of the

state vector, even if only one observation is added. This computational
problem makes this filter inappropriate for many applications.

3.3.3. The Kalman Form

The Kalman form is obtained by using a matrix identity described in many
textbooks of linear algebra, or more specifically in the estimation literature, for
example LIEBELT (1967):

(P + ATPA)' = (P! - Py AT (APR'AT + Py APY)  (3-10)

The validity of this transformation can be proven by showing that the product of
the contents of the brackets on each side in the identity (assuming that all
inverted matrices exist). Substituting in the Bayes expression (3-7a) and (3-5),
the filtered estimate of x becomes:

X=X+ K({ - AdX) (3-11a)

where K = Qy; AT(AQy; AT + Q) (3-12)

Appendix C gives further details of this derivation. At first sight, this new
expression for X appears more complicated than the Bayes form. However,
the only matrix to invert has dimension n'xn', where n' is the number of new

observations. This is an important computational advantage. In addition, if the
observations are linearised around the predicted state, (3-11a) reduces to:

% =%+ KV (3-11b)

K is referred to as the Kalman gain matrix. The term is used to describe
the function of feedback loops in electrical engineering, where the output of a
system is used to improve the separation of the input signal from the noise
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within the system. In the expression (3-11b), K represents the propagation of
the "unexpected" part of the new measurements into an improvement of the
predicted estimate.

Example: n independent measurements [ of a distance x are available.
The standard deviation of each measurement is o©. The least squares

estimate x, isthe mean 1, of all measurements, with variance o?n. The

expected value of a new similar measurement [,,, is I,. The new least
squares estimate of the distance is the mean of the n+1 measurements:

n
I L+ 1
2h 2l (nT,) +

i = i=1 n+1

xn+1 =

n+1 = n+1 = n+1
(n'-in) + 7n + ln+1 - 7n (n+1)7n ln+1 - 7n
= n+1 = T+l YT+
- 1 - ~ 1 ~
= ln + n+1 (ln+1 - ln) = Xn+1 + n+1 (ln+1 -xn+1)

The last expression may be regarded as the Kalman form, where 1/n+1 is the
gain matrix. This example is simply a degenerate case, completely described
by:

+ the measurement model A=1, Q; =02
 the kinematic model O =1, Quu =0.

This can be checked by replacing the terms in (3-2), (3-3), (3-11) and (3-12).
Using (3-11a), the covariance matrix of the Kalman filtered estimate can be

computed. According to the law of propagation of variances and the assumed
stochastic independence of X and I:

Qi = (I - KA) Qi (I - KA)T + KQ; KT (3-13)

This expression can be simplified to:

Qzx = (I - KA) Oy (3-14)
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See Appendix C for full details. This latter expression is very convenient but
according to BUCY & JOSEPH (1968), the use of (3-13) may be preferable
because of a reduced sensitivity to numerical instabilities. In the absence of
numerical problems, the Kalman and Bayes filters yield identical results.

The covariance matrix of the vector of residuals derived in Appendix C for the
Kalman form:

Qi = Q - AQyz AT
is identical to the expression (3-9) already obtained for the Bayes filter.
3.4. FILTER TYPES AND TERMINOLOGY

During the last few years, a large amount of effort has been devoted to
developing and refining parameter estimation methods involving more than
one filter. This has resulted in a gradual widening of the filtering concepts,
reflected by a steady expansion of the vocabulary associated with Kalman
filtering. At present, the trend is to optimise the estimation through a
combination of different filters.

3.4.1. Single Filters
Some of the attributes applicable to single filters are discussed below.

The extended filter accounts for nonlinearities in the relations between
measurements and/or parameters by linearising the functional models of the
measurements and motion, usually through a first degree Taylor series
expansion. This case presents no difficulty to surveyors, who have always
dealt with non-linear relations between directions, distances and Cartesian
coordinates. Indeed, all filters used in surveying are "extended", and this
attribute is often not explicitly mentioned.

A filter is referred to as being augmented when the size of the state vector is
increased by the modelling of an additional relation. For example, including a
bias common to several measurements in the state vector is one way of
dealing with physical correlations between these measurements. This
approach is particularly efficient when state parameters or measurements are
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correlated between epochs. In GPS data processing, the estimation of
satellite clock terms can be regarded as an augmentation of the state vector,
permitting a correlation between receiver clocks and positions to be modelled.

When relations involving only parameters are included, the filter is referred to
as constrained. This is generally achieved by adding pseudo-
measurements, although the "decomposition in least squares” provides an
alternate and more general procedure (see Section 2.4.5). Some authors
consider measurements as constraints, as they limit the freedom of the
parameters, by contributing to their determination. However, in this thesis, the
term "constraints” is restricted to relations between parameters only.

An interesting feature of sequential estimation procedures is their ability to
provide information concerning the quality of the data as they are being
processed. This can be used to improve the a priori stochastic models of the
subsequent measurements and/or movements. Procedures having this
capability are called adaptive. Typically, the standard deviation of the
measurements and/or the system noise can be rescaled according to the size
of the adjusted observation residuals. As elegant as this approach may
appear, it presents a danger: after several epochs of good agreement between
prediction and measurements, the expected discrepancies may become very
small and preclude the filter from reacting correctly to an actual change in the
movement. Therefore, it is of paramount importance to specify a minimum for
the standard deviations of the measurements and system noise, to prevent the
filter from becoming over-optimistic. The same problem is also encountered in
classical surveying: if the sum of the 3 measured angles of a triangle is exactly
180 degrees, this does not mean that all measurements are perfect, and it is
preferable to use precision estimates based on experience to compute the
precision of the survey.

3.4.2. Combination of Filters

In modern navigation, several sensors are used to collect information about
the movement, for example GPS and an inertial sensor. Of course, all the data
collected can be directed to the same filter. However, this results in limited
computational efficiency, as the matrices involved become generally large and
sparse. Therefore, attempts have been made to divide the computation
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burden amongst several smaller filters. Filters can be combined in a number
of ways:

* horizontal: a data-set is processed through one filter and the results are
sent to another filter. This concept is associated with cascaded filtering
procedures, where the role of the pre-filter may be to merely compress
the measurement data, thus reducing the volume of input for the main
filter.

+ venical: different data-sets are processed through different filters. For
example, where each filter is associated with a different sensor, the
process is known as distributed filtering. However, to ensure that a
unique solution is finally obtained, the solutions from the different filters
must be combined. Therefore, a strictly vertical filter configuration cannot
be optimal.

The most promising developments are a combination of both the "horizontal"
and "vertical" filter designs. KERR (1985) proposed a decentralised filtering
structure in which several smaller filters process data from separate navigation
subsystems. The outputs of these local filters are then combined by a
"collating" filter. However, no mathematical basis for that filter was given.
CARLSON (1987) established a sound basis for this general filtering
architecture, known as federated, which perfectly illustrates the idea of an

MASTER
FILTER
LOCAL LOCAL o ]
SENSOR 1 [ p{ FILTER1 | 9| {PREDICT
>
LOCAL LOCAL ™ ] Ll UPDATE
SENSOR 2 |—s~~—p] FILTER?2 >

Figure 3.2: Federated Filter Architecture. (adapted from CARLSON, 1987)
optimal interaction between the local filters and the master filter. The design

presently favoured consists of implementing relative basic models in the local
filters and more sophisticated ones in the master filter, to account for long term
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effects. In the following, only two sensors are considered. Indeed, the
federated filter can be regarded as a combination of cascaded and distributed
filters, as shown in Figure 3.3.

single filter multi-filter

single sensor | classical cascaded

multi-sensor | distributed federated

Figure 3.3: Combination of Filters

The main feature of the federated structure is the feedback from the master
filter to the local filters, represented by grey lines in Figure 3.2. The type of
feedback will determine whether the "memory" of the filter is contained in the
local filters or in the master filter. Roughly, the problem is to select the weight
matrix to associate with the predicted parameters sent to the local filters. With
all the terms equal to zero, there is a loss of information and precision, but on
the other hand, an error in the results from the master filter, due for example to
erroneous previous measurements, is not propagated further. The other
extreme is to always send the latest weight matrix computed by the master
filter, however, the increase in precision is balanced by a higher sensitivity to
errors. In some situations, dividing all terms in the weight matrix by a factor of
2, before sending them to the local filter, proved to be a successful
compromise (CARLSON, 1988).

Accuracy

Throughput

Fault Detection

3.4: Criteria for an Optimal Filter Architecture

61



The computational efficiency of the filter, or its "throughput", essentially
depends on how many cycles the local filters run before the master filter is
activated, and hence on how much data compression is achieved. Various
criteria may be used to judge the appropriateness of a combination of filters,
including the accuracy of the results, the capacity to detect a fault and the
computation load. All criteria cannot be satisfied simultaneously, and the
weight given to any of these criteria may depend on the problem at hand. The
trade-off can be represented as the choice of a position within the triangle in
Figure 3.4.

3.4.3. Parallel Filtering

The simultaneous processing of the same data-set with different filters, each
using different models, permits different criteria to be monitored. Parallel
filtering appeared first in GPS data processing to handle the task of selecting
the set of integer ambiguities. Such a multi-hypothesis testing scheme has
been implemented in the software package NOVAS, using a bank of Kalman
filters (WANLESS & LACHAPELLE, 1988), following a proposition by HWANG
& BROWN (1985). It is possible that this resolution task will soon be monitored
in real-time. Data collection could then stop as soon as a reliable set of
integer cycle ambiguities is obtained, resulting in both savings in time and the
need for field assessment of the data. Hence, filtering techniques may also
prove useful for static GPS surveys. The concept of parallel filtering, although
in a different form, is also applied in the censored filter proposed for the
monitoring of the integrity of the GPS system (McBURNEY & BROWN, 1988).
When the measurement residuals from a satellite have a mean consistently
and significantly different from zero, the quality of the data from that satellite
becomes suspect. Different subsets of the measurement data are filtered in
parallel, and the difference in position between the various options is
monitored. When the dispersion of the results exceeds a predefined
threshhold, action is initiated, generally consisting of the rejection of data from
the suspect satellite.

By processing the same data with several federated filters in parallel, each
with a different sharing of the filter memory between the local filters and the
master filter, different options could be obtained simultaneously. For example,
there may be an advantage in using a filter optimal with respect to fault
detection and recovery along with a filter designed for optimal accuracy: the
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most accurate solution would be output, as long as the other filter doesn't
detect any fault. Otherwise, the accurate filter would be re-initialised, using the
state vector from the fault tolerant filter.

Theoretically, there are very few restrictions in the combination of these
concepts. At this time however, very little practical experience has been
gained, and published results are scarce.

Although GPS is the only sensor presently considered in the software package
DYNAMO, its overall structure would enable a more complicated filter
architecture to be implemented in the future.

3.5. SMOOTHING
3.5.1. Initial State

The true value of the initial state vector is generally not known. However, the
smoothed estimate of x, should not be too different from the filtered one,

which has a known stochastic behaviour described by the covariance matrix

Qy %, A certain imprecision in the initial estimate must be tolerated. This error

can be seen as having the potential for minimisation. If all the elements of
X.%, are zero, the notion of smoothing becomes meaningless because later

measurements cannot have any effect on x,.

The filtered estimate X, can be considered as an a priori estimate of the true
value of x,, with a random error Vy,- This relation can be written in the form of

an observation equation, similar to (3-4):

Xo - Vy, = Xo with weight matrix Pz~ (3-15)

Vy, corresponds to the definition of a residual (see Section 2.4.1), as it is the

difference between a vector of observations and a functional model of the
observations. However, in this particular case of (pseudo-)observations of the
parameters, the functional model is the identity, and (3-15) may also be written
in terms of state vector increments 8x,:

Xo + &%y = X, with weight matrix P~ (3-16)
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Thus, v, and 6x, have the same magnitude, but opposite signs. In many
cases, for example when a quadratic form is considered, both terms can be
used. Depending on the context however, the conceptual difference between

a residual and a state vector increment should not be forgotten. To avoid any
confusion with the filtered estimate x, already obtained, the smoothed

estimate of X, is denoted as §(o.
3.5.2. Kinematic Model

The concept of a non-perfect initial estimate also has an influence on the
parametric formulation of the kinematic model. Discrepancies between
prediction and observations are not only due to errors in the kinematic model,
but also to errors in the estimate at time t,. Thus the kinematic relation is
applied to unknown state vectors at both epochs t, and t:

DXy + W = X with weight matrix Py,

This relation is already linear, however, to be consistent with the measurement
model it must be written in terms of state vector increments for the epoch t. For
the epoch t,, the full value of the parameters can be considered, because the

state vector X, is only involved in linear relations:

DOX, + W = (X + 8X)
X-w= DX, - 5X with weight matrix P,  (3-17)

Between epochs t, and t, the state vector is affected by the noise w. The

weight attributed to the observation (3-17) only depends on the covariance of
the system noise acting between the epochs t, and t: Py, = Q-

3.5.3. Least Squares Filter / Smoother: Statement

According to the least squares principle, a minimum value for several
quadratic forms should be obtained. The correspondence of the filtered and
smoothed estimate of x, requires that GXOP;OGXO (or SQOTP;O 8)?0) be a
minimum, see (3-15) or (3-16). On the other hand, for an optimal adjustment of
the observations, a solution minimising V'Pv is desirable. Finally, for an
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optimal fit of the change in the state vector with the kinematic model, it is
necessary to keep W'P,W as small as possible.

Generally, all three quadratic forms cannot attain their absolute minimum
simultaneously, as each of the conditions sets other requirements on the
adjustment. The optimal solution can be defined as requiring the overall
minimisation of the quadratic forms:

TPy = vy TPy v, + VIPV + WP, w — minimum (3-18)

Many features of such a filter can be described without actually processing any
data, even without defining the mathematical form that the filter will take. The
following discussion is brought up already here to make it clear that a filter
does not know anything about least squares "optimality", but always outputs
what the analyst interprets as optimal.

From (3-18), it appears that the solution is some form of average between
initial conditions, observations and kinematic model. The relative magnitude
of the elements in the weight matrices Pz, P and Py is of paramount
importance. If a filter is to give realistic estimates, the relative weighting of the
components (a process sometimes referred to as "tuning") deserves particular
attention. The response of a filter for some extreme cases of weighting can
now be described:

(1) Py, =0, thatis, no usable initial state vector. This implies that the state

vector cannot be estimated until observations allow for a first
determination. This case is of little practical importance since an
approximate state vector is generally required for the linearisation of the
measurement model. If the trace of P; tends towards infinity, more

observations will be required to account for possible biases in the initial
parameters. Obviously, the effect of P;, diminishes as observations are

added over time. After a "settlement period", the behaviour of a filter is
mainly influenced by P and P,,.

(2) P =0, afilter could operate just as well without any measurements, and

its role is reduced to predicting future states according to the initial states
and the assumed kinematics. [f the trace of P tends towards infinity, the
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output depends solely on the observations and reflects the full range of
their variations.

(3) Py, =0, renders the kinematic model useless and future states become
unpredictable. If the trace of P,, tends towards infinity, the predicted
estimate is not considered free of errors, as the term © Qg ; @ T remains
in Qxz. However, the filter cannot accommodate unforeseen deviations
from the assumed kinematics and tries, no matter what the observations
indicate, to bring the estimate back to their predefined trajectory.

There is an obvious analogy here with geodetic networks in which different
types of observables are combined, for example directions and distances. To
obtain small residuals on the distances, the surveyor can attribute a large
weight to them. However, the ratio of the residuals a posteriori / a priori may
indicate that some observables have been outrageously favoured. The
adjustment should then be repeated with rescaled weight matrices, until
consistent ratios are obtained for the different types of observables. It must be
emphasised that such a procedure is meaningful only if there is an adequate
number of redundant observations. In any case, it is preferable to use weights
based on experience, if available, rather than try to compensate apparently
discrepant variances computed from very few redundant measurements.

Similarly, after some observations have been processed, an imbalance in the
weighting of the measurement and kinematic models may become evident. A
test of the ratio of the a posteriori / a priori mean errors for the adjusted state
increments as well as for the measurement residuals can be included within
the filter algorithm, and the weights modified accordingly. Filters having this
feature are sometimes called "adaptive" (see Section 3.4.1).

3.5.4. Least Squares Filter / Smoother: Solution

Compared to the Basic Least Squares Filter, a new observation is introduced:
the observation of the new estimate of the initial state vector. In addition, the
relation involving the kinematic model is modified. All these observations can
be fully described by their functional and stochastical models and combined in
a system of parametric equations, using (3-15), (3-17) and (2-5):
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Xo - V, = X, weight Py
X - W = ®Ox, - X weight P,,
vV - v = Adx weight P

The system can be set up in matrix form:

X, Vi, 107y P; 00
x| - [w = | @-1 [5;] weight | 0 P, 0 | (3-19)
v v 0 A 0 0P

The matrices can be replaced by single elements, yielding the standard form
of a system of parametric equations, compare with (2-5):

*

Voo v = A &x” weight P’

The solution follows immediately from (2-6):

* *O*

& = (ATTPAY)TATPY
After back-substitution of &x", A", P" and V'

;(o [ P + Py ® - o'P,, ]1 Piof(o + @TP,X

5% - Py® P, + ATPA [ PyX + ATP %J (3-20)
The inversion of the (symmetric) normal matrix can be avoided if the normal
equations are combined properly. The equivalent derivation based on the
explicit minimisation of the quadratic form is given in Appendix D, leading to
the new estimates of x, and x:

X

Xo = X, + Pg "®TATP (V - AX) (3-21)

(]

X =X + (Py + ATPA)Y (P4 85X + ATPV) (3-7a)

This last relation is the filtered estimate already obtained using the Basic Least
Squares Filter (Section 3.3.2). The formulae for the covariance of the
parameters and residuals derived for the Basic Least Squares Filter still hold,
as does the extension to the Kalman form. The only interest in the above
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development is therefore the new estimate of the initial state vector (3-21).
The expression for the smoothed estimate of x, and its covariance can now

be written in a simpler fashion:

Xo = X, + HV (3-22)
Qi = Qgz, - HQyHT (3-23)
where  H = P; '®oTATP = q;; ®'ATQ,;" (3-24)

The derivation of the expression for the covariance matrix, assuming the
stochastic independence of X, and v, is given in Appendix D.

The improvement of previous parameter estimates through the use of later
measurement has now been demonstrated. The integration of the concept of
smoothing within a least squares algorithm is therefore established. In this
presentation only two epochs have been considered. The extension to more
epochs presents no additional conceptual difficulty, but nevertheless requires
some data manipulations.

3.5.5. Extension to More Epochs, R-T-S Algorithm

The formulae obtained for the smoothed estimate and associated covariance
of X, depend explicitly on the measurements at time t. This need not be the
case, and the difference between the predicted and filtered values of x -- the
so-called improvement -- may have another cause. Appendix E shows that the
smoothed estimate and its covariance can be written as:

Xo = Xo + J(X - X) 3-25)
Qi % = Qzz, + J( Qs - Oxx)JT (3-26)
where  J = Qg3 @' Qyx” (3-27)

These expressions exhibit an interesting feature: they are completely free of
terms explicitly related to the observations; I, Q;,, P and A have been

completely removed. Indeed, this result is quite intuitive: once the filtered
estimate has been obtained, the contribution of the observations at time t is
already included in the filtered state vector and its covariance matrix. Hence,
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there is no need for the observations to be used again in further computations.
In fact, when the smoothed estimate at time t, and its covariance are
computed, only the difference between the predicted X and the filtered x
values at time t matters, and how this improvement of the state vector and its
covariance matrix was achieved is irrelevant. Hence, it is easy to generalise
the filtering and smoothing processes over more than two epochs. It suffices to
consider that the improvement of the state vector at time t includes the
contributions of all the measurements realised at subsequent epochs. In fact,
-an equivalent improvement may also have been obtained with observations at
time t exclusively. The smoothed values at time t can replace the filtered ones
in the smoothing equations (3-25) and (3-26). This is particularly obvious for
the last epoch of measurements, which cannot be improved by further
observations. Thus, the smoothed estimate is made equal to the filtered one.
From then on, proceeding back in time, the other smoothed estimates are
computed recursively, until the first epoch is reached. The process is
described by:

Xo = Xo + J(X - %) (3-28)
Qg = Qi + (55 - Q) T (3-29)
where  J = Qz;®' Oy’ (3-27)

This recursive smoothing algorithm requires the storage of quite a lot of
- information during the filtering process:

- the predicted state vector at all epochs,

- the covariance matrix of the predicted state vector,
- the filtered state vector at all epochs,

- the covariance matrix of the filtered state vector,

- the transition matrix between all update points.

This method of smoothing is often called R-T-S, from the names of the authors
responsible for its first description, RAUCH, TUNG & STRIEBEL (1965). This
smoothing algorithm appears very naturally in the development of the Least
Squares Filter/Smoother. However, all the data required for smoothing may
be obtained from the Basic Least Squares Filter (Section 3.3) -- whether in the
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Kalman form or not -- even though no provision was made for smoothing at
that stage.

3.5.6. Modified Bryson-Frazier Algorithm

Other smoothing algorithms have been developed, although their theoretical
foundations are generally not as straightforward. The original form of a
commonly used procedure was published by BRYSON & FRAZIER (1962).
The "Modified Bryson-Frazier" algorithm (MB-F) can be derived by formulating.
the R-T-S equations with a new set of variables (z, Q,,) where z is the adjoint
state vector and Q,, is the adjoint covariance matrix. Details of the derivation
can be found in BIERMAN (1973). Basically, z and Q,, are propagated over
epochs in a similar fashion as the state vector and its covariance matrix in a
Kalman filter. The recursive formulae are found in WANG (1983), and merely
translated here into our notation.

| (3-30)
X = X - Qg 2 | ‘ smoothing
Qix = Qgz - Qg Qzz Qi ”
Z, = o' 2 prediction
Qz3, = o7 Q;; @
z = (I - KA)TZ + ATD (AS% - V) update
Q;; = (I - KA)TQ; (I - KA) + ATD'A |

z
=
v
i}
>
o
2
o
>
+
R

The smoothing starts at the end of the data, by initialising the adjoint state
vector for the last epoch of measurement update.

]

ATD' (ASX - V) initialisation
33 = ATD-‘lA .

o N

In this form, the MB-F algorithm is unnecessarily complicated. Therefore, a -
rearrangement is proposed in the next section. ' o
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3.5.7. MB-F Rearranged

The form of the recursive algorithm presented in Section 3.5.6 can be
simplified. First of all, the various components can be rearranged to ensure
that epoch subscripts are consistent within each step and reflect the true order
of the computations. In addition, the predicted adjoint state vector, rather than
the filtered one, can be initialised.

(3-31)
z = 0 initialisation
Q;; = 0
X = X - Qg 2 smoothing
Qix = Qzx - Qpx Qzz Az
2 = (I - KA)TZ + ATD' (ASX - ¥) update
Q;; = (I - KA)TQ33 (I - KA) + ATD'A
Z, = o'z prediction
Q;3, = o)l Q;; @
with D = (AQzzAT + Q)

It is not obvious in this algorithm, but the update step involves predicted
residuals and their covariance matrix. This can be shown starting from the
definition of the residuals, where I is a vector of observations and f(x) its
functional model.

V=1-f®

V=1-(fX) + A - X))

V=(-fX) - AX - %)

V =v- AKX (3-32)

The predicted state vector and the vector of measurements are stochastically
independent, hence the covariance marix of the predicted residuals is:

Qi = Q; + ATQA = D (3-33)
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These identities can be inserted in the update step.

(I - KA)TZ - ATy ' v (3-34)
(I - KA Qz; (I - KA) + ATQy;7'A (3-35)

o N
N>
N>
|

The fundamental and very interesting idea of the MB-F algorithm is now more
explicit: a function of the observation residuals is propagated backwards
through the filtered states.

3.5.8. The Adjoint State Vector

Minimum attention has been paid to the content of the adjoint state vector.
Indeed, it is difficult to find an intuitive interpretation, as its relation with the
proper state vector is far from obvious. Nevertheless, an important pitfall
should be pointed out, in order to avoid an erroneous simplification: the adjoint
state vector cannot be considered as an increment of the state vector. This is
easily demonstrated by looking at the units of the quantities contained in each
vector. A state vector containing a position, a velocity and an acceleration in
one direction is considered.

X m
X =| x| ~| m/sec
X

m/sec®

According to the smoothing step, consistency of the units is achieved with:

Z4 1/m
zZ =2 ~ [sec/m}
2, sec?/m

because the adjoint state vector is premultiplied by the covariance matrix of
the state vector. This unusual set of units indicates that little insight can be
gained from the values contained in z. Therefore, the adjoint state vector will
be regarded as a mere computational convenience.
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3.6. NEW SMOOTHING ALGORITHMS
3.6.1. Using Filtered Residuals

In spite of the elegant concept inherent in the Modified Bryson-Frazier
algorithm, its present formulation has an important drawback: the update step
requires the predicted state vector and its covariance matrix, like the R-T-S
algorithm. Intuitively, it must be possible to deal only with filtered estimates
when smoothing. Therefore, a change in the formulation of the update step is
proposed. The idea is to replace the predicted observation residuals with the
filtered ones. (3-32) is recalled and a similar relation is developed for filtered
residuals.

V =V - ASX (3-32)
V =V - ASX (3-36)
Thus V=vV+AX-ANX=V+ AX - X) (3-37)

The following identities are proven in Appendix E, using the relations between
predicted and filtered quantities established for the Bayes or Kalman filter.

A'D'V = ATPV (3-38)
A'D'A = ATPQy; PA (3-39)

The smoothing algorithm is therefore rewritten:

(3-40)
z = 0 initialisation
Q35 = 0
X = X - Qu 2 smoothing
Qix = Qzx - Qpx Qzz Qzz
z = (I - KA)'Z - ATPV update
Q;; = (I - KA)TQy; (I - KA) + ATP Q;; PA
Z, = o' 2 prediction
Qs 3, = o' Qy; @
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3.6.2. Using Smoothed Residuals

A close look at the algorithm (3-40) reveals that the smoothing step is
performed before the update of the adjoint state vector. This is because only
subsequent measurements have an influence on the difference between the
filtered and the smoothed estimates, as measurements at epoch t have
already been accounted for in the filtered estimate at time t when filtering.
The comparison of the two sketches in Figure 3.5 illustrates that concept.

Filtering Smoothing
observations observations
¢ .
filtered point smoothed point

3.5: Observations Included in the Filtering and Smoothing Adjustment Steps

Therefore, smoothed residuals, instead of filtered ones, can be computed and
used in the update step. It suffices to proceed with some substitutions. (3-36)
is recalled and a similar relation is developed for smoothed residuals.

V=V - ASX (3-36)
V=¥ - Ask (3-41)
Thus V=V + AdX - ASX =V + AKX - %) (3-42)

The substitution of the filtered residual in the update step of (3-40) using (3-42)
leads to a interesting simplification of the expression for the updated adjoint
state vector:

z=3%-ATPv (3-43)
Details of the derivation are given in Appendix E. The inclusion of the

covariance matrix of the smoothed state vector follows the same principles,
and yields:
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Q;; = Q33 - ATKTQy; - Q33 KA + ATPQ;; PA (3-44)

The simplification for the covariance matrix is not as dramatic as for the adjoint
state vector. This is due to the correlation between the predicted adjoint state
vector and the smoothed state vector. Comparing with the propagation of
variances in (3-43):

Q;; = Qz - ATPQg; - Q3 PA + ATP Q;; PA (3-45)
The cross-covariance terms can be set equal:

Q;; PA = Qy; KA
Recalling the alternative expression (C-9) for the Kalman gain matrix:

Q;; PA = Q35 Q;; ATPA
Hence Qzi = Qy3 Qup AT (3-46)

There is nothing strange in Z and v being correlated, as the predicted adjoint
state vector Z is used to compute the smoothed state vector, from which the
vector of smoothed residuals v is obtained. The covariance matrix of the
adjoint state vector can be computed as:

Q5 = Qz; - ATPAQy; Qz; - Oy Qz; ATPA + ATP Q3 PA  (3-47)

This expression looks more complicated than previous ones, but every single
component is readily available. Furthermore, the third term on the right hand
side is simply the transpose of the previous term.

The recursive smoothing algorithm becomes:
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(3-48)

z = 0 initialisation

35 = 0
X = X - Qu Z smoothing
Qi = Qix - Oz Qzz Qux
z = Z- APV update
Q;; = 55 - C - Cl + ATPQ;; PA

where C = ATPAQy; Q33

Z, = o'z prediction
Q;3, = o7 Qz; @

The use of the smoothed residuals in the smoothing algorithm presents a
definite advantage. As in any least squares estimation procedure, the
assessment of the results is based on testing the actual residuals against their
stochastic model. Hence the calculation of v and Qyy required in the
proposed update step is by no means a waste of effort: it provides the basis for
a sound evaluation of the final results. This recursive smoothing algorithm
yields the same results as the more common R-T-S algorithm, as proven in
Appendix D.

3.6.3. Storage Requirements

The data required for the R-T-S algorithm has already been listed in Section
3.56.5. For the new recursive smoothing algorithm using smoothed residuals,
the following information must be stored during the filtering process:

- the observations at all epochs,

- the filtered state vector at all epochs,

- the covariance of the filtered state vector,

- the transition matrix between all update points,

- the design and weight matrix of the observations at all epochs.

Since optimal smoothing is essentially a post-mission procedure, off-line
storage of these quantities is sufficient. In many cases, and this is also valid
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for the R-T-S algorithm, the transition matrix can be recomputed during the
smoothing process at each epoch. With respect to storage, the main
difference between the two algorithms is that the new smoothing algorithm
requires the raw data instead of the predicted values of the state vector. The
storage of the observation data, rather than the predicted state information,
offers an important advantage: the filtering process can be repeated after the
completion of the survey, because all the required data are available. In
addition, this allows for some changes in the allocation of the weights.
Furthermore, the design and the weight matrix of the observations can
generally be recomputed when smoothing, using a set of predefined
parameters. For a computer implementation, three data sources are
necessary:

+ the observation file -- observations at all epochs,

+ the filtered data -- filtered state vector and its covariance matrix at all
epochs,

* the definition file -- a set of constants for the calculation of the design,
weight and transition matrices.

It should be noted that the definition file is already required for filtering.
Indeed, even the volume of storage compares favourably with the R-T-S
algorithm. The data-flows through the filter and the smoother are detailed and
compared in Chapter 5. The recursive algorithm using the smoothed residuals
was selected for DYNAMO.
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4. NAVIGATION MODELS

In this chapter the mathematical expressions for the kinematic and
measurement models suitable for navigation applications introduced in the
previous chapters are derived. Emphasis is on the presentation of a variety of
kinematic models that can be used, because such modelling is less familiar to
surveyors. For this reason, some elements of the theory of random processes
are introduced. The following presentation is restricted to the navigation
concepts actually applied in DYNAMO. For a more in depth treatment of least
squares filtering and the theory of random processes, the reader is referred to
LIEBELT (1967) or GELB (1974).

4.1. RANDOM SEQUENCES AND FUNCTIONS
4.1.1. Traditional Assumptions

Surveyors are accustomed to dealing with random variables. Traditionally,
some assumptions are made regarding the errors affecting the measurements:

* gross errors can be eliminated,
+ there are no systematic errors arising from improperly modelled
observations.

Hence, only random errors are believed to remain in the data. They affect the
measurements at discrete epochs, thus forming a random sequence.
Additional assumptions are usually made concerning the measurement errors:

+ their expectation is zero,

 their distribution is Gaussian,

+ their standard deviation is known,
* they are independent.

All these assumptions are reasonable, as long as the functional model of the
measurements is accurate. The analysis of the precision of a geodetic
network is generally based on these assumptions. Hence a possible error in a
particular observation does not affect any other observation. In Figure 4.1,
measurement errors relative to their standard deviation (that is, normalised)
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are plotted together with their Gaussian probability distribution function p(v).
The random sequence is illustrated by the dots at each discrete epoch.

Figure 4.1: Gaussian Random Sequence / Noise

When errors in the measurement data larger than a certain threshold (for
example > 3 o) can be identified, the corresponding observations are removed
from the data. In other words, the tails of the bell curve are truncated.
However, for the sake of simplicity, the probability distribution function is
generally still considered Gaussian.

The problem is more difficult when it comes to kinematic systems. If one over-
estimates the speed of his car, he will arrive later than expected at the
destination. Unlike errors in the azimuth and distance to a trig station, the
errors in the speed and position of a vehicle, for example, are physically
correlated. In the framework of Bayesian Least Squares (Section 2.4.6), this
correlation between different parameters can be accounted for by introducing
off-diagonal elements in the covariance matrix of the a priori estimates of the
parameters. When filtering, such correlations must be included in the
covariance matrix of the predicted parameters.
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For a moving object, the uncertainty in position grows with time, unless a new
measurement is made and a position fix obtained. This growing uncertainty is
expressed as a noise that affects the position parameters, but which may also
affect the velocity and acceleration terms. The noise simply reflects the fact
that the motion cannot be perfectly modelled. However, unlike measurement
errors that only exist at discrete epochs, the position of a moving object is
continuously affected by noise, even if the measurements are made at discrete
epochs. An example of random noise is illustrated by the continuous function
in Figure 4.1. A proper understanding and modelling of this underlying
continuous noise requires elements from the theory of random processes,
which is an extension of the probability theory familiar to surveyors. However,
the theory of random processes has tended to be presented from the
perspective of electrical engineering. Many applications can be better
described in the frequency domain and conversions into the time domain
involve an extensive use of Fourier transformations. Such topics are covered
in numerous textbooks (for example, PAPOULIS, 1962), and this section
introduces some concepts at a rather intuitive level.

4.1.2. Useful Random Functions

A function is referred to as being random, as opposed to "deterministic", when
its value is only known in a statistical sense, that is, only with a certain
uncertainty. The probability distribution of the noise may be unknown or too
complex to express. Thus the characteristics of the noise are defined through
some model of how it is generated and how it evolves in the course of time.
Often, the underlying probability distribution function could be determined, but
is not explicitly required. The large acceptance of the Kalman filter is largely
due to the fact that it allows for an expression of the system noise in the time
domain, as it is perceived by the widest category of potential users. Amongst
all the possible random functions, only a few are relevant for the cases of
interest considered here. Essentially, 3 attributes are desirable:

a) Stationarity -- By definition, a random variable x is stationary if its

probability density function p(x) is time invariant. In other words, the
probability of x taking a particular value x, isthe same at all times, that is:

p(Xity) = p(xy) v

80



The most interesting consequences are reflected by the behaviour of the
moments of the distribution:

+o00
Expectation:  E{x(t)} = [x, p(x,) dx, = E{x)

Correlation:  Ryy(t;,t)) = Ryylta-ty)

The first moment is independent of time and the second moment only depends
on the time elapsed between the two epochs. In the particular case where x
and y are the same function, the term auto-correlation is used, otherwise it is
referred to as cross-correlation. The covariance function is:

400 400

Qultit) = [ [ (xq - E{x}) (y2 - E{y}) p(Xy.ts; Yarto) dx, dy,

= Ry (ti.ty) - E{x} E{y}

If the expectation of the noise(s) is zero, the correlation is equal to the
covariance:

Qxy(thtz) = ny(thtz) -0 = ny(t1,t2)

This is such a common assumption that, in practice, the word auto-correlation
is used even when auto-covariance is actually meant.

b) Linearity -- It is very difficult to calculate the joint probability density
function of samples of a linear combination of random variables from their
probability density functions: ‘

+00 400

Pzita-ty) = [ [(ax; + by,) p(xyts; Yatp) dx, dy,

-0 -OQ

In fact, it is only simple when the probability density functions of x and y are
Gaussian. In this case, the distribution of the output z is Gaussian, even if
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inputs are correlated. This property is commonly used in geodesy: the
coordinates estimated from a linearised least squares adjustment have a
Gaussian distribution, with mean and variance provided by the computations.
This nice result is indeed a consequence of the Gaussian distribution
assumed for the errors in the measurements, because the adjusted
parameters are expressed as a linear combination of the measurements, for
example through the expression (2-6):

8x = (ATPAYTATPV

c) Markovian -- This attribute is used with respect to a random function if
its value at a certain epoch depends on the behaviour of the function during a
limited preceding interval. Thus, one could say that such a function has a
limited memory. In the discrete formulation, the function is replaced by a
sequence and the concept is easier to visualise. Markovian sequences are
classified according to their order:

« order 0; the value of the variable at any epoch is independent of the
value at any other epoch. In other words, even if the variable is estimated
at one epoch, its value at a subsequent epoch cannot be predicted.
Such a random sequence is called a "white sequence”.

« order 1; the variable at one epoch is only related to its value at the last
epoch. An example of a first order Markov process is the "random walk",
where the variable is modelled as the sum of the values of a white
sequence at different epochs.

« order 2; the variable at one epoch is related to its values at the two last
epochs. This is the case of a sequence where the variable is modelled
as the sum of the values of a random walk variable at different epochs,
and generally referred to as "second order random walk".

* andsoon...

In the continuous formulation, the "white sequence” is replaced by a "white
noise". For order 1, the variable at the last epoch is replaced by the first
derivative of the random function. For order 2, the variable at the two last
epochs is replaced by the first and second derivatives of the random function,
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and so on. A first order Markov process is defined by the first order differential
equation:

X + oty x = w (4-1)

where w is white noise. The second order Markov process is defined in a
similar fashion:

X + 20 X + 02()x = w (4-2)

and so on, see GELB (1974) for further details. White noise can be defined as:
x = w, and hence can be thought of as a zero-th order Markov process. The
random walk is obtained by setting: o4 = 0 in (4-1), and the second order
random walk is obtained by setting: o, = 0 in (4-2). Note that the derivative of
a white noise function is not defined, because changes in the white noise
value can occur within an infinitely small time interval, thus yielding infinite
values for the derivative.

Each of the attributes presented above -- stationary, Gaussian, Markovian -- is
independent of the others. For example, white noise does not necessarily
have a Gaussian distribution. The processes described by (4-1) and (4-2)
become respectively first and second order Gauss-Markov processes if the
probability density function of the white noise w is Gaussian. In such a case,
the probability density function of x is also Gaussian. In addition, these
processes are stationary if the coefficients of the differential equation (that is,
o and o) are time invariant.

4.1.3. Examples of Random Processes
Figure 4.2 shows some examples of random processes frequently used for the

modelling of time-varying physical phenomena. G-M stands for Gauss-Markov
and ss for steady state.
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Figure 4.2: Some Random Processes. Adapted from GRANT (1988)

The variance sketches indicate the evolution of the uncertainty in the random
variable in the absence of measurements. Three types of variance behaviour
can be identified:

« constant -- this characteristic is exhibited by both the constant
parameter and the white noise process. However, the nature of the
variance in these two cases is very different, as indicated by the auto-
correlation function. For a constant parameter, no noise is added to the
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4.2.

initial uncertainty. For a white noise process, the values of the parameter
are uncorrelated over epochs. The difference appears clearly when a
measurement is made: the determination of a constant parameter will
reduce its variance at subsequent epochs, but such a reduction in the
uncertainty does not take place in the case of a white noise process.
However, it must be pointed out that a white noise process is completely
unpredictable gnly if the variance is infinite. In other words, a parameter
affected by a very small white noise may, under certain circumstances, be
modelled as a constant. For example, repeated theodolite readings of a
vertical angle generally form a white noise sequence, but the vertical
angle is modelled as a constant in the network adjustment.

bounded growth -- noise is only added until the system has reached a
so-called "steady state". The variance level of the steady state and the
time necessary to reach it depend on model parameters and must be
matched to the problém at hand. This class of models is useful for
systems which, although subject to certain fluctuations, are forced to find
a new equilibrium. This happens when there is a "recall" effect as soon
as the value of the parameter deviates too much from a nominal value, for
example the height of an object floating on the ocean.

unbounded growth -- noise is constantly added to the system,
irrespective of its state. This model is generally appropriate for sea
navigation over limited time spans. |If the ship deviates from the intended
track, no external force will generally limit the growth of the horizontal
deviation.

KINEMATIC MODEL

4.2.1. Functional and Stochastic Components

In the previous chapter, the transition matrix @ and the covariance matrix of the
system noise Q,,,, were introduced in the filter expressions. However, no
attention was paid to the content of these matrices. The derivation of both
matrices for a general case is given, and the details of the implementation in
the software package DYNAMO are presented.
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From the prediction model developed in Section 3 for the state vector and its
covariance matrix, the role of ® and Q,,, can be shown more precisely. The
superscripts ~ and "~ stand for "predicted" and "adjusted" respectively, and
the subscript 0 denotes the previous epoch.

» the functional model expresses the reiationship between position
parameters at different epochs, usually adjacent ones. It is represented
by the prediction equation (3-2):

The functional model is therefore embodied in the transition matrix ®. For
each dimension, the content of the state vector can be specified by the
degree, which is the highest derivative of a parameter involved. For
example, the functional model of x has degree 2 when x contains
parameters x, X and X.

+ the stochastic model reflects the fact that the prediction cannot be
assumed perfect. It is represented by the covariance matrix of the system
noise Qy,, Which is added to the covariance matrix due to the predicted

term at each step, see equation (3-3):
Qzx = @ Q;(O;(OCDT + Quuw

For each dimension, the stochastic model can be specified by the order,
which is the derivative affected by white noise. For example, the
stochastic model has order 2 when the acceleration is affected by white
noise.

In this way, the inclusion of the kinematic model in the least squares
adjustment is relatively simple. However, the formulation of the model and the
derivation of the matrices are a major difficulty, as they depend on the time
behaviour of the system parameters and assumptions made concerning the
characteristics of the system noise.

Examples: In GPS data processing, a relationship between estimates at
different epochs is often assumed. Three options of modelling a time
dependence of a variable are possible in least squares adjustments:
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(a) estimating the variable as a constant, that is, time invariant.

(b) treating all measurement epochs separately. This can be realised by
considering an independent parameter for each epoch, or a white noise
process with infinite variance. In both cases, an approximate value for
the parameter is generally required for the linearisation of the
measurement model, but no weight is attributed to this approximate
value. If an estimation of these parameters is not required, they can be
eliminated from the normal equations by various partitioning techniques
(KING et al, 1987). The same result can be achieved by differencing
observations and eliminating common biases.

(c) expressing the variable as a time dependent function with constant
coefficients. The use of polynomials is widespread for modelling GPS
satellite clock errors. However, for reasons already mentioned in Section
2.3 when comparing static and kinematic approaches for GPS
navigation, the use of polynomials is not considered here.

(a) and (b) are examples of extreme kinematic models: constant and random
distribution of the parameters at different epochs. Of course, the reality
generally lies somewhere in between. Typically, the offset of a clock may be
large, but the clock drift is contained within narrow limits. This knowledge can
be expressed as an a priori guess of the auto-correlation function of the
relevant parameter.

4.2.2 Classification of Kinematic Models

From various investigations, for example MEIJER (1983) and CHISHOLM
(1987), it appears that the variety of filters devised for satellite navigation is
limited. The mathematical algorithms used -- many of which are unfortunately
unpublished -- are based on either the "constant velocity" or the "constant
acceleration" assumption. In fact, the velocity or the acceleration are not
assumed to be strictly time invariant, but affected by a white noise that has a
small variance. In an attempt to classify the kinematic models systematically,
the problem of parameter estimation in kinematic mode is presented in the
general frame of system analysis.
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Input—(_ System —— Output

The moving object is the system, the movement is considered the input and
the measurements are regarded as the output. This description is not as
abstract as it may seem because the movement of the object is actually
perceived through the measurements. The relation between the input and the
output is expressed by the measurement model whilst the system reaction to
certain inputs, for example the change in position due to a change in
acceleration, is expressed by the kinematic model. This can be characterised
as follows:

Input = Position parameters
System = Vehicle
Output = Noisy measurements
a, . Vo Po
| >4
 {
w, w, w, v

Figure 4.3: Generation of Measurements

Deterministic inputs, for example initial conditions, enter the system from the
top: a, v and p are the acceleration, velocity and position respectively. Noise
enters the system from the bottom: w is the system noise and v is the
measurement noise. The switch is closed when a measurement is made.

We know: « how the system reacts to certain inputs
the measured output

We want:  « the input
» the uncertainty on the input
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To estimate the parameters, a reversed system is therefore appropriate:

Input = Noisy measurements
System = Modelled vehicle
Output = Estimated parameters
— (G )— —
p v a
prediction
v Wy w, w,

Figure 4.4: Estimation of Parameters

The feedback loop in Figure 4.4 shows how estimated parameters (superscript
") are used to predict the next position, which is then merged with the new
measurements. Predicted system and measurement noises (superscript ~),
according to the predefined stochastic models, are added at each step.

A convention regarding terminology is adopted here: the noise entering the
system is called driving noise. In the models considered in this thesis, the
driving noise is always white, Gaussian, has zero mean and enters the system
only through one derivative, called the order. Through integration, the driving
noise is propagated to the lower derivatives. For example, the noise on the
position is regarded as a consequence of the noises on the velocity and
accelerations. The noise on the position may however no longer be white.
See discussion following Figure 4.5. The total uncertainty in the system, that
is, including the noise induced in lower derivatives through integration of the
driving noise, is referred to as system or process noise.

Because the derivative of white noise is not defined, the degree cannot be
larger than the order, though it can be smaller (see Figure 4.5). For example,
considering that the acceleration is white noise, one may estimate it (order 2
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and degree 2) or not (order 2 but degree 1). In both cases, the assumed
uncertainty on the acceleration is propagated to the position, but the
acceleration itself is not used to predict the next position. In other words, when
navigating along a curve, the predicted position will be on the tangent to the
curve at the last estimated position, and hence may be biased. For the
acceleration to be propagated, the order must be increased (for example,
order 3 and degree 2), so that the acceleration is no longer a white noise. In
this case, it is possible to predict a position along a curve. However, a
possible random error in the estimated acceleration will cause an error in the
predicted velocity and position. The dilemma underlying all kinematic
modelling is therefore: estimating higher position derivatives involves the risk
of propagating wrong random values, whilst the opposite may introduce
systematic errors (unmodelled biases).

The kinematic models considered may be classified according to both their
degree and order. For example, considering the vector of parameters x:

Degree = 1 means that x and x are estimated (but not X or higher
derivatives)

Order 3 means that X is white noise

Order

Degree

Figure 4.5: Possible Combinations of Degree and Order (*)

Another important criteria for the specification of the kinematic model is the
intensity of the driving noise, given by the standard deviation of the white
noise. Of course, a larger value for the driving noise will increase the
uncertainty in the lower derivatives.

With a minimum of added complexity, other kinds of noises other than white
may be considered. For example, many physical processes can be suitably
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modelled using the first order Gauss-Markov process, which has auto-
correlation function:

RXX = cs2 e IAtI/ T (4_3)

where At is the time between two epochs and T is the correlation time,
that is, the time interval for which the noise has an average auto-correlation of
e! = 0.368. This exponentially correlated noise is often referred to as
"coloured noise" (BIERMAN, 1977). A short correlation time allows for a large
change in x between adjacent epochs, whilst a long correlation time indicates
a strong correlation over time. The extreme cases are white noise for zero
correlation time and random walk for infinite correlation time. Indeed, for any
correlation time, coloured noise resembles a random walk for time intervals
such that IAtl << T, and white noise for time intervals such that [Atl >> T.
Coloured noise can be generated on x by considering white noise on x and
the linear relation:

X=-(1/T)x + w (4-4)

where w is the driving noise. (4-4) is a special case of (4-1), where a,(t) is
replaced by the time invariant coefficient 1 / T. Hence, if white noise on a
position parameter is to be replaced by coloured noise, it suffices to set the
order to one and include the appropriate correlation time in the system
equation. In summary, four parameters have been retained to specify the
kinematic models used in DYNAMO:

» the degree,

» the order,

* the standard deviation of the driving noise,
* the correlation time.

Using this classification, the particular models presented in Section 4.2.1 are
described by:

(a) constant bias: degree 0, order 1, standard deviation 0.
(b) random bias: degree 0, order 0, standard deviation o.
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The correlation time is irrelevant in both cases, because there is no noise in
(a) and the (white) driving noise in (b) is never integrated (order 0). A wavelike
movement however may be approximated by a first order G-M process, for
example:

coloured noise: degree 1, order 1, st. dev. 0.1m/sec, corr. time 10sec.

The choice of degree 1 implies that the velocity, although it is affected by white
noise, will be estimated. The principles used to derive the corresponding
transition and system noise covariance matrices are discussed in Section
4.2.3.

4.2.3 Transition and System Noise Matrices

The state vector x usually contains various parameters pertaining to a number
of dimensions, such as coordinates, satellite and receiver clock offsets
together with some of their time derivatives. The time behaviour in each
dimension is usually expressed as a differential equation, and to illustrate this,
a one-dimensional, third order model is considered. The coefficients of the
time derivatives are assumed constant. For a situation that does not meet this
criteria, it is generally possible to obtain another relation with constant
coefficients, at least in an approximate manner, through further differentiation:

')Z. + 8232 + a1).( + doX - W = 0 (4'5)

One n-th order linear differential equation may be written in the form of n first
order linear differential equations (GELB, 1974):

[~ o 7]
X 0-10 X 0 0
00-1} MM
ag a4 a . -w 0
[ x | X
—‘-1
X o 1 07 (* 0
xl = |0 0o 1| |x]| + [o] (4-6)
oee -dg -84 -4 o w
| X X
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This explicit form shows the content of the state vector x, and can be
compressed using matrix notation:

X = F X + w (4-7)

In this matrix notation, the following development is also valid for multi-
dimensional problems, see Appendix F for more details.

The matrix F describes the relations between the derivatives of a parameter,
that is, the equations of motion. For many systems of interest, w can be
described as a random forcing function, and expressed as a linear
combination of white noise random processes Gu, where each element of the
vector u is an independent random function and the matrix G describes the
effect of u on the system parameters. In other words, u is the driving noise and
G specifies where the driving noise enters the system. Hence, (4-7) can be
expressed as:

X = Fx + Gu (4-8)

An explicit form of (4-8), as well as the following derivation, are presented in
full in Appendix F. Two assumptions are stated for the cases considered:

* F and G are time invariant, that is, the system is time invariant
* U is a vector of independent, white, Gaussian variables, with mean zero.

These assumptions are not as restrictive as they may appear at first. The
condition that F and G are time invariant can always be achieved by breaking
up the total time interval into pieces for which this condition is satisfied. For the
adjustment of GPS observations, the system behaviour between two
measurement epochs is relevant. In this context, F and G are considered as
step functions that are constant between measurement epochs. The
assumption that the forcing function Gu is random with mean zero over a
certain time span is reasonable if all major error sources have been properly
modelled. The solution of (4-8) is (LIEBELT, 1967):

t

X(t) = Oltl) X(to) + [ D(t,7) Gu(c) dr (4-9)
b
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and the transition matrix satisfies the equations:

D(tpty) = 1

and (D(t,to) = F (D(t,to)

LIEBELT (1967) presents a solution based on numerical integration:

Dtty) = I + Ft-to) + %FF (t-t)2 + %!-FFF (t-t)° + ... (4-10)

Some complex models require purely numerical solutions, but for those
discussed here, an analytical expression can be derived for the transition
matrix, and this results in considerable computer time savings. Often, the
Taylor series expansions obtained by numerical integration can be replaced
by elementary analytical functions, for example exponential or trigonometric
forms (see Appendix F). An alternative analytical method, using the inverse
Laplace transform, is outlined in SCHWARZ (1983).

Assuming the stochastic independence of x(t,) and u(t), V t, <t <t, the
propagation of the covariance matrix of the state vector is given by:
(4-11)
t t
Quult) = D(tto) Quxlte) @T(tto) + t | t [@(ty) G Efu(t,)u(t,)} GT @7 (t,1,) dt, dr,
0 0

As all elements of u are white noise random processes with zero mean, the
expectation of the product of the random values of u at different epochs 1, and
1, is (see Section 4.1):

E{u(t,)uT(t,)} = Q'yy 8(1, - 1y) (4-12)

where Q' is the constant spectral density matrix of u(t) and &(t, - 1,) is the

Dirac delta function (GELB, 1974). Considering the scalar white noise process
u, there is a simple relation between the standard deviation of the noise o, and
the spectral density q',;:

Guz = Quu 0(T2 - 7y) (4-13)
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However, the dimensions need particular attention: for example, a standard
deviation of 5m/sec implies a spectral density of 25m?/sec. With the white
noise assumption for all elements of u(t), and substituting in (4-11), the

covariance matrix of the state vector can be obtained with a single integration:

t
Quxlt) = Oltto) Quulte) @T(te) + [@(11) G QW GT@T(t7)dt  (4-14)
to

In the discrete case where v is a white random sequence, the expectation of a
product of variables becomes:

E{v(t))v(1p)} = Quy (1, - 1) (4-15)

where Qg is the constant covariance matrix of v(t) and §(t, - 1) is the
Kronecker delta function. Consider now a linear function of the random
sequence Vv, the expectation of a product becomes:

E{F(t,ﬂ)V(T1)‘VT(12)FT(t,T2)} = I'(t,74) Quy FT(t:Tz) 8(T5 - T4) (4-16)
Thus, the expression for the covariance matrix of the state vector simplifies to:
Quxlt) = Dltito) Quulto) DT (tto) + ilt.to) Quy T (L) (4-17)

Equation (4-17) indicates that the predicted covariance has two parts: the
propagation of the covariance at a previous epoch and a term due to the
propagation of the driving noise. In the continuous case, by analogy and for
convenience, expression (4-14) is sometimes also found in the literature.
However, an expression for I'(t,t,) is not readily obtained, and the covariance
of the system noise must be computed directly from the integration:

t
Quut) = T(tt) QuuTT(tt) = [@(t1) G Q' GT@T(t,1) dr  (4-18)
t0

In Appendix F, the method presented here is applicable for kinematic models
of degree up to 2 and order up to 3.
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4.2.4 The GPS Receiver Clock

Very few results based on practical experiences have been published on the
kinematic modelling of GPS clocks. Different models are considered here,
which include an initial synchronisation error and/or a drift of the clock:

1)

constant bias: only the initial synchronisation error is considered. This
model is adequate if an external frequency standard is used (for example
an atomic clock) or if a very short period of time is considered. It is also
frequently used when less than 4 satellites are simultaneously visible.
The drawback of this model is that even a small clock offset will cause
large systematic errors in the position parameters by introducing a bias in
all ranges.

white noise: receiver clock offsets at different epochs are uncorrelated.
If an infinite variance is considered for the white noise, the receiver clock
offset becomes unpredictable. Indeed this model is no model, its choice
means that no attempt is made to relate clock offsets over time. This
model can be justified with different arguments. The receiver clock is
reset on GPS time periodically through a navigation fix. As modelling
residuals are scaled by the speed of light, no kinematic model is better
than an approximate one. This is the standard approach when there is
enough redundancy to solve for a receiver clock parameter at each
epoch. However, as the clock offset need not be explicitly estimated
(nuisance parameter), it can be eliminated from the computations. This is
generally achieved by differencing the observations between satellites
(KING et al, 1987).

random walk: the deviation of the frequency of the oscillator with
respect to its nominal value is assumed to be a white noise random
process. A quartz crystal oscillator, as implemented in most receivers,
has a stability better than 10-10 over a few hours, that is, a deviation
smaller than 1usec is expected after 104sec (= 3hrs). Hence, the spectral
density of the driving noise is 10-16sec2/sec (=(1usec)2/104sec, see
Appendix F), which corresponds to a standard deviation of 10-8 sec/sec
for the white noise on the clock rate. Scaled by the speed of light, this
represents 3m/sec. Indeed, the movement of the object can generally be
predicted much better than that. If the receiver clock offset is not as well
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behaved as the position, that is less predictable, the contribution of a
kinematic model for the receiver clock to positioning may just as well be
neglected. For a reasonably good satellite geometry, simulations have
shown that the random walk model with a driving noise of 3m/sec for the
receiver clock offset can be replaced by a white noise model with infinite
variance: estimated positions remain almost unaffected. To obtain a
significant improvement in the position of a GPS station by modelling the
receiver clock offset, it is necessary to assume a smaller standard
deviation for the driving noise. This in turn may introduce major biases in
the position if the kinematic model proves to be over-optimistic, that is, the
frequency of the oscillator is not as stable as assumed.

second order random walk: the frequency drift of the oscillator is
assumed to be a white noise random process. In this case, a stability of
10-10 over a few hours corresponds to a spectral density of 3-10-24
sec?/sec3, which corresponds to a standard deviation of 1.7-10-12
sec/sec? (=(1usec)2-3 / (104sec)3, see Appendix F) for the white noise on
the frequency drift. Scaled by the speed of light, this represents an
acceleration of 5-10-4 m/sec2. Over a period of 104 sec, this model is
equivalent to the random walk model presented above, but closer epochs
are more strongly correlated.

The comparison of the models is summarised in Table 4.1.

Table 4.1: Comparison of Kinematic Models for the GPS Receiver Clock

Oscillator White Noise Equivalent Model Variance
Status on Coordinate Growth
perfect none static constant none

unstable offset random white noise | none (var=c)

freq. offset frequency ['const. velocity"| random walk linear
frequency drift| frequency "constant 2nd order 3rd order
drift acceleration" | random walk | polynomial

All these models are illustrated in Figure 4.2. Two types of models also shown
in Figure 4.2 are considered inappropriate for the GPS receiver clock because
of the bounded growth of their variance:
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» white noise with finite variance
+ first order Gauss-Markov (coloured noise)

If an oscillator is not perfect, nothing will maintain or "recall" its frequency to a
nominal value during a GPS tracking session. Hence the offset may become
very large (when scaled into distance !).

A sound understanding of the behaviour of the system is therefore required of
the filter designer. The choice of the models must be adapted to both the data
type and the motion. In other words, there is no one general purpose optimal
filter.

4.2.5. Reference Coordinate System

Theoretically, the modelling of the motion can be done in any coordinate
system, as long as the correlations between the noises affecting the various
directions are properly accounted for. However, there is an obvious
advantage in choosing a reference system such that stochastic independence
can be assumed for the noises affecting the motion along different coordinate
axes.

X

Figure 4.6: Earth Centred and Local Topocentric Coordinate Systems

In the case of a ship, the deviation of the latitude and longitude from the
intended route can be significant, but will grow slowly. For the height
determination, a different behaviour is expected: sudden changes are
possible, but the variations are bounded within a very limited span defined by
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the wave motion. Only two horizontal dimensions are desired for many
navigation applications. With GPS however, the height must be considered, at
least in the measurement model, even if only as an unadjusted or nuisance
parameter. In this example, clearly the kinematic model is easier to describe
in terms of Easting, Northing and Vertical (ENV) rather than in an Earth
Centred, Earth Fixed (ECEF) system such as WGS 84 (XYZ), as illustrated in
Figure 4.6. Indeed, it is more convenient to transform the measurement model
into the local topocentric system than transform the kinematic model into the
ECEF system in which the satellite ephemerides are expressed. Both
coordinate systems can be selected in the DYNAMO program, for the input of
the models and the output of the coordinates.

4.3. MEASUREMENT MODEL

This component of the estimation procedure is specific to GPS. The principal
types of GPS observables used for positioning were introduced in Chapter 1.
For the functional models of the pseudo-range and phase-rate, one receiver
and one satellite are considered in all the derivations. Operating
simultaneously with several receivers may allow for simplifications in the
measurement model. Strategies for filtering in the differential mode will be
presented in Section 4.4. However, a small discussion of the intricate role of
time in GPS measurements is first necessary.

4.3.1. Time and GPS

Unlike most distance measurements used in geodesy, including EDM and
lunar or satellite laser ranging, where the signals are transmitted and received
by the same instrument with the aid of a reflector at the target, GPS
measurements are "one-way" ranges. This means that a possible offset
between time systems maintained by the transmitting satellite and the receiver
must be accounted for. However, time is present in GPS positioning under a
number of other guises and is by far the most difficult concept to grasp.
Several time scales are explicitly or implicitly involved in GPS, including:

 The orbital time scale -- although this is often overlooked, time exists

even without oscillators: a time scale can be defined simply by the orbits
of the satellites, according to Newton's laws of motion.
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*+ GPS Time (GPST) -- defined by the Control Segment of the GPS
system. The orbital elements contained in the Broadcast Ephemeris are
functions of GPST. Indeed, GPST itself may not perfectly match the
orbital time frame, and this may require modelling when the ultimate
accuracy is required (for example, for some crustal deformation surveys).
For GPS navigation however, possible differences between GPST and
the orbital time scale can be neglected.

+ The satellite clock -- time-tags are generated initially by the satellite
clock, then encrypted in the transmitted message. Each satellite clock,
together with the correction parameters contained in the Navigation
Message, is an (imperfect) realisation of GPST.

+ The receiver clock -- When tracking commences, the GPS receiver
clock is (imperfectly) synchronised with GPST using the time-tags from a
satellite (together with the broadcast correction parameters) and the
estimated transit time of the coded message. Then the receiver
maintains its own time scale.

* The time datum -- chosen as reference for the modelling of the
observations. For this purpose, a satellite clock, a receiver clock, an
average of different clocks or even an external frequency standard may
be used. In other words, a time datum must be defined. This is
necessary to ensure the consistency of the models for observations
involving a common satellite or a common receiver.

A detailed discussion of the problems caused by possible discrepancies
between the various time scales implicit in GPS positioning can be found in
GRANT et al (1989). For GPS navigation, two levels of sensitivity to time
offsets may be distinguished:

(1) time datum versus GPST -- an offset simply results in the computation of
wrong positions for the satellites in their orbits. As the maximum range
rate is about 760m/sec (GRANT, 1988), even an error of 1msec will affect
the modelled pseudo-ranges by less than a metre. From this point of
view, even a relatively unstable receiver clock can provide the time
datum for most applications.
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(2) satellite or receiver clock versus time datum -- the transit time of the
coded message measured in the receiver depends on the times kept by
both the satellite and receiver. The measured pseudo-range is only
affected by an offset between the two clocks involved. However, in the
functional model of the pseudo-range, each clock offset is defined with
respect to the time datum. An offset in any of the clocks strongly affects
the modelled pseudo-range, as it must be scaled by the speed of light,
and even an offset of only 100nsec will affect the pseudo-range by 30m.

Conventionally, in the case of 4 satellites and 1 receiver, the 4 estimated
parameters are the 3 station coordinates and the receiver clock offset. If all
epochs are considered separately, it is impossible to estimate any additional
parameter, thus all satellite clocks are held fixed. In other words, all the
satellite clocks are assumed to be perfectly synchronised. In fact, in each
modelled pseudo-range, the receiver clock offset is defined with respect to a
different time datum. Of course, discrepancies between satellite clocks have
an adverse effect on the positioning results.

To overcome the weakness inherent in instantaneous single point positioning,
for example to estimate the satellite clocks, more redundancy is required. This
can be achieved by modelling the motion (filtering) and/or operating other
receivers simultaneously (DGPS). Increasing the redundancy will open some
choice for the selection of the datum. This issue will be addressed in more
detail in Section 4.4,

In summary, the choice of the time datum for GPS navigation is rather

influenced by: "how well can the satellite and receiver clocks be modelled with
respect to the time datum" than: "how well does the time datum match GPST".

4.3.2. Modelling the Pseudo-range
The measured pseudo-range r is modelled as:
r=p+¢Ch - s + Psystem * Proise (4-19)

where:  p is the range computed from the a priori coordinates of the satellite
and receiver. It can be expressed as \/pip where p is the
vector joining the satellite and the antenna,
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cr and cS are respectively the receiver and satellite clock offsets,
both scaled into distance by the speed of light,

Psystem IS @ Systematic range error caused by unmodelled effects,

Pnoise 1S @ white, Gaussian, zero mean measurement noise.

GPS positioning is particularly influenced by systematic errors, caused by the
unmodelled effects of errors in the orbits, atmospheric delay and selective
availability. pgysiem is generally larger than pp,ise. If all the physical processes
influencing the measurements could be perfectly modelled, pgsem could be
computed explicitly, but this is not feasible at present. However, a dramatic
simplification arises in the differential mode: for any satellite, the term pgygien is
almost identical for all receivers in a small network. Therefore, Psystem IS
independent of the receiver site and, in effect, becomes part of the satellite
clock offset. Hence, pgysiem Can be removed from the model. To reflect this
lumped nature of the satellite clock offset, it will frequently be referred to as the
satellite range bias (SRB).

The model (4-19) is linearised using a first order Taylor expansion around
predicted values p, g and ¢° of the range and clock offsets. The
differentiation of the range with respect to the range vector yields:

T T
- - %. = pT (4-20)

-;24,
T
L%

Q|
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where p, is the unit vector of the direction from the satellite to the antenna.
The other derivatives are straightforward and the linearised functional model

becomes:
(4-21)

—SE ™
SN
S + [BUE 5uN 5uV 1 '1] oV + Pnoise
50R
| 5cS_]

~

r='§+5R-C

where: P, is the predicted range unit-vector, expressed here in a local
topocentric system, see Section 4.2.5,
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OE, 8N and 8V are increments of the predicted East, North and

Vertical coordinates,
8cg and 8¢S are increments of the predicted clock offsets.

For more sites and satellites, the elements of the design matrix must simply be
inserted according to the position of the corresponding parameter in the state
vector. For certain applications, some parameters of the state vector may not
be estimated, and the corresponding partial derivatives can be left out.

4.3.3. Modelling the Phase-rate
The measured phase-rate r is modelled as:
r= P + é:R -8+ issystem + F.)noise (4-22)

where:  p is the range-rate computed from the velocities of the satellite and
receiver. It can be expressed as p = vl p, where v is the

difference in velocity between the satellite and the
receiver and p, is the unit vector of the direction from the

satellite to the antenna,

¢g and ¢S are respectively the receiver and satellite clock drifts (that
is frequency offsets) both scaled into velocities,

ésystem is a systematic range-rate error caused by unmodelled
effects,

Pnoise IS @ Zero mean, normally distributed measurement noise.

Under similar circumstances and for the same reasons already given in
Section 4.3.3, {szstem can be removed. The functional model (4-22) must be

linearised. Therefore, all partial derivatives must be determined. First, the
range-rate is modelled using solely the differences in position and velocity:

5 = v | (4-23)

The derivative with respect to position is therefore:
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which is a linear combination of the position and velocity vectors. The
geometric significance of the vector p' is discussed in MERMINOD (1988).
The derivative with respect to velocity is simply:

p  ApSV) g (4-25)

ov="ov =Py
The functional model, linearised around the predicted values ;; gR and gs of
the range-rate and clock drifts, becomes:

(4-26)
~5E
oN
oV
dcr
L 8¢S
r= P +éR _éS+ [B'E E’N 5IV 00 5uE auN 5uV 1 '1] Sé + l.)noise
SN
Y
8Cg
L 5054

where:  p'is expressed in a local topocentric system, see Section 4.2.5,
8E, 5N and 8V are increments of the predicted East, North and

Vertical velocities,
8cg and 8¢ are increments of the predicted clock drifts.

The other terms have been defined in Section 4.3.3.
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4.4. DIFFERENTIAL GPS
4.4.1. Principle and Application

The rationale of Differential GPS (DGPS) was introduced in Section 1.3, and
mathematical implications were discussed in Section 4.3. It is the standard
method used to reduce the effect of unmodelled phenomena influencing the
range measurements. The physical correlation between the measurements
recorded at each receiver can be expressed mathematically in two different
ways:

1) as a functional correlation, by including a common bias in the functional
model of the measurements, that is, in the state vector.

2) as a stochastic correlation, by including off-diagonal terms in the
covariance matrix of the measurements recorded simultaneously at both
sites.

If only one epoch is considered, both methods can be made equivalent. For
example, holding the reference site fixed and completely correlating all
measurements involving the same satellite or estimating one range bias per
satellite (with infinite variance) yield identical coordinates for the remote site.
However, when data is collected over a certain time, the first approach is
preferable, because it matches the time behaviour of the physical correlation
much better. An analysis of positioning results obtained using static
differential pseudo-range data reveals a clear distinction between the nature
of the correlation in the short and in the long term:

+ Inthe short term (say over 30sec): the variations in the difference in
position between two close sites is larger than the variations in the
individual single point positions, and the ratio is approximately v2. This
phenomenon has already been noted by CLYNCH & HARPER (1987).
Hence, the variations are mainly produced within the receiver.
Furthermore, the ratio of ¥2 indicates a simple addition of the variances,
and measurements at two distinct receivers should therefore rather be
considered as being uncorrelated. At first, this seems to contradict the
principles of DGPS, however even with stronger random variations, the
difference in positions is more gccurate than single point positions,
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because biases generally larger than the random variations are
removed.

In the long term: the mathematical nature of the systematic errors in the
pseudo-range measurement appears to be a slow drift. Both (static)
single point positions drift regularly by several metres over say 30
minutes. This indicates that the satellite clock offset, the deviations from
the modelled orbits and the atmospheric delays do not change quickly,
but may attain large values. In spite of these changes in the single point
positions, the mean difference in position remains constant.

From this comparison, it is clear that noise and biases can be distinguished.
The problem of reducing the effect of systematic errors for each individual
epoch is addressed by DGPS, whilst the problem of separating biases from
noise using their different time behaviour is addressed by filtering.

As introduced in Section 1.4.1, two techniques have been suggested for the
transfer of the differential corrections from a reference site to other sites. The
choice can be illustrated by an example with 2 receivers, 4 satellites and 8
pseudo-range measurements at an epoch:

(a)

Correction in the measurement domain: the coordinates and the
receiver clock of the reference site are held fixed, that is, the space datum
is provided by the satellites and the reference site, whilst the time datum
is provided exclusively by the reference site. The ranges between the
reference site and the satellites are known and the discrepancies with the
actual measurements are computed and applied to the ranges measured
at the remote site. In effect, the remote site is computed as a single point,
but using corrected pseudo-ranges.

Correction in the solution domain: both coordinates and receiver
clock offsets are estimated, unlike the satellite range biases (~ satellite
clock offsetS). That is, both the space and time datums are provided by
the satellites. No estimated parameter is common to both sites and, as
long as no stochastic correlation is introduced for the measurements, the
positions obtained are uncorrelated, that is, the covariance matrix of the
parameters of both sites is block diagonal. Roughly, both positions are
systematically biased by the same amount. The difference between the
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computed and fixed positions of the reference site is then applied to the
computed position of the remote site.

Both methods involve 8 measurements and 8 unknowns and yield identical
results. However, the choice of the unadjusted parameters -- the datum -- is
not completely free. At this stage, it suffices to say that at least one clock must
be held fixed. GPS datum problems are discussed in LINDLOHR & WELLS
(1985) and GRANT (1988).

4.4.2. Extension to Filtering

When a simultaneous data processing scheme is considered (see Section
1.4.1), the computation of differential corrections is replaced by the use of
common parameters in the functional model of observations involving
common sites or satellites. In other words, bias terms are introduced in the
state vector. It is still possible to consider corrections in either the
measurement or the solution domain. The difference is in the assignment of
the biases:

(a) in the measurement domain -- one bias per satellite,
(b) in the solution domain -- one bias per coordinate.

Again, for a single epoch, both approaches yield identical results. However,
this may change when more epochs are processed together, even if it is
sequentially. The systematic errors are generally associated with the
satellites, and this can be illustrated by the case of a setting satellite: with
approach (a), the bias of the setting satellite is not used any more and the
other satellite biases remain unaffected, whilst with approach (b), several
coordinate biases would be affected by this occurrence, quite suddenly.
Hence approach (a) is more appropriate, because sateilite biases can be
modelled in a manner that is closer to the time variation of the systematic
errors. For the applications considered in this thesis, a satellite bias such as
required in approach (a) corresponds to the term pgsem in (4-19), and cannot
be mathematically distinguished from the satellite clock offset, see Section
4.3.2. Therefore, such a satellite (range) bias will absorb the satellite clock
offset as well as errors in the orbit and in the atmospheric delay. To define a
kinematic model for the satellite range bias, the effect of various error sources
must be taken into account.
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When filtering, the datum problem remains basically the same as when only
one epoch is considered. However, an extension is rendered possible: not
only does the choice of the correction domain remain, but filtering can be done
in the measurement and solution domains simuitaneously. A kinematic mode!
is assigned to the coordinates of the remote site and another kinematic model
is assigned to the satellite range biases. The extreme cases are:

(a) Filtering in the measurement domain: with a "hard" model (a small
system noise) for the satellite biases and a "soft" model (a large system
noise) for the coordinates of the remote site, the adjusted range
corrections strongly depend on those obtained at previous epochs, and
the position of the remote site, with its weakly predicted values, is in effect
computed as for a single point, but using filtered range corrections.

(b) Filtering in the solution domain: with a "soft" model for the satellite
biases and a "hard" model for the coordinates of the remote site, the
predicted range corrections have. a low weight whilst changes in the
position of the remote site between adjacent epochs can be predicted
precisely. Consequently, the adjusted range corrections largely depend
on the assumed motion of the remote site. In other words, possible
discrepancies between the modelled and actual range measurements
will be absorbed by the range corrections.

Any other combination of models results in a filter acting simultaneously in
both domains. Therefore, the problem is to know whether the range
corrections or the coordinates expressing the motion are better behaved, and
hence more predictable, and assign the appropriate kinematic models to the
various parameters.

In the context of filtering, the choice of the time datum is important. Satellite
clocks are generally more stable with respect to each other than with respect
to a receiver clock. Also, a receiver clock is generally better behaved with
respect to a satellite clock than with respect to another receiver clock.
Consequently, the choice of a satellite clock for the time datum permits more
precise kinematic models (smaller system noises) to be used for the other
clocks, thus improving the predicted clock offsets and increasing the
redundancy.
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4.5. CONSTRAINTS
4.5.1. Principle and Application

The basis for the application of constraints within a least squares estimation
procedure was presented in Section 2.4.4. The approach consists of treating
measurements and constraints in two consecutive adjustments, rather than
introducing constraints as (pseudo-)measurements and carrying out a single
adjustment. Any relationship between the elements of the state vector can be
considered, and treated in an optimal manner, as long as the full state
covariance matrix is available before constraints are applied. The inclusion of
constraints always follows the same pattern, that is, linearising the relation so
that it takes the form (2-13):

Udx =t
and (2-14) can then be applied. 3 types of constraints are considered here:

+ the distance between two points,
+ the difference between the azimuth and the velocity of two points,
+ the vertical angle (pitch) between two points.

An important extension here is that the constraints need not be deterministic,
that is, the condition need not be completely fulfilled. The approach is
illustrated by considering the constraint on the distance, and some of the
possibilities that may be encountered:

1) the distance is exactly known and does not change with time. This is the
deterministic case most frequently encountered in geodesy.

2) theinitial distance and its rate of change are exactly known. This is still a
deterministic case, even though the a priori distance is different at each
epoch.

3) the distance is not known precisely, but is invariant. This is no longer a
deterministic constraint, and is indeed a constraint only if measurements
at several epochs contribute to the determination of the distance.

4) the distance may change with time, however the change can only be
slow and regular. This information can be accounted for by assigning an
appropriate kinematic model to the distance.
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To ensure maximum flexibility, the constraints will be modelled stochastically.
The distance and some of its time derivatives are added to the state vector,
and suitably modelled. For the cases above, the solutions are:

1) the distance is introduced in the state vector, with initial variance zero.
The kinematic model has degree -1, that is the distance is not estimated
(see Section 4.2). Alternatively, the distance is not introduced in the state
vector, but stored separately and recalled whenever the constraint must
be applied. To reduce the size of the matrices involved, the latter
approach is implemented in DYNAMO, as in the case of any other
unadjusted and invariant parameter.

2) the initial distance and its rate of change are included in the state vector,
with initial variance zero, a kinematic model with degree -1 and no
driving noise. The advantage of this procedure is that the a priori
distance is automatically updated during the prediction step, without any
further action.

3) the kinematic model for the distance has degree 0, order 1 and no driving
noise. This is the normal procedure for the estimation of a constant.

4) the kinematic model for the distance has degree 0, order 1 and some
driving noise. By increasing the degree and the order, the rate of change
of the distance may also be estimated, and propagated in the prediction
step.

The functional model is developed for each of the constraints in the following
sections.

4.5.2. Distance
All computations are performed in a local topocentric system (East, North,

Vertical) and the two points are identified by subscripts. The constraint has the
form:

d=V(Ez2-E)% + (N2-N)2 + (Vo-Vy)2 = D (4-27)

In general, the value of the distance contained in the state vector (lowercase)
does not match the value computed from the coordinates contained in the
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same state vector (uppercase). Before the constraints are applied, the state
vector is considered here "predicted" and its elements are noted with the
superscript "~".

d#\AE2 + AN2 + AV2 =D (4-28)

After the constraint is applied, the relation must be satisfied and the problem is
therefore to compute increments for the predicted values such that:

~

d + o&d
or: oD - &d

+ oD
- D (4-29)

[
Q: O

oD is replaced by its coordinate components:

dD oD dD oD oD aD
3D = 35851 + ENTSN1 + 3_\7;.8\/1 + -(—;—E;SEQ + a_NZSNQ + msvz (4-30)

Using classical calculus, the partial derivatives are established (they have the
same form as those explicitly derived for the pseudo-ranges, see Section
4.3.2), and the linearised constraint becomes:

- 5E,
SN,
E AN AV A AN AV Al IV
— = = = —=— — -V ||8|=d-D (4-31)
D D D D D D 5N,
Vs
_5d -

This is a linear model of the form (2-13). Note that this constraint cannot be
applied if the predicted distance between the points tends to zero, because
some partial derivatives tend to infinity.
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4.5.3. Azimuth and Heading

The usefulness of this type of constraint is not as obvious as for the distance.
Figure 4.7 illustrates the situation of a ship. Although the azimuth need not be
equal to the heading, the difference between them may be expected to change
slowly.

North Velocity

Antenna 2

Figure 4.7: Azimuth and Heading of a Ship

The linearisation follows exactly the same pattern as for the distance in
Section 4.5.2. The relation between the azimuth and the heading has the
form:

E,-E E, + E
® = Azimuth - Heading = arctanNZ—_Nl- - arctan-,1—i-—,-2— =Q (4-32)
2 1 N1 + N2

The above relation is generally not satisfied by the actual elements of the state
vector:

~ ~

~ AE E  ~
W # arctan—— - arctan— = Q (4-33)
AN =N

112



Setting: Q-850 = - Q (4-34)

and replacing 6Q by its coordinate components:
(4-35)
—5E,
SNy
OE,
~ ~ ~ ~ o Y 7 7 P
AN AE AN AE IN ZE N ZE : ~
— — — — = = = = -1 OBy | = @ -
D Dy Dy DY §,2 S§2 §2 §.2 SN,
8E,
8N,
oW

92

where: Dy is the horizontal distance between the two points, that is:
Dy2 = AE2 + AN2
S°H2 is the sum of the squared horizontal velocities of both points:
Si2 = SE? + N2

a linear model of the form (2-13) is obtained. However, some pitfalls deserve
particular attention:

« The partial derivatives of the position parameters tend to infinity if the
predicted distance between the points tends to zero, as the azimuth is not
defined in this case.

+ The partial derivatives of the velocity parameters tend to infinity if the
predicted sum of the velocities of the points tends to zero, that is >E and
=N tend to zero, as the heading is not defined. Such a situation arises
when the points are rotating around their centrepoint. Indeed, it is wise
not to apply the constraint when the velocity is too small or not significant,
for example when the magnitude of the velocity is smaller than three
times its mean error.
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« All angles must be expressed in consistent units. In many computers, the
use of the function "arctan" yields Q in radians. If the parameter @

contained in the state vector is in degrees, which is more convenient,
some partial derivatives must be scaled by a conversion factor.

« The function "arctan" used for the computation of Q is not continuous.
However, discontinuities can be avoided by adding or subtracting

multiple of 360 degrees so as to ensure that ®-Qis always comprised
between -180 and +180 degrees.

4.5.4. Vertical Angle

The linearisation follows the same pattern as for the distance in Section 4.5.2.
The constraint on the vertical angle has the form:

8 = arctan

(Vo - Vy)

> == Q) (4-36)
V(Ez - Eq)? + (N2 - Ny)
which is generally not satisfied by the actual elements of the state vector:

AV
\VAE2 + AN?2

0 = arctan

® (4-37)

~

Setting: 50 -850 = 6 - @ (4-38)

and replacing 8@ by its coordinate components:

(4-39)
—OE4
ON;
V4 .
-1 OB, | = 6 -0
ON,
oV,
60 -

AEAV ANAV Dy AEAV  ANAV

DyD? DuD? D2 Dyb?®  DuD?

Uzlz
N |

where Dy and D are respectively the horizontal and slope distances between
the two points, that is:
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D2 = AE? + AN?

and D2 AE? + AN2 + AV?

a linear model of the form (2-13) is obtained. Note that this constraint cannot
be applied if the predicted horizontal distance between the points tends to
zero, as some partial derivatives tend to infinity. In addition, the remark
regarding the consistency of the angle units in Section 4.5.3 also applies to 6,
©® and the corresponding partial derivatives.
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5.

THE SOFTWARE PACKAGE

"DYNAMO"

5.1. STRUCTURE AND FEATURES

5.1.1. The Software Components

Very few software packages are available for GPS navigation. Some receiver
manufacturers provide a package that can be readily used for real-time
differential positioning. However, these packages are designed to be used
with particular equipment and can only treat standard cases of positioning,
such as single point positioning or differential positioning with only one static

and one mobile receiver.

The choice of kinematic models for the various

parameters, if any, is very limited. Therefore, an important effort has been
dedicated to the development of the software required to support the present

research.

Control Input

Definition

Printer Control

Data Input

Observations
Ephemeris
(Filtered Data)

'

Control Output

» DYNAMO

>

Log-File

;

Coordinate List

Vector List

Data Qutput

Figure 5.1: Input and Output of DYNAMO

The main characteristics required for a software package aimed at supporting
GPS kinematic research is its flexibility: it must be possible to consider new
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applications by simply replacing subroutines or including new ones, without
having to change the structure of the program. From the star, it was clear that
an optimal smoothing algorithm and the capability of including constraints on
the parameters had to be incorporated.

The software is written in FORTRAN 77 and, at present, is installed on a
mainframe VAX computer. An overview of the data flow through the estimation
procedure is shown in Figure 5.1. As a prerequisite to the use of DYNAMO,
the GPS observations and ephemeris must be stored into the predefined
"Archive" formats. This is realised with the preprocessors available at the
School of Surveying, University of New South Wales, for different GPS
receiver brands (TRIMBLE, TI4100, WM101). After the processing, the
resulting coordinates and trajectories can be directed to general purpose
plotting routines.

Once the input has been correctly formatted, the main menu can be called by
running the command file KIN.COM. The components of the package are
listed on the screen and all subsequent operations are performed in the
interactive mode.

PROCESSING GPS KINEMATIC DATA

Create the measurement file
Modify the measurement file
Create the definition

Modify the definition

Create the printer control file
Modify the printer control file
Estimation Procedure

Select coordinate output
Select vector output
Compute coordinate differences
Compute coordinate statistics
Exit

—t ot h
MO0 NOGA~AWND -

Enter the code [1-12]: ...

Figure 5.2: The Main Menu of DYNAMO
Code 7 activates the principal program, described in Section 5.2. Codes 1 to

6 and 8 to 11 activate auxiliary programs to facilitate the preparation of the
input and the further manipulation of the output. These are described in
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Section 5.3. For all programs, the main design criteria were user-friendliness
and easy maintenance.

5.1.2. User Interface

User-friendliness is achieved by a sophisticated organisation of the data within
the program, so that the user need not be concerned about such things as the
storage of the data. For example, the location of a particular parameter within
the state vector is irrelevant to the user, who only has to indicate which
parameters must be considered, in any sequence. Sites and satellites are
only known to the user by an identification that is independent of the actual
storage location. This principle can be illustrated by the search of information
related to the satellite called SAT, in an array of identifiers SATS with
dimension MSAT (the number of satellites available) and counter NSAT.

100 READ (keyboard ,*) SAT
DO NSAT=1, MSAT
IF (SAT .EQ. SATS(NSAT)) GOTO 200
ENDDO
WRITE (screen ,10) SAT
10 FORMAT (' Satellite ',12,' not found !')
GOTO 100

200

Using NSAT, the storage location is then derived (for example, within an
array), and the relevant information can be stored or extracted by the code.
For the state vector, the procedure is similar except that the identification of the
parameters is an alphanumeric string. Some examples demonstrate the
systematic classification used:

" E 1" o Position Easting Site 1
"V DIS 3-2" <&  Velocity Distance Site 3 minus Site 2
"ASRB 13" &  Acceleration Sat. Ran. Bias Satellite 13

The second example refers to the rate of change of a distance, whilst the third
example refers to the frequency drift of a satellite clock and second time
derivatives of unmodelled range errors. Each string corresponds to a
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parameter number, which is used internally within the program, but never
shown. Conversions are executed in small subroutines CODEX and
BACODEX. Obviously, the price of such convenience is an increase in the
size of the program: a friendly user interface requires more effort than the
coding of the mathematics of the problem at hand.

5.1.3. Maintenance

Software maintenance is closely related to the flexibility. To ensure
consistency between the different programs in the DYNAMO package, the
array storage parameters are contained in a separate file, and then included in
different programs (code 3, 4 and 7). Thus, if only maximum array dimensions
are to change, only the "include" file SIZE.INC requires editing, and the
programs must simply be recompiled. The same principle is applied to the
allocation of the units, defined in the "include" file UNIT.INC. As an important
feature, all subroutines are valid for any maximum dimensions selected in the
programs. This is achieved by passing the required arrays through the
argument list of the "call" statement. Consequently, subroutines need not even
be recompiled if the storage parameters included in the main program are
modified.

All the theoretical background for the software development has been
presented in Chapters 2 to 4. However, many comments have been inserted
in the code, in particular in the subroutines dealing with the transition matrix,
the system noise, the design matrix and the constraints.

5.2. MAIN PROGRAM
5.2.1. Characteristics

The estimation procedure is the heart of the DYNAMO package, but the user
can exercise very little control at this stage. The only option is whether filtering
or smoothing should occur. In the second case, the file containing the filtered
data must be input.

All least squares subroutines are written for general purpose: they are not
specific to any sensor and are valid for any state vector configuration. The
same principle applies to the modelling of the movement of the receiver(s).
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Both the transition matrix and the covariance matrix of the system noise can
treat any combination of stochastic variables.

Operations specific to GPS are required to build the design matrix of the
measurements, and consist mainly of orbit interpolation.

All subroutines can be used for computations in either an Earth Centred, Earth
Fixed (ECEF) coordinate system such as WGS 84 or a local topocentric
system (E,N,V see section 4.2.5). The choice is indicated by a flag in the
argument list. All the subroutines used in the estimation procedure are
grouped in the library FOREST (FOR ESTimation).

The time required to run through a cycle of the filter, for example with 8
measurements and 16 state parameters, is less than 1 second. The speed of
the computation has not been given high priority. This may seem strange, as
navigation problems often must be solved using an onboard computer with
limited capacity. However, a refinement of the computational efficiency would
render subsequent modifications more tedious. Therefore, full matrices are
stored, even if they are symmetric or sparse, and double precision arithmetic is
used throughout. There exist a number of methods to improve the
computational efficiency of the Kalman filter, such as the square root
formulation (BIERMAN, 1977). Although this issue was essential in the early
computer age, the dramatic increase in the capacity of even small machines
makes it difficult to justify spending much effort on algorithm efficiency.
Nevertheless, the problem of storage cannot be completely neglected: with
well over one hundred different types of state parameters available,
dimensioning the matrices for the maximum size would be senseless.
Dynamic memory allocation has been resorted to: storage is reserved and
arrays are dimensioned at run-time, once the size of the state vector has been
defined. In a multi-user environment, by reducing the storage requirements to
the amount actually used, the execution of the program is accelerated. Should
the throughput be further improved for a particular application, some matrix
manipulations could be optimised without changing the structure of the
package.
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5.2.2. The Filter

The task of DYNAMO is to allocate the input to the appropriate units, read the
definition file, name the output and reserve memory for the estimation process
(according to the actual size of the state vector). The process is then started by
FILTER, which is primarily a succession of calls to the subroutines contained in
FOREST. This organisation is apparent in Figure 5.3.

Definition of
all models
DYNAMO
Ob ti i
onemars ——® | FILTER _ |— Faimates
FOREST

Figure 5.3: Data-Flow of the Filter

The Kalman and the Bayes formulations of the filtering update are
implemented. Both can be used in all cases and yield identical results. The
Kalman formulation is the normal choice, however the Bayes formulation is
faster if the number of observations processed simultaneously is larger than
the number of parameters. To set the importance of the update step of the
procedure in perspective, both formulations consist of about 30 lines of
FORTRAN code, whilst the entire DYNAMO package requires over 2000 lines
of code, without comments and general purpose subroutines such as orbit
interpolation or matrix inversion.

The stability of the algorithms has been tested with various datasets. Two
problems did arise:

* In some cases, discrepancies were found in the filtered state covariance

matrix, using the simplified Kalman update formula (3-14). With the
complete update formula (3-13) however, the problem disappeared
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completely and the results have always been identical to those obtained
with the Bayes formulation (3-8).

+ With large gaps between adjacent epochs, the symmetry of the predicted
state covariance matrix (3-3) was not always warranted. The degradation
however was always progressive and started very slowly. This problem
was removed by forcing the symmetry at each step, that is, by taking the
mean of symmetric elements.

5.2.3. The Smoother

The smoothing estimation procedure is organised like the filtering one, as the
comparison of Figures 5.3 and 5.4 shows. The filtered data consists of the
state vector and its full covariance matrix at all epochs. In order to limit the size
of the file, only the variances on the diagonal are stored with double precision,
and all correlations are stored as integers r such that: correlation = r/1000.

Definition of
all models
DYNAMO
O vati '
covamers | | SMOOTHER |——#- Estmas
FOREST

Filtered Data

Figure 5.4: Data Flow of the Smoother

The formulation using smoothed residuals has been implemented, see section
3.6.2. The validity of both the concept and the implementation have been
tested with a number of simulated and real data-sets. A formal test is possible
with coordinates modelled as constants: after the last epoch has been
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processed by the filter, the solution is the same as that obtained by the
simultaneous processing of all observations, and the smoothed solution for all
epochs must be identical to the last filtered solution, because smoothing is
equivalent to processing all the data (past, present and subsequent) at each
epoch. Figure 5.5 is a sketch of results obtained using real GPS pseudo-
range and phase rate data. The trend may have different causes, for example
an unmodelled satellite clock drift, but this is irrelevant in the following
discussion. As the number of processed observations increases, it is more
difficult for the filtered solution to adapt to the trend, because the positioning
information is accumulated and the predicted coordinates become stronger.
Despite the noise and the biases in the data, all the smoothed coordinates
were contained within a range of 2 mm, over the entire half-hour session.

A\ No Kinematic Model
Trend

Filtered as Constant
Smoothed

ReReE S D S o R Y e ey ey

» Time

Figure 5.5: Formal Test of the Smoother

5.2.4. Comparison of Filter and Smoother

Smoothing is often said to proceed in the same way as filtering, only
backwards in time, and this may be a statement good enough for a
presentation of the principles. However, when it comes to an actual
implementation of the algorithms, the differences between the two procedures
cannot be glossed over. Although the filtering and smoothing algorithms may
share some subroutines, each procedure also requires some specific
components. This is illustrated by a comparison of flow charts in Figure 5.6.
For the sake of simplicity, the restriction is imposed on both sides that the state
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vector is updated once per observation epoch. When a new epoch of
measurement is encountered, the previous epoch is processed and a new
step is initialised. The structure remains the same for applications involving
other sensors than GPS. x is the state vector and z is the adjoint state vector,
see Section 3.5.8.

Filter Smoother
initialise x initialise z s,
read next read previous

observation ' observation

—

(svsrxjmse) ( RECFIL P
( PReDICT ) ( SMOOTH )

:
“——( DESMAT )e— —( DESMAT )e—

Figure 5.6: Compared Data Flow of Filter and Smoother

The role of the different subroutines is outlined below.
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a) mon routin

COVOBS  Build the covariance (and the weight) matrix of the observations.

RESID Compute the adjusted observation residuals and their covariance
matrix, then test the results.

TRANSIT  Build the transition matrix.

DESMAT  Add one line to the design matrix and compute the approximate
observation residual.

b) Routin ific to the filter

UPDATE  Update the state vector, using Bayes or Kalman formulation.
SYSNOISE . Build the covariance matrix of the system noise.

PREDICT  Propagate the state vector, its covariance and add system noise.
STOFIL Store the filtered data.

C) in ifi he sm r

RECFIL Recall the filtered data.

SUPDATE Update the adjoint state vector, using smoothed residuals.
SPREDICT Propagate the adjoint state vector and its covariance.
SSTATE Compute the smoothed increments of the filtered state vector.

When smoothing using the smoothed residuals, the computation of adjusted
observation residuals in RESID is superfluous, because they are equal to the
approximate residuals already computed in DESMAT.

5.3. AUXILIARY PROGRAMS
5.3.1. Prepare the Measurement File

The estimation program requires all measurements to be contained in the
same file. In addition, the measurement file is intended for direct access,
rather than sequential, mainly to facilitate the backwards reading by the
smoother. The task consists therefore of merging and time-sorting the data
collected by several receivers, as shown in Figure 5.7. If desired, the satellite
clock corrections contained in the broadcast message are applied. For a real-
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time capability, the program SORTOBS presently used could be replaced by
an appropriate data-logger. No other task would require any modification.

"Archive" "Archive"
Observations Observations & e s
Site 1 Site 2
Broadcast Satellite Clock
Ephemeris | Corrections
Y
Multi-station
Obs. File

Figure 5.7: Preparation of the Measurement File
5.3.2. Define the Estimation Procedure

The number of available options for the estimation is quite large, and it would
be very inconvenient to have to redefine them each time a run is made.
Therefore, most options are contained in a definition file, created interactively
in the module CREDEF. This operation is by far the most fastidious part of the
processing, since all stochastic models must be expressed. Six parts can be
distinguished in the definition:

1) Measurements and Ephemeris -- filenames and addresses.

2) Data Selection: - start and stop times,
- rejected sites and satellites,
- cut-off elevation angle.

3) |Initial Elements -- value and standard deviation of all parameters in the
state vector:
- receiver coordinates and clocks,
- constraints,
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- satellite range biases,
- any correlation between initial parameters.

4) Kinematic Mode| -- for each dimension considered:
- degree,
- order,

- standard deviation of the driving noise,
- correlation time.

5) Measurement Model: - standard deviation of each type of measurement

at each individual site,
- correlations between sites, satellites or types of
measurements.

6) Update Step: - Type of step (each epoch or each satellite at each
epoch),
- maximum number of measurements per step,
- Bayes or Kalman filter formulation.

Once completed, the definition can be edited using the program TESDEF.
This enables very easy changes in any of the definition files created. The
consistency of the options is tested before returning to the main menu. The
same definition file is used for smoothing, even though some components are
irrelevant, for example the initial values of the parameters, as they are
extracted from the last epoch in the filtered data.

5.3.3. Control the Printer

Generally, the site coordinates are the only parameters of interest, and a
default output is accordingly defined. However, there are many options. As
shown in Figure 5.1, the output of the estimation procedure consists of three
files:

+ The log-file lists the selected options and reports about any particular
event during the run, such as rejection of observations and large
adjustment residuals. For a normal run, only the number of
measurements processed at each epoch is reported, together with the
ratio a posteriori / a priori for the mean error of the residuals. In addition,
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most intermediate results can be listed, such as satellite positions, full
state vector, design matrix and covariance matrix of the system noise.
These options are mainly useful for program development.

+ The coordinate file is strictly formatted: each group of two lines
contains the time, the four components associated with each site (3-D
position and receiver clock parameter) and the corresponding mean
errors. For each site, positions and/or velocities and/or accelerations can
be output, at each selected stage of the computations (predicted, filtered
and constrained). Unadjusted parameters are also listed, for example a
fixed height. In addition, baselines from a selected reference site can be
output. A code at the end of the line indicates to which stage, derivative
and site (or baseline) the information is related. For example, "F+C POS
2-1" stands for the filtered and constrained position of the baseline Site 2
minus Site 1, that is, the difference in coordinates from Site 1 to Site 2.

» The vector file contains 2-D positioning information, in the form of
magnitude and azimuth, with their mean errors. When a local topocentric
system is used for the computations, this format is useful to express a
horizontal baseline (for example "FIL POS 3-1") or the velocity of a single
site (for example "SMO VEL 2 "). Like the coordinate file, this output list
may contain information pertaining to different stages, derivatives and
sites.

5.3.4. Select Output

The raw output files, whether in coordinate or vector form, contains information
that is too heterogeneous to be analysed or directed to a plotter. Therefore,
the desired information is extracted from the main output and directed to a new
file, by selecting the appropriate stage, derivative and site (or baseline).

5.3.5. Test the Coordinates

This testing consists of two small programs, generally applied after the desired
information has been extracted from the raw output. DELTA computes
differences between two coordinate files and SIGMA computes a linear
regression on all coordinates, or coordinate differences, between selected
epochs. This is useful to detect variations and trends in the results.
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6. TESTING FILTER PERFORMANCE

6.1. THE ROLE OF SIMULATIONS

There are a number of criteria that may be considered for testing a filter. Three
of them are discussed here:

+ Optimality in the least squares sense: the evaluation is based on the ratio
mean error a posteriori / mean error a priori of the measurement
residuals. This ratio can be output after each adjustment step.

«  Minimum number of parameters: this results in computational savings.

+ Sensitivity to systematic errors: the neglection of some nuisance
parameters (for example, atmospheric delay) leads to systematic biases
in the parameters of interest. This also happens if the motion of the
object is improperly modelled (for example, drift neglected).

All criteria cannot be satisfied simultaneously, this is particularly true for the
second and the third criteria. Therefore, several models should be tested and
a compromise found. The standard approach is to look first at the least
squares criteria. However, such an optimal filter is often not viable, because
for most real-time applications, a small onboard computer is the rule rather
than the exception. Nevertheless, it does provide a reference against which
other filter designs can be tested. Simplifications of the models allow for a
reduction in the time required for a computation cycle. Finally, the effect of
systematic errors must be estimated, in order to ascertain whether the
proposed simplification is reasonable.

Testing is full of trade-offs and all filters used in practice are sub-optimal. The
complexity of the evaluation of filters renders simulation studies necessary.
Their principal utility in least squares analysis is in the testing of different
observation and computation schemes before actual measurements are
collected.

Geodetic networks have been adjusted using least squares estimation
techniques for over a century, but simulations have only become common
practice since the dramatic increase in the power of computers. However,
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experience with triangulation networks has led to an almost intuitive feel for
the strengths and weaknesses of such networks and it is now relatively easy to
come up with a sound design without explicitly simulating the adjustment of
such a network. When electronic distance measurements became available,
simulations were used on a wider scale to select the best lines to measure in
order to upgrade a triangulation network.

With GPS of course, the situation is much more complex. Because of the
nature of the observables and the changing satellite geometry, it is very
difficult to evaluate an estimation procedure when guided only by intuition. In
addition, the error budget of GPS is often dominated by systematic errors,
caused for example by imperfectly modelled clocks, orbit errors and
atmospheric delays. Such effects can be studied in different ways:

+ Deterministic simulations give the change in the parameters of
interest induced by a change in the measurements or unadjusted
parameters.

- Stochastic simulations analyse the propagation of mean errors and
correlations, that is, the precision of the results, and their sensitivity to
systematic errors can be investigated. Such programs are based on the
techniques of covariance analysis and require no observations.

The complexity of GPS is not the only reason for performing simulation
studies, the novelty of the system means that users cannot rely on a lot of
experience. Rigorous simulations may assist in the understanding of
complicated phenomena, but on the other hand, simple simulations can also
prove very useful: the well known DOP factors are nothing more than the
outcome of a simulation of a resection of instantaneous pseudo-ranges.
Indeed, simulations have become an essential tool in the design of complex
filters, as they are now in GPS survey design.

6.2. GPS SIMULATION CAPABILITY

Results obtained using real data constitute a strong basis for developing more
elaborate simulations based on realistic assumptions. As the intention is to
investigate particular applications of kinematic GPS, the need for an efficient
deterministic simulation capability quickly appeared when designing the filter.
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The programs TRAJ and SIMOBS have been written for this purpose.
Simulated observations are produced as follows:

1)

2)

3)

a 3-dimensional geometric trajectory is defined, with lines, circles and
transition curves.

a time trajectory is created by defining the chainage and its time
derivatives (up to degree 4) for each time section. Sinusoidal
movements can be added.

from the two files described above, a time-tagged trajectory is computed,
that is, a file of the positions (and velocities) at selected epochs is
generated.

a tabulated ephemeris file is generated using the Broadcast Message
transmitted by the satellites, or obtained from any other source (for
example, to simulate future satellite constellations).

time-tagged observations are then generated from the time-tagged
positions of the receiver and the interpolated positions of the satellites.

The tasks 1) to 3) are executed in the system of programs TRAJ and the two
remaining tasks in SIMOBS. Many subroutines, in particular those dealing
with orbits are already used in DYNAMO. This is apparent in Figure 6.1 when
comparing the production of simulated observations and the processing of real
observations.

Simulating Observations in SIMOBS
Trajectory

Observations
Ephemeris

Processing Observations in DYNAMO

Observations
Trajectory
Ephemeris

Figure 6.1: SIMOBS versus DYNAMO
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The simulated measurements are stored in the "Archive" format, and their
treatment by the estimation program DYNAMO is identical to that of real data,
as shown in Figure 6.2.

WM101
Trimble
T 4100 Definition
Receiver Preproc. l
|
Archive ] DYNAMO}® { print
| Screen
TRAJ SIMOBS

Figure 6.2: Real and Simulated Data Processing

In many navigation problems, the true track is not known precisely. By
processing simulated data, a reference route is provided, against which the
filtered results can be compared. Noise could be added to the simulated
measurements, but this possibility has not been implemented yet. Thus, the
comparisons mainly show how a kinematic model may affect the resulting
trajectory. In the absence of measurement noise, the original trajectory must
be fully recovered when instantaneous position fixes are computed. All
kinematic models introduce some inertia in the system and the filter reacts to
changes in the trajectory with a delay. The delay is a source of systematic
error, but this is the price to pay for a more regular, better behaved, trajectory
estimate. Indeed, the problem of the filter designer can be expressed as:
" what systematic errors can be afforded to justify a reduction in
the random noise ? " Simulations permit one to gain a feeling for the
behaviour of the filter, by showing explicitly the delays in the system.

Another GPS simulation software package, called DASH, has been completed
recently at UNSW (GRANT, 1988). Its purpose is to investigate the
propagation of systematic errors, and its strength is the capacity to simulate the
adjustment of multi-station GPS networks. Systematic errors are regarded as
the consequence of errors in unadjusted parameters, and their effect on the
adjusted parameters is computed. Not only deterministic, but also
stochastically modelled error sources can be considered, such as changing
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characteristics of the ionosphere. Although this program was designed for
static studies, it has already proven useful in the preliminary design of models
for kinematic applications. DASH is used mainly to test which nuisance
parameters require modelling for a desired precision of the results, thus
assisting in the design of sub-optimal filters.

6.3. THE SYDNEY-MANLY FERRY
6.3.1. Assumptions

The Sydney-Manly ferry provides an interesting test case for kinematic
models. lts route is illustrated in Figure 6.3. Starting from the Manly pier, the
ferry accelerates to 9m/sec in 3min, then travels with a constant speed until the
middle of the second straight line. Then it decelerates to 3m/sec before the left
curve. A final deceleration, markedly stronger for the last 30sec, precedes the
arrival in Sydney Cove. It takes a half hour to travel this 11.3km route. The
speed profile is given in Figure 6.4.

The future constellation of 18 satellites is considered and the time origin is
chosen arbitrarily. The elevation cut-off angle is set at 20 degrees. Two
observation periods are considered, one with the best geometry of 5 satellites
and a PDOP value of 3.5, the other with the worst geometry of only 3 satellites
and PDOP undefined.

A receiver is located on a control station onshore and the position of the ferry
is computed by translocation. The observables are singly-differenced pseudo-
ranges and the difference between the receiver clock offsets is the only
nuisance parameter introduced in the measurement model. The interval
between measurement epochs is 15sec. The stochastic model assumes a
standard deviation of 5m for each observation.

The initial conditions are given in Table 6.1, the assumed knowledge of the
horizontal position of the Manly pier is only vague. The three kinematic
models investigated are given in Table 6.2. In Model 1, the motion is assumed
almost unpredictable in E, N and T. The mean error selected for the horizontal
accelerations in Model 2 is much smaller than the changes defined in Figure
6.4. In this respect, Model 3 is based on a more realistic assumption.
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The heading and its mean error can be estimated, even if only position
measurements are available. This is achieved without having to explicitly
divide the change in position by the time increment, because the estimates of
velocity and position are correlated through the kinematic model and
estimated together. In the first model however, the heading cannot be
computed as the velocities are not estimated.

Table 6.1
INITIAL CONDITIONS

Mean Error on:

Coord. Position [m] Velocity [m/sec] Acceleration [m/sec?]
E 1000 0.3 0.1
N 1000 0.3 0.1
\Y 3 0 0
T 1000 0 0
Table 6.2

SELECTED KINEMATIC MODELS

Model 1 Coord. Degree Order Mean Error
E 0 1 100 m/sec
N 0 1 100 m/sec
\' 0 0 3 m
T 0 0 1000 m
Model 2 Coord. Degree Qrder Mean Error
E 2 2 0.01 m/sec?
N 2 2 0.01 m/sec?
\ 0 0 3 m
T 0 0 1000 m
Model 3 Coord. Degree rder Mean Error
E 2 2 0.1 m/sec?
N 2 2 0.1 m/sec?
Vv 0 0 3 m
T 0 0 1000 m

6.3.2. Results and Comments

Four points have been selected, where either the heading or the speed
undergoes sudden changes (Figures 6.3 and 6.4). The deviations from the
original trajectory and their mean error are given in Tables 6.3 and 6.4. There
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are no deviations for the first model because perfect observations have been
used and no inertia is introduced by the extremely "soft" kinematic model.
However, the larger mean errors indicate a higher sensitivity to random
measurement noise. Although the vertical motion is considered white noise,
the mean error of 3m sets a strong limitation to possible variations. With a
standard deviation of 1000m on the vertical motion, the mean error in the
adjusted coordinates E, N and V at the time of worst PDOP would be 152, 414
and 688m respectively. This clearly shows how only approximate knowledge
of a position parameter may affect the other parameters. Because of the
critical location of the points, all the deviations shown for Models 2 and 3 are
rather large. Between these points, even the second filter gives a much better
response.

Table 6.3

DEVIATIONS AND THEIR MEAN ERROR FOR BEST PDOP [m]

Model 1 Poin East North Vertical
1 0.0 = 3.7 0.0 4.8 0.0 £ 29
2 0.0 = 3.7 0.0 £5.0 0.0 £ 29
3 0.0 + 3.7 0.0 %51 0.0 £ 29
4 0.0 + 3.7 0.0 51 0.0 £ 29
Model 2 Point East ‘North Vertical
1 15.0 £ 2.4 69.3 +2.9 -49 + 2.9
2 222 + 2.4 -84.1 + 3.1 7.3 = 29
3 -185 + 24 26.6 + 3.1 -59 £+ 2.9
4 28 + 24 -24.9 + 3.1 1.2 £ 2.9
Model 3 Poin East North Vertical
1 0.7 + 3.4 39 * 4.3 -0.3 £ 2.9
2 0.7 £ 34 7.5 = 44 0.7 £ 29
3 -12 £ 34 1.1 £ 45 -04 £ 2.9
4 -0.3 £ 3.4 -3.1 £ 45 02 = 29
DEVIATIONS OF THE HEADING, WITH MEAN ERROR [deg]
Poin Model 2 Model 3
1 2.0 = 0.6 04 + 24
2 -26.8 £ 0.5 7.4 + 24
3 238 £ 1.5 53 + 6.8
4 -1.4 = 3.0 3.0 x42.4
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Table 6.4

DEVIATIONS AND THEIR MEAN ERROR FOR WORST PDOP [m]

Model 1 Point East North Vertical
1 0.0 + 4.8 0.0 + 6.7 0.0 £ 3.0
2 0.0 £ 7.2 0.0 £+ 9.7 0.0 £+ 3.0
3 0.0 =+ 7.9 0.0 £12.1 0.0 £ 3.0
4 0.0 = 8.6 0.0 £14.1 0.0 £+ 3.0
Model 2 Point East North Vertical
1 21.7 = 3.0 97.7 + 3.9 295 + 2.9
2 15.7 + 4.1 -128.7 + 5.2 415 + 3.0
3 -18.2 + 4.3 25.8 + 6.1 595 + 3.0
4 -32.2 + 45 -90.2 + 6.8 59.7 + 3.0
Model 3 Point East North Vertical
1 1.2 + 4.2 6.1 £ 5.7 22 + 2.9
2 -3.3 + 6.1 -17.1 + 7.9 3.7 =+ 3.0
3 -23 + 6.4 0.0 £ 9.5 3.2 + 3.0
4 -4.1 = 6.8 -10.8 +10.7 45 + 3.0
DEVIATIONS OF THE HEADING, WITH MEAN ERROR [deg]
Point Model 2 Model 3
1 3.2 + 0.8 0.6 + 2.7
2 -30.9 * 0.5 -11.0 = 2.8
3 295 + 1.9 6.4 + 7.4
4 51 + 2.3 7.5 +26.4

It must be pointed out that the mean errors obtained would be the same if real
data were processed, because they depend solely on the stochastic models
defined for both the measurement and kinematic models. However, the
agreement of the functional and stochastic models can be monitored using the
ratio mean error a posteriori/'mean error a priori, output after each adjustment
step. This ratio sometimes exceeds 10 for Model 2 and indicates its
inadequacy: it is too "hard". For Model 3, the ratio rarely exceeds 2, hence, the
errors introduced by the kinematic model remain at all times smaller than
those expected from random measurement errors (factor 3). The large
uncertainty in the heading at the arrival in Sydney Cove (pt 4) for Model 3 is
due to the quick response of this filter to the final deceleration, and the very
small estimated velocity makes the heading irrelevant, as expected.
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Using the ratio mean error a posteriori / mean error a priori, the system noise
could be rescaled, in effect implementing an adaptive filter. The risk inherent
in this procedure must not be overlooked and a minimum error must be
defined for the standard deviation of the driving noise on any of the
parameters. Otherwise, after several epochs of good agreement between
prediction and measurements, the expected discrepancies may become very
small and preclude the filter from reacting to an actual change in the
movement. This typically would occur at the end of the first straight line (pt 2):
starting at Manly with Model 3, the small size of the residuals on the line would
cause a reduction in the mean error of the driving noise and the curve would
be approached with a kinematic model close to Model 2.

Tables 6.3 and 6.4 show that the results depend on the geometry of the
satellites, even when the future constellation of 18 GPS satellites is
considered. Without the stringent limitation imposed on the vertical motion, the
results obtained using different satellite configurations would present a much
wider range of variation.
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7. PROCESSING OF REAL DATA

While designing a software package like DYNAMO is already a demanding
task, processing real GPS kinematic data is almost as demanding. This is due
to a number of reasons:

» The nature of the GPS data -- different biases must be taken into
account for each of the various observables, such as satellite and
receiver clock offsets and drifts.

+ The volume of the data -- a half hour session involving 5 satellites, 2.
receivers and recording 2 types of measurements every 2 seconds
generates 18000 measurements !

+ The number of options -- this is both the strength and the difficulty in
the use of DYNAMO. The filtered and, to a lesser extent, the smoothed
solution can be changed through a large range of settings (a process
known as "tuning") resulting in discernable changes in the trajectory.
Obtaining the "best" solution therefore requires skill and experience.

Three differential GPS experiments are presented in this chapter. The
principal aim is to demonstrate the validity of the concepts discussed in the
previous chapters.

7.1. SYDNEY AIRPORT EXPERIMENT
7.1.1. Data Collection

This was a joint experiment involving staff and resources of the UNSW, the
University of the Federal Armed Forces (UFAF), Munich, West Germany, and
the Royal Australian Survey Corps (RaSVY). RaSVY provided the TI-4100
GPS receivers. On the 18th October 1987 two TI-4100 GPS receivers were
deployed: one mounted in an army jeep, while the other was set up at a fixed
reference site about 10 kilometres away. Observations commenced with 25
minutes of static tracking by the two receivers. Then the jeep was driven at a
speed up to 60 kph around the perimeter of the main north-south runway of
Sydney's Kingsford Smith Airport (Figure 7.1), stopping at each of 4 survey
marks, where the antenna was removed from the vehicle and placed on a
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prepositioned tripod for a period of about one minute. Once this traverse was
completed the jeep was driven back over the same approximate route halting
at the same points. Upon return to the starting point, a further 10 minutes of
static observations were recorded. Because the TI-4100 GPS receiver can
only track up to 4 satellites at any one time, the observation window was
selected to ensure the best geometry (PDOP was approximately 4). Pseudo-
range, phase and phase-rate data were collected on both L1 and L2
frequencies, at 3 second intervals. The data were recorded on cassette tapes,
which were then transcribed onto 5.25" diskettes.

Botany Bay

1km
<4

Figure 7.1: Sydney Airport TI4100 GPS Experiment
7.1.2. Data Processing

The data has first been processed using software developed at UFAF, and
centimetre level positioning accuracies have been obtained from the
combined processing of pseudo-range and carrier phase data from both L-
band frequencies (STOLZ & HEIN, 1988). Although data from both
frequencies could be considered with DYNAMO, the analysis at UNSW
concentrated on using only the L1 pseudo-range and phase-rate data.

The position and velocity (=zero) at the reference station were held fixed (to
define the space datum). The bias and bias drift (both equal to zero) were
held fixed for one of the satellites (to define the time datum). The following
parameters were estimated:
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East, North and Vertical position components at the mobile site (3
parameters). If relevant, also East and North velocities (that is, a total of 5
parameters).

Receiver clock offset and drift at both the reference and mobile sites (4

parameters).
Satellite range bias and drift for 3 of the 4 satellites (6 parameters).

Thus, a Kalman filter with up to 15 states was used, and three solutions were
attempted:

(1)

Differential Navigation Solution -- only the pseudo-ranges are
used, and independent positions or fixes were computed at each epoch.
This is a "no filter" solution. In practice, the filter is made ineffective by
considering a very large process noise on the coordinates of the mobile
antenna, see Section 6.3.2. No direct velocity estimation can be
obtained from this approach.

Differential Filtered Solution -- both the pseudo-range and the
phase-rate measurements are used. The following parameters or
"settings" have been selected for the various stochastic models.

Mean error for the different types of measurements:

+ pseudo-range: im
+ phase-rate: 0.05m/sec

Driving noise for the different components:

+ East and North parameters: white noise on the acceleration term of
0.5m/sec? (second order random walk for position).

* Vertical component: white noise on the velocity term of 0.2m/sec
(random walk for position).

+ Receiver clock bias parameters: white noise on the acceleration
term of 1m/sec? (second order random walk for clock offset).

+ Satellite bias parameters: white noise on the acceleration term of
0.05m/sec? (second order random walk for "clock" offset).
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The choice of these values is based on a thorough inspection of the
measurement residuals and coordinate increments resulting from the
adjustment steps. This is an iterative process repeated until residuals for
the adjusted measurements and parameters are consistent with their
modelling, that is, the ratio a posteriori / a priori for all types of residuals
is approximately equal to 1. Hence, the data themselves indicate which
models are appropriate. In practice, many solutions were inspected until
confidence was gained in selecting the appropriate noise models for the
various parameters.

(3) Differential Smoothed Solution -- using all the data processed
backwards intime. See Sections 3.6.2 and 5.2.3 for details.

The same filter settings were used throughout the observing session. In
particular, the static mode was not assumed during the short stays on the
survey marks. However, the results obtained for the static positions and the
trajectory between the survey marks are discussed separately, in Sections
7.1.3 and 7.1.4 respectively.

7.1.3. Survey Marks

Bepeatability: as each of the 4 Permanent Survey Marks (PSM) was visited
twice during the experiment, a test on repeatability was possible. Figure 7.2
shows the discrepancies (E, N & V) for the 3 solutions attempted.

Accuracy: From the data processing executed at UFAF, the coordinates of the
reference station and the 4 PSMs were known. As these coordinates can be
assumed to have precisions at the centimetre level, they are regarded as
ground truth, against which DYNAMO results can be tested. For each stop at
the marks, about 20 sets of coordinates are available. The epoch closest to
the middle of the short static session was selected for the tests and no
averaging took place. Table 7.1 shows the comparison between DYNAMO
coordinates and the ground truth, for the 3 solutions attempted. The residuals
are expressed in a local topocentric system oriented East, North and Vertical.
The standard deviation is not centred around the mean (that is, ¢ is computed
as . x2/n). Note that the mean is always much smaller than the standard
deviation, indicating the absence of systematic errors affecting the entire
session.
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Figure 7.2: Discrepancies in Repeatability Test
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Table 7.1: Discrepancies between coordinates from DYNAMO and Ground Truth, in metres

(1) Differential Navigation Solution:

Station East North Vertical
PSM 90 A 0.86 1.07 -2.71
PSM 95 A -1.37 1.71 . 5.87
PSM 87 A -1.71 -0.92 3.50
PSM 89 A 2.82 - 2.65 -2.64
PSM 89 B -0.55 0.41 0.88
PSM 87 B 2.19 0.87 -2.34
PSM 95 B 4.99 5.82 -0.11
PSM 90 B -4.28 -2.08 -1.98

Mean 0.37 1.19 0.06
Mean error (10) 2.82 2.55 3.02

(2) Differential Filtered Solution:

Station East North Vertical
PSM 90 A -0.21 1.22 0.43
PSM 95 A 0.34 0.78 2.95
PSM 87 A -0.16 -0.76 0.01
PSM 89 A 0.74 1.10 -1.97
PSM 89 B 0.15 0.57 -3.74
PSM 87 B 2.78 1.88 1.11
PSM 95 B 1.15 3.32 0.97
PSM 90 B -0.14 1.03 0.91

Mean 0.58 1.14 0.08
Mean error (10) 1.12 1.59 1.95
(3) Differential Smoothed Solution:

Station East North Vertical
PSM 90 A 0.53 1.44 0.91
PSM 95 A 0.57 0.68 1.94
PSM 87 A 0.74 -0.07 1.33
PSM 89 A 0.55 0.90 -2.73
PSM 89 B 0.36 0.14 -2.04
PSM 87 B 1.40 0.97 1.10
PSM 95 B 0.86 2.89 2.19
PSM 20 B -1.00 -0.26 0.27

Mean 0.50 0.84 0.37
Mean error (10) 0.82 1.27 1.76
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7.1.4. Trajectory

To illustrate the effect on the trajectory of the mobile receiver (as aga’. st the
tests related to the PSMs, during which the roving receiver was stationary), a
portion between PSM 87 and PSM 95, on the backward run, is shown in
Figure 7.3. The plot of relative height change of the trajectory for the UFAF
and the 3 DYNAMO solutions illustrates the behaviour of the different
solutions. There were some losses of lock during the movement of the
antenna and the sensitivity of the UFAF solution to cycle slips is illustrated by
the jumps in the relative height. These jumps cannot be real as the ground
surface was very flat. Therefore, the UFAF trajectory can only be regarded as
"ground truth" outside these troubled periods.

relative height [m]
A
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Figure 7.3: Relative Height Between PSM 87 and PSM 95
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The differences of the three DYNAMO solutions versus the ground truth were
computed over one hour, that is, 1200 measurement epochs. 120 epochs, or
10%, had to be eliminated because of obvious errors in the "ground truth", all
associated with losses on lock on one or more satellites. The instantaneous
differential navigation solution yields a relatively noisy trajectory, as the
relative height jumps by well over 10 metres from epoch to epoch. The filtered
and smoothed solutions are much better behaved. Note the delay in the
filtered solution with respect to the smoothed solution. The statistics of the
comparison are given in Table 7.2. The short static sessions are included in
the comparison.

Table 7.2; Statistics of the Differences in Coordinates Between
DYNAMO Solutions and Ground Truth, in metres

(1) Diff. Navigation Solution: E N \
Mean 0.40 0.25 0.66
Mean Error (10) 3.48 2.36 4.62

(2) Diff. Filter lution: E N \'
Mean 0.34 0.21 0.35
Mean Error (10) 1.99 1.20 2.69

(3) Diff. Smoothed Solution: E N \'
Mean 0.34 0.24 0.58
Mean Error (10) 1.65 1.07 2.03

Again, the mean is always much smaller than the mean error. However, with
respect to time, the deviations from the ground truth tend to exhibit a "wavelike"
behaviour. This is especially pronounced for the smoothed solution, and
reflects the stronger correlation between solutions for adjacent epochs. For all
three solutions the mean error is in good agreement with that obtained for the
static locations. Hence the motion does not reduce the effectiveness of the
filter. A further comparison can be made with the precision estimated by
DYNAMO. When all 4 satellites have been tracked for some time, the steady
state is reached and the estimated mean error in the coordinates is stable.
However, the precision in the steady state depends on the strength of the
satellite geometry, and hence changes during the tracking session. The
precision estimates in the steady state at the start (09:00), the middle (09:30)
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and the end (10:00) of the considered session are given in Table 7.3. For the
different solutions, the mean is computed using all epochs with 4 satellites
tracked. These precision estimates are rather optimistic, as they are
associated with optimal tracking conditions. However, it must be pointed out
that missing satellites cause a prompt increase in the mean error of the
estimated coordinates, stronger than the actual deterioration of the estimated
coordinates. Therefore, the user is warned when problems are encountered.

Table 7.3: Estimated Precision of Coordinates in the Steady State
for Various DYNAMO Solutions, in metres

(1) Diff. Navigation Solution: E N '
Start 3.50 1.32 4.51
Middle 3.10 1.93 4.51
End 6.70 512 5.06
Session Mean (10) 3.73 2.30 4.59

(2) Diff. Filtered Solution: E N Vv
Start 1.46 0.76 1.48
Middle 1.43 0.97 1.21
End 2.33 1.86 1.25
Session Mean (10) 1.56 1.07 1.21

(3) Diff. Smoothed Solution: E N v
Start 1.04 0.61 0.94
Middle 1.07 0.75 0.87
End 1.75 1.40 1.03
Session Mean (1o) 1.16 0.82 0.88

From a comparison with the accuracy (Table 7.1), these precision estimates
can be considered realistic, although the precision in the height determination
tends to be over optimistic for the filtered and smoothed solutions. This is
illustrated in Figure 7.4, where the results of Tables 7.1, 7.2 and 7.3 have been
combined. Overall the Kalman Filter results are encouraging. There appears
to be a two-fold improvement in accuracy and repeatability between the
standard Differential Navigation solution based on pseudo-range data alone,
and the best solution using the Differential Filter technique. Furthermore, the
smoothed solution is, as expected, the best solution.
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Figure 7.4: Accuracy of Various Processing Methods

7.1.5. Velocity

Figure 7.5 illustrates a filtered and a smoothed solution, with respect to the
velocity profile between PSM 87 and PSM 95. In this particular case, the
phase-rate data is used in the smoothed solution, but pot in the filtered
solution. Both profiles are very similar: this shows that the filter reacts quickly
to a change in position indicated by the pseudo-range data alone, and
updates the velocity estimates with only a small delay. However in the steep
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sections of the graphs (large acceierations) a difference of say 1m/sec
between the velocity estimates is hardly noticeable, although such a difference
has a significant effect on coordinates predicted over a few seconds. In such
cases the precise velocity information provided by the phase-rate data as well
as the smoothing process gain in importance. A filtered solution including the
phase-rate data was also attempted: the resulting profile is closer to the
smoothed solution, and therefore cannot be shown together with the other
profiles in Figure 7.5.
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Figure 7.5: Velocity Profile Between PSM 87 and PSM 95

149



7.2. RIG EXPERIMENT
7.2.1. Campaign Design and Data Collection

On the 17th September 1987, one WM101 GPS receiver was mounted on the
SEDCO 600 Drilling Rig operating off Sydney, while two others were set up at
trig stations onshore. This experiment involved a different kinematic behaviour
to that of the experiment reported in Section 7.1. The rig moved with the tides
and swell, with the vertical and horizontal motion being of the order of 1 metre,
with a period of about 20 seconds. This joint WILD/UNSW experiment was
conducted to determine whether:

1. The WM101 was able to successfully make measurements on a moving
platform.

2. The PoPS post processing software was able to process carrier phase
data from a moving offshore rig.

3. The differential pseudo-range position of the drill stem would compare
with that determined by the acoustic transponders presently used for
positioning the rig.

Bondi

Bondi
Bay

1km

Maroubra

Maroubra

Figure 7.6: Rig Survey
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The challenge of this experiment was in using the WM101 GPS receivers in a
kinematic environment, as this instrument was designed specifically for use as
a (static) surveying tool. There were 3 major problems:

The 60 second compressed data normally output for subsequent
processing in GPS surveying software such as PoPS is not suitable for
kinematic processing, as the period of the swell is approximately 20
seconds.

The 2 second compressed data, referred to as "raw", is only intended for
factory check purposes. No use of the raw data for positioning had been
reported.

Because the WM101 receiver has only 3 hardware channels, they must
switch between two satellites when more than 3 satellites are observed.

During the evening, three tracking sessions took place, each using a different
observation mode:

(1)

In the first session, 75 minutes of data were collected to all available
satellites (up to 6) for a 60 second compression interval. Many receiver
warnings were given to indicate that oscillator noise problems and data
noise on each of the observing channels were being experienced.
Subsequent processing with a special "data assessment" software
package indicated that the receiver had difficulty in keeping track on the
satellites. Losses of lock frequently occurred and this was considered to
be a switching problem encountered when two satellites shared one
observing channel.

Then, the receiver mounted on the rig was forced to record data from only
3 satellites, to avoid switching. 45 minutes of such data were recorded.
Again, many receiver warnings indicated oscillator and data noise
problems. However, losses on lock on the satellites were very scarce.

In the third session, raw satellite data was observed by the three

receivers to all available satellites (4), for 30 minutes. Very few receiver
warnings were given.
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7.2.2. Processing with PoPS

a) Carrier Phase

For the trig stations Bondi and Maroubra, separated by a distance of about
6km (see Figure 7.6), three hours of 60 second carrier phase data from all
visible satellites were processed using the PoPS GPS surveying software
package, using the standard procedures. The resulting difference in
coordinates are in excellent agreement with solutions from previous GPS
campaigns and official coordinates. With an accuracy of a few mm, these
baseline results were considered as ground truth data.

Although the movements of the rig were small, processing of the carrier phase
observations with PoPS was not possible. The problem with a software
package specifically developed for surveying applications is that the antennae
are assumed to be static. As a result, any motion is interpreted as cycle slips.
Typically, the mean error of the double difference residuals was approximately
5 cycles -- which matches the order of magnitude of the expected rig
movement -- and cycle slips smaller than about 10 cycles could not be
repaired. This was the case even when each hardware channel was
dedicated to one satellite (session 2). With carrier phase tracking divided into
many short sessions, unambiguous ranges could not be derived and no
acceptable position could be obtained. The receiver warnings given during
the recording of 60 second compressed data suggest that the software
installed in the WM101 also assumes a static behaviour of the antenna for the
data compression, hence interpreting any antenna movement as data noise.

b) Pseudo-ranges

The processing of pseudo-ranges was more successful. Prior to the carrier
phase adjustment and for each site, POPS computes a static single point
position using the 60 second pseudo-ranges (in order to derive a model of the
receiver clock offset as a polynomial). The static assumption is not a problem
in this case, because the noise on the navigation solution is much larger than
the swell. Relative positioning results were achieved by computing the
differences between single point position solutions.

Baseline: with respect to the ground truth, the errors in the determination of
the baseline Bondi Maroubra for the first two sessions are:
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Error in metres East North Vertical
Session 1 +9.71 -5.00 -26.99
Session 2 -25.90 -0.23 -9.02

These results are not very satisfactory, but it must be emphasised that the
WM101 receiver and the PoPS software have not been designed for precise
positioning using pseudo-range data.

Rig: the position of the drill stem is determined using acoustic transponders
with a metre level accuracy. Considering the results obtained for the baseline
with GPS, the "acoustic" solution can be regarded as ground truth. However,
as the height was not determined with the transponders, a comparison is only
possible in the horizontal plane. Both Bondi and Maroubra were used as
reference sites, and the solutions were averaged.

Error in metres East North
Session 1 -16.84 - -14.79
Session 2 +7.53 +25.44

The accuracy of these results can be compared with that obtained for the
(static) baseline onshore.

7.2.3. Asynchronous Measurements

An additional and unexpected problem arose during the processing with
DYNAMO: namely the time tags of the raw measurements varied in an
apparently random fashion. Whilst measurements involving one particuliar
receiver and satellite pair were recorded at exactly the nominal 2 second
output rate (4 seconds when the channel was switching), measurements from
different satellites were not recorded at the same time by any receiver, and
measurements from one particular satellite were not recorded at the same time
by the different receivers. In a filtering process, this means that measurements
must be processed in distinct adjustment steps. This is easily achieved with
DYNAMO, but the asynchronism does affect the results and their precision.
This can be illustrated with a simple, one-dimensional example.

The initial position of an object moving along a line between A and B is known
with a precision of 2m. The movement is modelled as a random walk with the
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velocity being a zero mean white noise with standard deviation 0.707m/sec,
that is, a spectral density of 0.5m%/sec. In the first case, distances to the object
are measured from both A and B at each even second. In the second case,
distances from A are measured at each even second and distances from B are
measured at each odd second. The evolution of the variance is compared in
Table 7.4. The epochs are denoted by the number of seconds from the initial
time and the sign indicate whether the adjustment has been performed or not.
Minus is for predicted values and plus for adjusted values.

Table 7.4: Variance of the Position in m2

Epoch Simultaneous Measurements Alternate Measurements

0- 2.000 2.000
O+ _ 0.400 0.667
1- 0.900 1.167
1+ 0.538
2- 1.400 1.038
2+ 0.368 0.509
3- 0.868 1.009
3+ 0.502
4- 1.368 1.002
4+ 0.366 0.501
5- 0.866 1.001
5+ 0.500
6- 1.366 1.000
6+ 0.366 0.500

The steady state is quickly reached in both cases and the situation is
illustrated in Figure 7.7. All other things remaining equal, asynchronous
measurements often yield better predicted values, as the time span without
new incoming measurements is shorter. However, adjusted values can never
be as good as in the case of simultaneous measurements, due to the process
noise affecting the position between each pair of measurements. As we are
generally interested in adjusted values, rather than predicted ones,
asynchronous measurements are a disadvantage. Note that in the absence of
process noise, asynchronous measurements yield exactly the same precision
as simultaneous ones. However, this case is rarely encountered with GPS:
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clocks are generally not perfectly predictable, even if coordinates are, as for
example in the static case.

variance
'y

simultaneous

alternate

» time

Figure 7.7: Alternate versus Simultaneous Measurements

Asynchronous data can only be processed successfully with a filter. Because
only little information is available at once, all biases can never be resolved
with only one epoch of data. A proper kinematic modelling of the parameters
over time is therefore essential. For one of the WM101 receivers involved in
this experiment, the (well-behaved) clock drift amounted to 60m/sec (that is, a
relative drift of 2:1077 or 0.02sec/day). Assuming the simultaneity of
measurements actually recorded 1/100sec apart causes an error of 60cm.
DYNAMO offers the option to process each measurement individually, and this
possibility was resorted to for all subsequent processing.

7.2.4. Results Using DYNAMO

At the time when raw data was recorded, only 4 satellites could be tracked,
and the PDOP was about 5. Table 7.5 presents the evolution of the static
differential pseudo-range solution for the baseline onshore, as compared with
the ground truth, and along with their 1¢ internal precision. One satellite clock
bias is used as time datum (offset = drift = 0) and the other clock offsets are
modelled as second order random walks with driving white noises of
respectively 0.05m/sec?® and 1m/sec? for satellites and receivers. In this static
positioning, due to the accumulation of data pertaining to the same
parameters, the effect of incorporating phase-rate is negligible after a few
epochs have been processed.
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Table 7.5. Ground Truth and Discrepancies
for the 6km Baseline Onshore (in m)

East North Vertical
Ground Truth -1950.312 -5957.185 -26.517
after 1 min -2.42 + 0.87 +6.49 + 0.70 +7.51 + 3.05
after 3 min -0.65 = 0.50 +7.28 + 0.41 +9.32 + 1.80
after 5 min -0.50 + 0.39 +7.56 £ 0.32 +9.71 £ 1.40
after 10 min -0.86 + 0.27 +7.61 = 0.23 +9.62 + 0.99
after 20 min -0.76 £ 0.19 +7.54 + 0.16 +9.95 + 0.67

The results from Table 7.5 clearly indicate that GPS positioning inaccuracies
are dominated by systematic biases, rather than random measurement noise.
When enforcing the ground truth as solution, that is holding both trig stations
fixed, time series of range residuals involving one receiver and satellite pair
are systematically biased by up to a few metres. According to CHEZELLES
(1988), see Section 1.3.3, such a range bias magnitude should be expected.
As compared with the pseudo-range positioning capability of PoPS, better
results have been obtained with a shorter session involving less satellites.
The main merit of DYNAMO is its capability to process the 2 second
measurement data. )

The raw data collected on the rig could be processed without any additional
complication. However, the noise in the solution, even when the pseudo-
range and phase-rate data are processed together, by far exceeds the
magnitude of ocean swell. When processing the data in the static mode, the
internal precision of the height is still at the metre level after 10 minutes of data
have been processed. Therefore, no kinematic model can strengthen the
solution so that the internal precision would become smaller than the expected
movement, and consequently, no monitoring of the motion of the rig could be
carried out. Perhaps a stronger satellite geometry would solve this problem.
The comparison of the static solution with the position from the acoustic
transponders is presented in Table 7.6. The convergence of the solution
compares with the results shown in Table 7.5 for the onshore baseline. Again,
DYNAMO results are better than those from the static sessions processed with
PoPS, although the differential positioning solution for the drill stem seems to
be systematically biased.
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after 1 min
after 3 min
after 5 min
after 10 min
after 20 min

Although the differential pseudo-range positioning capability of the WM101
was demonstrated, the announcement of dramatic improvements in the design
of the new instrument version -- in particular more channels, each dedicated to
one satellite -- strongly limit the significance of additional investigations with

Table 7.6: Errors in the Positioning of the Drill Stem (in m)

m
i8]
%

-0.96
+2.18
+2.90
+2.57
+4.06

H + H+ H—l

the present WM101 model.
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0.84
0.48
0.37
0.27
0.19

North
+5.62 £ 0.64
+6.49 + 0.37
+7.70 £ 0.29
+7.33 = 0.20
+8.22 = 0.14



7.3. OFFSHORE AZIMUTH EXPERIMENT
7.3.1. Campaign Design and Data Collection

For the measurement of subsurface ocean currents, the Commonwealth
Scientific and Industrial Research Organisation ‘(CSIRO) Division of
Oceanography uses an Acoustic Doppler Current Profiler (ADCP) system. The
direction of the currents are measured with respect to the ship. To compute
these currents in an absolute system of reference, for example to relate them
to grid north on a map, the Azimuth of the ship (with respect to the adopted
system of reference) must be known to high precision. A requirement of 0.1
degree accuracy was quoted. A gyrocompass is presently used for this task,
but the drift affecting this type of instrument makes the results unreliable,
unless they are frequently calibrated. Therefore, in order to test the Azimuth
determination capability of GPS, an experiment was organised on a 3 day test
cruise of the CSIRO's oceanography research vessel R/V FRANKLIN along the

southeastern coast of Tasmania, see Figure 7.8.

20km

w

Figure 7.8: FRANKLIN Cruise

In essence, this is a problem of attitude determination and therefore at least
two GPS antennae are required onboard the ship. To obtain additional
redundancy in the adjustment, any geometrical relation between the position
parameters associated with each of the onboard antennae should be used.
Such constraints on the parameters can be processed according to the
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principle of "decomposition in least squares", see Section 2.4. The optimality
of the solution -- in the least squares sense -- is respected. In this experiment,
the invariance of the distance between the onboard GPS antennae is enforced
as a constraint on the estimated parameters. Although the Azimuth between
the antennae need not be equal to the Heading of the ship, see Figure 4.7, the
difference is almost constant over a short time span, and can therefore be
assigned a kinematic model. Finally, the pitch between the antennae is
bounded, limited by the ocean swell. The mathematical expression for these 3
types of constraints are presented in Section 4.5. A strengthening of the
solution through processing of phase-rate data was also attempted. Finally
smoothing would allow for a further improvement of the results, though at the
post processing stage.

Data collection took place from 31 October to 1st November 1988. Two
WM101 GPS receivers (and antennae) were installed on the FRANKLIN. At
the time of the experiment, some of the peculiarities of the WM101 "raw” data
were not known (see discussion in Section 7.2). Ideally, the antennae should
be situated as far apart as possible and at as low a height above the sea
surface as sky obstructions from the ship's superstructure would permit. This
ideal disposition would have required a special mast to be erected at the stern
of the vessel. This was not possible, and instead one antenna was placed on
the ship's funnel and the other on an existing mast at the bow, which required
an extension. This was necessary as both antennae must be at the same
height in order to reduce the effect of the roll of the ship on the Azimuth
between the antennae. The relative position of the antennae was measured
by terrestrial means whilst the FRANKLIN was docked in Hobart: the horizontal
distance between antennae was 29.45 metres and the height difference
(Funnel - Bow) was 1.10 metres. The height above sea level of the antenna
on the funnel was approximately 21 metres.

A third antenna was set up on the roof of a building at the University of
Tasmania in Hobart in order to improve the accuracy of the vessel's position
using the principles of differential GPS operation (see Section 4.4).

On the first day, due to a break in the connection of an antenna cable, data
could only be collected by the antenna on the funnel. On the second day,
malfunctions affected the cassette drive of one GPS receiver. This problem
may have been caused by the high rate (2 seconds) at which data was
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recorded, and for which the receiver was not originally designed. The data
finally available consisted of:

* 5 hours of differential data Hobart - Funnel
* 1 hour of attitude data Funnel - Bow (+ Hobart)

The differential data provides a precise track, against which the results
obtained using only the data collected on board the ship could be compared.
This check was necessary, because the CSIRO does not intend to use a
receiver onshore in future for such Azimuth determination operations. Pitch,
roll, log and compass data were recorded throughout the GPS session on the
1st November.

7.3.2. Data Preparation
Different types of data were recorded:

* 60 second "compressed" data for the static onshore site in Hobart. The
measurements result from a polynomial fit of the 2 second data, and are
interpolated for each minute exactly. An investigation of the variations in
the measured pseudo-ranges and phase-rates indicated that precisions
of 1m and 5mm/sec, respectively, can be assumed for this type of data.

+ 2second "raw” data for both receivers onboard the ship. The precision of
the pseudo-range measurements is at the 3m (rms) level, partly because
of the motion of the ship during the 2 second measurement interval.
Although the phase-rate is measured with a precision of say Scm/sec in
the static case, pitch and roll effects render the measurements noisy at
the 50cm/sec (rms) level.

As already noted in the Rig Experiment (Section 7.2), the raw data is output at
irregular epochs. In this experiment, the state vector is rather large (up to 30
parameters) and the computation of an adjustment step (Section 3.1) for each
incoming measurement becomes very burdensome. Therefore, the data
preparation module of DYNAMO was enhanced in order to concentrate each
group of raw data measurements at a predefined epoch. This is achieved by
using the phase-rate data to correct the pseudo-ranges. Although it is
straightforward to compress the data at 2 second intervals (see Figure 7.9), the
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processing of such data quickly indicated that this was not sufficient, because
the two alternating groups of "raw" measurements are not necessarily identical
for all tracking receivers. In other words, the two antennae on board may not
observe the same satellites simultaneously, and this causes systematic
fluctuations of their relative position. In addition, when 4 or 5 satellites are
tracked, some satellites are continuously tracked whilst others share a
hardware channel, and the satellites which are tracked continuously are not
necessarily the same for all receivers. Hence, the observation time of each
satellite is strictly identical for all receivers only when 1, 2, 3 or 6 satellites are
tracked. Therefore data compression at a 4 second rate was adopted (see
Figure 7.9), and only the observation window when 6 satellites were visible
was considered.

2 second compression
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Figure 7.9: Compression of the WM101 "Raw" Data

Data compression at a 4 second rate implies that some measurement time
tags must be shifted by more than one second. As the maximum range
acceleration is 0.14m/sec® (GRANT, 1988), the phase-rate should be corrected
by up to 20cm/sec and the pseudo-range by up to 15cm. Such corrections
could be computed using orbital information. Alternatively, measurements
could be modelled using a polynomial of degree 2 or more, however such an
interpolation scheme would correlate the measurements at the successive
predefined epochs. In fact, corrections due to the range acceleration term can
be neglected in this case because the magnitude of the noise in the
measurements clearly exceeds the effect of acceleration terms. Indeed, the
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major problem is the correction of the pseudo-range with a velocity term that is
relatively imprecise and may cause errors in excess of one metre.
Nevertheless, this method is preferred here because of its simplicity, and
because a sophisticated correction scheme would be unnecessary for other
GPS receivers.

In order to facilitate the comparison of many processing options, only a 5
minute interval of data is investigated. For the filter / smoother to operate
virtually in the steady state during that period, 30 seconds of raw data before
and after the interval of interest were included in the analyses. For the same
reason, 5 minutes of data from the reference station before and after the period
to be investigated were added. The data actually processed is indicated in
Figure 7.10. The FRANKLIN had left Port Arthur a half hour earlier and was
cruising at a speed of 6m/sec (~12knots).
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Figure 7.10: Data Processed and Results Investigated

In summary, the characteristics of the data input into the DYNAMO program
are:

+ the 4 second rate is rather slow, and the short term motion of the vessel
cannot be easily modelled.

* a 6 satellite constellation with a PDOP of 3.1 is strong, however, because
of the switching channels in the WM101 receiver, each satellite is only
tracked during half the total tracking time.

+ the corrections of the measurements to predefined epochs introduces
some errors in the data. However, these errors are either of random
nature or are largely masked by the other random errors, such as the
measurement noise and short term movements of the antennae.
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These facts should be borne in mind when the results obtained from this
experiment are used to predict the accuracy that may be achieved with other,
better suited GPS instrumentation.

7.3.3. Differential Corrections

a) Computation of Differential Corrections.

The inclusion of a shore-based reference station permits differential
corrections to be computed. In DYNAMO, the preferred solution is to correlate
the observations of all the receivers from the same satellite by including a
common bias -- the satellite range bias -- in the functional model of the
measurements (Section 4.3). Because of the slow data recording rate of 60
seconds at the reference station, it is very important to assign realistic
Kinematic models to the satellite range biases. Otherwise during the filtering
process, predicted values of these biases and/or their predicted precision will
either render them ineffective (if the assumed system noise is too large) or
cause systematic errors in the position parameters (if the predicted values are
inaccurate and the assumed system noise is too small).

The satellite range biases are not designed to account for the modelling of the
range between the satellite and the receiver, but only the imperfection of that
modelling. In other words, the orbit model provided by the Broadcast
Ephemeris -- and used to compute the position of the satellites in their orbit at
the measurement time -- already accounts for range-rate and acceleration
terms. In a similar fashion, the satellite clocks are corrected using the clock
error coefficients contained in the Navigation Message. Whilst the value of a
satellite range bias may be quite large, say of the order of a few tens of metres,
its variation is limited by the fluctuations of the satellite clock, atmospheric
delay and orbital errors. Therefore, one may expect the satellite range biases
to be "well behaved".

Although the position of the reference station is held fixed, its clock is not
because a sateliite clock is preferred for the definition of the time datum, as
explained in Section 4.4. However, the modelling of the receiver clock at the
reference station is not critical, because it is not used to model the
measurements involving other receivers. Hence, as long as enough satellites
can be observed, it is not worth attempting a precise modelling. As the
receiver clock rate is large (over 50m/sec) it must be estimated and
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propagated, hence a model of degree 1 and order 2 is chosen. Over 60
seconds, the driving noise of 1m/sec? assumed in previous experiments yields
system noise variance terms of 60m?/sec? for the clock drift and 72000m?2 for
the offset (see Appendix F). In other words, the clock is not assumed to be
stable. Because no reasonable model can yield accurate predictions over
such a time span anyway, this rather large process noise is assumed again,
see Table 7.7.

In order to select appropriate kinematic models for the satellite range biases, a
filtering process involving only the reference station was designed. When 6
satellites are observed, the parameters in the state vector include 5 satellite
range biases (one is held fixed) and 1 receiver clock, together with some time
derivatives (HOB and SRB parameters only, see Table 7.7). For each satellite
range bias, the questions are:

+ which derivative has a non negligible value ?
* which derivative can be assumed to be white noise with mean zero ?

The following alternatives were tested, and the comments that follow will
further illustrate the modelling "dilemna" mentioned in Section 4.2. For each
investigated model, the ratio mean error a posteriori / mean error a priori was
monitored and the intensity of the driving noise selected so that the ratio would
be close to unity.

+ degree 2 and order 3: In this case, the acceleration is a random walk.
Unlike a white noise the estimated value of the acceleration is representative
of the "motion", because it is correlated with the value of the acceleration at
past or subsequent epochs. Hence, it makes sense to propagate the
acceleration into velocity and position. Such a model is useful to ascertain the
magnitude of possible acceleration terms. For all satellites, the acceleration
term was found to be negligible.

« degree 2 and order 2: the acceleration is estimated as a nuisance
parameter. However, the estimated value is not representative of the motion,
because the acceleration at any past or subsequent epochs is more likely to
be equal to the expectation of the white noise, which is zero by assumption. In
this case, the estimated acceleration is not used to predict the next position.
However, the computation of the system noise is based on the zero mean
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white noise assumption for the acceleration, that is, the assumed uncertainty
on the acceleration is propagated into the position. This model is useful to test
the acceleration term, because deficiencies in the modelling will show up as
systematic errors in the estimated acceleration. For example, if an entire time
series of estimated accelerations have positive sign, the zero mean white
noise assumption is not appropriate. None of the satellite range biases were
found to exhibit a systematic trend.

+ degree 1 and order 2: the acceleration is not estimated, and of course
not propagated. The reduction in the size of the state vector is justified when
the acceleration is effectively a zero mean white noise with a limited variance.
However if this assumption is not met, some or all of the estimated parameters
may be biased. This is why time series of accelerations were first estimated
and their behaviour investigated. The magnitude of the velocity terms is also
rather limited, as it never exceeds 0.01m/sec, however systematic trends are
obvious, and hence it is preferable to estimate the velocity (~ satellite clock
drift) and propagate it into position (~ satellite clock offset). This model was
finally selected, and a standard deviation of 0.003m/sec® was found
appropriate for all the satellite range biases.

* Afurther reduction to degree 0, that is, estimating only the position, would
introduce systematic errors in the predicted pseudo-ranges. Note that in cases
where computer time and storage should be saved or if the ultimate accuracy
is not required, the maximum error of 0.6m induced in the modelled pseudo-
range through ignoring velocity and acceleration terms may be tolerated.

b) Effect of Differential Corrections.

If the positions of the onboard antennae are estimated without applying
differential corrections shore-to-ship to the measurements, that is, the onshore
reference station and the satellite range biases are ignored, it is implicitly
assumed that measurements onshore and onboard the ship are uncorrelated.
This of course is not valid and the adjustment produces large residuals
whenever more than 4 satellites are observed. When 6 satellites are
observed, the unfiltered solution yields an average ratio "mean error a
posteriori / mean error a priori " exceeding 5. That is, the average residual of
a pseudo-range exceeds 15m. Time series of pseudo-range residuals exhibit
obvious correlations between sites and between epochs. In other words, the
expectancy of the residuals is far from zero | Whilst a filter is efficient to reduce
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the magnitude of random variations, it does not markedly reduce the size of
the residuals and the ratio a posteriori / a priori remains over 4.

However, the relative position of the two antennae onboard is not affected by
differential corrections, as long as the same satellites are observed. If this is
not the case, the relative position may be affected by up to several tens of
metres. In an unfiltered solution, the relative position is biased only for these
epochs for which different satellites are tracked at the two sites. With a filter,
the bias in the relative position when different satellites are observed is
reduced, but the results for subsequent epochs are also affected and it takes
some time until an accurate solution is produced again. However, the filter
may include a rejection criteria to prevent such problems. Nevertheless, the
simplest method is to reject measurements to any satellite that is not
simultaneously recorded by both onboard receivers. For a shipboard
environment where the risk of losing lock at either site is relatively high, this
rejection strategy may lead to a significant loss of information. During the 5
minute period under consideration, the tracking to one or more satellites was
interrupted twice for a few seconds.

The inclusion of the reference station permits a much better modelling of the
measurements, and virtually eliminates the jumps in the solution caused by a
change in the set of satellites tracked. Losses of lock are less likely to occur at
the reference site, and indeed the 60 second data compression with the
WM101 receiver onshore implies that only long duration of losses of lock
would result in the lack of measurements. Indeed, because of this internal
processing capability, the WM101 receiver is a reliable and convenient
reference station. Whilst a reference station makes any real time processing
much more difficult, because of the required data link between receivers on
the ship and the shore, this is no probiem if only post processing is required.
As the additional amount of data is relatively small, the only drawback is an
increase in computer time due to a larger state vector. The improved
modelling of the measurements means that the expectancy of the residuals is
actually zero, and that their variations are random. This makes the monitoring
of the filter / smoother much easier.
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7.3.4. State Vector and Kinematic Models

Table 7.7 shows the kinematic models assigned to all parameters for the most
sophisticated filter / smoother formulation. All the processing options tested
are merely subsets of this complete configuration. For example, all SRB
parameters as well as Time HOB are removed (or their degree set to -1) when
the differential corrections are ignored. The parameters for the stochastic
constraints Azimuth - Heading and Pitch are treated similarly when the
constraints are not applied in some solutions.

Table 7.7; State Vector Content and Kinematic Models

Parameter Degree Order Process Noise Correlation
Time
East HOB -1 0 0
North HOB -1 0 0
Vert. HOB -1 0 0
Time HOB 1 2 1m/sec? o0
East FUN 1 2 0.1m/sec? oo
North FUN 1 2 0.1m/sec? o0
Vert. FUN 1 1 1m/sec 8sec
Time FUN 1 2 1m/sec? oo
East BOW 1 2 0.1m/sec? o0
North BOW 1 2 0.1m/sec? oo
Vert. BOW 1 1 1m/sec 8sec
Time BOW 1 2 1m/sec? oo
SRB 6 -1 0 0
SRB 8 1 2 0.003m/sec? o0
SRB 9 1 2 0.003m/sec? o0
SRB 11 1 2 0.003m/sec? o0
SRB 12 1 2 0.003m/sec? o0
SRB 13 1 2 0.003m/sec? o0
Dist. BOW-FUN -1 0 0
Az-H BOW-FUN 0 1 0.01deg/sec o0
Pitch BOW-FUN 0 1 1deg/sec 8sec

The content of the state vector can be deduced from the degree of each
component listed in Table 7.7, see Section 4.2. The total number of states is
obtained as:

Dimension = ) (degree+1) (7-1)
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and hence never exceeds 30.
7.3.5. Position

Table 7.8 presents the results obtained using a number of processing options.
The value of PDOP for the period investigated is 3.1. It is defined as:

PDOP = o2 + 6% + 6% / opg (7-2)

for an unfiltered single point position where:

og, oy and oy are the mean errors in the East, North and Vertical

directions,
OPR is the mean error in a pseudo-range measurement.

The same value for PDOP is obtained when several sites are processed
together, as long as the correlation between measurements at different sites is
not modelled, because this is like computing several independent single point
positions. Using (7-2), it is possible to define a "PDOP" value for any
processing method. By doing so, the improvement in the results due to a
refinement of the estimation procedure can be expressed by a single number.
This is similar to substituting PDOP for the BDOP3 indicator in the case of a
static tracking session, see Figure 1.4. All the options shown in Table 7.8
include the onshore reference station. For the Differential Navigation Solution
(1), the slight increase in "PDOP" with respect to the standard value (that is, 3.2
instead of 3.1) is due to the addition of satellite range biases in the modelled
pseudo-ranges. Although these parameters are stochastically modelled with a
very small system noise, they are not completely deterministic and therefore
diminish some of the strength in the solution. This is however a low price for
the increase in reliability.

The average ratio "mean error a posteriori / mean error a priori " given in
Table 7.8 indicates that the functional and stochastic models used are in good
agreement. The ratio gives an overall indication for the adjustment steps, not
only for position parameters. Indeed, all precisions shown may be multiplied
by 0.85 to obtain the rms value, but more importantly the invariance of the ratio
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with respect to the processing options indicates that all the refinements
progressively introduced in the estimation procedure -- phase-rate, filtering,
smoothing and constraints -- are adequately modelled.

Table 7.8: Precision of Absolute Position Parameters FUNNEL

Solution EmM N[m  V[m "PDOP" Ratio
(1) NAV PR only 5.43 2.37 7.46 3.2 0.80
(2) FIL  PRonly 2.51 1.77 1.90 1.2 0.84
(3) SMO PR only 1.56 1.10 1.81 0.9 0.85
(4) FIL PR +PH 2.30 1.52 1.86 1.1 0.85
(5) SMO PR +PH 1.50 1.02 1.77 0.8 0.85
(6) F+C PR +PH 1.58 1.11 1.40 0.8 0.86
(7) S+C PR +PH 1.11 0.78 1.33 0.6 0.86

For the processing option combining smoothing and constraints (S+C), the R-
T-S formulation was used for the smoother (Section 3.5), rather than the new
algorithm (Section 3.6), because the latter formulation implicitly assumes that
the improvement in the subsequent estimates is caused exclusively by
measurements.

7.3.6. Azimuth

Table 7.9 gives the estimated precision for the baseline joining the onboard
antennae (Distance & Azimuth) and the absolute velocity of the vessel (Speed
& Heading) for various processing options. The precision of the estimated
Azimuth may change significantly between epochs, especially in the
unconstrained solutions, because it depends on the estimated magnitude of
the distance between the antennae. The same holds for the Heading and
speed of the ship.

’

Table 7.9: Precision of Relative Position BOW-FUNNEL and Absolute Velocity FUNNEL.

Solution Distance Azimuth Speed Heading
loinm loindeg 1cinm/sec 1o indeg
(1) NAV  PRonly 5.11 13.25
(2) FIL PR only 2.95 6.54 0.30 2.86
(3) SMO PRonly 1.77 3.97 0.16 1.57
(4) FIL PR +PH 2.59 5.84 0.24 2.39
(6) SMO PR +PH 1.67 3.77 0.15 1.46
(6) F+C PR +PH 0.05 1.94 0.19 1.51
(7) S+C PR +PH 0.05 1.12 0.12 1.08
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Figure 7.15: Estimated Difference Azimuth minus Heading [deg] versus Time [min in day]

The application of a constraint to the difference between the Azimuth and the
Heading makes sense because the determination of the Heading is more
precise than that of the Azimuth, see solutions (2) to (5). Although the phase-
rate data provides direct velocity information, its contribution to the
determination of the Heading is very small, compare (2) and (4), or (3) and (5).
By filtering and smoothing, the kinematic model assigned to the motion of the
ship (that is, to both antennae) provides the main contribution, compare (1), (2)

and (3).

Figures 7.11 to 7.14 show the evolution of the estimated Azimuth over the 5
minute data interval selected. There is an improvement in the behaviour of the
solutions, as they become more sophisticated. This effect is strong when a
kinematic model is introduced (from Figure 7.11 to Figure 7.12) or when
constraints are applied (from Figure 7.13 to Figure 7.14). The input of phase-
rate data has a limited effect (from Figure 7.12 to Figure 7.13). Figure 7.15
illustrates the variations in the difference Azimuth - Heading during the same
time interval for the solutions (1) and (7), that is filtered using pseudo-range
data only and smoothed using also phase-rate data and constraints. The most
sophisticated solution yields results that appear much more satisfactory. In
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particular, the oscillation of the difference Azimuth - Heading around zero
during the large change in Azimuth (from about 170 to about 140 degrees) is
likely to be real. However, it is difficult to ascertain whether such results are
"over-smoothed".

7.3.7. Design of a Specific Estimation Procedure

Although the DYNAMO program can process the data collected, it is far from
optimal with respect to computational efficiency. DYNAMO is convenient for
feasibility studies because various processing schemes can be investigated
easily. However, for an implementation of the filter / smoother in an
operational environment, a specific design is more efficient. For this Azimuth
determination application, significant simplifications can be made:

+ Shore-to-ship corrections are not necessary as they do not affect the
relative position of the onboard antennae. However, only data from
satellites observed simultaneously at both sites should be processed.
Simplification 1: No onshore reference station is required.

* Because of the small separation of the onboard antennae, common
measurement biases caused by satellite clocks, orbit modelling or
atmospheric delays can be completely eliminated by differencing the
data observed at both antennae. When computing the differences,
measurements involving a satellite that is not simultaneously observed
by the other antenna can be eliminated. Simplification 2: Differencing
the data between receivers reduces the volume of input and
ensures consistency.

« The position of the ship need not be estimated by the filter. The
coordinates computed internally by the onboard GPS receivers are good
enough. Simplification 3: Only the difference in position between
the onboard antennae need be estimated.

+ The difference in position between the onboard antennae need not be
expressed in a global 3-Dimensional system of coordinates. Rather, it
can be expressed by the slope distance, Azimuth and pitch (or elevation
angle) between the antennae. In addition, the slope distance can be
measured accurately prior to the processing of GPS data, hence it need
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not be estimated, nor input as a constraint. Simplification 4: In the
functional model for the differenced pseudo-ranges, only the
Azimuth, the pitch and the offset between receiver clocks
need be estimated.

+ In DYNAMO, the measurement model for a gyrocompass would be
expressed with respect to 3-Dimensional position parameters. For a
specific estimation procedure, this is not necessary. Simplification 5:
Because the Azimuth is a state parameter, the measurement
model for gyrocompass data is straightforward.

*+ In DYNAMO the stochastic constraint on the pitch requires extra
parameter(s) in the state vector. This is not necessary for a specific
estimation procedure. Simplification 6: Because the pitch is a state
parameter, bounds for its variations can be expressed by a
kinematic model.

These simplifications result in a simple estimation procedure that requires only
limited computer power. However, the relation between Azimuth and Heading
has been completely neglected. If the Heading can be determined precisely
and independently, the state vector can be augmented and a stochastic
constraint imposed, as in DYNAMO. For example, the average of the phase-
rates measured at both antennae can provide such a determination of the
Heading. Note that the derivatives of Easting and Northing position
parameters in the model of the phase-rate measurements (Section 4.3) can be
replaced by Heading and Speed. In this case, the expression for the
constraint is also simple, because both Azimuth and Heading are in the state
vector.

However such a convenient estimation procedure is not applicable if the
relation between the velocity and the change in position has to be considered,
because absolute positions are not estimated. In other words, the simplified
procedure cannot include a kinematic model of the ship's motion. Such a
model has proven to be valuable in this experiment. Indeed, it is only possible
to neglect such kinematic modelling if the absolute velocity vector can be
measured precisely, because an improvement in the determination of the
Heading through assumptions regarding the (predictability of the) ship's
motion is no longer required in this case.
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7.3.8. Future Investigations

From the results of this first trial, the goal of a 0.1 degree precision in the
Azimuth of the FRANKLIN cannot be achieved with GPS pseudo-ranges
alone. Even with an optimal satellite constellation, an increased measurement
rate and using receivers with dedicated channels, this is not likely to be
possible.

A marked improvement using phase-rate data could only be achieved with a
high measurement rate, say 0.1 second, so that variations would not be
masked by an averaging process. The precise phase-rate measurements
would be integrated into position and provide a good relation between
positions estimated at close epochs, say a few seconds apart. In such a set-
up, the phase-rate data resembles the accelerations measured with an inertial
sensor. [n particular, the error in position grows with time, and in the long term
the accuracy of the position mainly depends on the pseudo-range data.

Results of attitude determination using GPS carrier phase data have been
published (for example NESB@J, 1988 or KRUCZYNSKI et al, 1988). The
advantage and drawbacks are basically the same as described in Section 1.5
for the intermittent positioning mode, that is, an increase in precision but a
decrease in reliability. At sea, there is an additional problem because it is not
possible to regress to the static mode after a loss of lock to allow for a new
determination of the integer biases. Such an approach is therefore not
thought to be appropriate for the FRANKLIN, at least for the immediate future.

Indeed, the discrete sampling of GPS pseudo-range data makes a kinematic
model necessary, and the real problem is the modelling of the short term
behaviour of the ship. However, the emphasis on the modelling of the motion
can be reduced if inertial sensors are used. For example, a strong
improvement could be achieved by recording pitch and roll information for
each antenna separately, because the pseudo-range and phase-rate
measurements could then be modelled more accurately. Note that the phase-
rate data should be corrected using the time derivatives of pitch and roll.
However, such effects may not have to be modelled it the elevation of the
antennae above sea level is small.
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Azimuth determination using a high quality gyrocompass is certainly more
precise than using a dual GPS set-up, because this type of sensor reacts
much better to short term variations in the motion of the vessel. However the
drift affecting such inertial sensors is well known. The advantage of GPS is
mainly in the "long term" positioning. That is, unlike using a compass, the
attitude determination is "noisy" but not subject to a drift. Therefore, GPS could
be used to permanently calibrate the compass, and hence special calibration
procedures presently employed would become unnecessary. This approach
seems most appropriate for future investigations. In summary, the awkward
modelling of the short term motion of the vessel could be replaced by the
reliable measurements from the gyrocompass, whilst the long term accuracy of
the positioning process would be ensured by GPS. The Kalman filter /
smoother remains a suitable technique for parameter estimation and the
application of constraints on the parameters is still a valid means of improving
the consistency of the results. However, a larger system noise could be
assumed for the parameters of the motion, thus ensuring that the inertia effect
of the filter is limited.

For the conduct of a similar experiment in the future, some points deserve
particular attention:

1) A special mast should be mounted on the ship's stern, thus allowing for a
50 metre baseline and a height of the antennae above sea level of about
15 metres. Special scaffoldings at both the bow and the stern may permit
the antennae to be set up outside the hull, thus allowing for a lower
elevation and a longer baseline.

2) The recording of data on cassettes must be avoided, for example by
logging the data directly into a personal computer using the input/output
RS-232 port available on GPS receivers.

3) All cable connections must be checked before leaving the dock, as
antennae may not be accessible at sea.

4) It would be preferable to cruise at as high a speed as possible (say 12

knots), as this results in a more precise determination of the ship's
Heading.
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8. CONCLUSIONS

The design of an appropriate kinematic GPS positioning procedure must take
a number of considerations into account, including accuracy, flexibility and
real-time operation.

Accuracy is an important consideration for positioning results. Accurate
results should possess two essential features:

+ They should be reliable, that is, all major blases are absent from the
solution. The differential use of GPS receivers provides effective
techniques for the removal of most systematic errors.

« They should be precise, that is, short term variations of the positioning
solutions are limited or, in other words, the solution is "well behaved".
Such a reduction in the "noise" affecting the solution may be effectively
achieved by Kalman filtering and smoothing techniques.

Real-time differential operation may place the reliability of the positioning
system, and hence the accuracy of the results, at risk because of possible
malfunctions of the necessary data link between the receivers. The more data
that must be transmitted, the less reliable the system becomes. Therefore the
transmission of pseudo-range correction factors is the minimum that is
acceptable for real-time applications. Furthermore, the transmission rate can
be kept low, less than the measurement rate of the GPS receiver. On the other
hand, considering the different algorithms presented, the most precise results
are consistently obtained after smoothing, which is impossible in real-time. In
any case, with respect to both precision and reliability, the highest accuracy is
not possible in real-time.

Flexibility in the choice of the estimation procedure may be essential when
new applications are considered. Most GPS instrument manufacturers are
incorporating simple differential positioning capabilities into their receivers
which require a minimum of operator input. Although such largely automatic
operation may be appropriate in most cases, especially for real-time operation,
a complete reliance on internal data processing presents several drawbacks:
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+ Limited capability upgrade -- the simple "black-box" differential
positioning systems provided by GPS manufacturers can only be
upgraded by them.

+ Specific operation -- the problem of "turn-key" systems is that they are
often incompatible with other manufacturer's systems. Hopefully with the
adoption of a common standard for the differential correction message it
will be possible to mix and match systems.

If the user designs his own software, it may be possible to build in
enhancements. This permits a better modelling of the changing / prevailing
conditions. However, although flexibility relies mainly on external processing,
some internal processing may be integrated in a flexible scheme. For
example, this was realised in the Offshore Azimuth Experiment (Section 7.3)
by using the 60 second compressed GPS data at the static onshore reference
station. Such data can be thought of as "prefiltered".

The DYNAMO software package was designed as a research tool.
Therefore, accuracy and flexibility have been the main points of concern
throughout the software development. Real-time operation was not
envisaged, and the data must all be transported to a central facility. This
approach was adopted for a number of reasons:

- The system can handle any number of tracking receivers and observed
satellites, hence always giving a unique and optimum result.

- Performance "uning" can be based on the dynamics encountered. In
other words DYNAMO could be used for land, marine or air differential
positioning with only a small change in the filter "settings".

- Various schemes of differential (pseudo-range) navigation can be tested,
as they are merely "degenerate" examples of a filter (that is, no filter 1).

- With an appropriate extension, any sensor data can be incorporated,
whether GPS (such as carrier phase data) or other (INS, etc.).

Many of the routines are common to the UNSW static (surveying) software
package, and permit data from many GPS receiver types to be processed.

The filtered and smoothed results of the TI-4100 onshore experiment at
Sydney Airport are encouraging (Section 7.1). There appears to be a two-fold
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improvement in the quality of the Differential Kalman Filter approach over the
results obtained from the Differential Navigation approach, and even slightly
better after smoothing. The analysis of the WM101 Rig Experiment did not
show such optimistic results (Section 7.2). However, this is mainly due to an
adverse relation between the precision of the measurements and the (small)
amplitude of the actual motion as well as to some characteristics of the
instruments, which were not designed for kinematic operation.

The application of constraints on some of the position parameters has
proven to be very useful in the Offshore Azimuth Experiment. The
deterministic constraint on the distance between the onboard antennae and
the stochastic constraint on the pitch (elevation angle between onboard
antennae) consistently improve the position precisions. The stochastic
constraint on the difference between Azimuth and Heading plays a major role
in the determination of the Azimuth, as the Heading can generally be
measured or modelled more precisely than the Azimuth. The size of the
measurement residuals is almost unaffected by the application of these
constraints. In other words, the measurements and the constraints do not
contradict each other in the adjustment, but contribute to the strength of the
solution in different ways.

The effectiveness of kinematic modelling and constraints has been
demonstrated for GPS navigation, and such information should be
used whenever available and together with measurements in the
estimation procedure.

Future developments include:

- The development of data logging software for GPS receivers.

- The testing of the software on further datasets in order to ascertain the
limits of capability. In particular, the Offshore Azimuth Experiment should
be repeated and planned according to the indications gained during the

first trial.
- Incorporating carrier phase processing in order to improve the precision

of the results.
- The transfer of the software from the VAX computer to a Personal

Computer.
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APPENDIX A: DECOMPOSITION IN LEAST SQUARES
A.1. The Combined Case
Equation (2-9) is wrirtten in a form that resembles a condition equation:
Bv = w + Adx with weight matrix: P = Q,;'  (2-12)

In a first step, no attempt is made to estimate x. At this stage, 8x is set to zero
and a classical condition adjustment Bv = w is performed. Adjusted residuals
are obtained using (2-2).

= Q,BT(BQ,BN)"(w + AdX) (A-1)

In a second step, the expression of the residuals is regarded as an
observation equation and written in the usual form (2-5):

~

Q,B"BQ,BY'w -v= -Q,B"(BQ,B")'A 5x (A-2)

*

A OX

*

w -

<>
It

with weight matrix: P = Q,;'. This system of observation equations is solved
in the usual manner (2-6) to give:

&x = (A'TPAYTA TP W

A" and w" can be replaced by their original expression in (A-2), and after
some simplifications:

&x = - (ATBQ,B")'A)'AT(B Q,,BT)'w (2-10)
This is the standard formula for the solution of the combined case. Thus the

combined case can be solved by applying the condition and the parametric
equation methods successively.
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A.2. Adjustment with Constrained Parameters

The observation equations and the parameter constraints yield the following
system of equations:

]

V- v = AdX with weight matrix: P = Q;; (2-5)
Usx = t (2-13)

Of course, it is preferable to linearise both relations around the same
approximate values X, so that the increment 8x is the same in both equations.

This is a problem of minimisation under constraints and the Lagrange method
of undetermined multipliers can be applied:

VIPV - 2 k{7 (V- v - A8X)- 2 k,' (USx - t) — minimum (A-3)

The derivation with respect to v, x, k; and k, and the minimum condition lead

to:
POITOT v 0
00A"-U" [ 55 _|O .
IAO0 0 |k | |V (A-4)
ouo o0 Jdkg, t

premultiplying the third line by P and subtracting the first line eliminates v:
PA -1 0 ]|[8x PV
0 AT-UT||ky| =10 (A-5)
Uu o o ks t
premultiplying the first line by AT and adding the second line eliminates kj:
ATPA -UT] 8x ATPV
el [kJ vl (A-6)

premultiplying the first line by - U(ATPA)' and adding the second line
eliminates 8x:

UATPAY'UTk, = t - UATPA)'ATPV (A-7)
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Let 8y be the solution of the parametric system (2-5) alone, neglecting the
constraints on on the parameters (2-13). The solution of such observation
equations, according to (2-6) and (2-7), yields for y and its covariance:

8y = (ATPA)' ATPV and Qg = (ATPA)! (A-8)
Substituting in (A-7):  UQgyUT k; = t - Udy
kp = (UQyUT) " (t - UBy) (A-9)

Replacing in the first line of (A-6):

ATPA 5x - UTk, = ATPV
Q' 8% - UT(UQgUTY'(t - Usy) = Qy;'dy
(X - y) = Qpy UT(UQyU) 't - Usy) (A-10)

Comparing with the residuals from a condition adjustment (2-2):
v=0Qq,B" BQq,B)w

the expression (A-10) can be considered as the solution of a condition
equation with:

(x -y) forthe residuals v
Qyy for the covariance of the observations Q,

and (t - UB8y) for the vector of misclosures w.

A complete formal equivalence with the classical condition case is obtained by
setting the following correspondance between the terms:

and Uz
and Bv =w with weight matrix: Q,, (classical)

>
Ii
N>

y - w with weight matrix: Qgy (A-11)

l -

~>
|
<>

Thus the system can be solved by applying the parametric and the condition
equation methods successively.
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APPENDIX B: BAYESIAN LEAST SQUARES

Consider the parametric system (2-5):

[o}

V- Vv = AdX with weight matrices: P = Q;;' and Pg

The minimisation of the quadratic form vIP v + 8xTP; dx is achieved using the
Lagrange method of undetermined multipliers:

VIPV + 8x"Pg8x - 2 kT (V - v - ASx) — minimum

The derivation with respect to v, x, k and the minimum condition lead to:

PO I v 0
0Py AT| |sx| = [9}
I A O k v
premultiplying the third line by P and subtracting the first line eliminates v:
PA -1 x| [P(’/]
P; AT k| ~ Lo
premultiplying the first line by AT and adding the second line eliminates k:

(ATPA + Py dx = APV

The expression for the normal equations can be written as:

(o]

(ATPA + IPgl)8x = ATPV

which is the solution of the system of parametric equations, see (2-6):
v v A _ . .. [P O
[O:I - [VJ = [I}Sx with weight matrix [0 P)‘E]

Thus, the a priori information on the parameters is equivalent to adding an
observation equation in the system:
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V - v = A with weight matrix P
0 - vy = dx with weight matrix Py

The effect of the added observation is to maintain the estimated value of x
close to the approximate value X used for linearisation, providing a resistance
to a change in the parameters induced by the measurements. This can be
thought of as an "inertia" effect.
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APPENDIX C: LEAST SQUARES FILTER
C.1. The Bayes Form

The covariance matrix of the filtered estimate can be computed by applying the
law of propagation of variances, assuming the stochastic independence of X
and I:

~

8x = (P + ATPA)" (P; 8% + ATP V) (3-7a)
Therefore:
Qzz = (Px + ATPA)" Py Qy; Py (P + ATPA)

+ (Px + ATPAY'ATP Q,,PA (P; + ATPA)!
= (P + ATPA)" (P; + ATPA) (P; + ATPA)

Thus: Qg; = (Py + ATPA)T (3-8)
XX X

The covariance matrix of the residuals is obtained in a similar fashion. The
adjusted value of x can be substituted in (2-5) and the adjusted residual v
becomes:

V= V- ASX (C-1)
The law of propagation of variances is applied:

Qi = Q- AQg - QAT + AQyuAT (C-2)
From (3-7a), the covariance of x and [ is easily derived:

Qg = (Py + ATPA)TATPQ,, = Qi ATPQ,, = QAT

Substituting into (C-2):

o
<>
<>

]

Q- AQuAT - AQy AT + AQyAT
Q; - AQyAT (3-9)

9]
<>
<>

]
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This expression is exactly the same as for the classical parametric case (2-8),
though the definition of Qi is different.

C.2. The Kalman Form

C.2.1. State Vector Estimate
The matrix identity:

(Px + ATPA)T = (Py" - Py TAT (AP 'AT + Py T APYT)  (3-10)
can be applied to the Bayesian expression of the filtered estimate (3-7):

8x = (P + ATPA)" (Py 8% + ATP V)

~

8x = (P! - Py'AT (AP AT + Q) AP;T) (P 8X + ATP V)

The inverses of the weight matrices can be replaced by the corresponding
covariance matrices:

~

8% = (Qzz - QgzAT (AQzAT + Q) AQyy) (Px 8X + ATP V)

8x = (I - QAT (AQzzAT + Q)" A) (8% + Gy ATPV)  (C-3)

Some simplifications can be made. Let K be defined as:

K = QAT (AQgAT + Q)" (3-12)
The estimate of dx becomes:

8x = (I -KA) (8X + Qg3 ATP V) (C-4)
The coefficient of the observation residuals V is:

(I -KA)Qy; AP =

= Qi AT - Oy AT (AQz AT + Q) 'AQyz AP
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Qi AT (I - (AQz AT + Q) 'AQy; AP

Qxz AT (AQz i AT + Q)" (AQz AT + Q) -
- (AQzz AT + Q;)AQz; AP

Qs AT (AQzz AT + Q) '(AQz; AT + Q; - AQy; AT)P

Qs AT (AQ AT + Q) QP

KQ,P - K
Finally: (I - KA) Qg ATP = K (C-5)

Substituting in (C-4), the filtered estimate of 6x can be expressed as:

&x = (I - KA)8X + KV (C-6)
X=X+ K({V - A8X) (3-11a)
C.2.2. variance Matrix of the Filtered Estim

The covariance matrix of the filtered estimate can be computed from (C-6).
According to the law of propagation of variances and the assumed stochastic
independence of X and I:

Q;; = (I - KA) Oz (I - KA)T + KQ; KT (3-13)
= (I - KA) Qg - (I - KA) Qg ATKT + KQ, KT
= (I - KA) Qs - (I - KA) Qs AT - K Q) KT
(C-5) = = (I - KA) Qgg - (KQ; - KQ) KT
Thus: Qix = (I - KA) Qyx (3-14)

On the other hand, another relation between the filtered and predicted
covariances had been derived for the Bayes filter:

Q' = Ot + ATPA (3-8)
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This relation still holds for the Kalman filter and the equivalence of (3-8) and
(3-14) can be proven. A convenient method is to make use of the matrix
identity (3-10).

C.2.3. Resi Is on rvation

Starting with the parametric expression of the residuals (C-1), and following
the usual procedure, the covariance of the vector of residuals is computed:

Qi = Q; - AQy - QAT + AQuAT (C-2)
From (C-6), the covariance of x and I is easily derived:

Qz = KQy (C-7)
Combining (C-5) and (3-14), a useful identity can be derived:

KQ, = (I - KA) QAT = QAT (C-8)
Thus: Qg = QAT

After substitution in (C-7):
Qg = Q - AQyAT

As expected, this result is identical to the expression (3-9) obtained for the
Bayes filter.

C.2.4. Another Expression for the Gain Matrix

Considering (C-8), the gain matrix can be computed as:

K = QAP (C-9)

Although this expression is simple, it is not applicable when filtering data
because Qyy; is not available. However, this formula can be used to

recompute the gain matrix once the data has been filtered, for example during
the smoothing phase.
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APPENDIX D: LEAST SQUARES FILTER / SMOOTHER
D.1. State Vector Estimates

The minimisation of the quadratic form:

Py = v, TPy v + VIPV + WP, w - minimum (3-18)

is sought and applied to the system of parametric equations (3-19):

Xo - Vy, = X, Pz, (D-1)
- W = DX, - X Py (D-2)
vV - v = Adx P (D-3)

The quadratic form is first expressed as a function of x, and x:

i

From (D-1): onTPiono xOTP;(oxo - 2%, Pg Xo+ ioTP;(of(o
(D-2):  wP,w = X, dP,dx, - 2 X P,dx, + X'Pyx
(D-3): viPy = 5xTATPASx - 28x"ATPV + VPV

i

Ditferentiation with respect to the unknowns and the minimum condition gives:

dxvipy
dXo

dxvipPy
X

=2( PgX - PiXo+ OTP,dX, - 0TPX) =0

2(ATPASX - ATPY - P, dX,+ PuXx)=0

This leads to the system of normal equations, equivalent to (3-20):

(Pg, + ®TP,®) X, - TP, X = P; X, (D-4)
-Py® X, +P,Xx + ATPASXx = ATPV (D-5)

Premultiplying (D-5) by &' and adding (D-4) gives:
PiXo + ®TATPASX = Pyx, + ®'ATPY (D-6)
The smoothed estimate of x, can be extracted:
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Xo = X, + Py 'OTATP (v - AdX) (3-21)
Substituting in (D-5):
- Py® X, - Py® Py TOTATP (V - ABX) + Pyux + ATPASX = ATPV

(Py® P; " ®TATPA + ATPA) 8% + Py X =
= Py® X, + (P, Py '0TATP + ATP)V

All terms are premultiplied by P!, yielding:
X + (@ P 0" + P,)ATPASK = DX, + (@ P @T + P,)ATPY
According to the prediction equations (3-2) aﬁd (3-3), this simplifies to:
x + Py TATPASX = X + Py 'ATP Y
The state vector X used for linearisation is subtracted from both sides:
8% + Py 'ATPA 8% = 8% + Py 'ATPV
All terms are premultiplied by Py :
(Py + ATPA)8x = Py dX + ATPV
8x = (Py + ATPA)T (P 8% + ATPV) (3-7a)

This is the form already obtained with the Basic Least Squares Filter, see
Section 3.3.2.

D.2. Covatriance Matrix of the Smoothed Estimate
By defining:  H = P; '@'ATP = Qz; @'ATQ,," (3-24)

the expression (3-21) for the new estimate of x, becomes simply:
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]

Xo = Xy + HV (3-22)
The covariance can be computed in the usual way:

Qi i, = Quz, + QeH' + HQgz + HQuHT (D-7)
From (C-6) gnd (3-2), x and X, are related through:

x = (I - KAYD X, + KV
and the covariance of X and X, can be deduced:

Qsz, = (I - KA) ® Qg (D-8)
Using v = v - A8X (C-1)

the covariance of v and X, is established, assuming the independence of X,
and I:

Qgz, = - AQyg, (D-9)

0
Inserting (D-8) into (D-9):

Qyz, = - A(l - KA) @ Qg 3.
= - AD Qg5 + AKA D Qg 5
= - QH" + AKQ, HT

(C-8) = = - QH" + AQuATHT
= - (Q; - AQyAT)HT
(8-9)= Qgz, = - QH’ (D-10)

Substituting now in (D-7):

Qrx, = Qi - HQ;¢H' - HQ;;H' + HQ;;H'
Qzz, - HQygH' (3-23)
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APPENDIX E: SMOOTHING ALGORITHMS
E.1. Observation Free Expression for the Smoothed Estimate
Starting with the expression for the smoothed estimate:

X, + Py 'OTATP (v - ASX) (3-21)
Xo = X - Pz '0TATPASX + P; "®TATP ¥ (E-1)

el
<
11

1

ATP Vv can be extracted from the expression for the filtered estimate.
8x = (Py + ATPA)" (P 8X + ATP V) (3-7a)

APV = (Py + ATPA) 83X - Py 8%
ATPV = ATPASX + Py (x - X) (E-2)

Thus, the term containing the measurements is expressed as a function of both
the predicted and filtered state vector. Substituting now in (E-1):

Xo = %, - Pz '®TATPASX + P; '@TATPA 8% + P; '@TP; (x - X)

Xo = X + Py TPy (x - X)

*
o
It

Let J = P T0TP; = Qg3 &7 Q! (3-27)
The smoothed estimate can now be written as:
Xo = X + J (X - X) (3-25)

In a similar manner, the covariance matrix can be transformed.
From (3-23) and (3-24):

Qi%, = Qi - Pz, '@TATP (Q;- AQs;AT) PAD Py (E-3)

A useful relation can be extracted from (3-8):

Qz; = (P + ATPA)!
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Hence ATPA = Qy' - Qy’ (E-4)
The central part of the last term in (E-3) is considered separately:

AP (Q,- AQy;AT)PA =

= ATPA - ATPA Qy; ATPA =

(@ - O) - Qg - O Qsz (Qs”! - Oxx) =

= Q" - O - Qe+ Qi F Qs - Qg Qy Qg =
= Q' - Oy 'Qz Qs =

- Qi Qi - Q) Qi

m

K
i}
"

il

Substituting now in (E-3):

Qg 5, + Py '@ Qi (Qpz - Qyx) Qi '@ Py
Qg s, + J(Quz - Q) J7 (3-26)

Q
Q

oXo
oXo

X X

The terms explicitly related to the observations I, Q;;, P and A have been
completely removed.

E.2. From Predicted to Filtered Residuals
Considering the update step of the rearranged MB-F algorithm:
z=(-KATZ- ATy 'V (3-34)

the replacement of the predicted residual through the filtered one is sought.
The inverse of the covariance matrix of the predicted residual is obtained by
applying the matrix identity (3-10) to (3-33):

Qi = Q; + ATQyzA (3-33)
(3-10) = Q' = P - PA(ATPA + Oy )T ATP
Q;;'= P - PAQy AP

Thus Qi 'V = (P - PAQy ATP)V
=PV - PAQy APV

Recalling the alternative expression for the Kalman gain matrix:
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K=Q;A'P (C-9)

and inserting in (E-5):

The Kalman expression for the adjusted parameters can be used:

=X+ KvV (3-11b)

>

Inserting in (E-5):

Qi 'V = PV - PA(X - X)
=P{W-AX-X)
(337)= Qy; 'V = PV (E-6)

The assumption inherent in (3-11b) that the model of the observations has
been linearised around the predicted state is not necessary for this proof, and
(E-6) can also be obtained using (3-11a), (3-32) and (3-36). However, the
manipulations are more tedious. (E-6) can be inserted in (3-34), and the
update step becomes:

z=(-KA'z- APV (3-40)
The update of the adjoint covariance matrix is obtained in a similar fashion.

E.3. From Filtered to Smoothed Residuals

The replacement of the filtered residuals through the smoothed ones starts
with:

V=V+AX- X (3-42)

Considering the smoothing step in (3-40), the filtered and smoothed state
vectors are related through:
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(E-7)

» »
1
>
]
1
(9]
>
x>
N2

Inserting (E-7) in (3-42), the expression for the vector of filtered residuals
becomes

V=V- AQ; Z
Substituting in the update step (3-40)
z=(-KATZ-ATP(v- AQy 3)

Recalling the alternative expression of the Kalman gain matrix (C-9)

z=(-Q;APA)TZ - ATP (v - AQy 3)
z=3%-APAQyZ - APV + ATPAQy; 2
Hence 2z =2 - A'Pv (3-43)

The update of the adjoint covariance matrix:
55 = Oz - ATKT Qs - Q35 KA + ATP Qi PA
is obtained in a similar fashion.
E.4. Equivalence of the New Algorithm with R-T-S
The proof is based on the classical principle of recursive algorithms:

1) the first step of the algorithm is correct
2) the next step of the algorithm is correct

For the state vector:

1)  For the first epoch to smooth, no subsequent measurement is available
and thus X =x and v = V.

To prove: ATPV = Q' (x - X) (E-8)

199



~

ATPv

RS %
- Qxx (X

N2
l

N>
]

= ATP (V - ASX)
- ATPASX + ATPV
- ATPASX + ATPASX + Py (X - X)

-~

_x)

-1 ~
Qyx™ (X

~

_x)

- Q' (x - X) + ATPV

z | - @7 (Q;(,;'1 (x - x) + ATP \g,)

N
<)
it

Xo + Qg g @ (Qg (X - %) + ATP v)

Comparing with the R-T-S expression, it appears that

requires:

Qi '(x - %) + ATPV =

The proof follows:

(3-42) =
(Qzz™!

(E-8) =

Qs (X - X)

+ ATP\7

+ ATP(V - AX - X))

+ ATPV - ATPA (X - X)
+ ATPV

+ ATPV

+ Qg (X - X)

The proof of the equivalence for the covariance matrix is similar.
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The relation between §O and X is established, by considering a full cycle
of the new algorithm (3-48):

smoothing

update

prediction

smoothing

the equivalence

(E-9)

1 (x - %)



APPENDIX F: KINEMATIC MODELS
F.1. Continuous Form

Considering a one-dimensional, third order system where only the
acceleration drift is affected by a white random noise u, (4-8) becomes:

i = F X + Gu

X 0
} X| + [0} u (F-1)
% 1

In addition, the driving noise u is assumed to have a Gaussian probability
distribution and expectation zero. Note that the third line of (F-1) describes a
first order Gauss-Markov process:

o oo
o o=
R O

X = - X + u

However, the second line of (F-1) does not describe a second order Markov
process, see definition (4-2), although X is a second order random process.

The time behaviour of the system in each dimension may be described by
differential equations of various orders. As long as each dimension has its
own driving noise, the extension from a scalar function to a vector of
independent scalar functions is straightforward: it will result in a block diagonal
structure of both ® and Q,,. This situation is assumed in DYNAMO. For
example, such a structure is not obtained if the driving noise is assumed to
affect the heading of the ship (or one of its time derivatives) whilst Easting and
Northing are estimated. In such a case, there will be correlations between the
noises affecting Easting and Northing (and their time derivatives).

F.2. Transition Matrix
In order to use the Taylor series expansion (4-10)
1 2 1 3
Dtty) =1 + F(t-t) + STFF (t-t0)° + 37FFF (t-1)° + ...
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powers of F must first be computed:

00 1 00 - 00 o?
FP=|00-a|, F=|000w |, FF=z=|00-° and so on ...
00 o? 00 -3 00 ot

Thus the transition matrix is of the form:

10 ¢ _
O ={0109, where:
0 0 o,
(-aAt)  (-aAt)?  (-aAt)®  (-aat)? .
¢1=1 + 11 + ol + 3] + a1 + ... =80LAl
-oAt)  (-aAt)?  (-aat)®
o, =0+ 1 +(2!)+(3!)+(oc4!) +...>=(1-e'aAt)/oc
-aAt)  (-0At)?
bg=0+ 0 + 1 +(%,)+(04,) + o= (€% 4 aat - 1) /0P
F.3. Covariance Matrix of the System Noise

t
The formula (4-18) is applied: Quy = [ @(t7) G Qy, GT @T(t,7) dr

t0

104 |10 100
In this case: ®(t1) G Q' G' @ (t,7) = | 01 ¢, [o}q'uu[om] 010

L0 0 ¢ 1 ¢z §, 9

[ 052 g0, O30
= | 0x05 ¢22 001 | Ay
L 010 9102 04
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Q33 Qa2 a1
The integration results in: Quw = | %es Q22 G

Q13 Gy2 Qi
where:
Q11 = quu (1 - -20!.At)/2a
iz = oy = 'y, (1 _2eaAt+eZaAt)/2a
[P = Q- 3 + 20At + 474 _ o204t ) /5,3

G = Gg1 = Qluu (1 - 20Ate™Al - o208 /23
Gos = Op = Quu (1 - 20At + aPAt? + 20Ate @Al . g @Al | g-20At) /544
Qa3 Qe (1 + 204t - 202At2 + 2/30°A8 - 4aAte @At . o204l /545

The uncommon numbering of the rows and columns is justified, because a
limitation to order 2 or 1 reduces the matrices ® and Q,,,, to the corresponding

lower right part of the matrices developed for order 3.

F.4. Random Walk as a Special Case

If the correlation time tends to infinity, that is « — 0, the noise on the
acceleration becomes a random walk and the expressions of ® and Q,,,

simplify to:

¢ =1

0, = At

03 = At%/2

di1 = 'y At x is a random walk

Qi = Qa1 = Qlyu A2

Goe = Q' AM%3 x is a second order random walk
Qia = Gay = Q' AtY/6

Gos = Qg = qlyy A8

Oas = q'yy At?/20 x is a third order random walk
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