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ABSTRACT

A thorough procedure for the design and evaluation of close range photogrammetric
networks has been developed and presented. For high precision photogrammetric
applications, where precisions of the order of 1:250,000 of the object diameter may be required,
network design procedures form a fundamental tool for ensuring that the network to be
implemented will achieve the desired precision and will be economically viable.

Detailed formulations of the principles of close range photogrammetry, applicable least
squares estimation techniques and the close range photogrammetric mathematical model have
been described. These formulations, which are essentially derived from first principles, aim at
maintaining the continuity of theory from the least squares and photogrammetric fundamentals
through to the network design principles.

Network design principles are developed with respect to the four basic network design
problems.

Zero-Order Design (ZOD) - the datum definition problem
First-Order Design (FOD) - the network configuration problem
Second-Order Design (SOD) - the observation "weight" problem
Third-Order Design (TOD) - the network densification problem

Solutions to the datum problem are assessed in terms of applicable least squares
solutions, which include the zero-variance computational base solution, Bayesian and ridge
regression solutions and free network solutions. The network configuration problem has been
evaluated with respect to the factors which influence it. The primary factors include imaging
geometry and the number of camera stations. Solutions for the "weight" and densification
problems are introduced and applicability of these problems in close range photogrammetric
network design is evaluated.

Measures for assessing network quality are developed. These measures are essentially
precision based, however those measures based upon accuracy, reliability and sensitivity criteria
are also developed.

Network design for close range photogrammetry is basically achieved by iterative network
simulations. Computer software, based upon interactive computer graphics and network
simulation, has been developed in order to determine the effect of the various design problem
solutions upon the object point precision estimates.

The network design problems are linked via a practical example. A case study of the close
range photogrammetric mensuration of the Port Kembla coal loader is carried out. Typical
design problems are assessed and an alternative network design proposed.
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1. INTRODUCTION

"Photogrammetry is the art, science and technology of obtaining reliable
information about physical objects and the environment through processes of
recording, measuring and interpreting photographic images and patterns of
electromagnetic radiant energy and other phenomena” (Slama (ed) (1980)).

Close range photogrammetry is a specialized branch of photogrammetry
which is predominantly non-topographic, terrestrial based and which involves
measurement of objects with a camera to object distance of less than three
hundred metres. The majority of close range photogrammetric activities satisfy
the above definition, however the definition is not absolute and some
photogrammetric applications, which fall under the banner of "close range", do
not meet all of the above requirements.

Applications of close range photogrammetry have traditionally been in
the areas of Archaeology, Architecture, Medicine, Crime and Accident
Investigation, Industry and Engineering. Techniques used for aerial
photogrammetry, which are well developed and understood, have been
adapted to these close range photogrammetric applications. The adaptation
of these techniques to close range photogrammetry, however, has not resulted
in the high precisions which are required in the areas of engineering and
industrial metrology and monitoring.

By contrast, analytical photogrammetric techniques based upon multi-
station convergent photography have in recent times enabled the close range
photogrammetrist the potential for high precision measurements and so
enabled entky into the fields of industrial and engineering metrology.

The advantages of close range photogrammetry, over conventional
surveying techniques, in industry and engineering are numerous. These
advantages include a minimal "down" time of the object being measured, the
capability of measuring hot or toxic objects and the capability of measuring
moving objects. The most important advantage of close range
photogrammetry is the potential to acquire the photograph in a short space of
time. In industrial applications where "time means money", the object being
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measured must be measured over a short space of time to avoid loss of
production. With the recently developed analytical methods in close range
photogrammetry, high precision of the order of 1:250,000 of the object
diameter can be achieved; in some cases sub-micron precision has been
reported. Close range photogrammetry therefore offers a competitive
metrology method, capable of meeting the majority of precision requirements.

For high precision close range photogrammetry an adaptation of
conventional aerial photogrammetric methods is not feasible. Apart form the
basic foundation of both techniques upon the principles of photogrammetry,
both techniques exhibit different characteristics in terms of precision
requirements and image acquisition methods. These basic differences are
summarized in table 1.1, which has been adapted from Granshaw (1980).

Table 1.1 The difference between aerial and close range photogrammetry
Close Range Photogrammetry Aerial Photogrammetry
-Object may have truly spatial - Relief is small compared to flying
characteristics (large depth) height
-Precision in all three coordinates - Precision requirements differ for
may be equally important height and planimetry
- A restricted format is likely -Entire format is usable
- Spatial nature of the object -Vertical photography is used

necessitates photography with varying| exclusively
position and orientation

-May be possible to target all points - Targets only for control points, if at
all

. The total number of photographs is -A large block may consist of

usually small thousands of photographs

-It is possible to determine camera - Auxiliary data have only limited

parameters accurately accuracy

-Flexible approach required due to - A fairly standardized approach for

differences from project to project all applications

The fundamental difference between aerial and close range
photogrammetry relates to flexibility. In close range photogrammetry the
nature of precision requirements, and the techniques to meet such
requirements, vary from project to project. It is therefore necessary to evaluate
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each project individually in order to formulate an overall design which can be
economically implemented, but which allows recovery of position to the
required degree of precision.

Close range photogrammetric network design, for high precision
applications, requires no explicit justification. In these applications, especially
where achievable precision is pushed to the limit, it is essential to be able to
determine the most appropriate design, in terms of specified quality criteria,
and whether the required precision requirements can in fact be achieved
based upon the physical and practical constraints for the project.

The aim of this project is to develop the techniques for close range
photogrammetric network design and therefore allow the photogrammetrist the
flexibility to formulate a close range network for a specific task, which will meet
specified quality criteria and which can be implemented with assurity.

For the purposes of meeting the aim of the project, most of the concepts
associated with close range photogrammetric network design have been
developed from first principles. This is especially evident in development of
the least squares theory and application of this to network design. The
reasons for this detailed development are two fold. The first reason relates to
the diverse least squares notation evident in photogrammetric and least
squares literature. For the purposes of understanding advanced estimation
techniques, with an emphasis on photogrammetric evaluations, the theory has
been developed in detail with a consistent notation and form. Developments
directly pertinent to close range photogrammetric network design are therefore
not plagued by ambiguity in notation and meaning of the least squares and
photogrammetric theory.

The second reason for the detailed theoretical developments relates to
the general lack of understanding in the general photogrammetric fraternity to
the particular requirements of close range photogrammetric evaluations and
the significance of such evaluations in terms of least squares theory. For
example, the concepts of rank deficiency, free network adjustments,
zero-variance computational base and the network design problems, to name
a few, are relatively unknown in photogrammetry. Most photogrammetrists in
Australia have entered the profession via the area of aerial photogrammetry
and consequently such evaluation concepts need not be explicitly understood.



As close range photogrammetry becomes more accepted as a precise
metrology tool it will be necessary for an understanding of photogrammetric
evaluation principles, least squares evaluation techniques and the implication
of these techniques upon parameter and precision estimates.

In this report Chapters 2 to 4 develop the theory of close range
photogrammetric and least squares methods. Chapter 2 introduces the
fundamental close range photogrammetric principles, including mathematical
principles, evaluation techniques, data and image acquisition techniques and
error sources. Chapter 3 develops the least squares theory in detail and
covers the formulation of the least squares mathematical model through to
solution methods for rank deficient systems, with an emphasis on minimally
constrained solutions. Chapter 4 combines the preceding two chapters and
formulates the methods for least squares estimation in close range
photogrammetry. Development of the least squares observation equations is
carried out in full in the appendix.

Chapters 5 to 10 develop the concepts and solution techniques for close
range photogrammetric network design. Chapter 5 introduces the network
design principles, including quality criteria and solution methods. The
principles of the zero-order and first-order design problems are introduced.
The applicability of the second-order and third-order design problems to close
range photogrammetry is also covered. Chapter 6 involves the development
of measures of assessing network quality. Such measures are predominantly
precision based, however measures for accuracy, reliability and sensitivity are
also developed. Chapter 7 describes the computer software developed to
verify and illustrate many of the conclusions formulated with respect to network
design. The software is an interactive computer graphics network design and
simulation package. Chapters 8 and 9 develop, in detail, the solution
techniques for the zero-order and first-order design problems respectively.
The zero-order solutions assessed include the zero-variance computational
base solution, Bayesian and ridge regression solutions and free network
solutions. Examples of the applicability of the various solutions are included.
First-order design is evaluated by trial and error network simulations. The
factors which influence first-order design include imaging geometry and the
number of camera stations. Examples to illustrate the effect of the various
factors pertaining to network configuration are included. Chapter 10 is a case
study of a typical close range photogrammetric mensuration problem. The



study verifies the network simulation method and addresses several of the
typical problem areas in network design. The study effectively combines the
various design problems into a single unit for overall assessment.

In high precision close range photogrammetry, the requirement for a
priori network design is essential in order to achieve an "optimal" network in
terms of network quality and economy. In this report the methods for designing
"optimal" networks have been developed so that the solutions presented will
both improve understanding of network design principles and will emphasize
the need for network design in high precision close range photogrammetry.



2. FUNDAMENTAL PRINCIPLES OF CLOSE RANGE
PHOTOGRAMMETRY

Close range photogrammetry, as defined in Chapter 1, is essentially a
terrestrial based photogrammetric system with object to camera distances of
less than three hundred metres. Mensuration techniques, based on close
range photogrammetry, will be investigated with an emphasis on mathematical
formulations, data evaluation techniques, image acquisition techniques and
error sources.

2.1 Mathematical Principles

The mathematical principles of close range photogrammetry will be
investigated in terms of the basic geometry of the photograph and in terms of
the relationship between object and image, as defined by the collinearity
condition.

2.1.1 Geometry of the Terrestrial Photograph

In photography the image formed on the photograph is a function of the
perspective projection of points from the object being photographed to the
photographic film. A perspective projection is one in which all points are
projected onto a flat reference plane through one point which is called the
perspective centre. Figure 2.1 shows the perspective projection and the
relationship between object, perspective centre and the reference plane. In
photography the photographic film is located in the reference plane and the
optical centre of the camera lens, which is generally referred to as the front
nodal point, is located at the perspective centre.

Orientation of the camera at the instant of photography is determined by
two basic sets of parameters. The first set, called interior orientation
parameters, refers to the perspective geometry of the camera.



The parameters of interior orientation are :
1. the principal distance, f.
2. the coordinates of the principal point, x, and y, .
3. the geometric distortion characteristics of the lens system .

Parameters of interior orientation are either determined by laboratory
calibration, and held fixed in the estimation process, or treated as unknown
parameters and solved for in the estimation process.

The second set of parameters, called exterior orientation parameters,
define the geographic location of a particular camera station and the direction
of the optical axis of the camera. The parameters relating to geographic
location, defined in a three dimensional rectangular coordinate system, are X,
Y. and Z.. The orientation parameters which define the orientation of the
optical axis of the camera are given by three rotation angles. These rotation
angles will be defined in section 2.1.2.2. |
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Figure 2.1  Perspective projection for a terrestrial photograph



The coordinates and coordinate systems of interest in close range
photogrammetry are :

) [ i((i J Coordinates of object point A.

Z-i (Object space coordinate system)
|

5 éL Coordinates of perspective centre
: L (Object space coordinate system)

Z
X Coordinates of image point a.
8. ( Yi ) (Image space coordinate system)

4 Xo Coordinates of the principal point.
' ( Yo ) (Image space coordinate system)

Figure 2.2 depicts the basic geometry of the terrestrial photograph and
object and image coordinate systems.

£

Perspective
Centre .

Figure 2.2 Geometry of the close range photograph



2.1.2 Mathematical Relationship between Object and Image
Coordinates

2.1.2.1 Collinearity Condition

The mathematical relationship between object and image coordinates
can be established by considering the collinearity condition. This condition is
established at the time of photograph exposure and states that, at the instant of
photography, the ray from the object point to the perspective centre and the ray
from the perspective centre to the corresponding image point are collinear.
The condition also applies during photogrammetric reconstruction and hence
can be utilized to formulate transformation relationships between object and
image coordinates. Implicit in the condition, for several object to image point
rays, is a coplanarity requirement. Such a requirement means that all image
points must be coplanar and hence the reference plane must be flat.

2.1.2.2 Formulation of the Collinearity Equation

Consider two vectors a, the vector from the perspective centre to the

image point, and A, the vector from the object point to the perspective centre.
The two vectors are collinear if one is a scalar muitiple of the other.

a=kA .(2.1)
where k is a scale factor relating @ to A
Xj - Xo
a =[ Yi- Yo J ..(2.2)
- f

image coordinates of point i.

Xo.Yo = image coordinates of the principal point.

f principal distance.

and a is defined in the image space coordinate system.

where Xi.Yi

Xi- Xi

A=l Yi-Y_L .(2.3)
Zi - ZL

where X YiZi = object coordinates of point i.

XYL ZL
and A is defined in the object space coordinate system.

object coordinates of the perspective centre.
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To relate the vector A to the vector @, in the same coordinate system, A
must be premultiplied by a rotation matrix, denoted by M. This matrix defines
the spatial orientation of the image space coordinate system with respect to
the object space coordinate system. The rotation matrix is a 3 by 3 orthogonal
matrix and is a function of the three rotation angles adopted and the sequence
in which the three rotations occur. Successive rotations about fixed axes are
not commutative and hence the order of rotation is important. Unless rotations
are small the order in which rotations are applied will affect the magnitude of
each rotation.

In a general notation the rotation matrix is of the form :

Mi1 M2 M43
M =(m21 Ma22 M23 ] ..(2.4)

Mg3q M3 M33

In close range photogrammetry the rotations which are usually adopted
are azimuth (), tilt (6) and kappa (k) rotations, as shown in figure 2.3. These

rotations are defined in the following way.
Azimuth (o)

The azimuth rotation is a rotation about the y-axis of the image coordinate
system and is positive in the clockwise direction with respect to the positive y
direction. For the special case where the ground coordinate system is defined
with the Z-axis corresponding to the vertical and the Y-axis corresponding to
the direction of true north, the azimuth is the angle measured clockwise from
true north to the camera axis. In the image coordinate system the camera axis
coincides with the negative z axis.

The rotation matrix, Mg, for the azimuth rotation is :

cosaoa -sihno O
Mg = 0 0 1 ..(2.5)
-sina -cos o O

10



Tilt (8)

The tilt rotation is a rotation about the x-axis of the image coordinate
system and is positive in the clockwise direction with respect to the positive x
direction. Hence a depression of the camera (negative z) axis will be a
negative rotation and an elevation of the camera axis will be a positive
rotation. For the special case described for the azimuth rotation, tilt is the
angle between the horizontal plane and the camera optical axis.

The rotation matrix, Mg, for the tilt rotation is :

1 0 0
Mg=| O cos 6 sin 6 ..(2.6)
0O -sin ©® cos 6

Kappa (x)

The kappa rotation is a rotation about the z-axis of the image coordinate
system and is measured positive in the clockwise direction with respect to the
positive z direction.

The rotation matrix, My, for the kappa rotation is :

¢ccs ¥ sinxk O

Mc=| -sin x cos x 0 .(2.7)
0 0 1

An advantage of using the rotation angles azimuth, tilt and kappa is that
these rotations can be easily measured to a high degree of accuracy in
terrestrial applications. This facilitates the use of such measurements as
constraints in any subsequent estimation or adjustment process. The
application and effect of such constraints will be investigated in Chapter 5.

Derivation of the rotation matrix, M, is carried out by considering the

subject rotations in the following order :
azimuth = tit = kappa

For this sequence of rotations the rotation matrix is given by :
M = M Mg M, ..(2.8)

11



Slama (ed) (1980);Ch 2 defines the rotation matrix in the order of tilt,
azimuth then kappa rotations. A disadvantage of this rotation sequence is that
the tilt becomes dependent upon the azimuth. For example, a 10° tilt at zero
azimuth, once rotated about 180° will become a -109° tilt. Consequently the
application of this rotation sequence can be confusing, especially in cases
where rotations are specified a priori and the direction of view is with respect
to these pre-determined rotations, and can lead to error in formulation of the
rotation matrix. Rotations in the order azimuth, tilt then kappa are not affected
in the same manner.

Substitution of equations 2.5, 2.6 and 2.7 into equation 2.8 gives the
following definition of the rotation matrix, M.

M1q = COS K.COS & - Sin x.sin 6.sin o

Mo = -COS K.Sin o - Sin k.Sin 6.Cos o

M13 = SiN K.C0S 0

M»>¢ = -SiN K.COS o - COS K.Sin 6.sin o

Moo = SiN K.SiN o - COS K.Sin 6.C0S o .(2.9)
Mo3 = COS K.COS 6

Ma¢ = -COS 0.s8in o

M3o = -COS 6.CO0S O

M3 = -SiN 6

For the geometry of figure 2.2, where tilt and kappa rotations are zero and
which is typical in many close range photogrammetric applications, the
rotation matrix, M, reduces to the following form.

1 0 0
M= 0 0 1 .(2.10)
0 -1 0

Multiplication of equation 2.1 by M leads to the following equation which

defines the collinearity relationship between object and image coordinates
and which is termed the collinearity equation.

Xi - Xo Xi- XL
Yi- Yo |=kM| Yi- YL J .(2.11)
- f Zi- 7,

12



Since the scale factor, k, varies for each ray from the object points to the
image points, the sum of which is called the bundle of rays, and is usually
unknown, it is generally eliminated from equation 2.11. This is achieved by
dividing the first two equations in turn by the third equation. The collinearity
equation is therefore usually written as :

M11(Xi - X1) + mia(Yi-Y) + mya(Zi - Zy)
X X°_'f(m31(xi - XL) + maz(Yi- Yi) + mas(Z; - ZL)) +(2.12)
o e(M21(Xi- X)) + Moo(Yi-Y)) + Mos3(Zi - Z)
YiYo= f(m31(xi - XL) + ma2(Yi- YL) + maa(Z; - ZL)) ~(2.13)
Z
'y

» X

Figure 2.3 Exterior orientation by tilt, azimuth and kappa rotations.

Further descriptions of the collinearity equations is given in Moffitt and
Mikhail (1980) and Slama (ed) (1980);Ch 2.

2.2 Evaluation Techniques

Photogrammetric evaluation techniques can be broadly classified into
three basic groups. These include :

1. Analogue Solutions
2. Semi-Analytical Solutions
3. Analytical Solutions

13



Analogue evaluation techniques are defined as " .. the processes of
establishing positions and elevations of points using spatial models oriented
in analogue instruments" (Slama (ed) (1980);Ch 9). In other words the
photographic or optical model is physically reconstructed and position is
derived from it.

Limitations of analogue solutions for close range photogrammetry
include requirements that "normal”, or near "normal”, photography is utilized.
In close range photogrammetry, where the most precise imaging geometries
for position determination are required and hence convergent multi-station
photography is often utilized, analogue solutions are therefore not practical.
Another limitation of the analogue approach is that, in general, analogue
plotters do not have sufficient principal distance ranges to accommodate close
range photography (Jodoin (1987). Analogue plotters such as the
Wild A40 and the Zeiss Terragraph are designed specifically for terrestrial
applications while plotters such as the Wild A7 and A10 Autographs are
designed for either aerial or terrestrial applications. Such plotters, despite
special design considerations, are still limited in allowable tilt and
convergence angles. Mechanical limitations are therefore a major drawback
for analogue close range photogrammetry.

Another drawback of the analogue approach relates to the limitation that
a simultaneous solution can only be carried out for two photographs of the
object space. This limits both the coverage of the object space and the
number of object points which can be measured in the object space.
Considering these limitations, along with the fact that analogue plotters are
now obsolete, analogue solutions are considered unacceptable for close
range applications and hence will not be developed as a viable evaluation
technique.

Semi-Analytical evaluation techniques have the same basic limitations
as the analogue solutions. In the semi-analytical approach optical models of
the object space are reconstructed for the measurement of discrete points.
The remainder of the data reduction and processing is carried out
computationally. A requirement, as with the analogue case, exists for "normal”
or near "normal” photography and hence many of the limitations associated
with the analogue approach also apply to the semi-analytical approach. Both
the analogue and semi-analytical solutions are viable evaluation techniques
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for aerial photogrammetry, where photography is essentially "normal”,
however implementation in close range photogrammetry is neither feasible or
practical. For typical close range photogrammetric applications, where
convergent multi-station photography is employed, analogue and semi-
analytical solutions cannot be utilized.

Analytical evaluation techniques are based on numerical or
computational processes. Analytical photogrammetry can be defined as
".. the mathematical transformation between an image point in one rectangular
coordinate system and the corresponding object point in another rectangular
coordinate system” (Slama (ed) (1980);Ch 9).

The basic computational unit of analytical solutions is the bundle of rays
which originates at the object points, passes through the image points and
terminates at the exposure station. For each ray, image coordinates, xi and yi,
are measured. By utilizing the collinearity equations, equations 2.12 and 2.13,
the unknown parameters can be derived. In considering the bundle of rays a
solution can be obtained in which all observations are simultaneously
evaluated. Although several analytical approaches have been developed, eg
sequential adjustments, independent model adjustments and simultaneous
adjustments, analysis of the simultaneous adjustment technique will be the
only process evaluated.

In the simultaneous approach the bundle of rays is considered and
hence all unknown parameters are solved simultaneously. The parameters
which may be solved include the parameters of exterior orientation of one or
more cameras, object point coordinates, interior orientation parameters
(if included in the mathematical model) and any other additional unknowns
added to the system.

There are several basic simultaneous adjustment techniques. These
include the Direct Linear Transformation and the bundle adjustment.

The Direct Linear Transformation, developed by Abdel-Aziz and Karara
(1971), is a non-rigorous solution to the photogrammetric adjustment problem.
The technique relies on the basic assumption that the projective, or exterior
orientation, parameters can be perfectly recovered in any adjustment
procedure. In other words the estimated exterior orientation parameters are
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error free. Consequently, in the evaluation of object point coordinates and
their precision, no account is made of the effect of the exterior orientation
parameters upon the object point estimates (Brown (1980)). The Direct Linear
Transformation has the advantage that it is computationally simple and
efficient and solution time, for a given photogrammetric system, is quick. The
solution is based on the direct transformation of image coordinates to object
space coordinates, with the basic equations of the solution being :

: LiX + LoY + L3Z + Lg
X_LgX + LioY + L11Z + 1

(2.14)
_LsX + LeY + L7Z + Lg
Y=ToX + LioY + L11Z + 1

where X,y image coordinates
X,Y,Z corresponding object coordinates
Li-L11 = transformation parameters

The Direct Linear Transformation approach is less accurate and less
rigorous than the bundle adjustment approach, description of which will follow.
However it offers quick and efficient solutions to photogrammetric adjustment
problems. A major advantage of the technique is that no fiducial marks are
required on the photography and it is therefore applicable to photography of
non-metric cameras where there may be no fiducial marks (Marzan and
Karara (1976), Jodoin (1987)). Systematic errors in the image coordinates
can be resolved by adding additional parameters to equation 2.14, the
process of which is covered in section 2.4.5.

The bundle adjustment was developed by Brown (1957) and is a
mathematically rigorous solution for photogrammetric evaluations. Solution
for all parameters can be undertaken by simultaneously considering the
bundle of rays from all exposure stations to all object points. The solution is
based on the collinearity equations, equations 2.12 and 2.13, from which a
mathematical model is established and solution is via the method of estimation
by least squares. The technique offers a direct solution as relative and
absolute orientations of the photograph are not treated separately and hence
the solution, and resulting error propagation, are mathematically rigorous.

The bundle adjustment approach, apart from being mathematically
complete, offers a large amount of flexibility in the estimation process. The
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photogrammetric observational network can be multi-station or a stereo-pair
and convergent or normal. The estimation process can include solution for
uncompensated systematic errors and can allow for the addition of auxiliary
information, such as distance observations and control point observations etc.

Theoretically the bundle adjustment offers the highest accuracy of any of
the adjustment processes in photogrammetry. This is due to :

1. the possibility of correcting for systematic errors in the
photographic image.

2. accurate recovery of the inner orientation of each photograph.

3. accurate reconstruction of the model in the object space due to
more redundancy in the solution.

4. the capability of handling more than two photographs.

5. the capability of handling convergent photography.
(which is especially important for close range applications)

6. the mathematical completeness of the solution, especially with
respect to the propagation of errors.

When the process was initially put into practice it was assumed that
unresolved systematic errors in the image coordinates would have little or no
effect upon the resulting solution. This meant that the only errors accounted
for in the solution were the random observational errors in the image
coordinates, which would be minimized in any least squares estimation
procedure. Such an assumption, however, proved to be invalid as residual
systematic errors, caused by phenomenon such as lens distortion, film
unflatness, film deformations and atmospheric refraction, were found to
introduce errors into the estimation process which drastically reduced
achieved accuracies. The incorporation of additional parameters into the least
squares solution, which model unresolved systematic errors in the image
coordinates, has meant that the bundle adjustment solutions now meet
theoretical accuracy expectations. Error sources and solutions for the effect of
such errors is covered in section 2.4.

In this section the various evaluation techniques have been briefly
assessed. In this report, estimation techniques for close range
photogrammetry will be restricted to the bundle adjustment approach due to
the flexibility and the mathematical completeness of the solution. The

17



alternative analytical solutions can be adapted if necessary or applicable, by
applying similar procedures to those developed for the bundle solution. The
bundle adjustment processes are covered, in detail, in Chapter 4.

2.3 Data and Image Acquisition

Data acquisition systems in close range photogrammetry can be
classified into three basic groups depending on the type of data acquired and
the equipment used. These systems include :

1. a camera, whether digital or analogue, for the acquisition of
raw data in the form of a photograph or image.

2. a comparator or analytical plotter, for the measurement of
image coordinate data from the photograph or image.

3. conventional surveying equipment, for the acquisition of
auxiliary data such as control coordinates, distances, elevation
differences etc.

The third group above will not be analysed as techniques for. the
acquisition of such data can be found in any conventional surveying text.
Evaluation of photogrammetric cameras and comparators and analytical
plotters, suitable for analytical photogrammetric applications, will be given.

2.3.1 Close Range Photogrammetric Cameras

Cameras, for use in close range photogrammetric applications, can be
classified as either analogue or digital, depending on the form of the output, ie
output in the form of an analogue photograph or a digital image.
Conventionally cameras acquire analogue images, however recent advances
in digital technology have facilitated the use of digital or CCD cameras for the
acquisition of raw data. Analogue cameras can be classed as either metric or
non-metric.

Metric cameras are those which have been designed and calibrated
specifically for photogrammetric applications. These cameras have known
and stable interior orientation and are usually of fixed focus (Moffitt and
Mikhail (1980)). Metric cameras usually incorporate a low distortion lens
system and in general have an image surface or reference plane which is a
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true plane. Metric cameras are usually used as single units, however two
cameras can be used simultaneously by mounting the two cameras at either
end of a bar of definite length. Cameras of this form are called stereometric
cameras and are limited to the case of "normal" photography. Slama (ed)
(1980);Ch 16 and Moffitt and Mikhail (1980) give specifications of the various
metric and stereometric cameras available in 1980. Table 2.1, from
Slama (ed) (1980);Ch 186, lists specifications for some of the available metric
cameras.

A recent advance in the design of metric cameras for close range
photogrammetry has taken place in the USA by GSI, Geodetic Services Inc.,
USA, which has developed the CRC-1 close range camera specifically for
close range photogrammetry. The CRC-1 is a large format roll film camera
with applications in high precision photogrammetric evaluations.
Specifications of the CRC-1 are listed in Table 2.2 (Brown (1982)).

Advantages of the CRC-1 include :

1. Large square format (230 x 230 mm).

2. incorporation of a reseau, for measurement of film unflatness
and film deformations.

3. continuous focussing.

Use of the CRC-1, in close range photogrammetry, has resulted in
proportional accuracies of the order 1:100,000 to 1:250,000 (Brown (1987),
Fraser (1988b)) and sub-micron precision of object point coordinate
estimation. Hence the CRC-1 is a major advance in camera technology for
high precision photogrammetric applications. A future development in
analogue camera technology is the metric camera, to be called the CRC-2,
which is soon to be released by GSI. The CRC-2 will be similar to the CRC-1,
but will be smaller format (130mm x 130mm), have a nominal 100mm focal
length and will have a smaller physical size. These physical characteristics
would indicate a reduction in achievable precision compared to the CRC-1,
however it is anticipated that improved manufacturing and design techniques
will facilitate comparable precision (Fraser (1989)).

19



Table 2.1. Specifications of single metric cameras

Tilt Range
Format® of Yotai of Camera
Photo-  Nominal Depth Axis &
graphic~  Focal ot Number of Pnholo-
Manu- Material  Length Field  Inlermedisie graphic
facturer Modet {cm) {mm) (m) Tilt Slops  Material Commaents
Gauieo Verostiat 9 x 12V 100 0-+290* glass variable principal distance
(4] plates or {+n steps)
cut him
Galleo FTG-1b 10 %15 H 155 10—ee0 0—236° glass variabie principal distance
{continuous) plates (in stops)
Hasssidlad  MKT0 6x6 60 0.9-+e unlimiled* 70mm 4 hand held or on 1ripod.
{Biogon lens) fitm vanable principal distance
(continuous mods)
singie frame axposurs or
36QUENCe exXposure
Hasseibtad  MK70 6x6 100 15—«? ynlimiled* 70mm ? fixed locus at @ (upon
(Planar iens) film request lixed locus at de-
sired distances down Lo
2m).
A hand held or on tnpod.
motor driven; single frame
exposure of sequence
axpOSUre.
Jeaoplik UMK 1071318 FP Lamogon 8/100 tens with
Jens distorion <12um flor od-
ject gistances »—J3.6m,
13 x 18 UH 99 t.4—o =30°-+90° glass
UMK 10/1318 NP n plates
Lamegon 8/100 N lans with
distortion <12um for ob-
ject distances 4.2—1.4m.
Jenoptik UMK 10/1318 FF 190mm Lamegon &100 lens with
Jena roll hiim aistortion <12um for od-
13 x 18 UH 99 T4—e «J0%+90° & glass joct distances w—J.6m.
M plates
UMK 10/1318 NF {wilth Lamegon /100 N lens with
sdapter) distortion <12um for od-
ject distances 4.2—1.4m,
Jenoptik 191318 Photo- 13 x 10 H 190 25—+m none* glass § lens can be shifted verti-
Jena theodolite plates cally (¢30—~=45mm) n
snap-in steps of Smm.
Keish K-470 10.5 » 12.7 90 2—= none cut film, image format offset from
ur roll film, the optical axis of the lens
plass by 13mm.
plates.
Soknisha MK18S 12 %1654 165 10—e 0=zJ0* gQlass variable principal distance
(2 plates {in steps).
Wila PI2 6% x 9UH (2] 0.6—w on T1, TI6  glass variable pnincipal distance
or T2: plates, (in steps—interchangeadle
0—e240* cut hiim, spacers).
(continuous) roli him
on QW 1:
0-230°
(continuous)
Wilg L] 10.2 x 12.7 100 6.6—e 0-+230* glass variable prnincipal distance
(V] (1r22) ] plates & {in steps—inlerchangeabie
(4" = 59 12.4~= cut film spacers)—wide-angle lans.
(/5.6) also +90°
* * 45 1.5—m - " Super-wide-angle lens.
(t22)
3.6—~m
(5.6}
* ° 200 18—840 ° * Normal-angle lens. Stan-
({1122) dard locusing 35S m;
26—52 adapler nngs on request;
(1/5.8) mirimum distance 8m,
Zeisy TMK-8 ¢ % 12UH 60 Soon 0-+290° glass 6 ciose-up lanses are
{Oberkochen) [t4] plates avsiladble for object-
distances of 0.5m, 0.6m,
0.75m, tm, 1.9m, and 2.5m.
Zess TMK-12 9x12UK 120 20-oe O-e290° glass
{Operkochen) (]

U/H: tormat UprighVHorizontal; UH: format Upright or Horizontal
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Table 2.2  Specifications of the CRC-1 metric camera

GENERAL

eLarge format (23 x 23 cm) roll film camera

«Standard aerial mapping film reels used (9.5 inch width, 4 inch diameter)
«Capacity approximately 140 exposures per roll (125 feet, 4 mil thick)
*Four illuminated corner fiducials

FILM PLATEN v
*Pila flattened by means of internal vacuum pump

«Patented reseau system incorporated into back of platen
(7 x 7 array standard; 13 x 13 array optional)

«Surface flat to within #Sym; function defining departures
from flatness calibrated to within $0.501m.

sPlaten Tigidly fixed with respect to lens cone, rendering each
reseau image the equivalent of a fiducial mark.

INTERCHANGEABLE LENS CONES

+120 = (88° x 88°)
*155 ma (73° x 739)
+240 mm (51° x 51°)
«360 ma (35° x 35°%)
<450 nm (28% x 28°%)
FOCUSSING

«Continuous focussing by micrometric drum graduated in units of 10im.
*Focussing range: 1.2 m — o, 120 »m
1.6 -~ =, 155 pm

2.5m — =, 240 =
4.0m — =, 360 mm
5.0m —~ =, 480 mn

LENS CALIBRATION

-Stellar calibration of elements of interior orientation and coefficients
of radial and decentering provided for each lens cone for infinity focus.
*Plumb line calibration of coefficients of radial and decentering distortion
provided for each lens cone for near field focussing limit,

FILM TRANSPORT

*Digitally controlled drive motor mounted in film magazine

*Two second cycling

*Incremental advance mode in 1.0 mm steps permits execution of
multiple exposures on same frame when retroreflective targets used.

MISCELLANEOUS

*Precise roll ring permits rotation about camera areas through +180°
(position of center of projection unaffected by rotation)

*Shutter controlled by cable release, speeds 1 to 1/125 second and bulb
sAuxiliary 35 mm SLR camers serves as viewfinder

*Power, 12 V DC external gel cel battery

*Weight, approx. 22 kg

Non-metric cameras are not designed specifically for photogrammetric

applications. These cameras have, as a primary objective, the production of
pictures of good pictorial quality. Non-metric cameras usually do not maintain
a constant interior orientation, are variable focus, and do not contain fiducial
marks (Moffitt and Mikhail (1980)). The lens systems of non-metric cameras
are usually not low distortion and the image plane of the camera does not
represent a true plane due to the lack of film flattening devices. Non-metric
cameras include the multitude of 35mm cameras which are currently available.
They produce pictures of good pictorial quality, however these pictures are
generally geometrically poor. Factors which contribute to this poor geometric
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quality include unstable interior orientations, significant lens distortion and
significant film unflatness. These errors are covered in section 2.4. Prior to
use of photography from non-metric cameras in an adjustment procedure,
application of corrections from calibration, for lens distortion and interior
orientation parameters, and from direct measurement, for film unflatness and
film deformation, can be applied. In other words the image coordinates are
corrected for systematic errors prior to use. However, due to the variable
nature of such errors, the calibration may not be valid at the time of
photography and hence such a solution will generally not yield results
approaching potential accuracy.

As an alternative solution, self-calibrating adjustment procedures may be
utilized. Such procedures include in the solution the estimation of interior
orientation elements and systematic errors. With the self-calibration
approach, parameters, which will model the typical systematic errors in close
range photogrammetry, are added to the least squares mathematical model.
Approximate estimates of the errors are introduced and the resulting
estimation procedure determines the least squares estimates of the
parameters which model the systematic errors. Problems with self-calibration
procedures are evident if there is high correlation between some systematic
errors. If such correlation exists then the resulting least squares process may
become unstable and the errors may not be able to be resolved. In selecting
parameters, or functions of parameters, to model the systematic errors, care
should be taken to ensure that the additional parameters are both necessary
and recoverable. If self-calibration procedures adopt an error model which is
mathematically significant and allows recovery of parameters, then accuracy of
the solution approaches the theoretically expected accuracies of a systematic
error free system. The concepts of self-calibration will be covered in more
detail in section 2.4.5. With the self-calibration approach of estimating
coordinates, interior orientation elements and systematic errors, non-metric
cameras provide a cheap, but not necessarily computationally cheap, image
acquisition tool for medium accuracy photogrammetric applications.

An extension of the non-metric camera is the semi-metric camera. These
cameras are designed for photogrammetric applications, but do not exhibit the
full stability of the metric cameras. The semi-metric cameras usually have a
more stable interior orientation, than non-metric cameras, and are calibrated.
Inclusion of a reseau facilitates the measurement and reduction of errors, such
as film unflatness and film deformations. Since these cameras are capable of
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ensuring a more geometrically correct photograph than non-metric cameras,
relatively high positional accuracy on the photograph, approximately 3-5 um,
can be achieved. Semi-metric cameras are usually 35mm to 70 mm format.
Examples include the Rollei 3003 and 6006 cameras and the Hasselblad
MK70 camera. A relatively new semi-metric camera is the Pentax PAMS
645P. This camera is fitted with a calibrated lens system, film flattening
devices, a reseau grid and is electronically driven. The cost of the camera is of
the order of $A10K - $A15K and is therefore is out of the financial range of
most close range photogrammetrists.

Digital cameras are a new development in close range photogrammetric
applications. Such cameras capture a digital image in the form of pixels of
varying grey level intensities. These cameras usually employ semi-conductor
array sensors or video tubes where, in both cases, conventional photographic
emulsion is replaced by electronic sensing devices. Although digital cameras
are not routinely implemented in photogrammetric applications, active
research is currently taking place into the applicability of such cameras in
close range photogrammetry (eg Wong and Ho (1986), Shortis (1988),
Fraser (1988b)).

Digital cameras utilizing semi-conductor array sensors, of which the
Charge Coupled Device (CCD) is the most common, are preferred to the video
sensors due to the high sensor linearity and the higher geometric stability of
the semi-conductor array sensor. CCD sensors can be either linear array or
area array sensors. Area array sensors are usually preferred, however, due to
the problems associated with mechanical scanning requirements for linear
array sensors (Shortis (1988)).

Applications of digital cameras to close range metrology are particularly
useful for problems requiring automated measurement and real time results.
For multi-station convergent networks where large numbers of images, each
containing "up to several hundred points, are utilized, manual image
observations can be time consuming and costly. Automated measurement, by
digital correlation techniques based on pattern recognition principles, allow
quick, low cost and high precision results. Although still in research stages,
target recognition precision from automated measurement of digital images is
of the order +0.2 pixel, as reported by several authors, eg Wong and Ho
(1986), Shortis (1988). Under ideal conditions this precision can approach
0.01 pixel (Trinder (1988)).
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At present digital cameras have serious limitations for application in close
range photogrammetry. A major limitation relates to the small size
(9mm x 7mm) and limited resolution of the CCD area-array sensors. Such a
limitation means that narrow fields of view result and hence use of a small
imaging scale is required (Fraser (1988b), Shortis (1988)). Another
limitation of the digital camera relates to the calibration of the digital sensor.
Both the degree to which the digital sensor can be calibrated and the stability
of the calibration require investigation. Calibration of digital sensors requires
assessment of features such as frequency differences between pixel and
converter clocks, warm up effects and jitter, or line synchronization effects
(Fraser (1988b)). '

Hence, although digital camera systems are available and are applicable
to close range photogrammetry, limitations relating to camera calibration and
imaging geometry must be assessed, and their significance determined, prior
to acceptance as a close range photogrammetric image acquisition tool.

2.3.2 Comparators and Analytical Plotters

Photogrammetric cameras are used to acquire photographic images from
which data pertaining to the position of points on the image will be determined.
Such data, for analytical photogrammetry, is usually in the form of image
coordinates with respect to a two dimensional coordinate system. Instruments
for the measurement of image coordinates, for analytical photogrammetry,
include comparators and analytical plotters and these instruments will be
examined in this section.

A comparator is a device which allows the measurement of image
coordinates on a photograph and can be defined as " an optical instrument,
usually precise, for measuring polar or rectangular coordinates of points on
any plane surface, such as photographic film" (Slama (ed) (1980);Ch 9).
Comparators can be either mono-comparators, where measurements are
made on only one photograph, or stereo-comparators, where simultaneous
measurement of coordinates in a stereo-pair of photographs is carried out.
Detailed descriptions of comparators and their functions in photogrammetry is
given in Slama (ed) (1980);Ch 9 and Moffitt and Mikhail (1980).

An analytical plotter is "..a photogrammetric plotting system which
mathematically solves the relationships between photographic image
coordinates, measured in the two dimensional photographic reference
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coordinate system and the ground coordinates of the object in the three
dimensional 'real’ world" (Slama (ed) (1980);Ch 13). An integral component
of the analytical plotter is the digital computer which performs, on a real time
basis, the computations which satisfy the mathematical relationships between
object and image points. Hence no physical reconstruction of the
photographic model is undertaken and all measurements are carried out on a
computational or analytical basis. Analytical plotter functions and components
are covered in Slama (ed) (1980);Ch 13 and Moffitt and Mikhail (1980).

In analytical close range photogrammetry either mono-comparators or
analytical plotters are utilized to measure image coordinates from the
photograph or image. Both of these instruments require calibration to reduce
the effects of systematic instrument error on observed image coordinates.
Instrument calibration, accomplished by measurement of a large number of
points on a calibrated grid, will usually suppress instrument errors to the level
of 1um or less (Brown (1980)). If the instrument has been calibrated, then the
effects of residual instrument errors are considered to be insignificant for close
range photogrammetric applications.

Analytical plotters currently on the market include the Wild Aviolyt BC2,
the Kern DSR-11,the Zeiss Phocus and the Intergraph Intermap Analytic.
Such analytical plotters have the same basic features and are capable of
measurement accuracy of the order 3 - 5 um RMS. Analytical plotters of this

type cost in the order of $A300K - $A500K.

A recent advance in analytical plotter technology is the Adam Technology
MPS-2. The instrument is a micro photogrammetric system capable of utilizing
35mm to 70mm photography. The unit is small and relatively inexpensive,
approximately $A50K, and allows measurement of image coordinates to
approximately 5 um RMS. Consequently the MPS-2 is a viable alternative for

small format photogrammetric applications.

Other recent advances in analytical plotter and comparator technology
relate to the techniques of automated measurement of analogue images.
Automated measurement of analogue images is carried out by video or digital
scanning of the analogue image. Pattern recognition techniques allow the
detection of targets from which determination of image coordinates can be
generated. Well defined targets, for example retro-reflective targets
illuminated against a dark background, allow high accuracy in both target
detection and measurement of the location of the target centre. Automatic
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measurement techniques are generally associated with comparators. For
example, GS! has developed the AutoSet-1 automatic mono-comparator
specifically for close range photogrammetric applications. Measurement with
an accuracy of 0.4 um RMS and at a rate of one point every 0.8 seconds is
possible (Fraser (1988b)). Problems are evident, however, in multi-station
convergent photography where target recognition and detection are a problem
and the matching of image points in the different scenes becomes difficult.
Such problems are due to the distortions in the image geometry caused by
convergence.

The accuracy of the output image coordinates is a function of both the
camera used for capture of the raw data, and the instrument used for
measurement of the image coordinates. Table 2.3 (Fraser (1988b)) depicts
the angular measurement precision for different combinations of camera, focal
length and image coordinate precision. The angular measurement precision,
which is derived from the equation oo = o / focal length, where ¢ is the image
coordinate precision, allows a direct comparison of photogrammetric and
conventional surveying techniques. In conventional surveying, accuracy is
usually given in terms of a measured angle, eg theodolite angle measurement.

Table 2.3  Angular measurement precision for different combinations of camera, focal length
and image coordinate precision

Caners Focsl Sed. Error of Angular Represeatative Camere/
Langth Format Image Coords., Std. Error Comparstor Coubinatioan
(ma1) () o (um) 0q (™ or Digital Camers
240 230x230 0.5 0.4 CRC~1 vith AutoSet
sutomatic monocomparator
200 130x180 1.3 1.3 UMK 20/1318 wvith 1st order
analytical plotter
120 230x230 0.5 0.9 CRC-1 with AutoSet
100 130x180 1.0 2.0 UMK 10/1318 with Rollei RS
coapsrator
100 130x180 2.0 4.1 MK 10/1318 or P-31 with

analytical plotter

80 60x60 2.5 6.4 Hazselblad MI70 or Rollei
6006 Reseau with snalytical
plotter

40 60x60 1.0 5.2 Rollei RSC resesu-~scanning
caners

40 60x60 4.0 21.0 70um semi-aetric camers
wvith 2nd order analytical
plotter

20 9x7 0.3 3.1 Videk Megaplus CCD camers
at 1/20th pixel image
measuresment accuracy

12.5 8.8x6.6 1.0 16.0 CCD camera with approx., 20
pm pixels and 1/20th pixel
accuracy
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2.4 Error Sources

Error sources in close range photogrammetry can be classified into five
major categories.

atmospheric refraction

camera errors

image measurement errors

film errors

auxiliary data acquisition errors

A A

Figure 2.4, adapted from Jodoin (1987), illustrates the error sources and
the major contributing factors to each error type. Auxiliary data comprise data
such as object point coordinates, distances, elevation differences, vertical and
horizontal angles and, in general, any data acquired in the object space.
Errors associated with the acquisition of auxiliary data include errors such as
gross observational error, random measurement error, atmospheric refraction
errors, as well as errors such as centring, leveling and pointing errors. The
magnitude and effect of these errors is covered in conventional surveying texts
and will not be covered here.

The theoretical principles of photogrammetry, as given by the collinearity
condition, were developed in section 2.1.1. Conditions which apply at the time
of photography are collinearity of object point, perspective centre and image
point and coplanarity of all image points. In reality these conditions are not
met due to various errors which cause the image point, the perspective centre
and the object point to deviate from linearity and cause the reference plane to
deviate from being a flat surface. The causes for such differences between
theoretical and actual cases are:

1. alight ray traveling from the object to the image is deflected by
the medium through which it passes. Such deflections are due
to atmospheric refraction and lens distortion.

2. the image point is displaced from its theoretical position in the
image plane due to changes within the photograph itself, film
shrinkage, expansion or deformation, and due to the lack of
flatness of the film in the image plane.

3. systematic errors in the comparator or analytical plotter and
random measurement error due to operator / instrument
limitations.

27



ERROR SOURCES IN CLOSE
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Figure 2.4 Error sources in close range photogrammetry
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Image measurement errors comprise two major error sources. These
include random observational error and systematic instrument error.
Instrument error is covered in section 2.3.2 and the effect of random
observational errors is minimized in any least squares adjustment process.

2.4.1 Atmospheric Refraction

A ray of light passing from a point on the object to the camera lens will be
refracted due to density gradients in the atmosphere. Such refraction effects
will displace the image point on the photograph from its theoretical position, as
given by the collinearity condition.

Marzan and Karara (1976) state that for close range photogrammetry,
where object to image distances are less than 300 metres, the errors induced
by atmospheric refraction are negligible and hence no refraction corrections
need to be applied to image coordinates. Therefore unless object to image
distances exceed several hundred metres the effects of atmospheric refraction
on image position can be ignored.

2.4.2 Lens Distortion

The lens system of a camera will generally contribute as a major error
source in close range photogrammetry and is evidenced in the deviation of an
image point from its theoretical position, as defined by the collinearity
condition. Lens distortion is a term used to describe the bending of an object
space ray as it passes through the lens system into the image space. Such
bending is due to lens aberrations. Figure 2.5 illustrates the bending of a ray
due to lens distortions. Lens distortion consists of two components, namely
radial distortion and decentring distortion.

Radial distortion is inherent in the design and manufacture of the lens
and results in radially symmetric displacement of the image from its ideal
position. Radial distortion is a function of both radial distance on the image
plane and also the distance from the centre of projection to the photographed
point (Brown (1980). A complete analysis of radial lens distortion, and its
variation with focussed object distance, radial distance and position within the
photographic field, is given in Brown (1972).
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Figure 2.5 Bending of light rays, at the camera lens, due to lens distortion

Decentring distortion is essentially a function of the physical construction
of the lens system. Imperfect centring of lenses causes the ray from the object
to the image to deviate from its theoretical position, as shown in figure 2.6.
Decentring distortion is an individual property of each lens system and can be
altered by any blow or knock to the camera. Consequently such distortion
cannot be considered constant and regular calibration must be undertaken to
determine the magnitude of the distortion and its effect on photographic
geometry. Decentring distortion may also vary with changes in focal length
and hence, as many non-metric cameras utilize zoom lenses, the effects of
errors induced by decentring distortion, as a function of changes in focal
length, must be assessed. If the errors due to decentring distortion caused by
variable focal length cannot be resolved, then the zoom lenses used for
focussing should remain at the one focal length setting. This will ensure a
constant focal length for all exposures and hence decentring errors which are
not a function of varying focal length. In other words, the errors in the image
coordinates due to decentring distortion in the camera lens system will be
independent of focal length variations.
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Figure 2.6 Bending of incident lightrays due to decentring distortion

The corrections to measured image coordinates, for the combined effects
of radial and decentring distortion, can be given as :

AX = (Xi-Xo) (K12 + Kar4 +..)+[ P1 (r2 + 2 (Xi-Xo)2 + 2P2(Xi-Xo)(Yi-Yo)][1 + Par2 +..]
.(2.15)
Ay = (xi-Xo)(K1r2 + Kor* +..)+[ 2P1(Xi-Xo)(Yi-Yo) + P2(12 + 2 (yi-Yo)?][1 + P3r2 +.]

where x.y; = image coordinates of point i
Xo,Yo = image coordinates of the principal point
r = radial distance from the principal point
=V (Xi-X0)2 + (¥iYo)?
Ki,Ko,... = coefficients of radial distortion
P¢,P2,... = coefficients of decentring distortion
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The decentring component of equation 2.15 is valid for an infinite focus.
For finite focus the decentring component is multiplied by (1-f/s), where f is the
principal distance and s is the distance at which the lens is focussed. This
scaling accounts for points in the plane at s. To account for variability within

the photographic field, a further scaling factor is used, (S—Cé%) where s'is the

distance to the point under consideration (Fryer and Brown (19886)).

Equation 2.15 includes the Brown-Conrady formula for resolving
decentring distortion, which assumes focus at infinity. If this is not the case the
formula can be extended to include cases where the focus is varying and
finite.

The coefficients of distortion in equation 2.15 can be determined by a
variety of methods. Such methods include stellar calibration, analytical plumb
line calibration, simultaneous multiframe analytical calibration (Brown (1972))
or by simultaneous calibration and adjustment (self-calibration bundle
adjustment), which will be covered in section 2.4.5.

2.4.3 Film Unflatness

A basic assumption of the collinearity condition is that all image points lie
on a common plane, ie all image points are coplanar. This condition will not
hold if the photographic surface is not flat at the instant of photographic
exposure. The consequence of this film unflatness is that the image point will
be displaced radially from its true position. Figure 2.7 illustrates the radial
displacement of an image point due to the departure of the photographic
surface from an ideal image plane. Although the error is a systematic error it
occurs randomly in the photograph format and hence formulation of a model to
define photographic surface unflatness, across a whole photograph format, is
not possible.

Most metric cameras can utilize glass plates as the photographic media,
with the plates being either micro-flat or ultra-flat. Micro-flat plates are usually
flat to within 3 - 4 um of a best fitting plane while ultra-flat plates are 7 - 10
times coarser than micro-flat plates (Brown (1980)). Ultra-flat plates are
usually employed for close range photogrammetric mensuration, where glass
plates and not film are used, and departures from flatness can be assumed to
be negligible. In high precision applications, micro-flat plates should be
utilized to ensure errors due to plate unflatness do not degrade results. The
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influence of film unflatness on non-metric imagery is covered in Fraser
(1982c).

In both metric and non-metric cameras, where film is used as the
photographic media, film unflatness can be a major source of error. To reduce
the effect of film unflatness on measured quantities, the film is usually flattened
and can be accomplished in several ways.

1.  pressing the film against a glass register plate which is located
in the camera focal plane. (Register-glass cameras)

2. using atmospheric pressure to press or suck the film against a
vacuum platten. (Vacuum-back cameras)

Brown (1980) states that register-glass cameras, utilizing carefully made
and maintained pressure pads, ensure film flatness to within 15 to 20 um,
however practical difficulties limit the applicability of the register-glass method.
Vacuum-back cameras can ensure film flatness to within 3 - 5 um of an ideal
plane. The degree to which flatness can be achieved is a function of the
flatness of the platten itself and the degree to which the actual film can be
flattened. These residual errors, ie errors due to remaining film unflatness, are
generally negligible for most close range photogrammetric applications
however (Brown (1980)).

Actual Image Plane
(Photographic Surface)

c \4

Camera Principal Distance

Image Plane

Figure 2.7 Effect of photographic surface unflatness on the position of an image point

A direct approach for the detection and elimination of errors due to film
unflatness is to incorporate a reseau in the camera. The reseau either
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comprises a plate, mounted in front of the focal plane, consisting of any array
of fine crosses in calibrated positions or "back-projected” crosses through the
vacuum plate. From the resulting image, which contains superimposed
reseau crosses, image coordinates can be measured with respect to the
calibrated reseau positions. Cameras which are designed for
photogrammetric applications, and which utilize film, are usually fitted with a
reseau. Such cameras include the GSI CRC-1 metric camera as well as semi-
metric cameras, such as the Rollei 3003, Pentax PAMS 645P and the
Hasselblad MK70.

With reference to figure 2.7, equations can be formulated to compute the
corrections to the observed image coordinates for a measured departure from
flatness. The corrections to image coordinates x; and y; become :

X
Ax =3Ah
..(2.16)
_Y
Ay = c Ah
2.4.4 Film Deformations

Film deformations, which are dimensional changes within the plane of
the photograph itself, introduce errors into the measured image coordinates.
Such errors are due to film expansion and contraction within the camera
during photography as well as deformations in the film during processing.
Film is extremely sensitive to temperature and humidity and hence changes in
either temperature or humidity will cause the film to deform. Such
deformations are usually less than 5um from the ideal or undeformed case.
Dimensionally stable film has been developed which is essentially inert with
respect to changes in temperature and humidity and for high precision
metrology this film is always used. Cameras utilizing glass plates do not have
the same degree of problems, due to dimensional deformations, as cameras
using film. Glass is much more stable than film and hence any dimensional
changes in the glass plates can be assumed to be negligible, ie deformations
are generally less than 2um.

Detection of film deformations is usually carried out by utilizing cameras
with a reseau attached, as described in section 2.4.3. Measurement of image
coordinates with respect to calibrated reseau positions resolves the majority of
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the film deformation effect, with the residual error being of the order 3um and
therefore assumed negligible for close range photogrammetry (Brown
(1980)). The fiducial marks on a photograph will give an overall indication of
any film deformation that has taken place. Although such measurements give
no indication of the actual deformation at any particular point on the
photograph, they may be used to indicate if deformation has occurred and the
magnitude of this deformation. To minimize film deformation, stable base film
can be utilized. Such film is relatively inert to deformations caused by film
processing and hence will minimize the effects of film deformation on the
measurements.

2.4.5 Correction for Systematic Errors

There are two basic solutions for the correction and compensation of
systematic errors in close range photography. The first approach is to either
model or measure the errors and apply them to the observed image
coordinates prior to adjustment. For example lens distortion errors are
modelled by equation 2.15 and the corrections applied to the observed
coordinates. If the camera has utilized a reseau then determination of errors
due to film unflatness and film deformation can be carried out and corrections
applied to the observed coordinates.

Alternatively self calibration procedures can be used. Such procedures
use the approach of incorporating additional parameters in the adjustment
process, which will model the unresolved systematic errors which exist in the
photography. In general, additional parameters are introduced in terms of
polynomial functions and take the form of equation 2.17. For high precision
applications both methods are utilized. The principle systematic errors are
resolved by measurement or prior calibration and then any remaining
unresolved systematic errors are modelled by self-calibration procedures.

dx=Fx (xy,r)
dy =Fy (xy,r) : .(2.17)
where r = +x2+y?

X,y = image coordinates (Kilpela (1981))

Addition of these functions to the collinearity equations gives equations
which allow modelling of residual systematic errors in the image coordinates.
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The collinearity equations, given by equations (2.12) and (2.13), take the form
of the following two equations.

, Co(Mmat(Xi- Xi) + mya(Yi- Yi) + mia(Zi- Z1)
"""°*dx—‘f(m31(xi ) maaY Yo+ ez Z0)) +(2.18)
, _mar(Xi- X)) + mop(Yi- Yi) + Mmaa(Zi- Z1)
i -yo+dy_-f(m31(xi - X)) + maa(Yi- Yi) + mas(Z;- ZL)) ~(2.19)

Problems with this approach become apparent if high correlations
between additional parameters exist. High correlations between parameters
will make the solution unstable and hence systematic errors will not be
resolved accurately. The term "overparameterization”, as introduced by Brown
(1980), describes ill-conditioning induced by the inclusion in the adjustment of
unnecessary or inherently unrecoverable parameters. Overparameterization
can be avoided by

1. setting a loose a priori value and variance on the additional
parameters.

2. assessing the covariance structure of the estimated additional
parameters and deleting from the model those parameters which
exhibit high correlation.

3. deleting from the model those additional parameters which may be
recoverable but which do not differ significantly from zero.

Such processes will ensure a stable model for the recovery of a priori
unresolved systematic errors, as well as a compact model which contains no
extraneous parameters. Another problem associated with
overparameterization is that, while the solution may be stable, the increase in
the number of parameters can lead to high internal precision but low accuracy.

Typical self calibration parameter sets contain parameters for affinity and
non-orthogonality, a model for decentring distortion and a polynomial function
for radial distortion. Such parameter sets are given in Kilpeléd (1981). As most
cameras used in photogrammetric applications either utilize glass plates or
have a reseau attached, errors due to film unflatness and film distortion can
either be assumed to be negligible (glass plates) or can be measured with
respect to a calibrated reseau (film). Consequently parameter sets for the
modelling of systematic errors do not usually contain parameters to model
systematic film deformation or unflatness errors.
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In this chapter the mathematical principles associated with close range
photogrammetry have been assessed. The geometric properties of
photography and the mathematical relationship between object and image
have been developed. Arising from such developments was the basic
equation relating object and image points, the collinearity equation, and the
structure of the rotational elements which define the orientation of the camera
in the object space.

The effect of systematic errors upon the image coordinate data, caused
by atmospheric refraction, lens distortion, film unflatness and film deformation
have been assessed as have the principles of self-calibration. The
computational basis of analytical photogrammetry, especially with respect to
network design and evaluation, is the least squares method. This method will
be evaluated and developed in detail in Chapter 3.
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3. LEAST SQUARES ESTIMATION

The principal estimation technique, for close range photogrammetry, is
the least squares adjustment. Both the principles of close range
photogrammetry and the principles of network design and analysis are
dependent on the form of the least squares estimation methods employed.
Consequently to develop the techniques associated with network design, with
an emphasis on network optimization, the significance and effect of the least
squares adjustment upon the solution must be investigated. In this chapter the
basic principles of the least squares process as well as the various estimation
techniques, and the implications of such techniques upon the solution, will be
analysed in detail. The analysis will be with respect to a general, not
necessarily photogrammetric, model and application to close range
photogrammetry and photogrammetric network design will be undertaken in
the following chapters.

3.1 Least Squares Principles

The technique of least squares estimation was formulated to allow an
optimal estimation of a set of parameters, or functions of parameters, based on
a set of redundant observations. In other words an estimate is made of the
subject parameters from an overdetermined system of observations. For an
observation, [, the least squares estimate of the observation will be denoted by
7. The least squares principle, which is based on the principle of maximum
likelihood estimation, attempts to minimize the variance of the estimated
observations from the actual observations. Such a principle can be expressed
as:

® =viIPv = minimum .(3.1)
where P = the weight matrix of observations

® = the function to be minimized

v = the residual vector (Mikhail (1976))

The residual vector is given by :

™ .(3.2)
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3.2 Selection of the Least Squares Mathematical Model

In order to estimate parameters or functions of parameters, based on the
least squares principle stated in equation 3.1, functional and stochastic
models require formulation. Such formulations are generally based on sets of
either condition equations and / or observation equations.

A condition equation mathematically expresses the geometrical
properties which must be satisfied by a set of observations on a set of physical
phenomena. The equation comprises a minimum of two observations and
may include unknown parameters. The general form of such an equation is :

F(P)=F(l +v) .(3.3)

In equation 3.3 T are the adjusted observations, / the observations and v
the residuals, as given by equation 3.2. After estimation of observed
parameters and observations, unknown parameters can be estimated based
on the geometrical relationships established in the conditions applied. An
estimation technique based on condition equations is called the condition
method (Mikhail (1976), Slama (ed) (1980);Ch 2). Condition estimation
methods have several problems with respect to practical application of the
technique. Such problems include :

1. construction of the least squares formulations requires sound
geometrical understanding of the system as only independent
conditions can be used.

2. tedious derivation of adjusted parameters from functions of the
observables.

3. computer automation for the development of condition
equations is not feasible.

Because these problems associated with condition adjustments negate
the conceptual simplicity of the technique, alternative estimation techniques
are investigated. Derivation of the condition method can be found in Mikhail

(1976).
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Observation equations are a form of condition equation where only one
measured parameter is included in each equation. The equation is formulated
on the basis of a measured parameter being a function of several unknown
parameters. The general form of the equation is:

A A
[ = F(X) ..(3.4)
where 1 = adjusted observations

>>
I}

parameter estimates

An estimation technique based on observation equations is called the
parametric method (Mikhail (1976), Slama (ed) (1980);Ch 2). In a case
where a mathematical model is formulated based on both condition and
observation equations the resulting estimation technique is called the
combined method (Slama (ed) (1980);Ch 2). The basic equations, relating
observations to parameters, in photogrammetry are the coplanarity condition
and the collinearity equation.

The coplanarity condition is a condition equation relating image
observations to parameters, such as exterior orientation parameters and
object space coordinates. Adjustment processes based upon the coplanarity
condition have several problems for solution of close range photogrammetric
evaluations. These include complex formulation for more than two
photographs, complex image to ground relationships and the fact that the
solution is basically sequential. Consequently application of the coplanarity
condition to convergent close range photogrammetric networks is not
recommended and hence this condition will not be considered.
The coplanarity condition is covered in Moffitt and Mikhail (1980), Appendix C.

The collinearity equation, as formulated in Chapter 2, relates image
observations to unknown parameters, such as camera orientation parameters
and object space coordinates, in the form of observation equations (Equations
2.12 and 2.13). One observation equation is established for each image
observation and no specific geometric understanding is required for the
application being assessed. In other words each observed image coordinate,
Xj or yj, results in one observation equation and no analysis of the
independence of these equations is necessary. Hence automation by
computer, for the generation of such equations, is possible.
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The collinearity equation is accepted by photogrammetrists as the
standard equation in the least squares process for close range
photogrammetry and hence will be the fundamental equation in the
formulation of a least squares mathematical model. Such a model will be
developed on the basis of the parametric method of least squares.

3.3 Formulation of the Least Squares Model

The notation used in photogrammetric and least squares textbooks is
often not compatible. In this report an attempt has been made to unify the
notation throughout, including application to both least squares and
photogrammetric evaluations. Unless explicitly stated otherwise, the following
notation will apply throughout this report. The order is given in brackets.

E(.) = expectation operator

= unknown parameters  (u)

= estimated parameters  (u)

X° = approximate estimates of the parameters  (u)
A)A( = )A( - X° = corrections to parameters (u)

X
A
X

) = observations  (n)
A
l = adjusted observations  (n)
, . . dF
A =design or coefficient matrix = X Iyx® (n,u)
b = constant vector (misclosure vector) =/ - F(X) IX=X° (n)
v =residual=0-1 (n)

0.2 = a priori variance factor
AN . . .
00,2 = a posteriori variance factor

2 = variance -covariance matrix of observations (n,n)
Q = cofactor matrix of observations  (n,n)
P =weight matrix of observations = Q1 (n,n)

2y = variance-covariance matrix of adjusted parameters (u,u)
Qg = cofactor matrix of adjusted parameters  (u,u)

Q) = cofactor matrix of adjusted observations  (n,n)

Q, = cofactor matrix of residuals  (n,n)

n = number of observations

u = number of unknown parameters

r = redundancy = n - u

€ =trueerror (n)

d = rank deficiency
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The basic mathematical model in the least squares estimation process is
the Gauss-Markov mode! (GMM). Such a model is a linear mathematical
mode! relating stochastic observations, /, to parameters, X. The model can be
expressed as :

E(!) = AX .(3.5)
E(eeT)=0,2Q=X ..(3.6)

The following assumptions are made with respect to the model :

1. the number of observations exceeds the number of unknown
parameters. (n>u)

2. the observational errors are random with expectation zero.
€ ~ N( 0, o2 ) where ;2 is the variance of an observation

3. the observations are normally distributed with expectation AX
and variance . [~N(AX,X)

4. the observations are mutually independent.

As a requirement for the model the observation equations must be linear.
In cases where the observation equations are not linear an approximate linear
equation can be formulated by application of a Taylor series expansion. Such
an expansion is of the form :

F (X% + g%X=X° . AX + higher order terms = F(X) +(3.7)

By neglecting second and higher order terms the above equation
provides a linear approximation of the non-linear observation equation. An
approximation such as this means that any estimation process will not be a
single step process. As X° + A)A( will only provide an improved estimate of the
parameters, X, iterations of the estimation procedure will be required until the
corrections AX become negligibly small. It is then that the resulting estimate
of the parameters, >A( given by X° + A)A(, will be the desired solution. Note that
in the non-linear least squares case, solution is with respect to A)?, the
corrections to the parameters, and b, the misclosure vector. Equations 3.5 and
3.6 give the theoretical expectations of the model. Transformation of these
equations to estimable quantities feads to the following equations.
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Functional M |

v=AX-1 .(3.8)
hastic Model
3 = 6,2 Q = 6,2 P .(3.9)

The weight matrix of observations, P, is determined from ¢j, the standard
deviation of observation i. In formulating the matrix it is usually assumed that
no correlations exist between observations and hence the weight matrix

: : %
reduces to a diagonal matrix of terms —°2.
Oj

Equations 3.8 and 3.9 represent an overdetermined system of equations
according to assumption 1 on the previous page. Optimal estimation of
parameters can then be formulated on the basis of the estimates of the
unknown parameters being unbiased and of minimal variance. Such criteria
can be expressed mathematically as :

E(X)=X (unbiased) (3.10)
G)A(Z = minimum (minimum variance) .(3.11)

On the basis of such criteria the mathematical derivation of equations to
give optimal estimates of the parameters can be undertaken. Such derivation
can be found in most statistical texts, such as Searle (1971), as well as in
Mikhail (1976). Caspary (1987) gives a descriptive analysis of the formulation.
The parameter and variance estimates can be written as

X = (ATPA)JTATPI = QeATPI = N'TATP/ .(3.12)
(BLUE : Best Linear Unbiased Estimator)

Equation 3.12 is of type BLUE and conforms with equation 3.10 since, by
rearranging equation 3.12 in terms of equation 3.10 and equation 3.5, the
following characteristics can be developed.

E(f() = (ATPA)T ATP E(/) .(38.13)

E(/ )=AX ..{(3.5)
therefore

E(f\() = (ATPA)TATP AX =1 X =X ..(3.14)

hence the result is within its expectation value and unbiased.
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Oo? = U .(3.15)
(BIQUE : Best Invariant Quadratic Unbiased Estimator)

The cofactor matrices associated with equation 3.12 are :
Qq = (ATP A)1 .(3.16)
Q;=A (ATPAy1AT -(3.17)
Qu=Q-A(ATPA)IAT=Q-O .(3.18)

(Caspary (1987))

The variance-covariance matrix of the unknown parameters, 2¢, is a
scalar function of the cofactor matrix of the unknown parameters, Qg. Scaling
is carried out by premultiplication of Q¢ by either the a priori variance factor or

the a posteriori variance factor.

Scaling by the a priori variance factor, 6,2, is conditional upon the factor
being statistically significant. The a posteriori variance factor, Go2, is
statistically tested, by using the F-test at some predetermined level of
significance, to determine if it is consistent with 6,2. If the test passes then o2
is used as the scaling factor otherwise Go2is used (Mikhail and Gracie (1981)).
In adopting this technique for determining the scaling factor, care should be
taken to ensure that the sample size, over which the test is carried out, is large,
ie greater than approximately 20 to 30 observations. For a small sample size
statistical compatibility may be assumed from the F-test, however, in reality the
two factors may be significantly different. In close range photogrammetric
applications sample sizes are usually very large and hence problems
associated with the statistical testing of small samples do not occur.

Scaling by the a posteriori variance factor relies on the assumption that
oj, the accuracy of observation i, can never be known precisely unless it is
determined from multiple observations, on the same instrument and by the
same observer. In the process of scaling by 602 the variance factor is
assumed to be an unknown. An initial estimate of the a priori variance factor is
made and an adjustment carried out, from which G2 is determined. If 802 is not
equal to 6,2 then the observational accuracy is varied, the system of equations
readjusted and the sequence continued until Go2is approximately equal to 6o2.
In such a process not only are the unknown parameters and their associated
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variances estimated but the observational accuracy is estimated as well. A
difficulty arises, with scaling by 6,2 if observations are of different types, and

hence different o; apply. Here an ambiguity arises as it cannot be resolved
which observational accuracies require reweighting if the a priori and a
posteriori variance factors are not approximately equal after the first
adjustment (Rueger (1989)).

In close range photogrammetry the observational accuracies of the
typical observations are generally well known. For example image coordinate
observations on a first order analytical plotter, eg Wild Aviolyt BC2, are known
to have a standard deviation of the order of 3 - 5 um and for inexperienced

operators this can be increased to reflect the estimated increase in
observational error. Consequently it can be assumed that 6,2 would be a valid

estimate of observational precision and hence a valid a priori estimate of the
variance factor. For such reasons, and because the resulting processes are
numerically simpler, scaling by the a priori variance factor will be carried out.
Note however that the requirements for testing of statistical significance of the
factor must still be undertaken.

The variance-covariance matrix of adjusted parameters, X¢, becomes :
29 =052 Qq .(3.19)

The model can be adapted to the case where the estimated quantities
are corrections to the unknown parameters. This is achieved by including the
corrections to the unknown parameters, A)/%, where 5\( = X + A)A( and X° is an
approximate to the unknown parameter, and the constant term b, where
b=1-F(X)°and F(X)° is from equation 3.7 evaluated at some approximate
value, in the model. Equations 3.15 to 3.19 remain unchanged but equation
3.12 becomes :

A

AX = (ATP A1 ATPD .(3.20)
It should be noted that for equation 3.20

Qag = Qg and hence Xpg = Xg .(3.21)
(Harvey (1987))

45



In photogrammetric least squares applications, observation equations
are usually non-linear. Therefore observation equations are formulated in
terms of corrections to the parameters, A)?. In the least squares developments
which follow, the vector 5\( will refer to the corrections to the parameters and the
vector [ will refer to the difference between the observed and the calculated
observations, determined at the approximate parameter value. This notation
has been adopted in order to simplify the development of the various least
squares solutions and will apply unless explicitly stated otherwise.

3.4 Concept of Rank and Rank Deficiency

The rank of a matrix can be defined as " the order of the largest non-zero
determinant that can be formed from the elements of the matrix by appropriate
deletion of rows or columns (or both)" (Mikhail (1976)). An alternative, and
more applicable definition, states that rank is the maximum number of linearly
independent row or column vectors in a matrix. The rank deficiency of a matrix
can be defined mathematically by considering a matrix A which is related to a
vector of u unknowns. For the rank of A denoted by R(A), the rank deficiency is
defined by the following relationship.

d=u-R(A) .(3.22)

Linear dependence can be defined mathematically by considering a
matrix, A, of u-d linearly independent columns, ie d dependent columns which
is equal to the rank deficiency. Then a vector S exists, where the vector
S = (s1,S2,...,8u)T, with at least one s;= 0 such that :

AS=0 .(3.23)

To extend the previous definitions of rank to one in terms of eigenvalues,
the rank of a matrix becomes equivalent to the number of non-zero
eigenvalues in the matrix. The rank deficiency is therefore, by definition, the
number of zero eigenvalues in the matrix. The basic eigenvalue equation is:

(A-Ail)s; =0 fori=1,u ..(3.24)
where u = number of unknowns
Ai ith eigenvalue
S eigenvector of A;
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In cases where the rank deficiency is greater than zero the rows and
columns of A are not linearly independent. For a rank deficiency greater than
zero the matrix cannot be inverted and by definition is singular. Cayley matrix
algebra, as utilized here, defines the inverse of a square matrix A as the
unique matrix A-1based on the property :

AAT=ATA=] for det(A) #0 ..(3.25)
where I is the identity matrix of order equal to A.

Consider equation 3.8 for a system of rank deficiency d. By partitioning
A
the equation into two components, Ay of order (n,u-d) ; Xy of order (u-d) and A,
A
of order (n,d) ; X2 of order (d), then the equation becomes :

A
X
v=(A1,A2) | AT -1 .(3.26)
X2
The parameters )/\(1 are estimable and relate to the rank R(A) and the
A

parameters X, are inestimable quantities and relate to the rank defect d. The
linear dependence of the system is formulated from the expression :

AiL=As ..(3.27)
A
where L is a matrix defining the dependence of parameters Xson
A
parameters Xi.

The properties of rank deficiency do not affect many of the formulations of
the least squares model. For example the inverse P-1, in equation 3.9, is not
affected by singularity. P is usually formulated as P = Q' =1or
P = Q1 = constant. For either case the matrix is non-singular and inversion is
elementary (Welsch (1979)).

One area of the model for which rank deficiency is potentially a problem
relates to the normal equations of equation 3.12. The equation involves
calculation of the inverse (ATPA)-1. In a case where the matrix is non-singular
the parameters X are unbiased and estimable, from equation 3.14. In such a
case the parameters X will relate to relative quantities and parameters defining
absolute quantities are not included in the model. Problems become evident,
however, when the matrix ATPA is rank deficient, ie R( ATPA ) < u. In cases
where some or all of the parameters define absolute quantities the least
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squares method can only find ATPA X = ATP!/ unbiased. In other words the
only unbiased solution to a rank deficient system of equations is a solution in
which unknown parameters are an uninverted function of the normal equation
coefficient matrix.  Unbiased estimation of the parameters, as separate
entities, is not possible (Grafarend and Schaffrin (1974)).

Where the rank deficiency of the system, d, is not equal to zero then there
can only be an unbiased solution for R(A) of the parameters, X, ie an unbiased
solution is only possible for )/\(1 in equation 3.26 or, in general terms, an
unbiased solution only exists for u-d parameters . As a further complication, if
a rank deficiency exists then ATPA is singular, and therefore cannot be
inverted by classical inversion techniques. Hence the parameters are
inestimable.

There are two basic solutions to the problems of singular, and hence
undefined, systems. The first solution involves the explicit imposition of
constraints on the parameters. Such constraints define relationships between
the relative quantities, as supported by a least squares functional model, and
the absolute quantities as defined by the unknown parameters. Constraints
can be applied in various forms with the basic condition being that the applied
constraints have to remove the full rank defect of the system. |If such a
condition is met the the system becomes non-singular and inversion of the
normal equation matrix can be carried out by the Cayley inverse
(Equation 3.25).

An alternative solution involves the use of generalized matrix algebra.
Such formulations allow the inversion of singular matrices and hence can be
directly implemented to allow solution of the functional model. In this process
no defined or explicit constraints are applied to allow definition of absolute
guantities. However the relationships between relative and absolute
quantities are implicitly applied in the process of determining the generalized
inverse of the singular normal equation.

3.5 Least Squares Model for Observation Equations with
Constrained Parameters

The constraint of parameters will be carried out by the imposition of
constraint equations upon the basic mathematical model. Such equations
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contain no observations and are functions of only parameters and constraints.
Considering equation 3.26, constraints may be applied to the equation to
remove the rank deficiency and hence allow solution of the system.
Constraints can either be minimal, ie a minimum number of constraints to
allow a solution of the system, or the system can be over-constrained. If
constraints are minimal no distortions are introduced into the estimated
parameters. However if redundant constraints are imposed the sum of
squares of the residuals will usually be larger than residuals from minimal
constraint imposition and distortions are introduced into the estimated
parameters (Papo and Perelmuter (1982)). Fraser (1984) defines minimal
constraints as those constraints which introduce no information into the
adjustment which have the potential of distorting the estimated parameters.

The constraints may be applied in two forms, either absolute or relative.
Absolute constraints take the form of a mathematical criterion which must be
met by the parameters to which the constraint is applied. For example an
absolute constraint may take the form of fixing the parameter at its
approximate value. Consequently the constraint will be formulated such that
the normal equation is affected so as to induce no correction to the
approximate value of the subject parameter. Relative constraints are also
referred to as weighted constraints. They take the form of observations to the
parameters and are applied to the least squares model in the form of
observation equations. Consequently the subject parameters are constrained
by the applied weights to the observed values. It should be noted that
variance estimates from a least squares adjustment will not be optimal unless
absolute minimal constraints are applied.

3.5.1 General Solution for Observation Equations with
Constrained Parameters

The basic model, as defined by equation 3.8, is extended to include a
constraint equation. The revised model takes the following form :

V=AX-1 .(3.8)
T = 602 Q = 6,2 P-1 -(3.9)
GTX=c .(3.28)

The definition of symbols used in equation 3.28 and in the subsequent
derivations are defined below and in section 3.3.
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@' = function to be minimized

k,ki,ko = vectors of Lagrange multipliers
GT = coefficient matrix of the constraint equation
c = constant term of the constraint equation

Solution of the system is carried out by the method of constrained minima
by Lagrange multipliers. Such a method requires minimization of the basic
least squares equation, equation 3.1, in the following form :

@ = VTP v-2k¢ (v+1-AX)-2ks (c-GT X ) = min (3.29)

Note that the quantities (v+! - A)A() and (¢ - GT )2) become zero when
equations 3.8 and 3.28 are satisfied, hence equation 3.29 becomes identical
to equation 3.1.

A
To minimize the function @', partial derivatives with respect to X and v are
equated to zero.

%99%: OkiA + 2k,GT = KiA + koGT (3.30)
%%3:: 2VTP - 2kq = VTP - k; -(3.31)

This leads to the system defined by equations 3.8, 3.28, 3.30 and 3.31
and can be expressed as in the following form.

PO -I O v 0

0 0 AT G & 0

Ta ool =l .(3.32)
0GT 0 0/ \ ks c

Application of matrix operations then leads to a system of normal
A
equations in terms of X and k. The derivation of these equations is :

1. multiplication of row 3 by P and addition of row 1, to eliminate v

PA -I 0 X Pl
0 AT G || ky |=| O .(3.33)
GT 0 O© Ko c
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2. multiplication of row 1 by AT and addition of row 3, to eliminate ki
ATPA G \( X ATP/
( T o )(kxz j=( . ) .(3.34)

Simplification of the system given by equation 3.34 results in the
A
following system of normal equations in terms of the parameters X and ka.

N x J<(*T) (3.3

ATPA
where N=( GT g)

Provided that the constraint equations meet the following two conditions,
equation 3.35 can be solved to give a solution for the unknown parameters, X.
The conditions require that :

1. GT consists of d independent rows, where d is the rank
deficiency of the system defined by equation 3.12.

2. The rows of GT must be linearly independent of the rows of A.
(ie R(A) + R(G) = u) (Caspary (1987))

The above conditions mean that the system defined by equation 3.35 is
non-singular and solution is possible by application of the Cayley inverse. A
zero on the leading diagonal of the matrix N is of no concern as the rows and
columns of the matrix can be interchanged to give a non-zero diagonal term.
Care should be taken at this stage, however, to ensure consistency of the
equations when rearranging the N matrix.

Although equation 3.35 can be solved directly it is both a numerically
inefficient solution and involves solution of the parameters ks, which are
essentially nuisance parameters. By considering the N matrix of equation
3.35, in terms of the Cayley inverse relationship of equation 3.25, the following
relationship can be established.

ATPA G Q11 Q2 Iy
( 5T o )(921 sz):l:( L ) .(3.36)
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As the matrix A has rank deficiency d, with respect to equation 3.23, there
exists a matrix G, of rank d, such that AG = 0. The matrix G is not unique,
however, as there is an infinite solution to the equation AG=0. For example
the matrix G may be selected as :

0
G= (Id) (3.37)
(Caspary (1987))

Such a constraint matrix leads to a solution based upon the absolute
minimal constraint of the parameters affected by the Ig submatrix.

The following solution can be derived for any selected constraint matrix.

X =QuATPL + Quac (3.38)
Qi1 = (ATPA + GGT)! ATPA ( ATPA + GGT) (3.39)
Qiz = (ATPA+GGT)' G ..(3.40)
and

Qg = Q11 .(3.41)

Derivation of the solution can be found in Caspary (1987) section 3.4
and an alternative derivation in Mikhail (19786).

Analysis of the results achieved by imposing constraints shows that the
solution is biased. Substitution of equation 3.5 into equation 3.38 gives :

E(X) = Q1 ATP E(I) + Qi2C = Q11 ATPA X + Qqa = X (3.42)
and
Qq = (ATPA + GGT)! ATPA ( ATPA + GGT) (3.43)

A
Equations 3.42 and 3.43 show that the estimated parameters, X, are

biased, not of minimum variance and are not independent of constraint
selection.

3.5.2 Minimum Mean Variance Solution for Observation
Equations with Constrained Parameters

From equation 3.42 it can be seen that the solution of the parameters, X,

is biased and dependent on the choice of constraints. Extension of the model,
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as derived in section 3.5.1, is therefore proposed in order to determine a
solutron for the parameters based on a specmc set of constraint equations,
GTX = ¢, such that the estimated parameters, X are of minimum bias and
minimum mean variance.

To achieve such a model a solution of the unknown parameters is
investigated such that the trace of the cofactor matrix, Qg, is a minimum, the

trace of the matrix being the sum of the terms on the principal diagonal.

tr (Qg ) = minimum ..(3.44)
where Qg is defined by equations 3.39 and 3.41.

Note that if the trace of the cofactor matrix of unknown parameters is a
minimum then the sum of the squares of the root mean square errors of the
unknowns is also a minimum (Mittermayer (1972)). Hence the proposed

solution is a minimum mean variance solution, where the mean variance is

tr(Qg)
u

variance factor.

6;(2 = 02 , U = the number of unknown parameters and 6,2 is the a priori

For such a condition, ie tr ( Qg ) = minimum, the Euclidean norm of the

A
estimated parameters, || X ||, would be a minimum. The minimum Euclidean
Norm condition means that the changes to the a priori parameters, or
approximate parameter values, are a minimum.

-

I X 1] = (X TX)Z = minimum .(3.45)
(Caspary (1987))

The constraints which provide such a minimum bias and minimum mean
variance condition, as derived by Caspary (1987), can be written as:

><>

GTX=0

AG=0 ..(3.46)
where R(G)=d

and the matrix G is composed of the d linearly independent
eigenvectors associated with the d zero eigenvalues of ATPA, as
given by equation 3.23.
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The solution equations of such a system are given as :

X = Qi1 ATPI .(3.47)
Qg = Q1= (ATPA + GGT) ATPA (ATPA + GGT)1 .(3.48)

Analysis of the results shows that the estimated parameters are still
biased.

E(X)=Qis ATPI= Qi1 ATPAX = X ..(3.49)

However imposition of the minimum norm condition, || )A( [| is a minimum,
means that a minimum biased estimate of the parameters results. Such a
solution is called BLIMBE (Best Linear Minimum Biased Estimate). By
definition the resulting solution provides a minimum trace for the cofactor
matrix of unknowns and hence a minimum mean variance solution results
(Mittermayer (1972), Welsch (1979), Fraser (1980b)). For the case of full
rank, and considering equation 3.48, GGT = 0.

Qq = (ATPA)1 ATPA (ATPA)1 = (ATPA)

and ..(3.50)
A

X = (ATPA)-1 ATP!

Equations 3.50 are equivalent to equation 3.12 and equation 3.16, hence
BLIMBE becomes BLUE. Note that any system of equations based on the
formulations presented here will be biased. However this is of no significance
if the unknowns themselves are not important but some invariant function of
the unknowns is required. Such functions will define the shape or equivalent
relative function, as opposed to an absolute position or quantity, and hence an
unbiased estimate of such functions can be achieved (Granshaw (1980)).

3.6 Minimum Mean Variance Solution Based on
Generalized Matrix Algebra

As described in section 3.4 the normal equations of the least squares
functional mode! are singular if a rank deficiency exists in the system. A
method of solution for the singular matrix N = ATPA is by use of generalized
inverses. Generalized inverses allow the solutions to systems of less than full
rank, ie they allow inversion of singular matrices.
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A matrix N-can be defined as a generalized inverse if it meets the
following condition.

NN-N=N .(3.51)
(Bjerhammar (1973))

Upon application of equation 3.51 to a rank deficient system, where
R(ATPA) < u, equation 3.12 can be written as :

X = (ATPA ) ATPI = N-ATP/ .(3.52)

Grafarend and Schaffrin (1974) state that 9( is unique if the following
conditions are met.

NN-N=N and N-N = (N-N)T .(3.53)

An inherent problem with the conditions imposed by equation 3.53 is that
although 5\( is unique N-is not unique. In fact N- can be defined by a manifold
of generalized inverses, each of which is generally not unique. Generalized
inverses include inverses such as the Bjerhammar inverse, the Rao inverse
and the Moore-Penrose inverse (Bjerhammar (1973)). As stated above these
inverses are themselves generally not unique. The Bjerhammar inverse, for
example, is based on the deletion of the linearly dependent rows and columns
of a singular matrix. The selection of which rows and columns to delete is
arbitrary with the only condition being that the remaining matrix be non-
singular and hence invertable by the Cayley inverse. The inverse of the
singular matrix is then formed by appending the inverted sub-matrix with zero
elements for all previously eliminated elements.

An exception to the concept of non-uniqueness of the generalized
inverse is the Moore-Penrose inverse, or as it is alternatively called the
pseudo inverse . The Moore -Penrose inverse will be defined by the following
notation, N+. The inverse is a special case of a generalized inverse where the
following conditions are applied.
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1. NN-N =N

2. N-NN- = N- .(3.54)
3. (NN)T = NN-

4. (N-N)T = NN (Bjerhammar (1973), Welsch (1979))

If the inverse N+ were applied to a singular system, equation 3.12 could
be rewritten in the following way.

X = (ATPA )+ ATPI = N+ ATP/ .(3.55)
Characteristics of such a system would include :

1. the inverse N+ would be a generalized inverse.
(from condition 1 and equation 3.51)
2. the least squares solution, vTPv = minimum, would apply.
(from condition 1 and condition 3)
3. a minimum Euclidean norm would apply, XTX = minimum.
(from condition 1 and condition 4)
4. the inverse of the inverse would be the original matrix and
R(N) = R(N+). (from condition 1 and condition 2)
(Welsch (1979))

The characteristic of the minimum Euclidean norm condition,
||)A(|l = minimum, as applied to the estimated parameters, >A( , is that the trace of
the matrix to which the minimum norm condition is applied is a minimum
(ie tr (N*) = minimum). Such a condition would mean that application of the
Moore-Penrose inverse to the singular normal equations would result in a

minimum trace for the cofactor matrix of the adjusted parameters,
ie tr (Qg) = minimum.

As with the solution of observation equations with constraint equations,
the solution of a system defined by equation 3.34, based on generalized
inverses, is biased as shown below.

A

E(X) = (ATPA)- ATP E(/) ..(3.56)

E(/)=AX ..(3.5)
therefore

E(f() = (ATPA)- ATP AX=N-ATPAX=N-NX # X ..(3.57)
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For a generalized inverse of the form of a Moore-Penrose inverse, the
minimum Euclidean norm condition means that the solution to the singular
system will result in a minimum biased estimate of the parameters
(BLIMBE : Best Linear Minimum Biased Estimate ) and of the parameter
variance. For a system of full rank the generalized inverse becomes identical
with the Cayley inverse, N- = N1, and BLIMBE becomes BLUE. The solution
requires that the cofactor matrix of unknowns is implicitly minimized and hence
the solution, based on generalized inverses of the Moore-Penrose type, will
be minimum mean variance solutions (Fraser (1980b)). Indeed any solution
based on a generalized inverse is biased or the solution is inestimable
(Grafarend and Schaffrin (1974)). Marquardt (1970) substantiates use of the
generalized inverse by stressing that a small amount of bias is introduced but
with the benefit of large reductions in the variance of parameter estimates.

Solution of the generalized inverse can be carried out by the singular
value decomposition of the singular matrix. Such a process is especially
useful for determining the Moore-Penrose inverse as all of the conditions
defined by equation 3.54 are retained in the decomposition process.
Derivation of singular value decomposition can be found in Bjerhammar
(1973).

A solution, defined by Caspary (1987), states that the Moore-Penrose
inverse, N+, as defined by equations 3.54, can be calculated from the following

equation :
A+ = ATA ( ATAATA )- AT = AT ( ATAAT )- AT ..(3.58)

where the generalized inverses can be any of the generalized inverses
meeting the conditions of equation 3.51.

Solution by the Moore-Penrose inverse is mathematically equivalent to
the minimum bias solution by constrained parameters (section 3.5.2). Both
cases are of type BLIMBE and in both cases implicit minimal constraints, of the

type H)A(|| = minimum, are applied.
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3.7 Functions Independent of Constraints

As detailed in sections 3.4, 3.5 and 3.6, for a model of rank deficiency d,

only u-d unbiased and estimable parameters exist. Hence the estimated
A

parameters, X, and the associated cofactor matrix, Qg, are dependent on the

A
choice of constraints G X =c.

Invariant functions are those functions of )A( which do not vary as a
function of the selection of constraints, whether absolute or relative. These
functions are of type BLUE and include the adjusted observations, the
residuals and their associat6ed cofactor matrices. Following the derivation of
Caspary (1987), it can be shown that the cofactor matrices of the adjusted
observations, Qj, and residuals, Qy, are both independent of constraint
selection. Consequently both the function @ = vTPv, given by equation 3.1,
and the a posteriori variance factor, given by equation 3.15, are also
independent of constraint type and form and hence are also invariant functions
of the model. Note that such invariant properties apply only to minimal
constraints. For over-constrained solutions, resulting in hierarchical
adjustments, functions of residuals and observations become dependent upon
constraint type and magnitude.

Another form of invariant function is defined by Welsch (1979) in stating
"all vectors of linear independent quantities are linear unbiased estimable if
and only if they are invariant in respect to any transformation which leaves the
observation vector invariant." For example distances, directions, elevation
differences or any relative function of the unknown parameters, in the case of
the unknown parameters being coordinate positions, are invariant functions
and hence can be unbiased estimated.

A detailed analysis of least squares methods, and implications of such
methods with respect to parameter and variance estimates, has been carried
out. The basic solution for a positive definite system of equations has been
established with definition of parameter estimates of type BLUE (Best Linear
Unbiased Estimator) and variance estimates of type BIQUE (Best Invariant
Quadratic Unbiased Estimator).
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Due to the fundamental deficiencies in the least squares model, the
system of equations given by v=A )A( -/ is often singular, especially in
photogrammetric and surveying applications where observations of relative
quantities are required to define absolute position. This singularity, which is
due to rank deficiency in the system of equations, means that the estimation of
the unknown parameters is impossible. Solution techniques based on the
general solution for explicit parameter constraints, the minimum bias, minimum
mean variance solution for explicit parameter constraints and the minimum
bias, minimum mean variance solution based upon generalized matrix
algebra have been developed in detail. Finally an analysis is given of the
parameters and functions of the least squares solution which are invariant with
the selection of minimal constraint.

Having developed the least squares process in detail, the close range
photogrammetric principles of Chapter 2 will be applied to the general least
squares formulations of this chapter. Observation equations, for the variety of
observations in close range photogrammetry, will be established along with
algorithms for the least squares solutions of photogrammetric systems.
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4. DEVELOPMENT OF THE LEAST SQUARES SOLUTION
FOR CLOSE RANGE PHOTOGRAMMETRY

In Chapter 3 the mathematical fundamentals of the least squares model
and the least squares estimation process were established. Solution using
the parametric method of adjustment was adopted and observation equations,
in the form of equation 3.8, are to be utilized, ie v=AX - I where v are the
residuals, A is the coefficient matrix, & are the estimates of the unknown
parameters and [ are the observations. In the development of observation
equations for the least squares model, partitioning of the unknown parameter
set is carried out. The estimates of the parameters are partitioned into 5?1,
which are the parameters of exterior orientation, and ﬁg, which are parameters
relating to the coordinates of the object points in the object space coordinate
system. The typical form of the observation equation is therefore :

v=(A1,A2)(§; )-z (4.1)

Observation equations are formulated with respect to the typical
observations which are evident in close range photogrammetric applications.
The observations which will be considered include :

—r

image point coordinates

exterior orientation parameters (ie measurement of the
geographic location and/or orientation of the camera station)
control or object point coordinates

straight line distances

elevation differences

azimuths

horizontal angles

vertical angles

N

© N O~ ®

In the development of the mathematical model it has been assumed that
observations of all types have taken place. In reality this would not occur but
deletion of unnecessary observation equations from the model, for each
specific application, is an elementary task.
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4.1 Observation Equations for Close Range Photogrammetry

Observation equations, for typical close range photogrammetric
observations, have been developed in full in the appendix . Following is a
summary of the observation equations in terms of the notation developed.
Note that the observation equations relating to distance measurement,
elevation differences, azimuth measurement,horizontal angle measurement
and vertical angle measurement have been developed in two forms. One form
is independent of the camera station, hence for these equations no
measurements either from or to the camera station can occur. An alternative
form is developed to allow distance, elevation difference, azimuth or angle
measurement from or to a camera station. The second form of the equation is
not often applied in close range photogrammetry. It is a more common
practice to take such measurements between object points alone in order to
provide datum control independent of the camera station position. Hence
development of the close range photogrammetric mathematical model will be
restricted to image coordinate observation, exterior orientation parameter
observation, object point coordinate observation and distance, elevation
difference, azimuth, horizontal angle and vertical angle observation between
object points only.

Image Point Coordinate Observation Equation
The observation equations, relating n image coordinate observations on
m photographs to the unknown parameters, in matrix notation are :

A A
V1 + A11 . Xy + A2 'Xg = Ct ..(A.9)
(2mn,1) (2mn,6m) (6m,1) (2mn,3n) (3n,1) (2mn,1)

Exterior Orientation Parameter Observation Equation
For observations at m' camera stations the observation equation for
exterior orientation parameters can be written, in matrix notation, as :
A
Vo - Xy =0 .(A12)
(6m',1) (6m",1) (6m', 1)
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Control or Object Point Coordinate Observation Equation
The observation equation for n' control observations can be expressed
in matrix notation as :

A
Vg - Xo =¢C3 ..(A.15)
{3n",1) (3n'1) (3n"1)

Straight Line Distance Observation Equation
The observation equation for d measured distances can be expressed in
matrix notation as :

Va- As. )/\(2 =Cy4 .(A.23)
(d,1) (d,3n) (3n,1) (d,1)

Elevation Difference Observation Equation
The observation equation for e measured height differences can be
expressed in matrix notation as :

A
V5 - A5 . Xg =Cs (A29)
(e,1) (e,3n) (3n,1) (e,1)

Azimuth Observation Equation
In matrix notation, for a measured azimuths, the observation equation is :

Ve - As.Xo = Co .(A.38)
(a,1) (a,3n) {3n,1) (a,1)

Horizontal Angle Observation Equation
In matrix notation, for b measured clockwise horizontal angles, the
observation equation is :

A
V7- A7 Xo=c¢C7 ..(A.47)
(b,1) (b,3n) (3n,1) {b,1)

Vertical Angle Observation Equation
The observation equation, for e measured vertical angles, can be
expressed in matrix notation as :

Vg- Ag. Xa =cg (A56)
(e,1) (,3n) (3n,1) {(e,1)
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4.2 Formulation of the Mathematical Model for Close Range
Photogrammetry

In Chapter 3 the mathematical model for the least squares solution was
developed in general terms. Observation equations of the form v = A 5\( -1
were formulated and a solution, in terms of estimates of the unknown
parameters and the variance of these estimates, was given as :

X = (ATPA)! ATP
Q)A( = (ATPA)- .(3.12)
where Q)A( is the cofactor matrix of the estimated parameters

In this section observation equations, developed in the appendix, will be
applied to the model and a solution algorithm developed. From section 4.1
the complete set of observation equations can be given as :

Vi + A1y )/\(1 + Aq2 9(2 =Cy (image coordinates)

Vo - )/21 = Cp (exterior orientation parameters)

V3 - X =cg (object space coordinates)

V4 - Ay )A(g = C4 (straight line distance) ..(4.2)
Vs - As )A(Z =C5 (elevation difference)

Vs - Ag )/\(2 =Cs (azimuth)

V7 - Ay 5\(2 = ¢y (horizontal angle)

VA - As X» =cg (vertical angle)

The resulting mathematical model, in the form of equation 4.1, is :

AN T

V3 0 -1 A C3
V4 0 -Ags X4 C4
‘VS + 0 -A5 [)/\( J= Cs (43)
Vs 0 -Asg 2 Cs
V7 0 -Ay C7

\Vs/ \| 0 -Ag \Cs

or in a general form :
A
V+AX=c .(4.4)

63



For a weight matrix of the form :

P1
P= : ..(4.5)
Ps
where pj, j=1,8 are the individual weight matrices associated with each

observation type. The structure and form of the weight matrices can be found
in Slama (ed) (1980);Ch 2.

The resulting least squares solution, of the system of equations given in
equation 4.3, is :

A
X = (ATPA)T ATPc = N-1 ATPc .(4.6)

with an associated cofactor matrix of :

Q) = (ATPA)T = N (4.7)

This system of equations is solvable if the system is not rank deficient.
The system will not be rank deficient if observations have been included which
allow the datum, ie the scale, orientation and translation, of the network to be
determined. The concept of rank deficiency, and its implication on the
solution, have been discussed in section 3.4. Application of such concepts, to
the solution of rank deficient systems in close range photogrammetry, will be
analysed in Chapter 5.

4.3 Solution Algorithms

The solution given by equations 4.6 and 4.7 is consistent with the bundle
adjustment .technique described in section 2.2. In such a technique a
simultaneous least squares solution is carried out for the bundle of rays from
all exposure stations to all points as well as all auxiliary or control
observations. For close range photogrammetric applications where several
hundred points may be imaged on up to ten convergent photographs the
derived solution becomes computationally inefficient. For example, the direct
solution of equations 4.6 and 4.7 will involve the solution of (6m+3n)
simultaneous equations, where m is the number of photographs and n the
number of points. For a typical close range configuration of 100 points and 5
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photographs, storage for the normal equation coefficient matrix requires
330 x 330, or 108900, locations and the solution is both inefficient and time
consuming.

4.3.1 Total Error Propagation - Uncorrelated Object Points

Slama (ed) (1980); Ch 2 derives in detail the solution algorithm
developed by Brown (1958). The solution is based on reducing the normal
equations to a function of one set of unknowns, solving for these unknowns
and then substituting the results back into the system for solution of remaining
unknowns. The solution is based on the assumption that all object points are
uncorrelated and mutually independent, as the solution requires the form of
the normal equation coefficient matrix, with respect to the object point
coordinate parameters, to be in the form of 3 by 3 diagonal submatrices. The
remaining portions of the object point normal sub-matrix must be null, as
shown in figure 4.1. As these portions carry inter-point correlation information,
and in Brown's formulation are null, object points cannot be correlated if a
rigorous solution is desired. Consequently, for such an assumption to be
valid, observations between object points or which are a function of more than
one object point, cannot be included in the model. Hence the only
observations which can be utilized for a rigorous solution are the image
observations, exterior orientation parameter observations and the object
control observations. Equation 4.3 is therefore reduced to the form of the
following equation.

Vi A11 Ar2) (% C1
Vo |+ -1 0 ,\1 =|C2
V3 0 -1 X2 C3

.(4.8)
A
VeAX=c
with a solution equation of :
X = (ATPA) ATPc = N ATPc .(4.9)

The form of the normal equation coefficient matrix is given in figure 4.1.
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6x3 submatrices
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/ and photograph
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object points N
2n-1
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Figure 4.1 Form of the normal equation coefficient matrix for uncorrelated object points
From figure 4.1 it can be seen that the N matrix

1. is symmetrical about the principal diagonal.

2. comprises 6x6 submatrices on the principal diagonal, in the
upper left, corresponding to a particular photograph. (Ni4 to
N1m for m photographs)

3. comprises 3x3 submatrices on the principal diagonal, in the
lower right, corresponding to a particular point. (N21 to Nag
for n object points)

4. comprises 6x3 submatrices off the diagonal which relate to
the correlation between a point and a photograph. If a point
is not imaged on a photograph this will be a null matrix.
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Note that, with reference to figure 4.1 and the features of the normal
equation matrix listed above, all the sections in the figure which are not
shaded represent null elements.

Based on the form of the N matrix, and with respect to equation 4.8, the
following solution can then be formulated :

Ny Xq + N Xp =K, (4.10)
NT9(1 + N2 )A(g = Kg
where Ny = Ay TP1A; + P>

N2 = AQTP1A2 + P3

N =A{TP1A;

Ky = A1TPycq - Poco

Kz = A2TP1ct - P3cs

and Pj, j=1,3 defined by equation (4.5)

By partitioning the system of equations above, solution of the parameters
A
X1 can be carried out. The normal equations of the partitioned system are the
"reduced normal equations".

)A(1 = (Ny - N No INT)1 (Ky - N Np-t Ko) (4.11)

Because of the diagonal structure of the N matrix, which is due to the
absence of correlation between object points, the object points can be solved
sequentially from the following equation.

Xoj = (N2 ( Kgj - N Xy) .(4.12)
(3.3)

for j=1,n

and n=number of object points

The associated cofactor matrices can be determined from :

Q)A<1 = (Ny - N Ny TN Ty (4.13)
Qg = (N2j) "+ ((N2)'Nj) Qq (N2))'N)T
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Full derivation of the reduced normal equations and the solution of such
equations is given in Slama (ed) (1980);Ch 2. The term "Total Error
Propagation" arises because, if the assumption that all object points are
uncorrelated is valid, then the algorithm presented here represents a full
propagation of all errors into the final solution. Hence the solution will give a
realistic assessment of accuracy and precision as all error sources are
represented in the solution. If object points are correlated then solution using
this algorithm will not represent a total error propagation as errors based on
correlation between points will not be reflected in the final sclution. Note that
solution of equation 4.8 without forming reduced normals, ie a direct solution
to the full system of equations, is also a total error propagation and does not
rely upon the assumption that object points are uncorrelated.

4.3.2 Total Error Propagation - Correlated Object Points

Solution of the system of reduced normal equations given by Brown's
algorithm have, as previously stated, the limitation that no observations which
introduce correlations between object points can be included if a
mathematically rigorous solution is required. Wong and Elphingstone (1972)
introduce a variation of Brown's algorithm based on the addition of an
observation equation of the form Vg + G2 9(2 = Cg , which comprises all
observation equations which introduce correlations between object points.
This equation is restricted to observations between object points. A similar
solution could be established for an equation of the form
Vg + Gy )/\(1 +Go 5\(2 = Cg to allow observations between exposure station and
object point as well as between object points.

The system of observation equations becomes :

V1 A111 Aéz 5 C1
2 - 1 C2
Va |*| o -1 [5\( ]= Ca .(4.14)
Vg 0 Go V% \gq

with a weight matrix :

p=| P2

D3 where pg=| ..(4.15)

Pg .p 8
from equation (4.5)
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If all points for which correlation between points exists are grouped
together, the unknown parameters can be partitioned as :

A A
. X4 X1
A A
A A A
X2-Xg X202

A
X1 = exterior orientation parameters

A

X21 = object points with correlation between points

A

X22 = object points with no correlation between points

On the basis of this partitioning, equation 4.14 becomes :

1 A1 Azq Agp )A(1 C1
Vo -1 0 O A C2
Vo [¥| 0 -1 -1 >A<21 =l ca
Vg 0 Go1 O Xon Cq

(4.17)

Solution of the above system leads to normal equations of the form :

A - A - A
N1 X1 + N1 X21 + Ng X22= K1
NT1 9(1 + N21 )/\(21 + N3 9(22= Kg ..(4.18)
NT,Xq +NT3 Xo1 + NapXoo = K
where Ni =A{TPiA{ + P>

N2t = Az1TP1A21 + P+ Ga1TPgGoy
Noo =AxTP1Ax + P3

Ny =A{TP{A
Ny =A{TP1Ax

N3 =AxTPiA2

Ki = A4Pcy-P2oco

Ko =AsPicy-Psc3 + G21PgCg

Kz =AxPict - Pacs

and Pj, j=1,3 defined by equation 4.15

Note 1) only the term N3 carries correlations between object points.
2) if no correlations between object points are evident, for a

point j the submatrix Ng;jis null.
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The form of the lower portion of the normal equations, ie the section of the
normal equations relating to object coordinates, is shown in figure 4.2a, with
the correlated object points being the first g of the n points. Figure 4.2b shows
the same section of the normal equations but depicts the structure if selective
rearrangement of the parameter order had not occurred.

The solution of the system of equations, given by equation 4.18, is similar
to Brown's algorithm in that reduced normals are formed with respect to the
exterior orientation parameters §(1. Solution is carried out for these
parameters and then reduced normals are formed for the parameters 5\(21, the
correlated object space coordinates, which are solved as a group. For g
correlated points then 3g parameters require simultaneous solution. The
remaining parameters, the uncorrelated object points 5\(22, are solved
sequentially using Brown's solution (equation 4.13). Hence the algorithm
presented here allows a rigorous solution for any form or combination of
observation equation, irrespective of correlation. The algorithm also allows a
quick and efficient solution because as the number of uncorrelated points
becomes equal to the total number of points, then the solution becomes
identical with Brown's solution. As the number of uncorrelated points
becomes small, however, the initial problems of storage and inefficiency arise
again. In most close range photogrammetric applications, observations which
introduce correlations between object points are usually only applied to a
small portion of the total number of points and so this solution technique is
viable and efficient for most applications.

Therefore, if the unknowns are partitioned as in equation 4.16, the
solution is given by the following equations :

X1 = (Ng- NN 'RTYT Ky - N N 1K) (4.11)
A - A
Xzt = (Na1)-1(K - N2 Xq) (4.19)
A - A
X22j = (Ngj)™" (Kgj - N1j Xy) (4.12)
(3.3)

for j=g+1,n

and n=number of object points,
g=number of correlated object points

Note that the solution is equivalent to Brown's solution, section 4.3.1,
except for the g correlated object points.
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3gx3g, submatrix

comprising the | e
correlated poinis / , / :

3x3 submatrices 3nx3n matrix /
I)oorinlfgcorrelated comprising correlated

and uncorrelated points
in arbitrary order

Figure 4.2a Form of the lower portion Figure 4.2b Form of the lower
of the normal equation portion of the normal
matrix with the (g) correlated equation matrix with the
points preceding the (n-g) (g) correlated points
uncorrelated points. arbitrarily located in the

parameter vector.
4.3.3 Limiting Error Propagation - Uncorrelated Object Points

The concept of Limiting Error Propagation was developed by
Brown (1980) and Fraser (1987). The concept is based on the assumption
that the camera exterior orientation, or projective, parameters are recovered
perfectly in the adjustment process. Hence the process of limiting error
propagation will express the limiting result to be expected from error free
projective parameters. In other words the limiting error propagation solution
will yield the best possible results for a particular imaging geometry. In cases
where the projective parameters can be perfectly recovered, the limiting error
propagation solution becomes rigorous and identical to a total error
propagation solution. Limiting error propagation can be described in terms of
the total error propagation of equation 4.13 :

Qg = (N2))"" + (N2))TN)) Qg ((N2j)R)T (4.13)
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From this equation, which defines the cofactor matrix of the object point

coordinates, it can be seen that for error free projective parameters the

cofactor matrix of the projective parametersis a null matrix, ie Q)A( =0, and
1

therefore the limiting error propagation solution becomes :

Q, = (N2j)" .(4.20)
X2,

Hence it can be seen that the only errors which will be reflected in the
object point coordinate precision estimates will be the effects of errors in the
image coordinates. Expressions, similar to equations 4.11 to 4.13, can be
developed for the limiting error solution.

Limiting error propagation, despite being a non-rigorous solution, has the
valuable advantage that computational time is drastically reduced. The
process has applications in close range photogrammetric network design
where representative precision estimates are required rather than definitive
precision estimates. In Chapter 9 the concepts of limiting error propagation
will be examined to determine if the solution gives a representative precision
estimate for a variety of close range photogrammetric networks.

Chapters 2, 3 and 4 involved development of close range
photogrammetric principles, least squares principles and the close range
photogrammetric least squares mathematical model. These chapters have
provided the theoretical basis for the development and evaluation of the
network design procedures to follow. The introduction of network design
principles, with respect to the least squares method and primarily for close
range photogrammetry, is covered in Chapter 5.
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5. NETWORK DESIGN PRINCIPLES

In preceding chapters the basic tools associated with close range
photogrammetry have been analysed in specific terms. The basic structure of
the photogrammetric principles, the mathematical formulation of such
principles and estimation and adjustment techniques, based primarily on the
least squares method, have been developed in detail. Considering such
formulations it would seem that the development of a system for
photogrammetric mensuration would be a straight forward task. For example,
based on the mathematical principles of close range photogrammetry a
system of observation equations, as a function of the observations which are
available, could be formulated and estimation of the unknown parameters
could be carried out via the least squares principles of Chapter 3. However
solution of this type of system would invariably lead to either a costly
mensuration process, which far exceeds both cost and accuracy criteria, or a
system which does not meet accuracy criteria at all. Working Group 1 of
Commission V of the International Society of Photogrammetry and Remote
Sensing " revealed numerous cases where extremely high accuracy
(and cost) were used to accomplish rather simple tasks with moderate
accuracy requirements, while in numerous other cases the specified accuracy
requirements could not be met because of misjudgment of the capabilities of
the instruments employed to accomplish the task" (Marzan and Karara
(1976)). Hence it would seem that a major role in developing a system for
close range photogrammetric mensuration involves the planning and pre-
analysis of the acquisition and adjustment system. In any mensuration project
the network, ie the observational configuration and imaging geometry,
estimation technique, instrument type and capability etc, must be planned and
designed to produce the best or optimal solution to the problem. Given a set of
user specified criteria or specifications, which may include precision, accuracy,
reliability, sensitivity and economy criteria, a network which optimally meets
such criteria must be formulated. This planning and network analysis phase
forms the basis of network design, and forms the basis of further investigation
in this project.

73



5.1 Network Quality Criteria

An optimally designed network is one in which all design criteria are
simultaneously optimized. In most close range photogrammetric applications
such criteria include precision, accuracy, reliability, economy and, in the case
of deformation analysis, sensitivity.

Precision can be defined as the degree of conformity among a set of
observations of the same random variable. Hence the spread of the
probability distribution is an indication of precision which is a function of only
random effects. With respect to network design, precision represents quality
of design and can be estimated by analysing the variance-covariance matrix of
adjusted parameters, Z;(. Precision is a function of only random errors in the
variable being assessed.

Accuracy can be defined as the extent to which an estimate approaches
its true value and is a function of both random and systematic errors in the
variable being assessed. With reference to figure 5.1 the distinction between
precision and accuracy is clearly depicted.

frequency
A
bias

<4—P

(2)
(1
/ \ estimate

X X
2

X

Figure 5.1 Relationship between precision and accuracy on a probability distribution curve
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Curve (1) has a high accuracy, no bias, and low precision. Curve (2) has
a low accuracy, large bias, and high precision. Consequently the difference
between precision and accuracy lies in the presence of systematic error or
bias. Accuracy is a function of both precision and bias and can be expressed
in the following form.

accuracy = precision + (bias)? ..(5.1)
(Mikhail (1976))

Note that if all components of survey measurement, either
photogrammetric or classical surveying, are free of bias caused by systematic
error, the variance estimates from ):;( can be used as measures of both
accuracy and precision (Mikhail and Gracie (1981)).

Reliability is related to the conformance of an observed network to its
design. Hence reliability represents the potential of a network to detect gross
and systematic errors by adequate testing procedures and is reflected in the
self-checking capabilities, with respect to gross error detection, of the network
(Niemeier (1987)). Reliability measures can be divided into two groups,
namely internal reliability and external reliability. Internal reliability is
assessed by boundary values, which are the smallest gross errors which can
be detected with a certain probability in each observation if data snooping
techniques are applied. External reliability indicates the effect of an
undetected gross error, with the magnitude of the boundary value, on the final
results (Amer (1979)). Reliability measures are determined from analysis of
the variance-covariance matrix of residuals, Q..

Sensitivity relates to the ability of a network to detect movement in a
point. Such a quality measure is applicable in deformation analysis where
observations occur at two different epochs and the detection of movement of
points is rquuired. Hence unless deformation, or time dependent, analysis is
required, sensitivity is not considered in assessment of network quality.

Economy relates to the total expenditure in establishing, measuring and
assessing a network. To include such a quality criterion in network design, a
mathematical cost function requires formulation. Such a cost function must
relate cost to variables and estimates in the mathematical and stochastic
models of the least squares adjustment. If such a function is formulated,
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simultaneous optimization of all design criteria will yield a total cost which is
optimal with respect to optimal estimates of precision, accuracy, reliability and
sensitivity. A mathematical cost function is relatively easy to formulate for
simple networks. For example the cost function for a levelling network can
easily be formulated. Here the cost becomes a minimum for a minimum length
of levelling. For close range photogrammetry, however, cost functions are
complex and, if not formulated in detail, do not represent the true relationship
between network configuration and cost. Hence both formulation and
integration of the cost function, into the design process, is difficult.
Consequently network design, in close range photogrammetry, does not
usually simultaneously consider the economic criteria with the network quality
criteria.

In general a network is designed and optimized with respect to the quality
criteria, and then an a posteriori assessment is made to see if the network
meets economic constraints. If such constraints are not met then expert
knowledge is required to determine how the design will be altered to maintain
conformance with the criteria of network quality yet meet the desired economic
specifications. The network, after the design process, will be optimal in terms
of precision, accuracy, reliability and sensitivity (if required) but it will not be
optimal with respect to all quality criteria. As a final comment on economic
considerations it should be noted that, in general, network cost and quality are
directly proportional. For example maximum network quality, in terms of
accuracy, precision, reliability and sensitivity, will correspond to a maximum
cost and any reduction in these quality criteria will result in a corresponding
decrease in network cost. Such a concept is shown in figure 5.2.

It is stressed that optimal network design, in the theoretical sense, is not
possible unless all quality criteria are simultaneously considered
(Cross (1982)). Schmitt (1982) states that precision, accuracy, reliability,
sensitivity and economic criteria are difficult to assess simultaneously in the
process of network design and optimization. Usually networks are designed
with respect to precision criteria and then assessed to determine conformance
with the other desired quality criteria. Investigations relating to assessment of
network quality, in this project, will be restricted to design based upon
precision criteria. The remaining quality criteria, accuracy, reliability,
sensitivity and economy, will be assessed after the network has been
designed.
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Figure 5.2 Typical cost - quality relationship in network design

In assessing network quality the type and magnitude of constraints
applied to define the datum must be known. If constraints are absolute and
minimal then optimal estimates of precision can be determined. Application of
minimal constraints mean that the inner geometry of the network will not be
distorted. This means that residuals and adjusted observations and their
associated cofactor matrices will be invariant with respect to constraint
selection and consequently any reliability analysis carried out will be valid. If
the network is over-constrained then the inner geometry of the network will be
destroyed and a hierarchical adjustment will result. Consequently precision
estimates will be over determined and reliability estimates will be over
estimated (Niemeier (1987)).

A detailed analysis of the measures of network quality, and methods of
assessing such measures, will be given in Chapter 6.

5.2 Network Design Methods

The importance of network design in close range photogrammetry has
been recognized since the mid 1970's and investigation into methods for close
range photogrammetric network design have been under development since
then. An early solution to the problems associated with network design is
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presented by Marzan and Karara (1976). The network design methodology
formulated is the, so called, rational design. The method is based on a set of
empirical formulae which output expected precision of object space
coordinates of points as functions of certain system or network parameters.
These parameters include average image scale, overlap angle, convergence
angle and image coordinate observation precision. Tables of estimated object
point coordinate precision were generated on the basis of all possible
combinations of the chosen system parameters. From these tables a designer
was able to determine if the chosen camera type, imaging geometry and
reduction technique would meet precision requirements and alter any
component arbitrarily in order to either upgrade or degrade the network. Such
a network design method has the advantage of simplicity and economy,
however the concept has several inherent problems for high precision close
range photogrammetric applications. These include :

1. lack of flexibility. (network design can only be determined for
tabulated overlap and convergence angles, scales etc)

2. the solution is not mathematically rigorous.

3. the effect of errors, both systematic and gross on the
network cannot be assessed.

4. the influence of the adjustment on the network cannot be
assessed. ( ie effects of varying datum definitions, effects of
unstable imaging geometry)

5. design is based on a specific set of system parameters
while other, probably less significant, system parameters are
not included in the design process.

Due to these fundamental limitations in the rational design process,
further development has not occurred and the process is not currently
impleme‘nted in the design of close range photogrammetric networks.

An alternative, more flexible and mathematically rigorous, network design
method was formulated by Grafarend (1974), primarily for the design of
geodetic networks. Application of the design method has been applied
successfully to close range photogrammetric networks.

The design method, as proposed by Grafarend, classifies the design
problems into different orders with respect to the free and fixed parameters of
the least squares adjustment. The basic design orders can be classified as
follows.
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Zero-Order Design (ZOD) : the datum definition problem
First-Order Design (FOD) : the network configuration problem
Second-Order Design (SOD) : the observation "weight" problem
Third-Order Design (TOD) : the network densification problem

With reference to the functional and stochastic models of the least
squares adjustment process, postulated in Chapter 3, the following equations
can be given.

v=AX-1 -(3.8)
X=0,2Q ..(3.9)
where v = residuals

A = observation equation coefficient matrix

)? = estimates of the unknown parameters

{ = observations

X = variance-covariance matrix of observations

00,2 = a priori variance factor

Q = cofactor matrix of observations

Qs = cofactor matrix of unknown parameters

X

The estimates of the unknown parameters and their associated cofactor
matrix being :

A
X = (ATPA)! ATP .(3.12)
Q) = (ATPA) .(3.16)

The classification of the various design orders can be reviewed with
respect to the least squares estimation process.

ZOD : the datum problem - involves the choice of an
optimal reference system for parameters and their

variance-covariance matrix.

Parameters AQ fixed
A
X,Q)A( free
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FOD : the configuration problem - involves the optimal
positioning of points and the design of an optimal
observation plan.

Parameters Q,O)A( fixed

A free

SOD : the weight problem - involves the identification of
optimal precision and distribution of observations.

Parameters A,O)A( fixed
Q free
TOD : the densification problem - involves the optimal

improvement of an existing network via addition of
observations or points.

Parameters Q)Q fixed

AQ partly free
(Schmitt (1982))

The order presented above is not fixed, although it is accepted by most
geodesists and photogrammetrists as the chronological order for assessing
network design problems. In practice the design problems are interrelated
and solution of the various design problems may occur in a different
sequence. For example, addition of object points may be carried out in the
FOD phase to strengthen the imaging configuration, however this process is
essentially a TOD (densification) problem. It should be noted that the datum
problem is not independent of the configuration problem. A change in the
datum will influence object point precision and the magnitude of such changes
is dependent upon the imaging geometry. Hence, prior to evaluation of the
datum definition, a good estimate of the imaging geometry should be
available. If, after the ZOD analysis, the imaging geometry changes in the
FOD analysis, then the effect of such changes upon the datum definition
should be determined, ie repeat the datum definition.

In the design of close range photogrammetric networks, the accuracy of
the various solutions, with respect to datum definition and imaging geometry
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etc, is assessed on the assumption that only random errors are present in
observations. In other words, the effect of the network, and only the network,
upon estimates of the parameters is assessed. In such a case, where
observations do not include systematic or gross errors, precision rather than
accuracy estimates are required.

Two solution techniques are possible for the design of networks utilizing
the classification scheme and processes previously postulated. These
techniques can be classified as either direct or indirect (iterative) solutions.

5.2.1 Direct Solutions

This technique involves a direct solution and hence a direct output of an
optimal configuration. Given an initial object point configuration, an estimate
of precision of image coordinate observations and an ideal variance-
covariance matrix of the coordinate parameters, a solution is derived for an
optimal imaging geometry and number of cameras (Fraser (1987)). If all
design stages are solved directly then an optimal variance-covariance matrix
of observations and an optimal solution to the datum unknowns is also
achieved. For practical implementation of a direct solution significant practical
restrictions and limitations are evident. The major restrictions include :

1. the FOD or configuration problem cannot be solved
directly. The variables associated with imaging geometry and
object point location are complex and the inter-relationships
between these variables are difficult to quantify in order to
allow a direct solution. Usually direct solution of the imaging
configuration, ie the FOD design, is restricted to the same
number of object points and camera stations in "optimal”
locations. In other words no new object points or camera
stations can be added and changes in the position of such
points can only be minor.

2. the variance-covariance matrix of observations, as determined
in a direct solution, is usually fully populated and is frequently
singular. In other words the variance-covariance or the weight
matrix of observations gives observations which are correlated.
Such a form is inconsistent with surveying measurements as,
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in reality, such observations are uncorrelated and, by
definition, their variance-covariance matrix is non-singular.

3. the design matrix can be affected by various anomalies.
These include the absence of redundancy at some stations
and the splitting of single networks into several independent
networks. Such anomalies do not correspond with practical
designs (Mepham and Krakiwsky (1982)).

5.2.2 Indirect (lterative) Solutions

An alternative solution is based upon an indirect or iterative method and
is reliant upon network simulation. In network simulations all observables are
simulated and then a conventional adjustment is carried out. The resulting
parameter estimates will not give accurate parameter values, however the
variance-covariance matrix of parameters will provide an accurate estimate of
parameter precision. Therefore, if object points and camera stations are
selected such that they represent the anticipated "real" configuration, then the
simulation process provides a method of assessing network quality and the
precision of object point recovery prior to actual photography and network
establishment. A common criticism of simulation methods is that the
techniques employed are pseudo-scientific and that the results achieved are
never absolutely optimal. This is of no practical concern as the method
provides a technique whereby a network can be designed to both meet quality
criteria and which will be feasible.

In the indirect simulation process no special computer software is
required, as a conventional adjustment program can be used to adjust and
output the results of simulated data for a particular network design. Such a
procedure has the advantage that all existing network design specifications
can be assessed simultaneously, allowing a mathematically rigorous
assessment of the network being simulated. Interactive computer graphics
can be incorporated into an existing adjustment program to allow efficient
network design. Such integration is especially applicable in the FOD, or
network configuration phase, and can be utilized for display of existing
imaging geometry as well as precision estimates in the form of error ellipses
(Cross (1982), Mepham and Krakiwsky (1982), Fraser (1984)). The
combination of interactive computer graphics and simulation methods is
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widely accepted as the "best" solution for network design problems at the
present time (Cross (1982)). This is because well tried and easily understood
design methods can be combined with a clear graphics display to allow the
network designer the capability to use his own expertise to design a network
which meets specified quality criteria. Networks designed in this way will be
"observable" as nothing which cannot be observed is simulated. As previously
stated, networks designed by indirect methods will not be optimal and
therefore further investigation into direct solutions, for the recovery of an
optimal network, is required.

Disadvantages of the indirect solution include :

1. the solution is not necessarily optimal.

2. a lengthy time delay between the modification of the
previous design and the receipt of the results of the
preanalysis of the modified design. Consequently a loss of
time and continuity in the network design process results
(Mepham and Krakiwsky (1982)).

The indirect network design and simulation procedure is based on the
following steps, which are graphically depicted in figure 5.3 (adapted from
Fraser (1984)).

1. Coordinates of points of interest, on the object, are
specified.

2. Coordinates for the camera stations are specified along with
associated principal distances and photographic format.

3. The object points are projected onto the photographic
format.

4. The imaging geometry is graphically displayed, if a graphics
terminal is available, and the imaging geometry and network
configuration is altered as necessary.

5. If the network configuration is satisfactory then image
coordinates are written to a file in the same format as if
generated by a comparator or analytical plotter.

6. Network quality criteria is specified.

7. Solution to the ZOD problem is carried out (ie specify datum
definition).
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8. The resulting system of equations is adjusted, via a least
squares bundle adjustment, and estimates of network quality
are formulated with respect to precision criteria.

9. If the network quality fails the precision criteria, determine if
scaling is required (SOD) or if densification is required (TOD).
If SOD and TOD are not required then redesign the
observational scheme and/or datum definition and readjust.

10. If network meets precision quality criteria determine if
accuracy, reliability, sensitivity and economic specifications
can be met. If accuracy, reliability, sensitivity and economic
specifications cannot be met then redesign ZOD or FOD
based on expert judgement.

11. Continue until all quality criteria can be satisfied or
conclude that desired quality criteria cannot be met under the
allowable conditions.

It should be noted again that networks designed by indirect techniques,
based on simulation, are rarely optimal, ie the designed network does not
optimally meet quality criteria. This is because an observational configuration
is developed such that it meets quality criteria however it is not developed on
the basis of any mathematical relationship to optimality. Hence although the
designed network may meet all design specifications it may not, and indeed is
generally not, the optimal design.

5.3 Zero-Order Design - the Datum Problem

As described in the previous section, the ZOD problem is that of defining
an optimal reference system for the object space coordinates, given the
imaging geometry and observational plan, defined by the coefficient matrix A,
and the precision of observations, defined by the cofactor matrix of
observations Q. Such an objective is achieved by selection of a datum which
gives an optimal form of the cofactor matrix of parameters, Qg, and which is

assessed via the mean variance of the parameters, 6)A(2.
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Figure 5.3 Flow diagram of network design based upon simulation procedures
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In Chapter 4 the mathematical model of the close range photogrammetric
least squares adjustment was developed, with the observation equations
being formulated in terms of parameters for the spatial position of the object
points and camera stations in a three dimensional rectangular cartesian
coordinate system. The basic problem is associated with the lack of
information inherent in observations, capable of defining the object space
coordinate system to which the unknown parameters, object space
coordinates and orientations, refer. The basic observation in photogrammetric
applications is the image coordinate observation. Image observations contain
no information about the absolute positions of the object points and therefore
only relative positions can be defined from such observations. Hence
relationships between the relative information, provided by the image
coordinates, and the absolute information, with respect to the reference
system, require formulation. Such relationships are achieved by defining the
origin, orientation and scale of the reference system and applying such a
definition to the relative quantities, defined by the image coordinates, to give
object space coordinates with respect to some absolute system.

The basic concept of the ZOD, or the datum problem, can be addressed
in terms of the mathematical concepts of section 3.4. The coefficient matrix, A,
of the close range photogrammetric least squares mathematical model is
singular and has a rank defect equal to the number of linearly dependent rows
or columns in the matrix. Such a rank deficiency means that, in general, the
resulting solution to the system of equations, defined by the model, is both
biased and not of minimum variance. This is due to the techniques used to
eliminate the effects of rank deficiency from the system. The techniques
usually employed to constrain the system, induce a bias to the estimates of the
parameters and, as a result, the parameter and precision estimates are not
optimal. The theoretical solutions to rank deficient systems have been
presented in Chapter 3 and applications of such concepts will be applied to
photogrammetric applications in Chapter 8.

The rank deficiency of a system of equations can be thought of, in
practical terms, as being equivalent to the lack of datum definition for the
system and hence the term datum deficiency or datum defect is used. This
means that the design matrix, A, will have a number of linearly dependent
rows or columns equal to the number of unknown datum defining elements.
The magnitude of the datum defect is a function of the order of the network
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and is seven, if no additional information is added into the system, for a three
dimensional network. To define a three dimensional reference coordinate
system three translations, from the coordinate system origin with respect to the
X, Y and Z axes, three rotations, about the X, Y and Z axes, and a scale must
be defined. Hence to remove the datum defect of the system, seven
independent quantities must be added to the system to define the relationship
of the relative quantities to the reference coordinate system. Figure 5.4
illustrates the elements required to define the datum of a three dimensional
rectangular cartesian coordinate system.
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Figure 5.4 Datum definition elements for a three dimensional rectangular cartesian
coordinate system

Solutions to the ZOD, or datum, problem will be covered in Chapter 8.
The eftect of the various forms of datum constraint, with respect to parameter
and variance estimation, will be assessed. '

5.4 First-Order Design - the Configuration Problem

In section 5.2 the first-order design (FOD) problem was introduced. For
the task of designing a close range photogrammetric network the FOD
problem involves optimal positioning of object points and the design of an
optimal observation plan. The mathematical principles of the first-order
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design, with respect to the functional and stochastic models of the least
squares process, require that the design matrix, A, is optimally formulated for
a given weight matrix of observations, P, to yield a cofactor matrix of unknown
parameters, Q2, which meets specified network quality criteria. As covered in
section 5.1, initial design of a networkis usually restricted to quality criteria
relating to precision. Conformance with the remaining quality criteria,
accuracy, reliability, sensitivity and economy, are carried out after initial
network design if required. Precision criteria, for example, may be that object
space points must be resolved such that a three dimensional
Taylor-Karman structure applies to the point coordinates. In other words the
coordinates should have circular error ellipsoids (isotropic) and all ellipsoids
should be of equal radius (homogeneous) (Koch (1982)).

Solution of the first-order design problem is based upon the indirect
simulation method (section 5.2.2). Although such a solution does not offer the
optimal configuration it does yield a configuration which is flexible, feasible
and which meets specified quality criteria. The solution is basically trial and
error, whereby a configuration is proposed, simulated, assessed for
conformance with quality criteria and then altered if necessary. This process is
continued until all quality criteria are satisfied.

Although all photogrammetric networks, and nearly all geodetic networks,
have configurations designed by indirect methods some investigations have
been carried out with respect to direct FOD solutions (Schmitt (1982)). Such
solutions involve formulation of a criterion matrix, which is an ideal artificial
variance-covariance matrix, and are based upon optimal precision criteria.
The design matrix is then analytically modified until the cofactor matrix of the
unknown parameters is consistent with the criterion matrix, for a given weight
matrix of observations. Note that modifications can only be minor and no new
points can be added. Consequently, unless a very good initial estimate of the
network configuration is available, the direct solution does not offer enough
flexibility for configuration design. For close range photogrammetry the
formulation of criterion matrices is not elementary and to date no direct
solution to the configuration problem, for close range photogrammetry, can be
regarded as being practically feasible. For such reasons the solutions to the
configuration problem, in this project, are assessed exclusively via the trial and
error simulation (indirect) method.
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In assessing the first-order design problems all components which
influence the network configuration must be evaluated. In other words all
components which will affect the structure or form of the least squares design
matrix must be assessed. Such assessments are with respect to the effect of
change in configuration components upon network quality.

The components which affect network configuration, for close range
photogrammetry, include :

imaging geometry.

number of camera stations. -

base-distance ratio (for "normal" photography).
image scale, focal length and image format
number of object points.

object point clusters.

multiple exposures.

self-calibration parameters.

©NO AN~

Of the above network configuration components several can be assessed
in terms of alternative problems in the network design process. For example,
multiple exposures can be assessed as a second-order design ("weight")
problem as multiple exposures are directly related to the precision of image
observations. Likewise target clusters can be considered as a third-order
design (densification) problem as the target cluster effectively densifies the
object point array. These two components will, however, be assessed as
first-order design problems, with the effect of the components upon other
design problems being carried out in the following sections. It is convenient to
again emphasize that the sequence of the design process is not definitive and
that, for many applications, both SOD and TOD problems can be solved in the
FOD phase.

The effect of the configuration components upon network design will be
assessed in Chapter 9. As the simulation method requires expert knowledge
by the designer of the network, the factors which influence the network
configuration must be evaluated in detail. Evaluations will cover both
significance to the close range photogrammetric configuration and effect upon
parameter and variance estimates.
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5.5 Second-Order Design - the Weight Problem

The second-order design ("weight") problem involves the definition of the
precision and distribution of observations. In terms of the least squares
mathematical models this involves optimizing the weight matrix of
observations, P, for a given design matrix, A, such that the cofactor matrix of
the unknown parameters, Q., meets some predetermined quality criteria.

Direct solutions to the second-order problem have been developed, eg
Cross and Whiting (1982), Wimmer (1982). Such solutions are based upon
iterative techniques where the weight matrix of observations is analytically
modified until results are consistent with a given criterion matrix. As detailed in
section 5.2.1 such solutions are inconsistent with "real" observations as the
resulting weight matrix of observations is usually fully populated, ie correlated
observations, and singular. Direct solutions are therefore not generally
applicable to the solution of second-order design problems.

The second-order design problem is of primary concern for geodetic
networks. In such networks the second-order design problem involves
determination of distribution of observations, precision of observations and
repetition number, ie number of repetitions for each observation, for a variety
of observations, which include distances, angles, levelling, GPS observations
etc. For photogrammetric applications the observations of primary interest are
the image observations. Additional observations, such as distances, angles,
elevation differences etc, strengthen the network but are not of primary
concern in network design. In close range photogrammetry, if additional
observation types are neglected, the weight matrix of observations, P, is
usually of the form :

P-Ql="1 (5.2)
, o2

where Q is the cofactor matrix of observations

Consequently the solution to the second-order design problem merely
involves optimal selection of the scale factor, ¢ (Fraser (1984)). There are

three basic methods for improving image coordinate observations in close
range photogrammetry.
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1. the use of a higher precision comparator or analytical
plotter.

2. multiple image coordinate measurements.

3. multiple exposures.

The upgrading of comparator or analytical plotter is not a realistic solution
for the improvement of observational precision. Most organizations do not
have the flexibility in hardware to allow such a solution. As covered in section
2.3.2 most first-order analytical plotters have observational precision in the
3 - 5 um range, while high precision comparators offer observational precision
in the 1 - 2.5 um range (Fraser (1984)). Although a change from analytical
plotter to comparator would allow an increase in observational precision,
change within each group offers little flexibility. Consequently, unless an
organization has a range of hardware, offering various measuring precision
ranges, this option is not viable.

Multiple image coordinate measurements can be used to scale ¢ to some
predetermined or desired value. |If all points are re-observed and these
observations averaged, then the observational precision at each point i will

G
become Tl'( where kis the number of observations to each point and g; is the

observational precision for one measurement at each point. From section 3.3
the weight matrix of observations was :

2
P=21 .(5.3)
Oj

G
Therefore if the observational precision becomes 7_;2 , for k image

observations, the weight matrix of observations for the multiple
observations, P', becomes :
o2
P'=k—= I= kP ..(5.4)
0‘i2
Hence the effect of multiple image coordinate measurements is to
increase the "weight" of observations by the value k. Therefore the number of
observations for each image point can be varied to allow desired
observational precision.
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Multiple exposures are conceptually similar to multiple image coordinate
observations. For k images, taken at the same exposure station, the solution
becomes equivalent to observation of an image point k times. One important
difference exists however. In the case of multiple exposures not only will
observational precision improve but systematic errors which change from
exposure to exposure, eg film deformations, will be averaged and hence the
effect of such errors will be reduced. Multiple exposures offer a method of both
improving observational precision and decreasing the effect of systematic
errors and is therefore recommended as the preferred method, if observational
precision must be increased in the SOD design (Fraser (1984)). Slama (ed)
(1980);Ch 13 observes that about a 30% improvement in observational
precision is obtained by two exposures. From two to three exposures an
improvement of 16% is expected and from three to four exposures 7%
improvement is expected.

The influence of multiple exposures or multiple image observations upon
precision estimates of the unknown parameters will be evaluated. For these
evaluations several close range photogrammetric networks will be utilized.
These include a two photograph "normal” configuration and two, three and
four photograph convergent configurations. The convergent configurations
have a convergence angle of 100° and are symmetric about the object. The
camera used for the evaluations was the Wild P32, which has a 64.1mm focal
length and a 90 mm x 65 mm format. It is assumed that the observational
accuracy for a single exposure is S5um. The precision of the various
evaluations is made with respect to the mean standard error, which is
described in Chapter 6. The evaluation of the networks was carried out using
the program SIMPAC, which is described in Chapter 7.

Figure 5.5 depicts the effect of multiple exposures upon object point
coordinate precision. Note that the influence of multiple exposures in reducing
exposure dependent systematic errors is not considered. From the results of
the evaluations the significance and importance of multiple exposures is
evident. For three and four exposure networks the influence of multiple
exposures is minimal, of the order 1 - 2 mm in each coordinate determination
for the above case, and hence would not be utilized. For two photograph
configurations, both "normal" and convergent, the influence of multiple
exposures is significant. For cases where physical or practical restrictions limit
the number of camera stations to two or three, multiple exposures or multiple
image observations offer a way to significantly improve coordinate precision.
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Figure 5.5 The effect of multiple exposures or multiple image observations on precision

estimates.

5.6 Third-Order Design - the Densification Problem

The third-order design (densification) involves the improvement of
network precision and quality via addition of object points and observations.
With respect to the least squares model, the cofactor matrix of the unknown
parameters, Qg, is fixed and both the design matrix, A, and the observation
weight matrix, P, are updated to improve network quality.

In most close range photogrammetric networks, object point arrays are
dense and typically an object is covered by up to several hundred points. For
"strong" networks the effect of incorporating additional object points, and
hence additional observations, to the network has only a minimal effect upon
network precision (Fraser (1984)). In cases where network geometry is "poor’,
eg possibly due to physical configuration restrictions imposed at the FOD
phase, the target array can be densified and the addition of object points and
observations will improve network quality. For such a case, however, the
densification would occur at the first-order design phase by increasing the
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number of object points or incorporating object point (target) clusters. For
cases where object point arrays are not dense, ie only several tens of points,
densification will improve network quality but, once again, this is undertaken in
the first-order design phase.

As previously stated object point precision and network quality are
largely independent of object point density and distribution, for networks of
"strong" geometry. Consequently the third-order design problem does not
usually arise in close range photogrammetry and is effectively solved at the
first-order design stage should it be significant.

The purpose of this chapter is to introduce the basic principles and
‘requirements for network design The criteria for assessing network quality
are precision, accuracy, reliability, sensitivity and economy; the design
process is primarily concerned with precision. A posteriori evaluation with
respect to the remaining quality criteria is then carried out if required.

The network design method is based upon the following classification :

Zero-Order Design (ZOD) - the datum problem
First-Order Design (FOD) - the configuration problem
Second-Order Design (SOD) - the "weight" problem
Third-Order Design (TOD) - the densification problem

In close range photogrammetry the network design process is simplified.
The SOD problem merely involves scaling of the weight matrix of observations
by a constant scaling term, equal to the number of times an image has been
observed or-the number of multiple exposures taken. The TOD problem does
not usually arise and if it does is effectively solved at the FOD stage.
Measures of network quality, with an emphasis on precision measures, will be
formulated in the next chapter.
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6. MEASURES OF NETWORK QUALITY

Network quality criteria, as introduced in section 5.1, include precision,
accuracy, reliability, economy and sensitivity. Such quality criteria do not
apply to all network design applications however. In many close range
photogrammetric applications absolute definition of the network is not
required. For example, position estimates may be required to define the
shape, as opposed to absolute position with respect to a given reference
coordinate system, of a particular object. In such cases the bias component in
an estimate is not significant and consequently accuracy criteria reduces to
precision criteria. In other words the bias component of the accuracy measure,
as given by equation 5.1, is not significant and hence accuracy criteria is not
considered.

Sensitivity criteria are only considered in cases where deformation
analysis or where network monitoring is required. For most close range
photogrammetric applications, position is required at a single epoch and no
time dependent analysis is required. Hence sensitivity criteria are only
considered in network design for deformation analysis applications.

In all network design applications an implicit requirement exists to
minimize the cost associated with network observation and analysis.
Consequently economic considerations are fundamentally important in the
process of designing photogrammetric networks. As covered in section 5.1,
economic criteria are difficult to assess simultaneously with other quality
criteria in network design. After the initial design of the network, assessment is
made to determine if financial and cost constraints can be met. Due to the
large number of variables in any cost assessment consideration, formulation of
measures for assessment of economy is not possible. To assess the cost of
network implementation, each network is considered separately and cost is
calculated based upon the skill and expertise of the designer. Consequently a
measure of economic criteria, as an overall indicator of economy, is not
feasible and hence will not be investigated further.

In all close range photogrammetric network design and analyses ,
precision and reliability form the basis of assessment of network quality.
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Measures to represent quality of design, or the degree of conformity among a
set of observations of the same random variable, and the conformance of an
observed network to its design, or the potential of a network to detect gross
and systematic errors via adequate testing procedures, are required.

In this chapter measures of precision, accuracy, reliability and sensitivity
will be developed. Even though all measures may not, and indeed will not, be
simultaneously utilized they are developed to allow the network designer the
flexibility to choose the particular quality measures applicable to each specific
application.

6.1 Precision Measures

As previously stated, precision refers to the quality of a network and
reflects the degree of conformity among a set of observations of the same
random variable. Precision measures are determined exclusively from the
variance-covariance matrix of the adjusted parameters, E)A(. Such measures
are therefore an indication of the "strength" of recovery of the unknown
parameters, as a function of the particular network being analysed. Prior to
developing precision measures two points should be noted.

1. The variance-covariance matrix of the unknown parameters,
Z)A(, is not invariant with respect to datum selection.
Consequently the precision measures developed are datum-
biased measures and are dependent upon both configuration
and type of datum constraint being employed. The fact that Z;(
is datum dependent, and hence not unique, causes problems
in assessing the precision of the adjusted object point position.

2. The variance-covariance matrix of the unknown parameters is
given by equation 3.19 as Z>A(=co2 Qf(, where Q)A( is the
cofactor matrix of unknown parameters and c,2 the a priori
variance factor. In analysing E)A( it is important to have
statistically verified the a priori variance factor as this factor has

a direct scalar influence on precision measures. Any error in
6.2 will directly influence precision measures and therefore

must be statistically significant. If the a priori variance factor
cannot be verified then the a posteriori variance factor, 642,

should be used.
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Precision measures can be analysed as being local measures of
precision, ie precision measures which relate to the individual unknown
parameters, or global measures of precision, which relate to the set of
unknowns as a whole.

6.1.1 Eigenvalue Decomposition

The fundamental approach to precision estimation involves
determination of the eigenvalues of the variance-covariance matrix of the
estimated parameters. This is achieved by the eigenvalue decomposition of

Z)A( . From equation 3.24 the basic eigenvalue equation of Z)A( becomes :

(E)A( -Ail)si=0 fori=1,u .(6.1)
where Z)A( = variance-covariance matrix of X.

Ai = ith eigenvaiue of ZQ.

Si = eigenvector associated with A;.

u = number of unknowns.

The characteristic equation of Z)A( is formulated based on (E)Q -A )
being singular. Hence the characteristic equation becomes

det (Zg - A1) =0 (6.2)

Solution of the eigenvalues is carried out from the above equation, with
solution for the associated eigenvectors being carried out by substitution of the
eigenvalues, A;, into equation 6.1 (Caspary (1987)).

The eigenvalues are formed into a u by u diagonal matrix of the form :
- (A
Ay
The associated eigenvector matrix becomes

S=(s1. . 8y .(6.4)
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The matrix Z)A( can be written interms of A and S as :

E)A( = SAST ..(6.5)
(Caspary (1987))

Properties of eigenvalues include :

1. The sum of the eigenvalues equals the trace of the variance-
covariance matrix of unknown parameters.

u
Z Aj=tr Z)A( ..(6.6)
i=1

2. The product of the eigenvalues equals the determinant of the
variance-covariance matrix of the unknown parameters.

u
[I%i=detxs .(6.7)
i=1
SiT Z)'& S
3. A ="sTs ..(6.8)

(Bjerhammar (1973), Caspary (1987))

Eigenvalues will be used in both local and global precision analysis, as
measures of network precision.

6.1.2 Local Measures of Precision

Local measures of precision will be developed in order of evaluation
complexity. In selecting a precision measure it should be noted that measures
which are easy to compute usually contain a minimum of relevant information.
Consequently, in selection of a local precision measure, a compromise
between complexity and information content arises.
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The simplest measure of precision is the Standard Deviation
of Coordinates. For this measure, consider a cofactor matrix of unknown
parameters, Qua,of the form:

Ox1  Ox1y1 QOx1zt
dyix1  Qy1 GQy1z1
Qzix1 Qziyt gzt

Oxu  Qxuyu Qxuzu
Qyuxu Qyu CQyuzu
Qzuxu Qzuyu Qzu

where diagonal terms are the variance estimates and the off-diagonal
terms are the covariance estimates of the subject parameters. For an a priori
variance factor, 642, the standard deviation of coordinates of point i can be

expressed in terms of three equations.

Gﬂ==00\ﬁia
Oyi = Oo VCyi .(6.10)
Czi = 0o VQz (Mikhail (1976))

If 6,2 is unknown it is replaced by &,2 , the a posteriori variance factor,
and the standard deviation of coordinates becomes the Root Mean Square
(RMS) Error of coordinates, S4,Sy,S; (Caspary (1987)). The standard
deviation precision measures are dependent upon the redundancy in the least
squares model and hence are neither model nor datum independent precision
measures. The standard deviation is referred to as a point estimate, (Mikhail
(1976)), as one scalar value is returned for each parameter or coordinate
being assessed.

Confidence Intervals provide a precision measure based upon an
interval estimation. It provides a measure of how good the estimate is and
how much it can be relied upon. To meet such requirements the probability
distribution of the sample, and of the ratio (X - 5\( ) / ox, where X is the unknown
parameter, )A( is the estimate of the parameter and oy is the parameter standard
deviation, is required. The confidence interval measure takes the form of the
following probability relationship.
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A
P{Xi-Zy2 0xi < X < )A(i+2a/2 Oxi}=1-0a ..(6.11)

where Za2 = normal distribution coefficient at significance

level o
X; = unknown X coordinate of point i
f(i = estimate of X;
Oxi = standard deviation of X coordinate for point i

(Walpole and Myers (1972))

Similar equations can be formulated for the XY and Z coordinates for all
unknown points. The confidence interval is based upon the normal
distribution, as the a priori variance factor is a population variance measure. If
the a posterior variance factor, 6,2, is used then the confidence interval is
expressed in terms of the root mean square error and the t-distribution, as the
a posteriori variance is a sample variance measure.

A A
P{Xi-troe2 Sxi< Xi < Xj+trgeSxil=1-a ..(6.12)
where r = redundancy
o = level of significance

Syxi = RMS error for the X coordinate of point i
(Mikhail (1976))

Similar expressions can be formulated for all object point coordinates.

Error Ellipses provide a method of graphically displaying precision.
Ellipses are used as a precision measure in two dimensional networks and
can be developed as either standard or confidence error ellipses. Standard
error ellipses are a generalization of the standard deviation while confidence
ellipses are a generalization of confidence intervals.

Point error ellipses refer to a point as a single entity while relative error
ellipses reflect the relative precision of a pair of, usually adjacent, points. Fora
two dimensional network, standard point error ellipses can be calculated from
the eigenvalue decomposition of section 6.1.1. For the subset of the cofactor
matrix relating to a point i, in a two dimensional network :

~_{ Qxi Qxiyi
Q'_(Qyixi Qyi) .(6.13)
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The associated eigenvalues can be calculated from equation 6.2 as :

(QXi'*'Qyi'*“/(QXi - CIyi)2 + Afoiyi2 )

1
7\.1='2—
1 6.14
=5 ..(6.14)

A2 =5 (Qxi + Qyi- V(Qxi - Ayi)® + 4Qxiyi® )

where Ay = the square of the semi-major axis of the error ellipse
A2 = the square of the semi-minor axis of the error ellipse

The direction of the semi-major axis is given by :

_ iy
tan2a = (@i - Gy) ..(6.15)

where oo = the bearing of the semi-major axis
(Ashkenazi (1976), Slama (ed) (1980);Ch 2, Caspary (1987))

The form of the error ellipse is shown in figure 6.1.

Y
4
o
where a = g v A
b= g v 7‘2
a o =bearing of semi-major axis

Figure 6.1  Standard point error ellipse

The probability of the point lying within the standard point error ellipse
reaches a maximum for a redundancy of infinity and is 39.4%. Due to the
relatively small probability of the true position being within the standard ellipse
it is usually replaced by a Confidence Error Ellipse. Such an ellipse is a
function of the required probability of the true position of the point lying within
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the ellipse. For a probability 1-a, where a is the level of significance, the semi-
major and semi-minor ellipse axes become :

a=0o\\ A X% 1
b =0, \/ A2 X322 1-0 ..(6.16)

where a = semi-major axis
b = semi-minor axis
= Chi-squared distribution coefficient at significance

A?2 1
' level o
(Caspary (1987), Niemeier (1987))

For the case where the a posteriori variance factor, 642, is used the
standard point error ellipse becomes :

a= é\50\/z1

b= &1 .(6.17)

and the confidence point error ellipse becomes :

a= 66 VA1 Far1a
b= 6, VA2 F 210 .-(6.18)

where r = redundancy
Foi1.o = F (Fischer) distribution coefficient

(Caspary (1987), Niemeier (1987))

For three dimensional networks, as is the case for close range
photogrammetric networks, Error Ellipsoids are required. The sub-matrix of
the cofactor matrix of unknown parameters relating to pointi becomes :

Qxi- Qxiyi Qxizi
Qi=[Qyixi Qyi CIyizij ..(6.19)
Gzixi Qziyi Gdzi

The orientation of the error ellipsoid is defined by a 3 by 3 rotation matrix,
R, which defines the orientation of the ellipsoid in space. If the magnitude of
three orthogonal axes of the ellipsoid are denoted by a', b', and ¢', the solution
takes the following form.
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a
[ b' J:RQ; RT .(6.20)
C!

Solution of this expression involves six non-linear independent
equations. As the system is non-linear it must be linearized and the solution is
therefore iterative. Solution yields the three orientation elements, which define
the orientation of the ellipsoid, and the magnitude of the three orthogonal
ellipsoid axes (Slama (ed) (1980);Ch 2).

The probability that the true position of a point lies within the ellipsoid is
20%. Confidence ellipsoids, similar to the confidence ellipses developed
previously, therefore require formulation. Computation of error ellipsoids,
however, is computationally expensive and intensive and is therefore not
undertaken, except for the highest precision photogrammetric applications.

An alternative method of graphically representing precision for three
dimensional networks is by utilizing error ellipses, for the X and Y axes, with
an error vector, to show the direction and magnitude of the error in the Z
direction. Such a concept is shown in figure 6.2.

Y

Figure 6.2 Graphical representation of precision for three dimensional networks,

(error ellipse (X,Y) ; error vector (Z)).

The problem with such a representation is that it may not depict the
principal error magnitude or direction. Figure 6.3 shows a case where the
error ellipse and error vector combination do not accurately represent
precision of three dimensional networks. Although a simple approach for
displaying three dimensional point precision, the procedure is not
recommended unless the network designer is aware of the limitations of the
graphical representation.
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Error Circles and Error Spheres are precision measures
approximating error ellipses and error ellipsoids respectively. Error spheres
are of value for three dimensional networks due to their computational
simplicity compared with ellipsoid determination. Typical sphere radii for
three dimensional networks include :

1.  spherical standard error
r=:13—(0x+0y+csz)
where ox,0vy and ¢ z are the standard deviations in X,Y and Z
respectively.

2. mean square standard error
r= 3\/0x2 +0y2+ 0722 = 0, 3Wir Q
where Q; = cofactor sub-matrix for point i

3. generalized point error
r=0o, 3Vdet Q; (Caspary (1987))
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A disadvantage of precision measures detailed so far is that no inter-
point covariance information is incorporated in the measures. Relative
precision measures incorporate inter-point covariances and correlation.

Relative Error Ellipses and Ellipsoids express the relative
precision of two points. The computation of standard and confidence ellipses
is carried out as for point ellipses with the difference being in the form of the
cofactor matrix of unknown parameters, as given by equation 6.13. The
cofactor sub-matrix represents the difference between the two points i and j, for
two dimensional networks, and takes the form :

Qiji=Qi+Q-Q-Q ..(6.21)
where Qjor Q; is the 2x2 sub-matrix for each point
Qjj or Qjiis the 2x2 covariance sub-matrix between the
points i and j

This formulation is a two dimensional representation with graphical plot
of the ellipse on the midpoint of the line joining the two subject points
(Caspary (1987)). Development of the three dimensional case is identical to
the above case except that a relative error ellipsoid is formulated and the
cofactor sub-matrix of equation 6.21 is a function of four 3 by 3 sub-matrices.

The local precision measures developed to date are datum dependent
measures. A local precision measure, invariant with respect to datum
orientation and translation but not datum scale, is the
Distance Standard Error between two points. For a distance between
points i and j, dj, the distance standard error is :

o=V 002 Gij Qi GyjT ..(6.22)
where o4ij = standard error of distance dj
Qij
Gij

sub-matrix of Q)A( as given by equation 6.21

row vector of direction cosines /,m,n for points i
and j

= (-, -m,-n, |, m, n)

(Ashkenazi (1976), Fraser (1980b))
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6.1.3 Global Measures of Precision

Global measures of precision reflect the precision of the network as a
whole. These measures are especially significant for network design as they
provide a measure which, although not necessarily absolute, reflects the
quality of the network.

The basic, and simplest, global precision measure is the
Mean Variance of the parameters, 642

X
542 = - tr T (6.23)
0e=7 & ..(6.
where = number of unknown parameters

u
Y4 = variance-covariance matrix of the parameters
(Mikhail (1976), Fraser (1980b), Caspary (1987))

The mean variance measure can be decomposed into measures for all
object space coordinates, 6.2, and further decomposed into measures for
object space X and Y coordinates, Gxy?, and object space z coordinates, G2

5,2 = uiz-tr (Zg): .(6.24)

where the subscripts denote the parameter components which are
relevant for each measure.

The mean variance is usually expressed in terms of the

Mean Standard Error, 6>A< . A mean standard error can be formulated for

both equations 6.23 and 6.24, and is of the form :

-)A(=\/1—U \tr 2y (6.25)

For the purposes of assessing global precision relative to the dimension
of the object being measured, the Proportional Precision is a useful global
precision measure. The proportional precision is especially useful in close
range photogrammetry where overall precision requirements may be
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expressed as one part in a critical dimension of the object or with respect to
the principal diameter of the object as a whole. For the object diameter
denoted by D, the proportional precision becomes :

1 partin R ..(6.26)
Oc
where 6c = mean standard error for X,Y and Z object space
coordinates
D = average object diameter

A global precision measure which is useful for assessing coordinate
precision homogeneity is the Standard Deviation Range or Root Mean
Square Error Range (Fraser (1982a), (1984)). The measure gives the
range, between maximum and minimum values, for XY, Z and XYZ
coordinates. In order to achieve maximum point homogeneity a network
should be designed which gives a minimum standard deviation range. The
measure is of the following form.

Ao, = max (0x;, Ovi, 0zi) = Min (ox;, Ovi, 0z)
ACxy = max (ox;, oyi ) - min (ox;, oY;) ..(6.27)
ACz = max ( 6z) - min (oz)

for all points i

Maximum object point precision homogeneity is achieved when these
values approach zero, ie when the difference between the largest and
smallest precision value approaches zero. This measure gives no indication
of the absolute precision of the values being assessed as it is a relative
measure and hence is not applicable in assessing precision criteria based
upon absolute magnitudes.

The Generalized Variance , C?Qz, is a global precision measure based
upon the determinant of the variance-covariance matrix of unknown
parameters.

g2 =+/det Iy .(6.28)
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The generalized variance is dependent upon the smallest eigenvalue of
24 and the measure becomes zero for a singular variance-covariance matrix.
The geometric significance of this measure is that it relates to the volume of the
overall network error ellipsoid (Caspary (1987)). A problem with the
generalized variance measure is that it does not reflect the worst possible
case for the subject network, as the measure is primarily influenced by the
smallest eigenvalue of Xy. Consequently the generalized variance will

usually give an optimistic estimate of network precision.

A global precision measure which is often recommended is the largest

eigenvalue of X4 . Caspary (1987) details the motivation for acceptance of
Amax as a global precision measure. The maximum eigenvalue, Amax,
represents the maximum variance for any function of the parameters and is
therefore a measure of the "worst case" for any anticipated precision estimates
in a network. Amax can be thought of as a global precision measure as it
reflects the upper limit of variance estimates for the network.

For many network design applications an optimal network is one where
point estimates are isotropic and homogeneous. Such criteria mean that all
error ellipsoids should be spheres and all error spheres should have the same
radii. Isotropous and homogeneous precision estimates can be achieved by
considering several functions of the eigenvalues. To achieve the above
criteria, and hence achieve optimal network design, the following relationships
should hold.

1. Amax = min (minimize upper limit of variance)
Amax . . o

2. — = 1 (isotropic condition)
Amin

3.  Amax - Amin=min (homogeneity condition)
(Niemeier (1987), Caspary (1987))

Fraser (1980b), (1982a), (1984) has formulated a photogrammetric
network strength factor based upon network scale, the mean standard
error and the image coordinate measurement precision. From this measure
an approximate expression for 62 can be formulated.
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Gy =qSc ..(6.29)

where q = network strength factor
S = scale number
6 = image coordinate measurement precision
6& = approximate mean standard error

The network strength factor, q, is dependent on network geometry and
hence a direct relationship between network geometry and mean standard
error can be established. For multi-station convergent networks, network
strength values of 0.5 < q < 1.5 are acceptable and represent "strong"
networks. Consequently, if the mean standard error is derived in the
estimation process, it can be included in equation 6.28 to yield an approximate
precision measure, ie the network strength factor, which reflects network
geometry and configuration. In practical cases a change in image scale will
alter imaging geometry, however corresponding changes in the mean
standard error will not be proportional (Fraser (1984)). The relationship of
equation 6.29 is therefore only approximate, however for network design
applications where a coarse estimate of network quality is required, the effect
of this approximation can be neglected.

In assessing global network precision via scalar precision measures,
care should be taken as the measures are not consistent and can give
different indications of network quality. For example, Caspary (1987) presents
the case of two networks A and B, the error ellipses of which are given in
figure 6.4.

Network B

Network A

Figure 6.4 Network error ellipses for global precision evaluation
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From the results, given in table 6.1, it can be seen that scalar global
precision measures are not definitive and in the process of network design the
limitations of each measure should be accounted for.

Table 6.1 Results of global precision assessment

Network Gy 2 error ellipse Oy 2 Amax
A 25 a=b=5 25 25
B 25 a=7,b=1 7 49

Conclusion A=B A better than B B better | A better
(precision homogeneity) | than A than B

A more complete measure of network precision is available from
Criterion Matrices. Criterion matrices are artificial variance-covariance
matrices of the parameters and represent the desired form of the actual
variance-covariance matrix. The criterion matrix is usually formulated with a
Karman-Taylor structure, ie isotropous and homogeneous coordinate
precision. Note that the comparison of the criterion and actual variance-
covariance matrix must be carried out with respect to the same datum. The
estimation of network precision, via criterion matrix analysis, is computationally
intensive but yields an accurate measure of network precision relative to a
given benchmark. All variance and covariance components of the point
estimates can be assessed to determine overall network quality. Criterion
matrix formulation is given in Caspary (1987) and Niemeier (1987).

Principal Component Analysis is another non-scalar method of
assessing network quality and network precision. Based upon eigenvalue
decomposition of the variance-covariance matrix of unknown parameters, Z)A(,
the magnitude and direction of the first principal component, ie the "worst
case" for each point, is determined. Precision measures are then based upon
assessment of the principal component analysis (Niemeier (1987).

6.1.4 Summary of Precision Measures

All precision measures, whether local or global, are based upon
decomposition in some form of the variance-covariance matrix of the
parameters. Figure 6.5 represents the structure of the cofactor matrix of the
parameters, Qﬁ, and lists the portion of the matrix which contributes to each
precision measure.
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In the process of network design it is necessary to select precision
measures which are applicable to the network requirements, are easy to
formulate and which can readily be presented in a easily decipherable form.
In network design for three-dimensional networks, as is the case for close
range photogrammetric networks, the graphic display of precision information
is difficult to both compute and display. Error ellipsoids fall into this category.

Measures based upon eigenvalue decomposition are regarded as good
overall indicators of network precision. The problem with such measures,
however, is the computational difficulty associated with their formulation. In
free network adjustments based upon the Moore-Penrose inverse,
eigenvalues are formed in the matrix inversion process and use of the
resulting eigenvalues for precision assessment is therefore recommended. In
close range photogrammetry the free network solutions are not based upon
the Moore-Penrose inverse and hence eigenvalue decomposition especially
for precision estimation is required. Precision measures based upon
eigenvalues are therefore not practical for close range photogrammetric
network design.

In the majority of network design cases several global estimates of
network precision are desired. These measures should indicate the overall
network quality, the degree of precision homogeneity between point
coordinates and the precision with respect to X, Y and Z coordinates
separately. For the purposes of network evaluation in this project a
combination of global and local precision measures have been used. These
measures will allow a good overall assessment of the network quality. The
measures chosen include the following.

Global
1. the photogrammetric network strength factor ;q

2.- the mean standard errorin X,Y,Z ; G¢

XY ;oxy
Z : Oz
3. the coordinate standard deviation range in X,Y ; Aoxy

Z Aoy

Local
4. the coordinate standard deviation ; ox;,0v;,0zi
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Figure 6.5 Precision measures as a function of the cofactor matrix of unknown parameters
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6.2 Accuracy Measures

Accuracy measures for close range photogrammetric networks have
been the neglected component in formulation of measures for network quality.
In many cases where network quality is assessed, precision and accuracy are
confused. However these quality measures are distinctly different. Precision
is directly related to the dispersion of a distribution while accuracy reflects the
closeness of an estimate to the true value of the parameter being assessed
(Mikhail (1976). As covered in section 5.1, accuracy includes precision and
bias terms, with the most significant component of the accuracy measure to be
assessed being the bias, or systematic error. If a measure of network accuracy
is to be formulated then an indication of the deviation of the estimated
coordinates from the true coordinates is required.

There are two features which reduce the significance of accuracy
assessment in close range photogrammetry. These include the following.

1. Many close range photogrammetric applications only require
the relative position of the object to be assessed. In other
words only the shape of the object is important. Many of the
systematic errors which affect the object point coordinate
determinations in the same manner, ie systematic errors which
are invariant with changing exposure station, are therefore not
significant. Systematic errors which vary between exposure
station, eg film deformation, and which vary from object point
to object point will be significant and will affect object shape.

2. Self-calibrating bundle adjustments allow for the detection
and compensation of significant systematic errors. If such an
adjustment procedure is utilized, with an additional parameter
set which will facilitate modelling of the significant systematic
errors, then the effect of systematic errors on the final point
estimates will be minimized. Although a residual systematic
error may still be evident the effect can usually be considered
to be negligible and hence accuracy assessment becomes
unnecessary.
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There are four principal components which will affect photogrammetric
network accuracy. These components are :

1. Geometry of the - camera focal length
network - imaging geometry
- density of control measurement

2. Computational - self-calibrating v standard bundle
method adjustment

3. Physical - quality of camera interior orientation
characteristics - film and emulsion flatness

- accuracy of comparator/analytical plotter
(neglected for a calibrated instrument)

4. Redundance of - number of image observations per point
measurements - multiple exposures
(Hottier (1976))

If network design is carried out properly, and "strong" network geometry
with adequate measurement redundancy results, then the principal contributor
to network accuracy are the physical characteristics of the camera and
measurement system. For multi-station close range photogrammetric
evaluations there are two basic methods of assessing network accuracy. The
first method is the control check method. Although conceptually simple the
method requires the availability of object point coordinates, to a higher degree
of precision and accuracy than could be anticipated from a photogrammetric
evaluation. To allow adequate accuracy assessment 10 - 15 such points are
required. Determination of accuracy is then computed by comparison of
photogrammetric and control coordinates and determination of the systematic
component if any is evident (Hottier (1976)).

An alternative method is based upon simulation procedures. Image
coordinates for a network identical to the "real" network are simulated, with a
random error included in simulated observations to allow for anticipated
observational errors. The resulting object point coordinates, after adjustment
of the simulated data, are then compared to the coordinates from the "real"
evaluation. Any systematic difference between the two sets of results reflect
the accuracy of the network (Hottier (1976)).
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For network design applications, where no "real" network has been
observed, neither of the above methods can be applied directly, as both
methods require’ comparison of results with "real" photogrammetric data. For
network design, if accuracy criteria are of importance, a combination of the two
methods can be formulated. The first step involves acquisition of high
precision / high accuracy coordinates of 10 - 15 object points. The second
stage involves the simulation of image coordinates for these points. Pseudo-
errors, which model systematic errors such as film deformation, emulsion
irregularities, lens distortions, film unflatness etc, are added to the simulated
coordinates along with random errors to simulate observational errors. After
these pseudo-observations are adjusted, comparison of the derived object
point coordinates with the control coordinates is carried out. Evaluation of the
difference between the two sets of coordinates will give an indication of
network accuracy. Although the process requires the acquisition of "real” data,
in the form of control coordinates, this is a more economical method than
acquiring photographs for numerous possible networks in order to assess
accuracy for each design.

A more applicable method of assessing network accuracy is via two
network simulations, one with added systematic errors and one without such
errors. A comparison of the two sets of results will give an indication of
network accuracy. This method has the inherent advantage that no "real"
information is required and hence the evaluations can be carried out without
the time consuming and costly exercise of acquiring "real" data.

For accuracy assessment in "normal" stereo photography, Hottier (1976)
has developed predictor formulae as accuracy measures. Such predictors
cannot be extended to cover the multi-station convergent case of
photogrammetry however.

The accuracy measures which have been covered are practical and
physical measures of network accuracy. An alternative approach, which will
be introduced in the assessment of reliability measures, involves assessment
of the least squares mathematical model. Attempts to resolve systematic
effects, by assessing the expected results of an unbiased versus biased
solution, will be addressed.
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6.3 Reliability Measures

Reliability, in the context of network quality, refers to the conformance of
an observed network to its design. The basis of reliability assessment is the
potential for detection of systematic and gross errors via adequate testing
procedures.

Methods for the detection and compensation of systematic errors have
been covered in previous sections. Section 6.2 introduces accuracy
measures and outlines the significance of systematic error detection in close
range photogrammetric applications. Self-calibration adjustment procedures
allow the major photogrammetric systematic errors to be modelled and hence
compensated for in the estimated object point coordinates. The principal
photogrammetric systematic errors are detailed in sections 2.4.1 to 2.4.4, with
development of self-calibration procedures being carried out in section 2.4.5.
As the major photogrammetric systematic errors will be assumed to have been
adequately reduced by self-calibration and pre-calibration procedures, the
reliability measures assessed will primarily be with respect to gross errors.

The effect of gross errors on estimated parameters can be analysed by
observing the network and then applying mathematical model testing
procedures in order to detect if gross errors exist in one, or more, observations.
The testing procedure commences with a global model test, whereby the least
squares functional model is tested, based upon the null hypothesis that the
model is correct and complete and that distribution assumptions meet reality.
If the alternative hypothesis, ie that either systematic or gross errors exist, is
accepted, then the residuals are screened in order to detect outliers. Residual
screening methods include Baarda's data snooping, Pope's Tau method and
the Danish method. The mathematical principles of the three methods are
covered, in detail, in Caspary (1987). Analysis of network reliability is covered
in Pelzer (1979), Niemeier (1982), Niemeier (1987),Caspary (1987), and with
respect to photogrammetric analysis in Amer (1979).

For network design however, the detection of "real" gross errors, or
outliers, is not significant. In the network design process reliability assessment
is concerned with the influence of gross errors upon parameter estimates,
methods of minimizing the effect of gross errors on the network and measures
of assessing network reliability.
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Network reliability can be assessed as in terms of either internal or
external reliability. Internal reliability refers to the desired properties of the
least squares model to facilitate the detection of systematic and gross errors
without requiring additional information. External reliability is a measure of the
response of the least squares model to undetected systematic and gross
errors, or the influence on the parameter estimates (Caspary (1987)).

Caspary (1987) develops reliability measures for global, ie the model as
a whole, and local, ie with respect to individual observations, in terms of
internal and external reliability. A summary of these measures is given in
table 6.2. Note that these measures are based upon Baarda's data snooping
methods.

Table 6.2  Network reliability measures

Internal External
Global Amax(P Qy P) = max Amax(P Q;\ P) = min
tr(P Qy P) = max tr(P Q? P) = min
Local fi = PiQuivi = max piZ aiTQa; = min
' - f , 1 .
Local Average f= = max Etr(P Q? P) = min
Global

where Qy = cofactor matrix of residuals

Q= cofactor matrix of adjusted observations
Amax(M) = maximum eigenvalue of the matrix M

P = weight matrix of observations

Quvivi = ith diagonal element of Qy

pi = the a priori weight of observation i

a; = ith column of the design matrix A

n = number of observations

In utilizing the reliability measures for network design and network
reliability assessment, the measures should be used as relative measures. In
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other words the difference between the measures for different network designs
and not the absolute magnitude of each measure should be assessed.

To achieve a high conformance of an observed network to its design, the
network must be self-checking (Niemeier (1982)) and hence must comprise
independent redundant observations. For photogrammetric network design,
Amer (1979) introduces simple methods to improve network reliability. These
include increasing the number of observations, hence increasing redundancy,
and using object point clusters instead of single well spaced object points. A
simple method of increasing network redundancy, and hence network
reliability, is via multiple exposures. With respect to improvement in network
reliability, one of the most important consequences of multiple exposures is
that exposure dependent systematic errors are averaged and therefore
reduced.

In assessment of network reliability, measures are based upon analysis
of functions of either the cofactor matrix of residuals, Qy, or the cofactor matrix
of adjusted observations, Q?..These matrices are invariant with respect to
datum selection as long as the applied constraints are minimal. If the network
is over-constrained both Qy and Q? become datum dependent and reliability
assessment may not be valid.

Férstner (1985) covers the influence of imaging configuration upon
network reliability. For high accuracy photogrammetric applications, two and
three photograph, convergent or "normal”, imaging configurations do not give
sufficient internal reliability to be routinely implemented in close range
photogrammetric evaluations. It is recommended that a minimum of four
photographs are utilized to ensure high internal reliability (Fraser (1987)).

6.4 Sensitivity Measures

Until recently, assessment of network sensitivity for close range
photogrammetric networks has not been required. Due to the increase in
precision from close range photogrammetric evaluations in recent years,
monitoring and deformation analysis have become possible. Applications of
close range photogrammetry for deformation analysis are given in Fraser
(1983), and for industrial monitoring in Fraser (1988b), (1988c).

118



Sensitivity, with respect to network quality criteria, can be defined as the
potential of a network to determine or resolve deformations. The fundamental
measure of sensitivity is the sensitivity criterion, or the minimum magnitude of
deformations for a given model at which deformations are just detectable
(Niemeier (1982)). For the purposes of determining such a measure,
measurements at two epochs are considered. The parameter and variance
estimates at the two epochs are :

Epoch 1 : 5\(1 ;Q)A(1
Epoch 2 )/\(2;();(2 ..(6.30)

The difference measures, between epochs, take the following form.

difference =d = )/\(1 - )A(g
cofactor matrix of the difference = Qqq = Q)A(1+ Q)A(2 ..(6.31)

In order to determine if deformation has occurred, a Global Congruency
test Fraser (1983), Caspary (1987)), (Niemeier (1987) is carried out. Such a
test is based upon the null hypothesis that the expected value of the difference
metric is zero. The alternative hypothesis is that the difference metric is not
zero, and equals the deformation da. If the alternative hypothesis is accepted
then at least one point has undergone movement or change. Based upon the
results of the Global Congruency test, further tests can be carried out to isolate
the deformation or movement.

For the design of networks the detection of deformations is not significant.
The significant aspect, with respect to network design, is to be able to design a
network which will allow maximum sensitivity and consequently maximum
likelihood of detecting significant deformations. To allow a measure for
sensitivity the deformation, da, is expressed as :

da=ag ..(6.32)
where a  =the unknown scale factor
g =the known form of critical movements

In order to determine the minimum detectable deformation, dmin=amin g,
a minimum scale, amin, requires determination.

119



/ A
amin = Oo m ..(6.33)

where o, = the a priori variance factor
Ao = the F-distribution non-centrality parameter
Qqqg* = the Moore-Penrose inverse of Qqq (Niemeier (1987))

A measure has been developed for sensitivity, namely the minimum
detectable deformation. In designing a network for application in monitoring
and deformation analysis, the following steps should be carried out in
conjunction with the conventional design procedure.

develop the deformation model

develop the vector g of critical movements
select the risk level of the test

determine amin

determine the minimum detectable deformation

ok 0~

Design of deformation networks can also be carried out via principal
component analysis of the cofactor matrix of parameters. The principal
component of each point determination will indicate the "worst" direction and
magnitude of any point estimate. The sensitivity criteria then has the
requirement that anticipated critical movements should be orthogonal to the
principal component, to allow maximum likelihood of detecting the subject
deformation (Niemeier (1987)).

In this chapter, methods of assessing network quality have been
described. Precision measures have been covered in detail as such
measures indicate the quality of the network. Precision measures are
predominantly datum dependent and therefore the effect of the datum
definition upon precision measures should be determined prior to selecting a
particular measure.

Measures for accuracy, reliability, and sensitivity have not been
developed in detail as they are essentially secondary network quality
measures. Sufficient references have been included if detailed analysis of
these quality criteria is required. Measures of network economy have not
been developed. The cost of network establishment and evaluation is left to
the network designer and is determined by considering all cost components
individually, based upon the expert opinion of the designer.
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7. INTERACTIVE GRAPHICS, SIMULATION AND
ADJUSTMENT SOFTWARE

Interactive computer graphics and network simulation provide a
convenient method of designing and assessing network configuration and
ultimately, network quality. The process provides an indirect solution to the
problems associated with close range photogrammetric network design. A
network can be designed interactively with the computer, with graphic displays
of the imaging geometry, target array, camera orientations etc, and the network
design problems, introduced in section 5.2, are then solved by iteratively,
utilizing network simulations.

For the purposes of assessing the various components of close range
photogrammetric network design, such as datum definition, quality measures,
configuration influence, observation quality etc, a close range
photogrammetric computer software package was developed. The package,
called SIMPAC (Simulation Package) for identification purposes, was
designed in order to allow assessment of network design problems and has a
range of options to allow evaluation of the majority of the factors influencing
network design.

SIMPAC is an interactive computer graphics and simulation package.
The software specifications are

1. writtenin Fortran 77 for use on a VAX 11/ 780 computer.

2. graphics are established from Plot 10 Graphical Kernel
System (GKS) subroutines. These subroutines are Fortran 77
library subroutines which comply with the GKS standard for
computer graphics.

3. the software runs on a Tektronix 4107 graphics terminal. If
adjustment routines are used independent of graphics, then
any computer terminal may be used.

Flowcharts to demonstrate the capabilities of SIMPAC are given in
figures 7.1a and 7.1b. The flowcharts are not detailed but give an overall
indication of the package features and software structure.
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Network Geometry, Object
Definition, Camera Focal
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Format, from an input file.

Input Object Definition,
Define Camera Focal
Length and Photographic

Format.
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1. ZOD Definition
2. FOD Definition

3. Adjustment

\d

O

Figure 7.1a Flowchart of the interactive computer graphics network design and simulation
package - SIMPAC
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Figure 7.1 b ‘Flowchart of SIMPAC options

The basic software features of SIMPAC will be described briefly with an
emphasis on applicability to network design. The package will be analysed in
terms of the two basic components of the software, namely the interactive
computer graphics component and the adjustment component.

7.1 -SIMPAC - Interactive Computer Graphics Component

To illustrate the various features of the graphics capabilities of SIMPAC,
consider the following example. An object, being a 50m cube, is to be
photographed. A Wild P32 metric camera is used, with 64.1mm focal length
and a offset photographic format of 90mm x 65mm. Included in the example
are several obstructions, for example a wall and a pole. The influence of these
obstructions can be graphically seen from the plots. The plots show various
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design stages in the network configuration definition, from initial plan view of
the object through to the object with added targets and defined camera station
locations.

An object is defined, external to the program, in a format compatible with
input requirements. Also defined are the internal camera parameters of focal
length and image format. A plan view of the object is plotted, along with any
obstructions or restricting features.

Figure 7.2 SIMPAC plot - Plan view of the object with no camera stations or object points
defined.

Camera stations can be specified, by definition of the exterior orientation
parameters, and a planimetric plot of the configuration is carried out. The plot
shows position of the camera stations relative to the object, and includes
camera field of view to aid in configuration design and to assess photographic
coverage of the object. Camera stations can be added to or deleted from the
configuration.
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Figure 7.3 SIMPAC plot - Plan view of the object with defined camera stations and network

configuration.

A perspective view from each camera station can be plotted. The view is
overlaid by the photographic format, and hence the coverage of the object, by
each photograph, can be established. Obstructing features, such as walls,
poles, buildings etc, are also included in the perspective plot. Consequently
any obstruction of the object, by any feature, can be modeled and a
configuration as close as possible to reality achieved. The plot of the
perspective view is carried out via a two stage hidden polygon removal
procedure. The first stage involves detection and flagging of all "back”
polygon faces for a given view direction. "Back faces" are those polygons
which face away from the observer's position and which therefore cannot be
seen. The second stage involves depth sorting, in order of increasing distance
from the observer's position. The plotting of polygons is then carried out in
order of decreasing distance from the observer and only for front face
polygons. The resulting perspective view consists of near polygons being
overlaid on distant polygons with a consequent "realistic” perspective view.

125



This process is called the painter's algorithm, and is developed in Pavlidis
(1982) and Hearn and Baker (1986). Along with the perspective plot, from the
subject camera station, the camera exterior orientation parameters are also
output.

XL = -108.
Y= - -80.
ZL= 3.,

TILT = -18.
AZIMUTH = 5B,
KAPPA = 8.

vostRs STH L A

[RETURNI

Figure 7.4 SIMPAC plot - Perspective view of the object

Camera exterior orientation parameters can be edited to allow op‘timal
coverage of the object in question. Perspective views after each edit stage are

possible.

Having devised an initial network configuration, target points can be
added to the object. This is achieved by generating a perspective view from a
camera station and selecting a polygon upon which targets are required. The
sub;j-ct polygon is then plotted normal to the view direction and targets are
interactively added to the polygon using the cursor on the computer terminal.
After all targets have been added the perspective view from the camera station
is regenerated in order to define which points can or cannot be seen.
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Figure 7.5 SIMPAC plot - Perspective view of the object with defined object points plotted.

The software has a semi-automatic target visibility feature. If a target falls
on a back face or is outside the photographic format then it is automatically
deleted from the target array of points which can be seen from that particular
station. Editing facilities allow manual deletion of targets, on a front face and
within the photographic format, but which are either obstructed or not
required.

After definition of the imaging configuration and the target array, which is
essentially the first-order design, the datum can be defined. The datum, or
zero-order design, definition allows

a) object point coordinate constraint, for any combination of XY
or Z, and in either minimal or over-constrained form.

b) definition of observed distances.

c) inner constraints (free network) datum definition.
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If object point coordinates are constrained or distances observed then a
plot of the datum defining elements is possible. The perspective view which
results aids in determination of the geometric strength of the datum definition.

The final stage, of the graphics component of SIMPAC, involves the
simulation of observations, which include image coordinates and distances,
with respect to the previously designed network configuration. The simulated
observations have a pseudo-random, normally distributed, error added in
order to model the anticipated observational precision of both image
coordinate and distance observations. The simulated image coordinates,
simulated distances, camera orientation data and any other relevant
information are then automatically transferred to the adjustment component of
the package. As an addition feature, an output file of simulated image
coordinates, in the format of the Wild Aviolyt BC2 analytical plotter, is formed in
order to allow analysis of the network by any other conventional adjustment
program.

7.2 SIMPAC - Adjustment and Network Evaluation
Component

The adjustment component of SIMPAC will be described via the following
steps.

An initial selection is made from the three available adjustment types.

a) Classical Least Squares
b) Free Network (Inner Constraints)
c) Bayesian Least Squares

An option is available to introduce "real" image coordinates, instead of
simulated image coordinates. Hence the package allows analysis of both
"real" and simulated networks.

An option is also available for either a total error propagation (TEP) or
limiting error propagation (LEP) solution. Note that all adjustments are
mathematically rigorous with respect to inter-point covariance and related
error propagation.
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Free network adjustment is carried out with respect to the object point
coordinates, or a chosen subset of the object point coordinates. Camera
exterior orientation parameters are not included in the free network conditions,
and hence a partial minimum trace datum with respect to the object points is
formulated. The free network method utilized is the free network constraint
elimination method, described in section 8.5.3.

The output of results from the chosen adjustment includes :

a) adjusted observations and residuals.

b) the a posteriori variance factor, number of unknowns, number
of observations.

c) control equation residuals, for classical least squares
adjustments.

d) estimated exterior orientation parameters and associated
variance estimates.

e) estimated object point coordinates and associated variance
estimates. The points to which the minimum condition is
applied, in free network adjustments, are flagged.

f)  the mean standard error, in terms of XY, Z and XYZ
components (Gxy, Oz, Oxyz)-

g) the standard deviation ranges, in terms of XY, Z and XYZ
components (Acoxy, Aoz Acxyz)

h) the photogrammetric network strength factor.

After the adjustment the program control is returned to the interactive
graphics component and any, or all, of the network configuration and datum
elements can be redefined if necessary.

SIMPAC will be used to illustrate many of the features of close range
photogrammetric network design, with an emphasis on zero-order design and
first-order design, in the following chapters. The illustrations will include both
simulated data and real data and will be designed to verify the software and to
demonstrate the significant aspects of network design and analysis.
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8. ZERO-ORDER DESIGN SOLUTIONS

The datum problem of the close range photogrammetric network can be
solved by various techniques, based upon different forms of the least squares
adjustment process. The techniques do not give identical solutions for
parameter and variance estimates as the function minimized, the base form of
which is given by equation 3.1, usually varies for each technique. Moreover,
as both the estimates of the unknown parameters, 5\( and the cofactor matrix of
these estimates, Q)A(, are not invariant functions with respect to constraint
selection, the solution will differ as a function of the magnitude and type of
constraints which are applied to remove the network datum deficiency.

The mathematical fundamentals of the various constrained estimation
techniques have been developed, in detail, in sections 3.5 to 3.7. Such
solutions are based upon either absolute or relative constraints, in either
explicit or implicit form, which are of a magnitude and type capable of
removing the datum deficiency of the network.

In this section, solution of the datum problem for close range
photogrammetric networks will be developed. Such developments will be in
terms of both the mathematical fundamentals of the least squares solution
and the mathematical model for close range photogrammetry. Solutions for
the various techniques will be analysed in terms of the type of parameter and
variance estimates that result. Note that, in general, the various solutions to
the datum problem will be assessed with respect to minimal constraints.
Solutions based upon over-constrained parameters result in a hierarchical
adjustment in which the inner geometry of the network is destroyed. Over-
constrained solutions are applicable in certain circumstances however, and
imposition of such constraints is merely an extension of the procedures
which will be developed. Note also that invariant functions of the least
squares model are only invariant under application of minimal constraints. In
an over-constrained network, functions such as residuals, adjusted
observations and their associated cofactor matrices become datum
dependent and hence dependent upon constraint selection.
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8.1 Relative Datum Constraints

Solutions to the problems associated with rank, or datum, deficient
systems and the implications of such solutions have been presented in
sections 3.5 to 3.6. The application of such techniques depends on the
magnitude of the datum defect of the system after all observations have been
applied. Observations can act as constraints for the datum definition. Such
constraints are relative or weighted constraints (Blaha (1971)). Alternatively
constraints which represent certain mathematical conditions, as applied to
the parameters, which must be fulfilled are called absolute constraints. For
example, if a system is developed based solely on image coordinate
observations then a datum defect of seven exists. However if object space
distances are observed along with image coordinate observations, then the
resulting datum defect will not be seven. Observed distances can define the
scale of the network resulting in a network with six datum defects, three
translations and three rotations, with the scale being implicitly determined by
distance observations. Table 8.1 lists observations applicable to close range
photogrammetry and gives the effect of such observations on the datum
deficiency of the network. All combinations of possible observations are not
included in the table, however an indication of the significance of each
observation type, for datum definition, is listed.

Table 8.1 Datum information in observables and combinations of observables

(The datum parameters are defined in figure 5.4).

OBSERVATION DATUM FREE DATUM REMARKS
DEFECT PARAMETERS
Image observations [ 7 Tx, Ty, Tz No datum information
Rx, Ry, Rz in image coordinate
Scale observations.
Image observations | 4 Rx, Ry, Rz Coordinates of one point
and one object point Scale define translation from the
in XYZ. origin.
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Table 8.1 (cont)

Image observations
and two object points|
in XYZ.

Rotation about the
line between

the two points.

Coordinates of two points
define all elements except
the rotation about the axis
of the line between the
two points which may be

a function of Ry and Ry.

Image observations
and two object points
in XYZ and one

non-collinear object

Defines all 7 datum

definition elements.

pointin Z.

image observations 1 Scale Defines orientation and

and exterior origin of the reference

orientation parameter, system.

observation of one

camera station.

Image observations | 6 Tx, Ty, Tz Observed Distances

and distances Rx, Ry, Rz define scale of the network.
Care should be taken to
ensure observed distances
are representative of
the whole network.

Image observations | 7(6) Tx, Ty, Tz No datum information

and elevation Rx, Ry, Rz is inherent in elevation

differences. (Scale) differences unless the

points are vertically above
one another, in which case
the observation can define

scale.
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Table 8.1 (cont)

Image observations Tx, Ty, Tz No datum information
and horizontal Rx, Ry, Rz is inherent in horizontal
angle measurements| Scale angle or direction
measurements.
Image observations Tx, Ty, Tz Vertical angles can define
and two vertical Rz the direction of the
angle measurements Scale vertical axis.Ensure vertical
angles are in both X and
Y directions to resolve
rotations Rx and Ry.
Image observations Tx, Ty, Tz Azimuth defines rotation
and azimuth Rx Ry about the Z axis.
observation. Scale
Image observations Scale One point defines the
and one object point translations Ty, Ty, Tz,
in XYZ, azimuth and azimuth defines rotation
two vertical angles. Rz, vertical angles can
define rotations Rx and Ry
Image observations Tx. Ty. Tz Elevation difference and
and elevation Rz a distance, between the

difference + distance
between the

same points.

same points, uniquely
define the direction of the
vertical axis.

Image observations
and one object point
in XYZ, azimuth and
elevation difference
+ distance

between the same
points.

One point defines the
transtations Ty, Ty, Tz,
azimuth defines rotation
Rz, distance defines scale
and elevation difference
and distance define
direction of the vertical axis
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One important criterion of the datum definition is that application of datum
defining elements must not affect the geometry of the network. In other words
the datum must not impose strain upon the network (Caspary (1987)). As
described in section 3.5, such a condition is achieved by application of
minimal constraints, ie a minimum number of constraints must be applied to
remove the datum defect but add no more information into the system.
Observations which contain datum information implicitly apply a constraint to
the network. For example an observed distance can be utilized to constrain
the scale in the network. Hence only six more constraints can be applied to
both define the datum and at the same time maintain the criterion for minimal
constraints, as the distance observation has been used to implicitly apply one
constraint. For a system consisting of image coordinate observations, seven,
and only seven, constraints may be applied to both define the datum and
maintain the criteria for minimal constraints. If, for example, observations are
carried out on three object points, defining the X, Y and Z coordinates of each,
as well as image coordinate observations and the object point coordinates are
used to define the network datum, then the system would be over constrained,
ie nine constraints, and the resulting network geometry would be affected.

With reference to equation 3.22, for a network of rank or datum
deficiency, d, then for :

d coristraints - the inner geometry of the network is maintained.
(ie the network is not distorted)

<d constraints - the network is still singular and the parameters are
non-estimable.

>d constraints - the inner geometry of the network is not maintained
and a hierarchical adjustment results.

Only that information which is introduced into the network by the actual
observations is preserved without change under minimal constraints. As
detailed in section 3.7, functions which are invariant with changes in
constraints include adjusted observations and residuals. Network reliability
assessment, which is based upon assessment of the cofactor matrix of
residuals or the cofactor matrix of adjusted observations, can be carried out for
any constraint configuration as long as it is minimal. This is because residuals
and functions of residuals are invariant with respect to minimum constraint
configuration (Blaha (1971)). For over-constrained networks, residuals and
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adjusted observations and their associated cofactor matrices will be larger
than minimal constraint values and hence reliability assessment will be in
error. Additional parameters associated with the camera interior orientation
are also invariant with respect to constraint change. Functions, such as those
listed above, will not remain invariant, however, if constraints are not minimal.
In summary, for an over-constrained network, quantities invariant under
minimal constraints become dependent on constraint type and magnitude.

In close range photogrammetric applications, where the network is often
independent of existing object space reference systems, provision of datum
constraints may be difficult and time consuming and hence minimal constraints
are applicable. Also the actual position of the object, with respect to a
reference system, may not be required and only the relative shape of the
object may be of interest. A partial datum may therefore be explicitly applied to
define scale and direction of the vertical (Papo and Perelmuter (1982)).
Techniques for minimal constraint solutions, in the form of both absolute and
relative constraints, in either explicit or implicit form, and the implication of
such solutions in terms of parameter and variance estimation, require
assessment.

The datum deficiency of a network has been established as a function of
the observables, and the methods for solution of the system of equations for
such a network will be investigated.

8.2 Zero-Variance Computational Base

The classical solution to singular adjustment problems, characterized by
the datum problem, is the solution obtained by specifying a particular zero-
variance computational base, equivalent to the datum deficiency of the
network, and solving the system based upon such constraints. In other words
a minimum-number of parameters required to define the network datum are
held fixed and a solution is carried out relative to the fixed parameters. The
solution is achieved by suppressing or deleting d appropriate columns of the
design matrix, A, where d is the number of datum unknowns (Caspary (1987),
Niemeier (1987)). Consequently the zero-variance computational base
solution takes the form of a solution based upon absolute minimal constraints.
The form of the zero-variance computational base solution, in terms of the
constraint equations of section 3.5.1, is given by equation 3.37.
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The mathematical model of the least squares solution is then equivalent
to the system of equations given by equation 3.26, where :

v = (A1 Ao) ()A(‘) -1 .(3.26)
X2

A

where X1 = vector of estimated parameters of order (u-d)
A
X2 = vector of estimated parameters of order (d)
A1 = design matrix of order (n,u-d)

Ao = design matrix of order (n,d)
n = number of observations

u = number of unknowns

d = datum deficiency

Section 3.4 develops the assumption that the parameters 5\(1 are
estimable and the parameters 5\(2 are non-estimable. This is due to the linear
dependence of the design matrix Ay upon the design matrix Ay, as given by
equation 3.27. As an absolute minimal constraint adjustment, the zero-
variance computational base solution involves the deletion of the A, design
matrix from the least squares mathematical model. Consequently the A,
design matrix will be a null matrix and hence the parameters X, are fixed at
their approximate values. Hence the solution is constrained by the fixed
points, which will define the scale, orientation and translation of the reference
coordinate system. Note that, as given by table 8.1, for a datum deficiency of
seven, two points must have their X, Y and Z coordinates placed into 5\(2 and a
further non-collinear point must have its Z coordinate placed into )A(g, to allow
the datum definition. This selection of coordinates for 5\(2 is only one of many
possible sets of parameters for defining the zero-variance computational base.
Although it is the most common constraint selection, almost any combination of
parameters may be selected, providing that the selected parameters allow
definition of the origin, orientation and scale of the network.

In close range photogrammetric adjustments the observation equations
are developed in terms of corrections to the unknown parameters, as for
example in equation 4.9. Consequently the solution can be simplified by
holding fixed the parameters 9(2. This is achieved by constraining Aﬁ\(g to zero,
ie no correction will be applied to the approximate values, X2°. Therefore the
solution for parameter and variance estimates take the following form.
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A A
& = | A% =(AX1J (8.1
AX> 0
Q.. 0
A | AX1
%{ 8" o
where  AXq = (ATPA;) A{TPI
A
AXo =0 .(8.2)
Q, 5= (A{TPA)"
Q ARD =0

The cofactor matrix, Qsz’ is by definition a null matrix. Hence the term

"Zero-Variance Computational Base".

Note that this solution is numerically equivalent to the case where d
additional rows are appended to the linear model. These rows can be viewed
as fictitious observations on the unknown parameters of X,. Consequently, if
the weight applied to the fictitious observation is numerically large enough to
"fix" the coordinates, then the two solutions become equivalent (Fraser
(1982)). The mathematical model for this formulation is :

(w) (Ao‘ 122) &J - G;) .(8.3)

where Vi V2 = residuals of image observation and control
equations respectively
l4.1> = observations of image observation and control
equations respectively
A11,A12 = design matrices for the image observation
equations
Aoo = design matrix for the fictitious control equation

From equation 3.42 it can be seen that the solution based upon definition
of a zero-variance computational base, which comprises explicit absolute
constraint of the parameters, is biased and depends upon constraint selection.
Equation 3.43 shows that the cofactor matrix of estimated parameters is not a
minimum variance estimate and also depends upon constraint selection. In
other words both parameter and variance estimates are not invariant with
respect to datum constraint and vary according to which zero-variance
computational base is chosen, ie which coordinates are held fixed.
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Solutions based upon the specification of a zero-variance computational
base have the advantage that they are conceptually simple and easy to
implement. Disadvantages, however, include :

1. definition of the datum is restricted to definition by absolute
constraint of d components of the unknown parameters.

2. the estimates of the parameters, 9( and the cofactor matrix of
the estimated parameters, Qs, depend upon the arbitrarily
selected points used to define the datum. Consequently
definition of a zero-variance computational base does not
clearly reflect the inner precision, or quality, of the network,
and hence is not ideally suited for assessment of network
design and quality.

As discussed above, both parameter and variance estimates from a zero-
variance computational base datum definition, are datum biased and datum
dependent. If a zero-variance computational base is to be used for
photogrammetric datum definition it would be logical to define the datum with
respect to those coordinates which would allow the "best" possible solution.
This "best" solution will not be optimal, ie the solution will not provide a
minimum mean variance estimate, however it would result in the smallest
mean variance estimate for the available zero-variance computational base
configurations.

In selecting a zero-variance computational base for close range
photogrammetric datum definition, a quantitative relationship between
constraint configuration and precision estimates would be useful. A method
for determining which three object points would form the best control
configuration is required. Fraser (1982a) observed the following qualitative
relationships with respect to the mean standard error and distribution of the
minimal constraints or control.

1. as the centroid of the control point triangle approaches the
centroid of the object point target array, the mean standard
error of the object points, ¢, decreases.

2. as the area of the control point triangle increases so the
mean standard error decreases.
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Quantitatively these requirements can be expressed in the following way.
For the target array centroid denoted by Xc, Yc¢, Zc, and a plane defined by the
three chosen control points, then the minimum distance between the plane
and the centroid is normal to the plane and is denoted by d. The area of the
triangle defined by the control points can be determined from A =%—b ccosa,
where the notation is defined in figure 8.1.

Target point array Control

Point 2/

Target Array

Distance d —— Icentroid
{(minimum (Xc,Yc,Zc)
distance to the
object control -~
plane)
Control
Point 3
Control
Point 1
where a,b,c = control point triangle side lengths
o = angle subtended by sides b and ¢

Figure 8.1 Requirements for the "best" control configurations for zero-variance

computational base datum definitions

Consequently, if the "best" or one of the "best" control configurations is to
be determined analytically, then the following two relationships should hold
simultaneously.

1 d = minimum
2. A = maximum
where d = the minimum distance from the target
array centroid to the control point plane
A = area of the control point triangle

For complex target arrays these relationships may not be applicable,
however for network design purposes, where an initial coarse estimate of
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suitable datum definition configurations is required, the relationships can be
used to estimate several applicable control configurations from which the
"best" configuration can be ascertained by network simulation.

8.3 Ridge Regression Models

In all cases of least squares estimation characterized by datum or rank
deficiency, the coefficient matrix of the normal equations is singular and ill-
conditioned. To eliminate the singularity problem of the normal equation
coefficient matrix, mathematical models have been proposed which, in general
terms, comprise the addition of non-negative values to the main diagonal
elements of the singular matrix. Such a process will enable constraint of the
parameters if the added values can remove the rank deficiency of the matrix,
and hence an estimate for the parameters and their cofactor matrix can be
formulated. The magnitude and type of values which are to be added to the
diagonal of the singular matrix will be analysed, as will the form of the
parameter and variance estimates which result.

Two basic forms of the ridge regression model will be evaluated. These
include Bayesian formulations, whereby the non-negative values are
determined from prior information of the variance of the unknown parameters,
and generalized ridge regression formulations, whereby the non-negative
values are in fact constants which can be varied to numerically form a non-
singular normal equation coefficient matrix (Draper and Van Nostrand (1979)).

8.3.1 Bayesian Least Squares

Bayesian least squares is an estimation process whereby a good a priori
knowledge of the unknown parameters can be included in an adjustment
process in order to ensure that the estimated parameters do not differ
significantly from their a priori value. In other words the Bayesian approach
combines sample information (observations) with other available prior
information which may be available. Such an estimation procedure is
subjective as the "degree of belief" in the unknown parameters is used
(Walpole and Myers (1972)). Bayesian estimates are therefore biased
estimates. For a priori knowledge, comprising prior estimates of the
parameters, X', and the associated cofactor matrix, Qx1, the quadratic form to
be minimized is of the following form.
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O =VvIPv + XTPxX' = minimum ..(8.4)
(Krakiwsky (1982))

v = residuals

¢ = function to be minimized

P = weight matrix of observations = Q!

Px = a priori weight matrix of parameters = Qx1

X' = a priori values of parameters

where

The extension of the least squares quadratic form,given by equation 3.1,
to that given by equation 8.4, means that Bayesian estimation is a form of
constrained least squares. Constraints are relative and are in the form of
weighted observations, and the Bayesian formulation therefore allows implicit
definition of the datum unknowns. Instead of the augmented quadratic form,
given by equation 8.4, observation equations could have been established for
the "observed" parameters and then added to the existing system of equations.
Solution of such a system would rely on least squares, minimization of vIPyv,
with constraints implicit in the added observations of the parameters. In terms
of the method of constrained minima by Lagrange multipliers, the minimum
function of equation 8.4 becomes :

0" = VTPV + XTPxX - 2K(v + [ - AX) .(8.5)
where k = Lagrange multipliers
A
X = = estimates of the parameters,X

A
Partial derivatives, with respect to v and X, are equated to zero to give:

a¢' - -

a),\(=2X Px +2kA=XTPx + kA =0 ..(8.6)
a ]

%—: VIP-2k=VvIP-k=0 ..(8.7)

The system of equations, in terms of the Lagrange multipliers, k, the unknown
A
parameters, X, and the residuals, v, becomes

0 Px Ay /v 0
P 0 -1]||% =[0J ..(8.8)
-1 A o)lk) U
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The solution of equation 8.8 is similar to that developed in
section 3.5.2 and hence will not be covered again here. The resulting solution
equations become :

X = (ATPA + Py)-! ATP/

Q)A( = (ATPA + Px)! ..(8.9)
A A
A vIPv + XTPxX
where n = number of observations
u = number of unknowns
m = number of parameters with prior weights

(Krakiwsky (1982), Harvey (1987))

Equations 8.9 apply to linear observation equations and therefore only
one iteration is required to achieve a solution. In non-linear cases, where
several iterations may be required, equations 8.9 contain additional terms.
The Bayesian formulations can easily be compared with classical least
squares by noting that the fundamental difference between the two solutions is
that the Bayesian case merely involves addition of terms to the diagonal of the
classical least squares normal equation coefficient matrix. Consequently the
Bayesian estimate can be determined by forming the least squares normal
equations, adding the prior parameter weighting to the appropriate diagonal
terms and then solving the system as for the least squares case.

The design matrix, A, is evaluated at the prior values for the parameters,
X', and at some approximate value, X°, if no prior information is available.
Note that the degrees of freedom, given by r= n-u+m, is equal to the number of
observations minus the number of free unknowns. This is an approximate
formulation which can lead to significant errors in the a posteriori variance
factor, ?502, if the degrees of freedom are small. An explanation of the degrees
of freedom, for Bayesian formulations, is given by Harvey (1987). It depends
upon the degree of prior weighting of the observed parameters. In most close
range photogrammetric applications the degrees of freedom is large and any
small error in r, depending upon the magnitude of prior weighting, will
generally have an insignificant effect on 302.

The Bayesian estimate is based upon a two stage linear model, both of
which rely on ngrmality of distribution. The first stage requires observations to
be normally distributed, with expectation AX and variance X (! ~ N(AX,X)). The
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second stage requires the prior estimates of the parameters, X', to be normally
distributed with weight matrix Px-1 (X ~ N( X', Px'')) (Fraser (1980)).
Consequently the resulting Bayesian estimates have the structure of a
multivariate weighted average between the standard least squares estimate
and the prior value, X'

The Bayesian solution does not provide an optimal solution to the datum
problem as the solution is dependent upon the structure and magnitude of the
weight matrix Px. In other words the solution depends upon which parameters
have an a priori weighting and the magnitude of this weighting. For seven
parameters, with strong a priori weighting, the solution takes on the form of a
zero-variance computational base solution, as the seven constrained
parameters effectively fix the datum. For such a solution prior weights must
only be applied to just enough parameters to resolve the datum. The case just
described is a form of the Bayesian solution in which minimal constraints
apply, with the constraints taking the form of relative or weighted constraints.
In all other cases the network is over-constrained and a hierarchical
adjustment results. Bayesian estimation solutions are not designed
specifically for solution of the datum problem, however the benefit of such
formulations become evident when prior knowledge of the parameters is
available and needs to be included in the estimation procedure.

For close range photogrammetric network design applications the
Bayesian estimation process does not provide the best solution. An estimate
of the quality of the network, as given by the mean variance, is not optimal
unless constraints are absolute and a minimum (Fraser (1980b), Fraser
(1982a)). In Bayesian formulations, constraints are neither absolute nor
minimal and hence an optimal estimate of network quality is not possible. As a
hierarchical adjustment usually results from a Bayesian formulation, the
residuals and adjusted observations are not invariant with selection of
constraint. - Consequently optimal estimates of reliability, which are based
upon the analysis of the cofactor matrix of residuals, Qy, is not unbiased in
Bayesian adjustment procedures. The statistical principles of the Bayesian
estimation procedure are given in detail in Leonard (1975).
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8.3.2 Ridge Regression Estimation

Ridge regression least squares is similar to Bayesian least squares, with
the difference being that the weighting matrix, Py, in equation 8.9 is replaced
by k2I. Here k is an arbitrary constant which is numerically added to the main
diagonal elements of the normal equation coefficient matrix and I is the
identity matrix. In ridge regression formulations a constant term is added to
each diagonal term while in the Bayesian case, the term added to the normal
equation coefficient matrix may be different for each parameter. The constant,
k, will have an "optimal" value. However usually there will be a range of k
values which will allow the transformation of the singular matrix into a
numerically non-singular matrix, therefore allowing solution to the subject
system of equations. The "loading" of the main diagonal of the singular matrix
in effect implicitly defines the datum, as the addition of the non-negative
constants can be thought of as weighted or relative constraints which implicitly
define the network orientation, origin and scale. As the constraints are neither
minimal nor absolute the ridge regression solution does not provide variance
estimates which are optimal. As the constraints are not minimal a hierarchical
adjustment will result and the inner geometry of the network will be destroyed.
In ridge regression solutions the value of k is usually an arbitrary value, with a
magnitude to just allow the solution of the singular normal matrix, while in
Bayesian least squares the added value is not arbitrary and is derived from
real a priori information.

In a manner similar to the Bayesian formulation a function to be
minimized can be established in terms of the constant k, and a solution for
parameter and variance estimates derived. The ridge regression solution
becomes :

X = (ATPA + k2I)1 ATP}
Qy = (ATPA + k1) (8.11)

(Marquardt (1970), Fraser (1980b))

In contrast to least squares estimation, ridge regression estimates
introduce a small amount of bias in order to achieve a major reduction in
variance (Marquardt (1970)) and consequently give a smaller mean square
error than least squares. This can be evaluated in terms of the the constraints.
As the system is over-constrained, in fact every parameter is subject to
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constraint, the residuals and adjusted observations are no longer invariant
quantities. Consequently the sum of squares of the residuals will be larger
than the minimal constraints solution and the solution will not be "least
squares”. As with the Bayesian formulation, whose estimates are dependent
upon the structure and magnitude of the prior value of the weight matrix, Py,
the ridge regression solution depends upon the value of the constant k. In
selection of the constant k several theorems, relating to the properties of the
ridge regression solution as detailed by Marquardt (1970), will be given. Such
theorems will aid in optimal selection of k.

1. the function to be minimized, ¢, is a monotone increasing
function of k, ie the ridge solution will have a larger sum of the
squares of the residuals over the least squares sum of the
squares of residuals.

2. the mean variance of the estimates, oy?, is a continuous

monotone decreasing function of k.

The mean variance of theorem 2 comprises a variance and a bias
component and is seriously inflated for a singular, or near singular, normal
equation coefficient matrix. As K is increased the matrix becomes non-singular
and the mean variance approaches a minimum. Hence in search of an
optimal value for k, assessment of bias and variance requirements must be
determined. In a case where an optimal ridge regression solution is required,
with respect to both variance and bias, a value for k is chosen such that the
mean variance approaches a minimum but also so that the minimum function
is not seriously inflated.

Ridge regression solutions, for solution of numerically singular normal
matrices, are difficult to assess in terms of the requirements for datum
definition. In other words the selection and addition of the constant k to the
singular normal equation matrix does not have a conceptual or geometric
relationship with the physical concept of datum definition. The solution is
basically mathematical and k is selected such that practical and numerical
prerequisites are met. Despite this, the ridge regression solution can be
thought of as a weighted constraint solution where all the parameters are
constrained to allow the datum to be resolved, with the condition that k is kept
as small as possible.
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8.3.3

Summary of Bayesian and Ridge Regression Solutions

The application of Bayesian and ridge regression methods, to solve
datum definition problems for close range photogrammetry, is not
recommended. The reasons for this are :

1.

In ridge regression solutions the value of k2, for addition to
the diagonal of the singular normal equation coefficient matrix,
is often an arbitrary value. In such solutions a range of values
for k can suffice, all of which result in different solutions.

The solutions of both Bayesian and ridge regression
formulations do not give optimal estimates of either parameters
or variances, an optimal estimate being a minimum bias,
minimum mean variance solution. Optimal estimates of
variance are only possible under application of minimal and
absolute constraints and neither Bayesian nor ridge regression
solutions offer this. Assessment of network quality is therefore
not feasible.

The solutions of both Bayesian and ridge regression
formulations are usually based on an over-constrained datum.
Consequently the inner geometry of the network is not
maintained and functions, such as adjusted observations and
residuals, become dependent upon constraint selection and
magnitude. Assessment of network reliability, based upon
residual analysis, is therefore not possible.

With respect to ridge regression models in general, Draper
and Van Nostrand (1979) condemn mechanical application of

regression solutions merely to improve conditioning of the
network or system. Application of such solutions should be
restricted to cases where prior or practical information is
available, and for such a case Bayesian least squares
solutions are acceptable. Doubt is cast upon the value of ridge
regression analysis as it is claimed that ridge estimators only
provide suitable results in cases where the regressions are
significant and the ridge estimates close to the least squares
estimates.
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In close range photogrammetric network design, optimal estimates of the
variance of the parameters are required. Both Bayesian and ridge regression
solutions fail to meet the required form of the estimates for network design. For
this reason, and because of the problems listed above, Bayesian estimation
and ridge regression estimation should not be utilized in close range
photogrammetric network analysis to solve the datum problem. If, however,
prior knowledge of the parameters is available then the Bayesian solutions
provide a convenient and simple method for incorporating such information in
the estimation process.

8.4 Free Network Solutions

Solutions to the datum problem, thus far, have been based upon the
explicit constraint of selected or arbitrary parameters in order to resolve the
datum unknowns of scale, orientation and translation of the reference
coordinate system. Such constraints will result in variation of both parameter
and variance estimates as a function of the selected constraints.
Consequently the parameter estimates are usually biased and the variance
estimates are not minimal. Free network solutions are based on the concept
that there should be no overall translation, rotation and scale change with
respect to the approximate values in any estimation procedure (Granshaw
(1980)). Physically this means that all parameters in the adjustment are "free"
or unconstrained and hence the resulting parameter and variance estimates
will be on the basis of all parameters being able to shift to a value which
results in no overall scale, rotation and translation change. Parameter and
variance estimates therefore, are referred not to selected points but to the
network of points as a whole. Free network solutions are conceptually difficult
to assess with respect to the origin of the reference coordinate system. |If
coordinates are fixed in order to define the datum, then the origin of the
reference system will be relative to these points. In a free network solution
such a relationship is not evident and the reference system is relative to the
centre of gravity of the object space coordinates. The geometric significance
of this is that the centroid, or centre of gravity, of the network does not move.
The mathematical significance of a free network adjustment is that the trace of
the cofactor matrix of the unknown parameters is a minimum and consequently
that the mean variance of the unknown parameters, 6522, is a minimum
(Granshaw (1980), Caspary (1987), Mittermayer (1972), Welsch (1979)). Due
to the above mentioned properties of the free network adjustment, the term
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minimum trace datum is used for describing a free network adjustment, in
conjunction with analysis of the datum problem, where the inner geometry of
the network is based upon all approximate values and hence all parameters.

For the purposes of close range photogrammetric network design, free
network solutions provide a useful evaluation tool as the solution provides
both a minimum bias and a minimum mean variance solution. The minimum
mean variance solution is especially useful as it can be used in the process of
evaluating network quality. The constraints applied for a free network solution
are both absolute and minimal, as covered in sections 3.5.2 and 3.6, and
consequently the inner geometry of the network is preserved and the precision
estimates derived can be used as precision estimates for the inner geometry of
the network. As constraints are minimal the residuals and adjusted
observations remain invariant with respect to constraint selection, and
therefore reliability assessment can be carried out from residual analysis.

With respect to the concept of inner precision (Granshaw (1980)) the
effect of an arbitrary set of parameters can be filtered out of the cofactor matrix.
If the filter parameters are chosen as rotational, translational and scaling
parameters, as is the case for close range photogrammetry, then inner
precision refers to the internal precision of a network which is not affected by
choice of coordinate system. Inner precision therefore refers to the precision
of a free network adjustment (Granshaw (1980)).

Free network solutions, of the close range photogrammetric datum
problem, can be classified depending on the form of the constraints applied.
The first technique involves the application of generalized matrix algebra for
the solution of the singular system of equations. The Moore-Penrose inverse
is applied to ensure a minimum mean variance solution. Such a solution is
covered, in general terms, in section 3.6. The second technique involves the
application of a specific constraint equation to the least squares mathematical
model in order to achieve a minimum mean variance solution. This technique
is covered, in general terms, in section 3.5.2. Note that both solutions will yield
identical results if the constraint applied, in both cases, is that of the minimum
Euclidean Norm of the parameters.
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8.4.1 Moore-Penrose Inverse Solution

The Moore-Penrose inverse allows solution of singular matrices based
upon the concepts of generalized matrix algebra. The resulting solution is of
type BLIMBE (Best Linear Minimum Biased Estimate) and gives a minimum
mean variance solution. In terms of the cofactor matrix of the estimated
parameters this means that the trace of the cofactor matrix is a minimum

(tr(Qf() = minimum).
From equation 3.55 the solution vector is :

X = (ATPA)* ATP = N+ ATPI .(3.55)
where N+ is the Moore-Penrose inverse of the singular matrix N

The Moore-Penrose inverse can be determined from the singular value
decomposition of the subject matrix (Bjerhammar (1973), Fraser (1980b),
(1982a)). The Moore-Penrose inverse, N+, is of the following form.

u
N+= % 18 8T | (8.13)
i=1 Ad
where u = order of matrix N (u,u)
A; = ith eigenvalue of N, for i=1,u
S; = ith eigenvector of N, corresponding to eigenvalue A

In the singular value decomposition the eigenvalues, A, are selected
such that the smallest eigenvalue attains its maximum value. If this is the case
then the resulting mean variance of the estimated parameters will be a
minimum, as required. Note that a disadvantage of the solution based on the
Moore-Penrose inverse, determined by singular value decomposition, is that
the solution is computationally time consuming.

Fraser (1980b), (1982a) defines the inverse N+ as :

lim

N+ = o o ( N+ k2I)! .(8.12)

Equation 8.12 is similar to the Bayesian and ridge regression solutions of
section 8.3.2. In these solutions, however, the term added to the diagonal
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elements of the normal equation coefficient matrix is either arbitrary or based
upon some prior knowledge of the parameters. In the Moore-Penrose
solution, the terms k2l are selected such that an optimal estimate of the mean
variance of parameters results. Fraser (1980b), (1982a) shows that
N+ = ( N + k2I)-1 over a broad range of values of k and consequently the
Moore-Penrose inverse solution is not equivalent to a solution based upon
explicit ridge regression analysis. For most values of k, the inverse ( N + k2I)-1
is an unsatisfactory, typically seriously inflated, estimate of the variance of the
unknown parameters.

For the selected minimal constraint for the Moore-Penrose inverse being
a minimum Euclidean Norm, or the changes to the a priori parameters is a
minimum, a minimum value is attained for the mean variance of the estimated
parameters, 6;(2, when the constraintis absolute. The minimum Euclidean
Norm condition is always absolute and minimal, and hence a minimum
c 42 results.

With respect to photogrammetric applications and especially
photogrammetric network design, free network solution via the Moore-Penrose
inverse has an inherent disadvantage. The solution detailed above gives a
minimum for the mean variance estimate for all the parameters, X. For close
range photogrammetric network analysis the parameters of interest are the
object space coordinates. Hence a minimum of the variance component of the
cofactor matrix relating to these parameters is required. As the free network
properties will be based, in this case, upon a subset of the approximate
coordinates, and hence upon a subset of the parameters, the term partial
minimum trace datum is used.

The estimate c's)A(? can be expressed in terms of the three basic
parameter sets of the close range photogrammetric model. Such parameters
include exterior orientation parameters, denoted by Xg,, object space
coordinates, denoted by X., and additional parameters, denoted by X,. In
terms of the above parameters the mean variance can be expressed as :

267 2405224612
=04 +04°+04, ..(8.14)

From the above equation it can be seen that a minimum & )22 does not

necessarily imply minimum G)A(CZ. In fact in most cases the estimate 6;(2 will be
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influenced primarily by the 6;(902 component as 6;(902 is usually much larger

than ('S)A(C2. In other words the mean variance of the object space coordinates
will be degraded and the mean variance of the exterior orientation parameters
will be improved until an overall optimal mean variance results. As implied
previously, for close range photogrammetric network analysis, parameters
other than object space coordinates can be considered as nuisance
parameters and hence to optimize their solution is of no value. For accurate
network analysis an optimal form of ('S)QC2 is required and although the
estimates of the object space coordinates will be optimal the estimates of the
remaining parameters will not be optimal. The Moore-Penrose inverse cannot
facilitate such an evaluation as the solution provided is with respect to optimal
variance estimates of the parameter set as a whole. Therefore free network
solution, utilizing the concepts of generalized matrix algebra, may be
applicable in terms of providing an overall minimum mean variance, however
for the special case of close range photogrammetry where a minimum mean
variance for a particular subset of the parameters is required, the Moore-
Penrose inverse solution is not acceptable.

8.4.2 Free Network Constraint Method

The free network constraint method is based upon the minimum bias,
minimum mean variance solution for observations with constrained
parameters, as given in section 3.5.2. The technique involves the imposition
of absolute minimal constraints which will result in the Euclidean Norm of the
parameters, || )A( || , being a minimum. Such constraints will result in a
minimum trace of the cofactor matrix of the estimated parameters and
consequently a minimum mean variance. As the technique involves the
imposition of minimal constraints, which means that the inner geometry of the
network is maintained, and the constraints are of the form which give a
minimum mean variance of parameters, the solution will reflect the inner
precision of the network. The solution is therefore also referred to as the "Inner
Constraints" solution, (Blaha (1971), Fraser (1982a), (1984)), and is
developed in full in Blaha (1971).
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From section 3.5.2 it has been shown that the constraints which provide a
minimum Euclidean Norm of the parameters are of the form:

GTX=0

AG=0 ..(3.46)
where R(G) =d

and G = the constraint coefficient matrix, and is composed of the d
linearly independent eigenvectors, associated with the d zero
eigenvalues of the singular normal matrix.

The solution for such constraints is given by equation 3.35 and is of the
form :

-9

where k is a vector of Lagrange multipliers
(Ashkenazi (1976), Fraser (1982a))

The solution is conceptually simple as it merely involves the bordering of
the singular normal equation coefficient matrix with the constraint matrix G.
Solution of the system of equations, as given by equations 3.47 and 3.48, is :

X = Qg ATP/ (3.47)
Qy = (ATPA + GGT)-! ATPA (ATPA + GGT)-1 .(3.48)

The inverses in this formulation are based upon the Cayley inverse, ie
the matrix to be inverted is non-singular. In the processes of formulating the
inner constraints solution the form of the constraint matrix, G, must be
assessed. The constraint matrix, G, can be formed from the d linearly
independent eigenvectors corresponding to the d zero eigenvalues of N, as
previously stated. Alternatively Papo and Perelmuter (1982) give a solution for
the constraint coefficient matrix as :

G1 G1
G=(G2)=(1) .(8.16)
where  GqT = (A2TAy) (ATA¢)
A1 = design matrix of (u-d) parameters

A> = design matrix of the d parameters used to define
the datum
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This formulation obtains a minimum for the Euclidean Norm of the
parameters and meets the constraint requirements of equation 3.46.

Where the parameters, X, include corrections to coordinates in three
dimensional space there is an alternative, geometrically meaningful, approach
to evaluating G. Numerous authors, including Granshaw (1980), Fraser
(1982a), Papo and Perelmuter (1982) and Caspary (1987), have shown that a
Helmert transformation matrix meets the requirements for a minimum
Euclidean Norm of the parameters if applied as the constraint matrix, G, in
equation 8.15. The geometrical significance of the Helmert transformation
matrix can be assessed via three basic properties which state that the sum of
the translations in each coordinate direction will be zero, the sum of the
rotations about each coordinate axis will be zero and there will be no overall
scale change. These properties of the Helmert transformation matrix mean
that the matrix will provide results consistent with free network adjustment
requirements. The rows of the Helmert transformation matrix relate to three
origin translations, three small orientation rotations and a scale change.

The Helmert transformation matrix, for u points, is of the form :

1 0 O 1 0 0 X translation

0O 1 0 0 1 0 Y translation

o O 1 |....1] 0 O 1 Z translation '

0-Zy Yy |....] 0-Zy Yy = Xrotation ..(8.17)
Z1 0 -Xq o Zy 0-Xy Y rotation
Y1 X9 0O |... .Yy Xy O Z rotation

where X;,Y;,Z; are the approximate coordinates for the parameters
For close range photogrammetric applications it is meaningful to partition
G into two components, which refer to the exterior orientation parameters and

the object space coordinate parameters.

The constraint matrix then becomes :

c-(ar)
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where, for photograph i :

1 0 O

01 0

0 0 1

Gleoi=| 0 -Z1iYyi

Zii 0 -Xy

-YLiXy O

XLi YL Zu

where X., YL, ZL
photograph i

QOO +000

00
00
00
00 .(8.18a)
10
0 1
00
are

re the perspective centre coordinates for

and for object pointj :

100
010
00 1

GTg=| 0-ZY; .(8.18b)
j
Y]

0 -Xj

-YjX; 0

XiYi 4]
where X, Y}, Zj are the coordinates of object point j.
(Granshaw (1980), Fraser (1982a))

Hence the constraint equation coefficient matrix, in terms of the typical
photogrammetric parameters of exterior orientation parameters, object space
coordinates and additional parameters, becomes :

GT = (GTeo ’ GTC y GTa) (81 9)
where GTg, GT. are defined by equation 8.18.

If the constraint matrix, G, is not a null matrix with respect to the three
compenents in equation 8.19, then a free network solution will be based upon
all approximate coordinates and hence upon all parameters and a minimum
trace datum results. In close range photogrammetry, GT,is usually set to zero
since the additional parameters, under minimal constraints, are invariant with
respect to datum or constraint selection. Hence the G matrix takes the form :

GT = (GTeo , GTC s O) (820)

This, therefore, constitutes a partial minimum trace datum where the free
network conditions are applied to a subset of the parameters, namely the
exterior orientation parameters and the object space coordinates.
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The general solution of the system given by equation 8.15, based upon
the constraints of equation 8.20, suffers from the same basic deficiency as the
Moore-Penrose inverse solution. Such a deficiency relates to the fact that a
minimum mean variance results for both exterior orientation parameters and
object space parameters. The parameters of interest, in close range
photogrammetric network design, are the object space coordinates. From
equation 8.14, the mean variance of the object space coordinates is given by
0.2 and, for the purposes of assessing photogrammetric network quality, this
quantity should be a minimum. Several authors, including Papo and
Perelmuter (1982) and Fraser (1982a), formulate the solution for a minimum
mean variance of the object space coordinates. Such a solution utilizes a
constraint coefficient matrix in the following form.

GT=(0,GT,0) .(8.21)

Consequently a partial minimum trace datum results, with the free
network conditions being applied only to the object space coordinates. If this
form of the G matrix is utilized then the partial trace of the cofactor matrix,
relating to object space coordinates, is minimized and the aim of achieving a
minimum &2 is realized.

In many cases an inner constraints solution may only be required for a
chosen subset of the object space coordinates. For ¢ object space points, a
minimum mean variance may be required for ¢' of the points. To achieve such
a solution GT.is partitioned into two components to reflect the 3¢’ parameters,
for which [|X]|| = minimum is required, and the 3(c-c') parameters, for which no
minimum condition applies. Consequently, for m photographs and a
additional parameters, the constraint matrix becomes .

GT=(0, 0 ,Gly, 0) ..(8.22)
(d,6m)(d, 3(cc)) (d,3c) d, a)

A partial minimum trace datum results whereby the free network
conditions apply only to a chosen subset of the object space coordinates.
Note that 3c', the number of object space coordinates to which the free
network conditions apply, must be greater than d, the datum deficiency of the
network, otherwise the network will still be singular and hence solution will not
be possible. Note also that estimates of all parameters, excluding the 3¢
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object space coordinates to which the free network conditions apply, will be
dependent upon the free network solution for the 3c' object space coordinates.
Hence, while the mean variance 6.2 will be a minimum and therefore optimal,
the remaining parameters will not have optimal variance estimates.

The technique for the inner constraints solution has been developed in
section 3.5.2 in general terms. This involves the simultaneous solution of all
parameters based upon the technique of constrained minima by Lagrange
multipliers. An alternative solution is based upon the principle of linear
dependence between parameters which define the datum and the remaining
parameters. Such a solution is called the free network constraint elimination
method (Papo and Perelmuter (1982)). The advantage of the technique is
that it is conceptually simple and distinguishes clearly between dependent
and independent parameters. Consequently, for implementation of free
network solutions by photogrammetrists who are unfamiliar with advanced
estimation techniques, the solution provides a mathematically simple solution
which can be implemented easily and which can be clearly understood.

8.4.3 Free Network Constraint Elimination Method

The free network constraint elimination method is based upon the
principle of eliminating dependent parameters from the solution and then
carrying out a solution based upon the (u-d) estimable parameters which
remain. The solution for the d dependent parameters is based upon the linear
dependence properties of the two parameter sets, as given by equation 3.27,
and can be written in the form :

Xog = G.T Xop
or ..(3.27)
GoT X290 - Xo3 =0

The system of equations, for the free network constraint elimination
method, takes the form :

A1 Azq Az Aoay X1 | /I
G)=( 0 0 ar 1) %on (o) .(8.23)



residuals

the 6m exterior orientation parameters of m
camera stations(Xeo)

Xo1 =the 3(c-c') object space coordinates

s
=
®
-~
o©
X <
tou

&22) = the 3¢’ object space coordinates upon which the

[|X|| = minimum condition is applied(Xc)

X2o = 3c'-d object space coordinates

Xo3 = the d object space coordinates used to define the
datum

Aj = the individual design matrices corresponding to
the above parameter sets
= number of object space points

¢' = number of object space points to which the
[|X]| = min condition applies
d  =the number of datum defects

G.T = constraint coefficient matrix

Equation 8.23 does not account for any additional parameters which may
be required in the solution. These parameters can be included, and a
constraint matrix of the form of equation 8.22 applied, if required. In terms of
equation 8.23, the constraint coefficient matrix G becomes:

G'=(0, 0 , GTp ,GTa3) ..(8.24)
(d.6m) (d.3(c-c)) (d,(3c-d)) (d.d)

Note that GT»3, which relates to the d selected datum definition elements,
is by definition square and non-singular. Therefore G,T can be determined by :

G.T=-(GT2s)"(GT22) -(8.25)

The first step in the solution involves the transformation of the system
from a biased system into an unbiased system, ie transformation of equation
8.23 into a system of full rank. Equation 8.23 becomes :

Xy
- A
v= (A1, Ax1,Ap)| Xo1 |1 ..(8.26)
A
X22

where /-\22 =Aoo + Aoz G,T
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Normal equations are established, and take the form :

A

AiTPA; A{TPAy; A{TPAL )/\(1 A1TTP1
AxTPA; A21TPA; O Xoq |=| A2t'P .(8.27)
A TPA; 0 A2sTPA22 )\ X2z Az'PI
In a general form, equation 8.27 can be written as :
A
N1TN21N31 X4 L
A
[Ng_‘j No OJ X1 =(IE2J ..(8.28)
A 3
N31 O N3 Ji %,

N4, N21, N3y and Ng are usually full matrices, while Nz is a block diagonal
matrix of block size 3 by 3. Solution for the parameters X4,X21 and Xoz, and
their associated variance-covariance matrices can be solved by a number of
methods, including the method given in section 4.3.2 for the total error
propagation solution based upon correlated object points. Solution for the

A
parameters Xp3, and the associated cofactor matrix Qx23’ is from

>A(23 =G,T >A(22

An advantage of this solution is that the computation time is reduced.
The normal equation coefficient matrix which must be inverted, is reduced in
size by d rows and d columns. Consequently, as the inversion process is the
most time consuming component of the estimation process and as the time for
inversion increases approximately as a cube of the size of the matrix to be
inverted, the solution based upon the free network constraint elimination
method is faster and computationally more efficient than alternative
techniques. The solution given here can be extended to include observations
which act as relative constraints on the datum. For such added observations,
observation equations can be established, as given in Chapter 4, and added
to the system of equations given by equation 8.23. The constraint matrix G,T
will have the rows removed which correspond to the datum unknown defined
by the observation. For example, for an observed distance, observation
equations of the form of equation A.23 are added to equation 8.23. As such an
equation defines network scale the sixth row of equation 8.17 is deleted and
the matrix GT is of reduced order. The solution for such formulations is given in
Papo and Perelmuter (1982).
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8.5 Datum Transformations

Under application of minimal constraints the inner geometry of a network
is not destroyed and hence the shape of the network is not deformed.
Consequently it is possible to transform adjustment results, namely the

A
estimates of the parameters, X, and the cofactor matrix of estimated
parameters, Qy, from one datum to another, as long as both datums are

minimally constrained datums.

The transformation is the similarity transformation, S-transformation, and
is carried out with respect to the 7 (d) parameters of scale (1), rotation (3) and
translation (3). Consider a transformation from datum i to datum k. The
adjustment results for datum i are given by :

X = estimated parameters based on datum i
Qyi = cofactor matrix of the estimated parameters, datumn

The solution for these adjustment results is given in sections 3.5.1, for the
general solution of constrained parameters, and 3.5.2, for the minimum mean
variance solution associated with constrained parameters.

The properties of the S-transformation are

NQ4i = ST = (N + GGT)1 N

where N  =the normal equation coefficient matrix
SiT = transformation operator
G = the constraint equation coefficient matrix
and ..(8.30)

NQg¢N =N for any Qg

Therefore the solutions for datum k, in terms of the S-transformation, can
be determined from :

. /\k A
Six* =X
and ..(8.31)
St Quk ST = Qyi

Datum transformations are applicable in close range photogrammetric
network design. It is possible to transform adjustment results, based on a
particular zero-variance computational base, into the corresponding results for
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any other minimally constrained datum. For example, it is possible to
transform from a zero-variance computational base solution to a free network
solution by application of the S-transformation. Note that the solution involves
the inversion of a u by u matrix in equation 8.30, and hence, for dense target
arrays where the parameter sets will be large, readjustment of the system for a
different datum is often more practical than applying an S-transformation.
Despite this, for network design processes where solution based upon a
variety of minimally constrained datums may be required, the S-transformation
allows the solutions of the various datum definitions without having to readjust
the system for each.

For minimally constrained datums, functions of constraint invariant
quantities, such as residual and adjusted observation cofactor matrices, are
also invariant with respect to application of the S-transformation.
Consequently such functions do not need to be re-evaluated with each
application of a datum transformation. S-transformations are covered in
Niemeier (1987) and Caspary (1987).

8.6 Datum Definition Example Evaluations

For the purposes of assessing the various zero-order design solutions,
simulated network designs are considered. In such evaluations a network,
comprising the imaging geometry and target array definition of figure 8.2, is

formulated.
Camera

Station 2 /

\

..g 19 20 21 >

Camera
Camera X Station 3
Station 1 1z ! 18
14 5 16
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~" 6 7 8
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Figure 8.2 Network configuration for the datum definition evaluations
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The target array comprises 21 object points covering a cube of side
length 20 metres. The array is imaged by a three photograph convergent
configuration which is symmetric about the centre point of the object. Each
camera has an angle of 50° between the vertical axis and the camera optical
axis, which corresponds to a convergence angle of 100° between camera
optical axes. The camera used for the simulations is the Wild P32 which has a
64.1mm focal length and a 40,40mm x 20,40 mm format. The average image
scale is 1:1000, ie a camera focal length of 64.1mm with the camera stations
being approximately 60 metres from the object centroid. The estimated
observational precision for each simulation is 3um.

In assessing the results of the various zero-order design solutions, the
absolute magnitude of the precision measures is not of primary significance.
This is because the observation configuration employed is essentially arbitrary
and a different absolute precision estimate would be achieved if the
observation configuration was altered. The influence of a variety of datum
definitions, relative to one another, is important to determine.

For the evaluation of the zero-order design problem, several datum
configurations have been formulated. These include zero-variance
computational base solutions, over-constrained parameter solutions, free
network solutions based upon all or a chosen subset of the object points, and
Bayesian solutions. The precision measures used to evaluate the resulting
network quality include the mean standard error of the object points, the
standard deviation range and the photogrammetric network strength factor.
The results of the simulations are given in tables 8.2, 8.3, 8.4 and 8.5, and
were generated by SIMPAC.

The notation used in tables 8.2 to 8.5 is as follows.

g = photogrammetric network strength factor

oc =.mean standard error, of the ¢ object points, in X,Y,Z

oxy = mean standard error, of the ¢ object points, in X,Y

o6z = mean standard error, of the ¢ object points, in Z

Aoxy= standard deviation range in X,Y

Acz = standard deviation range in Z

ocr = mean standard error, of the subset of ¢’ object points,
in X,Y,Z
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Table 8.2 Zero-variance computational base solutions - ZOD results (ref : section 8.2)

ZERO-VARIANCE COMPUTATIONAL BASE SOLUTIONS

No | Fixed |Fixed q Gc OXY oz Aoxy | Aoz

XYZ Z mm mm mm mm mm

1 9,13 10 1.0 2.59 | 2.60 2.57 | 3.04 3.73

2 1,21 6 1.1 2.84 | 2.92 268 | 4.14 4.39

3 12, 9 5 1.2 3.06 | 3.17 2.83 | 4.50 3.89

4 1, 8 6 1.2 3.13 | 3.17 3.06 | 4.15 4.49

5 14,21 6 1.2 3.17 | 3.26 299 | 4.88 5.39

6 17,10 19 1.2 3.24 | 3.30 3.10 | 5.04 4.90

7 14,19 5 1.4 3.51 | 3.79 2.86 | 6.66 3.84

8 21,16 1 1.4 3.55 | 3.83 293 | 6.73 4.18

9 14,16 7 1.4 3.61 | 3.88 299 | 6.84 4.11

10 3,19 7 1.5 4.02 | 4.08 3.91 | 6.34 6.70

11 11, 6 4 1.8 4.62 | 4.74 4.38 | 7.49 6.77

12 6,5 7 2.5 6.41 | 6.24 6.74 (10.87 |11.77

Table 8.3 Over-constrained parameter solutions - ZOD results
OVER-CONSTRAINED PARAMETER SOLUTIONS

No | Fixed | Fixed | Fixed q Oc OXY o7 Aoxy | Aoz
XYZ XY Z mm mm mm mm mm
13 [14,19,3 - - 1.4 3.76 3.76 | 3.76| 2.89 | 2.7
14 | 14,8 6 16 1.5 377 { 3.78 | 3.75| 2.83 | 2.77
15 | 1,216 - - 1.5 380 | 382 | 3.77| 2.88 | 2.56
16 [9,13,10 - - 1.6 408 | 392 | 438 | 2.34 | 3.57
17 |19,16 - 3,1 1.8 479 | 499 | 4.35| 4.61 4.82
18 [1,6,11 - - 1.9 493 | 485 | 5.08| 442 | 4.05
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Table 8.4 Bayesian solutions - ZOD results (ref : section 8.3.1)
BAYESIAN SOLUTIONS
No | pior |Points|Points [ q Oc oxy oz | Aoxy | Aoz
parameter] XYZ | Z mm mm mm mm mm
___=grecision
19 P.001mm| 9,13 10 1.0 259 | 2.60 | 2.57 3.04 3.73
20 5mm [1,3,8,21 - 1.2 3.09 | 3.10 | 3.07 0.72 0.86
16,14
19,6
21 | 10mm all all 1.5 3.73 | 3.74 | 3.72 1.23 1.44
22 | 3mm [9,13,10] - 1.6 4.08 | 392 | 438 | 2.34 3.57
23 3mm |[14,2,10 - 1.7 414 | 415 | 4.13 3.31 3.52
16
24 | 3mm [1,6,11 - 1.9 493 | 4.85 | 5.08 4.42 4.05
Table 8.5 Free network {Inner Constraint) solutions - ZOD results (ref : section 8.4.3)
FREE NETWORK ( INNER CONSTRAINT ) SOLUTIONS
No |Points |Datum q Cc Oc' oxy oz | Aoxy | Aoy
for points mm mm mm mm mm mm
| 11X =min | _—
25 all J21,19,18] 0.7 1.72 - 1.73 | 1.68 | 0.41 0.73
26 all |14216| 0.7 1.72 - 1.73 | 1.68 | 0.41 0.73
27 |11,3,16 [21,19,18| 0.7 1.83 | 1.62 1.84 | 1.79 | 0.76 1.06
14,6,8
£1,19,18
28 [9,13,10 | 9,13,10| 1.0 249 | 0.85 245 | 2.55| 2.08 3.75

The results of the various datum definition solutions, given in tables 8.2 to

8.5, lead to a number of observations and conclusions.

« Changes in control configuration alter both object point coordinate
standard errors as well as the object point coordinate precision
homogeneity. Results show that precision estimates are biased and
dependent upon datum constraint magnitude and configuration.
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network (inner constraint) solutions yield a higher degree of object point
precision and homogeneity than either zero-variance computational base
solutions, over-constrained solutions or Bayesian solutions.
Consequently free network evaluations offer an "optimal" solution to the
zero-order design problem. For high precision close range
photogrammetric applications, free network solutions are recommended
for the solution of the datum problem (Fraser (1989)).

. Table 8.2 lists several zero-variance computational base
configurations. The estimates of precision and homogeneity are
dependent upon the configuration of the control and hence such
estimates are datum-biased. The "best" configurations are achieved
when the centre of the control point triangle is approximately at the target
array centroid and when the control point triangle area is a maximum.
Configurations 1 to 6 can be considered as acceptable datum definitions,
while configurations 7 to 12 can be considered to be poor datum
definitions as both precision and homogeneity measures are over-
estimated. Of note is configuration 12, which has both a small triangle
area and is a maximum distance from the target array centroid. This
configuration can be considered as very poor and both precision and
homogeneity estimates support this.

+  Free network solutions yield the optimal object point coordinate
precision and homogeneity estimates. Note that configurations 25 and
26, from table 8.5, give identical results. Although both are free network
solutions, a different set of points has been used in each case for datum
definition. Consequently, with respect to equation 8.23, any subset of
points can be used to define the datum as long as the points chosen can
resoive the network scale, translation and orientation. With reference to
figure 8.2 , points 1, 2 and 3 could not be used to resolve the datum and
hence would not be acceptable for use in the free network solution.

. Free network solutions can be applied to a chosen subset of the
object point coordinates, for example in configuration 27 and 28 of
table 8.5. If the object points included in the subset of minimum condition
points are both geometrically "strong"” and have good approximate
coordinate estimates, then the resulting mean standard error , &, will be
smaller than for the case where a free network solution applies to all
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object points. This is useful for applications where one or more object
points are undesirable for datum definition. These points can then be
removed from the minimum condition set and will not influence datum
definition. Of note is configuration 28, where the set of points to which the
minimum condition is applied is a minimum, ie three points. The resulting
mean standard error of these points is optimal, however the precision
estimates for the object points as a whole is larger than for full free
network evaluations. Consequently, all points should be subject to the
free network minimum condition unless point removal is based upon
poor initial approximate values or poor geometry with respect to network
configuration.

. Bayesian solutions offer a large amount of flexibility in varying
datum definition. The only minimal constraint Bayesian solution results
when seven parameters are effectively fixed by the prior weighting.
Configuration 19, from table 8.4, is such a case. Note that this solution is
equivalent to configuration 1, from table 8.2, where the same points
define a zero-variance computational base. For configurations 20 and
21, from table 8.4, large numbers of object points with a loose prior
weighting define the datum. These configurations do not yield high
coordinate precision however they do give high precision homogeneity
estimates. At this point it is pertinent to note that Bayesian solutions yield
identical results to corresponding explicit constraint solutions. For
example, configurations 1 and 19, 16 and 22, 18 and 24. Consequently,
for applications where over-constrained solutions are required, Bayesian
least squares offers a conceptually simple and computationally simple
method of applying such constraints. For most close range
photogrammetric applications, however, minimal constraints are desired
and definition of a zero-variance computational base is computationally
simpler and more efficient.

. Both over-constrained parameter solutions and Bayesian solutions
require extra surveying work, over minimal constraint solutions, in order
to establish object point control. It is worth noting therefore, that minimal
constraint solutions offer the best datum definitions and hence provision
of control, other than minimal control, is not necessary. This can be
shown via three control configurations, namely 1, 16 and 22. In all cases
the same points are used with different constraint forms applied. The
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minimal constraint configuration yields the highest precision. With
respect to precision homogeneity, however, the over constrained
solutions usually offer improved coordinate precision homogeneity.
Consequently, if this requirement is of importance in photogrammetric
evaluations, an increase in control will improve precision homogeneity.
As a comparison with the above three configurations, consider
configuration 28. This configuration is a free network evaluation with the
minimum condition being applied to the same points as in configurations
1,16 and 22. Precision estimates are better than the explicit constraint
cases, however precision homogeneity is not as good. Note however
that full free network solutions yield the "best" precision homogeneity
estimates.

. As a final comment, the value of the precision measure, q, is
assessed. The photogrammetric network strength factor would appear to
be a coarse estimate of network quality. This estimate is dependent upon
network geometry and hence for imaging scales such as the scale in this
example, ie 1:1000, the factor is relatively invariant with change in
network precision. As an initial estimate of network quality, ie "strong”
networks yield a q value of between 0.5 and 1.5, the factor has merit.

From the comments and conclusions presented, the solution of the zero-
order design problem is based upon free network solutions, for all or for a
chosen subset of the object point coordinates, or zero-variance computational
base solutions in the "best" control configurations.

Solutions to the zero-order, or datum, problem have been developed in
detail. In close range photogrammetry, datum definition is usually carried out
with respect to minimal constraints. Constraints are applied in either absolute
or relative form and allow fixation of a reference coordinate system to which
the estimated coordinates refer. The definition of a reference coordinate
system is carried out by definition of an origin, orientation and scale of the
coordinate system.

Parameter and variance estimates are dependent upon the type and
magnitude of constraint applied. For network design applications it is
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desirable to minimize the variance estimates to allow determination of network
quality. Free network solutions are minimum mean variance solutions and
hence are applicable for determination of network quality.

If minimal constraints are utilized, the inner geometry of the network will
be maintained. Consequently the solution of parameter and variance
estimates, relating to a particular datum, can be transformed to another datum
via the S-transformation.

For close range photogrammetry the following solutions to the datum
definition problem are recommended.

1. definition of an optimal zero-variance computational base,
where optimal implies the "best" control configuration.

2. application of relative constraints, in the form of observations to
parameters, with the remaining datum unknowns being
defined by a "best" zero-variance computational base.

3. free network evaluations.

4. application of relative constraints with a free network
solution to resolve the remaining datum unknowns.

Bayesian and ridge regression solutions, and over-constrained
adjustments in general, are not recommended for close range
photogrammetric datum definition. The solution to the datum problem in close
range photogrammetry is usually achieved by free network (inner constraint)
solutions. In cases where the point coordinate estimates are required with
respect to an absolute datum, zero-variance computational base solutions
utilizing optimal control configurations are used.
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9. FIRST-ORDER DESIGN SOLUTIONS

The first-order design problem, with respect to close range
photogrammetric network evaluation, is essentially a problem of configuration.
In theory it involves the optimal positioning of object points and the optimal
design of an observation plan and imaging geometry. With respect to the
indirect solution method, based upon trial and error simulations, optimal
configurations, and therefore optimal first-order design solutions, are not
achieved. Solution of the first- order design problem is such that results meet
quality requirements as well as physical and practical requirements, but do not
meet such criteria in an optimal or "best" manner.

With respect to the least squares mathematical model, the first-order
design involves formulation of a design matrix, A, such that quality criteria,
derived from the cofactor matrix of parameters, Qy, are met. In formulating the
design matrix, assessment of all factors which affect the structure of the matrix
must be carried out. The magnitude of these factors and the influence of
change in these factors upon network configuration and network quality
require investigation.

The factors influencing network configuration, and therefore first-order
design, are listed in section 5.4. The primary factors are imaging geometry
and the number and location of camera stations, however less significant
factors are also evaluated. Prior to such evaluations the concept of
configuration defect will be covered. The presence of a configuration defect
implies a weak configuration, and consequently an unstable mathematical
solution, and therefore must be detection and eliminated.

9.1 Configuration Defect

A configuration defect, like the datum defect, will cause an unstable
solution to the least squares evaluation process. Unlike the datum defect,
however, the configuration defect is not a consequence of improper
mathematical modelling. A configuration defect is caused by a critical
configuration in the network geometry. If such a defect exists then absolute
estimates of the parameters cannot be resolved. The mathematical
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consequence of this, with respect to least squares estimation, is that the
normal equation coefficient matrix becomes singular, or near singular, and the
solution becomes either unsolvable or unstable.

The concept of configuration defect is best explained by an example.
Consider the case of a 20 metre cube, targeted on all corners and on the
midpoint of all edges. An imaging geometry and configuration was
established, as shown in figure 9.1, and an adjustment carried out using
SIMPAC. Note that the configuration established is by no means desirable
and is used for illustrative purposes only. The resulting solution is poor and is
due to the presence of a configuration defect. Figure 9.2 shows a perspective
view from SIMPAC. From this plot, in conjunction with the configuration of
figure 9.1, it can be seen that points 3 and 19 and the two camera stations are
nearly collinear. As there are only two camera stations, and one or more
points lie on the line joining the two stations, then an absolute determination of
the position of the points on the line is not possible. Consequently a
configuration defect exists.

Figure 9.1 Network geometry for the configuration defect example
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Figure 9.2 SIMPAC perspective view - Configuration defect of points 3 and 19

Table 9.1 shows the estimates of the parameters and estimates of the
object point coordinate precision. Note that the precision, in terms of the
standard deviations oy, ovi, 0z, of points 3 and 19, is of the order of ten times
worse than-the precision of the other points. For a similar configuration,
altered only enough to remove the configuration defect, the precision of point
coordinates is of the order of 5 - 10 mm, which is approximately a ten fold
improvement over the configuration defect case. Therefore a configuration
defect will influence not only those points directly affected by the defect but will
degrade all estimates in the parameter set.

In close range photogrammetric applications, where up to ten exposure
stations and several tens of object points are utilized for a typical network,

critical configurations are not expected. However in designing networks,
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especially if only two or three camera stations are involved, the designer
should be aware of configuration defects and should be able to detect and
remove such configurations if they exist.

Table 9.1 Results showing Influence of a configuration defect upon object point precision

Point oxi (mm) | ovyj(mm) oz (mm)

1 19.0 19.0 3.2

22.4 21.2 31.4
3 265.6 266.3 29.8
4 32.6 34.9 22.8
5 19.3 20.6 28.9
6 26.4 24.6 22,7
7 37.8 35.3 22.9
8 24.5 10.4 25.5
9 8.8 22.6 25.5
10 30.4 38.4 . 24.9
11 25.8 28.1 3.1
12 25.3 25.2 20.5
13 10.7 22.7 24.0
14 32.0 37.1 25.1
15 23.2 23.2 18.7
16 23.2 23.2 18.7
17 20.7 8.9 24.0
18 36.2 30.2 25.1
19 265.1 264.4 29.9
20 38.6 31.9 24.9
21 22.0 23.9 22.7

9.2 First-Order Design Influencing Factors

The solution to the first-order design problem, for close range
photogrammetric network analysis, is solved by an iterative or indirect solution
method. As the solution is basically trial and error, it is necessary to evaluate
those configuration factors which influence the network configuration and to
determine the significance of such factors upon the precision of recovery of the
object point coordinate parameters.

For close range photogrammetry, the primary factors influencing network
configuration include

1 imaging geometry.

2 number of camera stations.

3. base-distance ratio (for "normal" photography).
4. image scale, focal length and image format

5. number of object points.

6 object point clusters.

7. multiple exposures.

8. self-calibration parameters.
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For the purposes of these evaluations, numerous networks will be
simulated. These simulations will be with respect to the object of figure 9.3,
which is a cube of 5 metre side length. The basic target configuration
comprises 21 targets and are configured as shown in the figure. With respect
to these evaluations it should be noted that the absolute magnitude of the
various simulated precision estimates is not of importance. Varying camera
types and configurations will be utilized and hence to evaluate results in terms
of absolute precision estimates would lead to erroneous conclusions. It is
important however, to evaluate the change in precision estimate for each
particular configuration and to determine the influence of changing
configuration upon object point coordinate precision estimates.

19 20 21
17 18
14 '151 16
12 13
o1
9 10 5m Cube
21 Target Points
= == - f s = = === -
P 7 8
4 5
1 > 3

Figure 9.3 Object point array for first-order design analysis

In assessing the influence of varying network configuration upon object
point coordinate precision estimates, several global precision measures will
be utilized. These include :

g. = photogrammetric network strength factor

oc = mean standard error, of the ¢ object points, in X,Y,Z
oxy = mean standard error, of the ¢ object points, in X,Y
oz = mean standard error, of the ¢ object points, in Z
Aoxy= standard deviation range in X,Y

Aoz = standard deviation range in Z

D : - ,
— = proportional precision (ie the mean standard error as
Cc

proportion of the object diameter, D)
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9.2.1 Imaging Geometry

Imaging geometry is the central component of first-order design. The
geometry of the camera stations with respect to the object being photographed
will be the primary factor in determining the resulting object point coordinate
precision. For the purposes of assessing the influence of imaging geometry
upon the coordinate estimates the concept of a convergent multi-station
photogrammetric network needs to be established, a typical configuration of
which is shown in Figure 9.4.

The concept of convergence angle, which is fundamental to evaluation of
imaging geometry, is shown in figure 9.4. Slama (ed) (1980);Ch 16 defines
convergence angle as the angle subtended by the camera optical axis and the
normal to the camera base. In the network simulations carried out in this
chapter, all convergent networks will be symmetric configurations about the
vertical axis through the centre point of the object target array. As a symmetric
configuration will be utilized it is appropriate to utilize the convergence angle
definition of Brown (1980) and Fraser (1984). This definition assumes a
symmetric configuration with equal camera station tilts. If these conditions are
met then the convergence angle becomes the angle subtended by the vertex
of the cone which is defined by the symmetrically located camera stations and
the centre of the object space target array (Brown (1980)), as shown in
figure 9.4.

In most convergent networks, 100%, or nearly 100%, of the object can be
seen in each exposure. This is not the case with "normal" stereo photography,
where the photographs overlap and may not fully cover the object. For the
purposes of network simulations covered in this section, it will be assumed that
the exposures are optimized to allow maximum object coverage and that all
object points are imaged on all photographs.

Prior to evaluation of the influence of imaging geometry on object point
coordinate precision it should be noted that several authors, Brown (1980),
Granshaw (1980), Fraser (1984), have indicated that a significant overall
network precision improvement can be achieved by utilizing convergent rather
than "normal" photography. This improvement is dependent upon including
camera interior orientation parameters as additional unknowns in the
estimation process (Fraser (1984)). In actual evaluation of convergent
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networks a reduction in object point precision is usually evident over "normal”
networks, due to the instability of the camera interior orientation.

Camera Station 2

Camera Station 1 \ /

Camera Station 3

I il Sl \Centre of

PP he Target Array

¢ = convergence angle

Figure 9.4 A typical multi-station, symmetric and convergent, close range photogrammetric

imaging configuration

For the purposes of assessing the influence of image geometry upon
object point coordinate precision, consider the imaging geometries depicted in
figure 9.5. Note that these configurations are idealized and do not reflect the
practical restrictions for many imaging geometries in practice. The camera
used is the Jena UMK 10/1318, which has a 13cm x 18cm format and a
100mm focal length. The simulations were carried out by SIMPAC with image
coordinate precision of 3um and using a free network (inner constraints)

solution.
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Figure 9.5 Imaging geometry configurations

The imaging geometries to be evaluated are all four photograph
configurations and include :

1. Configuration 1 - a "normal" configuration, base/distance
ratio = 0.7.

2. Configuration 2 - two "normal" photographs, base/distance
ratio = 0.7, and two convergent photographs, ¢ = 120°.

3. Configuration 3 - convergent geometry, ¢ = 80°.

Configuration 4 - convergent geometry, ¢ = 120°.

5. Configuration 5 - convergent geometry, ¢ = 160°.

»

The simulation results are given in table 9.2.

Table 9.2  The influence of imaging geometry on object point precision

Configuration q Oc oxXY oz Aoxy | Aoz _
mm mm mm mm mm o
1 0.7 0.18| 0.13 0.251 0.08 0.26 | 1 in 28,000
2 0.6 0.15{ 0.12| 0.20}| 0.06 | 0.17 | 1 in33,000
3 0.7 0.14| 0.10 0.20 | 0.03 0.19 | 1 in 36,000
4 0.5 0.11| 0.10 0.12{ 0.02 0.09 | 1 in 46,000
5 0.5 0.11| 0.12 0.09 1 0.03 0.03 | 1 in 46,000
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The influence of the image geometry on object point coordinate precision
can be summarized as follows.

«  The difference in precision for planimetry (oxy) and height (cz), for
"normal" configurations, is illustrated in the results of configuration 1. For
this particular geometry, a 50% difference in recoverability between
planimetric and height position is evident. Coordinate precision
homogeneity, given by the standard error ranges Acxy and Aoz, shows
that the precision of X and Y coordinates is homogeneous for "normal”
cases, however poor precision homogeneity is evident for the Z
coordinate.

« The combination of "normal" and convergent geometries does not
influence the planimetric precision to any large degree. In the example of
configuration 2, an improvement of 0.01mm in the mean standard error
for X and Y coordinates resulted over the "normal” case. Similarly the
precision homogeneity did not improve to any significant degree. The
recovery of the Z coordinate improved significantly however, with an
improvement of approximately 20% in the mean standard error of the Z
coordinate, resulting in an improvement in the overall mean standard
error, 6., of approximately 15%. Precision homogeneity of the Z
coordinate also improved significantly, ie 35%. The improvement in the
Z coordinate precision is directly proportional to changes in the
convergence angle (Fraser (1984)).

. Of the five networks evaluated, the convergent network with
convergence angle of 160° gave the most homogeneous results. The
results for this configuration show that the range of standard errors is
0.03mm for both X,Y (Aoxy) and Z (Acz). As the convergence angle
increases both Aoxy and Aoz decrease, with this increase in precision
homogeneity being more notable in the Z coordinate range. In the
process of first-order design, for cases where precision homogeneity is of
importance, these results show that homogeneous precision can be
achieved by maximizing the convergence angle.

. Evaluation of the convergent configurations show that a
convergence angle of 120° is the "best" configuration. This configuration
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yields a near isotropic form, ie precision estimates are approximately
equal in all three coordinate directions, and has high precision
homogeneity. For applications where point recovery must be both
isotropous and homogeneous, configurations with a 120° convergence
angle provide the "best" solution.

The important information contained in table 9.2 is not the magnitude of
the overall precision measures but the precision estimates which reflect
recovery of planimetric, oxy, and height, 6z, position. Fraser (1984) states that
in the initial stage of first-order design, a configuration should be formulated
which meets precision homogeneity and isotropy requirements. Scaling of the
overall precision can then be carried out via alternative first-order or second-
order design processes. At this initial stage, ie where imaging geometry is
specified, unless a configuration is formulated which meets the basic
coordinate precision requirements in each of the three coordinate directions,
then such criteria will not be met in the network design process.

9.2.2 Number of Camera Stations

The number of camera stations in a close range photogrammetric
network is the configuration factor with importance only surpassed by imaging
geometry (Brown (1980)). The number of camera stations employed will
directly influence the resulting object point coordinate precision estimates and,
in general, precision increases for an increasing number of camera stations
and hence photographs. As well as improving network precision, an increase
in the number of camera stations improves network reliability (Fraser (1984).
With an increase in the number of camera stations the number of photographs
increases, the network redundancy increases and hence, since network
redundancy is directly related to the capability of the network to detect and
compensate for gross and systematic errors, the network reliability is
improved.

In network design, variations in the number of camera stations cannot,
however, be divorced from imaging geometry. With an alteration in the
number of camera stations the imaging geometry will change and the resulting
spatial intersection geometry will change. In order to assess the relationship
between imaging geometry, in the form of varying convergence angles, and
the number of camera stations, consider figure 9.6. The data for the figure has
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been generated from simulated networks using SIMPAC and the camera type
and object are the same as for the imaging geometry examples.

It is important to stress that the absolute magnitude of the proportional
precision values is not important. The relationship between varying imaging
geometry and number of camera stations upon object point precision is of
importance however. Figure 9.6 yields several important conclusions, which
include the following.

. Object point precision increases with the number of camera stations.
This influence is most evident in progressing from 2 to 3 camera stations
and gradually decreases as the number of camera stations increases.
For example, a precision improvement of approximately 30% is evident in
increasing from 1 to 2 camera stations and drops to approximately 5 % in
increasing from 7 to 8 camera stations. Hence for an optimal network
there would be a number of camera stations adopted such that precision
criteria were satisfied but also such that any expected precision
improvement, with inclusion of an additional camera station, would not be
warranted with respect to the cost associated with including the extra
station.

«  Although precision increases with added camera stations there is a
function relating the magnitude of such increases to the convergence
angle. As the convergence angle increases so the degree of precision
improvement also increases.

*  Figure 9.6 shows the variation of object point precision with varying
convergence angle. It is clear that precision for the Z coordinate is poor
at low convergence angles and increases steadily as convergence angle
increases. Precision with respect to the X and Y coordinates starts low,
increases to be a maximum at a convergence angle of approximately
1200 and then falls again. The 120° maximum is due to the strength of
the spatial intersection at such a convergence angle, with respect to both
X and Y coordinate directions. As the convergence angle increases or
decreases from 1200, either X or Y precision estimates decrease and
hence the overall planimetric precision decreases. With respect to all
coordinate directions it is necessary to select a convergence angle range
which will satisfy precision criteria in all three coordinate directions. This
range would appear to be from 70° to 1500°.
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Figure 9.6 Relationship between imaging geometry and the number of camera stations
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Table 9.3 has been formulated for the purposes of specifically
determining the influence of the number of camera stations upon object point
coordinate precision. The table shows results for a symmetric convergent
configuration with the number of camera stations varying from 2 to 5. The
convergence angle is 90° and the camera type and object point array are the
same as for the previous examples. The proportional precision estimates are
with respect to the mean standard error of the object points in X, Y and Z, o.

Table 9.3  The influence of the number of camera stations on object point precision

Number of q ESC 6XY 252 Aoy AGZ _P—
Camera Stns mm mm mm mm mm o
2 0.9 0.21 0.19 | 0.25] 0.13 | 0.20 | 1:24,000
3 0.7 0.16 | 0.14| 0.19| 0.06 | 0.15( 1:31,000
4 0.6 0.13| 0.12| 0.16 | 0.03 | 0.13 | 1:38,500
5 0.5 0.12 | 0.11 0.14 ] 0.03 | 0.12] 1:42,000

Table 9.3 supports the conclusions developed with respect to analysis of
figure 9.6, with the following additional conclusions.

. As the number of camera stations increases the mean standard
error of the object point coordinates decreases. This precision
improvement is not uniform and decreases as the number of camera
stations increases. For example, in increasing from 2 to 3 camera
stations a precision improvement of approximately 30% resuits, however
in increasing from 4 to 5 camera stations this increase in precision drops
to approximately 10%. Fraser (1984) develops a relationship between
. and the number of camera stations, m, with the precision
improvement being given by ¥m. For example, in increasing from 2 to 3
camera stations the approximate precision improvement is 25%, while
increasing from 4 to 5 camera stations the precision improvement drops
to 10%. The practical results above agree with this relationship, however
it should be noted that this relationship is approximate and will not hold
for all imaging geometries.

. From the results of both figure 9.6 and table 9.3 it can be seen that a
minimum of three camera stations is desirable to ensure both precision
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homogeneity and precision estimates which reflect the strength of the
image geometry. In other words, if a "strong" imaging geometry is
utilized with only two camera stations then the resulting precision of the
object space coordinates will not reflect the potential precision
capabilities of the geometry.

*  The results of table 9.3 clearly show that addition of camera stations
is merely a scaling of the mean standard error of the object point
coordinates. Hence, as previously stressed, it is important to design an
imaging geometry which meets the form of the required precision criteria
and then scale these estimates by adding camera stations or by
alternative first-order or second-order design solutions.

9.2.3 Base / Distance Ratio

Base/distance ratio is a component of first-order design which is
applicable only to "normal" photography. The concept of base/distance ratio
is directly related to imaging geometry and hence several of the conclusions
established here will be similar to those established for convergent
configurations.

In "normal” photography, the ratio of the camera to object distance to the
distance between the two, or more, camera stations will directly influence the
resulting precision estimates. Figure 9.7 shows a typical "normal"
configuration. Note that the direction of the camera optical axis need not be
vertical and in most close range photogrammetric cases is horizontal. The
requirement for "normal" geometry is that the camera optical axis, of two or
more camera stations, is perpendicular to the base between the two subject
camera stations, ie zero convergence angle.

The base/distance ratio will be evaluated to determine the relationship
between this ratio and the mean standard error estimates of the object point
coordinates. For such purposes consider the network configurations given in
figure 9.8. Two basic configurations will be evaluated, one a four photograph
"normal” configuration and the other a two photograph "normal" configuration.
The camera type and object point array are the same as previous examples.
The simulations were carried out by SIMPAC, with image observation of 3um
and solution was by a free network (inner constraints) adjustment. The
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influence of changing base/distance ratio on both two and four photograph
configurations will be assessed via the evaluation results of table 9.4.

1 1 1 1 1 1§ I 1 1 1§ 1 L 1 1 1 1 1 1 1 1 1
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Figure 9.7 The "normal” case of close range photogrammetry
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Two Photo "Normal" Four Photo "Normal”

Figure 9.8 "Normal" geometry configurations
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Table 9.4 The influence of base / distance ratio of "normal" photography on object

point precision

Configuration| B/D q O Oxy o7 Aoxy | Aoy _R
Oc¢
Ratio mm mm mm mm mm
1 0.5 3.3 0.72 0.83 0.41 1.47 0.36 1 in 7,000

0.7 2.9 064 | 056 | 033 | 1.14 | 0.31 | 1in8,000
0.9 2.6 0.45 | 0.51 0.28 | 0.91 0.28 | 1in 11,000
2 0.5 1.6 036 | 042 021 0.70 [ 0.17 | 1in14,000
0.7 1.4 028 | 032 0.17| 0.55 | 0.15 | 1in18,000
0.9 1.3 023 | 026 | 0.15] 0.44 | 0.14 | 1in22,000

It has been established (Hottier (1976), Fraser (1984)) that increasing
base/distance ratio in "normal" photography both increases object point
precision and improves network reliability. The results of table 9.4 support this
view. The following conclusions and observations can be made.

. As the base/distance ratio is increased, in both two photograph and
four photograph configurations, a corresponding increase in object point
precision is achieved. In increasing the base/distance ratio from 0.5 to
0.9 an increase in object point precision of approximately 50% occurs in
both four and two photograph configurations. The precision improvement
is not linear as the base/distance ratio increases. The object point
coordinate precision is better in directions which are perpendicular to the
camera optical axis. |

. The "normal" configuration influences object point precision
homogeneity as well as object point precision. The results in table 9.4
show that approximately 30% difference in precision homogeneity exists
between planimetric and height precision, with the better homogeneity
being in directions perpendicular to the camera optical axis.

« The network strength factor, q, shows that all the above
configurations in fact are poor or undesirable configurations. For typical
"strong" close range photogrammetric networks a value of q is expected
between 0.5 and 1.5 (Fraser (1982a)). Conflicting with this observation
is the "normal" configuration of table 9.2. Here a base/distance ratio of
0.7 was employed and the resulting network strength factor was 0.7, in
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fact quite an acceptable network. Distinction must therefore be made
between vertical "normal" and horizontal "normal” configurations.
Vertical configurations will yield good planimetric position with degraded
height position, while horizontal configurations will yield good height
position but poor planimetric position with respect to one of the
horizontal directions, depending on the direction of the camera optical
axis.

+  As the base/distance ratio is increased it becomes increasingly
difficult to maintain coverage of the object and therefore a practical
restriction exists as to the extent to which the base/distance ratio can be
increased yet still maintain object coverage. Increasing base/distance
ratio is, however, one of the few methods of improving object point
precision in "normal" photogrammetric configurations.

Initial selection of an appropriate base, as a function of camera to object
distance, has been investigated by Slama (ed) (1980);Ch 16. For the
configuration of figure 9.7 an approximate base length can be computed.

D—zmgl B < —D—gi—” .(9.1)
where Dmax = maximum photographic distance

Dmin = minimum photographic distance

B = camera base

As a conclusion to base/distance ratio discussion, it should be noted that
convergent configurations yield both higher object point precision and higher
precision homogeneity in all three coordinate directions. Consequently,
unless "normal" photography is to be employed due to either practical or
physical limitations or because stereoscopic observations are to be carried
out, then the implementation of convergent photography should be
investigated'.

9.2.4 Image Scale, Focal Length and Image Format

The selection of camera type for any particular close range
photogrammetric mensuration procedure will directly influence object point
precision. The influence of camera type in this section, however, does not
cover the capabilities of the particular camera to produce a geometrically
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correct image, devoid of any systematic errors. In other words it will be
assumed that the image produced by the cameras in question are not
influenced by film unflatness, lens distortion, film deformation etc. The
investigations of camera selection in the first-order design process will be to
determine the influence of varying camera geometrical properties upon the
object point precision. Such geometrical properties include variations in focal
length, image format and image scale.

Image Scale

An average image scale can be formulated as a function of focal length
and average distance to the object as follows.

1:5 ..(9.2)
where S =9%
S = average image scale number
Dav = average distance to the centroid of the object point
array
f = focal length

The influence upon object point precision, in terms of varying image
scale, shows a linear relationship between image scale and object point
precision. Equation 6.29 gives an approximate relationship between image
scale and object point precision.

6:=qSoc ..(6.29)
where o, = mean standard error of the object point coordinates
q = network strength factor

S = average image scale number
¢ = image coordinate observation precision

Equation 6.29 shows that changes in the average image scale number
will have a direct linear influence upon object point precision. Changes in
image scale will, however, alter imaging geometry and hence the relationship
of equation 6.29 is not rigorous. However for most network design applications
the equation yields sufficient accuracy.
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Evaluation of equation 6.29 shows that a decrease in the average image
scale number will result in a proportional increase in object point precision.
Based on the assumption that the object is to be fully covered by the image
format, variations in image scale are not possible unless focal length or image
format can be varied. Consequently, in assessing the influence of variations in
image scale upon object point precision, it is necessary to determine the
influence of variations in focal length and image format upon precision
estimates.

Focal Length

Equation 9.2 gives the influence of focal length upon image scale, and
hence via equation 6.29, upon object point precision. Analysis of focal length
variations is, however, not as simple as this. As the focal length is varied it
becomes necessary to vary the object to camera distance as well in order to
maintain a full image format coverage of the object. When changing focal
length it becomes necessary to change the object to camera distance in order
to maintain average image scale. Note that only the average scale is
maintained because when the focal length is decreased, the camera has a
wider angle of coverage and the object to camera distance can be reduced.
Consequently greater variations in image scale for individual points will result,
despite maintaining the average image scale. Therefore, although the
average image scale is maintained, the overall object point precision will
decrease due to the greater variation in the image scale for the individual
object points.

For the purposes of assessing the influence of focal length variations
upon object point precision consider the following example. A four-
photograph symmetric, convergent (¢=90°) imaging configuration is simulated.
The simulation was carried out by SIMPAC using observational precision of
3um and a free network (inner constraints) adjustment. The camera utilized
was the Wild P31 metric camera with image format 10.2 x 12.7 cm. The above
network was simulated using two focal length lenses, 100mm and 45mm, and
the average image scale was maintained in both cases by varying the average
object to camera distance. Also included are the results where focal length is
changed but average image scale is not maintained. The results are given in
table 9.5.
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Table 9.5 The influence of focal length variations on object point precision

Focal Average q Cc G XY 1974 Aoyy AGZ _—

Length | Image Scale mm mm mm mm mm

- D

Oc

100mm| 1: 100| 0.5 0.15| 0.14 | 0.17 | 0.083 | 0.13 |1in33,000

45mm| 1: 100| 0.6 021| 0.19 | 0.24 | 0.07 | 0.26 |1in24,000
45mm| 1: 190 0.6 0.34| 0.31 | 0.39 | 0.07 ] 0.28 |1in15,000

From table 9.5 several interesting conclusions can be noted.

» Higher object point precision and precision homogeneity are
achievable for longer focal length cameras. In the case where the
average image scale has been maintained despite a focal length
decrease, object point precision has decreased. This is due to the large
variations in scale for the short focal length, wide angle lens (45mm). In
increasing the camera focal length from 45mm to 100mm a 35% increase
in overall object point precision has resulted. Brown (1980) reports
similar precision improvement in increasing focal length from 135mm to
480mm for the CRC-1. Conclusions from these observations are that
long focal length cameras are to be preferred over shorter focal length
cameras. This is however dependent upon camera and lens availability
and upon the physical restrictions for each specific application. As well
as object point precision improvement, long focal length cameras have
the added advantage of suppressing the influence of film unflatness on
coordinate precision estimates (Fraser (1984)).

. With increased camera focal length, precision homogeneity
increases. In increasing focal length from 45mm to 100mm the precision
homogeneity improves almost 50%. Note however that homogeneity
improvement does not result if only image scale is altered. For the case
of the 45mm focal length camera the precision homogeneity exhibits
negligible improvement when image scale is changed from 1:190 to
1:100. This is because increased focal length tends to create a more
homogeneous geometry of multi-ray intersections, and consequently an
improvement in precision homogeneity. However variations in average
image scale do not significantly alter this geometry.
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Image Format

The influence of image format on object point precision is not difficult to
assess, as variations in image format require a corresponding variation in
average image scale in order to maintain full format coverage of the object.
Consequently image format influence upon object point precision can be
addressed in terms of the influence of average image scale. A notable
influence relates to the fact that most close range photogrammetric cameras
have rectangular image formats . This format configuration has the limitation
that only the square portion of the format can be utilized in cases where self-
calibration adjustments are undertaken (Brown (1980)). In recovering
camera interior orientation via self-calibration, it is recommended that
orthogonal kappa rotations between exposures is employed (Fraser (1984)).
Consequently the actual rectangular format is reduced to an effective square
format, of dimension equal to the minimum rectangular dimension.

For the purposes of assessing the influence of image format on object
point precision the configuration of the previous example is re-assessed. In
these simulations four camera types are used, each with different focal lengths
and image formats. The focal lengths vary from long, narrow angle(240mm) to
short, wide angle (45mm) lenses. In all cases the object to camera distance is
varied to ensure full coverage of the image format by the object. The results of
the simulations are included in table 9.6.

Table 9.6 The influence of variations of focal length, image format and average image scale on

object point precision

D

Cc

Camera | Focal | Image q Cc (-5xy Oz AGXY AGZ

Type |Lengthl Format
mm_|_cmxcm mm mm mm mm mm

Wild P32] 45 65x 9| 0.5 0.22 0.21 0.24 | 0.05 ] 0.18 |1in23,000

Image Scale =1 : 150
wild P31] 100 |10.2x12.7 0.5 | 0.15 0.14 0.17 | 0.03 | 0.13 |1in33,000

Image Scale =1:100
UMK 100 | 13x18] 0.6/ 0.13 0.12 0.16 0.03 | 0.13 1in 39,000
10/1318

Image Scale =1 : 80
CRC-1 | 240 | 23x23 0.6] 0.07 0.06 | 0.08 0.01 | 0.06 |1in72,000

Image Scale =1 : 40
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The results of table 9.6 enforce the conclusions presented previously. In
general it can be concluded that object point precision, and to a lesser degree
precision homogeneity, is improved with large image scale. The image scale
is a function of both focal length and image format, hence large focal length
cameras with large, rectangular image formats are recommended. Note
however, that for the purposes of first-order network design, improvement of
object point precision by altering focal length and image format depends upon
availability of a range of close range photogrammetric cameras, to enable
selection of a camera with focal length and image format which optimally meet
precision requirements.

In specifying an image format in the first-order design simulations, it
should be noted that the full image format should not be utilized. This is
because the effect of systematic errors, such as lens distortion and film
deformations, are usually greatest at the photograph edges. Consequently in
the first-order design process the object coverage is defined such that the
extremes of the photograph are not used.

9.2.5 Number of Object Points

The number of object points has little influence of the object point
precision in standard adjustment procedures. Consequently, for networks
which exhibit "strong" geometry, object point precision can be considered to
be independent of the number of object points in the target array. To illustrate
this, consider a four photograph symmetric,convergent configuration (¢=909°) of
the object in figure 9.1. The camera utilized for the following simulations is the
UMK 10/1318 with a 100mm focal length. The evaluations were carried out
using SIMPAC with 3um observational precision and a free network (inner
constraints) solution. Four separate adjustments have been evaluated, with
10, 20, 30 and 40 object points in the target array. The results of the
evaluation is given in table 9.7.

The results of table 9.7 clearly show that, for standard adjustments, object
point precision and object point precision homogeneity, are essentially
invariant with respect to the number of object points used. In increasing the
number of object points from 10 to 40, the object point precision has improved
only 0.01mm. Consequently the relative independence of object point
precision and number of object points is illustrated. This characteristic can be
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utilized to advantage in close range photogrammetric network design. For
networks which are likely to require several hundred object points, network
design and evaluation can be carried out using 20 to 40 well distributed,
"typical", object points. This number of points will allow accurate assessment
of network quality and will significantly reduce computation time (Fraser
(1984)).

Table 9.7 The influence of the number of object points upon object point precision

Number of q ESC c XY ESZ AGXY AGZ -_B
Points mm mm mm mm mm %
10 0.6 0.13] 0.12 ] 0.16 | 0.04 | 0.13 |1in38,500
20 0.6 0.13| 0.12 | 0.16 | 0.03 | 0.13 [1in38,500
30 0.6 0.12} 0.11 | 0.16 0.03 | 0.12 |1in42,000
40 0.6 0.12] 0.11 | 0.15 | 0.03 | 0.12 [1in42,000

Although the number of object points does not influence object point
precision in standard bundle adjustments the same cannot be said for
self-calibrating bundle adjustments. In self-calibration procedures both the
density and distribution of the object points will affect object point precision
(Fraser (1982a), Fraser (1984)). Systematic error models, included in a self-
calibrating bundle adjustment, are usually expressed as functions of the image
coordinates. The distribution and density of the image points will influence the
strength of recovery of the systematic error model additional parameters. The
density and distribution of image points is directly related to the density and
location of object points. Therefore, if self-calibrating adjustment procedures
are used, the number of object points and the distribution of these object
points should be assessed in the first-order design phase. Such assessment
is to ensure that the recovery of systematic error model additional parameters
is facilitated and that object point coordinates are recovered to satisfactory
precision. For self-calibration adjustments, a minimum of 30 to 40 well
distributed object points should be incorporated in order to ensure both
satisfactory recovery of additional parameters and satisfactory object point
precision (Fraser (1989)).
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9.2.6 Object Point Clusters

Amer (1979) and Hottier (1976) have introduced the concept of object
point clusters for the purpose of improving network accuracy and reliability.
Object point clusters are simply clusters of two to five object point targets,
densely located around each single object point. For the purposes of
improving network reliability this concept has merit, in that the overall network
redundancy is increased and the possibility of detecting observation gross
errors, or outliers, is greatly enhanced. For geometrically "strong" networks,
however, this reason for introducing object point clusters is not relevant. In
convergent, multi-station networks high network reliability is evident due to the
basic geometric properties of the configuration. Consequently the evaluation
of object point clusters reduces to an evaluation of the influence of the number
of object points upon object point precision. As covered in section 9.2.5, the
density and distribution of object points has only a minimal effect on precision
estimates, for standard bundle adjustments. The use of object point clusters is
therefore only considered in cases where network reliability is to be
strengthened in geometrically poor configurations, as the influence of object
point clusters on network precision is not significant.

At this point it is convenient to note that both the number of object points
and the use of object point clusters are basically a third-order design problem
(densification). Due to the independence of object point precision with respect
to object point density and distribution in networks of "strong" geometry, the
third-order design problem does not usually arise in close range
photogrammetry. If object point densification is required, ie for
self-calibration adjustment requirements or to improve network reliability, it is
effectively solved at the first-order design phase.

9.2.7 Multiple Exposures

The influence of multiple exposures has been assessed, in Chapter 5, as
a second-order design problem. The influence of multiple exposures is to
increase the observational precision of the image coordinates and therefore to

increase the resulting object point precision estimates.

There are two basic forms of the multiple exposure. The first form is
where an additional photograph is acquired at exactly the same camera
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station as the previous exposures. In this case the exterior orientation
parameters for each exposure are the same and the result of the extra
exposures is to scale the weight matrix of observations, P.

. 002
P = k;iz—l = kP ..(5.4)
where P = weight matrix of observations for one exposure
P' = weight matrix of observations for k exposures
k = number of exposures
0,2 = a priori variance factor
o; = observational precision

As the influence of this form of multiple exposure is to scale the weight
matrix of observations, the process is a second-order design (weight) problem.

The other form of the multiple exposure is when the exterior orientation
parameters of the camera station at which the multiple exposures occur are
not be maintained between exposures. In such cases an additional set of
exterior orientation parameters must be introduced into the least squares
mathematical model for each additional exposure. This process is a first-order
design problem as the design matrix, A, of the least squares mathematical
model is altered with each additional exposure.

In close range photogrammetric networks which already exhibit "strong"
geometry, the use of multiple exposures is an easy and convenient method of
enhancing object point precision. The common procedure is to take multiple
exposures but to assume that a new camera station has been established and
to therefore include a new set of exterior orientation parameters in the bundle
adjustment (Fraser (1989)). For weak networks which exhibit poor network
geometry and reliability, multiple exposures are not necessarily the best
method of enhancing object point precision. It would be more applicable to
introduce a new, geographically different, camera station in order to enhance
the network geometry, and at the same time improve network reliability and
object point precision. In most cases multiple exposures are therefore a first-
order design problem, although utilization of multiple exposures in a second-
order context is acceptable.
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9.2.8 Self-Calibration Parameters

For self-calibrating adjustment techniques, the form of the systematic
error model will influence the object point precision estimates. In minimally
constrained adjustments, additional parameters, both those modelling
systematic errors and interior orientation parameters, will be invariant with
respect to constraint selection (Fraser (1982a)). With addition of such
parameters into the least squares mathematical model, the precision of
recovery of object point coordinates and coordinate precision estimates are
dependent upon the error model of the systematic errors which has been
utilized. This dependence is due to the degree of coupling between additional
parameters, exterior orientation parameters and object point coordinates
(Fraser (1982a)). Therefore it is necessary to consider the form and impact of
the systematic error model upon object point estimates in the first-order design
phase.

General rules are difficult to establish with respect to the influence of
additional parameters upon precision estimates. Error models are very
diverse and additional parameters may be sub-block invariant, photograph
invariant or block invariant. Despite the diversity of available systematic error
models, several general conclusions can be formulated with respect to first-
order design procedures. The general process of self-calibration is covered in
section 2.4.5 and the influence of self-calibration, with respect to first-order
network design, will be evaluated on the basis of this analysis.

For systematic error models which exhibit high correlation between
additional parameters, exterior orientation parameters and object points,
object point precision is likely to degrade (Brown (1980), Fraser (1984)). This
high correlation is introduced by over-parameterization (Brown (1980)) where
additional parameters are either unrecoverable or not statistically significant.
The procedures for ensuring over-parameterization does not occur are
detailed in- section 2.4.5, and in general terms involves the deletion of
additional parameters from the error model which either exhibit high
correlation or which do not differ significantly from zero. Such processes will
ensure a stable model for the recovery of a priori unresolved systematic errors,
as well as a compact model which contains no extraneous parameters.

In the first-order design process, networks are simulated in order to
estimate achievable object point coordinate precision. In order to estimate the
influence of self-calibration parameters upon object point precision, systematic
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error models must be formulated and "typical" systematic errors added to the
simulated image observations. Such a process allows a comparison of
standard and self-calibration approaches, to estimate how well expected
systematic errors are being resolved and how well the systematic error model
is representing typical systematic errors This allows a realistic assessment of
object point precision for self-calibrating bundle adjustments.

In order to ensure a strong recovery of additional parameters both the
imaging geometry and the object point array require evaluation. The recovery
of interior orientation parameters is dependent upon an object point array
which is well distributed in all three coordinate directions (Fraser (1984)). The
estimates of both systematic error model additional parameters and object
point coordinates is improved if the density of the object point array is
increased. Systematic error models are usually expressed as functions of the
image coordinates. The distribution and density of the image points will
influence the strength of recovery of the systematic error model additional
parameters and, as the image point location is dependent upon object point
location, the distribution and density of object points will influence resulting
precision estimates. The recovery of interior orientation additional parameters
in a self-calibrating adjustment is enhanced by introducing mutually
orthogonal kappa rotations between each camera station (Fraser (1984)). For
high precision close range photogrammetry the introduction of such rotations
is necessary for all applications (Fraser (1989)). Orthogonal kappa rotations
are required in order to minimize projective coupling between exterior
orientation parameters and additional parameters and, in particular, to enable
recovery of the principal point location.

In assessing the influence of self-calibration additional parameters upon
object point precision it is important to carry out a network simulation based
upon a self-calibration adjustment. It is of no use to design a network by a
standard evaluation technique if a self-calibration technique is to be
employed, as the simulated precision estimates from the standard adjustment
will invariably over-estimate object point precision. As a final comment on the
influence of self-calibration additional parameters on object point precision
estimates, it should be noted that object point precision will not be degraded
as long as all additional parameters are statistically significant (Fraser (1984)).
Consequently assessment of the network via self-calibration adjustment
simulations, and also assessing additional parameter recovery and coupling,
is important in the first-order design phase.
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9.3 Limiting Error Propagation - Application‘ in Network
Design

The concept of limiting error propagation (Brown (1980)) was introduced
in section 4.3.3. The limiting error propagation solution is based on the
assumption that the projective parameters are recovered perfectly in the
adjustment process. Hence the process of limiting error propagation will
express the limiting result to be expected from error free exterior orientation
parameters. Such assumptions simplify the estimation procedure and the
computation time for a given close range photogrammetric bundle adjustment
is reduced. Note that the solution is not rigorous and, in general, will over-
estimate precision estimates as the influence of all error sources has not been
introduced into the solution.

The purpose of this section is to evaluate the applicability of limiting error
propagation solutions in network design and evaluation. Although not a strict
first-order design problem, the selection of computational method is
dependent upon network configuration. For example, if a small object point
array exists then a total error propagation solution poses no problems as the
computational time is not large. If the object point array approaches several
hundred however, then the trial and error simulation process becomes lengthy
and alternative, faster, stlutions are required. As a direct influence of network
configuration upon computational method, the results of the limiting error
propagation solution, for a variety of networks, will be assessed.

For the purposes of assessing the influence of limiting error propagation
solutions upon object point precision estimates, five networks have been
evaluated. These networks range from geometrically "strong", configurations
1, 2 and 3, through to networks which exhibit less than ideal geometric
properties, configurations 4 and 5. A plan view of each configuration is given
in figure 9.9. The convergence angle adopted in each configuration is 900.

The assessment of limiting error propagation, as a method for estimating
object point precision in the network design phase, has been carried out by
three independent adjustment techniques. The adjustments carried out are
the limiting error propagation (LEP) solution and the total error propagation
(TEP) solution, based upon definition of a zero-variance computational base,
and the total error propagation free network (IC) solution. |t is proposed to
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evaluate the limiting error solution with respect to several factors which include
the influence of constraint configuration, the influence of imaging geometry
and the relationship of the LEP solution to the TEP and IC solutions. For such
purposes several SIMPAC simulations, the results of which are given in table
9.8, were carried out with respect to the object of figure 9.1. The camera
utilized was the UMK 10/1318 and the observational precision was 3um.

4 Photograph, Configuration 2
Symmetric and 3 Photograph,
Convergent Symmetric and

Convergent
1 —» <+—— 3

A~ ~

f ; ;
4

Configuration 3

Configuration 1 i

‘——-—_L

4 Photograph, Configuration 4
Convergent 3 Photograph,
/ \ Convergent
1 4 / \
v 1 3

2
2 3 Configuration 5

2 Photograph,
Convergent

FA

1 2

Figure 9.9 Imaging geometry for limiting error propagation (LEP) evaluation
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Table 9.8 Comparison of LEP, TEP and free network solutions

. . - : D
Ng Solution | Constraintt Cc oxy Oz A(Sxy AO‘Z —_—

G¢

mm mm mm mm mm

1| LEP|3,19,21| 0.5 | 0.13 | 0.11 | 0.16 | 0.14 | 0.23 |1in38,500
TEP |3,19,211 0.8 | 0.20 | 0.19 | 0.23 | 0.26 | 0.36 |1in 25,000
IC  |x"™=min| 0.6 | 0.13 | 0.12] 0.16 | 0.08 | 0.13 [1in 38,500
2| LEP|3,19,21 0.6 | 0.15 | 0.13| 0.19 | 0.17 | 0.28 |1in33,000
TEP|3,19,21 1.0 | 0.24 | 0.22 | 0.27 | 0.31 | 0.42 {1in21,000
IC  [x"™x=min| 0.7 | 0.16 | 0.14 | 0.19 | 0.06 | 0.15 |1in31,000
3| LEP|3,19,21] 0.7 | 017 | 0.15| 0.21 | 0.29 | 0.34 |[1in29,500
TEP |3,19,21 1.0 | 0.26 | 0.24 | 0.30 | 0.42 | 0.44 |1in 19,000
IC  Ix™x=mn| 0.7 | 0.18 { 0.16 | 0.21 | 0.18 | 0.22 |1in 28,000
4| LEP|[3,19,21 0.8 | 0.19 | 0.16 | 0.23 | 0.31 | 0.38 |1in26,000
TEP |3,19,21| 1.2 | 029 | 0.26 | 0.33 | 0.45 | 0.50 |1in17,000
IC  |x"x=minl] 0.8 | 020 ]| 0.17 | 0.24 | 0.19 | 0.24 |1in25,000
5( LEP|3,19,21| 1.6 | 041 | 0.37 | 0.48 | 0.83 | 0.83 |1in12,000
LEP [3,2,12 | 1.5 | 0.40 | 0.37 | 0.46 | 0.83 | 0.83 |1in 12,500
TEP |3,19,21] 2.3 | 062 | 057 0.70 | 1.19 | 1.13 [1in8,000
TEP|3,2,12| 45 | 119 | 1.19| 1.17 | 2.03 | 2.05 |1in4,000
IC  [x"X=min| 1.7 | 0.46 | 0.42 | 0.52 | 0.69 | 0.69 [1in 11,000

The results of table 9.8 give rise to several observations and comments
regarding the applicability of the limiting error solution in first-order close
range photogrammetric network design. These include :

. The comparison of the solutions based upon zero-variance
computational base datums show that the LEP solution gives precision
results which are over-estimated. The absolute magnitude of this over-
estimafion does not depend upon network configuration and is of the
order of 50%, with respect to TEP solutions, for most configurations.

. Of interest is the assessment of configuration 5. Two solutions were
carried out, one with respect to a good zero-variance computational
base, points 3, 19, 21, and another with a poor zero-variance
computational base, points 3, 2, 12. The TEP solution exhibits the
expected difference between the good and poor datum solutions,
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however the LEP solutions are effectively the same in both cases. This is
not unexpected, however, as camera stations are effectively fixed in the
LEP solution and therefore implicitly define the datum (Fraser (1989)).
The introduction of further datum constraints is therefore unnecessary. In
the case of the strong datum, precision was over-estimated by
approximately 50% while in the case of the poor datum, precision was
over-estimated by over 200%. It is therefore evident that the degree of
conformance between TEP and LEP solutions is largely dependent upon
the datum adopted.

+ Of interest in table 9.8 is the degree of compatibility between free
network solutions (inner constraints) and the LEP solution. In all cases,
irrespective of network geometry and datum definition, the limiting error
propagation solution approximates the free network precision estimates.
For the "strong" networks this difference is only of the order of a few
percent and increases to 5% to 10% for the weaker networks. Note that,
although object point precision for the LEP case is consistent with the
free network solution, precision homogeneity is not compatible and, in
general, is larger than the free network homogeneity estimates.

From the above observations several conclusions can be made about the
applicability of LEP in close range photogrammetric network design. The
initial conclusion is that the LEP solution should never be used to approximate
the TEP solution, especially in cases of an unfavourable datum definition. Use
of LEP in such cases will lead to an over-estimated object point precision
estimate, which will not be achieved when the network is implemented. A
rigorous equality of LEP and TEP only occurs when the term

((Ngj)-1Nj) Q)A(1 ((N2j)'1Nj)T, from equation 4.13, is equal to zero. Fraser (1987)

states that this condition is never sufficiently realized and hence satisfactory
equivalence of LEP and TEP solutions is never achieved.

The high degree of compatibility between the limiting error propagation
solution and the free network solution indicate that the limiting error solution
does have a place in first-order design. Fraser (1987) attempts to explain the
observed compatibility between the LEP and free network solutions, but
develops no concrete explanation for the compatibility. An important note in
comparing LEP and free network solutions is that an LEP solution will
invariably mask the effects of self-calibration over-parameterization (Fraser
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(1987)). In such cases the LEP solution will not be influenced by the high
correlations between additional parameters, exterior orientation parameters
and object points and this high correlation will therefore not influence the
recovery or precision of object point coordinates. Consequently the LEP
solution will over-estimate the precision of object points and will not indicate
the presence of self-calibration over-parameterization.

As the LEP solution is computationally faster than the full inner
constraints and total error propagation solutions, Fraser (1987) advocates the
use of LEP solutions in the initial network design phases instead of the
rigorous free network solution. For example, Fraser (1987) claims that an LEP
solution for 231 unknowns takes 21 seconds while a full solution takes
approximately 12 minutes. The value of the LEP solution is therefore evident
for initial trial and error establishment of the network configuration.
Fraser (1987) also emphasizes, however, that a full (total error propagation)
solution should be carried out after initial design to verify results, especially in
weak networks where LEP and free network solutions may differ by up to 30%,
and in self-calibrating adjustments where the effect of over-parameterization
will not be detected.

The purpose of this chapter was to develop the methods available to
enhance the object point precision estimates in the first-order design process.
As the first-order design process in close range photogrammetric network
design is based on an indirect solution and is achieved by trial and error
simulations, it was necessary to examine those factors which influenced
object point precision and to determine the effect of such factors upon network
configuration and network quality. The primary factors assessed include
imaging geometry and the number and location of camera stations.

Of minimal concern is the concept of configuration defect. Although
introduced, such a defect is relatively easy to detect and is not common in
convergent, multi-station configurations. Consequently the implications of this
are not important in close range photogrammetric network design.

The limiting error propagation solution, of Chapter 4, was assessed in
order to determine whether or not the solution gave representative precision

199



estimates for possible utilization in the design process. Although not
representative of the total error propagation solution, the limiting error solution
was found to represent the free network solution to a high degree.
Consequently, in the network design process, initial precision estimation via
the limiting error solution with a final check with the total error propagation
solution, is recommended.

In the following chapter all the processes of network design theory will be
linked together and illustrated via a practical example. This example will
demonstrate the of the whole network design process for close range
photogrammetry.
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10. CASE STUDY - PORT KEMBLA COAL LOADER

A close range photogrammetric mensuration problem has been selected
in order to illustrate the process of network design. In conjunction with this
illustration, the example will allow verification of the theory of network design
via simulation procedures and will demonstrate the typical problems
encountered in close range photogrammetry.

The case study is that of the mensuration of the Port Kembla coal loader.
The purpose of the study is not to demonstrate the high precision potential of
close range photogrammetry, as this has been clearly demonstrated by Brown
(1980), Granshaw (1980), Fraser (1982), (1984), (1985), (1988a) and (1988b).
The case study clearly demonstrates both the problems which are often
encountered in close range photogrammetry and the necessity for network
design prior to data acquisition and evaluation.

10.1 Port Kembla Coal Loader Case History

A close range photogrammetric survey was commissioned in 1987 in
order to determine the spatial location of the eight coal loader axles. The
position of the axles was required to 10 millimetres in each coordinate
direction, and with respect to the railway tracks upon which the coal loader
moved. The railway tracks were therefore to act as the datum for the survey.
Figure 10.1 shows a plan view of the Port Kembla coal loader, and clearly
depicts the physical constraints on the site. The coal loader is surrounded on
two sides by water, and the third side is restricted by the physical layout of the
wharf. Figure 10.2 shows the coal loader, the target points used for the survey
and again illustrates the site constraints. The coal loader itself is
approximately 50 metres long and 10 metres wide.

A close range photogrammetric survey was carried out in early 1988.
Due to the relatively moderate precision requirements for the task, network
simulations were not undertaken and a network was implemented based upon
"expert" opinion, such that it could be assumed that precision requirements
could easily be met.
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Figure 10.1 Aerial photograph of the Port Kembla coal loader
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Figure 10.2 Photograph of the Port Kembla coal loader
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The SIMPAC plan view, of Figure 10.3, shows the network adopted for
this task. Five, essentially "normal", camera stations were situated on the
wharf, such that a full coverage of the coal loader was possible from each
station. Figure 10.2 is the photograph taken from camera station 44. With
respect to this figure and the SIMPAC perspective view, of figure 10.4, note
that the object point array does not optimally cover the image format.
Consequently a relatively small average image scale, of 1 : 1000 results. This
poor format coverage is due to the physical site restrictions in selecting
camera locations.

b st

Figure 10.3 SIMPAC plan view - Network configuration for the initial survey
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Figure 10.4 SIMPAC perspective view - Port Kembla coal loader

The axles, for which position is required, are the eight points 40, 41, 42,
44, 45, 47, 48 and 49 in figure 10.2. The points are essentially coplanar, ie
within 2 metres of a vertical plane through the Y axis. Points 21, 22, 23, and
24 were introduced as control points and define the datum with respect to the
coal loader railway tracks. The six additional points were introduced in order
to strengthen the solution.

Acquisition and evaluation of the photography was carried out using the
Wild P32 metric camera, focal length 64.1 millimetres, and the Kern DSR-11
analytical plotter for image coordinate measurement. The control points 21 to
24 provided an over-constrained least squares solution. Upon analysis of the
results it was found that precision specifications had not been met for all points
and with respect to the defined datum, the 10 millimetre precision requirement
could not be met in all three coordinate directions. Precision estimates in the
X and Z directions were approximately 6 and 8 millimetres respectively, both
within specifications, however Y coordinate determination could not meet the
10 millimetre requirement and in some cases was nearly twice this value.
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Although a network had been established which should have yielded the
desired precision, the precision specifications were ultimately not met. In the
following sections determination of the reasons for the poor solution from the
initial network will be evaluated and amendments to the design proposed in
order to achieve the required level of precision.

10.2 Verification of the Simulation Method

Prior to evaluating the Port Kembla coal loader problem it is pertinent to
verify the methodology of network design via simulation procedures. As data
has been made available from the actual mensuration of the coal loader it is a
simple task to evaluate this data and to simulate an identical network with
respect to datum and imaging configuration. Verification of the capability of
determining network precision a priori, via network simulation, can then be
assessed by comparing the precision estimates of the two networks. Both
networks were evaluated using SIMPAC. In the "real" network image
coordinates and control were those derived in the initial survey. Approximate
camera exterior orientation and object point coordinates were determined in
the initial adjustment procedure. In the simulated network, object point
coordinates and camera exterior orientation parameters were slightly altered
in order to illustrate that resulting object point precision estimates will
accurately reflect the "real" case despite using only a representative network
configuration and object point array. The results of the two evaluations is
given in table 10.1. The precision measures used are given in Chapter 6.

Table 10.1 Comparison of "real" and simulated networks

CASE q Oc oxY (74 Aoxy | Aoz
mm mm mm mm mm

Real 0.7 3.91 426 | 3.10 | 3.83 | 2.51
Simulated| 0.7 3.59 | 395 | 2.73 | 3.54 | 2.22

Evaluation of the results of table 10.1 indicate that simulated results are
representative of "real" estimates. Simulated precision estimates are all
higher than the actual estimates, possible reasons for which include the
following.
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. Simulated results are based upon a 5um image observation
precision. The least squares estimation results indicate that the "real"
image observation precision is approximately 6um. Consequently a
degradation of object point precision estimates would result.

. Image observations were carried out using the Kern DSR-11
analytical plotter, with image observation precision specifications of the
order 3 to 5 um. The difference between simulated and "real" precision
estimates is of the order of 0.32 millimetres on the object. At an average
object to camera distance of 50 metres and with a focal length of 64.1
millimetres this corresponds to 0.4um on the image. This difference is
essentially negligible and undetectable in the analytical plotter
observations.

* The estimation procedure used for both simulated and "real"
networks was the standard bundle adjustment. No self-calibration was
utilized and hence unresolved systematic errors in the "real" image
coordinates could have degraded "real" precision estimates. The
simulated network was not influenced by systematic errors and a
diference between the precision estimates of the two networks would
have therefore resulted.

From this analysis it can be seen that simulated network evaluations are
indeed representative of actual network evaluations. The use of network
simulation for close range photogrammetric network design allows an
accurate a priori estimate of achievable precision from the subject network and
ultimately design of a network which meets precision requirements.

10.3 Analysis of the Initial Network

The close range photogrammetric network for the mensuration of the Port
Kembla coal loader was introduced in section 10.1. The purpose of this
section is to evaluate the network and to determine why precision estimates
were lower than expected and did not meet precision criteria. From this
analysis a network will be formulated such that the problems evident here are
removed and so that the new network will meet precision requirements.
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The network to be evaluated, ie the "real" network implemented and
observed in 1988, is depicted in the SIMPAC plot, of figure 10.3. For the
purposes of determining potential problem areas, several aspects of the
network configuration, or first-order design, will be evaluated and the
implications of these aspects upon precision estimates will be determined.

« The network imaging geometry is essentially a "normal"
configuration, with the camera optical axis being virtually parallel to the
ground coordinate system Y axis in all cases. Precision estimates from
this configuration would be expected to be relatively poor with respect to
the Y coordinate. Precision estimates would not be homogeneous for
this configuration as the X and Z coordinates would be resolved to a
higher degree of precision than the Y coordinate. In order to improve the
recovery of the Y coordinate, introduction of convergent photography is
recommended. This will increase both the coordinate precision
estimates and the coordinate precision homogeneity.

. The configuration, defined by figure 10.3, does not optimally utilize
the image format. This is evident from figures 10.2 and the SIMPAC plot,
of figure 10.4. The target array coverage is approximately half the full
format and this leads to a less than optimal image scale. This reduction
in effective image scale reduces the potential precision capability of the
network. Although the image format coverage, and consequently image
scale, is dictated to a large degree by physical site constraints, this is an
area to be addressed in future network design of the coal loader.

. The object point array utilized is a weakness in the network design.
Two problems with the density and distribution of the array are evident.
The first problem is that all object points are within approximately 10
metres of being coplanar with all points essentially being in the vertical
plane through the Y axis. With the X and Z distributions being
approximately 50 metres and 40 metres respectively, this poses a
problem for resolution of Y coordinates if the datum is defined on the
outer edge object point array. In the subject network, the datum was
defined with respect to four points in the lower half of the target array.
Consequently the Y coordinates for the points furthermost from the
control, or datum, points are severely degraded. In order to strengthen
the solution, with respect to recovery of the object point Y coordinate,
object points should be added to the network which have a large range in
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the Y direction, ie approximately the same as the range in X and Z
directions. As the precision of object point determination degrades as the
.distance from the control increases, the use of control points which cover
the whole object point array will improve the precision of points at the top
of the coal loader.

The second weakness in the object point array relates to the density
of the object points for self-calibration purposes. For adequate recovery
of additional parameters, a minimum of 30 well distributed object points is
required. In the subject object point array only 18 points are evident, and
the array should therefore be augmented by additional points to allow
efficient recovery of additional parameters and object points.

The principal causes of poor object point precision, with respect to the network
configuration, were the imaging geometry and the distribution of the object
points. In order to fully assess the network, however, the zero-order design of
the initial network should be evaluated. In order to evaluate the datum
definition for the network, several simulations have been carried out, each with
a different datum. The influence of the over-constrained datum adopted in the
"real" case will be compared to alternative datum solutions. As the precision
criterion only applies to a subset of the object point array, the table of
simulation results will include both overall precision estimates and estimates
with respect to the axle points only. The results are given in table 10.2 and
table 10.3.

Table 10.2 Simulation results - all object points

DATUM q O oxy oz Aoxy | Aoz | Max
mm mm mm mm mm Point
Free Network (all) 0.7 359 | 395 273 | 3.54 2.22 -
Free Network 0.9 5,00 | 550 (| 3.80 | 8.76 5.27 47

(pts 21,22,23,24)
Fixed 21,23,24(2) | 1.1 582 | 6.41| 4.41 [13.71 | 7.59 47
Fixed 21,24,22(2) | 1.3 6.92 | 793 | 4.23 |15.76 | 6.32 48
Fixed 22,23,21(2) 1.3 6.87 7.86 1 423 [16.19 | 6.91 48
Over-Constrained| 1.3 6.83( 7.36| 561 |11.89 | 4.55 47
21,22,23,24
@ 0.005mm
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The first simulation of tables 10.2 and 10.3 is a free network evaluation of
the existing network. The results of the simulation indicate that that the
network, despite the weaknesses previously detailed, does have the potential
to meet precision specifications. With respect to the object points of interest, ie
the axle points, recovery of X, Y and Z coordinates is to the order of 3 to 4
millimetres. Note that the Y coordinate has poorest recovery, and this is due
to the network configuration aspects previously described.

Table 10.3 Simulation results - axle points

DATUM Oc oxXY oz | Aoxy | Aoz | max | MAX| MAX
mm mm mm mm mm ox | oy| oz

Free Network (all) | 3.80 409 | 3.15 342 | 1.89 | 3.1 |56 ] 4.1
Free Network 6.09 6.63 | 4.83 7.83 | 3.70 |49 [10.3] 6.7
(pts 21,22,23,24)
Fixed 21,23,24(Z

)| 6.82| 738|556 | 10.91 | 3.55 | 4.8 [13.7|7.6
Fixed 21,24,22(Z) | 8.42 | 9.64 | 520 | 13.18 | 2.97 | 6.1 [15.8/ 6.3
Fixed 22,23,21(2) | 7.89 9.00 14.97 | 13.33 | 3.60 | 6.8 116.2| 6.9
Over-Constrained| 8.15 | 8.81 |6.57 | 11.43 | 3.99 | 6.3 |15.2| 8.4
21,22,23,24
@ 0.005 mm

z
Z

Additional simulations were carried out with respect to the available
control, ie points 21, 22, 23 and 24. For the axle points, none of the control
configurations applied allow precision determination to within precision
requirements. Once again recovery of the Y coordinate is the poorest with
recovery of the points furthermost from the defined control points, ie points 47
and 48, being in excess of 50% worse than specification. None of the
possible datum configurations allow precision criteria to be met, including the
over-constrained datum applied in the original adjustment.

The primary problem with the network is therefore one of datum
definition. The available control points are located at a maximum distance
from the axle points, for which position is required, and hence recovery of
these points is poor. For a minimal control configuration, the triangle defined
by the three control points is neither of maximum area nor does it pass
through the centroid of the object point array. Consequently the available
control configurations do not allow a "best" zero-variance computational base

209



definition, and in fact the available definitions can be considered as ver. poor
configurations.

With respect to the initial network design for the photogrammetric
mensuration of the Port Kembla coal loader, three basic problems or
deficiencies are evident. The first, and principal deficiency, relates to the zero-
order design. The datum definition is essentially arbitrary and offers no
mathematical "strength” to the points of interest in the object point array. The
need for an a priori solution of the zero-order design problem, with respect to
precision requirements and the object points of interest, is essential.

The second deficiency in the network relates to the first-order design. In
this network a configuration has been utilized which does have the potential of
meeting precision requirements. However the form of the configuration,
especially the imaging geometry, has not been optimally designed for the
purpose of deriving 10 millimetre precision from the axle points. The
configuration is essentially a classical network, ie "normal" geometry, with an
excess of camera stations in order to ensure recovery of point position to the
required precision. A priori evaluation of the network configuration, with
respect to precision criteria, is essential in order to ensure precision
requirements can be achieved in an economical manner.

The third deficiency is related to the manner of specifying the precision
requirements. For the task of determining position on the coal loader, a
requirement that position be related to an arbitrary datum, ie the railway
tracks, is not the most appropriate method of defining the position of the axle
points. This requirement inherently means that point precision estimates will
be degraded due to the requirement for reference to an absolute datum. A
more applicable solution would be to define the position of the axle points and
the railway tracks with respect to the network of points as a whole, via a free
network solution. Consequently the shape of the object point array would be
defined, a higher object point precision would result, and the network to
achieve required precision could be based upon a simpler, more economical
configuration and design.

10.4 Network Design for the Port Kembla Coal Loader

With respect to the precision criteria of section 10.1, a close range
photogrammetric network will be designed for the Port Kembla coal loader.
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An augmented object point array has ben proposed for this design. The
array is essentially the same as that for the initial design and is shown in
figure 10.5. Twelve points have been added to initial array. These are the ten
points, 50 to 59, which have been included to strengthen the object point array
for self-calibration purposes. Points 81 and 82 have also been added to the
array. These points are well separated in the Y direction and hence will
stabilize the solution with respect to poor definition in the Y direction. For axle
points at the top of the coal loader, points 81 and 82 will effectively reduce the
pivoting effect caused by a datum defined at the base of the coal loader. The
object point array is show in figure 10.6. The size of the targets should be 100
to 120 um on the image (Trinder (1989)). At an anticipated image scale of
between 1 : 800 and 1 : 1000, this means that the actual target size should be
approximately 0.1 metres in diameter.
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Figure 10.5 SIMPAC plan view - proposed network configuration
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Options in photogrammetric image and image coordinate acquisition
hardware are as follows.

» Camera - Hasselblad MK70 (Semi-metric)
- Wild P32 (Metric)
- CRC-1 (Metric)

» Comparator - Kern DSR-11 Analytical Plotter

Figure 10.6 SIMPAC perspective view - object point array for the proposed design

No option in analytical plotter is available, and although several camera
options are evident, the precision requirements of the task are such that a high
precision camera, such as the CRC-1, is not warranted. For this design the
Wild P32 will be utilized, with a focal length of 64.1 millimetres and an image
format of 80 by 60 millimetres.

Following several trial and error simulations the network configuration, of
figure 10.6, was formulated. The configuration comprises four convergent
camera stations, each of which has an optimal coverage of the object point
array. Figure 10.7 and figure 10.8 show SIMPAC perspective views of the
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object from stations 11 and 22 respectively. The configuration has been
designed to allow improved recovery of the object point Y coordinate, through
utilization of convergent photography. Full object point array coverage has
resulted in an increased image scale, 1 : 850, which will facilitate improved
overall object point precision. Note that camera stations 11 and 22 will
require a "cherry-picker" to allow photography from the desired location.

Figure 10.7 SIMPAC perspective view - camera station 11

Figure 10.8 SIMPAC perspective view - camera station 22
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Based upon this network configuration, simulations by a free network
solution and a chosen zero-variance computational base have been carried
out. Table 10.4 shows the results for all object points and table 10.5 shows the
results for the axle points only. The zero-variance computational base was
chosen in the zero-order design phase such that precision criteria were
satisfied.

Table 10.4 Simulation results - all object points

DATUM q Cc oxY oz Aoxy | Aoz | Max
mm mm mm mm mm Point

Free Network (all) 0.6 2.71 292 | 2.21 3.06 | 1.00 -
Fixed 21,52,24(2) | 1.2 550 | 6.32| 3.30 |12.07 | 6.35 | 33

Table 10.5 Simulation results - axle points

DATUM O oxY o7 Aoyy | Aoz | MAX | MAX] MAX
mm mm | mm mm mm Ox Oy | Oz

Free Network (all) | 2.71 288 | 234 | 100|041 |28 |34 |25
Fixed 21,52,24(2) | 5.50 6.19 | 3.74 | 6.00 | 1.42 |6.3 |9.5]4.3

The free network solution, of tables 10.4 and 10.5, show that the network
has the potential to recover axle position to less than 3 millimetres. Despite
being one camera station less than the initial network, this configuration offers
an improved precision homogeneity, improved recovery of the object point Y
coordinate and improved overall precision. For the requirement of relating
object points to the required datum, the two object points which define the
railway track location have been retained. An additional control point, namely
52, has been selected in the centre of the target array to strengthen the
recovery of axle points towards the top of the array.

With the given network configuration, figure 10.6, and the datum
definition, based on points 21 and 52 in X, Y and Z and point 24 in Z, precision
specifications can be met. For the axle points, the mean standard errors in
planimetry and height are 6 millimetres and 4 millimetres respectively. No
standard deviation for the axle points, in either X, Y or Z, exceeds 10
millimetres.
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10.4 Comments

The case study of the photogrammetric mensuration of the Port Kembla
coal loader illustrates the applicability of network design and simulation in
close range photogrammetry. The study also illustrates many of the typical
problems encountered in close range photogrammetric evaluations.
Problems including datum definition, configuration design and the implication
of physical and practical constraints can be assessed and solved via network
design and simulation methods prior to actual acquisition of data.
Consequently a network can be implemented for which all design problems
have been solved and which will meet specified precision criteria. The case
study not only ties together the various design problems but also illustrates
practical design problems evident in many practical applications. Several
conclusions can be formulated from the case study.

. For a datum defined by absolute, explicit constraints, excess control
does not improve network precision estimates. The "best" precision
estimates, with respect to a fixed datum, are achieved by optimal zero-
variance computational base configurations.

. For precision criteria which includes equal precision determination
in each coordinate direction, Application of "normal" imaging geometries
is not applicable. "Normal" configurations have reduced precision
estimates in the direction parallel to the camera axis. For isotropic
precision, convergent imaging geometries should be utilized.

. For datum definition by a zero-variance computational base, control
should be distributed over the whole target array. The control point
triangle should be of maximum area and should pass through the
centroid of the object point array.

. Many photogrammetrists are either unfamiliar or ignorant of the free
network concept. For many close range photogrammetric applications,
where position is not required relative to a fixed datum, free networks
offer the best solution. Free network precision estimates are always
higher than from alternative datum definitions and hence the method is
preferred for high precision applications.  An education of
photogrammetrists is required on the inherent benefits of free network
solutions, and the applicability of such solutions in the majority of close
range photogrammetric applications.
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11. CONCLUSIONS

This study defines the techniques for network design in close range
photogrammetry. Many of the developments for these techniques have
deliberately been theoretical in nature and were designed to maintain the
continuity of theory from first principles through to the final network design
principles.

11.1 Summary and Recommendations

(i) The process of close range photogrammetric network design can be fully
described via four basic design problems.

Zero-Order Design - datum definition
First-Order design - network configuration
Second-Order design - observation "weight"
Third-Order Design - network densification

In close range photogrammetry the network design process is simplified
to a certain extent. The second-order design problem reduces to a simple
scaling procedure based upon image observation precision. The basic
methods of solving this problem are to upgrade the comparator or analytical
plotter, to carry out multiple image observations for each object point or to take
multiple exposures at each camera station. If multiple exposures are utilized
and a new set of camera exterior orientation parameters are included for each
new exposure, as is the usual case, then the second-order design problem is
not significant as it is effectively solved in the first-order design phase. For
close range photogrammetry the third-order design problem is solved at the
first-order design phase. The problem, which involves network densification,
is solved during the determination of the density and distribution of the object
point array in the first-order design.

(ii) The network design problems which are of fundamental importance in
close range photogrammetric network design are the zero-order and first-order
design problems. The zero-order design solutions which are applicable in
close range photogrammetry include zero-variance computational base
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solutions, in optimal control configurations, free network solutions and, in
special cases, Bayesian least squares solutions. The optimal solution to the
datum problem is dependent upon finding a minimum variance solution. Such
a solution is only possible under application of absolute, minimal constraints.
Over-constrained solutions require both an excess of surveying for control
provision and do not give optimal precision estimates and hence are not
applicable for close range photogrammetric datum definition.

Zero-variance computational base solutions are applicable in cases
where an absolute datum definition is required. Biased precision estimates
will result and will be dependent on the control configuration selected.
However this bias can be minimized by selecting a control configuration where
the triangle defined by the three control points selected is both of maximum
area and passes through the centroid of the object point array.

(iii) Free network solutions offer the optimal solution to the close range
photogrammetric network design problem. A free network solution is
applicable in cases where the shape of the object point array, as opposed to
the position of the object points with respect to a fixed datum, is required. Free
network solutions for close range photogrammetry give a partial minimum
trace datum with respect to the object points, or a chosen subset of the object
points. Free networks yield a minimum mean variance and minimum biased
estimates for the parameters to which the free network conditions apply.

(iv) Bayesian least squares is applicable in close range photogrammetry
where a good a priori knowledge of the parameters is available. As a solution
to the datum problem, however, Bayesian estimation techniques are not
applicable. A Bayesian estimation solution usually results in an over-
constrained system, from which invariant quantities become dependent on
constraint selection and precision estimates are never optimal.

(v) Solution of the first-order design problem is dependent upon the form of
the various factors which influence the network configuration. The primary
component in the first-order design solution is the imaging geometry. The
imaging geometry will define the form of the precision estimates which result
from the evaluation process, in terms of precision homogeneity. Precision
homogeneity, which refers to the degree of homogeneity in precision
estimates in the three coordinate directions, approaches maximum
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homogeneity at a convergence angle of the camera axes of 120°. Imaging
geometry also influences the magnitude of resulting precision estimates, with
a different precision in planimetry and height resulting, depending on the
convergence angle.

(vi) Network configuration components, such as number of camera stations,
number and distribution of object points, base/distance ratio ("normal”
configurations), the influence of self-calibration additional parameters, camera
type, image scale, object points clusters and multiple exposures, are merely
precision scaling factors. This scaling is essentially with respect to the form of
the precision estimates, as defined by the imaging geometry.

(vii) In order to assess the quality of network design, measures have
been formulated so that a global assessment of the network, in terms of either
precision, accuracy, reliability or sensitivity, is possible. The principal quality
criterion is that of precision. In general, assessment of network precision with
respect to specifications is carried out during the design process, with
evaluation with respect to the remaining network quality criteria being carried
out after the initial design. Precision measures which give a global indication
of network quality have been developed and evaluated. The pertinent global
precision measures include the mean standard error and the photogrammetric
network strength factor, which assesses network strength on the basis of
precision estimates and network configuration. Local precision measures
which have been utilized include the standard deviation and the distance
standard error. For the purposes of assessing precision homogeneity, the
standard error range offers a global measure which can easily be evaluated.

(viii) The problems of network design are solved by an indirect method.
Based upon trial and error simulations, a network can be formulated such that
the network meets the imposed quality criteria, which may be in terms of
precision, accuracy, reliability, sensitivity and economy. For these solutions
interactive computer graphics and network simulation provide an effective
method of carrying out a network design. Networks can be formulated, based
upon a graphic representation of the network configuration and any physical
constraints on the site. This configuration can then be altered based upon
assessment of the precision estimates from the simulation and adjustment
routines. Although networks designed by trial and error methods are not
optimal, with respect to satisfying quality criteria, the networks so designed do
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meet quality criteria and represent a network which can easily be implemented
in practice.

(iX) Applicable in close range photogrammetric network design process is the
adjustment process based upon limiting error propagation. The limiting error
propagation procedure gives precision estimates which closely approximate
the free network estimates. The advantage of the limiting error propagation
solution relates to the vastly reduced computation time for the solution. In
evaluation of the first-order design problems, where numerous trial and error
simulations may be required, the network can be evaluated by the limiting
error propagation solution and time in determining the "best" solution can be
reduced. Having solved the first-order design an appropriate total error
propagation solution is carried out in order to verify the approximate precision
estimates from the limiting error propagation solution.

The techniques presented comprise a viable method for designing
networks in close range photogrammetry. A common criticism of the design
methodology relates to the trial and error, iterative solution method. This
criticism is of no concern, however, as the method allows for the design of a
network which can be implemented in practice and for which the
photogrammetrist can predict achievable object point precision with assurity.

11.2 Future Research

Several areas pertaining to network design require evaluation and
research in the future. The development of these areas will allow the design of
networks, in close range photogrammetry, to progress past what is currently a
trail and error network design technique.

Direct solution to the network design problems, especially with
respect to first and second order design problems. If a direct solution
technique could be formulated then an optimal network design, with
respect to the quality criteria of interest, could be implemented.

. Integration of quantitative economy measures, simultaneously with
other quality criteria, into the close range photogrammetric network
design process. At present economy assessment is essentially
qualitative and carried out after the network has been designed, and
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therefore the current design techniques do not offer network designs
which are optimal with respect to an economic cost function.

. Development of network precision measures based upon datum
invariant quantities. At present all precision measures are dependent
upon the selected datum constraints and hence give a datum-biased
estimate of network quality. Precision measures based upon datum
invariant quantities would offer a method of assessing network quality
independently of the chosen datum.

The points presented above are a few of the technical considerations
which require attention with respect to the technical aspects of close range
photogrammetric network design. Also of considerable importance, but not of
a technical nature, is the education of possible users of close range
photogrammetry of the potential of the technique as a high precision metrology
tool. In order to achieve this, photogrammetrists in general should be made
aware of the precision capabilities of close range photogrammetry and of the
essential requirements for prior network design and analysis in order to
ensure such precision.

This study has provided a comprehensive evaluation of the processes
involved in close range photogrammetric network design. Utilizing the design
process which have been developed, close range photogrammetry becomes a
viable alternative to high precision mensuration application in industry and
engineering.
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APPENDIX
DEVELOPMENT OF OBSERVATION EQUATIONS

Observation equations, based on the least squares mathematical model
of Chapter 3, will be formulated in detail. Observation equations relating to
measurement of image coordinates, exterior orientation parameters, control or
object points, straight line distances, elevation differences, azimuths,
horizontal angles and vertical angles will be considered.

A.1 Image Point Coordinates (Collinearity Equation)

The basic observation equation in photogrammetric adjustments is the
collinearity equation. The equation, as developed and derived in Chapter 2,
relates observations on the image or photograph to the unknown parameters
defining the position of a point in a three dimensional rectangular coordinate
system in the object space. The collinearity equation, as given in equation
2.12 and 2.13, can be written in the following form.

o (MK XU)+mp(Yi - Vi) +mig(Zi - Zy)
i~ %o (m31(Xi - X|_)+m32(Yi - YL)+m33(Zi " ZL)

): Fy=0 (A1)

1(Xi - X)) +mMoo(Y; - Y1) +Mos(Z; - ZL)) F, =0 ~(A.2)

i-Yo+f m2
Yi~Yo (m31(Xi - Xu)+ma2(Yi - Yi)+mas(Zi - Zy)

where X;,yi = coordinates of point i (image space coordinate
system)
Xo,)Yo = coordinates of the principal point (image space
coordinate system)

f = focal length
Xi,Yi,Z; = coordinates of point i (object space coordinate
system)

XL, YL, ZL = coordinates of the perspective centre (object
space coordinate system)
mjj = elements of the 3x3 rotation matrix as given by
equation 2.9
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For equations A.1 and A.2 to be used in the least squares mathematical
model they must be expressed in a linear form and must be presented in the
form of equation 3.8, ie v = AX - ! . Linearization of equations A.1 and A.2 is
carried out by utilizing the Taylor series expansion of equation 3.7. In
developing the observation equations for image coordinate observations the
following assumptions are made :

1. All points are imaged on all photographs. Such an assumption
can be adapted to a specific case by deleting the appropriate
observation equations where necessary.

2.  No additional parameters, for the modeling of unresolved
systematic errors, are to be included. If additional parameters
are to be incorporated, ie for a self-calibrating adjustment as
discussed in section 2.4.5, then addition of parameters sets to
the model can be carried out as detailed in Kilpela (1981),
Fraser (1982Db), Fraser (1982c)).

Prior to linearization of the collinearity equations the observations are
established in the form where measured quantities are related to "true"
quantities. Therefore the image coordinates x;and y; are written in terms of
measured quantities x;°°, yi°° and residuals vy and vy.

Xj = X{%° + Vy .{A.3)
Yi=Yi%® + vy

The unknown parameters are expressed in terms of a correction to an
approximate value. For estimates of the unknown parameters f(i, \A/i, Z, and ﬁ\(L,
QL, ﬁL, 8, & and ¥ the following equations can be formulated. Note that
approximate values are denoted by the superscript "0" and corrections to the
unknown parameters are denoted by the prefix "A".

A A

XL =X o+ AXL

YL =Yro+AY, (A.42)
2.=20+A2,

Q=00+ Al
8=00+Ad (A.4b)
Kk =1K0 + Ak
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= Xe+ AX;
i=Ye+AY, ' (Adc)

=790 + Az

N> <> %>

The linearized collinearity equations, in the notation of equations A.3 and
A.4, become :

OF,N\O . A OFy\0 A OF,\0 . A Fy,\Ne . A oF O . A
wi=(5%E) A%+ (5] AV (52) AZL+(8—(;) Ao+ Séﬂ A

(%%)o AAK + (%—[):()i()o A)A(; + (%%ii)o AQi + (%_;)i(_)o A%i +F° =0 ..(A.5)

oFy\° , A oFy\0 , A oFy\O , A oFy\° A /OFy\O A
Vy'_(a_XE-) AXL+(a—Y%) AYL+(a—Z\LL) AZ| + E:.L) AOH-(%\LJ AB +

(aaﬂ]()o Ax + (3—;%)0 A)/Z, + (aa%)o AQ, + (g—;\f)o A%, +Fy©°=0 (A.6)

Equations A.6 and A.7 follow the convention established earlier where
the superscript "o" denotes a coefficient evaluated at the approximate value.
Likewise the functions Fx°and Fy° are the equations A.1 and A.2 evaluated at
the approximate values. To simplify the linearized expressions the following
notation will be adopted :

we@ el
e e
az = (_g_%)o azz = g_;f)o
ais= —aé;—:_j- ¥ a4 = (%—Z‘L ¥ (A7)
ais = %%X‘o 825=%\LO
aip = %% ’ aze = %—? ’



The partial derivatives listed above, with the exception of the partial
derivatives ai14 to aig and apz4 to azg, are evaluated in numerous
photogrammetric texts, including Moffitt and Mikhail (1980), and will not be
evaluated here. The partial derivatives with respect to the rotation elements
azimuth, tilt and kappa are not given in such texts however. Consequently the
six partial derivatives relating to the rotations will be evaluated.

Equations A.1, A.2 and 2.8 will be utilized in the derivation of the
derivatives, where equations A.1, A.2 and 2.8 are :

M = My Mg Mg, .(2.8)

Fx=xi'xo+f(%) (A1)
\

Fy=vi- Yo+ 1) ~(A2)

where U = my(Xi- Xp)+mqo(Yi- Yi)+mys(Zi - Z,)

Vo =ma(Xi - Xp)+moa(Yi- Y )+mas(Zi- Z))
W = mgi(Xj - XL)+maa(Yi- Y1) +mas(Zi - Z1)

A.1.1 Design Matrix Coefficients ai4 and az4 - Azimuth

The partial derivative of 2.8, with respect to a, becomes :

oM Mg,
—=McM
d M0 5a
M -sina -cosa O 0-10
where —==| O 0 0 =Ma(1 0 oj
9 | _coso sino 0 000
oM 0-10 0-10
therefore — = McMgMy | 1 O O|=M| 1 O O
- oo 000 000
mi2-m14 0
=(m22-m21 0
Mgz -mgq 0
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oM
Therefore I and oy are determined by substitution of — into
o oo oo

equations A.1 and A.2 respectively. The resulting partial derivatives, namely
a4 and asy , become :

ais4 —9Fx =’f"(a_U 'H‘a‘w‘)
doe WHa Wohg
ags 2Fx LV VoW,
oo Wla Wog

oU
where Sy M2 (Xi- Xp) - myqg (Yi- Y0
oV
Y = Me2 (Xi - X1) - mzq (Yi-Y0)
o
oW
S = Ma2 (Xi- XL) - maq (Yi-YL)
A.1.2 Design Matrix Coefficients ay5 and ass - Tilt

The partial derivative of 2.8, with respect to 8, becomes :

oM dMg
30~ Ma g Me
1 0 0
where M:(o cosH Sih@J: [ 8 8 ?JM@
J 0 -sin® cosH 0-10
therefore
M 000 0 0 sink
S8 = MK((()) 3 g]MeMa = .O 0 cosk |[M
) -sink -cosx 0
( sink.ma1 sink.ms» sink.m33
= COSK.Mat COSK.M32 COSK.Ma33

-SiNK.M11-COSK.Mp1 -SiNK.M{2-COSK.M22 -SiNK.M13-COSK.Mo3

rLi1 L2 Lys
=| L2t Lp2 L3
L3 La2 Laa

oM
Therefore oFx and aaiel are determined by substitution of EYY into

equations A.1 and A.2 respectively. The resulting partial derivatives, namely
a{s and ass , are formed as follows.
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oFx f oU Uaw
L W(ae Wae)
a25=&=L(§\L_Y_9_V!
00 W'hs Wog

ou

where o5 = Lia (Xi- X0) + Lyg (Yi- YO + Ly (Zi - Z)
oV
-é-e— = Loo (Xi- Xp) + Loq (Yi -YL) + L1 (Zi- Zy)
oW
55 = Laz (Xi- XL) + La1 (Yi- Yu) + L1t (Zi - Z)
A.1.3 Design Matrix Coefficients aig and azg - Kappa

The partial derivative of 2.8, with respect to k, becomes :

aM oM
KM(—)Ma
81(
-sinkcosk 0 010
where -COSK snmco -1 0 0 |M,
00O
0 1 010
therefore— -1 0 MKMG Mg =/ -1 0 0[M
00 000
21 M22 Mag
1-m12 m13

oM
Therefore 2% and 2 are determined by substitution of —— into
oK oK oK

equations A.1 and A.2 respectively. The resulting partial derivatives, namely
aig and apg , become :

R 13y
16 ok W ok
o OFx f oV
26_31( "W ok
oU
where S =M (X - Xp) +ma2 (Yi-YL) + ma3 (Zi- Z1) =V
oV
=M (Xi- X1) -my2 (Yi- Y1) -m3(Zi-Z) =-U
oW
— =0
oK
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Equations A.5 and A.6 can be written in matrix notation, in terms of the
notation of equation A.7.

(5%
A

AY A
A AXi
Vi) (@11 812813814 815816 )| AZL | (847 A1g 819) AY _(—Fx°
Vyi d21 dz2 423 Ap4 A25 826 A& d27 d28 az29 AT
Ad AZ;

\ak

(A.8)

The observation equations, relating n image coordinate observations on
m photographs to the unknown parameters, in matrix notation becomes:

A A
Vi+ Ayg . X1+ App  Xo = ¢ .(A.9)
(2mn,1) (2mn,6m) (6m,1) (2mn,3n) (3n,1) (2mn,1)

The least squares model, for the linearized collinearity equations, can be
found in Burns (1982), Moffitt and Mikhail (1980) and Slama (ed) (1980);Ch 2
and development of the observation equations for self-calibration can be
found in Brown (1980), Fraser (1982b), Fraser (1982c) and Kilpela (1981).

A.2 Observation of Exterior Orientation Parameters

Observations of geographic location and orientation of a camera station
can be formed into observation equations of the form of equation (3.8). For the
“true" parameters X, Y|, Z, o, 6 and k equations can be formulated in terms
of the observed parameters X ©°, Y ©°, Z; 99, 0°°, °° and x°° and residuals

VXL! VYL! VZL) Va! Ve’and VK'

X=X + Vyi

Y=Y + VyL

2L =21%°+Vz .(A.10)
o =00 + Vg

6 =0°° + Vg

K = K% + V

227



Equations A.4a and A.4b relate estimates of the parameters to
approximate values and corrections to approximate values in the following
form :

)A(L = X 0+ AS\(L

YL =Yoo+ AT, (A.4a)
%L-—- Z.° +A2|_

& =00+ An

B =g +AB ..(A.4b)
1AC= K0 +A/1\(

For an unbiased estimate of the unknown parameters equation A.10 can
be equated to equations A.4a and A.4b to give the observation equation for
observations on exterior orientation parameters.

AXL X 0 - X 00
Vxi AY| (YLO - YLoow

\

Voc - Ao = o0 - 00 ..(A.11)
Vg AB go - goo

VK AK KO - 060

For observations at m' camera stations, equation A.11 can be written in
matrix notation as :

Vo - Xy =co (A12)
(6m',1) (Bm',1) (6m', 1)

A.3 Control or Object Point Coordinates

Observations on object points, which are in the form of coordinates in the
object space coordinate system, are control point coordinate observations.
Such observations act as "control" or constraint in any adjustment process.
Actual observations are in the form of distances and angles in the object space
coordinate system, from which object space coordinates are derived.

Expressing the "true" coordinates X;Y;,Z; in terms of measured
coordinates X©0,Y00,Z,0° and residuals Vx,Vy,Vz the following equations can
be formed.
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Xi = X{°° + Vy
Yi=Y% + Vy .(A.13)
Zi=2°° +Vz

Equation A.4c relates estimates of the parameters to approximate values
and corrections to the approximate values in the following form.

)A(i =X+ Af(i
¥.=Yo+AY, (Adc)
2i=7p *AZ,

For an unbiased estimate of the unknown parameters equations A.13
and A.4c can be equated to give the control coordinate observation equation.

Vy AX X© - X0
Vy [=| AY; |=| Y - Yo ~(A.14)
Vz Aéi Zjo - Zo

The observation equation for n' control observations can be expressed
in matrix notation as :

A
Va -Xz =cg (A.15)
(3n',1) (3n",1) (3n',1)

A.4 Straight Line Distances

Observation equations to relate a measured distance between two object
points in the object space coordinate system to unknown parameters, requires
formulation.

A "true" distance Si, between points j and k on the object, can be
expressed in terms of a measured distance Sik°° and a residual Vs.

Sik = Sk + Vs ..(A.16)

A
The estimate of the distance Sk can be expressed in terms of an
A
approximate distance Si° and a correction term ASjk,

229



éjk = Sjk° + A/éjk -(A17)

For an unbiased estimate of the distance, equations A.16 and A.17 can
be equated to give :

Vs - Aéjk = §jk° - Sik*° ..(A.18)

A problem with equations A.16 to A.18 is that they do not directly relate to
the unknown parameters, ie Xj, Yj, Zj, Xk, Yk, Zk which are the coordinates of
the points between which the distance was measured. The general form of the
equation for a distance between two points in a rectangular coordinate system
is given by :

Sik = V{Xj - XK)Z + (Y] - Y2 + (Z] - Zu)? -(A.19)

Equation A.19 is non-linear and will be linearized by the Taylor series
expansion of equation 3.7. Substitution of the linearized equation into
equation A.18 gives the observation equation for a straight line distance
between two object points.

3Sik 3Sik 39S A8 (3Sik 3P A&
Vs - ( axk) AX;- ( av,k) AY;- ( az,-k) AZ;- (axk) AXy - (BY:) AY -

@Ek) AZy = Sk° - Sike® (A.20)

To simplify equation A.20 the following notation will be used :

aSp (X Xid oo (2SKP _ 05X
(3XJ ) Sik (axk) ~ TSk
9SikY  (YjYk) _(9Siky _ _(Yj-Yk)
[ =2IKY — .\
v (LB _ (£ 2K) oo (OSiY _ 20
3 dZ; Sik 6 BZk Sik
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Equation A.20, in terms of the notation of equation A.21, becomes :

[ A%j \
AY]'
AZ;

A
AXk
AV

\A%k )

The observation equation for d measured distances can be expressed in
matrix notation as :

Vs - (81, S2, 83, S4, Ss, Sg ) = Sjk° - Si°° -(A.22)

A
V4 - A4 . X2 =Cq4 ..(A.23)
(d,1) (d,3n) (3n,1) (d,1)

From equation A.21 it should be noted that each partial derivative is a
function of the distance. Hence as the distance becomes small, ie Sk = 0,

then the solution based on this observation equation will become unstable.

Note that equation A.23 is a special case for a distance measured
between two points on the object. For a more general equation, where
distances could be measured from camera stations to the object as well, then
extension of equation A.23 to include the parameter set Xy would be carried
out. Such on observation equation would be of the form :

A A
Va-As1, Xi-Asp Xo=04 -(A.24)
where the coefficient matrix A4y would be a null matrix if distances
were only measured on the object.

Development of distance observation equations can be found in Mikhail
and Gracie (1981) and Faig and El-Hakim (1982) and a solution for aerial
photogrammetry can be found in Wong and Elphingstone (1972).

A.5 Elevation Difference

Observation equations to relate an elevation difference, between two
points in the object space coordinate system, to unknown parameters requires
formulation. A "true" elevation difference hjk, between points j and k in the

231



object space, can be expressed in terms of a measured elevation difference
hjk°® and a residual Vp.

hjk = hjk®® + Vh ..(A.25)

The estimate of the elevation difference ﬂjk can be expressed in terms of
A
an approximate elevation difference hjy® and a correction term Ahj.

Ak = hixe + A .(A.26)

For an unbiased estimate of the elevation difference equations A.25 and
A.26 can be equated to give :

A
Vi - Ahjk = hjk® - hj®° .(A.27)

The term A’r\wjk must be expressed in terms of the coordinates of the points
j and Kk, hence giving an equation in terms of the unknown parameters.

Vh - (A%j - A%k) = hjk° - hj®°
OR ..(A.28)

Vh-(0,0,1,0,0,-1) 1 A" =hj°- hy

The observation equation for e measured height differences can be
expressed in matrix notation as :

Vs-As . Xo=Cs (A.29)
(e,1) (¢,3n) (3n,1) (e,1)

Equation A.29 is a special case where elevation differences are only
measured on the object. A more general case, involving elevation differences
between exposure station and object point and/or between object points, is
given by the following observation equation.
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A A
V5- A51X1 - A52X2= Cs ..(A.30)
where the coefficient matrix Asy would be null for elevation
differences observed on the object only.

A.6 Azimuth Observation

The azimuth of a line is defined as the horizontal angle, measured
clockwise from the positive Y axis of the ground coordinate system (true north),
to the line. ( section 2.1.2.2) An observation equation which relates the
measured azimuth to the unknown parameters requires formulation.

The "true" azimuth ajj from the object point i to the object point j, as shown
in figure A.1, can be expressed in terms of a measured azimuth o;i°® and a

residual V.
ojj = 0% + Vg .(A.31)

The estimate of the azimuth &ij can be expressed in terms of an
approximate azimuth «jj® and a correction term A&;j‘

&ij = oj® + A&ij .(A.32)

For an unbiased estimate of the azimuth equations A.31 and A.32 can be
equated to give :

Vg - A&ij = 0ji° - o .(A.33)

From figure A.1, the azimuth of the line is given by :

oy = tan-1 (H) .(A.34)

Equation A.34 is non-linear and hence linearization by a Taylor series
expansion (equation 3.7) is carried out. Substitution of the solution into
equation A.33 gives the observation equation for an azimuth observation.

Do
Vo (a(;c('.)oAﬁ @(?TAY. @?,TAXJ @?TAYJ P - %0 +(A.35)
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To simplify equation A.35 the following notation will be used

O0j

o = (a_‘;‘#)" (axj (A.36)
Lot

ol ol

The partial derivatives, defined by equation A.36, are a function of the
horizontal distance between the two points. As this distance approaches zero
the azimuth becomes undefined and hence an unstable solution for this
equation results. Equation A.35, in terms of the notation of equation A.36,
becomes :

Vo - (04,02, 0,053,064, 0) | A" 1= 04if° - 0(jj®° .(A.37)

In matrix notation, for a measured azimuths, the equation becomes

Ve - As.X2 = Ce (A.38)
(a,1) (a,3n) (3n,1) (a,1)

Equation A.38 is a special case for an azimuth measured between two
points on the object. For a more general solution, where an azimuth is
measured from a camera station to an object point or between object points,
then extension of equation A.38 to include the parameter set Xy would be
carried out. The observation equation of this form would be

A A
Vg - Ag1.X1 - Aga.Xo= Cg ..(A.39)

where the coefficient matrix Agi would be null for azimuth
observations on the object only.
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Figure A1 Azimuth observation between object points
A.7 Horizontal Angle Observation

Observations comprising horizontal angles will be analysed on the basis
of clockwise angles at an object point, from one object point to another. The
observation equation for horizontal angle measurement is formulated as
follows.

A "true" horizontal angle Bjk, from an object point i and between object
points j and k, as shown in figure A.2, can be expressed in terms of a
measured angle Bjx° and a residual V.

Bik = Bik®° + V3 ..(A.40)

The estimate of the angle ﬁjk can be expressed in terms of an
approximate angle Bjx° and a correction term A/[\Bjk.

ﬁjk = Bj° + Aﬁjk .(A.41)

For an unbiased estimate of the horizontal angle equations A.40 and
A.41 can be equated to give the following equation.
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Vg - ABj= Bje - Bre® (A.42)

From figure A.2 it can be seen that the horizontal angle Bjk can be
expressed in terms of two azimuths, ojj and ajk. The horizontal angle is

therefore given by :

4 (XK - X PoSERS
Bk = tan"? (Yk ' Y'i)-tan 1 (7]1—\-(7) (A.43)

Equation A.43 is non-linear and linearization by a Taylor series
expansion (equation 3.7) is carried out. The linearized equation is substituted
into equation A.42 to give the observation equation for a horizontal angle.

Bk P & (BkP & (BkP & (BikP 18 (BkP 18
(2T ok (2] o (2 o (27 - (2] s

aB; A
(a—%)o AYie= Bi® - By +(A.44)

To simplify equation A.44 the following notation will be used :

B dB; aB;

MG BT B .
Bk 9B o

Bz=(§§(1i— B4=(§ylj5 Be=(‘a—€f)g

The partial derivatives, defined by equation A.45, are functions of the
horizontal distance between the points. As these distances become small the
horizontal angle will be undefined and the solution will be unstable.

Equation A.44 in terms of the notation of equation A.45 becomes :

VB - (B1’B2’ O,BS’B4v O: BS»BG: O) Y] = Bjko - Bjkoo (A46)




In matrix notation, for b measured clockwise horizontal angles, the

" observation equation becomes :

V7- Az Xo =7 (A.47)
(b,1) (b,3n) (3n,1) (b,1)

Equation A.47 is a special case for a horizontal angle measured between
two points on the object, at an object point. For a more general solution,
where a horizontal angle is measured from a camera station between two
object points or at an object point between two object points, then extension of
equation A.47 to include parameter set X; would be carried out. In the
derivations above the point i would be replaced by camera station L and
hence the observation equation would be partially in terms of the geographic
location of camera station L. The observation equation of this form would be :

A A
V7 - A71.X1 - A72.X2= C7 ..(A.48)
where the coefficient matrix A7y would be null for horizontal
angles measured independent of a camera station.

Y
Y. | L
j : Point j
Y, Point k
Y.
|
> X

Figure A.2 Horizontal angle measurement between two object points, at an object point
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Linearization of the equations for horizontal angles and azimuths can be
found in Mikhail and Gracie (1981). An analogous solution, for aerial
photogrammetry, is given in Wong and Elphingstone (1972).

A.8 Vertical Angle Observation

Observation equations to relate a vertical angle, measured between two
object points in the object space coordinate system, to unknown parameters
requires formulation.

A "true" vertical angle Ej, between points j and k on the object, can be
expressed in terms of a measured vertical angle Ej°° and a residual VE.

Ejk = Ex® + Vg ..(A.49)

A
The estimate of the vertical angle, Ejk, can be expressed in terms of an
A
approximate vertical angle Ejx° and a correction term AEj.

éjk = Ejk° + Aéjk - .(AB0)

For an unbiased estimate of the angle, equations A.49 and A.50 can be
equated to give :

VE - Aéjk = Ejk° - E° ..(A.51)

A problem with equations A.49 to A.51 is that they do not directly relate to
the unknown parameters (ie X;, Yj, Zj, Xk, Yk, Zk, which are the coordinates of
the points between which the vertical angle was measured.) The general form
of the equation for a vertical angle between two points in a rectangular
coordinate system, with reference to figure A.3, is given by :

Zi- Zy ,
Ej = tan-" (_'SHT) (A52)

where SHjx = V(X - Xk)¢ + (Yj - Yk)? = horizontal distance
between points j and k.

Equation A.52 is non-linear and will be linearized by the Taylor series
expansion of equation 3.7. Substitution of the linearized equation into
equation A.51 gives the observation equation for a vertical angle measured
between two object points.
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dEjk oEjk JEjk JEjk oEjkY &
VE- (axl) 8%- (aYJ) AY;- (aZJ) A2- (ax ) M- (aYk) AYk-

@E k) AZy = Ej@ - Ejo® (A53)

To simplify equation A.53 the following notation will be used :

9By 9Ejky
(ax ) e4=(axk)
oEjk oEjk
(av ) (aYk) (A.54)
aEk aEk
2= (%) o= (5]

Equation A.53, in terms of the notation of equation A.54, takes the
following form.

A
AX;
(A%
AY;

A
AZ;
A
AXk
A
AYk
A
\AZk)
The observation equation for e measured vertical angles can be
expressed in matrix notation as :

VE- (e, ez €3, €4 65, 65) = Ex° - Ejo° ..(A.55)

Vg - Ag . 5\(2 =Cg ..(A.56)
(e,1) (e,3n) (3n,1) (e,1)

From equation A.54 it should be noted that each partial derivative is a
function of the distance. Hence as the horizontal distance becomes small,
ie SHjk = 0, then the solution based on this observation equation will become
unstable. Equation A.56 is a special case for a vertical angle measured
between two points on the object. For a more general equation, where angles
could be measured from camera stations to the object as well, then extension
of equation A.56 to include the parameter set Xy would be carried out. Such
an observation equation would be of the following form.
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A A
Vg - Agi. Xy - Ag2, X2 = Cg .(A.57)
where the coefficient matrix Agy would be a null matrix if vertical
angles were only measured on the object.
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