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ABSTRACT

In this paper the basic observation model is derived and different processing strategies that can be
implemented for the determination of station coordinates will be briefly described. In particular, the
rank deficiencies present in the system of GPS normal equations are discussed in the context of
conventional geodetic network design and analysis practices. Methods of eliminating rank
deficiencies, particularly those arising from the various bias parameters, as used in various GPS
processing software, will be described.
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1. INTRODUCTION

Up until the mid 1980's the standard surveying techniques for determining the
coordinates of points were based on the theodolite and electronic distance
measurement (EDM) technologies. These measurement technologies were the
basis of the methods of triangulation and trilateration used for the establishment
of geodetic control networks. Although in the 1970's a lot of survey control was
also established using the TRANSIT Doppler satellite system, the overall impact
of satellite positioning technology on everyday survey operations was relatively
minor. On the other hand, the use of satellites for specialised geodetic
applications has a comparatively long history going back to the launch of the first
artificial satellite in 1957. The analysis of tracking data to artificial earth
satellites, initially with optical systems and then subsequently with microwave
and laser tracking systems, has made a significant contribution to the mapping of
the earth's gravity field. Nowadays, the techniques of satellite geodesy can
determine of the coordinates of selected points on the earth's surface to such a
high accuracy that the relative movement of continents can be measured.

For over 20 years, traditional terrestrial geodetic practices for the establishment
of survey control, and the techniques of satellite geodesy, supporting earth
gravity studies, and more recently for crustal movement surveys, have operated
side-by-side with a minimum of interaction. However, with the advent of the
Global Positioning System (GPS) this neat separation of the roles of terrestrial
and satellite geodesy is no longer possible. In particular, GPS is the first satellite
positioning technology to seriously challenge traditional terrestrial techniques for
the establishment of geodetic survey control.

Although GPS is obviously a satellite technology, there are a number of special
features of the GPS observable (and hence in the data processing strategies
employed) that set it apart from both terrestrial geodesy and conventional
satellite technologies such as Satellite Laser Ranging (SLR). In particular:

+ GPS is a multi-satellite system, in which each satellite can be considered
an orbiting "trig station" with known coordinates.

* The GPS observable is a one-way biased range.

* To support survey operations, two or more ground receivers are usually
employed.

In contrast, conventional satellite techniques are based on one tracking station -
one satellite configurations, in which positioning is carried out in an "absolute"
sense, and the modelling of satellite motion is fundamentally physical in nature
and is critical to the method's success. The analysis techniques of satellite
geodesy have their origins in Celestial Mechanics. Furthermore, the "raw" SLR
measurement, for example, is very accurate and not significantly "biased".

GPS is essentially a technique for relative positioning sharing many similarities
with the method of trilateration, but in which the known trig stations have been
replaced by stations that are in orbit. For most applications, GPS is a geometric
technique that owes more to conventional notions of geodetic network
observation and analysis than it does to the "traditional" satellite techniques
such as SLR. However, the presence of a number of biases in the measurement
demand that special solution strategies be used.



2. GPS OBSERVATION EQUATIONS

The GPS satellites transmit on two L-band frequencies: L1 at 1575.42 MHz and
L2 at 1227.60 MHz. The observation equation for the carrier beat phase is
developed below, and is valid for measurements made on both the L1 and L2
frequencies.

2.1 Carrier Beat Phase
2.1.1 Clock Phase Error

In developing the observation equations for carrier beat phase it is useful to
suppose initially that every clock, or oscillator, can be compared directly with a
"perfect" oscillator having a known and constant frequency fo in our chosen

reference time scale (for example GPS Time). The phase of the "perfect”
oscillator at time T is represented by @©(T). The behaviour of phase with time
in general obeys the relation:

T
OT)=D(T) +  [H(T)dT (2-1)
To |

where {(T) is the time dependent frequency of the oscillator and T, is the time

at some arbitrary initial reference epoch. Because the frequency of the "perfect"
oscillator is constant at f0 we can write:

D(T) = D(Ty) + 1, (T=T,) (2-2)

The oscillators in the satellites and receivers are used to generate timed signals
such as the P code, C/A code and observation time-tags. It is common therefore,
to think of them as clocks and to consider the errors caused by the variation of
frequency as clock errors. This use of the term "clock error" can cause difficulties
when we wish to distinguish between the carrier phase error caused by
variations in the receiver oscillator frequency, and errors in the observation time-
tag which are also affected by these frequency variations. It is preferable to use
the terms clock phase error (or clock range error in the case of pseudo-range)
for the former and time-tag error for the latter (RIZOS & GRANT, 1990).
Although the carrier phase and observation time-tags are generated by the
same oscillator they are generally treated as if they were independent in GPS
processing. For instance, the time-tags are often corrected according to the
clock error estimates obtained from a pseudo-range point position. These
corrections are not generally accompanied by an equivalent correction to the
observed carrier phase.

If we use ¢(T) to represent the phase of our real (imperfect) satellite or receiver
oscillator at time T we can define the clock phase error €(T) in terms of the
phase error (H(T) — O(T)) :

g(T) = % (O(T) - (M) (2-3)



or
O(T) =DO(T) + fo €(T) (2-4)

Of course, in using equations (2-3) or (2-4) we must account for both the integral
and fractional parts of the phase. This point is important when we consider how
phase is actually measured.

2.1.2 Signal Transit Time

We now consider the transmission of a signal from a satellite i to a receiver j.
The time of reception of a signal at receiver j is Tj . The time of
transmisslon of that signal from satellite i is Tji. The transit time of the
signal from i to j is 'cji(T‘-) and is defined by:

(M) =Tj- T} (2-5)

The beat phase formed as an observation in the receiver is the difference
between the phase of the received signal and the phase of the local receiver
oscillator. The phase of the received signal at the time of reception Tj is equal

to the phase of the transmitted signal at the time of transmission Tji . Therefore:
08} (T) = 04/(T) — dii(T})

= 0U(Ty) = dioy(T)) (2-6)

where :

the carrier beat phase for receiver | , satellite i, at

reception time Tj

([)rj(Tj) = the received signal phase from satellite i at receiver j at
time Tj

010j(Tj) = the local oscillator phase of receiver j at time T;

¢“(Tji) = the transmitted signal phase from satellite i at transmission

time Tji

O (T))

From equation (2-4) we can write an expression relating phase and clock phase
error of the local oscillator:

Pioj(Ty) = D(T)) + f, &(T)) (2-7)

where §g(Tj) is the clock phase error of receiver j. Using equations (2-2), (2-4)
and (2-5), an expression relating transmitted phase and satellite clock phase
error, at reception time can be formed:

Oy = d(T) +1,€(T)
= O(T)) + 1,e(T) - f,7(T)) (2-8)
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where ei(T) is the clock phase error attributable to the oscillator of satellite i .
Combining equations (2-6), (2-7) and (2-8) leads to an expression for carrier
beat phase:

(T} == 1o5{(T) = €/T}) + &(T)) &)

The transit time component in equation (2-9) is made up of two parts. The main

part is derived from the true geometric range pj' between the satellite at the
time of transmission and the receiver at the time of reception. This can be
determined from the position vectors of the satellite and the receiver, as defined
in the same reference system. Given the speed of the signals (c, the speed of
light) we can calculate the time taken for the signal to travel this distance ( ’Ej' ).
The value we use for the speed of light ¢ is the speed in a vacuum and hence
this is the primary means of defining scale in GPS. |t is the satellite and receiver
position information contained in the geometric range that allows us to use GPS
for positioning. The second part of the transit time term accounts for the extra
time taken for the signal to travel through the earth's atmosphere. This is caused
by a change in velocity but can also be modelled as a time delay, a phase delay
or as an increase in range. We can incorporate this as a phase correction term

®atmos- (This may be further broken down into terms for different parts of the
atmospheric delay; 0ion, for the ionosphere, Orop for the troposphere.) Hence:

fo Tii(Ti) =(fy/c) Pji(Tj) + Oatmos (2-10)

Combining equations (2-9) and (2-10) we obtain a model for carrier beat phase:

0/(Ty) == (fo/ ¢ ) pJ(T) + 14 [€'(T}) ~ &(T)] - datmos (2-11)

2.1.3 Measured Carrier Beat Phase

The measured carrier beat phase differs from the above modelled beat phase in
a number of important respects. Firstly, the carrier beat phase measurements
will have random noise (and signal interference such as multipath) associated
with the measurement process. This is contained in an additional term Oppise-
Secondly, the definition of clock phase error in equation (2-4) depends on the
integral and fractional part of the carrier phase. When the carrier beat phase is
measured in the receiver the measurement is ambiguous with regards to the
number of integer cycles. This integer is set in a counter to some arbitrary value
when the satellite signal is first acquired (for example zero). There is therefore
an unknown integer number of cycles nj' difference between the measured
carrier beat phase and the model beat phase in equation (2-11). This will be
unique to a particular satellite-receiver pair. Furthermore, it will be a constant for
as long as the receiver continues to track and count the integer number of cycles
from the time the satellite signal is first acquired. At any epoch other than the
initial measurement epoch, the instrument measures the fractional phase (l)fjl(Tj)
and, in addition, takes a reading Cr(Tj) on the counter. This combined
fractional and integer phase observation is therefore referred to as integrated
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carrier beat phase, and nji is the cycle ambiguity. Thirdly, if the receiver at

any time fails to track the signal correctly and the ambiguity changes between
observation epochs then a cycle slip S(T;) has occurred.

The model of the measured carrier beat phase therefore includes these three
additional terms:

0p;/(T}) = 0g/(T}) + CR(T}) + S(T))
== (fy/¢) pT) + 1, [E(T}) — &(T))]

+ 1! = Oatmos + Dnoise (2-12)

This is the basic observation equation for integrated carrier beat phase. We do
not explicitly indicate the dependence of Oaimos and Onoise ON the receiver,
satellite or epoch, but it should be noted that these terms will vary slightly for
every observation. The change in observed carrier beat phase with time is
therefore equal to the change in any of the following quantities:

satellite - receiver geometric range,

satellite - receiver clock phase error difference,
net number of cycle slips,

atmospheric delay or,

measurement noise.

[ . ® ¢ o

2.1.4 Mathematical Model for Integrated Carrier Beat Phase

Equation (2-12) is an example of a physical model of the integrated carrier beat
phase observation. In order to develop an appropriate parameter model for
carrier phase data processing, a mathematical model needs to be set up first.
The mathematical model incorporates only those terms of the physical
observation model that will be parametrised for the adjustment, but without
explicitly defining the functional models for the terms. Equation (2-12) can
therefore be written in the form:

¢bji(Tj) =—( fO /c) pji(Tj) + f0 [8i(Tji) - 8j(Tj)]

+ nji ~ Oatmos (2-13)

Note that the fractional and integer part of the observation are now combined
into a single term q)bj'(Tj) , and the noise and cycle slip terms have been
dropped.

The mathematical model for pseudo-range, or "code phase" as it is sometimes
known, is also equation (2-13), but without the cycle ambiguity term.



2.2 The Nature of GPS Observation Model Biases

The basic GPS observables, carrier beat phase as well as pseudo-ranges, are
essentially biased ranges. The ideal quantity required for GPS data

processing is the irue range pji . The true range contains all the geometric

information necessary to determine the receiver coordinates and/or the satellite
position. One of the challenges in GPS processing is therefore to develop data
analysis strategies that best handle the measurement biases. The biases arise
from a number of sources:

* clock errors in both the receiver clocks ( € ) and satellite clocks ( g )s
* the atmospheric refraction delay ( 0atmos ), @and
* cycle ambiguities ( nji ), in the case of carrier phase observations.

Upon adopting equation (2-13) as the basic measurement model, and
proceeding with the normal linearisation process required for a least squares
adjustment, a further class of biases is introduced into the residual quantity:
measured range (phase or code) minus modelled (biased) range. This "O-C"
quantity now also includes errors in the a priori information contained in the
modelled range, primarily the errors in the assumed known receiver and satellite

coordinates (used to derive the "calculated" value for pji ). These additional
biases can be:

(a) explicitly included in equation (2-13) in the form of corrections to the a
priori information (receiver and/or satellite coordinates) in the event of
these parameters being adjusted, or

(b) neglected (for example when no receiver or satellite coordinate
adjustment is performed), in which case these biases are now
unmodelled errors.

A further challenge in GPS processing is therefore to develop strategies that
either reliably estimate the additional model biases introduced into a least
squares adjustment, or at the very least, minimise the effects of neglected
systematic and random (error) biases. The basic observable in GPS data
processing can therefore be considered to contain the following information:

(1) geodetic parameters of interest, such as the receiver or satellite
coordinates being estimated,

(2) explicit biases in the measurements that can be parametrised in
equation (2-13), and

(3) residual errors that may contaminate the "O-C" quantity and which are
not parametrised in the observation model, arising from measurement
noise, cycle slips, or faulty a priori knowledge of the biased range
parameters.

In particular we wish to direct our attention to the parameters that are explicitly
modelled: the geodetic parameters, and the remaining "nuisance" parameters
(cycle ambiguity, clock errors, atmosphere). Some of these biases are specific
to one receiver site, others are specific to a particular satellite, while others are
related to specific receiver-satellite pairs. Within this group of nuisance
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parameters, the bias subset comprising the cycle ambiguity and clock phase

error terms will be referred to collectively in this paper as the "clock biases".

2.3 Accounting for Biases

Dealing with the "nuisance" parameters in GPS solutions based on the
mathematical model (2-13) is not an inconsiderable problem. In fact much of the
development effort in GPS software has gone into investigating ways of best
reducing the computational burden imposed by having to determine the biases
present in the GPS range/phase measurements. Several approaches can be
taken:

(1) They can be estimated as explicit (nuisance) parameters.

(2) Those biases linearly correlated across different datasets can be

(38) The biases can be directly measured, for example using observations on
a second frequency in the case of the ionospheric delay.

(4) The biases can be modelled (possibly using external information), for
example, as is sometimes attempted for the tropospheric delay.

(5) They can be ignored.

2.3.1 Dealing with Clock Biases and the Fundamental Differencing
Theorem

The only options, however, that are applicable to the case of the "clock biases"
are (1) and (2). The questions that then immediately spring to mind are:

* Do the nuisance parameter approach (option (1)) and the data differencing
approach (option (2)) both lead to the same result?

* Which is the "best" approach?

The fundamental differencing theorem is useful in this regard:

"Linear biases can be accounted for either by
reducing the number of observations so that the
biases cancel, or by adding an equal number of
unknowns to model the biases. Both approaches
give identical results." (LINDLOHR & WELLS, 1985)

Thus the effect of the clock phase errors ( g and €' ) and cycle ambiguity ( nj' )
may be eliminated by differencing the basic equation (2-13) between satellites
and between receiver sites, observed simultaneously, and perhaps between
observation epochs as well; or by estimating them explicitly, and the result would

be equivalent.



The observation modelled by equation (2-13) is sometimes called "one-way
phase" or "undifferenced phase" to distinguish it from the more commonly used
single-, double- or triple-differenced phase observations described in section
2.4. The term "undifferenced phase" is, strictly speaking, a misnomer because
we can see in equation (2-6) that it is formed by differencing the incoming and
local (receiver) oscillator phases. Nevertheless we can refer to the two
approaches to dealing with the clock biases as being the "undifferenced" or
"nuisance parameter” approach on the one hand, and the "differenced"
approach on the other.

2.3.2 "Undifferenced"” & "Differenced” Approaches to Handling
Clock Biases

However, one comment on the equivalence between the "undifferenced" and the
"differenced” approach is worth making here. The double-differencing approach

(difference between satellites to eliminate €j , and between receivers to

eliminate €') does introduce mathematical correlations in the resultant double-
difference observables. Only if this correlation is reflected in the variance-
covariance (VCV) matrix of the double-difference observables will equivalence
between this method and the undifferenced approach be assured. The same
holds true for triple-differences. As a consequence, to ensure this equivalence it
is necessary to explicitly construct the VCV matrix at each observation epoch (of
course, in practice, advantage is taken of the fact that the weight matrix would
only change with a change in the satellite/receiver combinations used to
construct the double- or triple-differences).

In the undifferenced approach, there is more flexibility in the modelling options.
For example, the clock phase errors in equation (2-13) are a function of time. If
the satellite clock, or receiver clock, or both, had a stable, predictable behaviour
(as when external atomic frequency standards such as cesium or rubidium
oscillators are used), a parameter model based on a clock polynomial could be
used, and the coefficients estimated, together with the cycle ambiguity, as
session parameters. In general however, the clock phase errors are assumed to
possess the characteristics of "white noise" and are explicitly modelled by
independent bias terms on an epoch-by-epoch basis. The total number of clock
bias parameters is (R+S)T+RS , where R is the number of receivers, S the
number of satellites and T is the number of epochs in a session of data. There
is therefore a potentially large number of these bias parameters to be estimated.
In the case of 4 receivers, 4 satellites and 60 (one minute) measurement epochs,
the total number of clock bias parameters would be 496!

Further discussion on the relative merits of the differenced and undifferenced
approaches for GPS processing and on the clock phase error modelling options
is given in section 2.5.

2.4 Eliminating GPS Biases by Observation Differencing

A common technique in GPS phase adjustment is to form new observables from
differences of the carrier beat phase observations in which the unwanted clock
biases have been eliminated.



2.4.1 Between - Satellite Differences

Receiver clock phase errors may be eliminated by forming the difference
between simultaneous observations from one receiver to two satellites. The

operator V indicates a between-satellite difference. The differenced
observable can be written as:

Vo' 3(T)) = o (T) — dpA(T)) (2-14)

where we assume that the two observations from receiver j to satellites 1 and
2 have been made at the same time T; . We can write the differenced

observation using equation (2-13):
VoAM= = (/o) (p!(T) - pA(T))
+ [ V(M) -eXTPR) ]
+nj" =0 = Voamos (2-15)

Note that the receiver clock phase error has been eliminated and the clock bias
terms that remain are the between-satellite clock phase error and the between-
satellite cycle ambiguity. In as far as setting up the design matrix for a least
squares adjustment based on the between-satellite difference, we now have a
choice in the cycle ambiguity modelling. We can persist with individual

ambiguity modelling for n;' and n? , or we can adopt a new definition for the
ambiguity parameter consisting of the between-satellite cycle ambiguity kj12 (=

n;' - n?), see section 3.4.3.

2.4.2 Between - Station Differences

The satellite clock phase errors may be (almost) eliminated by forming the
difference between observation from two receivers to one satellite at the same
time. The operator A indicates a between-station difference also sometimes
referred to, ambiguously, as a single-difference. Although the nominal
observation or reception times of the two measurements may be the same, the

actual time of measurement may differ from one receiver to the next because of
receiver time-tag errors. We can construct the differenced observation from:

Ad12'(t) = Pp1'(Ty) = Dp2'(T2) (2-16)

where t is the nominal receiver clock time, and T; is the true time of reception of
the signal at receiver i . Using equation (2-13):

Ad12'(t) = = (fy/c) (P1i(Ty) = P2i(T2) )
+1, [€(T{) - €T ]
~to [ €4(Ty) ~ €2(T2) ]

10



+ 0y = ng' = Adaimos (2-17)

The satellite clock phase errors may not completely cancel because they refer to
different transmission times. The transit times to the satellite are different
because of the different satellite - receiver ranges, and this difference may be up
to 1 millisecond for a 300 km baseline. However, as the satellites use stable
atomic oscillators, it is usual to assume that the satellite clock phase errors are
identical and thus cancel when the between-station difference is formed (RIZOS
& GRANT, 1990):

Ad1(t) = = (fofe) (P1'(Ty) = p2i(T2))
—fo [€4(T1) —€2(T2) ]

+ r‘1i - n2i = Adatmos (2-18)

Note that the clock bias terms that remain are the between-station clock phase
errors and the between-station cycle ambiguity. As in the case of the between-

satellite difference, we can persist with individual ambiguity modelling for n1i
and n2i , or we can adopt a new definition for the ambiguity parameter
consisting of the between-station cycle ambiguity k12i (= n1i - n2i ).

2.4.3 Double - Difference Observable

This is the term usually applied to the observable which has been formed by
differencing between satellites and stations. This double-difference phase may
be created by forming the between-satellite difference phase and then

differencing between stations or by first forming the between-station difference
and then differencing between satellites:

Opp(t) = VAd1o14(1)
= Vo,'3(Tq) - Vo, '3(T))
= Ad12"(t) - Ad122(1) (2-19)
If we again accept the assumption that satellite clock phase errors cancel in a

between-station difference, then we can use equation (2-18) to derive the
double-difference observation equation:

Opp(t) = = (f/C) (P11(T4) = P13(T1) = p2'(To) + P22(T2) )

+n1"=n42 = np" + 3% = AVOaimos (2-20)

The only clock biases remaining in this equation are the integer cycle
ambiguities. We can explicitly model the 4 individual cycle ambiguities for n11,

n12, n21 and n22 , Or we can adopt a new definition for the ambiguity parameter
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consisting of the double-differenced cycle ambiguity kq5'2 (=n4'-ns2-nyt +

ny? ), see section 3.4.3.

2.4.4 Triple - Difference Observable

Bias parameters which are constant with time may be eliminated by forming the

between-epoch difference. The operator & is used to represent this
difference and is applied to double-difference observables to obtain the triple-
difference observables. If the nominal reception times, in receiver clock time,
are t; and t, , then applying equation (2-20):

OTp(tap) = AV 12 2(t,p)
= Opp(ta) — Oppl(ts)
= = (fo/0) (P1'(Ta1) = P13(Ta1) — P2' (Ta) + P234(Ta2) )
+ (fo/0) (P1"(To1) = P13(To1) = P2 (To2) + P22(Th2) )

= 8AVdatmos (2-21)

Note that all the clock bias terms, including the integer ambiguities, have been
eliminated. If our assumption that the integer ambiguity is constant in time is
false then an extra term will be required for the cycle slip. In fact, not only have
the (unknown) clock biases been removed, but also the effect of other biases
arising from atmospheric delay, satellite ephemeris error and receiver
coordinate error, are substantially reduced by triple differencing, making this
observation especially useful for cycle slip detection.

2.5 P rvation Modelling: th ifference n
ndifferenced Abppr h

All forms of the phase observation model, be it the one-way phase equation (2-
13), or the various differenced observation equation models described in section
2.4, are valid for GPS phase adjustment. In fact, any combination of between-
satellite, between-station and between-epoch differencing operation can be
applied to construct a GPS observable. The only requirement is that the
resulting mathematical observation model must account for all the clock biases
either by differencing them all out (for example, the triple-difference), or explicitly
modelling them all, or a combination of the two (such as in the case of the single-

and double-differences).

2.5.1 Clock Bias Modelling

It should be pointed out however that the explicit clock bias modelling approach
(in the undifferenced or single-difference observation models) introduces an

additional problem, namely: what parameter model should be adopted for the
clock bias(es)? The parameter model may be a constant for the whole

observation session, or a new (and independent) constant for each observation
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epoch, or something between these two extremes, such as a truncated power
series in time. The integer cycle ambiguity is modelled as a constant bias term

nji (unless a cycle slip occurs in which case a new ambiguity term should be

introduced), whereas the clock phase errors ( € and €' ) are often modelled as
discrete biases on an epoch-by-epoch basis. This is the approach normally
adopted with the use of the one-way phase observable and although the
number of clock phase error parameters to be estimated is large, these may be
eliminated from the GPS solution at each epoch (GOAD, 1985) using partitioning
techniques such as the "Helmert-blocking” procedure (CROSS, 1983). Note that
epoch-by-epoch modelling of the clock phase errors is also possible for partially
differenced observables. For example, in a between-satellite-difference
(equation (2-15)) in which the receiver clock phase error has been differenced
out, the remaining satellite clock phase errors can be modelled in this manner.

The resulting normal equation matrix from any of the above GPS
observables, can be partitioned in the following way:

NCC Nce
NEM = (2-22)
Nec Nee
where the Nee , Nec and Nce submatrices contain the contributions of the

design submatrix A, of the clock bias (or "epoch") parameters, and N, the

contribution of only the non-bias (or "common") parameters in the design
submatrix A, . Reducing the normal equation matrix using the techniques

described in, for example, CROSS (1983):

*

N, ©
NEM = ) (2-23)
0 N,

*
the resultant N.. submatrix leads to the non-bias parameter solution (receiver
coordinates and/or satellite state parameters).

2.5.2 Conditions for Equivalence between Results of GPS Phase
Adjustment

Although the undifferenced and the various differenced observation equations
are all theoretically equivalent, in general they will not lead to identical non-bias
results unless:

(1) the clock bias parameter models are equivalent, and
(2) the mathematical correlations introduced by differencing are taken into
account in the VCV matrix of the observables.

*

*
As the non-bias solution is X, = Ncc'1 . bcc , these two conditions are in fact

those necessary to ensure that the product defining the solution for X, is
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invariant with respect to the choice of design submatrices A, and A, , andthe
VCYV of the observations.

In relation to (1) above, by explicitly estimating the clock phase errors on an
epoch-by-epoch basis, there is no assumption made as to the structure and
stochastic behaviour of these errors over the entire period of the observation
span. In other words the clock errors are treated as "white noise", and hence are
not serially correlated. In contrast, the use of a truncated power series in time
implies that the clock errors are predictable and their structure known a priori. In
general, however, GPS satellite and receiver clock errors cannot be modelled

*
satisfactorily with truncated polynomials, in which case the b,. vector will be

different depending upon the clock phase error model used. Hence the
coordinate results obtained will also vary with the clock phase error model used

even if the same differenced observable is used. As a corollary, exact

equivalence between approaches which use explicit clock phase error
modelling (one-way and single-differences) and those that have eliminated
those same clock errors through differencing (double- and triple-differences) is
only possible if the clock phase error is modelled as an independent clock error
parameter at each epoch.

In section 2.3 the "undifferenced" technique of GPS phase adjustment was
loosely defined as that approach which makes use of the one-way phase
observable (no matter what the explicit clock phase error model may be), to
contrast it with the "differenced" approach which is characterised by the use of
reduced observables in which some or all of the clock biases have been
removed from the observation modelling. The "undifferenced" approach in
which the clock phase errors are independently modelled on an epoch-by-
epoch basis is also sometimes referred to as the implicit differencing
technique (KING et al, 1987), in order to distinguish it from the "undifferenced"
approach based on a less general clock phase error model such as a
polynomial.

Condition (2) was mentioned in section 2.3. In short, given a differencing
operator D that creates a vector of linearly independent double-difference

observables ¢pp (equation (2-20)) from a vector of undifferenced phases Oyp
(equation (2-13)):

dpp =D Oyp (2-24)

and a VCV matrix of the undifferenced phases Qp , the VCV matrix of the
double differences Qpp is, by the law of propagation of variances:

Qpp=D Qp DT (2-25)

If Qpp is used in an adjustment of the double-difference observations opp , the
result will be the same as if Qup had been used in an adjustment of the
observations Oyp with the clock phase error parameters being estimated

explicitly at each epoch. This is also true for any other type of differenced
observable, as long as condition (1) is also satisfied.
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2.5.3 The Roles and Merits of Various Phase Observables in GPS
Adjustments

In summary, the undifferenced approach to GPS phase adjustment is identical to
using single-, double- or triple-differences only if the mathematical correlations
introduced during the differencing operation are included in the VCV matrix and
any explicitly modelled clock biases are assumed to be offsets (on an epoch-by-
epoch basis in the case of the clock phase errors, and on a session-by-session
basis for the cycle ambiguity parameters).

Often, however, these conditions for exact equivalence are not met.
Nevertheless the various differenced observables do have their role to play. The
between-satellite and between-station differences, for example, are useful for
cycle slip editing, while triple-differences are often used to obtain preliminary site
coordinate solutions because of their relative insensitivity to cycle slips in the
phase data. However, it is the double-differenced observable that is most
commonly used in precise GPS phase adjustment. Generally the mathematical
correlations are neglected, and hence the results are not strictly equivalent to
using the undifferenced approach, but they are still suitable for most survey
applications seeking relative accuracies of a few parts per million of the baseline
lengths (BEUTLER et al, 1987).

The use of the undifferenced observable approach for GPS phase adjustment is
nevertheless preferable for a number of reasons, including (WELLS et al, 1987):

(i) Itis closer to the physical GPS measurement than any of the differenced
observables.

(i) The basic geodetic parameters remain the receiver and satellite state
vectors, rather than the more complex receiver baseline or inter-satellite

vectors.

(iii) There is no complicated "bookkeeping", as in the case of differenced
observables.

(iv) There is no need to consciously incorporate correlations arising from the
differencing operation, as an adjustment of undifferenced phase data is
always rigorous.

(v) The undifferenced model allows one the flexibility of implementing
alternate methods of modelling clock phase errors (for example, clock
polynomials, or a Kalman filter), whereas if the observations are
differenced to eliminate the clock errors then alternative methods of clock
error modelling are not possible.

For these, and other reasons, the undifferenced model has been adopted in the
University of New South Wales Satellite Measurement Analysis Software
System (RIZOS & STOLZ, 1988). However, the various differenced GPS
observables, together with the Fundamental Differencing Theorem, do provide
us with a convenient way of analysing the rank defects arising from the explicit

modelling of the clock biases (g, ¢ and nji ).
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3. GPS PHASE DATA PROCESSING

The conditions for equivalence in GPS phase adjustments discussed in section
2.5 do provide the software engineer with a choice as to the basic phase
observable to be used in his GPS adjustment program. Furthermore, the use of
a differenced phase observable permits the degree of "rigour” in the adjustment
to be controlled. For example, for lower accuracy applications the triple-
difference observable without the mathematical correlations taken into account
(which would have made it equivalent to the "rigorous" double-difference) can
be used. In fact it is ironic that the true utility of the triple-difference observable
(its relative insensitivity to cycle slip errors) is revealed only when it is used in
such a "non-rigorous" manner.

However, in any attempt to program the GPS observation equations, for either
the differenced or undifferenced approach (with or without the appropriate
correlations included) the software engineer is confronted with a major problem.
The resulting normal equation matrix (NEM) is gingular. A singular normal
matrix indicates that the set of parameters to be estimated contains some
information which has not been supplied, either through the observables or
through the model. Such a matrix has a number of zero eigenvalues, and this
number is equal to the rank defect.

If we partition the design matrix, obtained from any of the GPS phase
observation models, into two matrices A, and A, , the former representing the

geodetic parameters of interest (non-bias) part and the latter the "nuisance"

(clock bias) part of the model, the resulting partitioned NEM and reduced NEM

are given in equations (2-22) and (2-23) respectively. Rank deficiencies exist in
*

*
both the geodetic parameter and the clock bias submatrices, N.c and N, .

*
The rank defect in the N, submatrix is often found in geodetic adjustments,

and is related to the datum defect of range-type observations. The rank defect
in the submatrix associated with the clock biases has been noted in REMONDI
(1985) and discussed in some detail in LINDLOHR & WELLS (1985). In GPS
phase adjustment software both types of rank defects must be accounted for in
an appropriate manner. In this paper, however, we will focus our attention
mainly on the clock bias rank defects.

First we should emphasise a point made in section 2.4 about cycle ambiguity
modelling in differenced observable modelling. We can either:

(a) model explicitly all the ambiguity parameters nji and hence introduce 2
(in the single-differences) or 4 (in the double-differences) coefficient

terms in each differenced observation equation, or

(b) model the ambiguity terms as a single "lumped" ambiguity parameter:
ki'2 (= ' - n) for between-satellite differences; kyo' (= ny' - nyl) for
between-station differences; or k12'? (=ns'-ny2-ny! +ny2) for
double-differences.

and the results for the non-bias parameters are the same.
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In order to compare and contrast the differenced and undifferenced observable
modelling approaches, the following discussion assumes that jndividual

ambiguity ( nj' ) and clock phase error ( g, €' ) terms are explicitly modelled. It
should nevertheless be borne in mind that for differenced observable modelling,
option (b) above is often resorted to in practice, as for example in the

TRIMVEC™ and PoPS™ programs (see section 4). Section 3.4.3 gives further
details of this lumped ambiguity parameter approach.

The most straightforward approach to overcoming rank defect problems is to
reduce the size of the NEM by fixing some of the parameters (and hence
explicitly removing them from the solve-for parameter set) to a priori values in
the case of the geodetic parameters of interest, or to arbitrary values such as

zero for the nuisance or bias parameters. The number of parameters fixed

should be equal to the number of rank defects that exist.

Before analysing the nature of clock bias rank deficiencies, and discussing
possible remedies, we should attempt to resolve the following questions:

* How many rank deficiencies are there for the various differenced and
undifferenced observables?

* What is the physical reason for these deficiencies?

« What is the effect of holding some biases fixed?

* How may we interpret the choice of fixed biases?

In order to influence the solution in a manner consistent with the above
concerns, care must therefore be taken in the application of a remedy to the rank
defect problem. In the parlance of conventional terrestrial geodetic network
design and analysis, we are therefore concerned with:

(a) Zero order design, which deals with the gstimability of the unknown
parameters from the different possible observables. In this respect it is a
problem of datum definition, and where the datum has not been
completely defined there is a datum defect.

(b) First order design, which deals with the connectability of the
parameters with one another through the medium of the observations.
That is, how the datum definition information is transferred to all like
parameters. It is essentially a problem of configuration design, and a
defect in the design will lead to a configuration defect.

3.1 The Nature of the Datum Defects

A three-dimensional datum, or reference system, is defined geometrically by the

origin (three components), orientation in space (three components) and scale
(one component). As GPS measurements are (biased) ranges, or linear

combinations of these, they can provide information on datum scale only. Hence
the missing origin and orientation components are the datum defect. This is also
the case with terrestrial geodetic networks determined from distance
measurements alone. Therefore to overcome the six rank deficiencies in the
normal equation matrix an equal number of constraints on the site coordinates
must be introduced. These constraints may be in the form of fixed values of
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some site coordinates, or suitable weights on some or all coordinate component
values.

However the situation with a GPS phase adjustment is more complex, and the
datum defect problem is in many respects a four-dimensional one, rather than a
conventional three-dimensional problem. [n addition to requiring a definition of
spatial (coordinate) origin, orientation and scale, we also need to define in some
way the origin of the phase measurements and the implied time scale. The clock
phase errors were introduced into the GPS observation equations by
considering a perfect oscillator or clock with which the receiver and satellite
oscillators could be compared. If we attempt to estimate the clock phase errors
relative to this perfect oscillator we create two problems. Firstly, this perfect
oscillator does not exist. Secondly, if it did exist we would have no means of
comparing it directly with all our other oscillators. GPS observations, being
differences between received phase signals and local receiver oscillator phase,
are sensitive only to differences between satellite and receiver clock phase error
(see equation (2-13)). Thus, in introducing the parameters of absolute clock
phase error, we have created the equivalent of a datum defect. Therefore as in
the case of the coordinate datum defect, some constraints on the satellite /
receiver clock behaviour have to be introduced into a GPS phase adjustment to
overcome this phase datum defect. One way to overcome this datum defect
is to hold the clock phase errors of one reference oscillator fixed. The phase
datum is then defined by holding the reference clock phase errors fixed (at an
arbitrary value of zero) for each of the epochs in an observation session.

There is no phase datum defect in the case of double-differenced or triple-
differenced observables because all clock errors were explicitly eliminated in the
differencing process.

3.2 nfigurati Def

If the datum defects (coordinate and phase) are completely overcome, any
remaining rank deficiencies in the normal equation matrix are due to a
configuration defect. In fact an analysis of the normal equation matrix can give
not only an indication of rank defects but, in addition, an insight into the
configuration "strength". Network configuration design is based on the study of
the solution covariance matrices implied from various simulated observation
scenarios, in order to determine the "best" configuration for a network. However,
a network with configuration defects (as opposed to merely a "weak"
configuration) does require special attention as it implies that there is not
enough information in the observations to connect all the parameters. Ideally,
such a defect should not exist, and is in general avoidable. In the case of
terrestrial geodetic networks, a configuration defect is due to poor planning or an
oversight in the observation schedule that results in insufficient connecting
observations for the determination of the coordinates of all the points in the
network. Additional observations may then be made in order to both overcome
the defect(s) and to give further "strength” to the solution. This can also occur in
GPS phase adjustment. However, in the case of the GPS clock biases, a
configuration defect will always occur in adjustments involving the one-way
phase observable. They are absent from adjustments based on triple-
differences (where there are no clock bias parameters present), or adjustments
based on the double-differenced observable in which individual cycle ambiguity
modelling is replaced by "lumped" ambiguity terms (see section 3.4.3).
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The clock phase errors were introduced into the GPS observation equations by
considering a perfect oscillator or clock with which the receiver and satellite
oscillators could be compared. In attempting to estimate the clock phase errors
relative to this perfect oscillator we create two problems. The first of these was
the definition of the phase datum. The second problem is that although the
phase datum defect is overcome by the definition of absolute phase in the
reference oscillator, there are only ambiguous phase observations to determine
the unambiguous clock phase errors (and cycle ambiguities) of all the other
oscillators. There, therefore, remains a rank defect of 1 for each of the other
R+S-1 oscillators. This is equivalent to a configuration defect where the
internal phase "geometry" is not defined by the set of observations. We can
now choose R+S-1 reference clock biases to fix in order to eliminate the
remaining rank defects. These are chosen so that they provide a phase link
between the reference oscillator and every other oscillator.

3.3 nalysing Rank Def in_th lock Bi Parameter

With regards to the clock biases we can summarise the rank defect problem as
follows: we have a datum defect caused by the attempt to estimate absolute
clock phase error from observations of the difference between received satellite
phase and receiver oscillator phase. We have a further configuration defect

caused by the attempt to estimate unambiguous phase errors from ambiguous
phase observations.

It was noted that in the undifferenced phase observable using the implicit
double-difference method (where the clock phase errors were assumed
independent at each epoch) there are T phase datum defects, corresponding to
the definition of a reference clock at each of the T observation epochs in a
session. There are no datum defects in the double-difference observable
because all clocks were explicitly removed in the differencing process. It was
then deduced that a further R+S-1 clock biases had to be constrained to
overcome the phase configuration defects. Thus, the use of the implicit double-
difference approach results in a total of T+R+S-1 rank deficiencies in the
resulting normal equation matrix, while the explicit double-difference approach
results in R+S—1 rank defects.

However, in order to develop the most appropriate strategies for overcoming
rank defects in the clock bias parameters such an intuitive approach to rank
defect analysis is of limited value. What is needed is a more mathematical
technique for analysing rank defects in clock bias parameters. The Fundamental
Differencing Theorem (section 2.3.1) provides us with just such a tool. Using the
Fundamental Differencing Theorem we can equate the reduction in the number
of linearly independent observations caused by differencing with the number of
estimable parameters that have been eliminated. The method of using the
Fundamental Differencing Theorem to determine the rank defects is from
LINDLOHR & WELLS (1985). (It should be kept in mind that the Fundamental
Differencing Theorem is only applicable for clock phase error models based on
an independent estimate of the phase error at each epoch, and not for clock
error polynomial models or filter solutions for the clock errors.)

A good starting point is the triple-difference observable, as the number of clock
biases in this case is zero. Given R receivers, S satellites and T epochs as
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above, we have RST undifferenced phase observations. From these
observations, (R-1)(S-1)(T-1) linearly independent triple-difference
observables can be formed. (More than this number of different triple-
differences can be formed but the extra ones are just linear combinations of this
set.) The reduction in the number of observations from RST to (R-1)(S-1)(T-
1) is RS+ST+RT-R-S-T+1. According to the Fundamental Differencing
Theorem, this reduction in the number of observations has resulted in the same
reduction in the number of estimable clock bias parameters. As there are zero
clock biases in the triple-difference model, the number of clock bias parameters
Cg that may be estimated in the undifferenced model in this example is

therefore:

Ce RST - (R-1)(S-1)(T-1)

RS+ST+RT-R=-S—T+1 (3-1)

The clock biases are completely described by this number of parameters just as
they are completely eliminated by reducing the number of observations by this
amount. The total number of clock biases Ct in the undifferenced observation
model is:

Cr=RS +ST+RT (3-2)

where RS is the number of cycle ambiguities nji

ST is the number of satellite clock phase error parameters e
RT is the number of receiver clock phase error parameters €

The rank defect therefore is:

Cp=Cr-Cg (3-3)

=R+S+T-1

This is equal to the rank defect that we intuitively determined earlier.
A similar process can be applied to the adjustment model based on the double-
difference observable (section 2.4.3). The number of linearly independent
double difference observations is (R—1)(S—1)T and the reduction in the number
of observations when (R-1)(S—1)(T-1) triple-differences are formed is (R—1)(S-
1). This is the number of estimable ambiguities:

Ce

(R=1)(S—1)T = (R-1)(S—1)(T-1)
= RS-R-S+1 (3-4)
The number of cycle ambiguities in the double-difference observation model is:

Cr=RS (3-5)
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The rank defect, from equation (3-3), therefore is:
Cpb=R+S-1 (3-6)

Let us consider the case of 2 receivers and 4 satellites, and assume a phase
adjustment based on double-differenced observables. The number of estimable
ambiguities is 3. The choice is, therefore, which ambiguities to estimate and
which to hold fixed as reference ambiguities. For example, we could take:

4 1

Fixed: ni',ne?,n3, ny
: : 2 .3 4
Estimated: ns“, no®, ny

sn2

In Table 1 the clock bias rank defect is given for all differenced observables for
which a discrete epoch-by-epoch modelling of clock phase errors (if present) is
used. Note that the clock bias rank defect can be computed easily from the
relation:

Cp=C;— (0= Oqp) (3-7)
where:
Cy is the total number of clock biases in the observation model.
Oum is the number of linearly independent observables that can be
formed from the RST carrier beat phase observations.
Op is the number of linearly independent triple-difference

observables. This is a constant = (R—1)(S—1)(T-1)
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Table 1 CLOCK BIAS RANK DEFECTS

MODEL Total No. of No. of Clock Biases Clock Bias
Clock Biases Required Rank Defect
(1) 2) 3)
Undifferenced
(1) RS+ST+RT RST - (R-1)(S-1)(T-1) R+S+T-1
= RS+ST+RT-R-S-T+1
Single Difference
(2) Between-stations RS+RT (R-1)ST - (R-1)(S-1)(T-1) R+S+T-1
A = RS+RT-R-S-T+1
(3) Between-satellites RS+ST R(S-1)T - (R-1)(S-1)(T-1) R+S+T-1
\% = RS+ST-R-S-T+1
Double Difference
(4) VA RS (R-1)(S-1)T - (R-1)(S-1)(T-1) R+S-1
= RS-R-S+1
Triple Difference
(6) AV 0 (R-1)(S-1)(T-1) - (R-1)(S-1)(T-1) 0
=0

[R receivers, S satellites, T epochs]

3.4 r ies for Eliminating Rank Def I Bi
There are a number of approaches to overcoming rank defects:

(1) The selection of some reference clock bias parameters not to be
estimated.

(2) Estimating only the linear combinations of clock bias parameters
resulting from the differencing process.

(3) The introduction of external constraints on the parameters via the VCV
matrix, or the use of additional observations such as pseudo-ranges.

(4) The use of the pseudo-inverse.

The most straightforward approaches are option (1) and (2). In these closely
related techniques the rank deficiencies are overcome by holding an equivalent
number of reference clock biases fixed (that is, not estimating them) or forming
differenced bias parameters in which an equivalent number of rank defects are
eliminated, and estimating only the "lumped" differenced bias parameters.
These are also the approaches adopted in most GPS phase adjustment
software (section 4). Options (3) and (4) are not considered in this paper. The
use of the pseudo-inverse approach is one of the ambiguity resolution options
implemented in software by RIZOS et al (1990)

If we were interested only in the estimates of the non-bias parameters, such as
the receiver coordinates and/or satellite orbit parameters, the choice of reference
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clock bias parameters is completely arbitrary. Thus, if the equivalence relations
given in section 2.5.2 are satisfied, any phase adjustment based on the
undifferenced or differenced approach, and for which the minimum clock bias
parameters are held fixed as reference biases, will give the same results for the
non-bias parameters. The choice of reference clock biases only affects the
estimates of the other clock biases even though the reference clock bias
parameters are fixed to values which are substantially different from the “true"
values. This only becomes important if cycle ambiguity resolution is to be
attempted (see section 3.4.5).

3.4.1 Fixing Reference Clock Bias Parameters

The following discussion is only relevant for GPS observable models in which
the clock biases are explicitly modelled as individual clock phase error or cycle
ambiguity parameters. In section 3.4.3 the "lumped" (or differenced) clock bias
modelling approach is described.

As mentioned earlier, for adjustments using undifferenced and single-
differenced observables, one option for overcoming the phase datum defect is to
hold T clock phase error parameters fixed for the chosen reference clock. The
remaining R+S-1 configuration defects in these observable models (and in the
between satellite / station double-difference observable) can be overcome, for
example, by holding R+S-1 clock bias parameters fixed for one epoch. There
are other possibilities, though many of them cannot neatly separate the
parameters fixed to define the phase datum from those fixed to overcome the
phase configuration defect.

In each of the three categories of clock bias parameters (receiver clock, satellite
clock, cycle ambiguity) we have identified below different classes of reference
clock bias parameters to be held fixed, that can be associated with any of the
four phase observable models given in Table 1 (a triple-difference observable
model is not considered), and the sum of which must equal the rank defect for
that model:
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Receiver clocks

0

R

T

R+T-1

none

S+T-1

none

R+S-1

No parameters held fixed. All RT clock parameters to be
estimated.

All receiver clocks fixed for one epoch. Not necessarily the same
epoch for each clock. R(T-1) parameters to be estimated.

One clock held fixed in every epoch. Not necessarily the same
clock for every epoch. (R—1)T parameters to be estimated.

Combination of the above two cases. One clock fixed for every
epoch and every receiver clock fixed for one epoch. (R-1)(T-1)
parameters to be estimated.

There are no receiver clock parameters. They have been removed
by between-satellite differencing.

K

No parameters held fixed. All ST clock parameters to be
estimated.

All satellite clocks fixed for one epoch. Not necessarily the same
epoch for each clock. S(T-1) parameters to be estimated.

One clock held fixed in every epoch. Not necessarily the same
clock for every epoch. (S—1)T parameters to be estimated.

Combination of the above two cases. One clock fixed for every
epoch and every satellite clock fixed for one epoch. (S—1)(T—1)
parameters to be estimated.
There are no satellite clock parameters. They have been removed
by between-station differencing.

iti

No parameters held fixed. All RS ambiguity parameters to be
estimated.

One ambiguity fixed for every receiver. Not necessarily all to same
satellite. R(S—-1) parameters to be estimated.

One ambiguity fixed for every satellite. Not necessarily all to the
same receiver. (R-1)S parameters to be estimated.

Combination of the above two cases. One ambiguity fixed for

every satellite and every receiver. (R—1)(S—1) parameters to be
estimated.
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There are therefore potentially a large number of different ways of selecting
reference clock bias parameters to eliminate the clock bias rank defect. Table 2
lists various ways of selecting reference clock bias parameters, based on the
options of fixing the various clock bias parameters outlined above.

Table 2 CHOICES OF REFERENCE CLOCK BIASES
Reference Clock Biases

MODEL Rank Stn. Sat. Ambiguity
Defect Clock Clock
Undifferenced
(1) R+S+T-1 T 0 R+S-1
(2) R+S+T-1 0 T R+S-1
(3) R+S+T-1 R+T-1 0 S
(4) R+S+T-1 0 S+T-1 R
(5) R+S+T-1 R+T-1 S 0
(6) R+S+T-1 R S+T-1 0
Between-Stations
(7) R+S+T-1 T none R+S-1
(8) R+S+T-1 R+T-1 none S
Between-Satellites
(9) R+S+T-1 none T R+S-1
(10) R+S+T-1 none S+T-1 R
Between
Receivers/Satellite
(11) R+S-1 none none R+S-1

[R receivers, S satellites, T epochs]

Table 2 summarises 11 symmetric methods of selecting the reference clock
biases. Some of these have been included for completeness and may not be
used in practice. We have 6 options of selecting reference clock biases for the
undifferenced approach, 4 options for single-differences, and one option for
double-difference processing. Is there an equivalence of results for the clock
biases in these 11 reference clock bias parameter options? This is discussed
below.

3.4.2 The Effect on Estimates of Clock Bias Parameters of Holding
Some Fixed as Reference Clock Biases

If we use undifferenced observations we have 6 choices of reference clock bias
parameter model. The distinction between receiver and satellite clock is an
arbitrary one in terms of the definition of phase datum. In each of these 6 models
the phase of one reference clock is fixed in every epoch and the remainder of
the rank defect is eliminated by fixed clocks (models (1) and (2)), fixed
ambiguities (models (5) and (6)) or a combination of both (models (3) and (4)).
To compare these reference clock bias parameter models, we need to consider
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the effect that fixed parameters have on the other estimated clock bias
parameters.

Firstly we need to make the distinction between the unknown true value of a
parameter and its least squares estimate. If we assume for the moment that the
observations do not have any systematic errors and are normally distributed
then we can write (WELSCH, 1980):

E(X)=x (3-8)

where x is the true value of a parameter, X is the least squares estimate and
E() is the expectation operator. This equation is only true for estimable
parameters. GRAFAREND & SCHAFFRIN (1976) have proven that parameters
are estimable if and only if they are invariant under any transformation which
leaves the observations invariant. It is easily demonstrated that the clock biases
are not estimable parameters. For example, an equal change of all oscillators in
any epoch will alter the clock phase errors significantly but not the observed
phases. If a change of one cycle is introduced into any oscillator for all epochs
then by the definition of the ambiguity, a compensating change of one cycle will
ensure that the observation remains unaltered, hence equation (3-8) is not true
for clock biases.

However, the transformations described above do not produce any net change
in the total clock bias Bj(ty) defined as:

By'(t) = fo€'(t) = fosj(ti) + (3-9)

where, for simplicity, we have given a common time-tag (tx) to the time
dependent terms. From equations (3-9) and (2-13) we can see that any
transformation which leaves the observed phases invariant must leave the total
clock bias invariant. Therefore we can write:

E( B/t ) = B/t

= foel(te) — fogit) + 0 (3-10)
and thus

fo E(&(t) ) —fo E(&(t) ) + E(A) = fogltt) — fogi(t) + (3-11)

since the expectation of a sum of terms is the sum of the expectations of the
individual terms (LIEBELT, 1967). When we "fix" a parameter, by selecting it as
a reference, we set its expected value to the a priori value which, for the clock
biases, is usually zero and thus by using equation (3-11) we can determine the
effects on the other estimable clock bias parameters.

As an example, let us consider model (1), based on undifferenced phase
observations with one (reference) receiver clock phase error parameter fixed
every epoch and an ambiguity parameter fixed for every receiver and every
satellite. We will specify these reference clock biases as follows:
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* Ambiguities for receiver r fixed for all satellites.
« Ambiguities involving satellite s fixed for all receivers.
+ Receiver clock t fixed for all epochs.

This can be expressed in terms of expectation values as:

E(f/)=0 forall satellites i

E(1®)=0 forall receivers |

A

E(&(tx) ) =0 forall epochs k

Clock error of satellite s
Using equation (3-11) we have for receiver t and satellite s:

E(8%(t) )~ E(&(t) ) + E(RS) /o = €%t &t +n /Ty (3-12)
and eliminating the reference clock bias parameters:
(&%) ) = €%(t) — &(t) + n®/ fo (3-13)

Clock errors of all receivers j
For satellite s and any other receiver j:

E(&(t) ) - E(&(ty) ) + E(H®) /fg = €3(t) — i(ti) + 0/ fo (3-14)
Eliminating the reference clock bias parameter and using equation (3-13):
E(&i(t) ) = gjlti) — &lt) + n / fo + 0 / £ (3-15)

Clock errors of all satellites i
For receiver r and any other sateliite i:

E(&(t)) —E(&t)) + E(N') /1o = €l(t) — &t + nf / (3-16)
Substituting equation (3-15) into (3-16) for the case where j=r:
E(&(t) ) = €th) =&t + i /T +nS /- S/ 1, (3-17)

Ambiguities of receivers | and satellites |
Finally for any other satellite i and any other receiver j:

E(&(t) ) - E((t) ) + E(A) /1o = €t — gty) + n'/to (3-18)
and using equations (3-15) and (3-17):

E(Af)=n/-nS~nl+nS (3-19)
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This result is revealing in two respects. Firstly, equation (3-19) shows that, for
this example, the estimated ambiguities are in reality doubly-differenced
ambiguities even though undifferenced observations were used. This_

combination of integer ambiguities is still an integer, but the ambiguities njs , n;

and nS are reference ambiguities and are therefore not estimated (they are
fixed to a priori values, usually zero). Therefore reference clock bias parameter
model (1) (and (2), which is similar) gives estimated cycle ambiguities with

integral expectation values.

The second point of interest is in the method used. The fixed reference
ambiguity between satellite s and the reference clock t allow us to derive an
expression for the clock error of satellite s (equation (3-13)). Using the
reference ambiguities from this satellite we derived expressions for all other
receiver clocks (equation (3-15)) and thence all other satellite clocks (equation
(3-17)). Hence the phase datum can be transferred from the fixed reference
clock to all other clocks through the fixed reference ambiguities, thus overcoming
the configuration defect that existed.

This is the so-called base station - base satellite approach to selecting
reference clock bias parameters. In a complex observing session with satellites
rising and setting and the possibility of receivers observing at slightly different
times, such a simple scheme as that given in the above example may not be
possible. By analysing the method used in the above derivations we see that
any group of reference ambiguities will satisfy the rank defect or phase
configuration defect provided that they provide a path from the reference clock to

every other clock.

It is also worth noting that the estimated ambiguities do not depend on the
reference clock. Only the clock phase error terms depend on this, and these are
estimated for each epoch. Therefore it is not necessary to have the same
reference clock at every epoch. If receiver t in the above example stops
observing, one of the other clocks (including one of the satellite clocks) may be
chosen as the new reference without affecting the estimated ambiguities or other
non-bias parameters.

Examples of the paths provided by reference ambiguities for the transfer of the
phase datum are shown in Figure 1. In these figures there are 5 satellites and 6
receivers so the number of fixed reference ambiguities required is 10 (= R+S—1).
Figure 1a shows the reference ambiguities for an example the same as that
given above. The other figures illustrate more complicated schemes and in
these cases the expected values of the estimated parameters will have more
complex forms than those given above. For example, it can be shown that the
estimated ambiguity between receiver 1 and satellite 5 in Figure 1b will be a
linear combination of 10 integer ambiguities. The expected value of the
ambiguity will still be an integer and will still be unaffected by a change of
reference clock between epochs.
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Figure 1 SOME CHOICES OF REFERENCE AMBIGUITIES

By using the same method as in the above example, we can also test the
remaining 9 reference clock bias parameter models in Table 2. It can be
demonstrated that for the 5 models (1), (2), (7), (9) and (11) that the estimated
cycle ambiguities all have integral expectation values. All these models rely on
identifying R+S-1 reference ambiguities which are held fixed in a phase
adjustment. The other models, (3), (4), (5), (6), (8) and (10) do not give integral
expectation values for the estimated ambiguities.
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3.4.3 Alternative Ambiguity Modelling for Differenced Observations

An alternative and equivalent procedure for ambiguity modelling that can be
used for single- or double-differenced observations is to define a new single
ambiguity parameter that is a linear combination of the individual station-satellite

ambiguity terms nji . In the case of between-satellite differences the parameter
k'? (= n' - n? ) could be used in the mathematical model (equation (2-15)); for
between-station differences the parameter kq,' (= ny'-ny') could be used
(equation (2-17)); and for double-differenced observations, either of the
parameters k2 or kqo', or a double-differenced ambiguity kq5'2 (= ny! - ny?

- n1 -
nz' +ny2). The new ambiguity parameters k;'2, kqa', k12'2 are referred to in
this paper as "lumped" ambiguity parameters.

An important advantage in using such a differenced or lumped ambiguity
modelling approach is that if only linearly independent differenced parameters
are formed the rank defect in the clock bias part of the normal matrix Nee is
reduced. Following the procedure used to compute the rank deficiencies in
Table 1, the number of clock biases required (column (2)) is unchanged, but the
total number of clock biases present in the observations (column (1)) are:

* Between-station differences for k' modelling:
(R-1)S+ RT=RS+RT-S

+ Between-satellite differences for kj12 modelling:
R(S-1)+ST=RS+ST-R

- Double-differences for kq»'? modelling:
(R-1)(S-1)=RS-R-S + 1

Now, taking column (2) in Table 1 minus the new column (1) (see equation (3-
7), we get the reduced phase rank defect for differenced observations using
lumped ambiguity parameters:

+ Between-station differences: rank defect = R+T—1
+ Between-satellite differences: rank defect = S+T—1
* Double differences: rank defect = 0

Note that in the case of linearly independent double-differences, there is no rank
defect in the clock bias parameters.

Let us consider the example of 2 receivers and 4 satellites, and assume a phase
adjustment based on double-differenced observables. In the case of the
individual (undifferenced) ambiguity modelling approach, the number of
estimable ambiguities is 3 (Table 1: column (1) minus column (3)), see
discussion following equation (3-3). However, if double-differenced cycle
ambiguities are modelled instead, all 3 lumped ambiguity parameters can be
estimated:

ki@ =nqt-ng2-npt +ny?
ki@ =1y - 13- ny" + 0,2
ki =yt - ng® - npt 4 n?
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An alternative to using the double-differenced ambiguity parameter in an
adjustment based on double-differenced observables is to use either the

(partially) differenced kyp' or kj'2 parameter. The rank defectis R—1 in the
case of the k12i ambiguity model (between-station difference), and S—1 in the

case of the k' ambiguity model (between-satellite difference). The kjp'

ambiguity modelling option is the one used in the PoPSTM software (section
4.2).

3.4.4 Implications for GPS Software Design

A GPS phase adjustment in which all the clock bias parameters are estimated
(except for the reference parameters that may have been held fixed at arbitrary
values in order to overcome the rank defect) is often referred to as a "bias-free"
or "ambiguity-free" solution. The cycle ambiguity parameters are supposed to
be integers, but there is no known way to constrain an estimated parameter in a
least squares adjustment to take on an integer value (KING et al, 1987). The
combination of measurement noise and systematic errors will ensure that the
estimates are not integers. The effect of measurement noise becomes less as
the number of measurements increases but the effect of systematic errors is not
so easily reduced.

However, under certain circumstances and with the appropriate reference clock
bias parameter model, it is possible to obtain estimates of the cycle ambiguities
(or linear combinations thereof) that are very near integer values. The
circumstances under which this occurs are not well understood but it appears to
be valid for lines under 30km (IBID et al, 1987). The estimates of the cycle
ambiguities in models (1), (2), (7), (9) and (11) (Table 2) should be integers,
unless systematic errors have affected them, and the ambiguities can be
"resolved”, the nearest integer value adopted as the most likely true value of
the cycle ambiguity, and a new solution repeated for the other clock biases and
geodetic parameters. This process is known as "integer bias fixing", but the
term "ambiguity resolution” is preferred here. The second solution in which
all or some of the ambiguities are held fixed to their integer values, is known as a
"bias-fixed" or "ambiguity-fixed" solution, and should not be confused with
the process described in section 3.4.1 of "fixing" the reference ambiguities in
order to overcome clock bias rank deficiencies. Ambiguity resolution is
discussed further in section 3.4.5.

The software engineer needs to therefore consider such issues as:

(a) Should an ambiguity-fixed solution be attempted? If the answer
is "yes", either the undifferenced or differenced (though not the triple-
difference) observation models can be used. Furthermore, certain
reference clock bias parameter models have advantages. For example
the estimates of the cycle ambiguities in models (1), (2), (7), (9) and (11)
have integral expectation values, and if systematic errors are small it
may be possible to resolve them to integers, and an ambiguity-fixed
solution attempted.

(b) What if satellites rise and set, and receivers start and stop
observing at different times? The examples used above were all
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rather simple ones where the same reference clock was used for all
epochs, where the phases of clocks were all fixed in a reference epoch
and where ambiguities were fixed to a single receiver and/or a single
satellite, or some suitable combination. In GPS adjustment software,
when the choice of parameters is made it may not be known which clock
(if any) is present at all epochs or in which epoch (if any) all clocks are
present. However any group of reference clock bias parameters in Table
2 will satisfy the rank defect, as long as they provide a path from the
reference oscillator to every other oscillator. For example, for those
reference clock bias models based on a reference clock, the selection of
the reference clock is immaterial. It need not be the same oscillator for
all epochs. Nor need it necessarily be the most stable clock.

What if a clock polynomial model or a filter solution is used
for the clock phase errors? For these options (not explicitly shown
in Tables 1 & 2), relevant only for the undifferenced and single-
differenced observation models, the reference clock should be the same
for all epochs. Otherwise a change of reference clock will introduce an
unmodelled step in the between-epochs change of clock phase errors of
the other oscillators. All other considerations remain the same.

Will the choice of reference clock affect the estimated cycle
ambiguity? Such a query is relevant only for reference clock bias
parameter models (1), (2), (3), (4), (7), (8), (9) and (10). The ambiguities
do not depend on the selection of the reference clock. Therefore it is not
necessary to have the same reference clock in every epoch. It should
also be noted that the reference oscillator need not be that of the base
station or base satellite used to define the reference cycle ambiguities.

(e) Will the choice of reference clock biases affect the solution

for non-bias parameters? The method used to eliminate the total
rank defect is arbitrary provided we are completely indifferent to the
estimation of the remaining clock biases. If, however, we hope to find
estimates for the ambiguities that are close to integers so we can then fix
them to integers in a second ambiguity-fixed adjustment, our choice is no
longer arbitrary. An ambiguity-fixed solution leads to a different non-bias
parameter solution. There are two issues here (section 3.4.5). Firstly,
certain reference clock bias parameter models make the task of
ambiguity resolution easier (see (a) above). The second consideration
is the choice of which clock biases (for a certain reference clock bias
model) are to be held fixed. It may be that a certain set of reference clock
biases (receiver/satellite clocks and ambiguities) are a better selection
for ambiguity resolution than are others.

What about the processing of dual-frequency observations?
In the case of dual-frequency observations, the ionosphere-free
combination of L1 and L2 observations is usually formed. The number of
rank defects remains the same, and the same remedies can be applied.
The problem of ambiguity resolution is, however, more complicated.
None of the reference clock bias parameter models leads directly to
integral expectation values for the estimated cycle ambiguities and
special procedures have to be followed (see, for example, SCHAFFRIN
& BOCK, 1988).
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(g) What if we use the double-differenced approach and model
the cycle ambiguity as lumped terms? What is the difference?
The result for the geodetic parameters of interest is the same as if the
individual undifferenced cycle ambiguities were estimated. One
advantage is that there are no rank defects and hence there is no need
to explicitly fix certain reference ambiguities. As in the case of the
individual undifferenced ambiguity modelling approach, care needs to
be taken with complex observing sessions. Ambiguity resolution can still
be carried out.

(h) What is the benefit of pseudo-range data? Pseudo-range data,
together with a priori receiver and satellite positions, contain information
about the clock differences between receiver and satellite oscillators. |t
was the lack of such information that necessitated the introduction of the
integer ambiguity parameters in the GPS phase observation models.
Although the implications of this synergistic use of two types of
observations have not been considered here, it may be that some
choices of reference ambiguities are more appropriate than others in the
presence of these additional observations.

In almost all respects, the 5 reference clock bias models (1), (2), (7), (9) and (11)
of Table 2 are superior to any other alternative model.

Another advantage of these 5 models is that the same choice of reference clock
bias parameters can be used for undifferenced, single-differenced and double-
differenced observables (see Table 2). In particular, once an algorithm has
been developed to select the reference ambiguities it may be used for all
models. Furthermore, an algorithm for choosing reference ambiguity parameters
is relatively simple even for complex observing sessions.

Considering the observations in the first epoch, the ambiguities from one station
(the base station) to all satellites and from one satellite (the base satellite) to all
receivers are chosen as the reference ambiguities. All other ambiguities are
included amongst the parameters to be estimated. In subsequent epochs:

+ if observations become available to a new_satellite then new ambiguities
are introduced except for one to an existing station (say the base station)
which is not estimated,

« if a npew receiver starts observing then new ambiguities are introduced
except for one to an existing satellite (say the base satellite), which is a
reference ambiguity and thus not estimated,

In this way a link is provided from the new clock to one of the existing clocks.
This existing clock has already been linked to the reference clock and thus the
phase datum is defined for all observables.
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3.4.5 Cycle Ambiguity Resolution

According to the Fundamental Differencing Theorem the double-difference
solution with free (unresolved) ambiguities is the same as a triple-difference
solution (assuming the correlations are taken into account). If the cycle
ambiguities in the double-difference solution are then fixed at integers and the
adjustment repeated, this ambiguity-fixed solution will no longer be equivalent to
the triple-difference solution. Such an ambiguity-fixed solution will be more
precise (and more accurate if the correct integer ambiguity values are selected)
than an ambiguity-free solution. There are of course considerably less free
nuisance parameters to be estimated, but more importantly the solution is based
on unambiguous range observations, rather than the (ambiguous) phase
observations used in an ambiguity-free solution, and hence represents the most
dramatic impact of external information in GPS phase adjustment.

As was noted in section 3.4.4, if we were only interested in eliminating the rank
defect and were not interested in the estimates of the remaining clock phase
errors and cycle ambiguities, then the selection of reference clock bias model
(and the reference clock biases themselves), or whether to estimate differenced
(lumped) ambiguities instead of individual ambiguities, is arbitrary. There are
therefore three factors influencing the success, or otherwise, of resolving the
cycle ambiguities to integer values:

(a) The choice of reference clock bias parameter model. It was
shown in section 3.4.2 that for models (1), (2), (7), (9) and (11) of Table 2

the expectation values for the cycle ambiguities nj' were integers.
Therefore these models are preferred. Ambiguity resolution is also
possible with the other models but is more complex. A different set of
parameters is required. For example, the ambiguities from a "base
station" and a "base satellite" are fixed while the remaining ambiguity
parameters are replaced by parameters which are double-differences of
ambiguities in the case of (5) and (6) or single-differences of ambiguities
in the other cases and thus have integral expectation values. These can
then be held fixed to integer values and an ambiguity-fixed solution
attempted.

(b) The choice of reference ambiguities. The selection of base station
may be important. In particular, the ambiguities associated with stations
close to the base receiver are more accurately determined than those
associated with stations further away. The base station should be
chosen near the centre of the network to minimise the distances from it to
other receijvers. In such a scheme, it may be possible to resolve all or
most of the cycle ambiguities using a "boot-strapping” procedure. First
the ambiguities from stations near the base receiver are resolved, and
an ambiguity-fixed solution attempted in which the remaining
(unresolved) cycle ambiguities are again estimated. A few more
ambiguities from stations more distant from the original base receiver
may then be resolved, and the solution again repeated. The procedure
is then iterated until no further ambiguities can be resolved. This also
means that a greater accuracy is obtained on those baselines that are
near or include the base receiver.
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(c) The inclusion of pseudo-range data. This data may accelerate the
process of ambiguity resolution, for station separations up to 100km or
more, and for observation sessions as short as 0.5 hours. The inclusion
of pseudo-range data may also influence the choice of reference
ambiguities ((b) above), as some choices of reference ambiguity may be
more appropriate than others. More study needs to be done on this

question.

4. ACCOUNTING FOR CLOCK BIASES IN GPS SOFTWARE

In this paper we have discussed two basic aspects of GPS phase data
adjustment:

(1) the choice of GPS observation equation model.
(2) the remedy for rank defects in the clock bias parameters.

With respect to the former, the two choices are between the undifferenced
observable modelling approach, based on the explicit modelling of all clock
biases in the GPS one-way phase observation model, and the differenced
observable modelling approach, in which some or all of the clock biases are
eliminated through some form of observation differencing. A rigorous GPS
solution will always be obtained using the one-way phase observation model.
However the number of parameters to be estimated is potentially very large and
special adjustment techniques need to be used to make the task manageable.
Solution procedures based on differenced observable models, on the other
hand, require a considerable amount of "bookkeeping" to control the differencing
process, but do have the advantage of requiring less nuisance parameters to be
estimated.

As to the issue of rank defects in the clock bias parameter models, the
differenced observable modelling approach also has some advantages.
Through the elimination of some of the clock bias parameters the size of the rank
defect in the normal equation matrix is reduced. In fact, by considering the clock
biases in the observable models as being lumped together into one parameter,
the rank defect can also be reduced (for single-differences) or eliminated
altogether (for double-differences). The process of double-differencing not only
eliminates biases. it may also eliminate rank defects!

The choice between the undifferenced observable modelling approach and the
differenced observable modelling approach is therefore not clearcut. If flexibility
in observation modelling and exact mathematical rigour are not essential, the
double-differenced observable model is a suitable candidate for phase
adjustment, as both the satellite and receiver clock errors have been eliminated
but not the cycle ambiguity. It is therefore the favoured approach for operational
GPS software, particularly if it is designed to be instrument-specific. On the other
hand, there is a trend for GPS software developed by government agencies or
academic institutions for geodetic parameter estimation of the highest accuracy
to adopt the undifferenced approach. We discuss below some GPS phase
adjustment software; two commercial packages, one program developed by a
government agency, and two programs developed at the School of Surveying,
University of N.S.W,
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4.1 TRIMVECTM

The TRIMVEC™ program was developed to process GPS observations made
using the TRIMBLE 4000S series of receivers (TRIMBLE NAVIGATION, 1986). It
is an example of a commercial GPS adjustment program written to conform to
rather narrow specifications: it is instrument-specific, runs on a micro-computer
and can process data from only two receivers (a baseline) at any one time. This
is reflected in the phase adjustment model used. It makes use of the double-
and triple-differenced observables formed between the 2 receivers and the up to
4 (for the 4000S) or 5 (for the 4000SX) satellites tracked by the receiver. (A

multi-station version of the TRIMVEC™ program is now available to process
data from more than 2 receivers simultaneously.)

The pseudo-range data is first used to synchronise the observation time-tags to
the GPS Time scale (RIZOS & GRANT, 1990). A triple-difference solution (no
correlations modelled) is then performed in order to derive accurate a priori
receiver coordinates, and to correct the data for cycle slips. An adjustment of
phase data using the double-differenced observable model is then carried out.
This final adjustment is an ambiguity-free solution, and if the ambiguities can be
resolved to integer values, the adjustment is repeated to obtain an ambiguity-
fixed solution.

The means by which the phase configuration defect is handled by a single-

baseline, double-differencing program such as TRIMVEC™ can be discussed at
two levels: a conceptual level, and with respect to what is actually implemented
within the software. Firstly we can tackle the problem of estimating the cycle
ambiguities using the approach outlined in section 3.4.1 & 3.4.2. Let us consider
the situation of data from 2 receivers to 4 satellites, there is a total of 8
ambiguities (RS) to be estimated. The number that must be held fixed as
reference ambiguities is R+S-1 (Table 1), or 5, leaving (R-1)(S-1) , or 3, to be
estimated. All the ambiguities from receiver 1 (the base station) are held fixed

(thatis, n{', ny2, n{3 & n¢*) and the ambiguity to the satellite in channel 1 at

receiver 2 (the base satellite) is held fixed (that is, n21 ). The task therefore is to

estimate the 3 remaining ambiguities ( N2, n,° & ny* ).

In practice, however, because the basic data input into the solution is the

double-differenced observable, the 3 double-differenced (or lumped)

ambiguities are estimated instead (see section 3.4.3): kq'? (=nq?-ny2-nyt +

2 13 1 .3 1 3 14 1 4 1 4
No%), Kig ¥ (=nq -n1-np” +1n0%) & keo'“(=ny' -ny?-ny’ + %),

Note that this is equivalent to the base station / base satellite approach referred
to earlier. An inspection of the 3 double-differenced ambiguity terms reveals that

3 of the 4 individual ambiguity parameters nj' in each double-differenced
ambiguity term are in fact the same parameters that would have been held fixed
if the double-difference observable model was formulated with individual

ambiguity parameters. Therefore estimating kqp'2, ko' & kyo'% is
equivalent to estimating the double-differences of the 3 free ambiguity

parameters n22, n23 & n24 with respect to the base satellite and base station.
If a new satellite rises, and observations commence to it, the new ambiguity
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parameter k1215 (= n11 - n15 - n21 + n25 ) is introduced. Again, 3 of the 4 terms

(ny", ny® & ny2 ) can be considered non-estimable if the individual
(undifferenced) ambiguity modelling approach were used, while one of the

ambiguity parameters ( n25 ) could be estimated.

Because the base satellite is the "pivot” in this double-differencing process, if this
satellite sets or observations to this satellite are no longer available, then a new
base satellite must be selected. If we assume that the new base satellite is
satellite 2, the new double-differences are formed between satellites 2-3 & 2-4.

The new ambiguity parameters associated with these observables are k1223 (=
n12 - n13 - n22 + n23 ) & k1224 (= n12 - n14 - n22 + n24 ) None of these
differenced ambiguity parameters belong to the set of 3 estimable ambiguity
parameters originally defined in relation to satellite 1. However, instead of

introducing new ambiguity parameters into the design matrix of the adjustment,
each of these is modelled as a combination of 2 previously defined double-

differenced ambiguity parameters. That is: kqo°° = kyo'S - kio'? & ko2 =

k12" - ky2'2 . In this case a pair of double-differenced ambiguity parameters

are explicitly included in the design matrix. Such a scheme is an elegant
solution to the problem of rising and setting satellites during a session.

The TRIMBLE software and hardware package is designed to give survey
accuracy results, and results at the few parts per million precision level are often
obtained. While there is some atmospheric delay modelling, there is no option
for estimating atmospheric bias parameters. The program possesses no satellite
orbit adjustment capability. Furthermore, the mathematical correlations in the
double- (and triple-) differences are not modelled, hence the results are not
strictly equivalent to an adjustment based on one-way phase data.

4.2 PoPSTM

The PoPS™ program was developed to process GPS observations made using
the WILD-MAGNAVOX 101 GPS receiver (FRE! et al, 1986). Although PoPS™

is a commercial GPS adjustment program like TRIMVEC™ it does have
additional features and capabilities that reflect its heritage. The program is
based on the algorithms and processing philosophy of the high precision GPS
adjustment software of the Astronomical Institute, University of Berne (GURTNER
et al, 1985). In particular, it is a multi-station program (that is, it can handle data
collected simultaneously from more than two receivers) in which the
mathematical correlations introduced through forming the double-differenced
observables can be included if so required. In addition, there is considerable
flexibility in terms of session and solution definition, as well as a choice of
atmospheric delay models. However no atmospheric bias parameters can be
estimated, and the program has no satellite orbit adjustment capability.

After synchronising the observation time-tags using the pseudo-range data, the

single-differences (between-station differences) are formed. Cycle slip detection
and repair is carried out on the single-differenced data directly, as well as with
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the aid of the double-differences. The actual phase adjustment is carried out
using double-differenced observables.

As in the case of the TRIMVEC™ software, we can discuss the phase

configuration defect problem in PoPS™ at two levels. If we assume that all the
cycle ambiguities are modelled as individual (undifferenced) parameters then
there is a rank defect in the double-difference adjustment model of R+S—1. This
is the number of ambiguities to be held fixed as reference ambiguities and, as
discussed in section 3.4.1, a common technique is to hold the ambiguities from a
base station and a base satellite fixed, and estimate the remaining RS—R-S+1
ambiguities (Table 1). If we consider the example of 2 receivers and 4 satellites,

the task is one of estimating the 3 ambiguity parameters n,2, n,° & n,*.

However, where the PoPS™ software differs from TRIMVEC™ is that the basic
observable is a gingle-difference, not a double-difference. The ambiguity
parameters modelled are therefore the single-differenced ambiguities. In this
example there are 4 independent single-difference parameters: k121 (= n11 -
na' ), ke22 (=112 -1n02), keo® (=ny8 -2 ) & ko (= ny? - no*). According to
section 3.4.3 there is a rank defect of R-1 (= 1), and hence one reference
single-differenced ambiguity must be held fixed and the others are to be
estimated. This is the between-station ambiguity involving the "reference"
satellite, say k121. The reference satellite is selected by the program to be the
satellite to which the greatest number of observations are made during a
session. (In the case of 3 receivers in a session, the reference ambiguities are,

for example, kis! and kq5'.)

When the double-differences are formed with respect to the reference satellite,
each double-difference observable contains the difference between 2 single-
differenced ambiguity parameters. That is, from the 4 single-difference

observables, 3 double-differences are constructed: k5% =kys' - kyo?, kqo'® =

ko' - kia® & kya'% =kqo' - kyp*. That is, each double-difference observation

equation in the adjustment contains two ambiguity terms: one for the reference
single-differenced ambiguity which is held fixed (and may not even appear
explicitly in the design matrix) and one free single-differenced ambiguity
parameter. The 3 estimated (free) and one reference single-difference
ambiguity parameters are themselves the between-stations differences involving
the 3 free and 5 reference undifferenced ambiguities.

In the event of the reference satellite setting or observations to this satellite no
longer being available, a new reference satellite is chosen to control the data
differencing and in order to maintain the same reference single-differenced
ambiguity (say k121 ) the new double-differenced ambiguity parameter is
modelled as a combination of 2 previously defined double-differenced ambiguity
parameters. Referring to the example discussed earlier, the new double-
differenced ambiguity parameters are defined as: ky22% =k - kyp'? (= Kkqo2 -
k122 ) & k122 = k1" - k12" (= ky22 - ky2? ). In each case, a pair of previously
defined single-differenced ambiguities are explicitly included in the design
matrix.
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4.3 U.S. National Geodetic Survey Program PHASER

The PHASER program package was developed by a government agency (the
U.S. National Geodetic Survey - KASS & DULANEY, 1986) to satisfy its
requirements for GPS phase reduction software. The operational environment
in which the program was intended to be used has strongly influenced its
design. The main characteristics of PHASER are:

+ It is GPS instrument-independent (that is, able to process input from any
type of GPS receiver).

+ It has multi-station capability.

+ It was a designed to run on a powerful mini-computer, as is usually found in
mapping and survey organisations.

+ The program system is capable of delivering relative positioning results at
the several parts per million accuracy level, a limit defined by the program's
inability to estimate atmospheric bias parameters or to adjust GPS satellite
orbit(s).

Although the cycle slip repair and pseudo-range solution for observation time-

tag / GPST offset procedures are essentially similar to TRIMVEC™, PHASER
was the first program to make direct use of the one-way phase data in the phase
adjustment step (GOAD, 1985). The basic observable model is a modification of
equation (2-13) using a novel technique for handling the clock biases. PHASER
uses the base station / base satellite concept to define two types of lumped clock
bias parameters:

(1) For any one-way phase observation at epoch e involving the base
station r or base satellite s the total clock biases are modelled by a
single parameter (see equation (3-9)):

By'(te) = foe(te) ~ fogj(te) + (3-20)
where i=s or j=r. There are (R+S—1)T of these B parameters.

(2) For any remaining phase observation involving neither the base
station r nor the the base satellite s , the total clock biases are

modelled by a linear combination of Bji bias parameters and the
double-differenced ambiguity parameter (see section 3.4.3):

k™ + BS(te) + Byltte) ~ B S(tg) (3-21)
where:
ki® = BrS(te) - Byl(te) — B{(to) + By(te) (3-22)

There are (R-1)(S—1) of these k parameters.
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Note that keri is an integer, and is a constant for a whole observation session

(assuming there are no cycle slips), while Bji(te) has a non-integer value and
must be estimated on an epoch-by-epoch basis. The similarity with the

procedure used by TRIMVECT™™ is obvious, except that the clock bias

parameters Bj(te) have also to be estimated as the clock phase errors (€' & &)
have not been eliminated through double-differencing. There are no rank
defects in these clock bias parameters as the total number of modelled clock
biases (= (R-1)(S—-1) + (R+S-1)T ) is equal to the number of clock biases
required (= RS+ST+RT-R-S-T+1 ), as defined in Table 1 for the undifferenced
model. However, no attempt is made to explicitly estimate the clock phase
errors.

If we consider the example of 2 receivers and 4 satellites, the clock bias
parameters in the 5 one-way phase observations involving either the base

station (say receiver 1) or base satellite (say satellite 1) are: B11(te) ; B12(te) ,

B13(te) , By%(te) & Bso'(ty). The 3 remaining phase observations contain the
following clock bias parameters:

10 kq2'2+ By'(te) + B1?(te) — By (te)
2:  ky2'3+By'(te) + By3(te) — By '(te)
3: kya'+Byl(te) + By(te) — By (te)

The contribution of the 8 observations to the normal equation matrix (NEM) is

computed and the 5 Bji clock bias parameters are estimated for epoch e and
their effect on the common part of the NEM (containing the geodetic parameters

of interest and the constant bias parameters k1212 , k1213 , k1214 ) is removed

using standard partitioning techniques (see equation (2-23)). Once all the
observations have been processed, the reduced NEM is inverted and the
common parameters solved for. If the estimated values of the k parameters are
close to integers (as they should be for short interstation distances), the double-
differenced ambiguities can be resolved to their integer values and a
subsequent ambiguity-fixed solution attempted.

If observations to a new satellite become available, or from a new station, new k
parameters are incorporated into the NEM, but the number of B parameters
remains unchanged. In the event of observations involving either the base
station or base satellite no longer being available, there will not be sufficient
data to perform an epoch solution for the B parameters. This will manifest itself
as a singularity when that part of the NEM containing the B parameters is
inverted. The remedy in PHASER is to zero out the corresponding nondiagonal
row and column elements of the NEM. Such a simple algorithm is equivalent to
forming another combination of observations in the double-differences (that is,
selecting a new base satellite or station). Alternatively, a new base satellite (or
base station) is selected from the remaining satellites (or stations), and no further
contribution to the k parameter associated with this formerly non-base satellite
(or station) is made. In this, and a number of other respects, an undifferenced
approach to carrier phase adjustment involves less "bookkeeping", particularly
an advantage when multi-station adjustments are performed. Such an approach
also allows the data to remain uncorrelated, hence simplifying the adjustment
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process. In addition, no data is ever excluded from an adjustment, as can
happen in the case when double-differenced observables have to be generated.

4.4 UNSW _Program NIBBLE/CRUNCH

The NIBBLE/CRUNCH phase adjustment program was designed for high
precision GPS relative positioning applications in which, in addition to being
able to process multi-station, multi-instrument (instrument-independent) and
multi-session campaigns, a satellite orbit adjustment capability was required
(RIZOS & STOLZ, 1988). As in the case of the PHASER program the basic
observable in NIBBLE/CRUNCH is one-way carrier beat phase (equation (2-
13)). The manner in which it handles the clock biases, and overcomes the rank
defect problems associated with them, is however different to that of PHASER.
Because PHASER uses a combination of B and k parameters (both of which
are of the lumped variety) there are no rank defects. In the case of

NIBBLE/CRUNCH all clock bias parameters ( e, g & nji ) are explicitly
modelled. In fact there are four types of clock bias parameters (MASTERS,
1988; private communication):

(1) RT receiver clock phase errors (€))

(2) ST satellite clock phase errors (Si)

(3) base station / base satellite ambiguity parameters (nji)

(3) non;base station / non-base satellite lumped ambiguity parameters
(kii™)

There are a total of RS ambiguity parameters: R+S-1 of the nji variety for
observations involving either a base station r or base satellite s, (R—1)(S-1)
of the krjs' variety (section 3.4.3) for those observations involving neither the

base station nor the base satellite. This formulation is similar to that of PHASER
except that the clock phase errors have not been lumped with the base station /
base satellite ambiguities. This has the advantage that the clock errors of
receivers and satellites can be separately weighted in the solution.

In the example of 2 receivers and 4 satellites, there are 5 undifferenced

ambiguity parameters: nq', ni?, n3, ny* & no' ; each associated with a
one-way phase observation from receiver j to satellite i (with i=s=1, or j=r=1).

Each of these 5 phase observations also contain 2 epoch parameters: one for
the receiver clock error ( g;(t) ) and one for the satellite clock error ( €'(t) ). The

remaining 3 phase observations involving neither the base station nor the base
satellite contain the following clock bias parameters:

1: K1212+n21 +n12—-n11 +82(t)—82(t)
2: k1213+n21+n13—n11 +83(t)—8
3: k1214+n21 +n14—n11 +84(T)—82(’[)

n

~
—

~——
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There are a total of RS+ST+RT clock bias parameters, resulting in a rank defect
of R+S+T-1 (Table 1, model 1). The method used in NIBBLE/CRUNCH to
eliminate the rank defects in the clock biases is model 5, Table 2. The reference
clock biases are specified as follows:

* All receiver clock errors fixed for epoch tj.
* All satellite clock errors fixed for ty.

» Receiver clock t fixed for all epochs.

Note that all the reference clock biases are clock error parameters. There are no
reference ambiguities. The selection of which receiver clock is to be the epoch
reference clock is random.

Using the same method as in section 3.4.2, it can be demonstrated that the
R+S—1 estimable undifferenced ambiguities are:

E(R) =1o [(ty) — g(t4] + (3-23)

The estimates of the cycle ambiguities will not be integers as they include the

clock errors at the reference epoch (t1 ). The estimates of g, g & nji are of no
interest, and NIBBLE/CRUNCH does not output their values. The parameters of

interest are the (R-1)(S-1) keri parameters which have integral expectation

values, and the expected values are equal to the double-differenced ambiguities
involving base station / base satellite ambiguities (equation (3-19)). While the
clock phase error parameters are estimated on an epoch-by-epoch basis, and

their contribution is removed from the NEM, the krf’i and nj' parameters are

included in the common parameter set. If the estimated values of the keri

parameters are close to integers, cycle ambiguity resolution may be attempted in
a subsequent step.

As with PHASER, if observations to a new satellite are available, or from a new
station, new krjs' parameters are introduced into the NEM, although the number

of nji parameters associated with the base station / base satellite remains the

same. If there is insufficient data at an epoch to solve for the &' & €
parameters, the same remedy is used as in the case of PHASER. The
appropriate nondiagonal rows and columns of the NEM are zeroed out until the
rank defects are overcome. However, in the event of observations involving
either the base station or base satellite no longer being available, no special
action is taken. Although no further contribution to the NEM is made for the

associated nji ambiguity parameters, there is no need to select another base

satellite (or base station). Again, the advantage of the undifferenced approach
to carrier phase adjustment is that no complex algorithm is needed to account for
satellites rising and setting during an observation session.

The NIBBLE/CRUNCH package has since been superseded by the USMASS
program.
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4.5 NSW Program MA

The UNSW Satellite Measurement Analysis Software System (RIZOS & STOLZ,
1988) is a general-purpose station coordinate and orbit determination program
recently developed at the School of Surveying, and is capable of, amongst other
things, of processing GPS phase data. As with the NIBBLE/CRUNCH and
PHASER programs the basic observable is one-way carrier beat phase data
(equation (2-13)), although the manner in which the clock biases are modelled
owes more to NIBBLE/CRUNCH than to PHASER. All clock biases are explicitly
modelled but the reference clock biases are selected according to model 1 and
2, Table 2. The reference clock biases are specified as in section 3.4.2, that is:

+ Ambiguities for receiver r fixed for all satellites.
+ Ambiguities involving satellite s fixed for all receivers.
* Receiver or satellite clock t fixed for all epochs.

and the estimable (non-reference) ambiguities are (equation (3-19)):
E(A')=n'=nf-nl+nS (3-24)

The estimable ambiguities are in reality double-differenced ambiguities (with

respect to the reference ambiguities njs , n// & n°), and hence have integral
expectation values. It is not necessary to have the same reference clock at each
epoch, and the selection of which receiver or satellite clock is to be held fixed is
purely random. In the example of 2 receivers and 4 satellites, with base station
being receiver 1 and base satellite being satellite1, the 5 reference ambiguities

are: ny', ny2, ny3, ny* & ny', while the 3 estimable ambiguities are: n,?2,

n23 , n*. As in the case of the PHASER and NIBBLE/CRUNCH programs,
situations in which satellites rise and set, and stations start and end observing, at
different times are easily handled. No observation differencing takes place.
Instead, at worse the set of reference clock biases changes, although often no
further action is necessary as the undifferenced approach to phase adjustment
simply lets the normal matrix decide which parameters can be estimated and
which cannot. Furthermore, the data remains uncorrelated and no special
treatment of the correlation problem (as it exists for differenced observables) is
required.
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ABSTRACT

Time is a fundamental concept inherent in all satellite measurement and analysis techniques.
Although positioning results are invariably expressed in three-dimensions, time plays a number of
crucial roles in any geodetic solution scheme involving satellite data. In the first instance time
enters through the fact that observing stations attached to the earth's surface and the orbiting
satellites to which measurements are made are in relative motion. Furthermore, the satellites are
moving with respect to an inertial reference frame, and the station coordinates are known, or
required, in an earth-fixed reference system which, because of earth rotation and other
perturbations, is moving relative to the inertial frame. In addition, all range, or range-like,
measurements in space geodesy rely on clocks, as they are essentially timing differences
(between time of transmission and time of arrival) of a particular satellite signal. In this paper we
discuss the role of time in the context of the Global Positioning System (GPS) technology.

Time enters GPS data analysis in basically three ways:
» Through the time-tags of the satellite orbits.
« Through the time-tags of the measurements.
+ Through the measurements themselves.
Because of the nature of the measurements and the fact that GPS is a multi-satellite, multi-user

(and hence multi-clock) system, time plays an even more important role in GPS positioning than in
any other space positioning technique.

"Now at the Dept. of Survey and Land Information, Wellington, New Zealand.
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1. TIME SYSTEMS - SOME DEFINITIONS

In order to fully understand the role of time in GPS data analysis it is necessary
to briefly review the various time systems involved, and their associated time
scales. Some of these definitions are standard and inherent in all space
positioning technologies, while others are particular to the GPS system. All are
essential to the subsequent development of the GPS observation equations, to
understanding the elimination (or estimation) of GPS clock errors, and to
determining the accuracy with which time must be defined at various stages of
GPS data processing.

In general there are three different time systems that are used in space geodesy
(KING et al, 1987):

* Dynamical time
+ Atomic time
» Sidereal time

Dynamical Time is the uniform time scale which governs the motions of
bodies in a gravitational field: that is, the independent argument in the equations
of motion for a body according to some particular gravitational theory, such as
Newtonian mechanics or General Relativity. Atomic Time is time defined by
atomic clocks, and is the basis of a uniform time scale on the earth. Sidereal
Time is measured by the earth's rotation about its axis, and although sidereal
time was once used as a measure of time it is much too irregular by today's
standards. Rather, it is a measure of the angular position of a site on the earth
with respect to a space-fixed reference frame (though in keeping with traditional
practice, its units are seconds of time rather than seconds of arc). Within each of
these broad categories there are specific measures of time, or time scales, that
are used in space geodesy.

Some time scales have a special importance because they provide the
"benchmark” or reference scale within a particular time system. This often
occurs by international convention. Often, however, the time scales to which we
have access are merely realisations of the "true" or definitive reference time
scale (or scales) associated with each time system. In the remainder of this
section each of these time systems are briefly described, and the various
measures of time are discussed, together with how they are obtained in practice,
and their relevance to GPS.

1.1 Dynamical Time

Dynamical time is required to describe the motion of bodies in a particular
reference frame and according to a particular gravitational theory. Today,
General Relativity and an inertial (non-accelerating) reference frame are
fundamental concepts. The most nearly inertial reference frame to which we
have access through gravitational theory has its origin located at the centre-of-
mass of the solar system (the barycentre). Dynamical time measured in this
system is called Barycentric Dynamical Time (TDB -- the abbreviation for
this and most other time scales reflects the French order of the words). A clock
fixed on the earth will exhibit periodic variations as large as 1.6 milliseconds with
respect to TDB due to the motion of the earth in the sun's gravitational field.
However, in describing the orbital motion of near-earth satellites we need not
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use TDB, nor account for these relativistic variations, since both the satellite and
the earth itself are subject to essentially the same perturbations.

For satellite orbit computations, we can use Terrestrial Dynamical Time
(TDT), which represents a uniform time scale for motion within the earth's gravity
field and which has the same rate as that of an atomic clock on the earth, and is
in fact defined by that rate (see below). In the terminology of General Relativity,
TDB corresponds to Coordinate Time, and TDT to Proper Time.

The predecessor of TDB was known as Ephemeris Time (ET).

1.2 Atomic Time

The fundamental time scale for all the earth's time-keeping is International
Atomic Time (TAIl). It results from analyses by the Bureau International des
Poids et Mesures (BIPM) in Sévres, France, of data from atomic frequency
standards (atomic "clocks") in many countries. Prior to 1 January, 1988, this
function was carried out by the Bureau International de I'Heure (BIH). TAl is a
continuous time scale and serves as the practical definition of TDT, being related
to it by:

TDT = TAl + 32.184 seconds (1-1)

The fundamental unit of TAI (and therefore TDT) is the Sl second, defined as "the
duration of 9192631770 periods of the radiation corresponding to the transition
between two hyperfine levels of the ground state of the cesium 133 atom". The
Sl day is defined as 86400 seconds and the Julian Century as 36525 days.

Because TAl is a continuous time scale, it has one fundamental problem in
practical use: the earth's rotation with respect to the sun is slowing down by a
variable amount which averages, at present, about 1 second per year. Thus TAl
would eventually become inconveniently out of synchronisation with the solar
day. This problem has been overcome by introducing Coordinated
Universal Time (UTC), which runs at the same rate as TAIl but is incremented
by 1 second jumps ( so-called "leap seconds") when necessary, normally at the
end of June or December of each year. At present (June 1990) one needs to
add 25 seconds to UTC clock readings to obtain time expressed in the TAl scale.

The time signals broadcast by the GPS satellites are synchronised with atomic
clocks at the GPS Master Contro! Station, Colorado Springs, Colorado. These
clocks define GPS Time (GPST), and are in turn periodically compared with
UTC, as realised by the U.S. Naval Observatory in Washington D.C. GPST was
set to UTC at Ohr on 6 January, 1980, and is not incremented by leap seconds.
As a result there will be integer-second differences between the two time scales.
At present clocks running on GPST are offset from UTC by 6 seconds. There is
therefore a constant offset of 19 seconds between the GPST and TAI time
scales:

GPST + 19seconds = TAIl (1-2)
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1.3 idereal Tim

Sidereal time is a measure of the angle between a particular meridian of
longitude and a point fixed in space (loosely speaking, the intersection of the
earth's equator and the plane of its orbit on the Celestial Sphere -- the vernal
equinox). The most common form of sidereal time is Universal Time (UT1)
(not to be confused with UTC, which is a form of atomic time). The precise
definition of sidereal time or UT1 is complicated because of the motion both of
the celestial equator and the earth's orbital plane with respect to inertial space,
and because of the irregularity of the earth's rotational motion itself. UT1 is
derived from the analysis of observations carried out by the International Earth
Rotation Service based in Paris, and is reconstructed from published corrections

to UTC, that is:
UT1 = UTC + DUT1 (1-3)

2. MEASURES OF TIME IN GPS

Each time scale is defined by the period of the basic oscillation of the frequency-
determining element (be it the earth's rotation in the case of Sidereal Time, or
the oscillation of atoms in the case of TAl) which is measured, and the origin of
the time scale, which may be either arbitrarily defined or agreed upon by
international convention. The inverse of the period is the freguency, which is
directly related to the rate of the time scale. The rate is given by:

R:—ff—— (1-4)
0

where f is the "true" frequency of the oscillator (determined by comparison with
a perfect oscillator) and f, is the nominal frequency used to convert the
measured oscillator cycles into units of time (seconds). A perfect oscillator has a
rate of unity, which implies that its nominal frequency is "true". We can use the
two notions of "origin" (or datum) and "rate" (or scale) to differentiate between
various time systems and time scales. .

A related concept is the drift of an oscillator relative to a perfect oscillator. This is
the difference between its rate and the rate of a perfect oscillator (which is unity
as noted above):

D=R-1
(1=1,)

= fo

(1-5)

Figure 2.1 illustrates the relationship between the various time scales in
common use (KING et al, 1987). The vertical axis indicates the relative offsets of
the origins of the time scales, and the slope of the lines indicate their drift. Note
that with the exception of UT1 all time scales (nominally) have zero drift
(constant and true frequency) as defined by TAI

In practice, atomic time is the most accessible of all the time systems, and the
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most accurate. That is, we can build a clock to maintain an atomic time scale. In

addition, with the exception of the Sidereal Time scales, it can be used to define
or relate all other time scales. If we define "true" or "perfect” time to be, for

example, the fundamental time scale in satellite motion, that is TDB, the time
scale provided by such an atomic clock is a realisation of this "true" time. It is not
itself a true or perfect time scale, as "true" time could only be maintained by a
perfect atomic clock (if such a clock could be built) located at the solar system
barycentre (not very accessible!). In the parlance of General Relativity this is
referred to as "Coordinate Time". Nevertheless this (unattainable) "true” time is
an ideal choice for the basic time system to develop the GPS carrier phase
observation equations. The most accurate measure of this "true" time on earth
(that is, "Proper Time") is maintained by the Bureau International des Poids et
Mesures (BIPM). TAl is related to other useful time scales by offsets defined by
international convention (Figure 2.1). Hence the "true" time can be related to
these other time scales.

Dynamical Time

32.184 ¢

Atomic Time

Os

UTC

GPS Time

Figure 2.1 Time Standard Relationships
(Adapted from CONLEY, 1984)

In practical terms, each of the world's time centres keeps a local realisation of
UTC, the epoch and rate of which relative to UTC(BIPM) are monitored and
corrected periodically. UTC(AUS), for example, is maintained by the Australian
Survey and Land Information Group (AUSLIG) in Canberra (formerly the
Division of National Mapping) in cooperation with most of Australia's time and
frequency laboratories. lts relationship to UTC(BIPM) is known to about 5
microseconds. UTC may be accessed by users by tuning in to radio time
signals, which have an uncertainty of about 1 millisecond due to changes in the
propagation delay through reflection caused by the ionosphere, or to higher
accuracies by direct land line or satellite communication with the time-keeping
centre. These days the GPS system of satellites can be used to transfer time,
by permitting easy access to GPS Time (section 5.3).
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2.1 Clock Time

Individual atomic clocks, and high precision quartz oscillator clocks, maintain
their own time scale, which is therefore a realisation of "true" time if they can be
synchronised to TAl, UTC or GPST. We refer to such time scales in this report as
Clock Time. For example, a different Clock Time is maintained by each of the
GPS satellite clocks and each ground receiver clock. The deviation between
Clock Time and "true" time may be considered as:

(1) atime dependent offset with respect to TAI, UTC or GPST, or

(2) as rate irr iti ver a finite tim arising from the
imperfect frequency standard used (section 4.1).

For example, the GPS satellites carry both rubidium and cesium frequency
standards which may drift off GPST. However their performance (that is, their
rate) is continuously monitored by the GPS Control Segment.

2.2 Time Implied by Satellite Motion

Another time scale which is implicit in all measurement systems based on the
motion of satellites is the one related to the time-tags of the satellite
ephemerides. The motion of a satellite can be considered as defining a unique
time scale which is often referred to as the Satellite Ephemeris Time, or SET
(and should not be confused with the formal Ephemeris Time, which was
superseded by international agreement in 1984 by TDT and TDB). Often there is
an attempt made to ensure that SET is coincident with some other atomic time
scale such as TAI, UTC or GPST. However, just as individual clocks can have
differences with respect to "true" time, individual satellite ephemerides can be
considered imperfect realisations of SET, and referred to here as Satellite
Orbital Time (SOT). SOT is an approximate measure of SET, and hence of
Dynamical Time, and should not be confused with satellite Clock Time, though
both are approximate, but different, measures of "true" time.

2.3 The GPS Measurement in a Two-Clock Ranging System

GPS positioning is therefore concerned with a variety of satellite orbital, satellite
clock and receiver clock time scales. Hence, for high precision applications, the
relationships between each time scale and "true" time (through one of its
common realisations, such as TAI, UTC and GPST) must be established to some
degree of accuracy. This is particularly necessary in the modelling of the GPS
measurements themselves, which are essentially the difference between the
reference phase of a satellite clock at the time of signal transmission and the
reference phase of the receiver clock at the time of signal reception. This clock
difference comprises a number of components (DELIKARAOGLOU, 1987), some
significant and some that can be ignored if certain operational conditions are
fulfilled:

(1) Difference between receiver Clock Time and Proper Time at the station

(the "receiver clock error").
(2) Difference between Proper Time and Coordinate Time at the station
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(General Relativity time effects: TDT - TDB).

(3) Difference between Coordinate Time at signal transmission and signal
reception (directly related to the geometrical receiver-satellite range).

(4) Difference between Coordinate Time and Proper Time at the satellite
(General Relativity time effects).

(5) Difference between Proper Time and satellite Clock Time at the satellite
(the "satellite clock error").

General Relativity enters here because one clock is in motion relative to the
other. In our subsequent discussions we will assume that the General Relativity
time effects on GPS measurements have been accounted for in a preprocessing
stage and will be ignored (for more details the reader is referred to, for example,
ASHBY, 1987; ZHU & GROTEN, 1988).

We can therefore identify four basic stages of GPS data processing where time
enters in a number of guises:

3.

+ Stage 1: The generation of a satellite ephemeris in an inertial reference
frame, the orientation of the earth in space and the determination of the
satellite's coordinates in the earth-fixed system.

+ Stage 2: The differences in satellite clock times and "true" time, how this
is monitored by the GPS Control Segment, and the effect of residual
clock errors on GPS measurements.

+ Stage 3: The signal transmission time -- a measure of the range, and
the effect of receiver clock errors on the GPS measurements.

» Stage 4. Accounting for residual satellite and receiver clock errors on
the GPS measurements. The differences in receiver clock times and
“true" time, the operational requirements for the synchronisation of GPS
receivers, and the simultaneity condition for GPS observations, and how
these differences can be either determined or at least accounted for in
the processing stage. In addition the impact of clock errors on the
measurement time-tags, and through them on the quantities used in
GPS data processing.

TIME, SATELLITE EPHEMERIDES AND EARTH ORIENTATION

Time, as it relates to near-earth satellite motion, has three main manifestations:

(2)

(1) As the variable necessary for the computation of the perturbing forces

operating on the satellite, and the independent argument in the
Equations of Motion,

As the independent variable in the numerous transformations necessary
to relate the inertial reference system used for the formulation and
solution of the Equations of Motion to the earth-centred / earth-fixed
reference system in which the tracking station positions are referred to,
and

(3) As a means of tagging the instant of transmission of a signal from a

satellite.
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For a GPS user who does not compute his own satellite ephemerides, and
instead accepts orbital information from another source, point (1) is of little
interest. The analyst's main concern is that the ephemeris time-tags (defining
the SOT) are sufficiently close to the "true" time required by his data processing
software. The SOT (and SET) maybe UTC, IAT, GPST, or some other well-
defined time scale.

Further, if the satellite positions are provided in relation to an earth-fixed
reference system, point (2) also does not directly concern the average user,
unless the satellite reference system is not the same earth-fixed system to which
the user's station position solution is to be referred. In such a case, an additional
transformation between satellite and tracking station reference systems is
required which may or may not be dependent on time. For example, the GPS
Broadcast Ephemerides contained in the Navigation Message transmitted by the
satellites are provided in an earth-centred / earth-fixed reference system known
as WGS84. This is therefore the reference system in which all station solutions
are referred if the Broadcast Ephemerides are used.

For high precision geodetic applications of the GPS technology, some form of
orbital adjustment is necessary and therefore points (1) and (2) are of critical
importance.

Finally, the determination of the coordinates of a satellite at the time of
transmission of the signal is a basic operation within all satellite tracking data
processing software.

3.1 Satellite Ephemeris Generation - Time Base Considerations

The best analytical theories of orbital motion produce GPS satellite ephemerides
with an accuracy of several dekametres, for arc lengths of less than one day
(ABBOT et al, 1983). Analytical orbit models therefore are inadequate, both for
operational orbit computations (for multi-day arcs) to support GPS surveying and
navigation, as well as for geodetic applications where high accuracy orbits are
essential. For such high accuracy applications, orbit modelling is based on the
Equations of Perturbed Motion (KING et al, 1987, chapter 7), which are
numerically integrated in an inertial reference frame, using Dynamical Time
(TDT, or a suitable substitute such as TAl) as the independent variable. This
inertial reference frame is commonly defined by the true or mean equator and
equinox at some (arbitrary) time epoch.

In effect the satellite reference system is "frozen" at that instant. We can relate
the coordinates of a satellite, at any instant in time, to different reference systems
through a certain combination of transformations described in the next section.

3.2 The Earth's Motion in Space

The modelling of the GPS observable and the estimation of tracking station
positions depend upon the precise definitions of the coordinate systems in which
the observations are made and subsequently analysed. We therefore need to
describe the earth's motion in space, and define the conventional celestial and
conventional terrestrial reference systems used.
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The earth's pole of rotation is not fixed in space, but "precesses" and "nutates”
due principally to the torques exerted by the gravitational fields of the moon and
sun on the earth's equatorial bulge. Precession is the slow circular motion of
the pole with respect to inertial space with a period of about 26000 years.
Nutation is a more rapid motion, superimposed on the precession, and
comprised of oscillations ranging in period from 14 days to 18.6 years.

When the effects of nutation are removed, the resulting fictitious equator and
equinox are called the mean equator and equinox, and their positions at
any epoch are called the mean equator and equinox-of-date. The precession
component relates the mean equator and equinox-of-date to the mean equator
and equinox of some defined reference epoch. For example, we may define the
Celestial Reference System (CRS) by the equator and equinox at a
particular date (or epoch). The equator and equinox at 12hTDB on 1st January
2000 (Julian Date 2451545.0), designated J2000, defines a conventional CRS
(sometimes known as the CCRS , or simply the Conventional Inertial System).
(The Julian Day number is the number of the day in a consecutive count
beginning so far back in time that every date in the historical era can be
included. This uninterrupted series of days began at Greenwich mean noon on
1st January 4713BC.) Applying nutation to the mean equator and equinox of a
given date yields the instantaneous or true equator and equinox of that
date.

Two additional transformations are necessary to relate the CCRS to an earth-
fixed system. These are the earth orientation parameters. One is a rotation
about the true pole-of-date, through the angle between the true equinox-of-date
and the adopted point of zero longitude on the earth, nominally the Greenwich
meridian. The other is a transformation between the true pole-of-date and the z-
axis of the earth-fixed system, by accounting for polar motion. The
relationships used for these transformations (precession, nutation, rotation, and
polar motion) effectively define the CCRS by describing its relationship to the
terrestrial system, which we refer to here as the Conventional Terrestrial
Reference System (CTRS). For a full treatment of this subject the reader is
referred to KOVALEVSKY et al (1989).

The four transformation components that relate celestial and terrestrial reference
systems centred at the earth are (see KAPLAN, 1981; CONLEY, 1984; for
definition of constants):

* Precession: Transformation of mean-of-date coordinates r(t;) at one
epoch t, to mean-of-date coordinates r'(ty) at another epoch t; is
effected by:

r'ey) = P.rity)

where
P = R3(-za).R2(-64).R3(CA)

* Nutation: Transformation of mean-of-date coordinates r' to true-of-date
coordinates " is effected by:

r=N.r
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where
N = R;(-e-Ag).R;3(-Av).R4(€)

+ Earth Orientation: Transformation of true-of-date coordinates r" to
earth-fixed coordinates ry is effected by:

fe = Ry(-x).Ry(-y).Rg().I"

where x ,y are the coordinates of the rotation pole relative to the fixed z-
axis of the CTRS system, and 6 is the Greenwich Apparent Sidereal Time.

3.3 Coordinates of a Satellite at Signal Transmission Time

One of the basic requirements in adjustments of satellite tracking data is to relate
the coordinates of the satellite (in the case of an orbit adjustment -- the a priori
coordinates) to those of the tracking station. The quantity that directly relates the
position vector of satellite i to the position vector of station j is the satellite-
receiver range at time t:

pit) =] reSe®) —rev | (3-1)

when expressed in terms of a celestial reference frame (not fixed to the earth).
reS and re are the position vectors in, for example, the CCRS, of the satellite

and station, and t° is the true time of transmission. Alternatively we may use the
model:

pit) =| re3(t) 1o (3-2)

when expressed in terms of an earth-fixed reference frame. ro® and ry are the
position vectors in, for example, the CTRS, of the satellite and station
respectively (note the absence of a time argument for re in the case of a

stationary tracking receiver).

The important point to note in the use of equations (3-1) or (3-2) is that we are
calculating the path of a signal travelling at the speed of light. We use a model
of geometric range based on spatial coordinates and relate this to the
observations of transit time. This leads us into the realm of Einstein's theories of
Special and General Relativity. The relativistic corrections which may be
applied to GPS observations (if required, see for example ASHBY, 1987) are
valid for calculations carried out in a quasi-inertial (non-rotating) reference frame
such as the CCRS. Thus equation (3-1) is valid. However, equation (3-2) is not
strictly valid because the reference frame has rotated significantly during transit
time.

One simple method to overcome this problem is to define a special temporary
"computational" reference frame for the purpose of calculating the satellite-
receiver range. This frame is quasi-inertial, earth-centred and we define the
axes as being coincident with those of the CTRS at the time of reception. The
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receiver coordinates at the time of reception are thus the same in both frames.
The satellite coordinates at the time of transmission differ from the CTRS
coordinates primarily because of the rotation between the two frames during the
signal transit time. (There is also an effect in the precession, nutation and polar

motion during the time interval t — t5, but it is minute in comparison to earth
rotation.) If we use ry to represent position vectors in this temporary

computational frame, we can correct equation (3-2) by writing it as:
pit) =| rée)-r |
=| Ra(@At).reS(%) - re | (3-3)

where @ is the rate of rotation of the earth. The modelled range is now
correctly defined in terms of satellite and receiver coordinates in the CTRS
frame. Note that the temporary computational frame serves only to allow us to
generate equation (3-3) and avoid violation of Einstein's theories of Special and
General Relativity. It has no other function in modelling GPS observations.

How do we obtain the coordinates of the satellite and the receiver in the same
reference frame for equations (3-1) or (3-3)? The receiver coordinates are
usually given or required in an earth-fixed (CTRS) system. If the Broadcast
Ephemeris is used, the resulting satellite coordinates at the time of transmission
will also be in terms of a CTRS. If a precise ephemeris is used, the satellite
coordinates may be expressed in an inertial or quasi-inertial system such as the
CCRS. The complete transformation between the CCRS and the CTRS is:

reS = Ra(-x).R4(-y).R3(6).N.P.rc8 (3-4)
or
reS = PL.NT.R;T(6).RyT(-y).RyT(-x).r S (3-5)

Equation (3-4) may be used to convert satellite coordinates in terms of the CCRS
to the CTRS for use in equation (3-3). Equation (3-5) may be used to convert
receiver coordinates in terms of the CTRS to the CCRS for use in equation (3-1).
In practice the situation is even more complicated.

3.3.1 Conventional Terrestrial Reference System

A CTRS is defined by the totality of procedures, models and constants
associated with the establishment and maintenance of a primary (global)
network of reference stations. Stations in a geodetic survey can be related to the
CTRS by occupying secondary sites whose positions are known with respect to
the primary network. There will be uncertainties associated with the relative
coordinates of sites in both the primary and secondary networks, and with the
orientation of these networks with respect to the Greenwich meridian. With some
care however, a CTRS may be defined with uncertainties at the level of 10cm or
less in most areas of the world. Such a system is possible because of the large
number of observations made over the past 10 years by very accurate space
techniques: in particular, very long baseline interferometry (VLBI) observations
of extragalactic radio sources and laser ranging observations to the LAGEOS
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satellite and the moon.

From satellite laser ranging (SLR), the coordinates of the AUSLIG Laser
Ranging Station at Orroral Valley (near Canberra, in eastern Australia) and the
NASA Laser Ranging Station at Yaragadee (north of Perth, in Western Australia)
are known with respect to each other and to laser ranging stations in North
America and Europe with an uncertainty of about 5cm (e.g. STOLZ & MASTERS,
1983). From VLBI observations, the coordinates of the NASA Deep Space
Network Tracking Station at Tidbinbilla (near Canberra) and the Parkes radio
astronomy telescope (north of Canberra, in NSW) are also known with respect to
each other and similar radio telescopes in North America and Europe with a
similar uncertainty of about 5cm (HARVEY et al, 1983). Moreover, observations
have been carried out to tie together the SLR and VLBI reference systems, and
each with other systems such as that used in TRANSIT satellite observations.
Thus by locating GPS receivers near the SLR and VLBI tracking stations, a
network of sites within Australia could be tied into the CTRS. Such a GPS
network is being established in Australia and New Zealand, as part of an
expanded worldwide CIGNET system to support high precision civilian GPS
activities (NEILAN & MELBOURNE, 1989).

3.3.2 Conventional Celestial Reference System

The realisation of a CCRS for GPS is more difficult and prone to greater
uncertainties. Some of the space geodetic techniques refer to a nearly inertial
system: lunar laser ranging because the moon's motion is tied to the solar
system barycentre through the gravitational attraction of the sun, and VLBI
because the observed radio stars are so distant from the earth that they have
negligible proper motion. However, the non-gravitational forces (for example,
solar radiation pressure, unbalanced attitude control thrusts, and drag effects)
perturb the orbits of GPS satellites, so that they provide a relatively poor
realisation of an inertial system. In GPS surveying we maintain access to the
CCRS only by frequently regenerating the satellite orbits using the best possible
models for the forces and by tracking them from stations (such as the CIGNET
network) whose coordinates are known more precisely from other space
techniques.

Another potentially weak link in tying GPS measurements to the CCRS and
CTRS is the transformation expressions used to relate the two systems. If
conventional expressions are used to relate the one system to the other, as is
the case for precession and nutation, and these are used consistently, no
significant error or uncertainty is introduced into the reduction of GPS
observations. Furthermore, as their rate-of-change is measured in terms of tens
of arcsecs per year(!), an error in the time argument of over an hour would need
to be made before P and N terms affect the position of the GPS satellite by a
metre, relative to the earth's surface. This is unlikely to be the case. (The
corrollary of this is that the precession and nutation matrices need not be
recomputed at intervals less than an hour.) The effect of UT1 and polar motion
is, however, another matter.

3.3.3 UT1 and Polar Motion
Two parts of the transformation are empirical: UT1 and pole position. If incorrect

values of these quantities are used to determine orbits of the GPS satellites (that
is, for modelling the relationship between the earth-fixed tracking station
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coordinates and the space-fixed satellite coordinates), the celestial system
defined by these orbits will be in error by the same amount.

Fortunately, "rapid service" values of UT1 and pole position with uncertainties
less than 0.02arcsec are available from the IERS and other organisations within
10 days of the time when the observations were made, and predicted values
with uncertainties less than 0.05arcsec are available by the time a survey is
being performed. A given angular error in earth rotation will cause an equal
angular error in the orientation of the surveyed baseline. An error of 0.05arcsec

produces a baseline error of less than 3 parts in 107 (KING et al, 1987), so the
accuracy of UT1 and pole values is not a problem for most applications. The
analyst should take some care, however, that he doesn't inadvertently use
predicted values instead of "observed" values, especially when they are more
than a few weeks old.

However, in addition to the unpredictability of UT1 and pole position, the
apparent error in the orientation of the earth-fixed reference system (and hence
of the GPS satellite's position relative to ground receivers) due to an error in the
time argument for the computation of UT1 must be taken into account. The error
relation is that 1 second of time is equivalent to 15arcseconds. If the observation
time-tag were therefore in error by 1 millisecond, the orbit of the GPS satellite
would appear to be displaced (rotation about the earth's spin axis) by 15
milliarcseconds, or 1.5m.

Such an error in the time argument (due to the local clock error), see section

5.4.2, is possible if the time of transmission has to be derived indirectly from the

time of reception (the observation time-tag). In the context of GPS data
processing this is discussed below.

3.3.4 Interpolation of the Broadcast Ephemeris at Signal
Transmission Time

The Broadcast Ephemeris is a convenient representation of the satellite orbit,
having the following characteristics:

+ lItis a compact representation based on 14 parameters (VAN
DIERENDONCK et al, 1980) which are changed hourly, but which can
be validly used for up to a four hour period centred at the epoch known
as the "time-of-ephemeris”.

+ The satellite coordinates are given directly in the WGS84 system (the
realisation of the CTRS in the GPS system). Hence no reference system
transformations are required to be carried out by the user.

« The computation of the satellite position only requires the input of a time
argument (see KING et al, 1987, for the algorithms involved).

The time input into the calculation of the satellite position is the transmission time
of the signal in the GPST system. There are essentially two technigues by which
the time of transmission can be determined:

(1) One technique makes use of the range measurement itself and the time
of reception as noted on the receiver clock. In the case of GPS, the
pseudo-range is converted to transit time:

57



T=pl/c (3-6)

where c is the velocity of light. It is then subtracted from the pseudo-
range time-tag to give the signal transmission time directly:

i si
Tj = t] - t] (3-7)

where t; is the time of reception and tjs' is the time of transmission
(which is sought). (Internal to the receiver however, it is the PRN codes
modulated on the L-band signals that give the transmission time, and the
pseudo-range is determined from this transmission time and the
receiver-determined reception time.)

(2) The second technique uses an indirect approach, not requiring any
knowledge of the satellite-receiver range. In order to solve equation (3-
7) for modelling an observation time-tagged at t;, we must iterate as both
sides of the equation are functions of the transit time. This is done in
practice by starting with a reasonable guess for T, for example 0.07
seconds in the case of GPS satellites. With this initial guess we can
derive an estimate of the transit time (equation (3-7)), determine the
satellite position vector:

S S i
r =r° (t — T 3-8
iteration ( ] ] iteration ( )

From this a new transit time is computed using this satellite position and
the unchanged receiver position (equation (3-1) or (3-3), & (3-6)):

i
"C'i pj iteration (3_9)

Viteration+1 c

With this new transit time we can repeat the process (equations (3-8) &
(3-9)) until convergence. About 3 orders of magnitude are gained with
each iteration, and the process usually converges in 2-3 iteration steps.
(REMONDI, 1984, describes a more efficient algorithm for GPS transit
time computations that minimises the number of iterations necessary.)

There are several comments that need to be made with regards to determining
GPS satellite position at transmit time:

* As the Broadcast Ephemeris provides the satellite position vector in an
earth-fixed reference system, the appropriate range model to use (for a
static receiver) is equation (3-3).

+ The direct (pseudo-range) technique for determining time of transmission
does not require that the receiver clock time by synchronised with "true"
time as the measurement (the transit time) itself contains that error. Hence
a local receiver clock error does not propagate into the time of
transmission. In fact the receiver clock is irrelevant. However, the time of
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transmission is directly generated by the satellite clock, and any
discrepancy between it and the Satellite Ephemeris Time (in which the
time-tags of the orbit are defined) will appear as an alongtrack error in the
orbit, by all receivers tracking this satellite, at that epoch.

« The indirect technique for determining time of transmission, on the other
hand, is independent of the satellite clock (in fact, one need not even exist),
but entirely dependent on the receiver clock. If the local receiver clock time
is discrepant from SET, the effect is a time-tag error affecting all satellites
being tracked at that epoch.

These latter two points are important when we come to define the notion of
Computation Time for GPS data adjustment (section 5.4.2). The indirect
approach is likely to lead to greater crrors in range modeclling as receiver clock
error is likely to be greater than a GPS satellite clock error (especially if the
broadcast a priori clock error model is used -- section 4.4.1), unless the receiver
clock error is explicitly estimated (section 5.3).

4. CLOCK BEHAVIOUR AND ERROR MODELLING

Individual clocks maintain their own time scale. The aim is to relate this time
scale, in as rigorous a manner as possible, to "true" time. We are therefore
dealing with the deviations of each clock time scale from some "perfect" time
scale. A study of clock behaviour is useful from two points of view:

* in rstanding the limits of clock performance, so that valid
approximations can be made concerning clock error(s). For example, clock
errors can be assumed to be nuisance parameters effectively eliminated if
certain operational requirements are met in the case of GPS surveying.

* in defining explicit models for clock behavi

We discuss below some measures of clock performance or stability, and relate
them to common clock error models used in GPS.

4.1 Frequency, Phase and Time

Today's high precision clocks are all based on some form of frequency standard
or oscillator. In the context of the GPS system these belong to one of two
classes:

(1) The so-called "atomic" clocks, such as the cesium beam tube, rubidium
vapour cell or hydrogen maser oscillators.

(2) The various types of quartz crystal oscillators, of which the oven-
controlled variety is the commonest used in GPS receivers.

Time intervals are most precisely defined by the cycle counter of a frequency
standard. (For example, the second is now defined as 9192631770 cycles of the
fundamental resonance of the cesium atom.) Hence it suffices to establish the
relationship between frequency and the phase output of an oscillator, and their
errors, as the time scale can be directly obtained from such a relationship. The
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reading on a frequency cycle counter i can be represented by:
D(t;) - Dltgi) = fi (i — toi) (4-1)

The wavelength of the phase cycle is (c/ f; ), where ¢ is the velocity of
electromagnetic radiation. Substituting the appropriate scaling for the phase
change to convert it into a time interval, and defining the origin of the time scale
at the arbitrary reference epoch of the cycle counter, we can obtain an
expression for a clock reading as (WUBBENA, 1988):

t
bt —to=1 [ fi(t) dt (4-2)
0 tO
with:
tg is the reference epoch
toi is the clock reading at the reference epoch
fi(t) is the frequency of the oscillator
f is the nominal oscillator frequency

0

A standard model for the frequency of an oscillator is:

fi)=f,+ AF + f(t-t) + £ (1) (4-3)
with:
Af is a frequency bias
1 is a frequency drift
f.(t) are unmodelled random frequency errors

Substituting equation (4-3) into (4-2) gives:

t
Jﬂﬁ)dt (4-4)

0

Af f ]
tl (t)=tOi+(t-to)+f—(t-t0)+-2—f—(t'to)2+f_
0 0 04

Rearranging terms into a representation of the error of the clock i as a time
polynomial:

& (t) =t —1

=ap+a (t-1o) + 5 (t- 10)° jy (4-5)
where
ag is the clock bias term
a, is the clock drift term
ao is the clock drift-rate, and
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t
jy(t)dt is the integrated random fractional frequency error

b

Expressed as "phase" error this is:
De(t) = f, &(t) (4-6)

In the case of an L1 GPS phase measurement, the frequency is 1575.42MHz,
and the effective wavelength of the signal is approximately 19cm. One cycle of
the signal therefore is tracked by a frequency counter in approximately 0.6
nanoseconds.

Clock error, whether expressed in terms of phase (equation (4-8)), time
(equation (4-5)) or frequency (equation (4-3)) instability, consists essentially of
two distinct components:

(1) The gystematic part which can be determined (and predicted). This is
the explicit polynomial part of equations (4-3) and (4-5), although the
order of the polynomial may be higher than that indicated.

(2) The random part, which may be significant enough to have to be taken
into account.

Therefore in addition to exhibiting deterministic deviations from a "true" time
scale, they also undergo stochastic variations in both time (or phase) and
frequency. An example of a realisation of the time difference between a
commercial cesium clock and a time scale generated from an ensemble of
atomic clocks is shown in Figure 4.1. The top graph shows how the clock has a
frequency bias so that the time scale appears to drift linearly away from the "true"
time (defined here by the group of atomic clocks). This linear drift (approximately
50 msec/year) does not affect the clock's ability to keep accurate time as long as
the rate of the drift (coefficient a; ) is known or can be estimated very well. The
middle graph shows the residuals after fitting a straight line to the top graph. The
variation is now of the order of 5 msec/year, but the quadratic appearance
indicates a higher order effect still present, in this case a significant frequency
drift in the clock (the coefficient a, representing "ageing"). That is, the
frequency of the clock appears to change linearly with time. The bottom graph
shows the residuals after removing a quadratic function. These are now
primarily stochastic variations (a higher order polynomial could be used to
remove residual "systematic" trends, but we will consider here "stochastic"
variations as being those that remain after second polynomial modelling).

This random part needs to be taken into account. If this random part is
significant (it is of the order of 0.5 msec/year in the example described above)
then its behaviour can be characterised as some form of random process.
The GPS satellite and receiver clocks are discussed in section 4.4., but we first
need to define a measure for clock stability that is appropriate for this random
signature.
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Figure 4.1 Time Difference between a Commercial Atomic Clock and
the U.S. Naval Observatory Time Scale (JONES & TRYON, 1987)
(The middle graph has linear trend removed, and the bottom graph has a
quadratic removed.)

4.2 Fr n nd Tim ili

The component of equation (4-3) attributable to random error sources is known
as the random fractional frequency deviation, or the integrated random fractional
frequency error (equation (4-5)). The total fractional frequency deviation
(systematic + random), or just the random part, can be analysed in the time or
frequency domain. The standard approach is to deal with the sample variance
of only the random fractional frequency fluctuations in the time domain. As we
can measure the frequency count or time difference over some elapsed time
interval T we can define the mean value of the fractional frequency deviation
(see, for example, WUBBENA, 1988):
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where t . =t + T, k=0,1,2,...T, is the repetition interval for measurements of
duration T , and t is arbitrary.

Now forming the sample variance of y(t) :

2 | 1 1 2
<OANT)>=<g7 ) [yn - A3V > (4-8)

k=1

where < g > denotes the infinite time average of "g".

A particular variance measure is chosen so that N=2, T=1. This is the so-called
"Allan Variance":

VRY:
6,2(7) = E{6,3(N=2,T=11)} = E{ (YK+12 Yl } (4-9)

This two-sample variance of the fractional frequency error is the standard
measure of clock stability used. One of its special advantages is its relative

simplicity: it is only a function of T and can be piotted in the form of stability
graphs such as those in Figure 4.2 (HELLWIG, 1979). The units for o,(t) are
dimensionless. Note that in Figure 4.2 the linear drifts of the quartz

crystal and rubidium oscillator of 1 part in 1070 and 1 part in 1072
have been removed.

NOPMAL PERF7PMANCE

)

v (2,1}

TIME (s)

Figure 4.2 Square-Root of the Allan Variance of Typical Oscillators
(after removal of linear trend for crystal and rubidium oscillators)
(HELLWIG, 1979)

How does one interpret frequency stability plots such as these? The clock
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stability is portrayed as a function of the time interval between the monitoring of a
particular clock. If we assume that at the start of the interval the clock is
synchronised with (or has been compared to) "true" time, the amount by which
the clock has "deviated" (on average) after a certain time interval T is given by
the square-root of the Allan Variance G,(T) times T . For example, quartz
crystal oscillators are as precise as hydrogen masers if the time intervals are
less than approximately 5 seconds. In the short term, up to 10* seconds cesium
standards fare badly in comparison with other frequency standards. However,
their medium to long term performance is superior to all but the hydrogen maser,

which it rivals after approximately 108 seconds.
A point worth noting with regard to Figure 4.2 is that, with the possible exception
of the cesium oscillator, the rubidium, quartz crystal and hydrogen maser
oscillators exhibit distinct short-, medium- and long-period stability regimes.
These regimes have the following characteristics:

(1) Short-period: the Allan Variance decreases as T increases.

(2) Medium-period: the Allan Variance is a constant.

(3) -period: the Allan Variance increases as T increases.

4.3 Stochastic_Clock Error Models

The Allan Variance is a measure of the performance of a clock. It can be used to
predict the behaviour of clocks in the GPS system over time spans ranging from
fractions of a second to several hours, and hence the likely build up of clock
error (phase, time or range equivalent). This is important for various aspects of
GPS observable modelling (section 6 & 7). Usually the clock errors are in fact
eliminated through some form of observation differencing. However, there may
be instances when g _clock error model is explicitl '

Particular circumstances will influence the form of the clock error model:

* A clock error model involves the parametrisation of the systematic
deviations, as well as accounting for the random deviations. Such a model
is only possible in the context of an optimal filtering scheme in which the
systematic part of the clock error is estimated (usually as polynomial
coefficients, as in equation (4-25)) and the clock error residuals are treated
as a random process which is the source of some form of "system noise" in
the filter (see, for example, LANDAU, 1988; WUBBENA, 1988; MERMINOD,

1989).

* An a priori clock model, on the other hand, such as the one transmitted by
the GPS satellites (section 4.4.1), is purely a deterministic model (even
though the numerical values of the clock error coefficients themselves may
have been determined from a filter solution).

This section briefly describes the random processes appropriate for clock error
modelling when the clock error is estimated using a Kalman filter procedure. As
a starting point we will use the Square-Root Allan Variance graph (Figure 4.2).
The three frequency stability regimes mentioned earlier can be characterised by
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different random processes. These random processes will be introduced from a
purely intuitive point of view, devoid of mathematical details.

First let us summarise some points made earlier (both explicitly and implicitly):

* The instantaneous frequency is defined by equation (4-3). It may also be
expressed in terms of the phase output of an oscillator:

@ =2nf t+ Dy(t) + D) (4-10)

where @y is the systematic part of the deviation and ®, is the remaining
random part.

+ The fractional frequency error is an instantaneous measure of the
frequency (or phase) stability, and is defined as:

@t
Y=gt (4-11)
0

note that y(t) is dimensionless.
* Another parameter is:

Dy
27ch

(4-12)

which is the oscillator pulse expressed in units of time. x(t) is the
instantaneous (random) time error of a clock driven by an oscillator having
an instantaneous frequency f.

* y(t) and x(t) are random processes.

+ The fractional frequency error can be analysed in the frequency or time
domain. The measure of frequency stability in the frequency domain is
typically expressed in terms of the one-sided spectral density Sy(f) of y(t).
Both the time and frequency domain characterisations can be obtained
from each other through simple transformation formulae (see, for example,
RUTMAN, 1978).

» A measure of frequency stability in the time domain is convenient as it can
be characterised by moment indicators such as mean value, variance and
covariance functions. If y(t) is a stationary and ergodic process, we can
obtain the statistical mean value and variance of y(t) based on the
sampling:

N
My =% 2, y(n) (4-12)

n=1
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N
w%é - MyJ? (4-13)

where Ry, the true variance can be estimated from the sample variance.
That is, E{Ry} = R

+ However, in the time domain, phase, frequency and fractional frequency
are all functions of time. In addition it is not possible to measure
instantaneous frequency. Therefore these quantities are best

characterised by their variation over a specific time interval T. We define
the average fractional frequency error over the time interval T (equation (4-
7):
t +7T
< [@(1,+7) — D(1,)]
ve=T [y(t)dt = —= :
T 2rf T
t 0

note thatas T->0 then y, ->y(1), y, is therefore a good approximation to
y(t) for shortintervals T.

+ We can now analyse y, in the time domain. The standard variance
formula is applied (equation (4-13)) and when N =2, T = T we obtain:

VY-
5,2 (N2, T=t17) = (Yk+12 Yk) (4-14)

+ The mean value is the Allan Variance or "pair variance" (equation (4-9)):

6,2(1) = E{ (YK+12" yi)? } - E [Yk+1 — yil? (4-15)

note that it is a function of T,andas 7->0 and M-> =, the Allan
Variance tends towards the true variance of y(t) .

« The Allan Variance is not based on any physical model of the oscillator,
instead, the stability graphs are produced from the results of testing actual
oscillators. (For the long-period portion of the graphs, long measurement
time periods are required, and hence the results are not as reliable as for
the short-, medium-period portions.) However, as we shall see below, the
Allan Variance computations are not strictly valid for the medium- and long-
period sampling intervals.

» For the prediction of clock errors, a simple prediction is:
6,2(1) = 12.0,2(1) (4-16)
The Allan Variance of oscillators is convenient means of characterising
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frequency stability in the context of qualitative assessments as to whether it is
appropriate to model (in the deterministic sense) clock errors in GPS, or whether
there are alternative processing procedures that largely eliminate the clock
errors (see section 6). Allan Variance is not, however, a convenient expression
of clock/frequency stability for stochastic modelling. Attempts are made to
characterise the Allan Variance graph as one or more random processes, and to
assign to each process a value for the spectral density. All such attempts are
approximations (see LANDAU, 1988, for discussion on this problem). "Total"
stochastic clock error models appropriate for GPS are discussed in section 4.4.
What is presented below is the rationale behind the choice of approximate
models based on a number of possible random noise processes.

4.3.1 Short-Period Stability Models

An inspection of Figure 4.2 shows that there is a distinct frequency stability
regime where the Allan Variance decreases as the time interval T increases.
This portion of the graph can be expressed as:

0,2(7) = Kyt (4-17)

where Kj for various types of commercially available oscillators is given in
Table 4.1. o4 is positive.

The integral of y(t) is a constant and y(t) is a stationary process, of which the
most appropriate model is that of white noise. This means that the values of
y(t) are uncorrelated over time, so that if y(t) were known at some instant it
could not be predicted at a short time later. This would only be true if there was
infinite variance on the white noise. Though unrealistic, it is a good
approximation of random frequency noise for short elapsed times and has
important implications for GPS clock modelling (section 4.4). (White noise on
the frequency implies a random walk process for the phase or time error caused
by the frequency deviations.)

4.3.2 Medium-Period Stability Models

This frequency stability regime is characterised by a constant Allan Variance.
This implies that y(t) increases as T increases. This portion of the graph can
be expressed as:

0,%(1) = O = constant (4-18)

y

where oy for various types of commercially available oscillators is given in
Table 4.1.

There is no simple random noise model in the time domain that can describe this
behaviour. Instead a non-stationary process for the frequency deviations known
as flicker noise is assumed. Flicker noise is defined in the frequency domain,
but its physical cause is uncertain. To be used in filter models for clock error it
must be transformed into the time domain, and a discussion of how such a
transformation can be approximated is found in LANDAU (1988). Because of its
relative complexity, compared with the short-period and long-period random
processes, it is often not used (see, for example, BAUSTERT et al, 1989;
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MERMINOD, 1989).
4.3.3 Long-Period Stability Models

This frequency stability regime is characterised by the Allan Variance increasing

with increasing t. This implies that y(t) increases rapidly as T increases. This
portion of the Allan Variance graph can generally be approximated by:

0,2(T) = Kp.1%2 (4-19)

where K, for various types of commercially available oscillators is given in
Table 4.1. o, is negative.

y(t) is a non-stationary process best approximated by a random walk, which
itself implies a white noise process on the derivative of the frequency: the

L]

frequency drift (f ), and a second order random walk (known also as integrated
random walk or random ramp) on the phase or time error (MERMINOD, 1989).

Table 4.1 Typical Performance Data for Commercially Available Oscillators
(Adapted from HELLWIG, 1979)

K, O, K, Drift
(sec/sec)

H (active) | 1x10712s 1x1014 | 3x1017/s T 10715
Cs 5x10"11s 1x103 | 3x10717/s” 10715

7x10712Js 5x10714 | 3x10'7sT | 1015 - 1014
Rb 5x10712(s 5x10718 | 3x1015/sT 10712
X-tal 1x107'2s 5x107% | 3x107'5V/s? 10710

4.4 lock Models Appropriate for GP

From the discussions in the previous sections, the fractional frequency error y(t)
can be represented as a set of three independent noise processes Z,(t)

(LANDAU, 1988):
y(t) = Zo(t) + Z4(t) + Zo (4-20)

where Z,,Z.,,Z, represent the white noise, flicker noise and random walk
processes respectively. The spectral density of Z, is given by:

Sz (f) =h,f" 0<f<H,
or (4-21)
S, (f)=0 f>f, h=-=2-1,0

n

where the h, are constants and f,, is the system noise bandwidth. The one-
sided spectral density of y(t) is given by:
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Sy(f)=hof2+hyft+h (4-22)

The Allan Variance can be obtained by transformation of the spectral densities
into the time domain (see, for example, RUTMAN, 1978):

o0

2sin*rtf
2
6.21) = |S(f) 22 g4 4-23
201 jyn s (4-23)
The result is of the form:
27y 2 2 hy 2102 + 00 4-24
0,2(1) =—E—+h; 212 + 2 (4-24)

A task is therefore to determine the spectral densities for the various h,. In
general the flicker noise model is not used (see, for example, BAUSTERT et al,
1989).

4.4.1 GPS Satellite Clocks

The GPS satellite component most likely to fail is the clock. Each satellite is
launched with several clocks on board. Any one of the oscillators can be
commanded by the GPS Control Segment to be the primary spacecraft
oscillator. The prototype (Block I) satellites were launched with different
oscillator designs in order to test which would function best under space
conditions. Some of the satellites are at present operating with cesium clocks,
others with rubidium clocks. The Block Il GPS satellites are equipped with two
cesium oscillators and two rubidium oscillators, and the decision as to which will
be the "master” clock is made by the Master Control Station on the basis of the
monitored performance of the clocks. The clock bias, drift and drift-rate are
explicitly determined in the same procedure as the satellite ephemeris is
estimated. The behaviour of each GPS satellite clock is monitored against GPS
Time (GPST), which is itself kept synchronised to UTC as defined by the U.S.
Naval Observatory.(after taking into account the leap second offsets -- section
1.2). As a consequence, the clock behaviour so determined in used to:

(1) occasionally reset the satellite clock so that it is within 1 millisecond of
GPST.

(2) the offset, drift and drift-rate of the satellite clocks are available to all GPS
users via clock error coefficients broadcast in the Navigation Message.

The satellite clock error model is a polynomial of the form:

E=ag+ay (t-1g) + ap (t - tp)? (4-25)

where
ag is the clock bias term
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ay is the clock drift term
a, is the clock drift-rate

What is available to users is really a prediction of the clock behaviour some time
into the future (possibly up to 24 hours ahead). As the random deviations of
even cesium and rubidium oscillators are not predictable, such deterministic
models of satellite clock error (mis-synchronisation with GPST) are accurate to
about 20 nanoseconds, or six metres in equivalent range. The residual satellite
clock error can therefore not be neglected.

A number of options are available for handling this error:

+ construct a range-like observable from which the satellite clock error € has
been eliminated.

» model the satellite clock error as a random process.

In the context of GPS phase data reduction (section 6.1) the former involves
observation differencing, while the latter requires explicit estimation of the clock
error on an epoch-by-epoch basis. Although a random walk process for the time
error would be most appropriate for short sampling periods (subsecond to
several minutes), this could only be implemented within an optimal filtering
estimation scheme. In general however, a standard least squares algorithm is
used in which the time error is modelled as white noise. This is in fact no model,
in the stochastic sense, as no attempt is made to relate the clock error from
epoch to epoch.

Stochastic models of GPS satellite clock error are included in the estimation
algorithms for satellite orbit determination used by the Control Segment (for
example, SWIFT, 1985), as well as those interested in processing undifferenced
or single-differenced phase data.

4.4.2 GPS Receiver Clocks

Most GPS receivers are equipped with oven-controlled, quartz crystal oscillators.
Their major advantages are that they are small, consume little power and are
relatively inexpensive. In addition they have good short-term stability (Figure
4.2). Some receivers are, however, equipped with ports to permit the connection
of an external frequency standard such as a cesium, rubidium and even a
hydrogen maser.

Although the time defined by individual receiver clocks have essentially arbitrary
origins, they can be tied to a well established time scale, such as GPST, in a
number of ways. Generally, the time origin of a GPS receiver is set automatically
as soon as sufficient satellites are tracked (section 5.3). The gubsequent time
scale defined by the corrected receiver clock is then nominally that of GPST
because:

* the synchronisation at some epoch (that is, defining the time origin) is
susceptible to error. Generally, it can be defined only at the 0.1
microsecond level.

+ the stability of the scale is directly related\to the quality of oscillator used,
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and how often the current clock time is compared with GPST through the
use of GPS pseudo-range observations.

However, as with satellite clock errors, GPS phase data processing to survey
accuracies requires that the clock errors be explicitly estimated, or eliminated, so
that no residual clock errors remain.

4.4.3 One-Way Ranging

All GPS measurements involve two clocks: the satellite clock responsible for
generating the signal, and the receiver clock, against which the incoming signal
is compared. A GPS range is derived from the difference between the receiver
clock reading at the time of reception of a signal and the satellite clock reading at
time of transmission.

GPST is the intermediate time scale against which all GPS clocks are compared.
Hence as GPST is "true" time, the offset of any clock from this particular time
scale is generally treated in GPS processing as a clock error. A GPS range
therefore is contaminated by two clock errors: it is in fact, for this reason, termed
a pseudo-range.

The dominant error is, however, the receiver clock error because:

+ the satellite clock, being sither a rubidium or cesium atomic standard, is of
higher quality than the average receiver clock, which is generally a quartz
crystal oscillator.

+ the satellite clock time is regularly monitored by the GPS Control Segment,
and the clock error is modelled by transmitted polynomial coefficients
(section 4.4.1).

This is illustrated schematically in Figure 4.3.

GPS Time

Satellite Clock

Change in Time

Receiver Clock

Figure 4.3 Variations in Satellite Clock and Receiver Clock Rate
(Adapted from ROCKEN, 1988)
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5. THE GPS MEASUREMENT PROCESS

5.1 Defining Clock Error

The clocks used to generate GPS measurements and to time-tag them are
imperfect, however the theoretical time frame for modelling the observations and
for undertaking the geodetic calculations is "true" time. |t is useful to suppose
initially that every clock, or oscillator, can be compared directly with a "true"
oscillator which has a known and constant frequency f, with respect to "true"

time.

In the following mathematical development the symbol ® is used to represent
the phase of this "true” oscillator and T to represent the "true" time generated by
the oscillator. The behaviour of phase with time obeys the relation (equation (4-
1) & (4-2)):

O(T) = (D(TO) + jf(T) dT (5-1)

where f(T) is the time dependent frequency of the oscillator and T, isthe time

at some arbitrary initial reference epoch. Because the frequency of the "true"
oscillator is constant we can write:

D(T) = B(Ty) +f, (T—T,) (5-2)

The clock time generated by an imperfect clock oscillator is obtained by counting
the number of whole and fractional cycles and dividing by the nominal
frequency. The frequency of any oscillator is constant with respect to its own
clock time. In general however it will not be constant with respect to any another
time scale or oscillator. Using ¢ as the phase of an imperfect oscillator and t(T)
as the clock time defined by that oscillator at "true" time T we can write:

O(T) = 6(To) + 1, [1(T) = 1(To) | (5-3)

where we have chosen the nominal frequency f0 of the clock oscillator to be the

same as the nominal frequency of the perfect oscillator. The term [(T) -
t(To) ] is the number of seconds of clock time that have elapsed in the interval
between "true" times T and T,.

The frequency of this oscillator is not constant with respect to "true" time and thus
the clock time will have a non-linear behaviour with respect to "true" time. We
can represent the difference between "true" time and clock time by phase errors,
by time errors, or by frequency errors. The nominal L1 carrier frequency of GPS
satellites is 1575.42MHz and 1 cycle of phase is equivalent to approximately 0.6
nanoseconds. The measured quantity in GPS is phase and these
measurements are made at intervals timed by receiver clocks. The most useful
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representations of clock behaviour are therefore phase errors or clock errors. To
relate frequency error to time or phase error we need to know the complete
behaviour of the frequency with time so that the integral in the following equation
(equation (5-1) can be evaluated:

O(T) = &(Tg)+  [f(T) dT (5-4)

The phase and clock errors are only required at the discrete epochs when
measurements are made, and therefore it is not necessary to know the complete
behaviour of the oscillator with time. It is often more efficient to describe clock
behaviour in terms of phase or clock errors at specific epochs rather than by a
continuous model of frequency error such as a polynomial.

A general model such as a polynomial has been used by some authors to
represent the continuous satellite and receiver clock behaviours as they impact
on GPS observation modelling (for example, KING et al, 1987). This method is
used successfully to represent the satellite oscillators for low accuracy
applications (section 4.4.1). A second order polynomial is sufficient for most
purposes. However there is a possibility that the stability of the satellite
oscillators may be intentionally degraded or "dithered" under the policy of
"selective availability". For example, if sudden changes in satellite oscillator
frequency occur, these will not be well modelled by a polynomial.

Therefore, for reasons given above, the GPS observation equations will be
developed using discrete (epoch-by-epoch) clock errors rather than frequency
polynomials. This does not preclude the subsequent development of
polynomials to model these clock errors. It does however ensure that the

equations developed are general and do not reflect one particular continuous
clock modelling strategy.

The clock error at "true” time T is represented by €(T) where

or t(M)=T+¢g(T) (5-5)
If we substitute equation (5-5) into equation (5-3) we obtain:
O(T) = O(To) +fo[ T = To + &(T) — &(Ty) ] (5-6)

and using equation (5-2) to substitute for fo(T -~ T,) we get:

O(T) = O(T) + fo &(T) + O(To) — P(To) — o €(To) (5-7)
or O(T) — D(T) — o &(T) = &(To) — D(To) — fo &(Tp)
=K (5-8)

The term K is constant in time as the equation is true for any T . The phase
difference between two oscillators is closely related to the clock difference. Two
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clocks reading exactly the same time will have oscillators with exactly the same
phase. Applying this to the above equation, if the clock error &(T) is zero then

K is equal to the difference between ¢O(T) and O(T), which we have noted is
then also zero. We can therefore write:

O(T) = D(T) + o £(T) (5-9)
This follows from the definition of clock error and the fact that the clock time is

generated by the phase of the oscillator, which in effect means that time and
phase are completely dependent on each other.

5.2 The GPS Phase Observable

5.2.1 Signal Transit Time

Let the time of reception of a signal at receiver j be T; , and let the time of
transmission of that signal from satellite i be Tji. The transit time of the
signal from i to j is ’cji(Tj) and is defined by (equation (3-6)):

(M) =T)-T/ (5-10)

The beat phase formed as an observation in the receiver is the difference
between the phase of the received signal and the phase of the local receiver
oscillator. The phase of the received signal at the time of reception T; is equal
to the phase of the transmitted signal at the time of transmission TJ-i (this is
implicit in the definition of the transmission time). Therefore:

0p} (T) = 04/(T) = dioy(T))

) = ON(T}) = dioy(T}) (5-11)
where:

q)bji(Tj) = the carrier beat phase for receiver j , satellite i, at

reception time T;
q)rj(Tj) = the received signal phase from satellite i at receiver | at
time T
the local oscillator phase of receiver | at time T;

¢I9j(Tj)
ot()

the transmitted signal phase from satellite i at transmission

time Tji

From equation (5-9) we can write an expression relating phase and clock phase
error of the local oscillator:

O1i(T)) = D(T}) + o &(T) (5-12)
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where g(T)) is the clock phase error of receiver j. Using equations (5-2), (5-9)
and (5-10), an expression relating transmitted phase and satellite clock phase
error, at reception time can be formed:

OU(T) = @(T) + 1, €(T)
= O(T)) — 1, T(T)) + £, €(T}) (5-13)

where ei(T) is the clock phase error attributable to the oscillator of satellite i .
Combining equations (5-11), (5-12) and (5-13) leads to an expression for the
carrier beat phase:

Op{(T) == 1o [ T/(T) ~ €(T) + (T (5-14)

The transit time component in equation (5-14) is made up of two parts. The main

part is derived from the true geometric range pj' between the satellite at the time
of transmission and the receiver at the time of reception. This is determined from
the position vectors of the satellite and the receiver, as defined in the same
reference system (see section 3.3.4). Given the speed of the signals ( ¢ , the
speed of light) we can calculate the time taken for the signal to travel this
distance. The value we use for the speed of light ¢ is the speed in a vacuum
and hence this is the primary means of defining scale in GPS. It is the satellite
and receiver position information contained in the geometric range that allows
us to use GPS for positioning. The second part of the transit time term accounts
for the extra time taken for the signal to travel through the earth's atmosphere.
This is caused by a change in velocity as the signal traverses layers of different
density, but as the effect is small compared with the geometric range it can be
modelled as a time delay, a phase delay or as an increase in range, and can be
assumed to not affect GPS scale defined by c . If we incorporate this as a phase

correction term  {aimos, then it may be further broken down into terms for the

different parts of the atmosphere: ¢;,, for the ionosphere component, and Gtrop
for the troposphere component. Hence:

fo Tl'i(TJ') =(fy/¢) Pji(Tj) + Qatmos (5-15)

Combining equations (5-14) and (5-15) we obtain a model for carrier beat
phase:

O (T) == (fo/ ) P(T) + 5 [€(T}) = &(T) 1 - Datmmos (5-16)

5.2.2 Measured Carrier Beat PhaSe

The measured carrier beat phase differs from the above modelled beat phase in
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a number of important respects. Firstly, the carrier beat phase measurements
will have random noise associated with the measurement process. This may be

accommodated by an additional noise term (pgise » With @ magnitude of only a
fraction of a cycle (a few mm in equivalent range). Secondly, the definition of
clock phase error in equation (5-9) depends on the integral and fractional part of
the carrier phase. When the carrier beat phase is measured in a GPS receiver
the measurement is ambiguous with regards to the number of integer cycles.
This integer is set in a counter to some arbitrary value when the satellite signal is
first acquired (for example zero), see Figure 5.1. There is therefore an unknown
integer number of cycles nj' difference between the measured carrier beat
phase and the model beat phase in equation (5-16). This will be unique to a
particular satellite-receiver pair. Furthermore, it will be a constant for as long as
the receiver continues to track and count the integer number of cycles from the
time the satellite signal is first acquired. At any epoch other than the initial

measurement epoch, the instrument measures the fractional phase q)fji(Tj) and,

in addition, takes a reading q)cji(Tj) on the cycle counter. This combined
fractional and integer phase observation is commonly referred to as integrated

carrier beat phase, and nji is the so-called cycle ambiguity.

other biases

other biases

Figure 5.1 Integrated Carrier Beat Phase and the Ambiguity

The model of the measured carrier beat phase (in units of cycles) therefore
includes these three additional terms:

Op(T) = (T + 0gj(T)
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== (lo/ ) p{(T) +fo [€/T;) (T ]
+ ”ji — Oatmos + Pnoise (5-17)

Note that such an observation model is necessary for both L1 and L2 integrated
carrier beat phase measurements.

5.3 The GPS Pseudo-Range Observable

The model for the measured pseudo-range follows directly from equation (5-17),
after conversion to units of length:

P (T)) = p}(T)) + ¢ [&(T}) = &(T)) 1~ Patmos + Proise (5-18)
The points to note are:
» The absence of the ambiguity term.

+ The satellite and receiver clocks terms are identical to those in the carrier
phase model (having been generated by the same clocks). This close
relationship to carrier phase often leads to pseudo-ranges being referred to
as code-phase.

* The noise on the measurement pPpyise iS several orders of magnitude
larger than for carrier phase, being of the order of metres to dekametres.

The last point in particular is significant. It limits the usefulness of pseudo-range
data to relatively low accuracy applications. For these applications it is sufficient
to model the satellite clock error €/(T{) by equation (4-25), and to correct the

pseudo-range data. This is also done, to some extent, to the atmospheric effect,
using simple refraction models. The remaining bias is therefore the receiver
clock error:

Pai(T)) = Pj(T)) + c.&(T)) + Proise (5-19)

This error is, in effect, the offset of the receiver clock time from that of the
corrected satellite clock time. It is a constant error in the ranges to any satellite,
made at time Tj) . This has two important implications:

(1) If the position of the receiver is known, then (with the satellite position

defined by the Broadcast Ephemeris) the range pji(Tj) is also known.
The clock offset at time Tj) can be determined directly from equation (5-

19), with one pseudo-range observation pdji(Tj) . This is a very effective
form of time transfer, as the derived time offset now defines the

relationship between local clock time and a well defined time scale such
as GPST (and thence TAI, UTC, etc.).

(2) If the position of the receiver is unknown, then there are four parameters
in equation (5-19) which are unknown (the 3 coordinate components
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plus the receiver clock error gi(Tj) ). The measurement of four pseudo-
ranges (to four GPS satellites) at the same time permits a direct solution
of all parameters to be made. This is the so-called navigation
solution.

In both cases, given the level of measurement noise, and possible errors in the
orbit and satellite clock error model, the relationship between receiver clock time
and GPST can probably be defined to better than 0.1 microsecond. This is
however not sufficiently accurate for modelling the receiver clock error in the
carrier beat phase (equation (5-17)), though it is sufficient for the purpose of
correcting the time-tags of the observations (see section 5.4.2).

5.4 Errors in Modelling the Observation

Mismodelling of the integrated carrier phase observation (equation (5-17)) can
result from a number of effects. In addition to the atmospheric effects (which we
do not wish to comment on in this paper), the main errors arise from:

(1) The measurement noise may not be truly random, but influenced by
systematic disturbances external to the receiver circuitry. One effect is
multi-path, resulting from spurious signal reflections from nearby
surfaces. For such effects there is generally no remedy available
through improved observation modelling.

(2) The cycle ambiguity nj' may not be constant for the entire period that
satellite i is tracked by the receiver (j). A jump in the value is known as
a cycle-slip. This complicates carrier phase processing, and is
generally detected and repaired in a preprocessing step (so that in fact
the corrected observations do satisfy equation (5-17)).

(8) Errors in the calculation of the satellite-receiver range pji(Tj) . These
are discussed below in more detail.

5.4.1 The Satellite-Receiver Range Model

The satellite-receiver range contains all the information required for positioning
with GPS. The range is a function of both the position vector of the satellite and
the position vector of the receiver. In the least squares adjustment of the carrier
phase data this range is modelled using the a priori information about the
position vectors. This modelled value is affected by errors in the model and in
the a priori values. If these are significant we should include further parameters
in the adjustment, such as corrections or changes to the receiver coordinates or
orbital parameters to account for errors in the satellite ephemerides. However,
as the satellite-receiver range changes with time, any uncertainty in the time
scale used for the phase data calculations will also affect the accuracy of this
model, and hence of the adjustment itself.

For the purposes of this discussion we assume that the range modelling is
performed in an earth-centred / earth-fixed (ECEF) coordinate frame (section
3.3). We will also assume that the receiver is fixed in this frame (that is, we are
dealing with static rather than kinematic positioning), and that effects such as
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earth tides and tectonic plate motion are insignificant. Hence the relative motion
between satellite and receiver is described entirely by the change of the satellite
position vector relative to this frame.

We can identify four major sources of error in the computation of the satellite-
receiver range:

(1) Errors in the ECEF coordinates of the receiver.

(2) Errors in the satellite ephemeris.

(8) Errors in the transformation between inertial and ECEF frames.
(4) Errors in the time input to the calculation of the range.

Errors (1) and/or (2) may be accounted for by including appropriate parameters
in the GPS phase observation model for the data adjustment. If the ephemeris is
given in terms of ECEF coordinates (as in the case of the Broadcast
Ephemerides) then any errors in the transformation between inertial and ECEF
frames (3) will be included with the ephemeris errors, (2). (The most common
error is to neglect the incremental rotation of the earth between time of
transmission of a signal and time of reception when the range modelling is
carried out in the ECEF frame -- section 3.3.) Otherwise the transformation
parameters (for precession, nutation, polar motion, earth rotation) are usually
considered to be to sufficient accuracy for the purposes of GPS data processing.
Error (4) is the remaining influence on the range calculation that needs particular
attention.

5.4.2 Time-Tag Error, Computational Time and the Calculation of
Model-Range

We need the time of transmission of the signal with respect to the Satellite
Ephemeris Time in order to calculate the satellite position vector from the
ephemeris. A number of techniques can be used (see section 3.3.4) but the
accuracy of this calculation depends on whether there is any difference between
the time of transmission used in the calculation and the true time of transmission

xpres in terms of SET (or its realisation, Satellite Orbital Time - SOT). Here
we assume the ephemeris time-tags are expressed in the SOT system.

The time of reception used for this calculation is usually based on the receiver
time-tag for the observation (that is, Local Clock Time) but may differ from it if
corrections have been applied. For example, the receiver clock may be
synchronised with some time standard such as UTC, before, during and/or after
field operations. This corrected time of reception can be used, together with the
known difference between this time standard and the SOT, to obtain an a priori
estimate of corrections to be applied when calculating the satellite-receiver
range. These corrections can be applied to either the observation time-tags or
the ephemeris time-tags, thus accounting for the effect of any time system error
in the modelling of the GPS data.

Alternatively, we can include extra parameters in the adjustment and estimate
the difference between the time scale of the observation time-tags and the SOT
scale using either the pseudo-range data or the phase data itself. This a
posteriori correction can then be applied in subsequent iterations of the
adjustment. (Generally the analysis of pseudo-range data occurs at the
preprocessing stage, the time-tags then are assumed corrected for the
subsequent phase adjustment step.)
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The point to note is that the time system used for the calculations of satellite-
receiver ranges is not necessarily Receiver Clock Time, Satellite Ephemeris
Time, GPST or any of the other well defined time scale. We can refer to this time
scale as Computational Time. The difference between Computational Time
and SET is the difference between the time-tags of the ephemeris and the time-
tags of the observations (which may have had some corrections applied). This
difference is called the time-tag error. An unintended error may be introduced
into the geodetic calculations if significant time-tag errors are present, and they
are not accounted for. The precise meaning of the word "significant" will be
discussed later.

In the above discussion we have assumed that the observation time-tags have
been generated by the receiver clock, and then perhaps corrected in some way.
The receiver clock is therefore performing two functions: it generates the signal
which is used to form the carrier beat phase and it acts as a clock to produce the
observation time-tags. The time-tags and the observations are therefore not
strictly independent, and an error in one will lead to an error in the other.
However, according to our definition of the time-tag error, it may not be
completely the result of receiver clock error. It may result, in addition, from:

* errors in the corrections applied to the receiver clock time to correct it (or
synchronise it with "true" time) -- see section 5.3, and from

* uncertainties in the realisation of Satellite Ephemeris Time (that is, the
SOT).

In GPS data processing the receiver clock errors and the observation time-tag
errors are in fact often regarded as independent. The pseudo-ranges, if
measured, are affected by the receiver clock error to the same extent that the
phases are. We could use them in two ways:

(1) To carry out a pseudo-range "navigation solution" in which the estimated
receiver clock error (offset from GPST) is used to define a corrected
Receiver Clock Time, to which the observation time-tags refer (and
hence defines the Computational Time) -- section 5.3.

(2) The pseudo-range, together with the observation time-tag, can be used
to calculate the time of transmission of the signal in the time scale of the
satellite clock (section 3.3.4). After applying the a priori satellite clock
error model transmitted in the Navigation Message, this would result in
an observation time-tag independent of the receiver clock. The
Computational Time would in effect be a corrected Satellite Clock
Time.

As we shall see, the difference between either definition of Computational Time
and the GPS Satellite Ephemeris Time is insignificant.

In this discussion we will regard time-tag errors as being independent of receiver
clock errors (affecting the observations themselves), while still remembering that
in practice they are often linked. We need to introduce a set of additional
parameters to account for the time-tag error, denoted by tey(T;) , for receiver | at

time Tj .
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We can now consider the effect of this time-tag error on the calculation of the
satellite-receiver range. The effect on the calculated range of a small
discrepancy between the time of transmission expressed in the Receiver Clock
Time system and the equivalent event in the SET system can be represented by
a Taylor's series expansion:

OOi

PI(T; + te(T)) = p(T)) + tey(T) B(T) + 5 (t&(T) 2 BI(T)) + .. (5-20)

L X]

where f) is the rate of change of range (range-rate) and is the second
derivative of range with respect to time (range acceleration). The maximum
range-rate for GPS satellites (taking earth rotation into account) is approximately

760 m/sec and the maximum range acceleration is approximately 0.14 m/sec?.

If we seek to keep the error in the satellite-receiver range to below 1mm
(equivalent to 0.005 cycles or 3 picoseconds at the GPS L1 carrier frequency of
1575.42MHz) then the second order term in equation (5-20) is only significant if
the time-tag error is greater than approximately 0.1 seconds. The first order term
will be significant if the time-tag error is greater than 1 microsecond. In GPS
adjustments, the Computational Time based on either corrected Satellite Clock
Time or corrected Receiver Clock Time, the time-tag errors are less than 1
microsecond and both of these terms may be ignored.

5.4.3 Modelling Time-Tag Error in Phase Observations

However, if Computational Time has not been defined, with the aid of pseudo-
range data, to be close to SET, and the time-tag error is indeed large, it would
need to be estimated as an additional parameter during the analysis of the
phase data alone. If we substitute the zero and first order terms of equation (5-

20) for pji(Tj) in equation (5-17) we obtain a more complete expression for the
modelled carrier beat phase:

O/ (T)) == (T,/¢) [ pf(T) —tey(T) B(T) ]
+1 [E(T) - g(T)1

+ 1 = Gatmos + Pnoise (5-21)

In equation (5-21) we have a different time-tag error term for every receiver and
for every epoch. It should not be necessary to estimate all of these. Over an
observation period of say 3 hours (approximately 104 seconds) a quartz crystal

receiver clock with a drift of 107'° sec/sec will not change its error by more than 1
microsecond, and thus a single error term per receiver for all epochs should be
sufficient. In any case, 2 terms per receiver (time-tag offset and drift-rate) should
be sufficient to ensure that all time-tag errors greater than 1 microsecond are
accounted for.

If the receivers have been synchronised to each other in some way (as the early

Macrometer "codeless" receivers had to be -- KING et al, 1987), but it is
suspected that they are not synchronised with respect to SET, then it may be
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sufficient to have one time-tag error parameter which describes the average
error of all receivers.

6. DIFFERENCED GPS PHASE OBSERVABLES
6.1 Elimination of Clock Error Differencin

In developing the GPS carrier beat phase observations in the previous section,
we have briefly considered the effect of systematic time errors on an individual
observation. This is however not the whole picture. We are more interested in
how these observations are brought together in an adjustment and how errors
affect the adjusted parameters.

When we form a least squares model using undifferenced phase observations
(equation (5-17) or (5-21)), we find ourselves making assumptions about the
parameters, for example, that two observations have a common clock error. The
same assumptions are made when differences are formed between
observations to eliminate common errors. In GRANT et al (1990) the authors
discuss the Fundamental Differencing Theorem, which may be
summarised as follows: regardless of whether we eliminate parameters by
differencing or estimate them in an undifferenced model, the results for the other
adjusted parameters will be the same. From this we can deduce that
assumptions that are made explicitly in forming differenced observation
equations are also made implicitly in formulating the undifferenced model. The
derivation of the mathematical models for the various observation differences is
therefore a useful means of examining these assumptions. (We also do so
because in practice this is the most common way of dealing with clock biases.
Note here that we are using the term "clock bias" as defined by GRANT et al,

1990, to refer to the linear biases of receiver and satellite clocks, ej(T) and ei(T)
, as well as the integer ambiguity term nji )

The clock biases are significant error sources and must be either estimated or
eliminated in some way if survey or geodetic accuracies are to be achieved. The
clock difference between satellite and receiver affects the phase observation
directly and an error of 3 picoseconds in this clock difference will affect the GPS
L1 carrier beat phase by 1mm (0.005 cycles). We do not have a priori
information about the clock differences to this level of accuracy so we cannot
eliminate the clock errors by means of an a priori model. If all the clock bias
terms are included in the adjustment model to be estimated, the number of
parameters will become unwieldy as the number of observation epochs
increases. These are generally nuisance parameters as we are usually not
interested in the clock behaviour itself but are only concerned with ensuring that
it does not affect the geodetic parameters such as receiver positions or orbit
parameters. A common technique in GPS adjustment therefore is to form
differences of the observations to eliminate some or all of the unwanted clock
biases.

Given that clock errors may be eliminated by differencing, it may be asked why
spend so much time and energy defining and describing these errors? The
reason is that on closer inspection we find that these errors are not always
completely eliminated by differencing. If certain assumptions are made about
the clock errors, based on our knowledge about the field procedures, the office
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processing, the receiver operation and clock stability, then the clock errors do
effectively cancel. If these assumptions are not valid then the effect of the clock
errors on the adjustment is not as well understood. For example, a breakdown
in procedures or hardware may result in significant, non-cancelling, clock errors.
In section 7.2 we describe several scenarios which may lead to the assumptions
being invalid.

We also find that the time-tag errors in equation (5-21) are not eliminated by
differencing. In many cases they will be known a priori to an accuracy sufficient
to allow them to be eliminated from the model. Otherwise they must be
estimated if the highest accuracy is to be achieved.

A close study of the assumptions often made is rewarding even though they are,
in most cases, accepted as being true without question. It gives a greater insight
to the processing options available for GPS observations. It provides an
understanding of the reasoning behind recommended field and office
procedures. It helps the analyst to determine what may have happened when
things go wrong. In these cases it also allows the analyst to make the
appropriate corrections to the data processing to eliminate or minimise the effect
of the additional errors.

6.1.1 Forming Observation Differences: the Assumptions
The assumptions which are often made are:

(1) It is assumed that the observations from one receiver to different
satellites at a measurement epoch were all made at the same time.

(2) Itis assumed that the receiver clock is used to determine the time of
observation and that all receivers have been set so as to take
observations at the same nominal observation times. In other words, it is
assumed that where the observations are not simultaneous, this is
entirely due to receiver clock errors. This may not be the case when
GPS receivers of different makes are combined in a campaign.

(3) Itis assumed that the receivers have been somehow synchronised with
each other so that the "true" observation times are close for all receivers.
"Close" will be defined later in section 6.3.2.

(4) Itis assumed that the receivers have been synchronised with respect to
some standard time scale (or that the lack of synchronisation has been
measured) so that the relationship between the observation time-tags,
the ephemeris time-tags, and the time-tags of the earth rotation
parameters can be specified in the adjustment. That is, it is assumed
that the time-tag errors are so small that they have no effect on the
adjustment, or that they have been largely eliminated by appropriate
transformation of the Computational Time (as discussed in section 5.4.2).

(5) It is assumed that the satellite clocks are so stable that the clock errors
do not change significantly between the various transmission times for
signals which are all received at the same nominal observation time.
This is discussed in section 6.3.1.

(6) It is assumed that the receivers have maintained lock on the satellite
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signals and tracked the number of integer cycles so that the integer
ambiguity is a constant for all observation epochs. That is, there are no
cycle-slips.

These assumptions will be investigated in detail as they arise in the formulation
of the mathematical models for the various differenced carrier beat phase
observables. As well as identifying the assumptions we will try to identify the
circumstances for which they are not valid. To do this we need to set a criterion
for "validity". We will define an assumption as being invalid if the error in the
observation which results from the assumption is a significant proportion of the
measurement noise. Assuming that the measurement noise is several
millimetres we have chosen 1mm to be a "significant proportion" of the noise. In
calculating the significance of systematic errors we will consider the worst case
scenario in order that we remain conservative when deciding whether the
assumptions are valid.
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6.2 ween- i Differen

It is a well known that the receiver clock errors may be eliminated by forming the
difference between phase observations from one receiver to two satellites at the
same time. The operator V indicates a between-satellites difference.
Using Equation (5-19) with satellites 1 and 2 and receiver j we can write:

Vo"3(T)) = " (T)) = 0p2(T)) (6-1)

where we have made the assumption (number (1) in section 6.1.1), that the two
observations have been made at the same time Tj. We can write the observation

based on this assumption as:

Vo' == (f/e) Loy (1) — P2y ~ tei) (51" (t) = 52 ) ]
+1, (VM) - eXT?) ]
+ nj1 - nj2 - Vq)atmos (6-2)

Note that the receiver clock error has been eliminated but that the time-tag error
of the observation has not. The maximum possible value for the range-rate
difference in equation (6-2) is twice that of a single range-rate (that is, 1520
m/sec, assuming range-rates of +760 m/sec and —760 m/sec, respectively for the
two satellites in question). If we now assume that the time-tag error is less than
0.7 microseconds then it will have no significant effect on the differenced phase.
This is assumption (4) of section 6.1.1, and leads to the familiar between-satellite
difference observable:

Voi'’3(T) = = (ty/0) [pj'(t) — PPt ]
+1y [e' (M) - eAT?) ]

+ r‘j1 - nj2 ~ Vdatmos (6-3)

We will now consider further our initial assumption. While it may be the intention
of a receiver manufacturer to ensure that the observations to different satellites
are all made at the same time, it may not always be possible in practice. For
example, it has sometimes been found with certain GPS receivers, such as the
Trimble 4000 series, that occasionally an observation to one satellite is made at
a time which differs by 1 millisecond from the other observations. This is also
true of WM101 observations made in the "raw" data format (MERMINOD, 1989).
If it is not known that such time-tag offsets have occurred at each measurement
"epoch”, there will be an error introduced in the between-satellite difference
which may need to be modelled.

When we introduced time-tag errors in section 5.4.1, we assigned an error to
every receiver. We now see that it is possible to have an error for every
observation. This error may have two effects. Firstly we can no longer use a
single time-tag error, as in equation (6-2), secondly we have to look at whether
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the receiver clock errors at the different observation times do cancel.

The size of the first part of this error depends on the range-rate of the observed
satellite. In the case of the "millisecond slip" alluded to above, the error could
range from —0.76 to +0.76 metres, or approximately +4 phase cycles. This is a
significant error and needs correcting. Any difference between observation
times less than 1.3 microseconds will be insignificant. If an error is known to
have occurred we can correct the time-tag for that individual observation and
use this corrected time-tag to calculate the satellite receiver range. Therefore
the "millisecond slips" only present a problem if they have not been identified, or
if the processing software used does not allow for a different time-tag to be
assigned to every observation.

The size of the second part of the error depends on the stability of the receiver
clock. Given a receiver clock stability of 1 part in 1010, the observation times
would need to differ by 30 milliseconds before a significant non-cancelling
receiver clock error was introduced.

6.3 Between-Station Differences

The satellite clock errors may be almost eliminated by forming the difference
between phase observation from two receivers to one satellite at the same time.

The operator  indicates a between-station difference. The observation
times are given by the receiver clocks and include receiver clock errors.
Therefore, although the nominal observation or reception times of the two
measurements may be the same, the "true" time of measurement will differ from
one receiver to the next.

If the nominal reception time is t then the true times of reception, T; and T,, at
receivers 1 and 2 are:

t=t;=1p

Ty=t—g(Ty)

To=t—€,(T2)
and therefore

Ti=Ty =€5(Tp) — &(Ty) (6-4)
The observation time difference (for observations that are supposed to be
simultaneous) is thus equal to the difference in receiver clock errors. (This is
assumption number (2) of section 6.1.1.) Care must though be taken to ensure
that this is true when mixing GPS receivers of different brands.

We can now develop the observation equation for between-receiver differences.
Using equation (5-21) with receivers 1 and 2 and satellite i we can write:

Ad12'(t) = Op1(Ty) = Pp2'(T2) (6-5)
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and thus

Ad1o'(t) = — (fy/e) [ p1'(t) — p2'(t) —teq(ty) P1'(ty) + tealts) P2i(ta) ]
+1, [€(T4) —€(T,)) ]
—fo [ €4(T1) —€2(T2) ]

+ n1i = n2i — Adgtmos (6-6)

6.3.1 Satellite Transmission Times

The satellite clock errors still appear in this equation because the two observed
signals were transmitted at different times. The term on the second line
containing these clock errors describes the change in satellite clock error
between the two transmission times. It is usually considered to be insignificant
but we need to examine this (assumption number (5) of section 6.1.1).

Using equations (5-10) & (6-4) we can determine the relationship between the
two transmission times:

Ty =Ty =Ty =T, + T, (Ty) "_Tli(T1) _
= €5(To) —&1(Ty) + ' (T2) = T, (Ty) (6-7)

The relationship between these times is illustrated in Figure 6.1, in which the
more general situation of two receivers and two satellites is shown.

For simplicity in examining the likely magnitude of errors under this assumption
we will represent the change in the satellite clock error between T4' and T,' by
a linear drift (rate of change of clock error with time € i(T) )-

Note that this drift could include a jump or step in the satellite clock error
between the two transmission times:

el -elmh=¢\(m) (T{-T)
e"<T>_<r2i<T2>—'rﬂ<T1>>
+EIM) (To-Tq) (6-8)

The significance of this depends on two factors:

» the difference in transit times, and
» the difference in observation times.
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Figure 6.1 Relationships between Clock Errors, Time of Transmission and
Time of Reception

The difference in transit times depends on satellite-receiver geometry. For a
baseline of 300km in length this will be less than a millisecond (and will be even
less for shorter baselines). If the cesium clocks in the satellites are behaving to
specifications, we can expect the short term stability over a millisecond to be at
least 1 part in 1010, The error over a 1 millisecond interval will therefore be of
the order of 0.1 picosecond, and thus insignificant. Unless we have reason to
suspect high frequency noise in the satellite clocks with clock error changes of
several picoseconds within a period of less than a millisecond (short term
stability of only 1 part in 108 ) or a step in the clock error of several picoseconds
then we may ignore the effect of transit time differences on the satellite clock
error. We can thus approximate equation (6-8) by:

We may now write the observation equation as:

88



Ad12'(t) = = (fofe) [ P1'(t) — P2i(t) — te(tr) P1'(t) + tealts) Pol(to) ]
+ 15 EX(T) (&2(To) - €4(T1))
—fo [€1(T1) —€2(T2) ]
+ n1i - "‘2i — Adatmos (6-10)

If the observation time difference between receivers (T4 —T,) or the clock error
difference ( €5(To) —€4(T4) ) is less than 30 milliseconds then the satellite clock

terms of equation (6-6) may be ignored if we assume a satellite clock short term
stability of 1 part in 1010, This is assumption (3) of section 6.1.1.

If the receivers have been synchronised accurately then observations at different
receivers will be virtually simultaneous and we can use this to cancel some of
the common errors such as those of satellite clocks. If, through faulty hardware
or field procedures, the receivers make observations at significantly different
times then this assumption must be re-examined. The required accuracy of
synchronisation between receiver clocks of 30 milliseconds (resulting in an error
of Tmm in the observation due to non-cancellation of satellite clock errors)
should not be difficult to maintain in practice.

If the pseudo-range navigation solution is used to synchronise the receiver
clocks (as is usually the case for code-correlating receivers), then we would
expect that the clock error would be less than 1 microsecond (section 5.2).
Under the policy of "selective availability", the system is degraded for non-
authorised users, and the positional accuracy is expected to be £100 metres.
This still corresponds to a time error of the order of only 0.3 microseconds.

If the observation time differences are greater than 30 milliseconds, then either a
higher noise level must be accepted or the satellite clock errors must be
modelled in some way. One possibility is to use polynomials to model the
satellite clocks. The use of polynomials has been discussed earlier and there
are potential difficulties with this method. A polynomial which models the clock
behaviour between measurement epochs for the whole of the observation
session (up to an hour or more) may not adequately represent the short term
behaviour between transmit times (microseconds to seconds). An alternative
would be to use Doppler observations, if available, as they are direct
observations of the instantaneous rate of change of phase and can be used to
calculate what the phase observation would have been at a different time.
However, higher order satellite clock error terms such as those introduced by
Selective Availability will not be accounted for. The validity of this approach
therefore depends on the accuracy of the Doppler observations, the magnitude
of non-linear terms in the satellite clock error and the size of the time correction.
If we assume that the satellite clock errors cancel (assumption number (5) of
section 6.1.1) we obtain equation (6-11) below.

Eliminating the satellite clock errors we now have:
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Ad12'(t) = = (f,/c) [ P1'(t) — P2i(t) —tey(ty) P1'(ty) + tealta) P2l(ta) ]
—fo [€4(T1) —€a(T2) ]

+ N1 = ng' = Adatmos (6-11)

6.3.2 Time-Tag Errors

Let us now examine more closely the time-tag error terms in the above
observation equation. We can write:

teq Pq —teo [)2=;—(te1 +tep) (P1-P2)

+3(P1+P2) (teg —tep)
=temean ( b1 _F.)Z ) * Pmean (te1 —t92) (6'12)

where we have simplified the notation. Here we have partitioned the time-tag
error into two parts:

* acommon time-tag error given by te.ean ,» and
* arelative time-tag error given by (te; — te,)

The effect of these terms will be different. The range-rate will be similar at both
receivers and so the mean range-rate will be much larger than the difference of
the range-rates. The mean range-rate cannot be larger than the maximum
range-rate of 760 m/sec. The magnitude of the range-rate difference has been
found to be:

(P1—P2)<Lx1.9x10% m/isec

where L is the length of the baseline in metres. For a 10km baseline the range-
rate difference is therefore less than 2 m/sec.

The observation may therefore be nearly 400 times more sensitive to relative
time-tag differences than to a common time-tag error, for a 10km baseline. While
a relative time-tag difference of 1.3 microseconds may cause an observation
error of 1mm, it will take a common time-tag error of at least 500 microseconds
(0.5 milliseconds) to produce the same observation error. (This is dependent on
the length of the baseline. A common time-tag error of 50 microseconds may
cause a 1mm error in the observation of a 100km baseline.)

Figures 6.2 and 6.3 illustrate the effects of relative and common time-tag errors.
In these diagrams we have assumed that the observations from the two
receivers have the same time-tags and, for simplicity, that the transit times are
the same from the satellite to the two receivers. Although, this last assumption is
not strictly correct, we can accurately model the motion of the satellite during the
time of transit, and it allows for a simplification of the diagrams. We also assume
that the satellite ephemeris is free of error.
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The points T1 and T2 in these diagrams refer to the true satellite positions at
the time of transmission to receivers 1 and 2. These are both at the same
point due to the assumption made above. C1 and C2 are the respective
calculated positions.

T1,72,C1

True Range
c2

e
'
\\‘\0
[\)

/ Calculated Range

-

Figure 6.2 Relative Time-Tag Error

Receiver 1 Receiver 2

In Figure 6.2 we assume that there is no time-tag error at receiver 1 and a
significant error at receiver 2 . The calculated and true ranges from receiver 2
are different from each other, whereas those from receiver 1 are the same. This
may arise from a poorly defined Computational Time based on corrected
receiver clock time (section 5.4.2), or because the two receivers were not
synchronised with each other.

" True Range

-

/ Calculated Range

Receiver 1 Receiver 2

Figure 6.3 Common Time-Tag Error

Figure 6.3 illustrates the situation when there is an equal time-tag error at both
receivers. There is a difference between calculated and true ranges for both
receivers, this difference being nearly the same for each receiver.
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There is another way of assessing the effect of a common time-tag error. It can
be seen from Figure 6.3 that a time-tag error which is common to all receivers
has the same effect as an alongtrack ephemeris error (this may arise from a
poorly defined Computational Time based on corrected satellite clock time --
section 5.4.2). It is possible to have a time-tag error that is common to all
receivers and all satellites.

We can use the rule-of-thumb commonly quoted to estimate the effect of
ephemeris errors on adjusted baselines. If we divide the baseline length by the
satellite altitude we get the ratio that propagates ephemeris error into the
adjusted baseline. For example, if the ephemeris error is 20 metres (and given
the satellite altitude of 20x108 metres), a 1 part per million (ppm) error will be
introduced into the baseline. The satellites move 20 metres in approximately 5
milliseconds. If we are using an ephemeris with errors of 20 metres then a
common error in the receiver time-tags of 1 or 2 milliseconds will not add
substantially to the systematic errors which have already been introduced by an
inaccurate ephemeris.

(It follows from this that it makes no sense to estimate a common time-tag error if
orbital parameters are to be estimated in the adjustment. Any common time-tag
error will be absorbed by the orbital parameters as an along-track shift in the
satellite positions.)

When we difference between stations the intention is to eliminate the effect of
satellite clock errors. We see above that this differencing also reduces the effect
of common time-tag errors by about 2 or 3 orders of magnitude compared with
the effect of the individual time-tag errors in the undifferenced model.

We can therefore deduce that when the satellite clock parameters are estimated,
the clock error estimates also absorb most of the common part of the time-tag
errors. Hence eliminating the satellite clock error parameters on an epoch-by-
epoch basis eliminates this part of the time-tag errors. This is because
according to the Fundamental Differencing Theorem, we may choose whether to
reduce the effect of these common time-tag errors by ditferencing or by allowing
the satellite clock error parameters to absorb their effects. Either way the
adjustment is relatively insensitive to these errors insofar as they affect the
estimates of the non-bias parameters.

If we assume that the common and relative time-tag errors are so small that they
have no significant effect on the observation (assumption number (4) of section

6.1.1) then we can write the familiar simplified between-station observation
equation:

Ad12'(t) = = (fgfe) ( p4'(Ty) - p2i(T2))
—fo [€1(T1) —€2(T2) ]
+ 0y =yl - Adatmos (6-13)

In this equation the satellite errors and time-tag errors have been completely
removed and the receiver clock errors appear as linear biases.
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6.4 Between-Epoch Differences

Parameters which are constant with time may be eliminated by forming the
between-epoch difference. The operator & is used to represent this
operation. This observation is formed by taking the difference between
observations made from a receiver j and a satellite i at two different epochs. It
is not generally used in GPS data processing because the number of
parameters that are removed (the ambiguities) is relatively small while the
number of clock biases remaining (the clock errors) is large. The change of
carrier beat phase with time is however equivalent to the doppler frequency
which is the observable used in TRANSIT data processing.

If we assume that the integer ambiguity parameters are independent of time then
they cancel out when we form this differenced observation. T, and T, are the

two "true" times of reception at receiver j, and T4 and T, are the two
transmission times from satellite i :

80;/(T12) = P} (T1) = Op;(T2)

= - (fy/e) [ pj(t1) - pji(t2) ]
+ (fo/0) [ tej(ty) P](t1) — tey(ta) Pil(t2) ]
+ 1o LE(T4) = (To) — g(Ty) + &(To) ]

~ 80atmos (6-14)

If the receiver has not maintained lock on the satellite signal there may be
different integer ambiguity terms for following observations. Our ability to detect
this cycle-slip depends on how well we can model the change in the other terms
between epochs.

The effect of the time-tag errors will depend on how much they and the range-
rates have changed between epochs. Which itself will depend in part on the
length of time between epochs used to form the difference. The length of time
between epochs could be equal to the length of the entire observing session, up
to several hours! Using the technique of equation (6-12), we find that the total
effect is equal to the mean time-tag error multiplied by the change in range-rate
plus the mean range-rate multiplied by the change in time-tag error.

The maximum possible range-rate is 760 m/sec and the maximum possible
change in range-rate is 1520 m/sec if the satellite is tracked from rise to set.
Under these circumstances the magnitude of time-tag errors that can be
therefore considered insignificant are those less than 0.7 microseconds
(average) and 1.3 microseconds (change in time-tag error).
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6.5 D le-Diff

This is the term usually applied to the observation which has been formed by
differencing between both satellites and receivers. This double-difference
phase may be created by either forming the between-satellite difference phase
and then differencing between stations, or by first forming the between-station
difference and then differencing between satellites:

dpp(t) = VA2 3(t) = AV, "%(t)
= Vo 12(Ty) = Voo 13(Ty)
= Ad12 (1) — Ad122(1) (6-15)

We have derived a variety of between-stations difference and between-satellites
difference equations that can be used to form this double-difference observation
equation, depending on the assumptions made. For example, we can use
equations (6-6), (6-10), (6-11), or (6-13) from the between-station difference
equations. We will start from equation (6-6):

Opp = = (fg/e) [ p11(t) — p12(t) — p2' () + p22(1) ]
+ (14/0) [1e4(T1) (P17(1) — P13(t) ) —tea(T2) ( P2’ (t) — P22(1) )
+1, [€N(T") eV (To") — (T2 + €3(T,3) ]

+n1' =nZ-npt 4 np? - VAbatmos (6-16)

We have assumed once again that for each receiver the observations to the two
satellites are made at the same time. If this assumption is incorrect then the
observation may be affected in the same way as was found with the between-
satellite difference observation equation developed in section 6.2.

If the criteria given in section 6.3.1 for the assumption that satellite clock errors
cancel are satisfied then we may use equation (6-11) to form the double-
difference observable:

Opp = — (fo/0) [ P11(t) — p13(t) — p2' (1) + p22(1) ]

+ (fg/e) [te4(T1) ( P17(t) — P12) ) — tea(To) (P2' (1) — PL2(1) )

+ 041 =n2 = ny' + 02 — VAGaimos (6-17)

We next make the assumption that time-tag errors have an insignificant effect on
the observation by heeding the requirements of section 6.3.2, namely that
relative time-tag errors are less than 1 microsecond and that common time-tag
errors are less than 1 or 2 milliseconds. We can then use equation (6-13) to
form the familiar simplified double-difference observation equation:
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Opp = = (fy/e) [ P17(t) — P12(t) — P2 &) + p22(t) ]
+ 07" =ny2 = na" + no? - VAGaimos (6-18)

The only clock biases remaining in this equation are the integer ambiguities.
The validity of this equation is therefore dependent on how close to reality are
the assumptions (1) to (5) of section 6.1.1.

6.6 Triple-Differences

This observation could also be referred to as a double-difference rate. It is the
difference between double-differences formed at two epochs.

We could use equations (6-16), (6-17) or (6-18) to form this triple-difference
observation equation. The principles behind differencing and the effect of the
various assumptions made have been covered above, so we will use equation
(6-18) together with the common assumption that the integer ambiguities are
independent of time to derive the simplified triple-difference observation
equation:

Orpltan) = 8AVD2 2(t,p)

dpp(ta) — Ppp(tp)

= (fy/©) (P1'(Ta1) = P13(Tar) — P2"(Ta2) + P23(Ta2) )
+ (f/6) (P17 (To1) = P13(Th1) = P2 (To2) + P22(Tho) )
~ 8AV0aimos (6-19)

This equation is based on assumptions (1) to (6) of section 6.1.1. Note that all
the clock bias terms, including the integer ambiguities, have been eliminated.

If our assumption that the integer ambiguity is constant in time is false then this
observation will be affected. The triple-difference observation is especially
useful in this regard as not only have the unknown clock biases been removed,
but also the effect of errors in the other terms such as atmospheric delay,
ephemeris error, receiver coordinate error, are substantially reduced by triple-
differencing. Especially if the epochs are only a few seconds or minutes apart.

The potential error of several cycles caused by the "millisecond slip" (section

6.2) may have the same appearance as a cycle-slip except that the error will not
be an integer.
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7. SYSTEMATIC CLOCK ERRORS AND THEIR IMPACT ON GPS
PHASE DATA SOLUTIONS

In the preceding sections we have examined more closely the assumptions
made in section 6.1.1 and have investigated the conditions required for these
assumptions to be valid. We noted earlier that the Fundamental Differencing
Theorem tells us that the results from a triple-difference adjustment, where all the
linear clock biases have been eliminated, is the same as that from undifferenced
phase solution in which they are all explicitly estimated.

In other words, the assumptions which were required to form the triple-difference
equation (6-19) are made implicitly when estimating the parameters using the
undifferenced phase observation. To summarise the results of the previous
section we will state these assumptions again here and define the conditions
that are required for us to be sure that the assumptions are valid. The criteria by

which we judge whether assumptions are valid is if they introduce less than
1mm error in the observation modelling.

7.1 Clock Errors and GPS Phase Observation Modelling
Assumptiont

We have assumed that all observations to the satellites from a receiver were
made at the same time. If the observations are made within 1 microsecond of
each other then we can regard them as being simultaneous. If the difference in
time between observations is greater than 1 microsecond then we need to
specify a different time-tag for every observation rather than a common time-tag

for all of them.

If we do have a different time-tag for each observation then we can model the
range correctly. However, if the times of observation differ by more than 30
milliseconds, and the receiver clock is only stable to 1 part in 1010, then it may
not be valid to assume one receiver clock error in the observation model that is
common to all the observations. In other words, between-satellite differencing
may not completely cancel the receiver clock error.

Assumptions 2 and 3

We have assumed that the receiver clock determines the observation time and
that all receivers have been set by the operators to take observations the same
rate. In other words we assume that the nominal observation times are identical
and that the actual observation times differ only by the receiver clock errors. The
most significant timing problem to be faced by an analyst these days is likely to
arise from mixing data from different brands of receivers, where the nominal
observation time-tags (as opposed to observation time-tags corrupted by
receiver clock error) may be significantly different.

We have also assumed that the receiver clocks have been synchronised so that
the differences in receiver clock error are sufficiently small for us to be able to
say that observations at different receivers occur at the same time. This
assumption is tied up with assumption 2 above. (Note, however, that due to field
procedure problems, different receivers may make observations at different
times even though their clocks are synchronised!)

If there is a difference in observation times greater than 30 milliseconds then the
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satellite clock errors may not be the same for two observations to the same
satellite, at the same nominal observation time.

Assumption 4
We have assumed that the receiver clocks, which have been synchronised with

each other, are also linked in some way with a standard time scale so that we
can remove the time-tag errors between the receiver clocks and satellite
ephemeris time.

If there is a difference in time-tag errors between receivers greater than 1
microsecond then it may be necessary to estimate this time-tag error difference
in the adjustment.

The limitation on common time-tag error which meets the same standard as the
other assumptions here (introducing less than 1mm error in the observation)
depends on the baseline length. It is, for example, 0.5 milliseconds for a 10km
line. However we have also noted that the effect of this error on the baseline is
likely to be only 1ppm for 4 or 5 milliseconds in the common time-tag error.

Assumption 5
It is assumed that the satellite clocks are stable to at least 1 part in 1010 so that
the satellite clock errors are the same at the various transmission times that

make up one epoch (as defined by the various ground receivers operating).

This assumption is tied up with assumptions 2 and 3. The figure of 30
milliseconds between observation times is based on the assumed stability of the
satellite clock. It may need to be reconsidered if "satellite clock dithering" occurs
under "selective availability" conditions.

Assumption 6
We have assumed that the receivers maintain lock on the signal and that the

integer ambiguities are independent of time. This can be tested by forming
differences between epochs and comparing the observed difference with the
modelled value. Triple-differencing is especially useful here as the other
systematic errors in the model are minimised or eliminated by the triple-
differencing operation.

7.2 Practical Considerations for GPS Surveys

We have seen that while the observations are sensitive to differences in the
clock errors between satellite and receiver of several picoseconds, they are only
sensitive to microsecond errors in the time-tag difference between receivers and
millisecond time-tag errors that are common to all receivers.

The velocity of the carrier signal between satellite and receiver is the speed of
light, approximately 300000km/sec, whereas the maximum velocity of the
satellite towards the receiver is approximately 0.7km/sec. This is the reason for
the difference of 5 to 6 orders of magnitude between the sensitivity of the
observations to clock errors and time-tag errors. Also the adjustment of GPS
carrier phase observations gives results for receiver coordinates which have
relative precisions about 3 orders of magnitude greater than the absolute
precisions (depending on the length of the line). This is also true of the
estimates of the time-tag errors. The relative time-tag errors may be determined
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to a higher precision than the absolute or common time-tag error. The difference
between absolute and relative precision comes from the geometry. The altitude
of the satellites is about 3 orders of magnitude greater than the length of a typical
GPS baseline (20km).

KING et al (1987) state that receiver clocks should be synchronised to within
about 1 microsecond of each other and a few milliseconds relative to some time
standard such as UTC. We have demonstrated in section 6, the reasoning
behind these recommendations.

For GPS adjustments of the highest possible accuracy, we will extend the
recommendations as follows:

(1) The observations at different receivers should be taken within 30
milliseconds of each other to ensure that satellite clock errors can be
cancelled (or estimated directly without the need for polynomials). This
will be satisfied if the receiver clock differences are kept to less than 30
milliseconds. If a survey is to be conducted using receivers of different
manufacture then a problem could arise with different observation times
even where the clock differences (synchronisation errors) are small.

(2) The differences between the clocks generating the time-tags (receiver
clocks) should be known to better than 1 microsecond to ensure that
time-tags can be adjusted, to keep the relative time-tag error at less than
1 microsecond. If it is known, or suspected, that the relative time-tag
errors may be larger than this then they should be estimated in the
adjustment.

(3) That part of the time-tag error that is common to all receivers should be
kept to within a few milliseconds to keep the baseline errors to less than
1 ppm. This will usually involve measuring the difference with respect to
some standard time scale such as UTC or GPST and then ascertaining
the ephemeris time scale. If it is known, or suspected, that the difference
is larger than this then it should be estimated (though not if the orbits are
also adjusted).

If the pseudo-range solution is used to correct the receiver clocks (section 5.3)
and the broadcast ephemeris is used (as will usually be the case with code-
correlating receivers) then the above conditions should be satisfied without
further action. Even in this case it is still possible that a time-related error may
occur. Five scenarios are described below where the analyst may need to
consider the effect of clock errors, even though they have been supposedly
eliminated by double-differencing.

rio 1
A receiver is used in which the pseudo-range solution is used to correct the
receiver clock. The survey begins when only two or three satellites are visible.
(These observations can still contribute to the solution. Four satellites are only
needed for an instantaneous pseudo-range solution.) The operator in entering
the station coordinates makes a large error, say 1°, in the latitude. There is not
enough information to calculate position and time from two or three satellites and
so the pseudo-range solution is constrained by the false station coordinates
resulting in a false clock offset solution. The calculated clock offsets, which are
used to "correct” the receiver clock, change as the geometry changes and only
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jump to the correct value when four satellites become visible. This problem can
be corrected by post-processing software provided that the software has been
written to cover such a contingency and provided the observation times are
within 30 milliseconds of each other.

Scenario 2
The receiver clocks have all been correctly synchronised to GPST by one means

or other and the analyst, rather than using the broadcast ephemeris, obtains an
ephemeris from some other agency without realising that it is in terms of some
other time scale such as UTC or TAlL. The resulting common time-tag error of
several seconds will distort the adjustment.

Scenario 3

The receiver, due to a quirk in the internal signal processing, occasionally
makes observations to different satellites at slightly different times without
attaching the correct time-tag to this observation. If it is not known that this has
occurred, an error is introduced into the observation which depends on the
range-rate of the satellite times the error. It is not removed by differencing. In the
case of the "millisecond" slip this error can be up to =4 cycles. This problem can
be overcome if the software is written to handle it.

Scenario 4

A "codeless" receiver is used and the receiver clocks are synchronised to each
other and to a standard time scale such as UTC. The differences are later
measured to determine the clock drift but an error is made in the sign of the
differences and they are applied the wrong way in the data processing, resulting
in a significant time-tag error. If the time-tag error is estimated the mistake can
be identified and corrected.

Scenario 5

Receivers of different makes which observe at different nominal times are used
in a GPS survey. The analyst must account for the possibility that relative time-
tag errors may be of the order of a fraction of a second (or several seconds in the
case of observation epochs taken at intervals of greater than a second). It may
be possible to "correct" the data to the relevant epochs (if the interval is short and
Doppler measurements are available). More commonly, a relative time-tag
correction would need to be estimated as part of the adjustment process.

8. ACKNOWLEDGEMENTS

The second author (D.B.G.) was supported in his PhD studies at the School of
Surveying, University of New South Wales, by a study award from the
Department of Survey and Land Information, New Zealand. The authors wish to
acknowledge the important contributions made by Wan Xuan Fu and Pen-Shan
Hung on the topic of clock "performance".

99



9. REFERENCES

ABBOT, R.l., CEFULA, P.J., & TSE, S.F., 1983. Satellite orbital theory for a small
computer. Astrodynamics, 54, 543-572.

ASHBY, N., 1987. Relativistic effects in the global positioning system. Proc. IAG
Symposia: Relativistic Effects in Geodesy, Advances in Gravity Field
Modelling, and Analysis of Satellite Altimetry, Vancouver, Canada, Aug. 10-
22,1987, 41-50.

BAUSTERT, G., HEIN, G.W. & LANDAU, H., 1989. On the use of GPS in
airborne photogrammetry, hydrographic applications, and kinematic
surveying. Proc. 5th Int. Geod. Symp. Sat. Doppler Pos., Las Cruces, New
Mexico, Mar. 13-17, 1989, 1029-1040.

CONLEY, R., 1984. Reference frames, earth models and GPS. GPS JPO,
Directorate of Systems Engin., YEEE 84-040, 137pp.

DELIKARAOGLOQOU, D., 1987. On principles, methods and recent advances in
studies towards a GPS - based control system for geodesy and geodynamics.
Preprint, NASA Tech. Memo. 100716, Goddard Space Flight Center,
Greenbelt, Md., U.S.A., 105pp.

GRANT, D.B., RIZOS, C., & STOLZ, A., 1990. Dealing with GPS biases: some
theoretical and software considerations. In Unisurv S-38, report of the School
of Surveying, University of N.S.W.

HARVEY, B.R., STOLZ, A., JAUNCEY, D.L., NIELL, A.E., MORABITO, D.D., &
PRESTON, R.A., 1983. Results of the Australian geodetic VLBI experiment.
Aust.J.Geod. Photo.Surv., 38, 39-51.

HELLWIG, H., 1979. Microwave time and frequency standards. Radio
Science, 14(4), 561-572.

JONES, R.H., & TRYON, P.V., 1987. Continuous time series models for
unequally spaced data applied to modeling atomic clocks. SIAM J. Sci.
Stat. Comput., 8(1), 71-81.

KAPLAN, G.H., 1981. The IAU resolutions on astronomical constants, time
scales, and the fundamental reference frame. U.S. Naval Observatory
Circ.163, Washington, D.C.

KING, RW., MASTERS, E.G., RIZOS, C., STOLZ, A., & COLLINS, J., 1987.
Surveying with GPS. Dimmler, Bonn, 128pp.

KOVALEVSKY, J., MUELLER, .., & KOLACZEK, B., (eds.), 1989. Reference
Frames in Astronomy and Geophysics. Kluwer Academic Publishers,
474pp.

LANDAU, H., 1988. Zur Nutzung des Global Positioning Systems in
GeodLANDAU, H., 1988. Zur Nutzung des Global Positioning Systems in
Geodésie und Geodynamik: Modelibildung, Softwareentwicklung und
Analyse. Rept. 36, Inst. of Astro. & Physical Geodesy, Univ. FAF, Munich,
F.R.G., 284pp.

MERMINOD, B., 1989. The use of Kalman filters in GPS navigation. Unisurv S-
35, report of the School of Surveying, University of N.S.W., 203pp.

NEILAN, R.E., & MELBOURNE, W.G., 1989. GPS global tracking system in
support of missions to the planet earth. CSTG Bull. 11, Int. Coord. of Space
Techniques for Geodesy & Geophysics, 129-140.

REMONDI, B.W., 1984. Using the Global Positioning System (GPS) phase
observable for relative geodesy: modeling, processing, and results. Rept.
CSR-84-2, Center for Space Research, University of Texas at Austin. 360pp.

ROCKEN, C., 1988. The Global Positioning System: a new tool for tectonic
studies. PhD thesis Univ. of Colorado, 265pp.

RUTMAN, J., 1978. Characterization of phase and frequency instabilities in
precision frequency sources: fifteen years of progress. Procs. IEEE, 66(9),

100



1048-1075.

STOLZ, A., & MASTERS, E.G., 1983. Satellite laser ranging measurements of
the 3200km Orroral-Yaragadee baseline. Aust.Surveyor, 31, 557-562.

SWIFT, E.R., 1985. NSWC's GPS orbit/clock determination system. Proc. 1st Int.
Symp. Prec. Pos. GPS, U.S. Dept. of Commerce, NOAA, Rockville, Md., 15-19
April, 1985, 51-62.

VAN DIERENDONCK, A.J., RUSSELL, S.S., KOPITZKE, E.R., & BIRNAUM, M.,
1980. The GPS navigation message. Special issue of Navigation on GPS,
55-73.

WUBBENA, G., 1988. GPS carrier phases and clock modeling. In GPS-
Techniques Applied to Geodesy and Surveying, E.Groten & R.Strauss
(eds.), Lecture notes in Earth Sciences, 19, Springer-Verlag, 381-392.

ZHU, S.Y. & GROTEN, E., 1988. Relativistic effects in GPS. In GPS-
Techniques Applied to Geodesy and Surveying, E.Groten & R.Strauss
(eds.), Lecture notes in Earth Sciences, 19, Springer-Verlag, 41-46.

101



RESOLUTION OF THE CYCLE AMBIGUITIES
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ABSTRACT

For short baselines, the reliable resolution of the integer cycle ambiguities appears to be the key to
precise relative GPS positioning. However, in order to maximise the conditions for this to occur,
phase observations should be made during sessions that involve significant changes in the
receiver-satellite geometry. This condition implies that longer observing sessions are preferable,
which, in turn, can be a strong economic limitation in the use of GPS satellite surveying
technology.

How is receiver-satellite geometry quantified, and hence the conditions for ambiguity resolution?
At present, the satellite geometry indicators commonly available - the well known DOP factors
(Dilution Of Precision) - refer to the instantaneous pseudo-range solution for the receiver
coordinates and reflect the processes involved in the use of the carrier phase only in a very limited
manner. This report describes a set of alternative precision indicators closely related to the
geometrical variations of the receiver-satellite geometry and the special properties of phase
measurements.

These indicators, also presented in the form of DOP factors, refer to the three following cases:

 precision of the coordinates, when cycle ambiguities are also present as parameters (in
ambiguity-free solutions), or when they are absent altogether (as in the case of triple
differences solutions.

* precision of the determination of the ambiguities.

+ precision of the coordinates, once the ambiguities are fixed to integer values (as in
ambiguity-fixed solutions).

This report describes the characteristics of these BDOP (Bias DOP) factors and discusses how
they can be used to assist in survey planning: the selection of observation window, session length
and the sateliites to be tracked.

"Now at the Dept. of Land Survey and Physical Planning, Maseru, Lesotho.
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1. INTRODUCTION

1.1 Background Remark

The optimum selection of satellites to be tracked has been addressed in many
papers about GPS. The techniques are all derived from the strength-of-solution
analyses of GPS pseudo-range navigation. However, the systematic treatment
of the cycle ambiguities (and hence GPS phase observations) has tended to be
avoided for two main reasons:

» Most GPS users are interested in the navigation capabilities of the system.
Phase measurements and hence cycle ambiguities are completely
irrelevant to them.

+ Geodesists are interested in the best possible accuracy in the coordinates.
Thus, resolving the cycle ambiguities is only an unfortunate duty (one
more) on the way to satisfying their primary goal.

In general, even if geodetic applications are considered, the usual approach is
to assume that the cycle ambiguities have somehow already been resolved to
their integer values (and hence transforming ambiguous phase observations
into unambiguous range observations). Attention is then concentrated on
studying factors limiting accuracy, such as atmospheric refraction, multipath and
ephemeris errors (see, for example, LANDAU & EISSFELLER, 1985).

Occasionally apparently good observation sessions, with reasonable satellite
coverage and of respectable duration, lead to poor results because the cycle
ambiguities cannot be resolved. In the absence of other information, the
standard response is to recommend longer observation sessions, in the hope
that there will be enough data to improve the quality of the cycle ambiguity
estimates, and hence optimise the chances of resolving them.

For survey management authorities, the situation is worse. As soon as they try to
edict recommendations concerning the duration of GPS sessions, to satisfy
some prescribed survey accuracy standard, there arises a case where the
suggested requirements were fulfilled and unsatisfactory results were still
obtained. Consequently, the recommended practices and specifications for
GPS surveys are made even more conservative.

If the duration of the observations is to be kept as short as possible, resolving the
cycle ambiguities is the most stringent limitation in the use of GPS for precise
small scale surveys. There are techniques to evaluate the suitability of a given
satellite coverage and the probability of resolving the cycle ambiguities. The aim
of this report is to describe the derivation of indicators of precision suitable for
GPS surveying. These indicators have been developed with the following
guidelines in mind:

* They should represent the true geometric strength of the observations
performed in as "condensed" a form as possible (preferably as one
number).
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+ Their expression must remain general, valid for all commonly available
GPS measuring systems.

» The algorithms should be portable, and suitable for implementation on PC
computers, as used for routine GPS data processing.

These indicators can then assist in the selection of observing time and session
duration.

1.2 le Ambiquities in GPS Processin

1.2.1 Why Cycle Ambiguities Occur
The GPS carrier phase observation (on L1 or L2 wavelengths) contain, in effect,

a fraction of the true range between the satellite and the receiver (KING et al,
1987).
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Figure 1: Integrated carrier beat phase observations

The difference between the observed carrier phase and the receiver-satellite
range is affected by several biases (IBID, 1987). In particular, for GPS
surveying instrumentation, the initial integer number of wavelengths ( "n" ) is
unknown because its value cannot be measured directly. Such observations
are known as "integrated carrier beat phase" measurements (Figure 1). In other
words: changes in range (or range differences) and not ranges are observed.
The phase measurements are therefore "ambiguous" ranges. Note that if
carrier beat phase observations were not "accumulated" or "integrated", by
measuring the change in phase (or range) from the epoch of initial signal lockon,
the value of n would change with each epoch. This would be a next to useless
observable type. The value of this unknown initial (integer) bias is an important
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task of the GPS data processing software. Such a solution is known as an
"ambiguity-free" solution.

At this stage, no use of the integer nature of n can be made as it is
indistinguishable from other, non-integer biases such as satellite and receiver
oscillator instabilities and atmospheric refraction, and in fact is contaminated by
them. Thus, bias "fixing", or "ambiguity resolution" as it is more correctly known,
is only possible after all biases are eliminated or otherwise accounted for.

1.2.2 Why Cycle Ambiguities Must be Resolved

Phase observations can be modelled as (in units of cycles):
O(t) = (fo/c)-plsrt) - n (1-1)

where f0 is the nominal frequency of the signal, c¢ is the velocity of

electromagnetic radiation, and p(s,r,t) is a function of time, satellite and receiver
positions. p(s,rt) is a range, which may be contaminated by a number of
biases. If this observation is related with a previous one at time tg, a range
difference is obtained. For our purpose, the main interest of the model is the
ability to isolate the integer unknown n with a sufficient number of observations.
According to HATCH (1987), resolving the ambiguity in effect means shifting the
integer term to the left hand side of the above equation. Thus, it becomes an a
priori known part of the observation:

Ot) + n = (fo/c)-pls,ri) (1-2)

This is nothing other than a range observation equation. The number of
equations is the same as before, but the number of unknowns is smaller: one
less bias ( n ) for each observing satellite-station combination. These two types
of observations (equations (1-1) and (1-2)) have quite different properties. For
short observing sessions, the geometric strength of the second type of
observation (and hence the solution derived from it) is greater.

1.2.3 Why New Indicators of Precision are Needed

"Indicators of precision" are commonly computed by the field planning
components of most commercial GPS software packages. However, the
indicators presently used were developed for use with instantaneous
measurements of the time delay of a signal. This time delay, scaled by the
velocity of light, gives a measure of the range between the satellite and the
receiver, biased by possible clock errors: the pseudo-range. These indicators,
principally GDOP, PDOP and TDOP (their derivation is given in, for example,
LANDAU & EISSFELLER, 1985) are not suitable for describing the precision of
coordinates determined from phase observations, with or without cycle
ambiguity resolution, because they refer to (MERMINOD et al, 1990):

+ Range measurements to the satellites. However the determination of the

cycle ambiguities depends upon range difference measurements. (There
would be no ambiguities if range observations were available!)
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+ The instantaneous solution for positioning. However the resolution of the

ambiguities requires observations over some period of time, as the
ambiguous range must reflect varying receiver-satellite geometry.

+ Single receiver operation, as is the norm for GPS navigation, as opposed

to the multi-receiver mode of operation in GPS surveying.

NORTON (1987) reports on a test of cycle ambiguity fixing for different GPS
sessions and tried to relate it to the GDOP factor. It was found that apparently a
reliable solution for the ambiguities is obtained when the GDOP is either
constantly low or rapidly changing, irrespective of its value. This indicated that
there was no general correspondence between GDOP and the conditions for
reliable estimation of the ambiguities.

Before proceeding to derive alternative DOP factors, we need to investigate the
nature of the mathematical model of phase observations, and various linear
combinations commonly used in GPS data reduction algorithms. This is

essential as DOP factors based on phase observations must simulate the
outcome of a GPS phase data reduction.

2. MODEL OF THE OBSERVATIONS

2.1 Inteqgrat rrier Beat Phas

2.1.1 Functional Model

For the following discussions, the classical observation equation of the
integrated carrier beat phase is taken as the starting point (GRANT et al, 1990):

OS(t) = ';';\/[Xs(t) - Xr]2 + fo [e(t) —€5(t)] = n/° + (atmos)r® (2-1)

where f, is the nominal frequency of the carrier wave (L1=1575.42 MHz,

L2=1227.60 MHz). X is the position vector of either the satellite or the receiver

(depending on the superscript or subscript). The inverse of the wavelength 1/A
converts the range between satellite and receiver, usually expressed in metres,
to cycles of the carrier wave. All time dependent terms in the equation are

expressed in the same time frame, referred to here as true time. €5(t) and ¢g(t)
are, respectively, the satellite and receiver oscillator (clock) errors at each epoch

(observed - true time, here in seconds). n,® is the initial number of cycles of the

carrier phase and (Qaimos)° is the phase delay due to atmospheric refraction.
No cycle slips are assumed to be present.

To isolate n,° and fix it to an integer value, more assumptions are required:

1. The receiver and satellite clock errors are somehow accounted for (at
better than one wavelength: L1 is approximately 19cm, L2
approximately 26cm), or entirely eliminated by data differencing.
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2. "Short" baselines are considered, so that environmental influences affect
the measurements almost equally at two GPS receivers. For any

satellite, the difference between (daimos)r® at both receiver sites is a
small fraction of a wavelength. Thus, the atmospheric term is
independent of the receiver site and, in effect, becomes
indistinguishable from the satellite clock error. The effect of systematic

errors in X% can also be minimised in such a case.

The latter assumption is particularly critical. From experience with single-
frequency GPS surveys, it is known that it is usually not possible to resolve
ambiguities for baselines over about 20-30km, irrespective of the session length,
without appropriate modelling of the atmospheric refraction. With the use of
dual-frequency instrumentation the ionospheric delay can be measured and
hence the residual atmospheric refraction contains only the tropospheric
component. Use of dual-frequency observations promises ambiguity resolution
for shorter observing sessions, and even in circumstances when long series of
single-frequency observations do not permit ambiguity resolution.

Invoking the "short" baseline assumption and using the wavelength of the carrier
wave as the basic length unit (for phases, coordinates and biases), a simplified
functional model can be expressed as (note the dropping of the subscript in the
atmospheric bias term):

Or°(t) = Pr() + o [Er(t) — €3] = n° + (Datmos)® (2-2)

The range term p is receiver dependent. Two cases are possible, one for each
terminal station of the baseline: the fixed "control" site, and the free "remote" site.
As the position vector of both the control site X, and the satellite XS(t) are
assumed known, the range between them is assumed known and hence free of
errors. Grouping the known terms into the constant k , the model for the phase
observation at the control site is simply:

Oro°(t) = fo [Ero(t) — e5(t)] = nro® + (Datmos)® + Ko (1) (2-3)

For the range between the remote site and the satellite, only an approximate
position of the site is available. Thus, the functional model for observations from
the remote site contains the partial derivatives of the range from the satellite, with
respect to the coordinates of the remote site, to complement the approximate
range contained in the constant k . (Additionally, for a short baseline, the
coordinates of the control site can be used to compute these partials.) The
linearised model therefore is:

0(t) = RS- dX, + fo [Ex(t) - eS(t)] - n/° + (Datmos)® + k(1) (2-4)

with dX, the (increments of the) coordinates of the remote site and RS. is the
transpose of the unit-vector from the satellite in question to the control site:
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2.1.2 Stochastic Model

We assume that all one-way carrier phases are independent and have the same
variance. As we are interested in error propagation rather than in absolute
values, this variance is set to unity. Hence the covariance matrix of one-way
observations is the identity matrix.

The sample rate of the observations also influences the results. One set of
phase measurements per minute is assumed. The use of other measurement
rates can easily be accounted for: it suffices to set the variance of the phase
observations to the inverse of the rate expressed in minutes (see Appendix E.4).

Cancellation (or modelling) of environmental effects is likely to be incomplete for
longer baselines, mainly due to different environmental conditions at both
stations. To account for this, terms which are functions of the baseline length
could be introduced into the covariance matrix of the observations (see, for
example, BOCK et al, 1986). Nevertheless, deciding upon the dependency of
the observation precision on the baseline length at the present stage would
restrict the generality of the approach. For practical use, the value of an indicator
of precision must be multiplied by some factor, which is best determined by
experience. At this level only, the inclusion of length dependent and/or
independent terms might be appropriate.

2.2 Single-Differences

Building differences between simultaneous one-way phase observables at
receiver 1 and receiver 2 to satellite i, can be regarded as a premultiplication
of the vector of one-way phases by an appropriate matrix operator:

Ad12'(t) = Dy - [ 01'(1) , 02'(t) ] (2-5)

or expressed in matrix form, and dropping super- and subscripts:

AD =D, @

Explicitly, with 4 satellites:

F¢11'
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. 10001000 043
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If we replace the one-way phases by their functional model, the between-
receiver single-differences have the form:

AGS(t) = ApS(t) + foAg,(t) — An® (2-7)

The satellite clock error terms have cancelled. ¢€,(t) is the difference in

receiver clock errors, and pS(t) is the difference in geometric range from the
two receivers to the satellite in question. With the "short" baseline assumption,
the atmospheric delay terms have also vanished. According to the linearised
model of the one-way phase observations (equations (2-3) and (2-4)), the
between-receiver single-differences can be written as:

AYS@®) = RS- dX, + T,AE,(t) - An® + AKS(t) (2-8)

Thus, at the single-difference level, the design matrix for range parameters
remains unchanged. The role of the control station is only to eliminate the
satellite clock errors and reduce the effect of other error sources (for example,
atmospheric refraction and satellite orbit errors). For a "short" baseline, it can be
shown (see Appendix E) that the azimuth, the slope and the length of the
baseline are irrelevant as far as the precision of the determination of the
coordinates of the remote site is concerned.

According to the assumption Cgq = Ig for the one-way phases, the covariance of
the single-differences becomes:

Cpp = Dy lgDA = =214 (2-9)

O O O N
o O NN O
O N O O
N O O O

From a computational point of view, differencing between 2 receivers reduces
both the number of observations and the number of unknowns in the functional
model, without introducing correlations. However, it should be noted that not all
single-differences can be independent if more than 2 receivers are considered,
as data from some receivers must be used several times to build a set of single-
differences that includes all receivers. Furthermore, the variance of the single-
differences is twice as large as that of one-way phases (equation (2-9)). The
differencing operator D can be used at all epochs, but its dimension may

change according to the number of satellites being tracked.
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2.3 D le-Diff

At each epoch, the single-differences can then be differenced between-
satellites. More than 2 satellites are generally involved and therefore double-
differences are correlated. The differencing matrix operator can be defined as:

VA® =Dy A® (2-10)

The optimal choice of an operator is not straightforward and several alternatives
have been used:

a) Fixed reference: for example the reference satellite could be the one
with the lowest PRN number.

b) Sequential: with respect to the previous satellite.

c) Sequential and uncorrelated.

d) Reduction by the mean.

These options are investigated in Appendix A and the covariance matrix of the
differenced observations is explicitly derived for each option. For each operator
proposed, if we replace the single-differences with their functional model and
drop all super- and subscripts, the double-differences have the form:

VAO(®) = VAp(t) + VAn (2-11)

The receiver clock terms, independent of the satellites, have cancelled. Building
double-differences is therefore a convenient way to avoid modelling oscillator
clock errors, and is the standard observable used in most GPS data processing
software.

2.4 Triple-Differences

A simple technique for computing differences between-epochs is to always
consider only two successive epochs. Thus, the end epoch of a differenced
observation is also the start epoch of the next one. In this case the triple-

differenced observations are correlated pairwise. Typically, for e epochs, we
have:
— - ]
“sVor)] [-1 1 0 o 0 0 | Volto)
5V 6 (ty) 0-1 1 ... ... 00 Vo(ty)
= e [V OUt2) (2-12)
_6V pes t 1 s ..._... Iy .
otte)d L o oo .. .. 1 1d Ly,

The differencing operator acting on the double-differences is identical to that
used to create double-differences by the sequential differencing option (see
Appendix A.2). There are, of course, other ways of building triple-differences,
such as using the first epoch as the fixed reference epoch. However, the
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sequential approach presents a definite advantage: if lock on a satellite is lost
between one epoch and the next, only the corresponding triple-difference will be
affected.

If we replace the double-differences with their functional model, the triple-
differences have the form:

SVo() = 8Vp(t) (2-13)

The integer ambiguity terms, which were invariant with time, have cancelled.
Often in GPS data processing, triple-differences are used in order to avoid
dealing with the integer ambiguities. A discussion from a more geometrical
perspective is given in Appendix E.

3. ELIMINATION OF INTEGER CYCLE AMBIGUITIES

The approach is based on an explicit removal of the cycle ambiguities from the
set of solve-for parameters, using the fact that they are constant with respect to
time. This is realised by differencing the observations between epochs. In this
context, the only purpose of the other intermediate differencing steps - between
receivers and satellites - is to eliminate the other (mainly clock) biases.

Until the ambiguities have been fixed to integer values, measurements of the
carrier phase are essentially range difference observations. An intuitive
understanding of this type of observation is difficult to obtain. A geometrically
based analysis, closely related to satellite kinematics, is presented in Appendix
E, where the concept of paired-satellites provides an interpretation of the
process involved. However, for the actual derivation of the proposed indicator of
precision, we simply consider the computation of triple-differences as described
in section 2.4.

3.1 Global Solution

Let us consider a session with e epochs and m possible satellites. All
satellites are not necessarily observed at all epochs. Starting with the model of
the single-differences described in section 2.2 (equation (2-8)), the triple-
differenced observations for the entire session can be expressed as a vector
equation:

SVA(D = D5 . DV . R . er + SVAK (3-1)

where dX, contains the 3 unknown coordinate component increments of the
remote site. The matrices premultiplying dX, contain several differencing
operators Dg and Dy . R contains the partial derivatives associated with all
satellites observed and has the maximum dimension: (e x m)x 3. Dy is block
diagonal and contains e elements, each operating on m observations. Dg

contains up to (m-1) elements, each operating on the time series of up to e
double-differences. Hence the design matrix premultiplying dX; has maximum
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dimension [(e-1) x (m-1)] x 3. 0VK s the vector of a priori information. The
covariance matrix of the triple-differenced observations is {DgsDy

)}-2-Ie.m-{D5-DV}T. The computation of the normal matrix is then
straightforward.

This approach has the merit of indicating the amount of data to be dealt with, but
obviously the storage requirements are very large and hence impose a limit to
the number of epochs per session. Fortunately, there are ways to divide the
global matrix operations into smaller ones. Triple-differences at different epochs
are correlated with each other. Hence, the basic assumption for direct
accumulation of data in the normal matrix, as demonstrated in Appendix C, is not
fulfilled. The simplest way to overcome this problem would be to ignore the
correlation between successive triple-differences. However, a strict solution
requires this correlation to be taken into account. Let us consider both options.

3.2 Correlated Triple-Differences

Neglecting the correlation between epochs leads to a much weaker solution.
This is demonstrated in Appendix E.4, by inspection of the observation weights
for both alternatives. On the other hand, the solution is made less sensitive to
errors in a particular measurement, because an error in one triple-difference is
not propagated to the following ones. This is why correlated triple-differences
are commonly used to identify cycle slips in GPS data processing. Strictly
speaking, the triple-differenced observations only offer this interesting feature
when they are not rigorously computed!

3.3 Uncorrelated Triple-Differences

An attractive method to account for pairwise correlation between epochs is to
decorrelate the observations with the recursive algorithm presented in Appendix
B.2. By doing so, an independent set of observations is obtained at each new
epoch and the normal matrix can be incremented directly (Appendix C).
However, this procedure is only valid for pairwise correlated observations and
triple-differences are correlated pairwise only if double-differences are
uncorrelated. This influences the choice of the operator when differencing
between satellites: it is preferable to use the sequential operator to build the
double-differences because it too correlates them pairwise, as with triple-
differences at successive epochs. The same decorrelating algorithm can then
be used!

However, an important drawback with this approach is the difficulty in dealing
with changes in the satellite configuration during a session. A decorrelated
double-differenced observation may contain data from several satellites. When
changes occur in the satellite coverage, relations between observations at
successive epochs may be broken. Thus, to obtain correct results, the same
satellites must be observed at every epoch during the entire session.

The 3 x 3 normal matrix is inverted when all desired triple-differenced

observations have been processed. Once inverted the covariance matrix of the
remote site coordinates is obtained.

113



4, EXPLICIT RESOLUTION OF INTEGER CYCLE AMBIGUITIES

This approach is based on double-differenced observations, where the integer
ambiguities remain as unknown parameters in the observation model.

4.1 Single-Differences

From section 2.2, for an epoch with q observed satellites, we have g single-
differenced observations of the form:

AYS(t) = RS- dX; + foAg,(t) — An® + AKS(t) (2-8)

One of the main problems with forming between-receiver single-differences
arises from changes in the satellite constellation during an observation session.
It may not be possible to know at the beginning of a session how many and
which satellites will be observed, and consequently used to build single-
differences. Therefore, all available satellites, say m , must be considered as
potential sources of unknown ambiguities. For this purpose, one column of the
design matrix should be dedicated to each available satellite. Furthermore as

we are only interested in the design matrix, the k® terms are not required. The
receiver clock terms are also omitted, as they will cancel later anyway, when
differencing between satellites. In matrix equation form, dropping the super- and
subscripts, the single-differenced observations can be partitioned as follows:

dX
(D=A'X=[RJ]-[ '} (4-1)

n

The vector of unknowns X consists of the 3 coordinate component increments
dX, for the remote site and m single-differenced cycle ambiguities n. The

design matrix A therefore comprises a part, R, containing range partials and
an operator J , which selects the g observed satellites out of the m possible
ones. For an epoch with 4 satellites observed out of a possible 5, the selection
operator would be:

(4-2)

O O =2 O
O O O O
- O O O
O O O =
QO = O O
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4.2 Double-Differences
4.2.1 Choice of Unknowns

The basic model for double-differences follows from the single-difference model
developed above:

VCI)=DV-A-X=DV-[RJ][ } (4-3)
n

At this point there are a number of ways of defining the unknown ambiguities.
Two approaches based on "lumped" ambiguity terms (GRANT et al, 1990) are
considered here:

1. ingle-differen [ mbiguities are chosen as parameters, and
their number is equal to the number of satellites available: m.

2. Double-differenced cycle ambiguities are considered, and their number

is equal to m-1.
These options can be compared with those for the treatment of a levelling
network without fixed origin. In the former, the height of each point is considered
unknown. In the latter, we determine m-1 height differences joining all points.
4.2.2 Single-Differenced Ambiguities

Design matrix: we build g-1 double-differenced observations between
satellites i and j:

VAY(t) = VAp(t) = Anl + An' (4-4)

with 1 <i, j <m. In matrix form the design matrix is simply:

Dy-A- X = Dy-R-dX, + J-n (4-5)

Normal matrix: It is best obtained not by using the above mentioned design
matrix, but by using the kernel approach described in Appendix A.2.d. This
involves "reduction by the mean”, which is independent of any differencing
operator:

N = AT.K,-A (4-6)

Accumulation of epochs: The storage of the normal matrix is designed so
that both a column and a row are dedicated to each unknown. Hence, its
dimension is (3+m) x (3+m) , where m is the maximum number of satellites
available.
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Elimination of missing satellites: Up to this stage, everything has been
designed for the maximum number of satellites available. In the general case
however, out of the m possible satellites only a certain number q' is observed
at least once during a session. Thus, when all the data for a session has been
accumulated in the normal matrix, the rows and columns corresponding to
satellites which have not been observed are removed and the size of the matrix
reduces accordingly to (3+q') x (3+q') . This does not affect the 3 x 3 coordinate
submatrix.

The solution of the normal equations is not unique. The matrix N has a rank
defect of one because no reference ambiguity has been defined (GRANT et al,
1990). This compares with the levelling network example mentioned earlier: it is
impossible to solve for heights using only height difference observations. The
rank defect can be overcome by introducing a constraint on the unknowns. Our
choice is that the part of the trace of the covariance matrix referring to the
ambiguities be a minimum. A principal component analysis of the normal matrix
shows that the eigenvector associated with the zero eigenvalue is s = (0,0,0,1, .

.. ,1)T. In other words, if x is a solution, then x + ks is also a solution, and it
therefore only suffices to add the same quantity to all the ambiguities to obtain
another solution. The elements of s referring to the coordinate submatrix are all
zero, and consequently the minimum partial trace condition as presented above
is equivalent to the minimum (full) trace condition. Using such a condition
avoids the choice of one satellite ambiguity having to be held fixed. (CASPARY,
1987, is a good textbook on these topics, which are not specific to satellite
geodesy problems.)

Covariance matrix: The generalised inverse of the accumulated normal
matrix is the covariance matrix of the unknowns:

Qyx = (N+ssT)T.N. (N+ssT)? (4-7)

For the case of interest, N+ss' is simply obtained by adding a constant term to
all elements of the ambiguity submatrix of N (dimension q' x q'). It is worthwhile
to consider separately the components of the covariance matrix referring to the
coordinates (dimension 3 x 3) and the ambiguities.

Coordinate submatrix: It is independent of the reference ambiguity selected.
This, again, is related to the fact that the eigenvector of the normal matrix

associated with the zero eigenvalue is (0,0,0,1, . ..,1)T.

Ambiguity submatrix: It indicates the precision of each estimated ambiguity
with respect to the reference ambiguity (or, in the case here, the reference
combination of ambiguities). This submatrix depends on the selection of the
reference ambiguity. The minimum trace criteria used here is equivalent to fixing
the integer ambiguity to a satellite that would be at the centroid of the visible
satellite constellation. The relative precision of the ambiguities is not affected by
the choice of the reference ambiguity, but unfortunately absolute measures of
precision of ambiguities are not unique.
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4.2.3 Doubly-Differenced Ambiguities

Design matrix: at each epoch, g-1 equations are formed:

VAN = VAp(®) + VAn (4-8)

In matrix form this is:
DV-A-X=DV-R-er+DV-J-n (4-9)

The doubly-differenced ambiguities depend on Dy and J , both of which can
change between epochs. We may instead replace:

Dy-J:-n by J'- (Dy-n)

where DV' is a predefined differencing operator of dimension (m-1) x m,
constant for the whole observation session. The intention is to concentrate the

variations between epochs in matrix J', a selection operator for the appropriate
double-differenced ambiguities.

The desired replacement is only possible if (Dy-J) = W' - DV') . Both sides
can be postmultiplied by the same term:

J'-Dy' - Dy T(Dy'Dy") "' = Dy-J - Dy'T(Dy'Dy' Ty (4-10)

By definition, DV' is constructed from m-1 combinations. Due to its square

matrix structure, Dy'Dy'! is positive definite of rank m-1 and has a regular
inverse. The new selection matrix therefore becomes:

J'= Dy-J-Dy'T(Dy'Dy')? (4-11)
Thus, we can replace the J' matrix in the model (equation (4-9)):
Dy-A-X = Dy-R-dX, +Dy-J-Dy' (Dy'Dy' ") (Dy'n) (4-12)
In explicit matrix form, the double-difference model becomes:

dX,

Vn J(4-13)

V® =DyAX =Dy [ R J.DyT(Dy'Dy' ") ] {

where Vn =Dy'n.
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Example: let us consider two different sets of doubly-differenced ambiguities:
Dys a fixed-reference differencing operator and Dys a sequential-

differencing operator. The new unknowns Vn are:

with Dyf :  An?-An', An®-An', An*-An?, An®- An?
(4-14)
with Dyg :  An?-An', An®-An2, An*- AnS, An®- An?
For the matrix J' defined above, Dys leads to:
=1 =1 4 -1
J lT v 'T 1 1 —1 _1 _1 _1
-D Dy D = = 4-15
v (DyDy ') 5 4 o1 1 4 (4-15)
L1 4 -1 -1 -
and Dyg leads to:
[~ 1 2 3 -17]
1 DT(bp T _ ] —4 -3 -2 —1
Dy T(Dy'Dy' )" = = 4-16
v (DyDy ') E {5 3 4 (4-16)
- 1 2 -2 -1 -

These matrices form the second part of the design matrix. They obviously
depend on the choice of Dy' .

Normal matrix: It is not necessary to compute J' explicitly. As with the singly-
differenced ambiguity approach, it is preferable to use the "reduction by the
mean" approach to construct N . The accumulated normal matrix depends on

Dy . This is logical as the unknowns to which N refers are defined by Dy . N

has full rank and can be inverted directly. In fact the choice of Dy  can be
considered a datum selection. However, as before, the coordinate submatrix is
completely independent of the datum: it is the sum of the products RT-K,-R

from all epochs, which only depend on the number and the positions of the
satellites observed.

Covariance matrix: It has a smaller size: (3+g-1) x (3+g-1) , but exhibits the
same features: the coordinate submatrix is the same as before and the ambiguity

submatrix depends on the datum selection Dy . The Bias Dilution of Precision
(BDOP1) can also be extracted, as before, by taking the trace of the coordinate
covariance submatrix. BDOP2 is defined as the trace of the ambiguity submatrix

and, like the submatrix itself, depends on the choice of the reference ambiguity.
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4.2.4 Comparison of the Approaches

The main difference between using singly-differenced ambiguities and doubly-
differenced ambiguities is the stage at which the reference (singly-differenced)
ambiguity is selected. The computation burden for BDOP2 is very similar and
changes in the satellite coverage can be overcome with the same flexibility.
When it comes to comparing the prediction and results of a measurement
campaign, one should keep in mind that the selection of the reference ambiguity
term in the GPS post-processing software may be different to the one used to
compute BDOP2. (For example, quite often the singly-differenced ambiguity
associated with the satellite observed at most epochs is held fixed.) This can
result in some apparent discrepancies in results for the ambiguities (and their
precisions) between different software packages.

4.3 BDOP2 versus BDOP1

It should be emphasised that the coordinate covariance submatrix, and
accordingly its eigenvalues and eigenvectors, are exactly the same as those
resulting from the approach using uncorrelated triple-differences. Hence, all the
information extracted from the computations for the BDOP1 factor using the
triple-difference approach is obtained here as part of the solution for BDOP2.
Furthermore, the problem of dealing with a changing satellite configuration is
more easily overcome using the double-differences approach than using triple-
differenced observations.

An inspection of some computation examples (see section 7), indicates that
BDOP1 and BDOP2 have similar signatures. Two reasons can explain this
behaviour:

1. They are extracted from the same matrix, in which coordinates and
ambiguities are strongly interrelated.

2. They describe similar properties of the satellite configuration. If it is easy
to compute precise coordinates when ambiguities are eliminated, it must
also be easy to explicitly solve for them.

Due to its invariance with respect to the computational approach - differencing
level and selection of the reference ambiguity - BDOP1 therefore represents a
more general concept in GPS data processing.

5. ONCE CYCLE AMBIGUITIES ARE ESTIMATED AND
RESOLVED

5.1 Range Observations

In this last case, it is assumed that the ambiguities have already been fixed to
their integer values. Thus, the relevant observations are now unbiased ranges.
For each observation session, we only consider the (3 x 3) part of the
accumulated normal matrix corresponding to the coordinates, formed from
double-differenced observations. It has already been pointed out that this
submatrix is unaffected by the approach taken for ambiguity modelling (singly- or
doubly-differenced parameters), or whether they are eliminated altogether, as in
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the (uncorrelated) triple-differenced approach. Its inverse is the covariance
matrix of the coordinates of the remote site.

5.2 BDOP3: Extraction and Features

We define the Bias Dilution of Precision 3 indicator (BDOP3) as the trace of the 3
x 3 covariance matrix. This factor can be considered as being equivalent to an
"accumulated PDOP", which simply reflects the fact that the differential
positioning is not an instantaneous process, but involves observations at several
epochs. The peaks of the BDOP3 curve are smoothed, even for relatively short
sessions with high PDOP values at individual epochs. The magnitude of this
indicator of precision, less than the corresponding BDOP1 (or BDOP2), at least
for short sessions, indicates that in general the accuracy of the coordinates is
higher once the ambiguities are (correctly) resolved than if they were not
resolved to their integer values.

6. IMPLEMENTATION OF COMPUTATIONAL PROCEDURE
6.1 Quick Mathematical Reference

The normal matrix contains the contribution of all observations collected during a
survey session. Its dimension is 3 + the number of satellites.

l: NCC NCb J
Nyx = (6-1)
XX

Npe Npp

where the coordinate only part is contained in N, » the cycle ambiguity part is
Nbb , while Ncb and Nbc are the submatrices formed from the cross
multiplication of coordinate and ambiguity terms. The cofactor matrix Q,, is
obtained by the generalised inversion (with minimal trace) of Ny !

QCC QCb |
Q,, = (6-2)

ch be

The covariance matrices and the corresponding factor of Dilution Of Precision
factors for the different cases are:

BDOP1 = \/ trace [ro]‘

(6-3)

\/ trace [be]I ©-4)

BDOP2
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11
BDOP3 = \/ ’[race[Ncc

(6-5)

6.2 The "PREDICT" Program

At the School of Surveying, University of New South Wales, a satellite prediction
software program, known as "PREDICT", has been developed by Dr. C.Rizos.
The principal aim of this program is to produce satellite alert information, sky-
plots and DOP factor-plots. Recorded Broadcast Ephemeris messages as well
as formatted files containing the Keplerian elements of simulated orbits can be
used as input. The algorithms for estimation of the ability to solve for the
ambiguities processing double- and triple-differenced phase observations has
been implemented as an additional task within "PREDICT".

6.2.1 Features

The computations can be performed for any observation session length,
independent of the specified output rate. This makes it possible, for example, to
plot estimators for one hour sessions every ten minutes. The end product is a
plot of the proposed BDOP indicators. Except for the approach using
decorrelated triple-differences (see Appendix A.2.c), it is not necessary that the
number of satellites observed remains constant during a session.

6.2.2 Observations

For each epoch (for example, each minute) the algorithm determines if a satellite
is visible, according to the selected elevation cut-off angle. When all visible
satellites are found, the design matrix for that observation epoch is computed.
The differenced design matrix (correlated or decorrelated), and the associated
covariance matrix, is derived.

6.2.3 Accumulation Process
The "observations" are accumulated in two steps:

1. The first step is to add the normal matrices obtained at each epoch, until
an output is required (according to some selected rate).

2. The second step is a "rolling" process. The normal matrices obtained
above are added until the selected session length is reached. (The
session length can be any multiple of the output rate.) The freshly
computed first step normal matrix replaces the oldest one and the
process repeated.

6.2.4 Extraction of the DOP Factor
At each output period, the accumulated normal matrix is inverted, giving the

covariance matrix of the unknowns. The DOP factor is then computed and
directed to the printer and/or plotter.
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6.3 Exampl Hlustr h har risti f the BDOP
Factors

6.3.1 Four Satellite Coverage

An example of a four satellite constellation (satellites 6, 9, 11, 13), as viewed
from Sydney, on the 9th September, 1987, for a 6 hour period from 20h 00m
(local time) to 2h 00m on the following day, is considered. Figure 2 is a sky-plot
showing the paths of the satellites in relation to a polar plot centred at the
Sydney site's zenith. The position and motion of the associated paired-
satellites (see Appendix E) are also shown at 22h 40m.

GPS SKY-PLOT O FOR: SYDNEY
START EPOCH ——> 9/5EP/87 20: 0 N LAT. ~33.55 LONG. 1516
DO BPOCH —> 10/EP/87 158 BEY. CUTOFF 150

(LOCAL TVE = GUT + 1.0)

@ satellite at 22:40

O paired-satallite at 22:40

Figure 2: A sky-plot centred at Sydney, Australia for the 9th-10th
September, 1987, showing a four satellite constellation and the
associated locations of the paired-satellites.

Figure 3 is a plot of the Geometric Dilution of Precision (GDOP) for this period.
There is a large increase around 22h 40m, even though there is one satellite in
each quadrant. At this time, all the satellites have approximately the same
elevation angle and it is not possible to separate the receiver clock error from
the height of the station in the solution. (The PDOP would identical behaviour.)
On the basis of studying such a plot, the surveyor could draw the conclusion
that the constellation is not favourable for GPS positioning.
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Figure 3: The GDOP factor at Sydney, Australia for the 9th-10th
September, 1987, for a four satellite constellation.

The BDOP1, BDOP2 and BDOPS factors have been calculated for observation
session lengths of 15, 30 and 60 minutes and plotted in Figures 4, 5 and 6
respectively. (The value indicated on these plots is for the end of the
observation session.) The BDOP1 and BDOP2 indicators do not have a peak
as in the case of the GDOP/PDOP, but the BDOP3 plot does show a small
peak. Nevertheless the peak is strongly reduced when averaged over a
session. An extension of the session length, from 15 to 30 and 60 minutes,
causes a strong decrease in the value of the BDOP1 and BDOP2 factors,
indicating a strengthening of the phase solution with increasing session length.
However, the decrease in the value of the BDOP3 indicator with an extension
of the observation session length is not as pronounced as for the
BDOP1/BDOP2 factors, indicating that ambiguity-fixed solutions do not exhibit
a strengthening of the solution to the same degree that ambiguity-free (and
especially the transition from ambiguity-free to ambiguity-fixed) solutions

exhibit.
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Figure 4: The BDOP1 factor at Sydney, Australia for the 9th-10th
September, 1987, for a four satellite constellation and observing
sessions of 15, 30 and 60 minutes.
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Figure 5: The BDOP2 factor at Sydney, Australia for the 9th-10th
September, 1987, for a four satellite constellation and observing
sessions of 15, 30 and 60 minutes.
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Figure 6: The BDOP3 factor at Sydney, Australia for the 9th-10th
September, 1987, for a four satellite constellation and observing

sessions of 15, 30 and 60 minutes.
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Figure 7: The BDOP2 and BDOPS factor at Sydney, Australia for the 9th-
10th September, 1987, for a four satellite constellation and an

observing session of 10 minutes.
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In comparing the relative magnitudes of BDOP2 and BDOP3 we see from
Figure 7 that even for observation sessions as short as 10 minutes, the peak of
BDOPS is already smaller than BDOP2. Thus, a resolution of the ambiguities
would already improve the final coordinates for even such short session.

6.3.2 Three Satellite Coverage

We now consider a reduced constellation of three satellites by eliminating
satellite 13 from the earlier example.

BDOP2 and BDOP3 have been calculated for a 30 minute session and plotted
in Figure 8. For half hour sessions, the precision of the estimated integer cycle
ambiguities is reasonable only at the beginning of the observing window, for
sessions ending between 21h 30m and 22h 00m. Figure 9 conveys the same
information but for 60 minute observation sessions. For one hour sessions, the
probability of resolving the integer cycle ambiguities appears to be reasonable
throughout the observing window, between 21h 15m and 24h 15m (end of

session).
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Figure 8: The BDOP2 and BDOPS factor at Sydney, Australia for the 9th-
10th September, 1987, for a three satellite constellation and an

observing session of 30 minutes.
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Figure 9: The BDOP2 and BDOPS factor at Sydney, Australia for the 9th-
10th September, 1987, for a three satellite constellation and an
observing session of 60 minutes.

6.3.3 Block | Satellite Coverage

Using the (1988) 7 Block | satellite GPS constellation, PDOP (Figure 10) and the
3 BDOP factors for a 60 minute session length (Figure 11) were computed for
Sydney, Australia, for a 5 hour window on the 1st November, 1988. A minimum

elevation cutoff of 15° was applied. The PDOP was calculated for all 4 satellite
combinations visible and the lowest of these values is plotted in Figure 10.
Note that PDOP falls below 5 only after about 18h 05m. BDOP1 has been
calculated for observation session lengths of 30, 60, 90 and 120 minutes and
plotted in Figure 12. (In these plots all BDOP values have been plotted against
the mid point of the simulated observing session, that is, the plotted BDOP1 at
19h 30m for a 120 minute observing session is that for an observing session
running from 18h 30m to 20h 30m. In addition, all visible satellites were
assumed to have been tracked.) The relationship between troughs and peaks in
the PDOP plot and in the BDOP plots is not clear as BDOP continues to drop
even when PDOP reaches a plateau after 18h 05m because of rising satellites
(from 3 to 7) during the next hour or two. Nevertheless low BDOP values are
associated with observing sessions that include the period of rapidly falling
PDOP.
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Figure 10: The PDOP factor at Sydney, Australia for 1st November, 1988,
for the (1988) 7 Block | satellite constellation.
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Figure 11: BDOP1, BDOP2 and BDOP3 indicators for Sydney, Australia for
1st November, 1988, for the (1988) 7 Block | satellite
constellation and an observing session of 60 minutes.
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Figure 12: The BDOP1 factor at Sydney, Australia for 1st November, 1988,
for the (1988) 7 Block | satellite constellation and observing
sessions of 30, 60, 90 and 120 minutes.

6.3.4 Block Il Satellite Coverage

To study the relationship between PDOP and BDOP factors further a set of
simulated orbital elements for an earlier proposed GPS 21 (18 + 3 active spares)
satellite constellation was used to calculate PDOP and BDOP1 for a survey
planned for the 1990's. (It is now well known that the operational system will
comprise a 21 + 3 satellite constellation.) The receiver position used to calculate
these is for Wellington, New Zealand. A minimum elevation cutoff of 15° was
again applied and the number of satellites visible at any instant varied from
between 4 and 7. As in the case of Figure 10, the PDOP was calculated for all 4
satellite combinations visible and the lowest of these values is plotted in Figure
13. The BDOP values were computed using all visible satellites of the nominal
18 satellite constellation. (It was assumed the 3 spare satellites were not
available for tracking.) In the case of this satellite constellation the satellite
geometry repeats every 11 hours 58 minutes (with different satellites) and thus
the DOP factors were only plotted over a 12 hour period. Note in Figure 13 the
peaks in the PDOP plot at 0h 20m, 7h 00m and Sh 40m.

BDOP1 has been calculated for observation session lengths of 30, 60 and 120
minutes. The BDOP1 based on all satellites visible in an observing session are
plotted in Figure 14 for various session lengths. Note the minima at Oh 00m, 3h
45m, 7h 15m, and 9h 45m, and that 3 of these 4 minima correspond to the 3
PDOP maxima. The fourth BDOP1 minimum occurs at an extended period of
low PDOP. This is consistent with the findings of NORTON (1987), that is, it
appears that sharp peaks in PDOP correspond to good observing sessions.
Hence the commonly accepted belief that low PDOP (or GDOP) indicates good
geometry for GPS carrier phase adjustment may be true in some circumstances,
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but it is more often wrong than right. The observing windows of all the BDOP1
maxima (centred at 1h 45m, 5h 30m, 8h 30m and 10h 45m) correspond to
periods of relatively good (that is, small) PDOP!
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Figure 13: The PDOP factor at Wellington, New Zealand, assuming the
proposed nominal 18 satellite constellation.
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Figure 14: The BDOP1 factor at Wellington, New Zealand, assuming the

proposed nominal 18 satellite constellation and observing
sessions of 30, 60 and 120 minutes.
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6.3.5 Characteristics of the Precision Indicators

The BDOP factors have, in general, the following characteristics:

Indicators can be computed for as few as two satellites. This is in
accordance with reality: contrary to common belief, GPS surveys do not
require the simultaneous availability of 4 satellites. However, to obtain
similar quality results with less satellites, longer sessions are required.

Indicators can be computed for observing sessions during which satellites
are rising and setting.

Note in Figures 12 and 14 the dramatic improvement and smoothing of
BDOP1 that occurs for longer session lengths.

In Figures 12 and 14, the best observing time with a 30 minute session is
significantly better than the worst observing time with a 60 minute session.
The timing of the start of an observing session is therefore more critical for
short sessions than for long ones.

Another factor that influences the magnitude and variability of BDOP1 is the
number of satellites observed. Note in the examples in section 6.3.3 &
6.3.4 that all satellites that were visible were assumed to have been
tracked.

The variations in the value of BDOP1 for different sessions during the day
are significant, even for the comparatively long 120 minute observing
sessions. Even for a 120 minute observing session, the ratio of best to
worst BDOP1 is more than 2to 1.

Despite the 24 hour coverage of the 21 (18 + 3) satellite constellation there
will be some observing times that are significantly better than others. This
may not necessarily be the case for a 24 (21 + 3) satellite or 21 + remaining
Block | satellite constellation.

The behaviour of BDOP1 and BDOP2 (Figure 11) is similar, as they
describe similar properties of the satellite configuration. That is, if it is easy
to compute precise coordinates when ambiguities are also estimated, it
must also be comparatively easy to solve explicitly for them. Interest in the
BDOP2 factor is therefore rather limited.

Furthermore, the exact definition of BDOP2 depends on the method used to
overcome the rank defects in the solved-for ambiguity parameters (GRANT
et al, 1989), and is therefore not uniquely defined.

On the other hand, BDOP1 and BDOP3 describe the precision of the
coordinates before and after ambiguity resolution and are not affected by
the selection strategy used for the solve-for ambiguity parameters. Their
definition is unique and they are therefore best suited for general use.

BDOPS is equivalent to an accumulated PDOP over an observing session

and the peaks of the instantaneous PDOP indicator are smoothed, even for
relatively short sessions of 30 minutes.
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+ The magnitude of BDOP3 is always smaller than the corresponding BDOP1
(or BDOP2), see Figure 11. However, the decrease of BDOP3 with an
extension of the observing session length is not as pronounced as for
BDOP1 (and BDOP?2). This indicates that it is less important to resolve the
ambiguities for longer sessions. In any case, it is usually BDOP1 that will
distinguish a "good" observing session from a "bad" one.

» For some special purposes, the horizontal and vertical components of
BDOP1 and BDOPS3 can be extracted, just as HDOP and VDOP are derived
from the cofactor matrix of the navigation fix (section 7.3).

» The BDOP units in the plots are dimensionless. They can be scaled into
estimates of precision (or accuracy) for the estimated coordinates or
ambiguities by multiplying them by the measurement precision (or
accuracy). For carrier phase observations, the precision is of the order of
several millimetres. However this multiplying factor could be proportional
to the baseline length, in order to account for systematic errors.

7. SUMMARY AND CONCLUSIONS

7.1 Summary

GPS surveying is essentially a two step procedure:

(1) the tracking of a number of GPS satellites simultaneously from two or
more ground sites, over a finite observing session, and

(2) the post-processing in one adjustment of the recorded carrier phase
data.

For optimal planning of GPS surveys it is necessary to have an objective
measure of the precision attainable for position determination using GPS
surveying techniques, for different observation scenarios. At present, the
"measures of precision", or "precision indicators", commonly available are based
on GPS navigation principles, and are only of limited use for GPS surveying.
For example, the Position Dilution Of Precision (PDOP) is a shorthand means of
quantifying the influence of satellite(s)-receiver geometry for a navigation fix
based on simultaneous pseudo-ranges to 3 or more GPS satellites. However
the use of DOP factors derived from GPS navigation considerations is
inappropriate for designing the observation scenario for two important reasons:

(a) The navigation solution is based on the instantaneous satellite-
receiver geometry, whereas the GPS carrier phase adjustment is
governed by the continually changing geometry of an observing session
which may last for several hours.

(b) The pseudo-ranges are considered to be biased only by the errors of
receiver oscillator (which changes from epoch to epoch and needs to be
estimated or eliminated). In a GPS carrier phase adjustment the double-
differenced observation (or equivalent) is predominantly biased by the
integer cycle ambiguities (other biases still exist, but they are not related
to satellite and measurement geometry). The geometric strength of an
ambiguous range (integrated carrier phase) is quite different to that of
a pseudo-range.
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Furthermore, for short baselines, the reliable estimation of the cycle ambiguities
and their subsequent resolution to their true integer values in an "ambiguity-
fixed" solution, leads to an improvement in the quality of the results over and
above that available from the initial "ambiguity-free" solution. However a reliable
estimate of the integer biases is only possible from a strong ambiguity-free
solution. The authors have therefore proposed an alternate set of precision
indicators, referred to as BDOP (Bias Dilution Of Precision) factors:

+ BDOP1 for the precision of the coordinates before resolution of the cycle
ambiguities,

« BDOP2 for the precision of the determination of the cycle ambiguities,

+ BDOPS3 for the precision of the coordinates after resolution of the cycle
ambiguities.

The following characteristics of the BDOP factors were noted:

(1) The BDOP factors appear to be indicators of accuracy as well as
precision. That is, periods of low BDOP indicate periods of lower
sensitivity to (most) systematic errors.

(2) Times of low BDOP values do not coincide with times of low PDOP or
GDOP values.

(3) There is a considerable variation in BDOP through the day, even for the
operational GPS constellation.

(4) The longer the observing session, the less variation in BDOP through the
day.

(5) Observing less than the full set of visible GPS satellites is suboptimal,
and increasing the number of satellites tracked is more efficient than
lengthening observing sessions.

The BDOP factors can be used for two purposes: (a) as an absolute measure of
the likely accuracy of the GPS phase adjustment, or (b) to assist in GPS survey
planning by providing a basis for judging the relative quality of different
observation scenarios. With regard to the former, if the measurement precision
(or accuracy) is known, the product of the measurement standard deviation (or
User Equivalent Range Error) and the BDOP factors gives a measure of the
precision (or accuracy) of GPS surveys:

(a) For long baselines, where the ambiguities cannot be resolved, BDOP1 is
the appropriate indicator for the precision of the receiver coordinates and
BDOP2 for the ambiguity parameters.

(b) For short baselines, where the ambiguities can be assumed to have
been resolved, BDOP3 is the appropriate indicator for the precision of
the receiver coordinates.

However, as GPS surveying is largely influenced by unmodelled systematic
errors it is difficult to quantify the magnitude of the measurement errors, and
hence the absolute coordinate accuracy to be expected or indicate whether
ambiguities can be resolved or not. Therefore, precision indicators are unlikely
to be used in this manner except perhaps as guidelines for "GPS standards and
specifications”. Rather, the BDOP factor of most interest for GPS survey
planning is BDOP1.
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An analysis of the relative magnitude of BDOP1 when: (a) the satellites to be
tracked, (b) the observation start time, and (¢) the observing session length are
varied can assist in selecting the observation scenario that leads to the strongest
ambiguity-free solution. Whereas varying the observation scenario in order to
minimise the value of BDOP3 may result in more precise coordinates from an
ambiguity-fixed solution, if BDOP1 is so bad then the resolution of cycle
ambiguities is unreliable. In other words: ambiguity resolution is not a
miraculous way of improving a poor ambiguity-free solution because
ambiguity resolution will always be unreliable in such a case.
BDOP1 has the same function as the fuel indicator of a car: more fuel will not
make the car go faster, but with a low tank it might not be possible to reach the
destination!

However, the decrease in the magnitude of BDOP3 with an extension of
observing session length is not as pronounced as for BDOP1, hence it is less
important to resolve ambiguities for longer sessions than for short ones.
Furthermore, during periods of low BDOP1 the difference in the precision of an
ambiguity-free and an ambiguity-fixed solution is a minimum, hence little is
gained by resolving ambiguities under such circumstances.

Our suggestion for the use of such indicators is to therefore concentrate on the
variability of BDOP1, and to use it as the single criterion for choosing the
satellites to be tracked, the observation start time and the session length, by
proceeding in the following manner:

(1) Decide on the satellites to be tracked. Usually this will be all that are
visible, although if the GPS receiver can only track 4 or 5, then the
following procedure would need to be repeated with all combinations of
satellite subsets.

(2) By varying both the session length and the observation start time,
compute the BDOP1 factor, and display the results as BDOP1 "contour"
on an X-Y plot (with X-axis corresponding to observation start time, and
the Y-axis corresponding to the session length), as suggested by
HATCH & AVERY (1988).

(3) Select the observation scenario that gives the lowest BDOP1 subject to
two planning constraints (for example, satellites tracked + observation
start time, or satellites tracked + session length, or least likely,
observation start time + session length).

However, it must be emphasised that cycle ambiguities cannot be assured
of being resolved simply by selecting the observation scenario with
the lowest BDOP1. It merely indicates which observation scenario has the
best geometry for coordinate determination, and other factors such as the
atmospheric refraction effect, multipath, orbit error, and, most importantly, the
baseline length come into consideration and will affect the magnitude of the
UERE (for example, UERE will increase with increasing baseline length). To
assist the GPS survey planning process, it is therefore recommended that:

(a) The appropriate software for computing BDOP1 be included in the field
preparation software, as is presently done for PDOP and GDOP.
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(b) Government survey and mapping agencies draft guidelines for
maximum BDOP, for cases of both short and long baselines, for each
class of survey, and to delete all references to PDOP or GDOP factors.

(c) Further covariance studies be carried out in order to ascertain how the
product of BDOP1 and UERE varies with increasing baseline length, and
whether simultaneous orbit adjustment affects this, and hence develop a
planning tool for simulating the conditions for cycle ambiguity resolution.

7.2 Computational Procedure

To compute the proposed indicators in one run, the following procedure is
recommended:

1. Assume a stochastic model with independent one-way phases and one
observation per minute.

2. Compute the complete accumulated normal matrix, using the singly-
differenced cycle ambiguity approach. The dimensionis (3+m) x (3+m),
where m is the maximum number of satellites available.

3. Accumulate the normal matrix over the planned observation session
duration.

4. Reduce the size of this matrix according to the actual number q' of
satellites observed during the considered session. This gives N , of
dimension (3+q') x (3+q') .

5. Invert N , introducing the minimal trace condition. This gives the
covariance matrix of the unknowns: Qxx .

6. The indicator of the precision for the coordinate determination is BDOP1:
the trace of the 3 x 3 coordinate submatrix Qee of Qxx .

7. Isolate Ng¢ the coordinate submatrix (3 x 3, full rank) of N.

8. The trace of the inverse of Nge¢ is BDOPS3, the indicator of precision of

the coordinates, under the assumption that all ambiguities have been
resolved.

It should be emphasised that there is no need to decorrelate the observations in
this approach. Furthermore no differencing operator needs to be explicitly
defined. All correlations can be taken into account by using the operator for
"reduction by the mean" to compute the normal matrix of the double-differenced
observations and its associated covariance matrix (see Appendix A.2).

A valuable strategy for GPS planning is to study both at BDOP1 and BDOP3. If
integer ambiguities can be resolved, an improvement of BDOP3 should result in
more precise coordinates. BDOP1 need not be optimised but an upper limit to
its value should be set, according to the performance of the equipment and field
experience. BDOP1 has the same function as the fuel gauge of a car: more
petrol will not help it go faster, but with a low tank, it might be simply impossible
to arrive at the destination.

7.3 mi Indi r
In some cases, other indicators may be more suitable. Generally, they can be
extracted from the same covariance matrices, according to the guidelines given

in Appendix D. As an example, a refined procedure is given, in which BDOP1,2
and 3 are replaced respectively by:
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(@) Precision of the remote site with range difference measurements. A
horizontal error ellipse oA, oB, 6 (BHDOP1) and a vertical mean error

oH (BVDOP1) are extracted from Q.. . This precision should be
obtained even if no cycle ambiguities can be resolved.

(b) Mean error of the worst combination of integer ambiguities. The highest
eigenvalue Amax is extracted from Qcc . This value is independent of

the selection of the reference ambiguity and the weakest linear
combination of coordinates cannot be much different from the weakest
linear combination of integer ambiguities. This indicator can be used for
the choice of the session duration.

(c) Precision of the remote site with range measurements. A horizontal error
ellipse oA, oB, 6 (BHDOP3) and a vertical mean error o4 (BVDOP3)

are extracted from Ncc'1 . This precision should be obtained if all cycle
ambiguities can be resolved.
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APPENDIX A. DIFFERENCING GPS OBSERVATIONS

A.1 General Case

The theoretical presentation here is intended to introduce the reader to some of
the data manipulation issues involved in the differencing of carrier phase data.
For a more details the reader is referred to, for example, BOCK et al (1986), and
LINDLOHR & WELLS (1985).

A set of observations is considered, represented by the linear functional model:

l + v=AX (A-1)
and the stochastic model by the covariance matrix of the observations C;
A differencing operator D is applied to the system:

D1l +D-v=D A-x (A-2)
leading to the new system of equations:

"'+ v = A" X (A-3)

The new observations therefore are I'=D -1 . The covariance of the new
differenced observations is:

Cr =D.-Cc,-DT (A-4)

Application of the minimum quadratic norm, [v'Tv'] = minimum, leads to the
normal matrix:

N' = A'TP'A’ where P’ = (DC,DT)" (A-5)

A.2 Some Operators

Let us consider a sample of phase data involving 4 singly-differenced (between-
receiver) observations involving a baseline. The covariance matrix of these

differenced observations is (equation (2-9) 2 - I4. We wish to form double-
differences using various between-satellite differencing operators:

(a) The operator for fixed reference satellite differencing has the form:

-4 1 0 0
Dya=| -1 0 1 0 (A-6)
-4 0 0 1

and the covariance of the resultant double-differences is:
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11
4 2 2 2 2
1 1
Cvao =DvaCroDva=| 2 42 |=4 7 1 3 (A-7)
2 2 4 11
7 3 1
(b) The operator for sequential satellite differencing has the form:
-1 1 0 O
Dyp = 0-1 1 0 (A-8)
0O 0 -1 1
and the covariance of the resultant double-differences is:
1
4 -2 0 T -3 0
1 1
Cvap=Dvp CapDvp =| 2 4 -2 [=4-| 5 1 5| (A9
0 -2 4 o L
2

(c)

(d)

In this case, we can consider the differencing operator as being the
r t of the sequential operator and th ropti ecorrelatin
operator, as described in Appendix B.2:

Dyec = L™ - Dy (A-10)
According to the law of propagation of variances and the definition of

L (given in Appendix B.1), the covariance matrix of this new combined
operator is:

(L''.p)-I-(L7.D)T (A-11)

=L7(@-DN) . (L)T
= LT (L-LT-(LHT =1

CDVc

Similar results can be obtained with other differencing operators, but a
different premultiplier L1 is required.

The "reduction by the mean" for n observations is defined by the
operator:
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B 1 1 1
v = "
A i L
Kn=[ " " " (A-12)
1 1 1
L 5 -5 1=

It does not reduce the number of observations and introduces
correlations, but it has some properties that makes it very useful
compared to the other differencing operators:

(1) ltis symmetric: K,T = K,

(2) Itisidempotent: K, - K, = K

Let us consider D, a differencing operator of dimension (n¥1) xNn,we
have, in addition:

3) D-K,=D
4 DT.(DDTY'. D = K,

These properties (3 & 4) in particular apply to the operators (a) to (c)
described earlier. The product in (4) is called the kernel of the
operator. For a set of uncorrelated original observations, it is easy to
derive the normal matrix of the differenced observations in the

following manner:

N' = ATP'A' = (DA)T(DIDT)"1(DA) (A-13)
= ATpT(D.DT)'D-A
= ATK,A

Thus, the normal matrix does not depend on the choice of the operator
D!

Applying D to observations already reduced by the mean highlights
the properties of K :

N'"' = (DKA)T-((DK)-I(DK)T)"'.(DKA)
= ATKTDT.(DKKTDT)"1.DKA
= ATKDT(DKKDT)"'.DKA symmetry
= ATKDT(DKDT)"'.DKA idempotence
= ATK-DT(DDT)'1D-KA neutral for differencing
= ATKK-KA kernel
= ATKA = N' (A-14)
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More interesting however is the product:
N = ATA' = (KA)T(KA) = ATKKA = ATKA = N' (A-15)

This, again leads to the same normal matrix. The simple expression
for the normal matrix is only due to the fact that K is symmetric and
idempotent. Though it suffices to premultiply the design matrix by its
transpose to obtain the normal matrix, the covariance matrix of the
observations reduced by the mean is not the identity matrix, but

KIKT =K .
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APPENDIX B. CORRELATED OBSERVATIONS

B.1 General Case

We consider the functional model: |1+ v = A-x . According to BIERMAN (1977),
if the stochastic model is defined by a positive definite covariance matrix C,

there exists an operator L such that:
L-LT = ¢ (B-1)

and the modified observations LT- 1 are uncorrelated. We can write a new
system of observation equations:

LT 1 +LT v =1LT A x (B-2)

From the law of propagation of variances, we can compute the covariance matrix
of these new observations:

Coty = Ltk = L LT = 1 (B-3)

Considering the observations sequentially, the problem is to extract from each
new observation information that is not already contained in the previous ones.
Such a procedure is also known as Gram-Schmidt orthogonalisation. However,
a disadvantage of the resultant uncorrelated observations is that it is often
difficult to obtain a geometric insight.

B.2 Pairwise Correlated Observations

Sequential differencing leads to the following covariance matrix, which has a
particular significance in GPS data processing (equation (A-9)):

14 0 o0
1 1
- 1 5 0
Ci=[ o 5 1 4 (B-4)
0 0 4+ 1 ..

A suitable choice for the operator matrix L is given by the algorithm presented
in BIERMAN (1977), and referred to in HATCH (1987):
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1
Livtjsr = \/1 Tzl 12

Explicitly, this leads to the matrix:

1.0 0 0 .7
1 3
2 Nz 0 0
1 2
L=| 0= 5 0 . (B-6)

In the case of 4 observations, the inverse of L is the triangular matrix:

g

0 0 A% ..

0

0
\z o

0

0

B-7
G AEAE o o7
sV VBB

The fractions are intentionally left unreduced in order to make the systematic
structure of the matrix more apparent.

An important feature of L1 is its ability to be computed recursively using the
following algorithm:

(L-1 )1,1 =1

i+1,j+1 = A\/ ( L_1 )i’j
1 - (—é——f

Thus, it is possible to compute a new uncorrelated observation and a new row of

the design matrix A , with only the new observation and the last uncorrelated
one.
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APPENDIX C. ACCUMULATING OBSERVATIONS

C.1 Principle

Adding an independent group of new observations to the system of observation
equations is equivalent to adding the corresponding new normal equations to
the system of normal equations. The advantage of the second method is that it

requires the storage of a smaller amount of data.

C.2 Example with 2 Epochs

We consider the two independent (that is, uncorrelated) sets of observation

equations:

It + vi = Ay X with an associated weight matrix Py

lo + Vo = Ay - X with an associated weight matrix P»

Making one system out of these two, we obtain the new design matrix:
A4
A =
Az
For independent sets of observations, the global weight matrix is then:
P; O
P =
0 P,
The global normal matrix is easily obtained from:

N =ATPA = A;TPA; + A,TPA, = N; + Ny

It is therefore the sum of the individual normal matrices.
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APPENDIX D. INDICATORS OF PRECISION

D.1 Covariance Matrix

From least squares adjustments, the precision of the solution is given by the
product of the covariance matrix of the unknowns (be they receiver coordinates
or ambiguities) and the a priori precision of the observations (mean variance of
the unit of weight). The covariance matrix has the dimension u xu, where u is
the number of unknowns:

[ Gyy Gyp - Gy |
Goy Goy .. Q
S - Q. 02 = 21 Y22 2u (D-1)
— Ayt G2 Yuu -

A matrix is not very suitable tool for a quick and simple evaluation of the quality
of a least squares solution. There needs to be some "compression" of the
information in the matrix elements into a simple expression, preferably a single
number.

D.2 Principal Component Analysis (PCA)

As discussed in CASPARY (1987), it is possible to decompose the covariance
matrix of u unknowns into eigenvalues and eigenvectors so that:

A, 0 .. 0 | [54]
. < . 0 A, .. O S,

Qux = [S1 82 ~ Sy ] : (D-2)
| 0 0 .. }"u d Ls,-

This process is also called "diagonalisation". An eigenvector indicates the
direction of an axis of the mean error ellipsoid. If the eigenvectors are
normalised, then each associated eigenvalue is the square of the length of the
semi-axis.

D.2.1 Largest Eigenvalue

The largest eigenvalue is simply the variance of the worst linear combination of
unknowns. In geometric terms, it is the square of the largest semi-axis of the
mean error ellipsoid. Thus, it is an appropriate "quality indicator" for the
precision of the determination of a combination of unknowns (coordinates and/or
ambiguities).
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D.2.2 Separation into Horizontal and Vertical Components

If the coordinate components unknowns had been selected to be the geographic
triad (latitude, longitude and height) representation of position rather than the 3-
D geocentric Cartesian coordinate component representation, the 2 x 2
submatrix of the horizontal components can be isolated and transformed into a
(horizontal) error ellipse. This is simply a two-dimensional PCA. On the other
hand, the square root of the diagonal term corresponding to the height
coordinate component in the solution gives the vertical mean error of the
solution. The sum of the squares of the individual components G5, Gg and Oy

is still equal to the sum of the eigenvalues.

D.3 Dilution Of Precision (DOP)

The DOP is such a condensed form of quality indicator derivable from the
covariance matrix of the solution. In the context of linear algebra, it is the root of
the trace of the matrix. If we now define a global precision scalar for the
unknowns:

ze = [q11 + Oy + . quu]-(52 (D-3)
and the dilution of precision factor:

DOP = \/ Aeq + oy + - + Gy (D-4)

We therefore have: o, = DOP.c

Note that the DOP is dimensionless and independent of the precision of the
observations.

With normalised eigenvectors, the trace of the original covariance matrix
remains unaffected by a PCA. Thus, the trace of the covariance matrix is equal
to the sum of the eigenvalues. As all eigenvalues are positive, the trace is
always larger than the largest eigenvalue. A geometric representation of the
root of the trace is straightforward: it is the radius of a sphere that always
contains the mean error ellipsoid. It therefore follows that the DOP factor is
rather conservative (and consequently safe) "summary" of the information
contained within the covariance matrix. However, compared with the largest
eigenvalue, the main advantage of the trace as a quality indicator is that no PCA
is required.

Example: the precision of the original observations, the carrier phases, is
typically 1% of a cycle (or 2mm in terms of wavelength). If the DOP factor is 10,
the precision of the unknown parameter estimate is 10% of a cycle (or 2cm). In
this case, with a mean error of 0.1 cycle and if the estimated parameter is an
ambiguity, the probability of "resolving" the ambiguity to its correct integer value
is very high.
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APPENDIX E. THE "PAIRED-SATELLITE" CONCEPT

E.1 Introduction

In GPS receivers designed for survey operation (as opposed to pseudo-range
navigation applications) the variation of the measured carrier phase from epoch-
to-epoch is known as the accumulated or integrated carrier beat phase
(GRANT et al, 1990). It is generated by comparing the incoming (Doppler
shifted) carrier signal with a signal generated by the receiver's internal oscillator.
This beat frequency is therefore sometimes also referred to as the Doppler
frequency, and its integral over a certain time period is the Doppler count.
This observable gives information on the ygriation with time of the (ambiguous)
range between satellite and receiver. The geometric content of this observable
is quite different from that of range measurements themselves. In order to assist
with an understanding of range differences, the concept of a "paired-
satellite” is first established on the basis of purely geometric considerations.
The paired-satellite is imaginary, but can always be associated with the real
situation. The equivalence of range difference measurements from one satellite
and range observations from its paired-satellite can then be established
algebraically.

E.2 Geometric Derivation

PR
- >,

Figure E.1: Geometric relationship between the Paired-Satellites
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DUPRAZ (1979) and GEIGER et al. (1982) have shown that the locus of points
where a certain Doppler frequency can be observed is a hyperboloid, whose
axis of revolution is defined by the velocity of the satellite with respect to an
earth-fixed reference frame. For a large distance between the satellite and the
receiver, this hyperboloid can be approximated by its asymptotic cone. It
therefore follows that the positioning information obtained from the Doppler
frequency observable is that in the direction of the perpendicular to the surface
of the cone, thus in the direction PS < R, as indicated by the dashed arrow in
Figure E.1. The same information is contained in the range measurement from
PS to R.

E.3 Algebraic Derivation

The following development is based on delta single-differences SA®D(t) .
This phase observable is the variation with time of single-differenced
observations. Therefore, it best represents the movement of a satellite with
respect to a baseline, which is in this context a very convenient earth-fixed
reference (Figure E.2).

The use of paired-satellites can be considered as a permutation of the
differencing operations used to generate triple-differences. The normal
differencing sequence SVA®(t) is replaced by VSA®(t) . (This of course does
not affect the final result.) The main advantage of this permutation is it permits
the dynamics of one satellite to be studied before differencing between satellites.
Time variations of double-differences OVA®(t) would be difficult to deal with
because two satellites are involved, confusing the geometry of the situation.

Figure E.2: Baseline Approach

In delta single-differences, satellite clock terms and cycle ambiguities have been
eliminated by differencing between receivers and epochs respectively.
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However, receiver clock terms are still present and the phase observation model
therefore is:

SAPS() = ( o/ C )-BAPS() + T,-SAEL1) (E-1)

Let us first consider the range term. For a short baseline, the difference between
receivers of the ranges to the same satellite can be expressed as:

Ap® = pg® - pR,° = b-cosb (E-2)

This is of course not exactly true, but the error introduced by this approximation
is small for b<<p® and for small variations in 0 . The cosine term is the scalar
product ("*" ) of the following unit vectors:

cosf =ﬁ3 (E-3)

where b and b are the baseline vector and baseline length respectively, p
and p are the remote site-satellite vector and its magnitude. A delta single-
differenced range over a short time period 0t can be approximated as:

sap - L0 5y - . AOS) (E-4)

The explicit differentiation with respect to time gives:

dlcos®) b d
ot Db gt'[%} (E-5)

where

0 H _vp-pp (E-6)

The range-rate p can be expressed as v-cosO. , where v is the norm of the
velocity vector (see Figure E.2). Substituting this into equation (E-5) gives:

d(cosB
_(%)ts_) = g— % [% - pa cosoc] (E-7)

The expression in brackets on the right hand side is a vector. lts direction
corresponds to that of PS — R, as indicated in Figure E.1. At this stage, we

refer to it as the PS range vector pPS . Some of its properties will be described
later. The model for the delta single-differenced range therefore becomes:
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8Ap=é-b-pps-8t =-V—'p5—t-pps-b (E-8)

This is a linear expression involving the baseline vector b . To write a linear
adjustment model for the position of the remote site, the baseline is expressed
as the difference in coordinates between the control site (subscript "0") and the
remote site (superscript "~" for approximate coordinates and prefix "d" for the
coordinate increments):

%+ ax| [Xo] [ox7 | %-x,
b= |V, ay|-|Yo[=]adY|+] VY-V, (E-9)
~ Z >
| Z + dzd o zd | z-2Z,
This leads to:
dX
8Ap =T-p o dY | + (k-kg) (E-10)
dZ
where the term containing the a priori station coordinate information is:
X - Xy
~ V'St ~
(k—ko)=T-pPS- Y=Y, (E-11)
| Z- 24

The coordinate of the remote site can be computed in any desired coordinate
system. It suffices only to express the PS range vector in that system. It is
generally more convenient to use a local topocentric system, and the vectors for
the range and the velocity of the satellite are transformed accordingly, that is the

position vector (dX, dY, dZ)T can be replaced by (dE, dN, dH)T.

Finally, the relation between measurements and unknown coordinates and
biases is defined. For each satellite and combination of two epochs, we can
write the complete phase observation equation (equation (E-1)), in units of

range, as residual =V = A-x — |, that is:
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dX

Ot f ~
V = VT{%— %cosoc} o | dY +f0-8Aer—{-CQSAq) - (k - ko)} (E-12)

dZ

The only term dependent on the position of the remote site is in the constant part
(last bracketed term). As the coefficients of the unknowns are free of baseline
components, neither the azimuth, nor the slope, nor the distance between the
sites have an influence on the precision of the unknowns (they will of course
affect the accuracy). It may be possible to explicitly model the receiver clocks
accurately (for example, if an external atomic clock is used to make the phase
measurements). In such a case, the clock errors enter into the constant term as
well.

E.4 Equivalent Range Observations

A row of the design matrix for the functional model of range difference derived
above has the form:

. T
Ai =VT&-[pPS] (E-13)

The corresponding observations are considered to be independent and their
weight matrix is of the form P = I (or a multiple of the identity matrix).

Now let us consider a range to the paired-satellite, from the original expression
of the PS range vector, its norm is easily obtained:

pPS = v 1 - (cosa)? (E-14)

The unit PS range vector can be computed and the design matrix A' can be
defined by rows of the form:

T

PS
I -1l | (E-15)

= pPS

The corresponding weight matrix P' has the structure:

-3t pPS ¥V
P'jj = k P ifi=f and O otherwise (E-16)
: P

Each diagonal term is associated with one observation i and P' is generally
not a multiple of the identity matrix.

It can be easily shown that:
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AT.P.A =AT.p.A" (E-17)

Hence both models lead to the same normal matrix. The advantage of the

second approach is that A' has the form of a design matrix for range
measurements. This therefore proves that a range-rate measurement to one
satellite has the same effect as measuring a range in the direction of the
corresponding PS range vector. A consequence of this is that we can consider
that the PS range vector indicates the location of the paired-satellite, to which
range measurements are assumed to have been made.

The position of the paired-satellite p"S is a linear combination of the position
and the velocity of the satellite. The paired-satellite is in the plane containing
both the vector from the receiver to the satellite and the instantaneous velocity
vector of the satellite. For GPS, the angle between the position and the velocity
of the satellite is generally close to a right angle and, consequently, the
corresponding cosine term is small. It follows that the location of the paired-
satellite is roughly 90 degrees behind the satellite, or delayed by a quarter of a
revolution. Note that a paired-satellite may well be below an observer's horizon,
though of course the actual satellite cannot be.

To visualise the situation, it is helpful to indicate the tracks of the paired-satellites
on a sky-plot. The suitability of a particular satellite configuration for GPS phase
(or range difference) positioning can be easily evaluated: it necessary only to
study the configuration of the paired-satellites and consider the strength of the
resection of range measurements from them.

The weight of the range measurement to the paired-satellite depends strongly
on the specifications of the satellite system, as a quick comparison of GPS and
TRANSIT for zenithal observations over one minute shows (equation (E-16)):

(a) GPS: speed = 3.8 km/s, range = 20200 km --> p'=(0.01)2
(b) TRANSIT:  speed=7.2km/s, range = 1100 km --> p'=(0.4)2

Considering only one satellite, GPS is therefore not very appropriate for range
difference measurements, as opposed to TRANSIT. This drawback is more than
compensated by the simultaneous availability of several GPS satellites, allowing
for the elimination of receiver clock errors.

An extension of the observing period has a different effect on the weighting of
range and range-rate measurements. If p; the weight of a single range
measurement, the weight of an accumulation of observations increases in
proportion to the number of epochs e (and hence observations):

Py = €D (E-18)

In the case of the weight matrix P' , it appears that accumulating range
difference observations makes the global weight increase in proportion to the
square of the length of the observing session. If additional measurements are
made in between (that is, increase the observation density), they will also
improve the weight. For observations at regularly spaced epochs and if p' is
the weight of a range difference measurement between two successive epochs:
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e-1
Py =2 (2 p) (E-19)
i=1

This result is more obvious if each new measurement is considered with respect
to the first measurement, adding information on the change in range during the
time elapsed since the first epoch. The weight propagation shows the
importance of the correlations between range difference observations at
successive epochs. This also explains why solving for ambiguities is less
important for long sessions, since the increase of the geometric strength of
range-difference measurements with time is greater than for range
measurements.

E.5 |Indicators Based on Paired-Satellites
It is not always possible to remove the receiver clock error from the functional

model. In such a case the model of the delta single-differences for satellite i
reads:

 dX ]
. T dY ~. .
300 = | ol prom] 1 ]°| 4 |*@-k)  (E20
| OAg,(t)

In the design matrix, the partial derivative for a coordinate is the product of the
square root of the weight by the corresponding component of the unit-vector from
the paired-satellite to the control station. For GPS, due to the high orbits, values
of p' for different satellites and epochs have typically a small range. Thus, the
system of equations can be expressed by:

— dX -
=V | e e e | gz |+ K-k (E-21)
]
BAQN(H Lo ot 0% 1 ] | sae)
e p' el

Range terms also change at each epoch, but for convenience, this is not shown
explicitly. The design matrix has exactly the same structure as that for the single
point positioning (navigation) solution using pseudo-ranges. For the range
components, the actual satellites are replaced by their corresponding paired-
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satellites. The receiver clock unknown is simply divided by the square root of the
weight.

Hence, the relation between the actual and fictitious satellites established in the
previous sections changes slightly if the receiver clock errors are taken into
account: measuring pseudo-range differences from a satellite is equivalent to
observing pseudo-ranges from its paired-satellite. DOP factors based on paired-
satellites can be computed, describing the instantaneous geometry of range-rate
measurements, analogous to navigation PDOP and GDOP factors. We will refer
to these as PS-DOP factors.

DOP factors can be computed for the paired-satellites (PS-DOP) using the
classical algorithms (for example, LANDAU & EISSFELLER, 1985). However,
as they are related to an instantaneous solution (based on range-rate
observations as opposed to range measurements) they still have some of the
drawbacks of usual DOP factors:

* 4 satellites are required unless some unknowns are constrained (for
example by fixing height), though it is possible to compute a position
completely with less satellites (but more epochs).

+ the effect of data accumulation is not taken into account. As pointed out
several times, this effect is particularly strong for range difference
observations.

To summarise, there is a similar relation between PS-PDOP and BDOP1 as
there is between PDOP and BDOP3.
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A STUDY OF THE VARIABILITY AND PRECISION OF
GPS BASELINE MEASUREMENTS

C.C. Mazur’

School of Surveying
University of New South Wales
P.O.Box 1
Kensington, N.S.W., 2203, Australia

ABSTRACT
The length of observations required by GPS receivers within a network is generally a function of:

satellite geometry,

receiver / hardware characteristics,

location on the earth's surface,

the conditions prevailing at each survey site at the time of observations, and
the prevailing atmospheric conditions at the time.

cooop

The indicators of precision developed by MERMINOD (1990) have been designed for use in
precise GPS surveys. These indicators have been empirically evaluated in the field and are
discussed in this report.

To examine the relationship between real data and the precision estimates determined during the
survey planning process, a survey campaign was conducted using a baseline adjacent to the
University of New South Wales. Up to three WM102 receivers were used throughout the
campaign. After several days of observations, four days of WM102 data was selected for
processing. This report discusses:

the conduct of the campaign,

. a description of the WM102 GPS receiver and the PoPS™™ software,
the results obtained,

. problems encountered, and

. areas requiring additional research.

OO T

TNow at the School of Military Survey, Bonegilla, Victoria, Australia.
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1. INTRODUCTION

There are a number of important factors to be considered prior to the conduct of
any Global Positioning System (GPS) geodetic survey. These factors include
the length of time that each station in the network is going to be occupied, the
satellites to be observed, the type of receiver to be used, and the start time of
observation. Once the satellites to be observed have been selected, a
simulation of the campaign may be conducted using this information, together
with the approximate coordinates of the stations to be occupied. From these
simulations an estimate of the dilution of precision (DOP) is calculated which
can be used to estimate the accuracy of the relative station positions. Thus the
strength of solution for the survey may be determined during the survey planning
stage. Work done by HATCH & AVERY (1988) and MERMINOD et al (1990) has
resulted in the development of precision indicators. These indicators: Hatch's
Differential GDOP (DGDOP) and Merminod's Bias DOP (BDOP) have been
designed for use in the survey planning stage to determine (in part) the
observation schema of the GPS campaign. Merminod's BDOP precision
indicators were used exclusively throughout the GPS campaign described in
this report.

The present constellation (July 1990) offers Australian surveyors an observation
window of approximately 12 hours during which observations to four or more
satellites may be made. However the satellite-receiver geometry varies
considerably within this window. Surveyors are currently collecting one hour of
data for baselines of the order 10 to 30 km with the understanding that given a
reasonable satellite coverage they should be able to resolve the integer cycle
ambiguities and thus achieve good results. As surveyors are unable to
determine in the field when they have sufficient data for this to occur, session
lengths tend to be on the conservative side.

For surveys requiring high accuracy, if the integer cycle ambiguities are not all
resolved for a given observation session duration, generally the surveyor will
repeat the survey using a longer observation period. At present, the duration of
the observation window is increasing as each new Block Il satellite is launched,
and with the full 24 satellite constellation being planned for completion by 1993-
94, conducting GPS surveys in this manner is not the most economical use of
resources. Once the full constellation has been deployed and surveyors have
24 hour GPS survey capability, session times will need to be planned so that
they are sufficiently long enough to result in a solution which is of the required
quality with the minimum amount of field time.

1.1 roj im

In defining the aims of this project, it is important that they are simple and that
most of them are achievable. Whilst this is important for all projects, when
working with GPS, unless the aims of any research conducted are simple, then
very quickly the interpretation of results obtained can become very difficult. This
is due to the number and complexity of the influences affecting GPS survey
measurements.

The aims of this project therefore were to:
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(1) Confirm a correlation between the precision indicators and the final
precision obtained from field measurements.

(2) Investigate the precision of coordinates obtained using static relative
position survey techniques.

(3) Attempt to determine prudent observation session lengths given that the
relationship between precision indicators and precision values of field
measurements has been established.

(4) Investigate ambiguity resolution and the conditions for it to occur.

The research successfully demonstrated that Merminod's BDOP precision
indicators determined prior to survey can be a good estimate of the actual
precision of station coordinates computed from GPS data recorded during an
observation session. The difference in precision values between "predicted"
precision estimates and the precision of real data were caused by unmodelled
systematic errors which corrupted the quality of our measurements. These are
not taken into account in Merminod's indicators. The most significant effect on
our measurements is caused by the propagation medium which limits the
attainable precision of geodetic GPS measurements.

The software used throughout the campaign, PoPSTM (FREI et al, 1986), was
unable to consistently resolve the integer cycle ambiguities in approximately
30% of the observation sessions. This coupled with the unmodelled systematic
errors affecting our attainable precision prevented an investigation being
undertaken into the determination of optimal session durations. Further
investigation will become feasible once more sophisticated modelling
techniques are developed which better account for the systematic errors
encountered throughout GPS campaigns. It is understood that WILD is due to
release an improved version of their PoPSTM software which will use an
"enhanced ambiguity resolution" technique (HOAR, 1989). Initial tests
conducted by WILD employing this technique claim to have achieved reliable
cycle ambiguity resolution with only several minutes of data.

2. PRECISION INDICATORS

There are three design parameters which appropriate "precision indicators"
could make a contribution to in GPS survey planning:

* Determining the number of satellites to be observed within a session.
* Determining the optimum time for the commencement of observations.

 Determining the length of observation session commensurate with the
accuracy sought. '

The number of satellites which can be observed simultaneously varies with the
receiver type. For example, the TI-4100 GPS receiver can only observe four
satellites simultaneously, whilst the WM102 receiver is capable of tracking up to
six satellites simultaneously. Receivers such as the ASHTECH XII and the
TRIMBLE 4000ST are able to observe all the satellites "in-view".

157



The present window in which GPS surveys can be conducted is approximately
12 hours. Even with 24 hour coverage some observation times may be better
than others. However survey productivity will be dependent on matching the
length of the observation sessions with the receiver-satellite geometry
experienced for that session and the survey accuracies sought. (Hence some
sessions may be required to be longer than others.) The accuracy of GPS
results are generally a function of:

a) the unmodelled systematic errors influencing the observations,
b) inaccurate or incomplete observation modelling,
c) the manner in which the data is processed, and
d) the receiver-satellite geometry prevailing at the time of the survey.

2.1 Error nd Bi in GP rvation

The precision attainable from geodetic GPS measurements is degraded by the
presence of systematic errors or biases. Errors and biases may be divided into
three categories: satellite-dependent, observation-dependent and station-
dependent errors.

2.1.1 Satellite-Dependent Errors
These errors are principally:

+ Errors in the broadcast ephemeris (and hence in the location of the satellite
relative to the ground stations).

+ Satellite clock error is a (time dependent) offset existing between a regular
time scale such as GPS time and the time kept by the individual satellites.

* Internal delays within a satellite that would influence all the signals
transmitted by that satellite.

2.1.2 Observation-Dependent Errors

These errors are generally caused by the propagation medium. The
troposphere and ionosphere impede the travel of a satellite signal, and hence
cause the modelled range to deviate significantly from the observation. The
integer cycle ambiguity is also an observation dependent error (more correctly a
"bias") which is characteristic of carrier beat phase observations by a receiver to
a specific satellite.

2.1.3 Station-Dependent Errors
Examples of these errors are:

Receiver multipath disturbance.

Antenna phase-centre movement.

Centring error.

random measurement error

Receiver clock error.

Cycle slips in the carrier beat phase observations.

. * o * o o

GPS data processing attempts to minimise the influence of these errors through
a combination of modelling, estimation and elimination techniques. However,
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imperfections in this process may result in residual biases. All of these errors
and residual biases may be modelled by an "average" standard deviation of
uncorrelated "user equivalent range error" (UERE). UERE is the satellite-
receiver range error resulting from the total combination of biases affecting GPS
measurements.

2.2 r Equivalent Range Error ERE

The magnitude of the UERE is determined from the root-sum-square (RSS) of
both the estimated GPS measurement noise and systematic errors (or biases).
WELLS et al (1986) gives the following estimates of the magnitude of the
primary components of the UERE:

(a) The satellite clock bias can contribute anything from hundreds of
kilometres to a minimum of about a dekametre if the broadcast clock
correction model is used. The receiver clock bias is highly variable and
is dependent on such factors as the quality of the clock and how recently
it has been synchronised to GPS Time.

(b) The satellite orbital bias is of the order of 10-100 m.

(c) The ionospheric delay bias is a function of zenith angle, being a
minimum at the zenith (about 10 m) and a maximum at the horizon.

(d) The tropospheric delay bias is a minimum at the zenith (about 2 m) and
approximately 20 m at 10° elevation.

2.3 Dealing With GPS Biases

As already stated, GPS processing techniques attempt to overcome the effects
of biases by modelling, estimation and elimination (differencing) techniques. In
the differencing process, the carrier phase observations are differenced
between satellites to minimise receiver dependent systematic errors (GRANT
et al, 1990). Differencing between receivers minimises the influence of
satellite systematic errors. The resulting double-differenced observations, in
GPS survey processing, are then modelled in terms of satellite and receiver
coordinates and (double-differenced) cycle ambiguity parameters.

The precision with which the station coordinates and ambiguity parameters can
be determined is a function of the number of observations taken, the receiver-
satellite geometry (influencing the "strength" of the solution), and any residual
biases still present in the double-differenced observations (influencing the noise
and/or systematic errors in the solution). It would be of great benefit to a
surveyor to be able to determine prior to a survey the precision that can be
attained for a planned GPS survey. There are two options (MERMINOD, 1990):

(a) A full simulation of phase observation reduction, or

(b) Enhancement of existing approximate quality "indicators" developed for
use in GPS navigation.

The latter approach is the preferred option as it does not require complex
procedures or software.
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2.4 P vigation Precision Indi r

In essence, GPS navigation precision is influenced by many of the same factors
that influence GPS surveying, however, the conduct of the GPS survey
campaign is quite different:

+ In GPS navigation a single mobile receiver is normally used whereas GPS
surveying techniques employ several receivers to derive relative position.

» The position determined by a GPS receiver used in navigation mode is an
instantaneous one determined using the pseudo-range observation (a
range contaminated mainly by the receiver clock error). In GPS surveying,
integrated carrier beat phase measurements (see Appendix 3)
collected over an observation session are processed.

+ The carrier beat phase observation is obtained through "beating" the
incoming carrier phase with a signal produced by the receiver oscillator at
the same nominal frequency. If this phase can be measured with an
accuracy of 1% of a cycle, the measurement precision is approximately 2
mm which is two orders of magnitude better than ranging with the P code
and three orders of magnitude better than the C/A code ranges (WELLS et
al, 1986). The carrier beat phase is biased by errors in the receiver and
satellite oscillators and also includes the additional bias of the integer cycle
ambiguity.

The pseudo-ranges measured by a receiver are calculated from the time interval
for a signal to travel from a satellite to a receiver, scaled by the speed of light.
There is no synchronisation between the clocks maintained onboard the GPS
satellites and the clock in a GPS receiver. As a consequence, the range
determined between a satellite and a receiver is contaminated by a receiver-
satellite clock offset, which is why this receiver-satellite range is referred to as a
pseudo-range. This pseudo-range measurement is also biased by all other
systematic errors influencing the GPS survey. The pseudo-range measurement
is however very noisy and although systematic errors can be eliminated /
minimised, the noise from the measurement remains a problem.

The use of the pseudo-range is fundamental to the determination of an
instantaneous position solution in GPS navigation. Using four satellites, the
three dimensional receiver coordinates are determined plus the receiver-
satellite clock offset. If the receiver is used at sea, the height can be constrained
and so a minimum of three satellites can be simultaneously observed to obtain
an instantaneous navigation fix. With more than three or four satellites being
observed (depending on the mode used), the additional redundancy obtained
allows a least squares determination of the receiver coordinates and the clock
offset. This increased redundancy improves the precision of the coordinates of
the occupied stations. The cofactor matrix (inverse of the normal matrix)
(equation 2-2) can be used to study the precision of the coordinates (from the
diagonal elements), and information on the correlations between parameters
(from the off-diagonal elements).

2.4.1 PDOP and GDOP

A number of precision indicators have been developed for use with GPS
navigation. The traditional error ellipse (2 dimensional) or error ellipsoid (3
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dimensional) is approximated in GPS navigation by the error sphere whose
radius is the root-sum-squared (RSS) of the ellipsoidal axes. This is the
Position Dilution of Precision (PDOP). The magnitude of PDOP is the
radius of this error sphere. The precision of a GPS navigation position is now
estimated by one value instead of the six required to define an error ellipsoid
(one defining the length of each axis, and the three orientations). The PDOP
indicator is calculated from the instantaneous relative geometry of four or more
satellites and the point whose coordinates are to be determined.

A modification of PDOP is known as the Geometrical Dilution of Precision
(GDOP) as it takes into account the precision of the receiver-clock offset. In the
navigation mode, if a GPS receiver can only track a certain number of satellites
out of all that may be visible, then the best satellites to track will be those which
have the lowest GDOP.

PDOP and GDOP vary in the same manner over an observational session as the
precision of a station coordinates will be poor if the receiver-satellite clock offset
is also poorly estimated. Because of the close relationship between the two
DOP's, often gnly PDOP needs t0 be evaluated. This similarity can be seen in
examples of PDOP and GDOP for 8th June 1989 and 12th September 1989
given in Appendix 1. For GPS navigation, a PDOP of five or less is desirable.
PDOP or GDOP can be pre-determined in the planning phase, and is constant
from one day to the next for the same set of satellites and at a time 4 minutes
earlier than the previous day. Multiplying PDOP by the UERE will provide an
indication of the three dimensional positioning accuracy. For example, for a
given navigation fix, a UERE of 20m and a PDOP of four (4) will lead to the
navigational position fix having an estimated accuracy of 80m. Whilst PDOP
provides an estimate of the accuracy of an instantaneous navigation point
position it is unsuited for use with GPS surveying as survey campaigns may last
several hours and involve phase tracking by several receivers.

2.5 GPS Survey Precision Indicators

MERMINOD (1990) has developed GPS survey DOP's which are derived from
simulations of carrier phase adjustments. The basic double-differenced model
reduces the satellite and receiver dependent biases. The resultant model
consists of a geodetic part containing the relative coordinate components
between two receivers and the integer cycle ambiguity part (there is one cycle
ambiguity term for each two satellite-two receiver combination). The resultant
normal matrix which contains all observations obtained during a session as:

N ': Ncc Ncb }
- (2-1)
XX
Npe Npo
Where: N, - singular matrix with rank defect = 1
N.c: coordinates of stations
Npp: cycle ambiguities
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Ncp » Npe are cross-products of N, Ny,

Equation (2-1) contains the contributions of all the measurements which were
made during the session. If we neglect components for one station (to overcome
the rank defect) the reduced normal matrix is of dimension (number of receivers
-1) + (number of tracked satellites -1). Inverting this produces the cofactor matrix
which can be partitioned as shown below:

Qcc Qcp
Quy = (2-2)

ch be

This solution is the ambiguity-free solution. If sufficient observations have
been made (with sufficient solution strength), the environmental conditions
benign, and the baseline short, the estimated ambiguity terms may be close to
their integer values. If resolved correctly to the nearest integer the processing
can be repeated, removing the resolved ambiguities from the parameter set, to
obtain an ambiguity-fixed solution. This solution will always be more
precise than the ambiguity-free solution as it essentially involves the analysis of
unambiguous phase measurements with millimetre precision.

2.5.1 Planning a GPS Survey

When planning a GPS survey, the only observational parameter that the
surveyor can generally alter is the start time and duration of the observation
session. All other parameters (satellite constellation, satellite-receiver geometry
and receiver type) are essentially beyond his control. Currently, GPS surveys of
short to medium baselines are conducted with 60 minute observation session
lengths to maximise the chances of a ambiguity-fixed solution being obtained.
Where the ambiguities have not been resolved, sometimes the session is
repeated, possibly with an extension being made to the observation duration.

The BDOP precision indicators may be able to provide, at the survey planning
stage, an estimate of the precision which can be anticipated when processing
carrier beat phase observations for either an ambiguity-free or ambiguity-fixed
solution. This provides an objective basis by which the relative quality of
different observation scenarios can be assessed. The three precision indicators
provide the relative precision of:

(1) coordinates in an ambiguity-free solution (BDOP1),
(2) ambiguity parameters in an ambiguity-free solution (BDOP2), and
(3) coordinates in an ambiguity-fixed solution (BDOP3).

The absolute coordinate accuracy is difficult to ascertain due to the presence of
unmodelled systematic errors. (Note we are referring to the absolute accuracy
of the relative position of one end of a baseline with respect to the other.) At
present, our lack of understanding of these errors makes the forecasting of an
observation session duration sufficiently long enough to resolve the cycle
ambiguity virtually impossible. This is particularly true under the effect of
"selective Availability", which is a deliberate error introduced by the GPS system
controllers. Of the three indicators, BDOP1 is of greatest interest in the survey
planning process (MERMINOD et al, 1990).
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2.5.2 BDOP Units

The units of the BDOP indicators are dimensionless. Multiplying these values by
the UERE, can provide an estimate of the precision of the estimated coordinates.
For carrier phase observations, the precision is in the order of several
millimetres. But this does not include any systematic errors (or "bias"). This
multiplying factor could be proportional to baseline length to account for
unmodelled systematic errors. Values for BDOP indicators can be determined
from only two satellites, this being the minimum number of satellites required (to
form a double-difference) for GPS surveying. The major advantage in using
these indicators is in comparing one session with another in the planning stage,
using only the relative values of the indicators.

2.5.3 BDOP as an Estimate of Accuracy

BDOP indicators can be used to provide an estimate of the accuracy of the GPS
phase adjustment or as a measure of relative quality between a number of
alternate scenarios. BDOP factors scaled by the UERE will result in an estimate
of the accuracy of a GPS survey. For a long baseline, where the ambiguities
cannot be resolved, BDOP1 provides the precision of the receiver coordinates
from an ambiguity-free solution. Where the ambiguities can be assumed to have
been resolved, BDOP3 will indicate the accuracy of the receiver coordinates
from this ambiguity-fixed solution.

2.6 Computing BDOP Indicators (MERMINOD et al, 1990)

The design matrix for the carrier phase adjustment is required for the calculation
of the BDOP indicators. The design matrix is computed using approximate
positions of the satellites and receivers. Three important assumptions are made:

(1) we only consider short baselines,

(2) all carrier phase measurements are assumed independent and have the
same precision, and

(3) the length and orientation of the baseline is irrelevant for relative
positioning.

Only the coordinates of one station in the network is required: the indicator being
valid for all short baselines in the vicinity. All three BDOP indicators may be
calculated by determining the contribution of the double-differenced
observations at each epoch and accumulating these over a finite period into the
normal matrix. Different session lengths may be evaluated by repeating this
procedure and "sliding" the simulated observation period across satellite
visibility window. The resultant precision indicators, BDOP1, BDOP2, and
BDOP3 are defined as:

BDOP1 Indicates the precision of the coordinates in an ambiguity-free
solution. It is defined as the square root of the trace of the coordinate
sub-matrix (3 x 3). The magnitude of BDOP1 is influenced by the
number of satellites observed. In the calculation of this indicator the
assumption is made that all visible satellites are tracked.

BDOP1 = SQRT {TRACE [Q¢c]}
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BDOP2 Indicates the precision of the ambiguity parameters in an ambiguity-
free solution. It is a square matrix with dimension (number of satellites

-1).
BDOP2 = SQRT {TRACE [Qppb]}

BDOP3 Indicates the precision of the coordinates after all cycle ambiguities
have been resolved. The submatrix of the coordinates of the
accumulated normal matrix (3 x 3) is extracted and inverted
separately, excluding the cycle ambiguities from the set of solve-for
parameters.

BDOP3 = SQRT {TRACE [N-¢c]}

2.6.1 Characteristics of BDOP Indicators

Both BDOP1 and BDOP2 precision indicators have similar characteristics. Their
relationship is apparent if we consider the case when the cycle ambiguities are
estimated and precise station coordinates are computed. If it is easy to compute
precise station coordinates when cycle ambiguities are estimated then it follows
that the cycle ambiguities themselves must be easy to solve. However, as there
are a number of strategies which can be used to overcome the rank defects in
the ambiguity parameters (GRANT et al, 1990), it is not uniquely defined.
Consequently the precision indicator BDOP2 is of limited use.

BDOP1 and BDOPS3 describe the precision of the coordinates before and after
cycle ambiguity resolution, and their definition is unique and independent of the
processing strategy used. With both BDOP1 and BDOPS3, as the session
duration increases so the variation in BDOP values decreases (BDOP3 values
will always be less than BDOP1). The BDOP3 precision indicators are
appropriate for use with very small baselines due to the high probability of an
ambiguity-fixed solution occurring. Under these circumstances, BDOP3 would
be a better indicator to use than BDOP1. Examples of BDOP plots for different
observation durations are shown at Appendix 2. Note also there is no uniform
correlation between low PDOP or GDOP values and low BDOP values. This can
be seen by comparing PDOP and GDOP plots in Appendix 1, with BDOP plots in
Appendix 2.

2.6.2 Using BDOP Indicators

The strongest ambiguity-free solution will be one derived from an examination of
the relative values of BDOP1 obtained by varying the satellites to be tracked, the
observation start time, and observation session length. An alternative approach
(especially for short baselines) is to vary the above parameters to find the
minimum BDOPS3 value. This may result in more precise coordinates from an
ambiguity-fixed solution, however, if the BDOP1 value is large, the cycle
ambiguity may have been incorrectly determined. BDOP3's decrease in
magnitude with increasing observation length is not as marked as the decrease
in the value of BDOP1 (see Appendix 2). This implies that it is less important to
resolve ambiguities for longer sessions than it is for short sessions. During
periods of low BDOP1, the difference between an ambiguity-free solution and an
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ambiguity-fixed solution is a minimum, and hence any gains in precision in
going from an ambiguity-free to an ambiguity-fixed solution will be minimal.

When using BDOP indicators in the survey planning phase it would appear that
it is best to concentrate on the variability of BDOP1 and to use it as the single
criterion on which to select start times, satellites to be tracked, and the length of
the observation session.

Various values of BDOP1 can be computed by varying the planning restraints,
i.e. session length, satellites tracked and/ or the observation session start times.
Plotting these BDOP1 values either individually or on a multiple plot, will allow
the best scenario to be chosen by taking two planning constraints into account.
The two planning constraints may be:

+ satellites tracked and observation start time,
+ satellites tracked and session length, or
+ observation start time and session length.

Even though this process will result in an observation scenario being chosen

with the lowest BDOP1 values, there is no guarantee that the cycle ambiguities
will be resolved. The ability to resolve the cycle ambiguities is (in part) a
function of changing satellite geometry, and therefore, the length of the
observation session. GRANT (1990) states that the ambiguities which are
estimated are in fact double-differenced with respect to the reference
ambiguities of the base receiver and the base satellite. Their estimation is
affected by those errors which are not eliminated through double-differencing.
The most significant of these errors are:

» tropospheric delay,

» jonospheric delay,

+ satellite orbit errors, and

» errors in the origin station coordinates.

The effect of these errors on the estimated ambiguities (for a baseline) increases
as the baseline length increases. The tropospheric delay and ionospheric delay
are discussed in Appendix 5.

3. THE SHORT BASELINE CAMPAIGN

To study the variability in the precision of coordinates obtained using GPS
surveying techniques, a campaign was conducted to collect data for analysis.
The two stations which define the baseline lie approximately 8 km apart and are
located at the northern and southern ends of the Inertial Positioning System Test
Range. This test range, adjacent to the University of New South Wales, was
initially established for the purpose of testing inertial surveying technology
(RUEGER, 1984). The northern stations used throughout the survey are
permanent concrete pillars 2 and 3, located on the roof of the Geography and
Surveying Building (GAS2 and GAS3). The pillar GAS2 (the north end of the
baseline) was used as the fixed station throughout the campaign. The pillar
GAS3 is located approximately 2m to the north of pillar GAS2. At the southern
end of the baseline the State Permanent Mark SPM8293 was used. This ground
mark is grouted into solid sandstone bedrock and is situated on the shoreline of
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Botany Bay, at La Perouse. The location and orientation of the baseline is
shown below in Figure 3.1.
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Figure 3.1 Baseline Location (modified from RUEGER, 1984)

Ideally, a number of baselines with different orientations and lengths should
have been investigated. However, given the large amount of data processing
required for just one baseline, the observation of additional baselines was not

attempted.

Throughout the campaign both stations were free of obstructions above 10
degrees elevation and no obvious physical changes occurred at either sites
which could have influenced the signals being received either during or
between observation sessions.

3.1 Th mpaign

In the majority of GPS surveys (with short to medium baseline lengths) 60
minutes of data is generally sufficient to ensure that the integer cycle ambiguities
can be resolved during the data processing stage. Over a small baseline of
8km, it was anticipated that an ambiguity-fixed solution would be obtained with
30 minutes of data or less, given a constellation of five or six satellites and
favourable geometry. (Following processing, only for 62 of the 90 possible 30
minute sessions was an ambiguity-fixed solution possible.)
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Dual-frequency observations were made throughout the campaign. After each
days observations were completed, the data was downloaded to a PC and a
backup made. The data from each session was then divided into 30 minute sub-
sessions, each of which were then processed separately.

3.1.1 Campaign Timetable

The baseline stations were occupied on the 8th and 9th of June, and on the 12th
and 13th of September, 1989. Data was collected in a routine manner for both
nights of the June and September stages of the campaign. During the data
processing it became apparent that for the baseline GAS3 to SPM8293 on the
12th September, only L1 data was able to be processed, as the L2 data was
intermittent and incompletely captured / recorded in the session. (Both receivers
worked correctly on the second night of observations. The receivers were not
moved between these two sessions.) The aim of this second WM102 campaign
was to collect additional data so that a comparison could be made with the data
collected in June.

3.1.2 The GAS3 - SPM8293 Baseline

At the completion of the campaign, the three dimensional position offsets were
determined for GAS3 with respect to GAS2. Thus, following processing of the
baseline GAS3 - SPM8293, the baseline was reduced to the baseline GAS2 -
SPM8293. The results obtained were then able to be directly compared with
those obtained directly for the baseline GAS2 - SPM8293, observed at the same
time for the same session duration. The accuracy of the offsets determined were
tested by then processing the baseline GAS2 - GAS3. Pillar GAS3 was given
the same a priori coordinates as GAS2, and the offsets calculated were entered
in the header record in the data file prior to data processing. If the offsets were
correct and there was no error in the coordinates of the pillars, a baseline length
close to zero would be expected. A zero baseline distance was not expected
due to the presence of unmodelled systematic errors and the presence of
receiver noise. The resultant baseline length determined by processing data for
the baseline GAS2 - GAS3 (giving GAS3 the same coordinates as GAS2 and
applying the offsets between the two pillars) was 3.5mm, which was considered
acceptable. The most important factor being examined was the relationship of
one day's solution to another day's, and the behaviour of the solution over time
within the observation session and between the co-observed baselines. The
GAS3 offset from GAS2 was computed as being:

AE 1.983m

AN -0.307m
Height of Instrument 0.141m

These offsets were used during the September 1989 phase of the campaign.

The session times and type of solution obtained after data processing is given in
section 5.

167



3.2 - NAV P iver: WM

The WM102 GPS receiver is essentially an upgraded mode! of the earlier
WM101 receiver which has been given a dual-frequency capability. This data is
then able to be processed using either the single frequency observations alone,
or using a combination of both the L1 and L2 observations. The WM102
operates with a total of eight channels which function as follows:

Channel 1 Records ephemeris data.

Channel 2 Tracks either one or two satellites. If two satellites are
tracked, the receiver switches from one satellite to the other
every two seconds.

Channel 3 - 6 One satellite on each channel is tracked continuously on
the L1 frequency only.
Channel 7 Used for inter-channel calibration values. This is achieved

by tracking up to six satellites using the L1 frequency only
and switching between them at two second intervals.

Channel 8 Used to record L2 data by switching sequentially from one
satellite to another.

3.2.1 Data Recording

The spacing of each observation epoch is user definable. In our tests
observations 60 seconds apart were recorded, on both frequencies:

+ The L1 frequency is sampled at a rate of 10 times per second. If a
particular channel is tracking two satellites, then two seconds of data are
alternatively collected from each satellite. This two-second data sample is
compacted and represents the WM102's fundamental data sample. This
data sample can either be recorded in this "raw" form, or used to obtain the
pre-determined epoch spacing (60 second in our case) "compacted" data
observation.

+ The compacted L2 data records contain the satellite number, phase,
pseudo-range and phase-rate. The observation rate of the L2 data is the
same as for L1 data, however Channel 8 is the only channel that records
L2 data. The L2 signal acquired by the WM102 is of the order of 300 times
stronger than the signal acquired using the alternate squaring technique
(WELLS et al, 1986). The WM102 uses the coherent P code where
possible and automatically employs a squaring technique only in the event
that the P code is encrypted ("anti-spoofing" option active).

3.2.2 Data Session Definition and Observation

The start and end times for each session throughout the campaign were
determined with the aid of the School of Surveying's PREDICT program,
developed by C.Rizos and modified by B. Merminod and others (MERMINOD,
1990). Sessions were defined by the period that four or more satellites were

visible at an elevation of greater than 159 above the horizon.
For each session the WM102's were setup and initialised 15 minutes prior to the

commencement of the session. Continuous observations were recorded at each
site for the duration of the window after which time the receivers were either
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manually shutdown or observations automatically halted at the sites operating in
the unattended mode (GAS2 and GAS3).

4. GPS DATA PROCESSING WITH THE PoPS™ SOFTWARE

Data collected by the WM102 can be processed directly using PoPS™ software.
The software is based on GPS software package developed for scientific
purposes at the University of Berne. Some of its capabilities are (FREI et al,

1986):

+ handles simultaneous data from several receivers,

+ include additional information from previously processed data,

* determine the unknown integer cycle ambiguity where possible (and as
required),

* provide results in a manner which can be used by other software,

* provide a field planning component,

* use either the broadcast and precise ephemerides (if available), and

* perform coordinate transformations and map projection calculations.

Data was recorded on standard data cassettes and was downloaded at the end
of each session via either the MEMTEC reader or by connecting the WM102
receiver directly to a PC.

Prior to commencing the pre-processing, the data from the multi-hour
observation session was divided into 30 minute sub-sessions (see section 5).

4.1 Pre-Processing

The pre-processing stage was divided into four individual steps:

Determination of "standard orbit parameters" for each satellite,
Calculate single point positions using pseudo-range data,
Create single-differences for each site-pair in the network, and
Screen poor observations and cycle-slips.

coop

4.1.1 Determination of "Standard Orbits"

Before any phase processing can be carried out using the PoPSTMsoftware, an
accurate position of each satellite observed during the observation session is
required. Either the broadcast or precise ephemeris can be used. The software
determines the positions of all satellites observed during a session from, for
example, the ephemeris broadcast by each satellite. This process is performed
automatically in the software whenever a new campaign is defined, or whenever
additional data is added to an existing campaign. This process does not need to
be repeated unless re-processing of the data is performed using, for example,
the precise ephemeris.

4.1.2 Single Point Positioning (& Receiver Clock Offset Correction)
The single point positioning process determines the unknown receiver clock

offset (with respect to GPS Time), as well as the position of the receiver on the
earth's surface to within about 30m using the pseudo-ranges in a quasi-
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navigation solution. Within PoPSTM the clock behaviour can be modelled by
polynomials of up to degree six and the technique of differencing compares the
phase of the signal from the satellite between one receiver and another. In order
for the differencing technique to work, accurate signal reception times are
required. To achieve this, a standard time system is adopted and the offset of
each satellite and receiver clock from this time (GPS time) must be known to
some level (RIZOS & GRANT, 1990). The offset drift and drift-rate of the
relatively unstable receiver (quartz crystal) oscillator are modelled with the
following accuracies (PoPS™ 3.02):

Offset: 1 x 108 sec
Drift: 1 x 10-11 sec/sec
Frequency Drift: 1 x 10715 sec?/sec

The data screening routine within this point position stage screens out
observations made to satellites which are below the user defined mask elevation
angle. Poor observations at this stage can be flagged and excluded from further
computations.

4.1.3 The Single Point Positioning Logfile

The single point position logfile provides a summary of the processing options
used to determine the point position of all stations in the network, as well as a
summary of the data itself:

The type of pseudo-ranges processed (whether C/A or P code).

The ephemeris used (whether the broadcast or precise).

The unknown parameters (clocks and coordinates).

The ionospheric and tropospheric models used.

The minimum satellite elevation angle used.

The observation sample rate.

Whether range accuracy weighting is used (using the transmitted UERE).

For each site, the satellites observed and number of epochs observed to

each satellite are tabulated. A table showing the number of bad

observations to each satellite is also provided and was used for data

quality assessment.

i.  The RMS value of the point position for each site. Throughout the
campaign this value was typically less than 2.5m.

j. The three clock parameters are displayed and RMS values for each

satellite are listed. This RMS value is useful as an indicator of satellite

health.

SQ 000 T

4.1.4 Data Differencing

PoPSTM creates "between-receiver" single-differences for each site-pair, and
stores them in the database (GRANT et al, 1990). This single-difference is the
instantaneous difference in phase of a satellite's signal recorded by two
receivers observing the satellite at the same (reception) time. Satellite clock
bias is effectively eliminated through the use of the single-difference. Double-
differencing eliminates both satellite and receiver clock biases, whilst the triple-
differencing (used in the initial screening process) are between-epoch
differences of the double-differenced data (see Appendix 3).
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4.1.5 Data Screening

Both the L1 and L2 frequency data are screened for full and half-cycle slips (first
for full cycle slips and then repeated for half-cycle slips). The following dual-
frequency combinations can be used during screening:

L1 frequency: (wavelength approximately 19cm)

L2 frequency: (wavelength approximately 26¢cm)

L3 frequency: This is the standard ionosphere-free combination of L1 and
L2 data.

L5 frequency: The L5 frequency has a wavelength of approximately 86cm

and is the beat frequency formed from the difference
between L1 and L2 measurements. This is the "widelane"
combination.

After data screening and cycle slip editing has been completed, the data is
checked for poor quality observations. Data quality can be affected by a
malfunctioning satellite or faulty receiver / antenna equipment. Changes in the
observation environment can also result in poor data. A check of the data quality
can be made by examining the triple-differenced residuals. These values, once
computed, can be stored in the data screening logfile. Acceptable triple-
difference residuals should be small in magnitude (less than 20mm) and of
random sign. Residuals greater than this in magnitude can indicate poor data.
An examination of residuals can also reveal residual half or full cycle slips, as
shown below in Table 4.1.

Table 4.1 Magnitude of residuals indicating either full or half-cycle slips.

RESIDUAL CYCLE FREQUENCY
L1

0.095m HALF

0.130m HALF L2

0.190m FULL L1

0.260m FULL L2
4.2 D m ion

After pre-processing, the baseline site-pairs were selected and the computation
commenced. For each 30 minute session, a results summary file was produced.
The contents of the results summary file includes:

a. Cartesian coordinates of the unknown stations presented in the WGS84
system, as well as the equivalent geographical coordinates (latitude,
longitude and ellipsoidal height), along with their standard deviations.

b. The double-differenced ambiguities (plus standard deviations).

c. Inter-station slope distance along with the standard deviation.

d. Residuals from the double-differencing for each epoch in the session.

The standard deviations (or RMS values as they are expressed in the results
output) of the coordinates of the unknown stations both before and after
ambiguity resolution are a measure of internal precision. In practice, ten times
this value is a good measure of accuracy, due to the influence of unmodelled
systematic errors on our observations.
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4.2.1 Baseline Classification

PoPSTM classifies observed baselines according to the distance between
stations:

Table 4.2 PoPSTM Baseline Classification

AT R &} L1+12
SHORT <50 km < 20km
MEDIUM 20-50km
LONG >50km > 50km

4.2.2 Single-Frequency Processing Strategy

If single-frequency data is being processed, the computation strategy used in
PoPSTM s to process the short lines first and then resolve the integer cycle
ambiguities wherever possible. All baselines are then re-processed
simultaneously, holding fixed the ambiguities resolved in the initial phase.
Ambiguities for long lines may not be resolved due to the possibility of the wrong
ambiguities being selected.

4.2.3 Dual-Frequency Processing Strategy

When dual-frequency observations are processed, the initial processing solves
for the coordinates of the stations for the short baselines. Wherever possible the
cycle ambiguities are resolved. The L5 (beat frequency) is used to solve for the
medium baselines after which all baselines are reprocessed holding the
resolved ambiguities fixed. The L1 and L2 frequencies are used for the short
baselines and L3 is used for both the medium and long baselines. The
classification of baselines into one of the three categories within the software
may be modified at any stage by the user.

4.2.4 Correlations

As mentioned earlier, correlations are introduced into the data processing
through the use of differencing techniques. Correlations in GPS measurements
is discussed at Appendix 4. In PoPS™™, prior to computing the baseline solution,
there are three options available to the user to account for the correlations which
exist in the observations:

(1) account for the correlations which occur in forming the double-
differences from the single-differences,

(2) account for all correlations, or

(3) account for no correlations at all.

As the campaign was observing data from two stations, only the individual
single-differences are uncorrelated. All three options were used during trial data
processing, however, only the correlations associated with forming the double-
differences from the single-differenced observations were considered at the data
processing stage. . :
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4.3 Assessment of Results

The assessment of reliability of the solution computed by PoPS™ was effected
through an analysis of:

» the RMS values of the double-differences,
» the estimated ambiguities, and
* the double-difference residuals.

WILD (PoPS™ Manual) recommends that the magnitude of the RMS of the
double-differences for baseline lengths less than 20km should be less than
10mm and RMS values for lines between 20 and 100km should be less than
100mm. Typical double-difference RMS values for the short baseline campaign
were of the order of 5to 8mm.

The list of estimated ambiguities can assist in the detection of both full and half-
cycle slips. The possibility of half-cycle slips can occur wherever the estimated
ambiguities have a decimal component close to 0.5 with an RMS value of less
than 20mm. In addition, residuals with large magnitude and/or fluctuating sign
are a good indicator of poor data.

5. CAMPAIGN RESULTS

The five multi-hour sessions observed during the campaign were divided into
ninety (90), 30 minute sessions. In the processing phase, four days of data were
selected for analysis: the 8th and 9th of June, 1989, and the 12th and 13th of
September, 1989.

The information which was of primary importance to this study was the manner in
which precision estimates obtained in the office prior to the survey compared
with those obtained from measurements made in the field. For this GPS
campaign, the BDOP values were computed using the ephemeris file collected
during each day's observations. This eliminated the possibility of the satellite
constellation observed being different to the one used to predict the BDOP
precision indicators.

5.1 Single Frequency Data Processing (GAS2 - SPM8293)

A summary of the subsessions with an indication as to whether an ambiguity-
fixed or ambiguity-free solution was obtained after processing the single
frequency observations is given in Table 5.1 and 5.2. Note that the local time
given for each session is the mid-point of a 30 minute session.

Four plots (Figures 5.1, 5.3, 5.5 and 5.7) show the change in the Root Sum
Squared (RSS) values of the three dimensional standard deviations for 30
minute observing sessions (L1 data obtained from baseline GAS2 - SPM8293).
Each of these plots is followed by the corresponding BDOP1 plot for that day.
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Table 5.1 Single Frequency Results for Subsessions (GAS2 - SPM8293)

June September

8 9 26 12 13
Local Ambig Local Ambig Local Ambig Local Ambig Local Ambig
Time Resol. Time Resol. Time Resol. Time Resol. Time Resol.

0228 N 0224 Y 0121 N 2031 N 2031 Y
0258 Y 0254 Y 0151 Y 2101 Y 2101 Y
0328 Y 0234 Y 0229 'Y 2131 Y 2131 N
0358 N 0354 N 2251 N 2201 Y 2201 N
0428 Y 0424 Y 0321 Y 2231 Y 2231 Y
0458 Y 0454 Y 0351 Y 2301 Y 2301 N
0528 Y 0524 N 0421 Y 2331 Y 2331 N
0558 Y 0554 Y 0451 N 0001 N 0001 Y
0628 N 0624 Y 0521 Y

Table 5.2 Single Frequency Results for Subsessions (GAS3 - SPM8293)

September
12 13
Local Ambig  Local Ambig
Time Resol.  Time Resol.
2031 N 2031 Y
2101 Y 2101 Y
2131 Y 2131 N
2201 Y 2201 N
2231 Y 2231 Y
2301 Y 2301 N
2331 Y 2331 N
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CHANGE IN PRECISION OF SPM 8293 (8.6.89)
L1 ONLY: AMBIGUITY FREE SOLUTION
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Figure 5.1 RSS of 3D sigmas 8th June 1989 (SPM8293).
15.80
14,88 1
13.88 1
12.88 1
9
~
8 11.88 -
D eeet
8 9.808 {
L 2.808 + :
F 7.808 1 N
Qa 6.88a 1
g 5.gaa +
4.808 1
R
3.8e8 1
2.eea 1
1.888 1
8.08 3.008 <.008 5. 608 6.008
plus 47686.8888 days TIME (GMT+18.8) hrs
S;tallltes: J 6 9111213 14
SYDNEY 8/6/89 GMT Sesstion length: 38 nins

Figure 5.2 BDOP1 plot 8th June 1989 (30 minute session).
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CHANGE IN PRECISION OF SPM 8293 (9.6.89)
L1 ONLY: AMBIGUITY FREE SOLUTICN
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Figure 5.3 RSS of 3D sigmas 9th June 1989 (SPM8293).
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CHANGE IN PRECISION OF SPM 8293 (12.9.89)
L1 ONLY: AMBIGUITY FREE SOLUTION
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Figure 5.5 RSS of 3D sigmas 12th September 1989 (SPM8293).
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CHANGE IN PRECISION OF SPM 8293 (13.9.89)
L1 ONLY: AMBIGUITY FREE SOLUTION
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Figure 5.7 RSS of 3D sigmas 13th September 1989 (SPM8293).
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As expected, the BDOP1 indicators for the 8th and 9th June are almost identical
as are the BDOP1 plots for 12th and 13th September. However, the relationship
between the precision indicator(s) and the RSS values for the SPM8293
solutions is not evident. For data processed from the 8th and 9th June,
particularly at the beginning of the observation period, there does not seem to be
a correlation between the two. For the remaining plots, the general slope of the
BDOP1 plots is reflected in the RSS plots. The precision of a station's
coordinates which have been determined using GPS relative positioning
surveying techniques is affected by all unmodelled systematic effects as well as
those residual effects from incompletely modelled errors, whereas BDOP plots
only reflect the theoretical precision of the survey measurements with no
influence of unmodelled systematic errors.

If a systematic error(s) affects both stations of a given baseline in a uniform
manner for the duration of the campaign, this will result in a scaling effect on the
3D RSS precision values and thus should not affect the the "BDOP1 signature”
(for that session) in the RSS precision values determined from GPS
measurements. This uniform influence on a baseline is unlikely to occur in
practice. The influence of systematic errors on GPS measurements is dynamic
in nature. This will have an instantaneous scaling effect on the precision values
obtained from measurement and as a result, the BDOP signature which we
could expect to see under ideal observing conditions will be distorted. This is
our explanation for the poor correlation between the plots of our precision
indicators and the precision values determined from our single frequency
baseline measurements (GAS2 - SPM8293).

To ensure that there were no external factors influencing the data recorded
throughout the campaign, the Royal Australian Survey Corps's weekly GPS
notices were consulted. From these notices, changes to satellite health and
GPS system status can be analysed for the period of the campaign. After
examination of these messages, there did not appear to be any major problems
with any of the satellites during the course of the campaign which could have
adversely affected the data.

5.2 Dual-Frequency Data Processing (GAS2 - SPM8293)

A summary of the subsessions with an indication as to whether an ambiguity-
fixed or ambiguity-free solution was obtained after processing the dual-
frequency observations is given in Table 5.3 and 5.4. (Note that, as with Table
5.1 and 5.2, the local time given for each session is the mid-point of a 30 minute
session.)

The data was re-processed using dual-frequency data to examine the effects of
using observations on both L1 and L2, on the precision of SPM8293 coordinates
within a multi-hour observation session. The 30 minute session definition
remained unchanged from the earlier single-frequency processing. The data
was re-screened for full cycle-slips followed by re-screening for half-cycle slips
using the L3 triple-difference observable. Once completed, a data screening
logfile was produced for each of the 30 minute sessions. From this the quality of
the data was assessed as the logfile recorded the number of cycle-slips
detected, the RMS of the triple-differences and the largest remaining L1 and L2
residuals.
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Table 5.3 Dual-Frequency Results for Subsessions (GAS2 - SPM8293)

June September
8 9 26 12 13

Local Ambig Local Ambig Local Ambig Local Ambig Local Ambig
Time Resol. Time Resol. Time Resol. Time Resol. Time Resol.

0228 N 0224 Y 0121 N 2031 YY 2031 Y
0258 Y 0254 Y 0151 'Y 2101 Y 2101 Y
0328 Y 0234 Y 0221 Y 2131 Y 2131 N
0358 N 0354 N 2251 N 2201 'Y 2201 YY
0428 Y 0424 Y 0321 Y 2231 Y 2231 Y
0458 Y 0454 Y 0351 ¥ 2301 Y 2301 N
0528 Y 0524 N 0421 Y 2331 Y 2331 YY
0558 Y 0554 Y 0451 N 0001 N 0001 Y
0628 N 0624 Y 0521 Y

Table 5.4 Dual-Frequency Results for Subsessions (GAS3 - SPM8293)

September
13
Local Ambig
Time Resol.
2031 Y
2101 Y
2131 N
2201 YY
2231 Y
2301 N
2331 N
0001 NN

(Note: in Table 5.3 and 5.4 the dual-frequency sessions which resulted in an
ambiguity-free or ambiguity-fixed solution different from the single frequency
solution have been depicted by NN or YY.)

Figures 5.9 to 5.12 below are similar to Figures 5.1 to 5.8, however dual-
frequency observations were processed.
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GCHANGE IN PRECISION OF SPM 8293 (8.6.89)
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Figure 5.9 RSS of 3D sigmas 8th June 1989 (SPM8293).
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Figure 5.10 RSS of 3D sigmas 9th June 1989 (SPM8293).
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CHANGE IN PRECISION OF SPM 8293 (12.9.89)
L1 + L2: AMBIGUITY FREE SOLUTION
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RSS of 3D sigmas 12th September 1989 (SPM8293).
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Figure 5.12 RSS of 3D sigmas 13th September 1989 (SPM8293).
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From an examination of the plots there is generally good agreement between
the BDOP values and the empirical RSS precision values, except for the first 60
to 90 minutes of each multi-hour session (with the exception of the 13th
September). The graph of the 13th September 3D RSS precision values shows
very close agreement to the BDOP1 plot for that day. This graph demonstrates
that given GPS survey conditions which do not depart markedly from our
modelled environment, it can be concluded that Merminod's precision indicator
BDOP1 could determine the times at which we can expect to obtain results of the
best quality (that is, with the highest precision). Even though the other 3D RSS
plots exhibit this correlation to a lesser extent, this does not alter the conclusion
that using such precision indicators for planning GPS field surveys is a
worthwhile exercise.

The precision of the solution obtained from processing data recorded by two
receivers sited together (GAS2 and GAS3) and a third receiver (SPM8293)
should be identical given that both receivers were recording similar data.
Following data processing, this was seen to be the case.

7. CONCLUSIONS AND RECOMMENDATIONS

It has been established now both mathematically and empirically that there
appears to be a strong correlation between the BDOP indicators of precision and
the precisions gained from GPS field survey. However, there will always be
some unmodelled systematic errors present throughout a GPS survey campaign
regardless of the time of commencement of the survey and the results shown
above are an indicator of this.

The graphs of the RSS of the three dimensional standard deviations of
SPM8293 coordinates show that unmodelled systematic errors do noticeably
degrade the quality of our measurements, and hence the associated results
obtained from a conventional double-differenced phase solution. The presence
of these errors severely mares the usefulness, at present, of BDOP1 as a
precision indicator and until these errors are better modelled, any possibility of
using them to determine optimum observation times will be limited. The main
sources of error which have the largest influence on the precision of our
measurements are the meteorological conditions prevailing throughout the
campaign, and the effect of the propagating medium on the transmission of the
satellite's signal to the receiver. For longer baselines, ionospheric activity will
introduce errors into GPS measurements obtained with single-frequency
instrumentation. The magnitude of these errors will increase with the
approaching period of maximum solar activity (HIRMAN et al, 1989).

Before we are able to predict optimum session observation durations these
systematical effects on our measurements must be better understood and
models derived which are both more appropriate to the observation environment
and are capable of reflecting the changes which occur in that environment
during the course of the campaign.

For a surveyor who wishes to determine the optimum time to conduct a GPS
campaign, the BDOP indicator still provides this information, regardless of the
unmodelled systematic errors which may be present at the time of survey. Co-
variance analyses of GPS carrier phase adjustments by GRANT (1990) have
demonstrated that an improvement in satellite geometry (indicated by BDOP1)
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also corresponds with a lower sensitivity to systematic errors. In this manner, a
benefit of using BDOP precision indicators is in the capability of comparing one
observation session with another in the field planning stage.

During periods of low BDOP1 values, the difference between an ambiguity-free
solution and an ambiguity-fixed solution is a minimum which suggests any gains
in precision from obtaining an ambiguity-fixed solution will be minimal. Due to
the manner in which BDOP is derived, it clearly has more relevance as a
precision indicator to GPS relative position surveys than either PDOP or GDOP,
which are currently being used extensively.

Additional research is required to refine the meteorological models used during
data processing. As demonstrated by BEUTLER et al (1989) for small network
GPS surveys, results obtained after using meteorological data in post-
processing are most probably going to be of poorer quality than those obtained
using a "standard" meteorological model (and no meteorological data
measurements at all). '
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APPENDIX

1.

PDOP / GDOP PLOTS FOR 8 JUNE 1989 AND
12 SEPTEMBER 1989
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APPENDIX 2. BDOP1 / BDOP3 PLOTS FOR 8 JUNE 1989
FOR 30, 60, 90, 120 MINUTE DURATION
OBSERVATION SESSIONS
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APPENDIX 3. THE CARRIER BEAT PHASE OBSERVABLE
AND DIFFERENCING TECHNIQUES

Combinations of linear observations are often used in processing GPS data as
they reduce or eliminate the effects of some of the linear biases in the
observation equations: those due to receiver and satellite clock offsets and the
initial (unknown) cycle ambiguities (GRANT et al, 1990). Differenced
observations also tend to reduce the effects of orbit errors and the effects of
unmodelled tropospheric and ionospheric delays. This reduction is more
effective the less the separation of the simultaneously observing receivers.

A3.1 The Carrier Beat Phase Observable

The difference between the carrier signal generated by a receiver's internal
oscillator and the carrier signal coming in from a satellite is the GPS observable.
This is the phase of the signal which remains when the incoming Doppler shifted

satellite signal is beat with the nominally constant reference frequency
generated in the receiver. i.e.

0 = 0ik = Ok(t) - ¢i(t) (A3-1)

Where: ¢k = phase of the signal transmitted by the kth satellite at time t
®;i = phase at the ith receiver at reception time T

The carrier beat phase observable can be expressed using two relations:

(a) the phase / frequency relationship which is valid for highly stable
oscillators over a short time interval:

Ot + 8t) = O(t) + £.5t (A3-2)

Now, letting 8t=T —t we can set 0;(T) = ¢k(t) + f.(T —t) and
obtain:

O = Ok(t) — di(T) = - 1.(T - 1) (A3-3)

(b) the fundamental approximation relating to the transmission and
receiption times:

t+dt+(p - dion + dtrop)/C =T +dt (A3'4)
and then

T—t=dt—-dT + [(p — dion + dtrop)/C] (A3‘5)

and the carrier beat phase model is:

= — (f/c).p — .(dt — dT) = (f/c).(dion + drop) (A3-6)
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In practice, the carrier beat phase measurement at some epoch t is based on a
phase alignment of the receiver with the incoming carrier signal without the
knowledge of which cycle would represent perfect cycle synchronisation.
Hence:

Ototal = Fr(() + Int(d:to,t) + N(to) (A3-7)

Where:  Fr(0) = measured fractional phase part

Int(¢) = integer count of phase cycles from initial epoch to epoch t
N = unknown integer number of cycles at the initial epoch tg

N is the cycle ambiguity, analoguous to the orientation unknown in horizontal
direction measurements. As long as the receiver maintains continuous phase
lock during an observing session, there is only one ambiguity per satellite-
receiver pair. If there are breaks in this lock, cycle slips are said to have

occurred. The receiver outputs Omeasured = Fr(0) + Int(d;tg,t) , therefore:

Ototal = Omeasured + N(to) (A3-8)

The equation for the instantaneous carrier beat phase observable for one
satellite, one receiver, and at one epoch may now be written as:

Ototal = ( —f/c).p —f.(dt — dT) — (#/c).( — dion + dtrop) + N (A3-9)

The phase difference between the satellite and the receiver oscillators is now
implied by the term f.(dt — dT) . [If we multiply by the wavelength A=c/f and

define ¢ = —A.Omeasured, We get the corresponding carrier phase equation (in
length units):

q) =p+ C(dt - dT) +A.N-— dion + dtrop (A3'1 0)
There are a number of assumptions (LINDLOHR & WELLS, 1985) that need to
be made concerning the observables before they can be used in a phase
adjustment:
(a) that there are no problems with data simultaneity (ensuring that the
relationship between measurement epochs at different receivers is
taken into account, see RIZOS & GRANT, 1990),

(b) that there are no malfunctions, that is all receivers obtain data from
each satellite at each epoch (to form double-differences), and

(c) the measurements have been pre-processed to remove cycle slips.

During an observation session involving R receivers, S satellites, and T epochs,
the number of observed quantities ¢ is n=RST.

A3.2 Linear Combinations of Observations (Differencing)

Depending on the type of application and level of accuracy required, there are a
number of advantages and disadvantages in forming certain linear combinations
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of the basic pseudo-range or carrier beat phase observables.

The fundamental aim of the differencing process is to take advantage of
correlations to improve the accuracy of relative positions. Using the code or
carrier phase measurements for relative positioning usually involves taking
differences between measurements. In doing so, the effects of various errors
common to the measurements being differenced are either removed or greatly
reduced. There are a number of ways in which GPS measurements may be
differenced. Differences may be performed between receivers, satellites,
epochs, or any combination of these. (The most common solution is to
difference in the above order.)

The notation that is used is shown below:

a. A denotes a between-receiver differencing of data to the same satellite,

b. V denotes a between-satellite differencing of data at the same receiver,
and

c. O denotes a between-epoch data differencing operation.

A3.2.1 The Between-Satellite Single-Difference
An observation may be formed by differencing the observations to two satellites

as simultaneously recorded at a single station (GRANT, 1990). The
mathematical model of this between-satellite single-difference range observable

in the form V(.)=(.)sat2-(,)satl is given by:
V(I) =Vp + c.vdt + Vdion + throp (A3"1 1)

The corresponding model for the between-satellite single-difference carrier
phase observable is:

Vo = Vp + c.Vdt + A.VN - Vdjon + Vdirop (A3-12)
This single-difference observable is free from receiver clock errors.

A3.2.2 Between-Receiver Double-Difference

If two satellites and two receivers at one epoch are considered, there are two
possible differencing operations:

(a) two between-receiver single-differences, each involving a different
satellite,

(b) two between-satellite single-differences, each involving a different
receiver,

Regardless of the differencing option employed the two results, VA(.) and AV(.)
are identical. The receiver-satellite double-differences for the carrier beat phase
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measurements is VA = VAp + A.VAN - VA8dion + VAdtrop.

The double-difference removes or greatly reduces the effects of:

(1) errors associated with the mis-alignment between the two receiver
clocks,

(2) errors associated with mis-alignment between the two satellite clocks.

(3) satellite orbit errors,
(4) atmospheric delays of the observations.

Since the difference between epochs are not performed, whole cycle bias terms
(composed of second-differences of the original whole-cycle biases) remain and
are solved as part of the solution. A disadvantage of the double-differenced
method is that another bias term would need to be added to the solution every
time a loss of lock occurs in the data. For this reason, it is common to perform a
pre-processing step to "repair" the loss of lock (or cycle slips) in the data. This is
typically done by filtering the data, or some fitting the differenced data residuals
with a polynomial.

A3.2.3 Receiver-Satellite-Time Triple-Differences

This triple-difference is the change in a receiver-satellite double-difference from
one epoch to the next . The observation equation is:

SVA(I) = SVAP - SVAdion + SVAdtrop (A3'1 3)

The errors which are removed or reduced in double-differencing are also absent
from triple-differences. In addition, for carrier beat phase measurements, the
initial cycle ambiguity terms cancel. This propenrty is the most attractive feature of
this type of difference. It also allows much easier editing of cycle slips. With data
which is known or suspected to contain cycle slips, by forming the triple-
difference first, the cycle slips may be edited and then the repaired differences
formed. The triple-difference eliminates biases in:

(1) receiver clocks,
(2) satellite clocks, and
(3) initial cycle ambiguity.

In addition, the number of observations has also been reduced.

Differencing takes advantage of the physical correlations which occur in the
measurement by mathematically eliminating their equivalent functional
correlations. When differencing occurs, the original carrier beat phase
observations and their one-way phase mathematical model are modified. This
means that both the functional and stochastical model will change. When
differencing occurs the resulting covariance matrix will generally show stochastic
correlation due to the law of propagation of variances. See Apendix 4.

Single-differencing between two receivers reduces both the number of
observations and unknowns by the same amount, without introducing stochastic
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correlations. The variance of single-differences are twice as large as that of one-
way data (MERMINOD, 1990). However, not all single-differences can be
independent if more than two receivers are considered, since data from some
receivers must be used several times to build a set of single-differences that
includes all receivers in a session. Therefore, stochastic correlation is
introduced into the single-difference mathematical model.

Double- and triple-differences exhibit stochastic correlation no matter what
differencing operator is used. The covariance matrix of the double- and triple-
difference observables can be made diagonal using a recursive algorithm
(MERMINOD, 1990) but it is computationally cumbersome. It is simpler to take
the correlations into account in the reduction process. Regardless of the level of
differencing, differenced observables can be thought of as the result of applying
a differencing operator D to the original undifferenced observables. For
example (LINDLOHR & WELLS, 1985), consider the undifferenced equation:

q) =p+ C(dt'dT) + A.N - dion + dtrop (A3-1 4)

Any combination of the differencing operations examined (V, A, 8) may be
represented by an operator (matrix) D which is composed entirely of elements
+1, -1, and O operating on a vector | of observed ranges p or ¢ . If the
covariance matrix of the vector of ranges 1| is Cj then the covariance matrix of
the differenced observations Dj is Cpi=DC|D!. This provides a straight-
forward, if not computationally inconvenient, method of accounting for the
mathematical correlations introduced by differencing (MERMINOD, 1990).
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APPENDIX 4. GPS CORRELATIONS

A4.1 Correlations Between Observations
MacLEOD & RIZ 1988

Correlations express the inter-dependence between variables. For two
variables x, and y, in a linear relationship, the correlation between them is
defined as:

Pxy = Oxy/Ox.Cy (Ad-1)

Where:  ©Ox = the standard deviation of x
Oy = the standard deviation of y
Oxy = the covariance of x and y.

When a correlation between two variables approaches the maximum of +1 or -1,
the two variables are said to be highly correlated. Correlations in GPS can be
either:

a. physical, and/or

b. mathematical (functional or statistical).

A4.1.1 Physical Correlation

Physical correlation refers to the correlations between the actual field
observations, for example, an examination of the plots of the carrier phase data
from different GPS satellites observed by the same receiver will vary in a similar
manner showing physical correlation (LINDLOHR & WELLS, 1985). This occurs
as the measurements are made using the same GPS receiver clock.

A4.1.2 Mathematical Correlation

This is related to the parameters in the mathematical model. It can therefore be
divided into two types which correspond to those two components of the
mathematical model:

a. Functional Correlation. Here the physical correlations can be
taken into account by introducing adequate terms in the functional
model of the observations. That is, functionally correlated quantities
have the same parameter in the observation model. An example is a
clock bias parameter which can be placed in the GPS observation
equation to account for the physical correlation introduced into the
measurements by the particular receiver or satellite clock involved
with the measurement.

b. Stochastic Correlation. Stochastic correlation (also sometimes
called statistical correlation) will occur between observations when
off-diagonal elements are introduced into the covariance matrix of the
observations. This correlation also appears when functions of the
observations are considered, due to the law of the propagation of
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variances. Even if the covariance matrix of the observations is
diagonal, (no stochastic correlation), the covariance matricies of the
resultant least squares estimates of the parameters and residuals will
generally be full covariance matricies, and therefore exhibit stochastic
correlation.

A4.2 The Effects of GPS Correlations

A GPS campaign will generally set out to determine a set of coordinates for
those stations within the network. During an observing session, several
receivers simultaneously track carrier data over a number of epochs. The
receivers are deployed over several sessions until all stations in the network
have been occupied. The correlations which exist are easier to realise if the
GPS campaign is considered in two distinct phases. Firstly, to determine
positions within a session, and secondly, to combine the results of these
sessions together in an optimal way.

For single receiver operation, the observations can be considered as a range (or
ranges) between the satellite and the receiver. The accuracy of calculating the
absolute position of a single point is a function of the accuracies of the observed
guantities in the functional model. Due to the uncertainties in the satellite's
position, satellite and receiver clock errors and propagation delays, the absolute
point position will be accurate to no better than several dekametres.

When the satellite's signal is received at several receivers, the error sources in
the GPS signals will exhibit some physical correlations. This means that for
most survey applications it is necessary to use GPS in a relative mode in
which two or more receivers observe the same satellites simultaneously. These
physical correlations can be mathematically modelled as bias terms in the
functional model. Using mathematical operations such as "differencing", these
effects can be estimated or greatly reduced resulting in centimetre level
accuracy.

The fundamental problem which is encountered when performing differencing
operations is to accurately and completely determine to what extent various
elements are correlated and how well they can be modelled. Physical
correlations may be both spatial and temporal in nature, or a combination of both
of these. An example of this is the propagation delay which a satellite's signal
experiences as it is propagated through the ionosphere and the troposphere.
This delay is a significant source of both spatial and temporal physical
correlations. To completely account for the correlations from this one error
source would require a realistic model of the atmospheric parameters. However,
the viable alternatives for treating this delay are to estimate it, model or ignore it
in the mathematical model.

A4.3 The GPS Functional Model

The observation model for GPS carrier beat phase measurements can be
expressed as:

1= f(Xg ,XS ,b) (A4-2)
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Where: XR = the position vector of the receiver,
XS =the position vector of the satellite,
b = the position vector of the terms that are considered as biases,
which are functions of the measuring process and the
observations themselves.

The functional model described by MERMINOD (1990) defines the classic
observation equation for the carrier phase from one satellite to one receiver as:

ORS(t) = A 1((XS(t) — XR(1))?)0-5+.er(t)—f.€5(t) NRS + ($atmos)RS

Where: fis the nominal frequency of the carrier wave
X is the position vector of the satellite or receiver
€8 is the satellite oscillator (clock) error
€R is the receiver oscillator (clock) error
nRS is the initial number of cycles of the carrier phase

datmos iS the phase delay due to the atmosphere
A is the nominal wavelength of the GPS signal.

With the addition of a ¢neoise term to the functional model (which considers the
effects due to measurement noise and unmodelled influences, both of which are
considered to be random) the above equation becomes the one-way phase
observation equation. This equation has been discussed by authors such as
GOAD (1985), LINDLOHR & WELLS (1985), and GRAFAREND et al (1985),
however it is the basis for only a few GPS data reduction software programs (for
example PHASER and USMASS - GRANT et al, 1990). Other functional models
may be derived using linear combinations (examined earlier) of the carrier beat
phase observable.
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APPENDIX 5. METEOROLOGICAL INFLUENCES

A5.1 The Troposphere

The tropospheric (neutral atmosphere) refraction effects are minimised through
the use of standard models which (in PoOPST™M) do not permit user interaction /
modification. For surveys of less than a few tens of kilometres, the tropospheric
delay will tend to be the same at both ends of the baseline and thus assuming
similar tropospheric conditions prevail, the effects will largely cancel during the
double-differencing operation. The error introduced in baseline coordinates
under a wide range of conditions (including rain) will be less than 1 ppm.

Tropospheric delays are largely a function of the elevation of the satellite and the
altitude of the receiver, and are dependent on the frequency of the carrier wave,
atmospheric pressure, temperature, and water vapour pressure. There is
significantly less tropospheric range delay error at higher altitude. For example,
if two receivers are deployed, one at sea level and the other at 3,000m (ASL),
assuming a satellite elevation angle of 20°, the tropospheric refraction error for
the receiver at sea level will be approximately 7.8m. The receiver positioned at
altitude will experience a tropospheric refraction error of the order of 4.8m. The
refractive error results mostly in a degradation of the height component in the
solution. There is only a minimal effect on latitude and longitude.

A5.1.1 Tropospheric Errors

Tropospheric errors can be divided into relative and absolute components.
Relative tropospheric errors imply different prevailing tropospheric conditions
existing at either end of a baseline during an observation session. For baselines
over 100km, many GPS manufacturers (BEUTLER et al, 1989) suggest that
meteorological measurements are made (temperature T, pressure P, Humidity e)
at regular intervals throughout the observation session. This is not as successful
for small networks due to influences of local meteorological conditions that may
exist at individual stations (for example fog, temperature inversions, rain). This is
further compounded by calibration errors of measuring instruments and observer
error in the field. To investigate the magnitude of these relative tropospheric
errors BAUERSIMA (1983) used a simplified version of Saastamoinen's formula,
which expresses the tropospheric refraction correction for a given zenith
distance:

Ar(z) = Ar(0)/cosz (A5-1)

Where: Ar(z) is the refraction correction at a zenith distance z
Ar(0) is the corresponding correction at z=0

and

Ar(0) = 2.277 [ P + ({1255/(273 + T) }+0.05) e] (A5-2)

Where:  Ar(0) is the zenith correction in mm,
P is the atmospheric pressure in millibars,
T is the temperature in °C,
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e is the water vapour pressure approximated by:

e = [H/100]. exp(~37.2465 + 0.213166{T + 273} - 0.000256908[T+273]2)
(A5-3)

Where H is the humidity expressed in %.

In Table A5.1 below, the partial derivatives of Ar(0) with respect to T, P, and H
are given. These partials define the bias introduced into the observable AP or

AP*, if one of the stations records an incorrect temperature of 1°C, a wrong
pressure of 1 mbar, or an incorrect humidity of 1% respectively.

Table AS5.1 The Tropospheric Refraction Correction's Meteorological
Dependence Ar(z=0) (BEUTLER et al, 1989)

T P H SAr/8T SAI/6P SAr/dH
oC m bar % mm/°C mm/mbar mm/(1%)
00 1000 100 5 2 0.6
309 1000 100 27 2 4.0
09 1000 50 3 2 0.6
300 1000 50 14 2 4.0

From an examination the above table we can conclude that the partials are all of
the order of millimetres and that in the worst observation case, a combination of
high humidity and high temperatures, causes adverse effects to results. The
consequences of using incorrect meteorological data in a small network are
significant in terms of the large part per million (ppm) error that is introduced.

Absolute tropospheric errors will affect the baseline if identical meteorological
conditions prevail at both ends of the baseline throughout the session. Under
such conditions an assumption could be made that as a result, no bias will be
introduced. This is not the case as the zenith distance of a satellite is different at
each end of the baseline. The geometry describing tropospheric refraction is
shown below in Figure A5.1 (BEUTLER et al, 1989).

The bias introduced into the observable by assuming uniform meteorological
conditions existing at both ends of the baseline may be expressed as:

€(a,z) = Ar(o){(cosz,)" - (coszo) 1} (A5-4)
Where Ar(o) is the tropospheric zenith correction defined in equation (A5-2).

In PoPSTM, there are four tropospheric models to choose from. The choice of
model may be made from either Saastamoinen, Hopfield |, Hopfield Il or no
model at all. For small surveys of less than 10km, WILD recommends that
modelled values of T, P, and e are used instead of observed meteorological
values, as small systematic errors in meteorological values can often introduce
larger biases than the assumption of a standard atmosphere. All of the various
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models were used in a test to determine the effect of each model on the
coordinates determined for SPM8293. The differences that resulted in the
coordinates of SPM8293 for the various models were insignificant.
Saastamoinen's model was then used for all subsequent data processing.

Figure A5.1 The Geometry Governing Tropospheric Refraction

Where: S is the observed satellite
P4, P2 are the receiver locations
R4, Rz are the geocentric locations of the satellites
p1, p2 are the topocentric positions of the satellites
b is the observed baseline
21, z2 are the zenith distances of the satellite from P4, P>

A5.2 The lonospheric Model

The ionosphere is that part of the atmosphere lying between 70 and 1000km
above the earth's surface. In this layer, the sun's ultra-violet radiation ionises
gas molecules which then lose an electron. These free electrons in the
ionosphere influence the propagation of microwave signals as they pass
through the layer. At night the ionospheric delay is approximately five times less
than for day time observations. The refractive index of microwaves is a function
of frequency and may be expressed:

n=1%- (A.Ng)/f2 (AS5-5)
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Where: A is aconstant
Ne is the free electron density, and
f is the frequency

The nature of the sign will depend on whether the group (+) or the phase (-)
refractive index is being calculated. The ionospheric zenith delay T, for a
microwave propagating between a satellite and a receiver is given as (KING et
al, 1987):

Tion = Qon / f=— (1.35x 10~7) . Ng / 12 (A5-6)

Where: Tjn, isin seconds
O is in cycles
is the signal frequency (Hz), and
Ne is the total electron content (TEC). TEC is expressed as the
number of free electrons (at the zenith) per square metre

A5.2.1 The Total Electron Content (TEC)

There are a number of factors which influence the magnitude of TEC. These are
the latitude of the receiver, the time of day the observation is made, and the level
of solar activity at the time of observation. TEC is a maximum at mid to low
latitudes and is a minimum at the poles. A diurnal cycle for TEC occurs with a
maximum occuring two hours after solar noon (+/- 200 latitude) and is a
minimum before dawn. lonospheric disturbances which can occur suddenly
(and are very severe) also affect the value of TEC. Under such conditions the
ionosphere is so perturbed that single frequency operations are virtually
impossible.

Within PoPSTM there are two options available to deal with ionospheric
refraction. Either a user may employ a single layer model or no model at all.
The single layer model is the simplest way of accounting for ionospheric
refraction. When using this model a number of important assumptions are made:

a. that all free electrons in the ionosphere are located in an
infinitesimally thin spherical layer of height H above the Earth's
surface (see Figure A5.2 below), and

b. TEC is of uniform density in the layer.

When observing L1 data only, a scale factor will be introduced which will shorten

baselines if the ionosphere is neglected. This effect expressed in ppm is
(BEUTLER et al, 1989):

AL/L=-0.7.10-17 TEC (A5-7)

The effect of this scale error can range from 0.35ppm to 3.5ppm for baselines
determined from L1 observations.
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Where:

IrTW

N N

R

Figure A5.2. Single Layer lonospheric Model
(adapted from BEUTLER et al, 1989)

is the satellite

is the receiver

is the ionospheric delay of infintesimal thickness

is the height of the ionospheric layer

zenith distance of the satellite as seen from the receiver

the zenith distance of the satellite as seen from intersection point
P of the satellite signal path with the ionospheric layer
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