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ABSTRACT
L

Since 1960's the navigation techniques have experienced a revolutionary
advance, which due to the advent of some new kinds of navigation systems,
such as inertial navigation system and satellite navigation system, under the
background of rapid development of computer technologies, optimal estimation
and modern control theory. All navigation information can now be used jointly
and optimally, and the integrated navigation system has become standard

navigation tool.

This research involved the analysis and investigation of navigation systems
(mainly the GPS and integrated navigation systems) and navigation
computation for high precision navigation and attitude determination, especially
for marine application. The emphasis of the research was to find new methods
and concepts to deal with the traditional navigation problems.

The navigation models were analyzed in both time and frequency domains and
the model's stability, controllability and observability with GPS observables
were introduced in order to facilitate the navigation filter design.

New kind of filters, such as frequency-discriminating filters and separated-bias
Kalman filter, were introduced to navigation data processing, and these filters
are useful for GPS data smoothing, cycle slip detection and repair and
ambiguity resolution in both static and kinematic modes.

Based on the navigation system and equipment operation and error analysis, a
closed-loop dead reckoning integration with other navigation systems (GPS,
Omega, Loran-C and radar) was proposed in order to obtain a good system
frequency response and facilitate the body's manoeuvre detection and system

quality control.

To use GPS potential efficiently, a new GPS observable "Doppler created
phase" was introduced and associate algorithms were developed. This new
observable can be used in both static and kinematic positioning (if the data rate
is high enough) using low-cost navigation receivers (output C/A code and



Doppler only), and theoretically an accuracy of equivalent to a phase-floating-
ambiguity solution can be expected.

Extensive analysis was given to the attitude determination using GPS, and its
limits, potential and alternative implementation are also presented.

The software development and data processing validated the proposed theory

and algorithms. The results and statistic tests were illustrated by the different
kind of plots including the correlograms and periodograms.
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CHAPTER 1

INTRODUCTION

1.1 Navigation and Positioning

Navigation can be loosely defined as the techniques by which a craft is given
guidance to travel from one known location to another. Hence navigation is not
only concerned with determining position, but also determining a trajectory to be
followed and ensuring that the actual track matches, as far as possible, the

planned trajectory (Logsdon, 1992).

There are two functions navigation has therefore to fulfil: positioning and
guidance. The relation between positioning and guidance is conceptionally
illustrated in Fig.1.1. Here, it is assumed a vessel is underway with speed V from
the origin of an arbitrary Cartesian coordinate system to a destination point B,
passing a danger d at a minimum distance r. OAB is the planned trajectory, C is
the initial planned course with a course error AC. At each position fix, the true
track and drift are estimated and a new course (C1, C2,and C3) is determined in
order to return the vessel to the planned track. The true track deviates from the
planned track due to the effects of wind, current and the errors of the course and
speed-to-steer. The relationship between heading, course, water speed and
ground speed is shown in Fig.1.2 (where the effects of wind and current have

been exaggerated).



— planned track
NA — — true track
X position fix

o) il =

Figure 1.2. Relationship between course, heading and speed
relative to water and ground.

where
O centre of mass of vessel N  north direction
Vp vessel's propelling speed E east direction
V  vessel's ground speed VL vessel's speed relative to water
H heading Vw leeway speed caused by wind
o leeway angle B current set angle
Y total set angle C course-made-good

Ve current speed



Heading H can be provided by a gyrocompass, the speed relative to water V| by
a sensor such as a vessel's speed log, course C and ground speed V are
usually determined from consecutive position fixes.

A vessel's trajectory is usually determined as a set of discrete positions using
navigation systems, relying on observations to targets whose locations are
known. Theoretically, in order to recover the continuous true trajectory from such
discrete position data, the positioning interval should be less than half of the
shortest period of the trajectory variation. In other words, the positioning rate (or
frequency) should be at least twice the highest frequency of trajectory variation
(Oppenheim & Schafer, 1989 ) for positioning at equal intervals. Otherwise only
a smoothed or mean trajectory can be assumed to have been determined.

In general there are two basic methods of navigation: position fixing and
dead reckoning. Position fixing is accomplished using information from
navigation systems external to the vessel, such as GPS, Loran-C, Omega, etc.
Their positioning precision can be represented by the error ellipse (or ellipsoid)
which is dependent on the observation geometry and measurement noise. The
positioning process can be discrete, or continuous. On the other hand, dead
reckoning (DR) is based on information obtained from navigation sensors
attached to the vessel which measure the vessel's heading, or course and
speed, such as gyrocompass, speed log and inertial navigation systems (INS).
In the case of a pure DR system there is no need to exchange information with
the outside world, as it is entirely self-contained. However, the navigation
accuracy generally degrades with time, as illustrated in Fig.1.3.



m

Figure 1.3. Dead reckoning and the growth of position error.

In Fig.1.3 0 is the known start position at time t(0), P is the DR position at time t(k)
determined from the DR course Cq4 and speed Vg4 obtained from gyrocompass,
speed log or INS output. OP = V¢ [t(k) - t(0)] is the DR distance. The DR position
in a local geographic frame can be expressed as:

Oe = V4 [t(k) - t(0)] sinCgq (1.1)

On = Vq4 [t(k) - t(0)] cosCq (1.2)

It is apparent that the DR distance error FP = PB = AV- [t(k) - t(0)] and the DR
error due to course error is PH = PD = 0P - AC = V- [t(k) - t(0)]- AC, where AC
and AV are the course and speed uncertainty attributable to the gyrocompass,
speed log or INS errors, as well as wind and current uncertainty. The DR
position is inside the area ABCDEFGH at time t(k), and this area can be
expected to increase with time. Although the DR system can give a continuous
trajectory, its error growth must be controlled by regular position fixing. The
choice of appropriate navigation system, sensors and methodology depends on
the application and the associated navigation requirements.



1.2 Navigation Requirements

There are several phases of any vessel's journey. When on the open seas a
vessel's planned trajectory is likely to be a straight line and the position fixing
rate need not be high. When the vessel approaches the coast, however, the
position fixing interval may need to be shortened, as in general, a higher
accuracy is required. When travelling within a navigation channel in a harbour,
or within confined waters, the vessel has to be kept on a specified trajectory, and
any deviation from this trajectory should be detected and corrected with

minimum delay.

Maritime navigation requirements generally have a well structured classification
according to the three distinct phases of operation namely: the ocean phase
[Table 1.1]; coastal phase [Table 1.2]; and the harbour approach and harbour
phase [Table 1.3]. These tables are based on U.S. Federal Radionavigation
Plan (FRP, 1988) requirements and are reproduced here for the sake of "bench
marking”, and to aid in the assessment of emerging navigation technologies
(Krakiwsky et al.,1990). In the Tables the accuracy is stated in terms of the
marginal confidence region + 2 drms (distance root mean square) which has an
associated probability of 95%. The status of current navigation systems is
summarized in Fig. 1.4 (Logsdon, 1992). For a discussion concerning the future
of navigation systems see, for example, Heywood (1992), Krakiwsky et al..
(1990).
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Figure 1.4. Range and accuracy comparisons for various navigation systems.
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In general, INS have not been in common use for civilian maritime applications.
However, with the rapid development of computer technology and the advent of
new low-cost, medium accuracy inertial sensors such as fibre-optic gyros,
vibrating-rate gyros and solid-state accelerometers, there may be an increasing
application of these sensors for land, air and sea navigation (for more details the
reader is referred to, for example, Liu et al., 1990; Norling, 1990; Karnick, 1992;
Bader, 1993).

1.3 Development of Marine Navigation Technology in the 20th
Century

There have been three distinct phases in the development of marine navigation
technology in this century.

1.3.1 Phase One (1900-1945)

The gyrocompass was introduced at the beginning of the century and several
prototype radio aids such as Consol, Loran, the radio direction finder and radar
at the end of World War Il. Nevertheless, there was little change in the practice of
navigation compared to that during the 19th century. The navigator still relied on
the compass, log, sextant and chronometer to fix and compute his position using
simple navigation techniques and observation models. The position fixing
frequency was dependent on the visibility of the landmark and celestial bodies,
and a few nautical miles of position error was common in the ocean. Near-coast,
the positioning accuracy was nearly inversely proportional to the distance from a
visible landmark.

1.3.2 Phase Two (1946-1960)

The medium and long range radio aids such as Loran, Decca and Omega, were
fully developed and put into operation. Statistical estimation methods were used
for position determination, and sophisticated mathematical models of the earth's
geometry and signal propagation were used within navigation computation.
However, the navigation information obtained from different navigation sensors



were generally used independently, and the position discrepancy had to be
resolved using the navigator's judgement.

1.3.3 Phase Three (1961-present)

Computer technologies, optimal estimation and modern control theory, inertial
navigation and satellite navigation systems develop rapidly. All navigation
information can be used jointly and optimally, and the integrated navigation
system has become the standard navigation tool.

1.4 Motivation of the Thesis

The navigation computation requires three basic models: the dynamic model,
the observation model and the computation model.

Vessel

Navigation
system

‘ Observation
model

Dynamic
model

Output

Computation
model

Figure 1.5. The navigation computation procedure and its linkages.
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The dynamic model is the mathematical description of the vessel's dynamics.
Ideally it should be a true duplication and mapping of the vessel's state in the
real world. However, some model approximation is inevitable, for example the
navigation condition (or environment) is unpredictable, and the approximation
causes the navigation error to increase with time if there is no external
navigation information available.

The set up of the observation model addresses two considerations: (a) how to
fully and optimally use the information provided by the navigation system, and
(b) how to map the vessel's dynamics into the observation domain. Hence the
observation model is closely related to the dynamic model and to the navigation
system performance.

The computation model may be a filter whose structure and performance is
closely dependent on the navigation requirements and the observations
available. The computation model should correctly and optimally integrate the
dynamic and observation models, and it's performance will directly affect the
accuracy and quality of navigation.

This thesis is a report on investigations into the dynamic, observation and
computation models as well as the total system model, which can be referred
to simply as navigation model, in both the time and frequency domains.
Sometimes the observation and system dynamic characteristics can be
discussed more clearly, and more easily dealt with, in the frequency domain,
rather than in the usual time domain. For example, time-invariant navigation
models have been used for many years, yet the stability of the models, which
can be derived easily by analysing the models in the frequency domain, has not
been fully investigated. Another example is the application of frequency-
discriminating filters (or digital filters) to GPS measurement series processing.
This thesis proposes some new mathematical models which can be used for the
precise determination of a vessel's position and/or attitude. Also the relationship
between the three models and alternative sensor integration strategies has been

investigated.

11



1.5 Outline of the Dissertation

Chapter 2 introduces the basic navigation coordinate systems and the relevant
transformation procedures, including the velocity and acceleration
transformations. The Attitude determination problem is closely related to the
topic of coordinate system, hence it is also introduced in this chapter.

Chapter 3 presents a brief description of several radio aids and navigation
sensors, such as Omega, Loran-C, radar, gyrocompass and Doppler-log, as well
as the inertial navigation system (INS).

Chapter 4 describes the GPS observables and error models, the smoothed code
measurements, and some new Doppler-created phase algorithms.

Chapter 5 discusses the integrated navigation system and describes different
integration strategies and structures, especially for the integration of GPS with
dead reckoning systems.

Chapter 6 presents the navigation models and such characteristics as model
stability, controllability and observability, especially for the case of
coloured measurement noise for different observation modes.

Chapter 7 discusses the basic filters used for navigation, including polynomial
fitting, Least Squares, digital filter and the Kaiman filter. A bias-separated filter is

proposed which has particular application to GPS phase data processing.

Chapter 8 presents the data processing examples for position and attitude
determination using a variety of models developed by the author.

Chapter 9 summarizes the findings, draws conclusions and makes
recommendations for future research.

Appendix 1 discusses the unified semi-analytic inertial navigation system
mechanization.

Appendix 2 describes the strapdown inertial navigation system mechanization.

12



Appendix 3 discusses the inertial navigation error model and the integration of a
north-directed inertial navigation system and GPS.

Appendix 4 describes the Bartlett and Portmanteu tests.

Appendix 5 discusses the federated Kalman filter algorithms.

Appendix 6 contains the plots of smoothed code measurements.

1.6 Contributions of the Research

The contributions of the research carried out by the author are summarized as

below:

1)

Development of a closed-loop GPS and dead reckoning integrated
navigation system model, having high performance across wide frequency
bands, and which is independent of the vehicle's dynamics.

Development of an algorithm for the computation of the transition matrix of a
time-varying system using dead reckoning sensor output, which simplifies
and reduces the total computational load.

Development of a phase-smoothing code measurement algorithm which can
be used for real-time GPS data processing.

Digital filters for data smoothing (especially useful for single frequency GPS
data), and cycle slip detection and repair have been developed. The
algorithms are suitable for use with high sampling rate data and real-time

applications.

Development of Doppler-created phase processing algorithms for high
precision static and kinematic positioning using low-cost GPS receiver output

(code range and Doppler only).

Introduction of the concept of stability of navigation models to assist in the
theoretical understanding of navigation models, hence aid to navigation
model design.

13



7) Introduction of the concept of controllability and observability of the
navigation models for the GPS observables, in one-way and differential
modes, to assist in the design of stable and convergent navigation filters.

8) The frequency response characteristics of polynomial fitting, and the cause of
the “wiggle effect" are studied, and the criteria for the selection of polynomial
order are given for data of different dynamic characteristics.

9) Development of a bias-separated filter for GPS data processing, that is
especially useful for GPS carrier phase ambiguity resolution and state

estimation.
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CHAPTER 2
AN INTRODUCTION TO COORDINATE SYSTEMS

FOR NAVIGATION

A solid body motion in space has six degrees-of-freedom and can therefore be
described by six parameters. Typically these are chosen to be the three
translation parameters of the body's centre of mass and three rotation
parameters about the body's centre of mass. Hence the states of a body, can
be described by its translation state (expressed in position, velocity,
acceleration), and its rotation state (typically attitude angle and attitude angle
rate). For navigation computation purposes, several Cartesian systems or
frames are required. The transformation matrix of the body's position, velocity,
acceleration and angular velocity, etc., between any two of these frames is
generally an orthogonal matrix, and all the body's states (except attitude angle)
are vectors in these frames.

2. 1 Cartesian Coordinate ‘Systems

The three most fundamental reference systems for navigation are the space-
fixed (or inertial), the earth-fixed and the geographic coordinate systems (Fig.
2.1).

15



Greenwich meridian

Xe

Figure 2.1. Space-fixed, earth-fixed and geographic frames.

where:
Y Vernal Equinox
L  Greenwich sidereal time
¢, A geographic latitude and longitude
P position of body's mass centre
R  position vector of P

2.1.1 The Inertial Frame (Xi, Yi, Zi)

In this frame Newton's law is valid and there are no accelerations of the frame.
In practice, a frame that has its origin at the geocentre of the earth, and which is
non-rotating relative to the stars, can be considered to be an inertial frame for
navigation applications in the vicinity of the earth, and hence the gravitational
effects of the sun and planets can be neglected. Conventionally the Xi axis
points to the Vernal Equinox in the equatorial plane, the Zi axis is coincident
with the earth's angular velocity vector and theYi axis is in the equatorial plane
and completes a right-handed orthogonal frame with the other two axes. This is
the basic frame for GPS satellite orbit computations and inertial navigation
sensor measurements.

16



2.1.2 The Earth Frame (Xe,Ye,Ze)

This is an earth-centred and earth-fixed frame, which rotates relative to the
inertial frame around the spin axis of the earth with an angular velocity of about
15 deg./hr. Its origin is the geocentre, the Ze axis is coincident with the spin axis
of the earth and the Xe and Ye axes are located in the equatorial plane. The Xe
axis is the line of intersection of the Greenwich meridian plane with the
equatorial plane. This frame is the basis of navigation computation and ground-
based navigation systems such as Omega, Loran-C and radar (Kayton, 1969).
The earth frame is related to the concept of a geodetic datum (Krakiwsky et al.,
1971). For most navigation purposes the earth is assumed to be an ellipsoid
and the body's position is represented by the triplet of geographic latitude,
longitude and ellipsoidal height. Different values of the reference ellipsoid
parameters correspond to different frames, for example, the WGS-84 system
(Decker, 1986) being one very commonly used nowadays.

2.1.3 The Geographic Frame (E, N, U)

The origin of this frame is at the location of body's centre of mass and its axes
align with the east, north and up directions. Up is defined to be coincident with
the normal to the reference ellipsoid and is perpendicular to the E-N plane. It is
a translating and rotating frame relative to the earth frame, as a consequence of
the body's motion. The translation velocity relative to the earth frame Veg is:

R
dt (2.1)
The angular velocity relative to the earth frame can be expressed as:
Weg = Mg - QIE (2.2)

where ig, ig are the unit vectors in the directions of the earth rotation and east,
and (modified from Farrell, 1976):

_ Vg _ VegcosksinC

A=
Rm Rm (2.3)
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VN _ VegCOSkcosC

TR Rn (2.4)
where
Rm= A 1 +h
(1- 2 sin%p)2 (2.5)
2
e AR
(1- 2 sin®p)2 (2.6)

Here A, ¢ are the geographic longitude and latitude of the origin of the
geographic frame P, C is the body's course, A is the semi-major axis of the
ellipsoid and f is the ellipsoid flattening. The relationship between Veq, VE, VN

and elevation angle x is illustrated in Fig. 2.2.

U
A

L

Figure 2.2. Velocity decomposition relating the geographic frame.

Because the east angular velocity corresponds to a decreasing of ¢, the sign
of the second term of egn (2.2) is minus. ig can be decomposed as:

o = COSQiN + SinQiy (2.7)

where iy, iy are the unit vectors in the directions of north and up of the
geographic frame, and eqn (2.2) can now be rewritten as:

18



Weg = -QIE + XCOS(piN + Xsin(piu (2.8)

Projecting the angular velocity of earth rotation Q into the geographic frame:

Q = Qcosein + Qsineiy (2.9)

Hence the angular velocity of the geographic frame relative the the inertial
frame is:

= -Qig + O + Q)Cosein + (A + Q)singiy (2.10)

The translation velocity relative to the inertial frame is:

Vy=dR s o xR
9= Tgp T (2.11)

The geographic frame is the reference frame for the body's attitude

computation.

2.1.4 The Tangent Frame

This frame is also defined as a geographic frame except that its origin is at a
certain fixed reference location on the earth. It is an earth-fixed frame and is
used for relative navigation to (or from) some reference point. The origin of the
frame is typically taken to be the destination site, guidance radar station,
reference station of GPS, or other convenient point. Its angular velocity relative
to the inertial frame can also be expressed by eqn (2.9).

2.1.5 The Body Frame (P, R, Y)

The origin of this frame is the centre of mass of the body. In the case of marine
navigation the P axis points to the vessel's starboard, the R axis points to the
forward direction of the vessel's centre line, and the Y axis is perpendicular to
the vessel's deck and up (Fig.2.3). P, R and Y are the axes which define the

pitch, roll and yaw of the vessel.

19
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Figure 2.3. The body frame.
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The body frame is a rotating frame relative to the geographic frame and the
Euler angles, which are defined as the rotation angles around the P, R and Y
axes, are the attitude angles of the body (Ishilinskii, 1965; Beggs, 1983). The
body's angular velocity relative to the geographic frame can be expressed as:

where p, r, y are the pitch, roll and yaw angles, and ip, i, iy are the unit
vectors of the P, R and Y axes.

2.2 Transformation of Position

2.2.1 Transformation between Orthogonal Frames

The transformation of position between two orthogonal frames is
straightforward (adapted from Seeber, 1993):

Ra= C¢ (Rs - ARg) 2.13)

where:
Rq, Rs coordinates in the Q and S frames

ARg,2 coordinates of the origin of the Q frame in the S frame

20



o . . ~Q.
The direction cosine matrix Cs is:

cos(XaXs) cos(XaYs) cos(XaZs)
CJ =| cos(YaXs) cos(YaYs) cos(YaZs)

cos(ZaXs) cos(ZaYs) cos(ZaZs) (2.14)

The elements of egn (2.14) are the direction cosines between the axes of the Q
and S frame. Only three elements of the total nine direction cosines are
independent, hence by using three independent parameters the relative
relationship of the two frames can be determined. These three parameters are
chosen to be the three rotation angles o, B.y between the two frames as shown

in Fig. 2.4.

Figure 2.4. Rotation transformation of frames.

The rotation sequence in Fig. 2.4 is: XsYsZs to XmMYmMZs by rotating through the
o angle about the OZs axis, XMYMZs to XQYMZp by rotating through the B
angle about the OYm, XQYMmZp to XaYaZq by rotating through the ¥ angle about
OXaq. The direction cosine matrix (eqn(2.14)) can be written as:

Q_ aQ
Cs=Cp Cy CY (2.15)
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where

cosa, sinoe O
C¥(a) =| -sino. cosoe 0
0 0 1

cosp 0 -sinf
Cu)= 0 1 0
sinB 0 cosP

1 0 0
Cg(y) =0 cosy siny
0 -siny cosy

The reverse transformation is:

Rs = ARS + C§ Rq

cg=[cg)" = [c' =cf el c§
1 .ol
ch=Cs| = |Cpl=Ca(-p
M__—CP_ -1 _ —CP_T_ CP _
Cp =|Cu = |Cm =Cum(-B)
S _[aM]! _ [aM]T_ aM
Cu=Cs] =|Cg]=Cs(-o)

The basic transformations between frames therefore are:

1) inertial frame to earth frame: C¥(L)
2) earth frame to geographic frame: c,‘}(n/z -o)C¥m/2 + 1)

3) geographic frame to body frame: c,{}(r)cg(p)c@(y)

22
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(2.19)
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(2.21)
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Because an angle is not a vector, the sequence of the transformation is
important. For small rotation angles Ao, AB, Ay, the computation can be
simplified by assuming that the small angles are vectors. By neglecting the high
order terms, the small angle rotation can be expressed as (modified from

Britting, 1971) :

!0 Ay -AB 1 Ay-AB
ACS =1+|-Ay 0 Ac|=1+A8=|-Ay 1 Ac
[ AB -Aa 0 AB -Aa 1 (2.24)
and
[A6]" =-A0 (2.25)

2.2.2 Transformation between Non-Orthogonal Frames

For physical frames, such as the accelerometer frame, the gyro frame in inertial
systems and the GPS antenna triad for attitude determination, are not exactly
orthogonal because of the inevitable small assembly errors. These errors can
also be expressed in the form of small angles between the axes of the ideal
frame (X, Y|, Z;) and the physical frame (Xp, Yp, Zp), which are decomposed
into two separate, independent rotations about the ideal frame axis, as

illustrated in Fig. 2.5.
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Figure 2.5. Non-orthogonal transformation.

The transformation from the physical frame to the ideal frame therefore is:

1 'eyz ezy
C=:= Oxz 1 -0
By Bx 1 (2.26)

2.3 Transformation of Velocity and Acceleration

The equation defining the transformation of velocity can be derived from egn
(2.13) as:

dRq _ dcg (Rs - ARD)]
dt dt

=C¢ (Rs - ARD) + €2 (Rs - ARS)

Va =

2 Q Q Q Q
where Vq, Vs are the velocities in the Q and S frame respectively, and Avg is
the relative velocity of the S and Q frame.
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The derivative of CS is obtained as follows:

o . Cs(t+at) - C5(t)
Cs = lim At (2.28)
At—0

In At time, the angle augment is small and hence:

CI(t+At) =[1 + A8] CI(1)

(2.29)
Substituting eqn (2.29) into egn (2.28) :
~Q_ . 0 A oQ — S Q
Cs =lim ¢ Cs(t) = ©3a Cs(1) (2.30)
where
o & AB
At At
im 49 _ jim | AY o A«
At—=0 At At—=0 At At
AR Aa
L At At _
0 gy -03q
=-|-0§q O ®¥q|=w’q (2.31)

where W&q. ©4q. ®3q are the angular velocities of the S frame relative to the Q
frame.

According to eqns (2.19) and (2.20) the velocity transformation from the Q
frame to the S frame is:

Vs = Rs = ARS + €3 Rq + C Rq

aS
= AVg + €g Ra + C§ Va (2.32)

25



where

Q T
ca) =<{—C§"@‘)‘]—=[®§Q Cg(t)]T = - C3(hwsq

dt (2.33)
Egn (2.32) can be written as:
Vs =AVS + C§ Va + €3 Ra
= AVS + C§[Vq - ©&q Ra
= AV¢ + €3 [Vq + g x Rq) (2.34)

where
wq = | w¥q dy il

The geometrical meaning of egn (2.34) is apparent: supposing S is a fixed
frame, Q is a moving and rotating frame relative to the S frame and Rq are the

coordinates of a body in the Q frame, then AVSQ is the translation velocity of the
Q frame relative to the S frame, Vg is the velocity of the body relative to the Q

frame, and the term of the cross product is the tangential velocity caused by the
rotation of the Q frame relative to the S frame.

The transformation of acceleration can be derived directly from egn (2.34):

as = Aa$ + €a[Va + wa x Rq)
+ C3[Vq + dq x Rq + 0q x Rq
= Aad + C3 [wq x(Vq + mq x Rq)]
+ C3[Vq + @a x Ra + g x Vg

ZAag+cg{VQ+2(DQXVQ+®QX Ra + wq X wq X RQ]
(2.35)
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where:

Aad translation acceleration between the Q and S frame
Va acceleration of the body relative to the Q frame
2 wg X Vq Coriolis acceleration cause by the motion of the
body on the rotating frame Q relative to the S frame
wq X Raq tangential acceleration caused by the rotation of the
Q frame

wq X wq X Ra  centripetal acceleration caused by the rotation of the
Q frame

Assuming there is a GPS antenna located at P, its position vector in the
geographic frame is P. The centre of mass of the body is at A, its position vector
is R, and its speed vector is Vg in the earth frame. The angular velocity of the
geographic frame relative to the earth frame is ®Weg. The angular velocity of the
body frame relative to the geographic frame is ®gb, the antenna velocity relative
to the earth frame is Vgp, as illustrated Fig. 2.6.

Xe

Figure 2.6. Composition of velocity.

According to eqn (2.34) and Fig. 2.6, the antenna velocity Vugb relative to the
geographic frame is:

Vagb = Wgb X p (2.36)

The acceleration of the antenna relative to the geographic frame is:
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Vogb = Ogb X p + Ogb X P

=Wgb X P + Wgb X Wgb X P (2.37)

The antenna velocity relative to the earth frame is:

Veb =Q£+ Web X =c—det—+ (O)eg+ wgb)x )
= Veg + Veb (2.38)

where Vep is the tangential velocity caused by the rotation of the body frame
relative to the earth frame. For a low speed body, Weq is usually a small value
compared to Ogb, except at high latitude, and can be neglected, see egns (2.3),

(2.4) and (2.8).

The acceleration of the antenna relative to the earth frame can be obtained
from eqn (2.35) as:

. 2 .
Vep = d—3+coebxp + Web X Web X P
dt? (2.39)

There are no Coriolis acceleration terms in eqn (2.37) and (2.39) because the
antenna is fixed in the body frame. GPS measurements are only sensitive to

the linear and tangential acceleration components d2R/dt? and Web X p.

2.4 GPS Attitude Determination

With the exception of inertial navigation systems, GPS is the only potential six
degree-of-freedom navigation system having the ability to provide attitude
information. The compatible attitude determination accuracy of GPS to that of
INS is based on the potential centimetre level accuracy of kinematic positioning
using GPS carrier phase measurements for short baselines (Mader, 1986;
Hatch, 1986; Remondi, 1992). The first results of experiments of GPS attitude
determination were presented by Brown (1982) of the Draper Laboratory.
Since the experiments of GPS triads on a rotating base carried out by the
Trimble Navigation company (Trimble, 1987), GPS attitude determination
techniques have developed rapidly and have been applied successfully to
spacecraft control (Cohen et al., 1993), artillery pointing (Jurgens et al., 1991),
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and marine and air navigation (Fu, 1991; Cohen et al., 1992; Diefes et al.,
1993).

The body's attitude (pitch, roll and yaw angles) can be determined by fixing
three or more GPS antennas in a non-colinearl pattern which forms at least two
coplanar vectors. The typical configuration is a three antenna triad whose axes
are parallel to the axes of body frame. Under the assumption of rigidity, the
antenna locations remain fixed in the body frame and the translation between
the centre of mass and the triad has no effect on attitude determination. The
positioning of the antennas in the body frame Dy can be carried out using GPS
static surveying techniques because the relationship between the geographic
frame and the body frame can be determined at that moment. Once in motion,
the locations of the antennas in the geographic frame frame Dg are determined
using GPS interferometry techniques and the geographic frame is set up by the
position of one of the antennas. At any given epoch the antenna locations in
the two frames are related as follows:

Dg = CyDy (2.40)

where
Q T
cg=[chincipecky) =
COSycosr-sinysinpsinr -sinycosp cosysinr+sinysinpcosr
sinycosr+cosysinpsinr - Cosycosp  sinysinr-cosysinpcosr

-cospsinr sinp cospcosr
(2.41)

The instantaneous value of the attitude angles can be determined as follows
(adapted from Graas et al., 1992):

—~

- T]-1
CJ = DgD,"[DyDy ") (2.42)
where -1 denotes the generalized matrix inverse. Eqn (2.42) can be changed
to a more convenient form for computations (modified from Xinhua Qin et al.,
1992):

ik =[D} D DixD¥ D} DY DixDY (2.43)
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where D, DI refer to the baselines between the i and j antennas and between
the i and k antennas in the geographic frame and the body frame respectively.
(If there are three baselines, four C{ can be obtained from the four
independent combinations of the baselines, and an average Cg can be
obtained.) The attitude angles can be computed as follows:

p= sin'1[Cg(3,2)] (2.44)
_ainll- 08(3,1)}

r=sin [ cosp (2.45)
— cin-1_ Cg(112)}

y=sih { COSp (2.46)

(The signs of p, r and y are determined by the right-hand rule and the
definitions of pitch and roll angles are in the range of -90 to +90 degrees and
the yaw angle in the range of -180 to +180 degrees.)

For one baseline, or a so-called pointing system, the azimuth and elevation
angles are computed as:

Az=tan“[-D-E}

Dn (2.47)
_ «in-1|Du

El=sin [D] (2.48)

where D is the baseline length, Dg, DN and Dy are the components of the
baseline in the east, north and up directions.

2.4.1 GPS Interferometry

The principle of GPS interferometry is illustrated in Fig. 2.7 (modified from
Brown et al., 1982)

30



GPS Satellite

Figure 2.7. GPS interferometry principle.

Neglecting the measurement bias and noise it can be seen that:

n+d

A = Dcos6
- cos

(2.49)

where:
D baseline length
n integer number of carrier wavelengths

¢ measured phase difference
A wavelength of the GPS carrier signal
@ angle that the line-of-sight (LOS) to the satellite subtends on the

baseline

Eqgn (2.49) can be rewritten as:

et

T

A = DIp*l

(2.50)

where:
Ip unit vector in the direction of the baseline

I unit vector in the direction of the satellite i
* dot product

Some GPS attitude determination systems (ADS), such as the AN/PSN-9
pointing unit of Texas Instruments Inc., measure the between-site differenced
phase measurements internally. However, in general, the attitude
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determination computation uses double-differenced carrier phase
measurements to eliminate common measurement biases. For the double-
differenced phase measurement eqn (2.50) can be rewritten as:

Vn +¥} A = DIp*[l; - §] = DIp*l;

T (2.51)

where Vn, V¢ are the double-differenced ambiguity and phase measurement

involving satellites i and j.
For ambiguity resolution egn (2.51) can be rewritten as:

*]. A V‘P_D *].. Vq)
vn=DipHl - 1] - Y2=Djp*p; - X2
n=">to’llki- 1] o A ° U 2x (2.52)

Differentiating eqn (2.52), we have the ambiguity error equation as:

dvn = 9D1p*k; + Ddip*k; + Dipat; - V0

A A A 2% (2.53)
The ambiguity error (here a real value ambiguity is assumed) can be analyzed
for each error source contained in egn (2.53):

1) The baseline length error dD:

The maximum ambiguity error is equal to dD/A when Ip is parallel to ljj, which
means that for a horizontal baseline a large ambiguity error can be induced
when the satellite elevations are low. The ambiguity error is zero when Ip is
perpendicular to ljj..

2) The baseline attitude error dip:
For a fixed baseline length D, dlp causes the original baseline vector D to

rotate to a new direction, and the second term of egn (2.53) can be expressed
as:

dVn=q Xg*lij
A (2.54)

where o is the rotation vector attributable to the dlp. For a small rotation angle
o the maximum ambiguity error is:
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dvn=aD
A (2.55)

in case of a 1 metre baseline, if a is less than 5.5 degrees, the ambiguity error
will be less than half the L1 wavelength and will have no effect on the integer
ambiguity resolution. If the baseline attitude can be determined to better than
5.5 degrees, the integer ambiguity can be obtained instantaneously for 1 metre
baseline, and a 0.55 degrees attitude accuracy for 10 metre baseline, etc.
When I;; = I; - I;= 0 (meaning that the satellites i and j are in the same direction
and the PDOP value is infinitely large for three observed satellites), the
ambiguity error is zero for errors dD or dlp. Generally speaking, small value of
lijimplies a large PDOP value and will cause a lower ambiguity error for fixed

dD or dlp.

3) LOS error dl;j:
The effect of dlj; is similar to that of dlp, and causes the baseline to rotate. The
source of dljjis primarily the position error of the reference antenna, and

satellite ephemeris error, as shown in Fig. 2.8.

Figure 2.8. The effects of orbit and reference site errors.

In Fig. 2.8 R,S and D are the reference site, remote site and true baseline
vector, R1,51,and D1 are the reference site, remote site and baseline vector
assuming reference site error DR, S2 and D2 are the remote site and baseline
vector assuming ephemeris error DE. SE is the satellite position implied by
ephemeris data and SP is the true satellite position. From Fig.2.8 it can be
seen that for a fixed baseline length D the effects of the reference site position
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error and the ephemeris error cause a rotation of the baseline vector D. The
rotation angles B, ¥ are the subtended angles of the reference site error at the
satellite and the subtended angle of the ephemeris error at the reference site
respectively. Considering the large distance between the satellite and the
reference site, B. ¥ are small angles and are negligible for short baseline. For
example B = 0.17 arc minute for a 1 km reference site error and Y = 0.017 arc
minute for a 100 metre ephemeris error, and both are negligible if the baseline
length is less than 300 m,

4) The measurement error dV¢:

After double-differencing the measurements, the only error sources remaining
for a short baseline are multipath and measurement noise, both of which
directly affect ambiguity determination.

2.4.2 Ambiguity Resolution of ADS

Most ADS use modified Least Squares search methods (for details of Least
Squares search methods see Hatch, 1989; Hatch, 1990; Frei, 1991; Abidin,
1993; Teunissen, 1994). Considering the a priori knowledge of the relative
positions of the ADS antennas in the body frame, there are some constraints for
the baseline vectors: one constraint for the length of the first baseline vector,
one length and one angle constraint for the second vector, and three position
constraints for the remaining vectors. The constraints can be expressed as

follows:

D! D; =[D; + AD||'[D; + AD{| =|D{? (2.56)
D/ D, =[D; + AD{|"|D; + AD|] = constant (2.57)

where Dj, Dj are the ith and jth baseline vectors, ADj, ADj are the changes in
the baseline vectors.

For double-differenced measurements, the primary satellites for the ambiguity

search reduce to three for the first vector and two for the second vector, and the
remaining vectors are only used for testing the ambiguity resolution.
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For a single baseline, the ambiguity solution must be on the surface of a
sphere of radius D1 and for the first measurement the search is along the
whole baseline length in the first measurement vector direction:

A T A 2n (2.58)

For the second ambiguity n2, the search range can be reduced by projecting
the second measurement to the first measurement as (adapted from Quinn,

1993.):

-Qomax _ AQ2 <n,< Qomax _ AQ2
A 2n A 21 (2.59)

where

TPomax = AQq (ﬂ_|2) t «/[1' (III2)2} [D% } A({)ﬂ (2.60)

l1, 1o are the unit vectors of the first and second double-differenced

measurements.

For the second baseline, the search range can be determined directly by using
the constraint in egn (2.57). In this case, the only uncertainty of the second
baseline is related to the rotations about the first baseline. If the second
baseline is orthogonal to the first one, the spherical surface of the possible
position of the second baseline relative to the first shrinks to a great circle band
AB , see Fig. 2.9 (which is a plane figure). If the second baseline is not
orthogonal to the first, the great circle band will shrink into a small circle band
CD. The smaller the angle between the two baseline the smaller is the circle
band until the two baseline is lined up, the circle band becomes a point P on

the surface of the sphere.
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Figure 2.9. The search range of the second baseline.

From an ambiguity resolution point of view, the angle between the two
baselines should be small, but the effective length in the orthogonal direction to
the first baseline also becomes small and the potential of the attitude
determination will decrease in that direction until the two baselines line up and
the system degenerates into a pointing system (Jurgens et al., 1991). Adroit
System Inc. (ibid.) developed a pointing system based on the above principles.
The system uses three co-linear GPS antennas to form a short baseline of less
than one carrier wavelength, and a long baseline. The short baseline is
intended for ambiguity resolution initialization of the long baseline, and the
long baseline is used for azimuth and elevation determination.

Another aid to resolving the ambiguity for an ADS is the changing observation
geometry due to the body's attitude change. Assuming there are three non-

coplanar baselines D4, D2 and D3, expanding egns (2.56) and (2.57), it can be
seen that:

2AD/ D; = - AD] AD; (2.61)

T T
AD/ D; + AD Dj= - AD] AD; (2.62)

Combining eqns (2.61) and (2.62), a measurement equation can be derived (
modified from Cohen et al., 1991):
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Adl  AdT 0 diag (AdTAd))
Adl 0 Ad] diag (Ad]Ad3)
0 Ad}  Ad] g; __| diag (Ad3Ad,)
2ad] 0 0 D; diag (Ad!Ad)
0 2Ad) O diag (Ad}Ad>)

0 0  2Ad; | diag (AdJAds)

where
Ady =|AD} ADZ... AD}]
for measurements at n different times and k =1, 2, 3.

The baseline vectors can be determined by Least Squares estimation on the
condition that a large attitude change guarantees the estimation accuracy, and
the axis of the attitude change should not be parallel to any baseline vector,
otherwise the normal matrix will be rank-deficient. A similar equation to egn
(2.63) can be derived for the two baseline case.

2.4.3 Some Comments Regarding ADS

1) Achievable attitude accuracy:
The achievable attitude accuracy, or the angular resolution, is dependent on

the baseline length and can be expressed as:

= g—.
°A=D (2.64)

where OL is the standard deviation of the baseline length, and D is the baseline

length. The achievable accuracy ca can be expressed in radians (where 1
milliradian = 0.057 degree). For a 1 metre baseline and 1 mm baseline error

the angular resolution is therefore 1 milliradian.
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2) The attitude DOP:
The azimuth DOP can be derived by differentiation of eqn (2.47) :

DndDg - DEdDN}

d(Az) = 1
VDR+Dg| VDR+Dg

=f;—{cosocdDE - sinadDy]
h

(2.65)

where o is the azimuth angle and
A P2
Dp=V D + Dg (2.66)

The azimuth accuracy can be written as:

Saz =14/ cos2ac? + sin0o3
Dh rE N

167 ]
= D—p\/C()Sz(XDEE + Sln20CDNN
h

(2.67)
where OtE, O are the standard deviations of the east and north components,

Op is double-differenced phase measurement noise, Dgg and DnN are the
diagonal terms of the cofactor matrix corresponding to the east and north
components under unit measurement standard deviation. The azimuth DOP is

defined as:
AZDOP = v/ cos2oDgg + sin0.Dny (2.68)
Hence
Saz = 2P AZDOP
D (2.69)

The elevation DOP (ELDOP) is derived from eqn (2.48).That is:

d EI dDU dDU
/p2-pj Dn (2.70)
The ELDOP is:
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OEL =0u gp——VDOF’
Dn Dp (2.71)

Hence
ELDOP = VDOP (2.72)

If Dy, is in the R or P axis direction of the body frame, then egn (2.71) is the pitch
or roll error.

The above AZDOP and ELDOP definition is similar to those proposed by
Brown & Evans (1990) derived from uncorrelated double-differenced
measurements by Gram-Schmidt orthogonalization (Balakrishnan, 1987) and
the use of baseline length D instead of the horizontal baseline length Dy, in
eqgns (2.69) and (2.71) For a small elevation angle, D and Dy are not
significantly different ( but not in the case of a large elevation angle).

3) Computational considerations:

The attitude angle and error computations discussed above are perhaps the
best understood means of attitude expression, but they are far from robust. This
lack of robustness can be seen by examining eqns (2.44)-(2.46) for the case of
p=90°. Note that although p can be recovered, r and y are lost (corresponding
to Dh=0). This situation corresponds to the 'gimbal-lock' problem of a three-
gimbal ring platform in INS in which the outer and inner gimbal rings are
coplanar and the platform loses one degree-of-freedom (O'Donnell, 1964). In
practice eqns (2.44)-(2.46) can be used for p < 60°. One solution to the
problem is to add another roll 'gimbal ring' to form a ‘four ring' system. The 'roll
ring' added is controlled by the pitch angle to make the 'outer ' and inner rings
nearly orthogonal at all times. This will make the computation of the direction
cosine matrix complicated because now the pitch and roll angles are a function
of the ‘'outer roll ring' attitude. Another solution is using quaternion
parameterization instead of the direction cosine matrix (Klein et al., 1965;
Farrell, 1976). Although many parameterizations of the direction cosine matrix
are possible, quaternions offer conciseness, efficiency, and stability not
possible with other parameterizations. The impiementation of quaternion
parameterization algorithms for GPS ADS is still under development.
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4) Length or angle:

The above methods are based on the baseline vector computation in order to
derive attitude information, and this induces some problems. An alternative
approach is to derive the attitude angles directly from the GPS measurements.
Considering that the baseline vector change corresponds to the attitude
change for the baselines with fixed lengths, the linearized measurement
equation for the attitude can be derived from egn (2.51) as:

Vo = %LE[BK x I o + AnlS + bff + v 273
where Bk is the estimated kth baseline vector in the geographic frame, a is the
attitude error and An}}, b!f, V!,‘ are the ambiguity, bias and measurement noise.
Eqgn (2.73) avoids the computation of the direction cosines, and is suitable for
sequential estimation algorithms. Furthermore, after ambiguities are resolved,
three measurements are enough for attitude determination. Eqgn (2.73) is based
on the assumption that the attitude error is small, hence the initial value should
be quite accurate, and a high measurement data rate is necessary to update
the baseline vector Ek. Generally speaking, this method is more suitable for a
low dynamic body, or a body with an INS installed.

5) Angle and angle rate:
The rate of change of attitude information is contained in the between antennas

Doppler (or phase-rate) measurements. According to egn (2.51) the phase-
rate measurement can be written as:

V(I) j  * *j
— -+ DIn*ii
o = Dlohi + Do’ (2.74)

Similarly, the attitude change can be measured by the delta-range
measurements. If the data rate is high enough (at least twice that of the attitude
change frequency of about 10 Hz for a land-vehicle to perhaps 50 Hz for a
helicopter, according to Cannon, 1993) the attitude change envelope can be
recovered from the Doppler measurements.

6) Two or more antennas:

Two antennas form a pointing system, while three antennas comprise a full
ADS with one angular redundancy. For a three antenna-two baseline system
the optimal configuration is an orthogonal frame formed by the antennas
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(although the frame need not necessarily be parallel to the body frame), with
the longest effective baselines that can be obtained. Adding more antennas will
increase the ambiguity resolution efficiency and quality, and the accuracy of the
attitude determination by permitting direction cosine averaging and

orthogonalization.

7) Independent or integrated systems:
The independent ADS can work 24 hours a day, anywhere in the world. The

potential accuracy of long baseline-high performance ADS can be compatible
to that of a high performance INS without solution drift, and system calibration
and alignment (Karels et al.,1994; McMillan et al., 1994). The ADS attitude
update rate is between 1 to 10 Hz (Cohen,1992; Diefes, 1994), which is much
lower than that of an INS, which can be as high as 100 Hz. Therefore it is only
suitable for relatively low dynamic bodies. The main problem with GPS ADS is
GPS signal reliability and quality (which can be monitored by supporting
navigation systems). For an ADS comprising 1 metre baselines, if the attitude
error is under 5.5 degrees there will be no ambiguity and cycle slip problems,
and this requirement is achievable even using a low cost fibre-optic gyro INS or
gyrocompass. Furthermore, the bandwidth of the tracking loop of the INS-aided
GPS receiver can be narrowed and the measurement noise reduced. Although
an INS can be calibrated by the position and velocity information obtained by a
single GPS receiver, the accuracy of the calibration is not very high considering
the inherent point positioning accuracy of GPS. The accurate attitude
information offered by an ADS can be used directly for monitoring the gyro drift,
which is the main error source of the INS. Through integration of GPS ADS,
position, velocity and attitude calibrations can be obtained for the INS, while
high accuracy position, velocity and attitude information at a high output data
rate are available to the user.

8) Dedicated or non-dedicated receiver:

A dedicated ADS receiver is designed especially for attitude determination.
The signal received by the separate antennas are processed by channels
which are under the control of a common oscillator and hence good signal
synchronization is obtained. All common mode errors of the system are
cancelled because the phase observables in each channel are synthesized
from only one replica code generator and one replica carrier generator, to
produce simultaneous interferometric measurements between the antennas.
The carrier tracking bandwidth is optimized according to the ratio of signal to
noise, typically 1/20 Hz for dynamic movement to 4 g (Jurgens et al., 1992), and
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a 0.15 mm static double-differenced measurement noise is claimed (Brown et
al., 1990). For antennas which have a relatively large gain for the signals of
low elevation satellites, a minimization of multipath and the interference effects
of neighbouring antennas through the use of a choke ring or other such
devices together supporting software optimized for attitude determination in
real time, high system performance can be expected. In the case of a 1 metre
static baseline, sub-milliradian azimuth accuracy has been reported (Ferguson
et al., 1991; Charles et al., 1993). Generally, the elevation (or pitch and roll )
accuracy is about 2 to 3 times worse than that of azimuth because of the
inherently large estimated height error of GPS. The azimuth accuracy in
dynamic mode is not very consistent, ranging from 0.5 milliradian for a 1 metre
baseline (Brown et al., 1990) to 2 milliradian for a 3 m metre baseline, and 1 to
4 milliradian for a 50 metre baseline (McMillan, 1994), depending on the
systems used, the body's dynamics, the operational environment and the

satellite geometry.

A non-dedicated GPS receiver ADS is more versatile and is therefore
potentially cheaper than a dedicated system. The performance depends on the
characteristics of the receivers used. Agreement between GPS and INS
attitude at a level of 3-7 arcminutes for 7-10 metre baselines was reported
using NovAtel GPSCard™ receivers (Cannon, 1994). In another experiment
the mean errors of 5.2 and 11 milliradian and maximum errors of 21.1 and 53
milliradian for azimuth and elevation were reported for a 1 metre baseline
using Magnavox GPS Engine™™ receivers with low dynamics (Cannon, 1992).
Usually, only post-processed attitude information is available from such non-

dedicated systems.
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CHAPTER 3

NAVIGATION AND NAVIGATION SYSTEMS

In this chapter the basis for the development of the mathematical models for
navigation is presented. The navigation systems and sensors generally used in
marine navigation are discussed. Emphasis is placed on the inertial navigation
and dead reckoning systems, as well as the optimal integration of these with
GPS and other navigation systems.

3.1 Navigation Systems

3.1.1 Omega

Omega is a terrestrial RF based system (for background details the reader
should refer to proceedings of the 12th Annual Meeting of International Omega
Association, Hawai, 1987; Forssell, 1991). Eight continuous wave (CW)
stations are located around the world transmitting time-shared signals on four
very low (VL) frequencies (10.2, 11.33, 13.6, and 11.05 kHz). Each station is
identified by a further-unique frequency which also contributes to improving the
measurement accuracy.

Omega is a hyperbolic positioning system and the positioning function is based
on phase difference measurements. Phase ambiguity can be resolved if the
navigator knows his approximate position to within about 36 n.m. (nautical
mile). The main advantage of Omega is its nearly global coverage and an
availability of 97% to 99% (Warren, 1990). The main disadvantage of Omega
however is its low positioning accuracy, typically only of the order of 4 n.m.
(mainly caused by the unpredictable effects of VL wave propagation). The
Omega signals effectively propagate in the waveguide formed by the earth's
surface and the D-region of the ionosphere, hence it is the condition of these
two surfaces which most affect Omega phase lag error. The height of the
ionosphere is primarily affected by solar illumination, which produces a
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pronounced diurnal component to the Omega phase lag. In addition, the
earth's surface conductivity along the signal path has a significant effect on the
phase lag. These factors can be modelled and compensated to a large extent,
and are available to users as "Phase Propagation Corrections”
(McMillan,1988). In addition to refraction effects, the positioning accuracy of
Omega is influenced by station-vessel geometry, the station pairs used, and the
time of day. The accuracy can however be improved by using Omega in
differential mode. There are some reference transmitters in Europe and on the
North American coast which compute the propagation error and transmit this
information on a special communication channel to users within their operating
area. The accuracy of differential Omega is claimed to be of the order of 0.5
n.m. when within 100 n.m. of a reference transmitter (Morris et al., 1989). This
accuracy is still not adequate for navigation within confined waters, hence
Omega has only been suitable for navigation in the open seas.

3.1.2 Loran-C

Loran-C is also a terrestrial RF based system in which one master transmitting
station and two to four secondary stations form a chain. The transmitters utilize
the same 100 kHz carrier frequency, but transmit puises in time sharing mode
within a certain interval. The coarse measurements are used to find the
approximate times of arrival of the pulses, and then the phase of the carrier is
measured to obtain a better accuracy. The time delay of arrival of signals from
the transmitters of the master and secondary stations provides range difference
information, or equivalently a hyperbolic line of position. The coverage of
Loran-C is limited by the effective range of ground wave propagation. This
range is of the order of 2000-3000 km over sea during the day and about 30%
less at night. If the signal propagates over land the range decreases by at least
10-15% (Last et al., 1993) . The Loran-C errors are primarily phase lag errors
and corrections for these errors known as PF (Primary Factor), SPF (Secondary
Phase Factor) and ASF (Additional Secondary Factor) are modelied and
calculated to improve the accuracy of time delay measurements (Enge et al.,
1988). Loran-C can also operate in differential mode and tests have
demonstrated accuracies of the order of 8-10 m for short-ranges from the
reference station (Forssell, 1991). Differential Loran-C is a promising means of
navigation in narrow waters. Loran-C chains, conventional and differential,
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have been set up mainly along the European, North American and North
African coasts, as well as the Russian and China coasts. The Russian
counterpart of Loran-C is called Chayka (“sea gull").

3.1.3 Radar

Although the main function of radar is collision avoidance, radar is still a
important tool for coastal and near harbour navigation, especially during
conditions of restricted visibility.

The principle of radar is quite simple. Pulses of short wavelength are
generated by a radar transmitter and radiated in a narrow beam by means of a
directional and rotary aerial. When they encounter a object, the pulses will be
reflected by the object and a radar receiver detects the returning echo. By
accurately measuring the time elapsed between the transmission of the pulse
and reception of the echo the distance to the object is determined. The
direction of the aerial gives the bearing to the object. Typically, marine radars
use the X-band ( 10 GHz, wavelength 3 cm) and S-band (3 GHz, wavelength
10 cm) radio signals. The S-band signal is used in wet weather to decrease the
absorption effect of atmospheric humidity. X-band and S-band signals
propagate along nearly straight lines and the maximum operating range, or
radar horizon, is nearly equal to the visual range (Terheyden, 1986), defined by
the approximation relation:

R=2.23[{Hra +YHob] (3.1)
where:
R radar horizon in n.m.

Hra height of radar aerial above sea level (in metres)
Hob height of object above sea level (in metres)

The radar impulse duration is about 0.05 to 1.5 Hs corresponding to about 15
to 450 m of pulse length. The radar range resolution or range discrimination is
equal to half the pulse length. The bearing resolution is about 0.6° to 2°, which
is the horizontal beam width of the radar pulse. Hence the range
measurements are more precise than the bearing measurements, and the
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basic position fixing method by radar is the "range-range" mode. The position
accuracy of radar fix is primarily dependent upon the identification of the
objects and the geometric shape, which effects the power of the reflected radar
pulses. From a radar beacon set up in some area, precise radar measurements
can be obtained.

3.2 Inertial Navigation System (INS)

INS is a self-contained navigation system whose heart is the Inertial Measuring
Unit (IMU) comprising gyroscopes (gyro) and accelerometers as well as the
platform. Gyros and accelerometers measure INS platform's angular variation
or angular velocity and linear accelerations in relation to a certain reference
system. Once the INS is supplied with initial position and attitude information, it
is capable of continuously updating the platform's position, ground speed and
attitude. Because an IMU measures non-gravitational acceleration, INS has to
take into account the effects of gravity and earth rotation. Another source of
error is imperfections in the IMU: gyro drift error, bias and scale factor errors of
gyro and accelerometer, assembly error and initial alignment error. All the
errors have different signatures and mathematical expressions, depending on
the structure of the INS and the mechanization of the navigation equations.
Generally speaking, these errors have bias and long oscillation period (low
frequency) characteristics. The INS platform's speed and position are derived
by integration of the IMU measured accelerations and hence their errors will
increase with time. Compared to other navigation systems INS has good high
frequency performance and is very sensitive to rapid changes of the platform's
states. On the other hand, the positioning characteristics of GPS and other
radio navigation systems are those that can be described as "averaging” and
are therefore not very sensitive to the high frequency noise, and have only a
good low frequency performance.

The following analysis, and the contents of Appendix 1, provides a full
summary, modification/unification and simplification of the INS mechanization
and error analysis based on the following materials: Britting, 1971; Farrell,
1976; Schwarz, 1979; Schwarz, 1980; Caspary, 1987; Schroder et al.,1988;
Huddle, 1989.
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The INS model simplification assumes that the second or higher order errors
of gyro, accelerometer and platform can either be neglected or modelled as
noise due to the availability of a high calibration rate for the INS by external
navigation systems such as GPS. The height channel of an INS is included in
the system model and mechanization. The reason is that for marine vessels the
mean value of the height change about the centre of mass of the vessel can be
considered to be zero, and can therefore be used as a constraint for the height
channel of the INS. Furthermore, the height can be obtained from GPS
measurement and the time integration in the INS height channel can be
restricted to the short periods between GPS measurement epochs, avoiding a
large system positive feedback which will cause the height channel to become
instable. In this way the accurate height change and change rate can be
obtained from the INS height channel and the GPS measurements. This fact is
useful for GPS measurement corrections such as cycle slip detection and SA
compensation (Wong et al.,1988; Hein G. et al.,1988; Loomis, 1990; Negast et
al., 1990; Lipp et al.,1994).

There are two main classes of INS in use: the analytic system (strapdown
system) and the semi-analytic system (platform system), as indicated in Fig. 3.1.

INS
/ \
Platform System Strapdown System

l \
Local Level System i Space-Stabilized System
\

North-directed Wander-azimuth Free-azimuth Rotating-azimuth

System System System System

Figure 3.1. Specifications of INS.
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For all INS systems the basic navigation equation is (see Appendix 1.1):
V=a-2Q+w0)xV+g (3.2)

where a is the output of the accelerometers, Q is the angular velocity of earth
rotation, w is the platform's angular velocity relative to the earth, V is the
platform's velocity relative to the earth and g is the acceleration due to earth

gravity.

All inertial navigation systems perform the following functions:
1) Instrument a reference frame.

2) Measure specific force.
3) Have knowledge of the gravitational field.
4) Time integrate the specific force to obtain velocity and position.

The structure and function of INS are illustrated in Fig. 3.2.

accelero- a + Vp \'}
meters = < ) ——— 1/s 1/s e
2Q+w)xV-g

platform

gyros |l | computer lLg

Figure 3.2. The structure of an INS.
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a output of accelerometer

Vp platform's velocity relative to earth

Q  earth's angular velocity

w  platform's angular velocity relative to earth
¢ platform's command

g gravitational acceleration

3.2.1 Semi-Analytic INS

The IMU of a semi-analytic INS is a stabilized platform. The platform is usually
stabilized in either the inertial space or a local level frame. It's main
components are: 1) three one-degree freedom gyros or two two-degree
freedom gyros, 2) two or three accelerometers, 3) three gimbal rings (for pitch
or roll angle that is larger than 900, there is a fourth gimbal ring to prevent the
rings from "gimbal-lock"), 4) servo loops (see Caspary, 1987).

3.2.1.1 Local Level Systems

For local level stabilized systems the sensitive axes of the gyros and
accelerometers comprise a Cartesian coordinate frame, and follows the local
level by making the undamped oscillation period of the platform equal the
Schuler period (84.4 minutes). The azimuth of the platform can be fixed in any
direction or left totally relaxed. When there is no torque acting on the gyro, the
spin axis of an ideal gyro is fixed in a certain direction in inertial space. In order
to make the platform follow the inertially rotating local level frame, there is a
need to put torque through the servo system of the platform to compensate for
the earth's rotation and the platform's movement. Because the platform is kept
in local level orientation and the outputs of two horizontal accelerometers have
no components of the earth gravity (and hence there is no need to compensate
it), high navigation precision is available but at a cost of a complicated platform
mechanism.

There are different kinds of local level systems depending on the method of
azimuth gyro control:
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1) North-directed system:

The platform keeps tracking the geographic frame whose origin is of the
platform centre. The body's attitude and course are obtained directly from the
platform attitude and the computation burden is therefore light. Its main defect is
that the platform should be kept north-directed at all times. In high latitude
regions where east-west velocity causes a large longitude change rate, the
platform requires a large torque to be applied to the azimuth gyro to make the
platform north-seeking, see eqns (A.1.2.8) to (A.1.2.10), and a large scale factor
error is induced. When at the pole, the platform needs an infinitely large torque
to make the platform change 180 degree in azimuth instantly, something that is
impossible to accomplish. Furthermore it requires a long time for initial
alignment to force the platform into a north-directed state. In practice, a north-
directed system is only capable of working satisfactorily in regions where
latitude is less than 60 degrees.

2) Wander-azimuth system:

This type of system only compensates for the perpendicular component of the
earth's rotation. The azimuth of the platform is not fixed in any direction, and it
varies according to the platform's east-west velocity and latitude, see egn
(A.1.3.1). There is no need to compensate the platform's east-west velocity,
hence the system can function in high latitudes. Compared with a north-
directed system, the body's position and attitude cannot be obtained directly
because the platform's frame is not coincident with the geographic frame due to
azimuth wandering. More computations are therefore required to calculate the
direction cosine matrix and the earth curvature, which changes with azimuth

and latitude.

3) Free-azimuth system:

This type of system has no command torque applied to the azimuth gyro. The
azimuth of the platform can settle down in any direction in the local level, and
keeps changing even if the platform is stationary, see egn (A 1.4.1). Because
only small torque is applied to the azimuth gyro to compensate for the gyro drift,
the effects of gyro scale factor error and Coriolis acceleration is also small.
Free-azimuth systems can function in high latitude regions but the navigation
computer workload is larger than that of the wander-azimuth system.
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4) Rotating-azimuth system:

This system is based on the fact that the effects of the drift of horizontal gyros
and the bias of accelerometers can be reduced if the platform is rotated around
it's vertical axis. A constant torque is applied to the azimuth gyro to make the
platform rotate relative to inertial space with a constant angular velocity, see
egn (A.1.5.1). Although this procedure can reduce the constant errors of
horizontal gyros and accelerometers, if the scale factor error of the azimuth
gyro is large, then the large constant torque will induce large error. To
overcome this problem, a periodic direction-changing torque can be applied to
the azimuth gyro instead of a constant one, a so-called oscillating-azimuth
system results. Both rotating and oscillating systems can function in high
latitude regions and both need gyros of high dynamic performance, and a
powerful computer to guarantee navigation computation precision.

3.2.1.2 Space-Stabilized Systems

The platform of such systems physically realizes an earth-centred, inertially
non-rotating frame. The platform is stabilized in inertial space and the sensitive
axes of the accelerometers point in fixed directions in inertial space. Except for
small compensation torques applied to the gyros to account for acceleration
sensitivity, anisoelastic effects, temperature sensitivity, the gyros are
uncommanded and there is no compensation for earth rotation and platform
attitude change. Hence the output of each accelerometer includes the
components of the earth gravity, which vary with position and have to be
compensated for. The mechanism of the space-stabilized platform is much
simpler than those of local-stabilized platforms. The navigation precision
mainly depends on the quality of the compensation of the earth gravity. The
space-stabilized system is principal used in survey practice INS, with the
GEOSPIN of Honeywell being a typical example (see Eissfeller, 1989, for
details).
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3.2.2 Analytic Systems

Analytic systems have no physical platforms, and the gyros and
accelerometers are mounted directly to the body. The gyros and
accelerometers measure the angular velocity and acceleration of the body
relative to inertial space and the directions of the accelerometers change
according to the changes of body's attitude. Setting up of the frame,
determining the body's attitude and performing the computations are all
carried out by a navigation computer. Hence there is an analytic platform within
the system which can be implemented mathematically in different iocal level
systems, such as local geographic frame, wander-azimuth frame, etc. (see

Appendix 2).

For a stationary base, the error propagation characteristics of a strapdown
system are similar to that of a platform system. The errors of a strapdown system
also consist of three components: Schuler oscillation, Foucault oscillation and

24 hour oscillation.

Compared with the platform system, a summary of the characteristics of the
strapdown INS system (SINS) is presented below:

1) Because there are no complicated platform mechanisms and associated
servo system, the hardware of the SINS is simpler and easier to maintain, and
hence its cost is correspondingly lower. The reliability of the system is high: for
example, the MTBF (Mean Time Between Failure) for a laser gyro SINS is 2000
to 4000 hours, while for the platform system the MTBF is 500 to 1000 hours
(Stieler et al., 1982)

2) The body's attitude, course, position, velocity, acceleration, angular velocity
and angular acceleration are all provided by the computer. There is no need for
any intermediate loops and sensors, and hence the information can be
transferred directly to navigation, guidance and other control systems.

3) SINS impose high requirements for the inertial devices, especially the gyro
which has to operate across a large dynamic range. Vibrations and other
external interference will detericrate the performance of the devices. Usually, the
precision of an accelerometer working on a vibrating base is one order less than
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that working on a stationary base, and this will directly influence the navigation
precision obtained.

4) The accelerometers are subjected to the components of the earth gravity as
the body rolls and pitches, reducing the measurement accuracy and exciting
cross-axis errors. The accelerometer bias errors accumulate.

5) The body's motion induces unique sensor errors (torquer error, anisoinertia,
output axis angular acceleration), which can be partly compensated.

6) Most SINS use the optical gyros, such as the ring laser gyro (RLG), fibre-optic
gyro (FOG), and hence exhibit high reliability and excellent input axis stability
due to their solid-state configuration (and solid-state accelerometers, such as
silicon micromachined accelerometer and quartz vibrating beam accelerometer).
The random walk drift of a RLG and FOG is of the order of 103deg./{h (Stieler et
al.,1982; Killian, 1994), compared with 10°%deg./Yh for electrostatically
suspended gyroscopes (ESG) (Adams et al.,1981). A disadvantage of the optical
gyros is that they are sensitive to the gradient of temperature and its noise floor
is set by quantum effects (shot noise and spontaneous emission). For the RLG it
requires a special technique to eliminate the 'lock-in' effect, or working dead
zone (Stieler et al.,1982; Stieler,1982).

7) SINS have a high requirement for scale factor accuracy and linearity of the
gyro torquer. For example, a working angular velocity of 50 deg/sec and gyro
drift rate of 0.01 deg/h of a platform system of medium precision requires that the
scale factor error be less than 2x 10", But for a strapdown system working
under angular velocity 1 deg/sec and gyro drift rate 0.01 deg/h, the scale factor
should be less than 3 x 10°°. The larger the working angular velocity, the larger
the error caused by scale factor error.

8) The SINS computer must be fast enough to do all calculations in a few
milliseconds, with long enough wordlength to preserve computational precision.
Generally speaking, the computation speed of strapdown system should be
about 50 times that of a platform system.
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9) The inertial device cannot rotate as a platform system does and the errors of
the devices cannot be calibrated in the system alignment, and the system initial
alignment is also difficult. Hence SINS rely on sensor models, with real-time
calibration of the inertial errors. The error of initial alignment is large and will
influence the navigation precision.

Summarizing the errors, for an unaided SINS an accuracy of 1 mile-an-hour
using optic-gyro which has a typical scale factor accuracy 50 ppm is generally
accepted. In contrast, the accurate platform system is a 1 mile-a-day system,
which has a heading error less than 0.001deg/h (Lawrence, 1993).

3.2.3. INS Errors

The main INS error sources are:

1) Structure error: assembly error of accelerometers and gyros.

2) Device error: gyro drift and accelerometer bias.

3) Diqital to analog conversion error: scale factor errors of accelerometer, gyro,
and torque sensors.

4) Initial state error: initial attitude, velocity and position errors of platform.

5) Correction error: errors introduced by other navigation system for INS error
calibration..

The local-level INS error analysis is presented in Appendix 3.

The INS error characteristics of local-level systems can be summarized as
follows (in which points 3 to 7 are for north-directed systems) :

1) Generally speaking, in the case of moving base, eqgns (A.3.3.2) to (A.3.3.4),
(A.3.4.11) to (A.3.4.13), (A.3.5.3) to (A.3.5.4) can be linearized and used as the
state equations of dynamic estimation, oyherwise only numerical solutions of the
errors can be obtained. For a stationary base the errors can be expressed as
analytic solutions of a set of linear-constant differential equations, eqns
(A.3.4.18) to (A.3.4.19), (A.3.5.5) to (A.3.5.6).

2) Except for the free-azimuth system, the semi-analytic systems usually have
oscillation errors which have three different periods: 84.4 minutes for the Schuler
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oscillation, a 24 hour oscillation and the Foucault oscillation whose period varies
with latitude, see eqns (A.3.6.9) and (A.3.6.9). (The Foucault oscillation is the
envelope of the Schuler oscillation, or the Schuler oscillation can be considered
to be the carrier component of the Foucault oscillation.)

3) The position, velocity and attitude errors of a north-directed INS caused by
accelerometer biases and initial attitude errors are oscillation errors with the
Foucault oscillation and the Schuler oscillation, see Table A.3.6.7 and Table

A.3.6.10.

4) The platform drift rates mainly cause 24 hour oscillation errors along with the
Schuler and Foucault oscillations. The horizontal components of the platform
drift rate Ex and E; cause the longitude errors which increase with time, see

Table A.3.6.8.

5) The initial location errors have little effect on horizontal attitude, see Table
A.3.6.9. The horizontal attitude errors are primarily a kind of oscillation which
combine both the Foucault and Schuler oscillations, see Table A.3.6.8. The
initial longitude error has no effect on latitude error. The initial latitude error
causes oscillation errors in both latitude and longitude, the oscillation period is
nearly 24 hours and the longitude error is latitude-dependent. If the initial
alignment of system is perfect, then the Schuler oscillation component will be
eliminated from each error and the 24 hour oscillation will be the main term
responsible for position and azimuth errors.

6) The latitude, longitude and velocity errors consist of three oscillations:
Foucault, Schuler and a 24 hour oscillation (the main part), see Table A.3.6.7 to
A.3.6.10. Because the Foucault oscillation is the envelope of the Schuler
oscillation, therefore if there is a damping system to eliminate the Schuler
oscillation, it will also eliminate the Foucault oscillation.

7) The gyro drift causes the platform to drift directly, and is proportional to
platform commands, see eqns (A.3.3.2) to (A.3.3.4). Assuming the minimum
platform command equals 30 deg/h and the platform drift rate is less than
0.003%h, the scale factor error should be less than 1x10" % and assembly error
less than 20". The horizontal attitude errors are mainly depend on the
accelerometer biases. If the initial alignment is not perfect, or the biases of
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accelerometer are changed, there will be Schuler oscillation terms in the attitude
errors.

8) In the case of a wander-azimuth system the platform frame is generally not
coincident with the geographic frame, hence the drifts of three gyros will all
cause position errors which increase with time. Assuming 45° latitude and the
drift rates of azimuth and north gyros being equal to 0.01deg/h, it will
approximately cause a 0.84nm/h position error.

9) In the case of a free-azimuth system there are only Schuler oscillation and 24
hour oscillation (but no Foucault oscillation). In the case of a rotating-azimuth
system the horizontal gyro drift errors will be modulated and averaged, but not in

the case of the drift of azimuth gyro.

10) The navigation errors caused by random error sources are divergent, and
the divergent speed is proportional to Vt, see egns (A.3.7.1) and (A.3.7.2).

11) The height and vertical velocity errors of INS increase with time and have to
be constrained by external height measurements.

12) In the stationary base, the eigenfunction of SINS errors is the same as local-
level systems, see eqn (A.3.6.2), and the error propagations have the same
oscillation characteristics as those of local-level systems.

13) INS needs external navigation equipment to provide system initial alignment
and device calibration, and on-the-fly error correction and calibration, in order to
guarantee navigation accuracy.

3.3 Navigation Equipment

The navigation equipment referred to here is mounted on a body or vessel and
performs the function of dead reckoning (DR). For marine applications there are
mainly two types of equipment used: gyrocompass for the heading direction and
speed log for the velocity measurement.
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3.3.1 Gyrocompass

A gyrocompass is actually a gyro of two degree-of -freedom mounted on gimbal
rings or supporting system, and using the property of direction-fixing and
precession relative to inertial space to make the spin axis of the gyro meridian
seeking. The ideal gyrocompass indicates true north or meridian direction.

There are essentially two types of gyrocompass: single-rotor types such as the
Sperry type, Brown type and Arma-Brown type, and double-rotor types such as
the Anschutz type, Plath and Arma type. About the principle of the north seeking
of gyrocompass, please see Fabeck, (1980); Christou, (1983).

3.3.1.1 Gyrocompass Errors

The gyrocompass can be considered to be a linear-stable-underdamped second
order system, and its undamped natural frequency is the Schuler frequency
making it independent of a body's manoeuvre. The total dynamic response of a
gyrocompass in the stationary base is (the following equations are modified from
Christou ,1983):

oft) = ot + ass (3.3)

where:
oft) deviation angle of the gyro spin axis from the meridian

o7 transient response
0ss steady state response

and
or = Om €t cos(ft - y) | (3.4)

where Om is approximately equal to the initial deviation angle of the gyro spin
axis from the meridian:
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Om = {[oc(O)]z + {ro(O) + %d(O)r}Z ~ o(0)

f (3.5)

and
o damping coefficient
f damped natural frequency which is a function of latitude and its
period is about 100 to120 minutes (Terheyden & Zickwolff, 1983)

v = tg 19a(0) + %d(O)/oc(O) =0

f (3.6)

ass = - 719 (3.7)
where 7 is the deviation angle of the gyrocompass gravity centre to the east.

From eqgns (3.8) to (3.7) it can be seen that the transient response of a
gyrocompass is a damped, periodic oscillation and will be zero as time
increases. The steady state response, called the damping error or latitude error,
is a function of latitude. At low latitude its value is very small because Y is small,
but at high latitude this value will increase enormously. The latitude error is
corrected by setting the latitude corrector of the gyrocompass to the correct
latitude of the body's position. At steady state, the spin axis of the gyro will settle
in nearly the meridian direction with a deviation of the latitude error and will be

nearly parallel to the local level.

In a stationary base, the direction of the gyro spin axis is in coincidence with the
horizontal component of the earths rotation, and the precession of the axis is
equal to the vertical component of the angular velocity of the earth's rotation. The
horizontal component of the earth's rotation is the useful part and the directive
force of a gyrocompass is directly proportional to it. Therefore at the equator the
directional force is a maximum and at the poles it is zero. At high latitudes, the
directive force is so small, and the damping period is so large, that the
gyrocompass cannot return to north direction rapidly in the presence of
interference torque, and the latitude error increases so quickly that the
gyrocompass becomes useless. In general, gyrocompasses can only operate
satisfactorily in the region of latitude < 70 degrees.
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When a body is moving, the angular velocity of the body relative to the inertial
space is equal to the sum of the angular velocity of the earth's rotation and the
angular velocity of the body relative to earth, see egn (2.10). Assuming the body
is moving with constant velocity V relative to the earth with course H, the
gyrocompass is now searching the dynamic north, not the true north because it
is incapable of distinguishing between the angular velocities of the earth and the
body and it senses the resultant inertial angular velocity instead, as shown in
Fig. 3.3.

dynamic true
north north

apparent linear

velocity
- - - east
Vix RQcoso + Ve

Figure 3.3. Course and speed error of gyrocompass.

The total dynamic response of the gyrocompass in a moving base is the same as
eqgn (3.3), but the steady state response has an additional term &:

V cosH
RQ cose + V sinH (3.8)

ass =-ytgo +1g -1

8 is the deviation angle of true north from dynamic north. it is a small angle and
its minimum value (zero degree) is obtained when travelling in an easterly
direction (H = 90°) and the maximum value occurs when travelling in a northerly
direction. The speed and course error of a gyrocompass can be corrected using
the outputs of log and gyrocompass itself approximately.

The inertial force caused by a body's acceleration can be decomposed in north-
south and east-west components. The east-west component causes a moment
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whose direction is parallel to the gyro spin axis and does not cause the gyro to
precess. The north-south component causes a moment, which causes the gyro
spin axis to precess. A north acceleration make it precess towards the west and
a south acceleration towards the east. Therefore the acceleration error is

proportional to cosH.

The inertial force caused by the pitching and rolling of the body also imparts
moments to the spin axis of a gyrocompass to make it deviate from the meridian.
For a vessel, the moments have periodic oscillations and their periods are much
shorter than the damped oscillation period of input and output axes of
gyrocompass (100 to 120 minutes). The deviation angle, called the pitching-
rolling error, is proportional to the product of the two horizontal components of
acceleration caused by the pitching-rolling, and deviates towards one direction
because the signs of the horizontal components of the acceleration change at
the same time. The acceleration caused by pitching and rolling in rough seas
can induce an error as great as 20 degrees. There are mainly two kinds of
compensation for the pitching-rolling error depending on the structure of
gyrocompass. For a double-rotor gyrocompass, the double-rotors are so
arranged that an additional precession freedom is present and the precession
around the north-south axis (spin axis) of the gyrocompass is stabilized. This
precession period is increased from a few second to 10-20 min (Terheyden &
Zickwolff, 1983) to make the system insensitive to horizontal oscillation of
acceleration. For a single-rotor gyrocompass, a built-in liquor-ballistic
mechanism is used to delay and damp the effect of the north-south component
against the east-west component to eliminate the harmful torque about the input

axis of the gyrocompass.

Other gyrocompass error sources are the gimballing error which is due to an
imperfect support system, and random error. In the case of a gyrocompass
aboard a vessel, well adjusted for latitude and speed and course, its deviation
can be under 0.5 degree, and the deviation is kept constant for all heading

directions.
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3.3.2 Speed Log
The function of the vessel's log is to measure velocity and distance travelled.

There are quite a number of logs, operating on different physical principles,
among them being the Doppler log used in this study (Fig.3.4).

3.3.2.1 Doppler Log Principle

, signal velocity
oscillator -
processor mdacator
transmitter receiver integration
transmit-receiving distance |
switcher indicator
sound sound
transmitted reflected

Fig.3.4. Doppler log blockchart.

The principle of the Doppler log is that the vessel's velocity is proportional to the
frequency shift between the acoustic signal transmitted from the vessel and that
received back by the vessel. This Doppler frequency shift is due to the relative
motion of the sound source and the propagation medium. The Doppler
frequency fq equals:

—f C+ Vcosa

fa C - Vcosa (3.9)
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where:
f transmitted frequency of the sound wave
C propagation speed of the sound wave in water
o angle between the vessel's speed vector and the sound wave

A transmitting transducer below the vessel continuously emits a beam of sound
vibrations in the water at an angle o (usually 60° to the keel) in the forward
direction. A second transducer receives the echo caused by diffuse reflection
from the sea-bed or sea water layer. A third transmitting transducer directs a
sound beam in a backward direction and a fourth receiving transducer receives
its echoes. This arrangement is called the Janus configuration (Sonnenberg,
1978).

Because C is approximately 1500 m/sec in sea water and is quite large
compared to the vessel's speed, by expansion and neglecting high order terms
in eqn (3.9):

fi=f (1 +2¥ coso)

C (3.10)
—f(1-2V
fo=1(1 o COSq) 3.11)
V=_C (f-f
4fcosoc(f o) (3.12)

where:
f Doppler frequency measured by the forward transducer
f, Doppler frequency measured by the backward transducer

3.3.2.2 Doppler Log Errors

Actually C and a are not constant. o varies as the vessel pitches. For the Janus
configuration the vertical movement of the vessel does not influence the Doppler
shifts because of the equal Doppler shift changes for the forward and backward
beams. By using the Janus configuration, the error caused by pitching will be
reduced because the resulting Doppler shifts are not affected since the increase
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and decrease of the speeds of the forward and backward beams are nearly the
same, and the difference of the Doppler shifts of forward and backward beam is
also not changed, see eqgns (3.10) to (3.12). With a trim angle of 10°, the relative
error of speed measured is about 1%.

The speed of sound C depends on water temperature and (to a smaller degree)
on the salinity and water pressure (Terheyden & Zickwolff, 1983):

dc /% = 3.6 xdT /c°
dc /% = 1.2 xdS /Y%

dc /% =~ 0.2 x dp /bar

where:
dc variation of the speed of sound
dT variation of temperature of sea water
dS variation of salinity of sea water
dp variation of pressure of sea water

Because of temperature differences in the ocean layers, sound waves do not
travel in a straight line. Instead, they follow a curved path, resulting in bending,
splitting and distortion of the directed sound waves. A sound beam bends away
from a layer of high temperature, and bends towards a layer of low temperature
(Navpapers, 1963). The horizontal layers of sea water of different temperature,
salinity and pressure have no influence on the measurements of the Doppler log
because the reverse frequency change of the echo will cancel out the first
frequency change of the transmitting beam. The frequency drift of the transmitter
has no influence on the measurement of log because the Doppler shifts received
by the forward and backward transducers change by the same value with the
same sign, and the quotient (f; - fp) / f is not changed.

The measurements of the Doppler log depend solely on the speed of the sound
waves. If there is a 5° C temperature change it will cause a change of sound
speed, and result in a measurement error of the vessel's speed of about 1.2%.
Some equipment uses a thermistor or velocimeter mounted near the

63



transducers. Deviations of the sound speed from the normal value are passed to
the system computer for correction of its calculation. Other logs (those of Krupp
and Thomson CSF (Sonnenberg, 1978)) apply automatic methods of correction
for changes in the sound speed by using a large number of electrostrictive
elements of PZT material. The elements are fed with voltages that differ in phase
and the sound waves have the same phase difference. The sound propagation
is always perpendicular to a wave front and the wave front is controlled by the
distance between the electrostrictive elements. This method keeps C/cosa

constant.

In general, the sound beam of a Doppler log is absorbed and scattered by the
mass of water between 200 to 400 metre depth, the so-called deep scattering
layer (DSL). When reflections are received from this layer the speed of the
vessel is determined relative to that layer, and not relative to the sea bottom.
Generally a Doppler log of the navigation type can only measure the ground
speed of a vessel in waters up to a depth of about 200 metres. The depth
penetrated by the sound wave is dependent on the sound wave frequency
transmitted (the higher the frequency, the greater the depth). Apart from the effect
of the DSL, the water at 10 to 30 metres below the vessel's keel also causes an
echo, called 'water track' (as opposed to 'bottom track'). Some Doppler logs
such as the Krupp Atlas type can work in both ‘ bottom track' or ‘water track’

modes.

The following average performance is based on data supplied by producers of

Doppler log (Sonnenberg, 1978):

Accuracy: 0.2 to 0.5 per cent of the distance travelled, plus 20
metres/hour drift of the set. For high speeds, e.g. 20 to 40
knots, about 1.0 per cent.

Velocity range: up to between 30 and 100 knots alongships, up to between
8 and 10 knots athwartships.

Minimum depth: about 0.3 - 0.5 metre.

Frequency of vibration in water: 100 to 600kHz.
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CHAPTER 4

GPS MODELS

Operation of the NAVSTAR Global Positioning System (GPS) is the
responsibility of the Joint Program Office (JPO), under the direction of the U.S.
Department of Defense (DoD). GPS is an ali-weather, space-based radio
navigation system which satisfies the requirements for the U.S. military to
accurately determine position, velocity, and time in a common reference system,
anywhere on or near the earth, on a continuous basis.

The GPS system consists of the space segment, control segment and user
segment, and supports two positioning service: the Standard Positioning
Service (SPS) and the Precise Positioning Service (PPS). The SPS signal
consists of the L1 frequency, the Coarse/Acquisition (C/A) code and the
unencrypted portion of the navigation message. SPS is available world-wide for
civil use and its positioning accuracy is 100 m horizontal (2 dRMS), which is
roughly equivalent to 76 m SEP (Spherical Error Probable). The true SPS
velocity accuracy is classified though 0.5 to 1.5m/sec velocity error have been
reported (Cannon, 1993). In most cases, SPS positioning accuracy satisfies the
requirements for ocean and coastal navigation for civil marine use. The PPS
signal comprises the clear SPS plus the encrypted signals and data transmitted
by the GPS satellite. Specifically, the PPS signal consists of the L1 and L2
frequency, the Y code (which is the encrypted form of the P code), and the
Selective Availability corrections. Selective Availability (SA) and Anti-Spoofing
(A-S) are the two methods used by the control segment to restrict access to the
PPS, and the hostile imitation of the PPS signal. The PPS is available to the
U.S. and allied military use, and limited civil use under stringent conditions. The
objective positioning accuracy offered by the PPS is 16 m SEP, though
accuracies of 8 m SEP have been reported (Jules, 1991), while the velocity
standard deviation is about 0.01m/sec. SA and A-S are presently activated
continuously on the Block Il operational satellites.
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4.1 GPS Observables

The complete signal leaving the satellite antenna can be represented by (Wells
et al., 1987):

AcC(1)D(t)sin(2rty + ¢c) + App(t)D(t)cos(2nts + ¢p1)
+ApP(t)D(t)cos(2nfy + ¢p2)

(4.1)
where:
Ac, Ap modulation amplitudes of the C/A and P codes
C(1) C/A code with a chip rate = 1.023 Mbps; period = 1 ms;
chip length = 1023 bits and wavelength = 293 m
P(t) P code with a chip rate = 10.23 Mbps; period = 266 days;

9 hour, 45 minute, 55.5 seconds; chip length =
235,469,592,765,000 bits; and wavelength = 29.3 m

D(t) data sequence with a data rate = 50 bps; frame length =
1500 bits; frame period = 30 seconds; the detail see (for
details see Van Dierendonck et al., 1980)

dc. Pp1. Pp2 small phase noise and oscillator drift components of C/A,
L1 P code and L2 P code

t, fo the nominal frequencies of the L1 and L2 carrier waves,
(The wavelength of L1 = 19 cm, and the wavelength of L2 = 21

cm)

The entire signal modulation and synchronization is controlled by the main
satellite oscillator with a fundamental frequency of 10.23 Hz. The navigation
data D(T) has a bandwidth of 100 Hz. Due to the modulation of the code signal,
the power spectrum density (PSD) of the GPS signal is spread. The bandwidths
of the P code and C/A code are 20 MHz and 2 MHz respectively. The spread
spectrum of the GPS signal makes it much less sensitive to interference and
jamming. The modulation errors, including phase noise and quadrature, are all
less than 50, the equipment group delay is less than 3 ns (2 o) (Wells et
al.,1987) and the RMS clock transition time difference between the C/A code
and P code clock is less than 5 nsec (Spilker, 1980).

The observation equations for code, carrier phase and range-rate are (adapted
from Rizos & Grant, 1990):
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P = p + dephem +C (dt - dT) + dion + dtrop + dmul + Ep
(4.2)

q): p +dephem+ C (dt = dT) + XN 'dion +dtrop +dmu| + Ep

(4.3)
D =p + dephem + C (dt - dT ) - dion + Qtrop + Amut + €0
(4.4)
where:
p geometric range between the satellite and receiver antennas
dephem  Ssatellite ephemeris error
dt: satellite clock error
dr receiver clock error
dion ionospheric refraction error
dirop tropospheric refraction error
dmul multipath error
AN carrier phase ambiguity

€p: €5, €D measurement noise

The superscript dot in eqn (4.4) refers to the derivative with respect to time.

4.2 GPS Erros
4.2.1 Satellite Errors

1) Ephemeris error:

The primary perturbing forces for the GPS satellites are earth-mass attraction,
solar radiation pressure, lunar and solar gravity. The nominal broadcast orbital
error is of the order of 5 to 25 m, with error peaks which have reached 80 m in
the past, and but which remain within 5 to 10 m now that GPS has been
declared fully operational (Lachapelle, 1990). For relative positioning, the vector
error caused by orbital error is approximately (Kleusberg, 1993):

vector error (m) =—9__ x orbit error (m
(M) =26,000 < OOt errer (m) (4.5)

67



where d is the baseline length in km.

For point positioning, the ephemeris error will bias the final position results in a
systematic way, depending on the receiver-satellite geometry. For most
navigation applications the ephemeris error is ignored.

2) Clock error:

The GPS satellites carry several frequency standards of the Rubidium and
Cesium beam type. The Rubidium standards exhibit deterministic drift
characteristics. The Cesium standards normally do not exhibit higher order
deterministic drift in frequency over the time periods of interest. They can be
characterized as a frequency offset plus random variations in frequency. Any
other characteristics are only observable over very long periods of time (over a
day or two). A second order polynomial function is adequate for representing the
drift characteristics of a satellite clock, and it also absorbs any secular relativistic
effects. In fact, for a reasonable time period a first order polynomial already
suffices to describe a Cesium frequency drift, though not for the Rubidium
frequency drift. The second order representation of clock error is uploaded to the
space vehicles as a part of the navigation message at least once a day by the
Master Control Station (via the network of Upload Stations) and the average
prediction error is about 5-10 ns (1-3 m). The prediction accuracies and
reliabilities of the satellite ephemeris and clock depend on the age of the data
upload, represented in the navigation message as AODE (Age Of Data
Ephemeris) and AODC (Age Of Data Clock). For 24 hours of data age, the
orbital error can increase 2 times and the clock error 6 times (Russell , et al,

1980).

3) Multipath:

Satellite multipath occurs when the transmitted signal bounces off part of the
satellite, before travelling down to the ground-based receivers. There are
several possible reflecting surfaces which can become prominent depending
upon the satellite-receiver elevation and satellite altitude. Although the
simultaneous presence of more than one multipath effect can lead to an
increasing chance of non-coherent interference of signals and reduce the total
multipath effect, as the satellite signals have a common time origin it can also
give rise to a beat pattern with a larger amplitude than that which an individual
reflection could produce. The satellite multipath effect is expected to be of the
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order of a few centimetres for baselines of a few hundred kilometres (Young,
1985), but it cannot be eliminated by differencing data between two receivers.

4) Selective Availability:

For the Standard Positioning Service, Selective Availability (SA) is the largest of
all the errors attributable to the space segment. The implementation of SA is
known to be a combination of clock dithering (3-type SA) and manipulation of
the ephemeris data (e-type SA). The orbital error term caused by SA has been
estimated to be up to 100 m with a correlation time of 3 minutes (Kremer et al.,
1989). However, little evidence has been found of e-type SA at present. The
clock dithering is implemented through the injection of errors in the satellite
clock drift term. Because the timing for all GPS satellites is controlled by one
master oscillator or frequency standard, clock dithering effects appear on code,
carrier and Doppler measurements simultaneously. The satellite clock
frequency error can be 5.6x10°12 under SA compared with 2.2x107'2 for the SA-
free case. Data analysis results provided by the JPO, and processed by DOT
(U.S. Department of Transport) indicate 1-sigma pseudo-range errors of about
30 metres, the Doppler measurement dispersion distribution is around 0.86
ns/sec, the range-rate errors are of the order of 0.13 m/sec, and acceleration
errors of about 0.0037 m/sec? with a 3 minute correlation time (Kremer et al.,
1989). Differential GPS can largely overcome the effect of SA. Experiments
carried out by Rocken & Meertens (1991) showed that SA modulated GPS
carrier frequency in the range of -2 Hz to +2 Hz over several minutes, and the
maximum effect of the satellite clock dithering on double-difference phase
residuals grew as a function of the clock synchronization error as 0.04 cm/msec,
and it increased as a function of baseline length at the rate of about 0.014
cm/100km. If the GPS receivers remain synchronized to better than 10 msec, the
SA dithering effect on double-difference processing techniques can be
neglected. For point processing the dithering effect is apparent. For example, if
HDOP equals 2, the velocity error range could be -0.76 m/sec to +0.76 m/sec,
according to +2 Hz frequency change, hence some real time estimation
techniques of SA may have to be considered (Matchett, 1985).

4.2.2 Propagation Errors

1) lonospheric refraction error:
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The time delay induced by the earth's ionosphere is directly proportional to the
TEC (Total Electron Content) along the path from the satellite to the receiver
antenna, and is proportional to the inverse square of the signal frequency. The
mean ionospheric delay at night is on the order of 10 m at the zenith and 50 m
during the day. At low satellite elevation angles the ionospheric delay can be 3
times these values. In regions near the geometric equator, or near the poles, the
delays and the latitudinal gradients of the ionosphere can be very larger,
particularly during periods of magnetic storms or intense solar activity. For the
dual frequency user, the ionospheric effect can be compensated (adapted from

Spilker, 1980):

dion(L1) =—A29___ ~1.5336 Ap

flo (4.6)

where dion(L1) is the ionospheric delay of the L1 code signal; fL1, fL2 are the L1,
L2 carrier frequencies and Ap is the difference between the L1 and L2 code
measurements.

For a single frequency user, the ionospheric delay can be compensated for by
applying the lonospheric Correction Algorithm (ICA) (Klobuchar, 1987). The
eight coefficients of this algorithm are transmitted as part of the satellite's
navigation message, and approximately 60% of the ionospheric error can be
accounted for using this algorithm (Feess & Stephens, 1987).

Similar relations exist for the Doppler or range-rate measurements. The range-
rate ionospheric delay can be expressed as (modified from Seeber, 1993) :

dion =~ - 1403 d(TEC)
sing 2 dt (4.7)

where:
6 satellite elevation angle
f signal frequency

and
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. 2
ion(L1) = (D12 - Du1) L2 = 1.5336 (Dr - Dy1)
fiy- o
(4.8)

where D 1, Dy o are the L1 and L2 range-rate measurements.

Again, large Doppler ionospheric delay occurs during the day, and when the
ionospheric effect attains its maximum or minimum value during the day the
Doppler ionospheric delay is zero. The corrections of the Doppler ionospheric
error for a single frequency user are not practical by modelling techniques as in
the case of phase delay, due to the impossibility of predicting, except in a
statistical or stochastic manner, the small undulations in the ionosphere which
produce Doppler errors on time scales of a few seconds to minutes, hence a
commonly used model is a first order Markov process.

Apart from the time delay and polarization change caused by the TEC, other
ionospheric effects are the amplitude scintillation causing the signal to fade or
enhance, phase scintillation causing rapid changes in signal delay, and clutter
causing partial signal reflection. All these effects will cause a rapid change of
signal Doppler frequency and degrade the signal detection and tracking,
sometimes causing cycle slips. For most navigation purposes, the residuals of
the ionospheric effect after IAC correction are neglected, though the ionospheric
effect can be significantly reduced by differential navigation techniques. For
real-time precise positioning, the IAC residuals can be modeled as a first order
Gauss-Markov process (Goad, 1990) with an approximate 3 hour time constant
and 2 m standard deviation (Coco et al., 1991).

2) Tropospheric refraction error:

The tropospheric refraction error is a function of the satellite elevation angle, the
antenna height, the atmospheric pressure, temperature (dry component) and
water vapour (wet component). Approximately 90% of the tropospheric error is
attributable to the dry component and is easier to model than the wet
component. The commonly used tropospheric error models are those due to
Saastamoinen (1973) and Hopfield (1971). A standard atmospheric condition is
assured for the computation of the tropospheric delay error in navigation
applications because the true atmospheric profile cannot be easily obtained.
The tropospheric residuals after model correction are of the order of 0.1 m (10),
which is adequate for most navigation users (Martin, 1980).
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Consideration of the rates of change of the ionospheric and tropospheric delay
errors indicates that the propagation gradient are of the order of metres per
hour. Evaluation of the combined effects of vertical gradient, spatial gradient and
geometrical motion defines a gradient bound of (ibid.):

dAL < 10 metres _ o 75 x 103 _metre
dt hour second (4.9)

The Doppler measurement ensemble RMS value due to the propagation
gradient is approximately equal to the measurement noise of the receiver. This
gradient RMS value has a functional dependency on the satellite elevation
angle similar to the ionospheric and tropospheric errors (cosecant of elevation
angle). The propagation gradient can be modelled as a first order Markov
process.

3) Receiver multipath:

The receiver multipath error is a function of the antenna type and environment.
The environment includes the geometry of the signal reflector and its
electromagnetic properties. These properties determine the strength,
polarization, and phase of the multipath signal at the antenna. Multipath is also
a function of the antenna gain and polarization pattern. For stationary GPS
receivers the multipath effect can add short and long periodic errors to the
receiver and these periodicities generally range from a few minutes to tens of
minutes (Bosloper, 1990). Long periods arise when the satellite elevation is
high and the rate of change of the elevation is small. The long periodic multipath
effects with period of tens of minutes have the potential to bias the results for
short observation session. A strong muitipath effect can cause total signal fade

out and cycle slip.

The code modulation of the GPS signal provides an inherent rejection to
multipath interference signals which does not occur within one code width (one
chip length) of the direct signal time delay. For moving receivers the multipath of
the P code has been determined to be a noise-like or quasi-random
measurement error whose ensemble statistics have a RMS value of 1.0 to 3.0
metres (Martin, 1980). For a standard delay loop receiver, the multipath of the
C/A code is considered to have a RMS value an order of magnitude greater than
that of P code. For a receiver with a narrow-spacing correlator, the multipath of
double-differenced C/A code measurements can be reduced to the 0.5 m level,
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either in static or kinematic mode (Cannon & Lachapelle, 1992), and the carrier
phase multipath does not exceed 0.25 of the carrier wavelength (Lachapelle,
1990).

It is believed that the multipath effects on Doppler measurements can be
considered to be white noise of the same magnitude as the measurement noise
in a dynamic situation.

4.2.3 Receiver Errors

1) Clock errors:

Receiver clock errors (bias and drift) are usually estimated as part of the
navigation solution. Most navigation receivers are equipped with good quality
ovenized quartz clocks. Over short periods of up to several seconds, the
performance of the quartz clock is as good, or better, than that of a cesium clock,
but it will degrade with time, and different stochastic behaviour of the clocks,
white noise, flicker noise and random walk, appear for different time intervals

(Rizos & Grant, 1990).

There are two problems with modelling the clock errors. The first one is the
flicker noise. Although some people have tried to model the flicker noise using
the frequency response method (Landau, 1988) or ARIMA (AutoRegressive
Integrated Moving Average) model (Percival, 1976), these models are actually
approximations of flicker noise using white noise and random walk, based on
the Allan variance analysis of the clock behaviour. Both the frequency response
and ARMA models are based on the assumption that the PSD (Power Spectrum
Density) of the clock error is rational or can be expressed by the response of a
linear system incited by white noise, but the PSD of flicker noise is not rational. It
is similar to a half-integration system, and this system is physically non-
retractable. A simple combination of a white noise and random walk model is
more practical and computationally efficient. Secondly, the Allan variance is an
expression of stochastic behaviour of clock frequency standards that does not
include the deterministic drift or trend of the clock. For different types of clocks,
their Allan variances are different, but for clocks of the same type, the Allan
variances can aiso be different. Consequently, approximate or reference values
have to be adopted for modelling the clock errors. Popular models of receiver
clock error are constant velocity and constant acceleration models with white
noise as the system inputs, see section 6.1.
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2) Receiver noise and resolution:

The receiver noise and resolution errors result from the processing of signals by
the receiver hardware and software. The GPS receiver carrier and code phase
measurements are implemented digitally to achieve the best tracking
performance which can be expected to approach ideal theoretical performance
limit, with the only significant performance losses due to the finite sampling
interval. The resolution of GPS measurements depends on the quantizations of
code, carrier phase and Doppler measurements. The quantizations are
exponentials of the number two and if the quantizations are 1/64 of code chips
or carrier phase wavelength, the corresponding quantization sizes for P code,
C/A code, L1 carrier phase and Doppler are 0.46 m, 4.6 m, 0.0025 m and
0.0025 m/sec respectively. The quantization error is a uniform distribution over
the quantization sizes and assumed to be white, hence the resultant errors (1 o

) are :
P code 0.266 m
C/A code 2.66m
L1 carrier phase 0.0017 m
L1 Doppler 0.0017 m/sec

Generally, the receiver tracking loop noise for the code and phase can be
expressed as (modified Martin, 1980; Jurgens et al., 1992) :

o2 = K1 Bn A?
(C/No) (4.10)

where:
i variance of the code or phase tracking loop noise
K1 code or phase mechanization constant
Bn one-sided tracking loop bandwidth
A code chip length or carrier phase wavelength
C/Ng signal-to-noise ratio

For a standard second order delay-lock loop, By is usually chosen as 3 Hz and
yields a steady state delay tracking error of approximately 3 and 5 nsec for 3g
and 5g steady accelerations respectively. The value of the code and phase
tracking loop noise is at the same level as the quantization error.
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The delta-range is defined as a range change over a specific time interval and
the effect of the measurement noise will be to increase the noise of the phase by
Y2 (given that the time interval is sufficient to insure independent samples). The
Doppler or range-rate measurement noise is at the same level as that of delta-
range, considering the time averaging procedure of the Doppler and range-rate
measurement mechanization.

The code and carrier phase loop models for covariance analysis should
generally be approximated as a first order Markov process with an exponential
autocorrelation function. This approximation is valid for code and carrier phase
loop implementations that utilize first order loop filter algorithms, and may be
altered accordingly for higher order mechanization implementations. If the
sampling period of the measurements is comparable to the correlation time of
the loop, the correlated nature of the loop noise must be accounted for in the
estimation process by an augmented state formulation or by other forms of
mechanization compensation. Assuming the internal noises of the receiver such
as tracking loop noise, quantization error, thermal noise, etc., are all white and
the code and phase loops are time-invariant and operate linearly, the
distribution of the final receiver noise will be (or almost will be) Gaussian
because white noise passing through any linear time-invariant system tends to
become a Gaussian distribution, regardless of the amplitude distribution of the
noises (Lynn, 1992). About the effect of DGPS temporal correlation, see Roberts

& Cross, (1993).

4.2.4 Cycle Slips

The GPS carrier phase can be written as:

t
() = fractional®(to)] + | Ds(1) dt
to (4.11)

where Dg is the range-rate of the L1 or L2 carrier waves.

The carrier phase measurement actually is the phase change, or range change,
from the initial epoch to the present. The one-way ambiguity N is defined as:
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N= integer[f _fl(Ct_Ol} (4.12)

where p(to) is signal propagation path at the initial epoch to.

If no cycle slips have occurred, the ambiguity remains a constant and can be
modelled as a random constant.

Theoretically, the cycle slip can be represented as:

t2

Cs(cycle) = intege f Ds(t) dt
t1 (4.13)

where t2, t1 are the time interval of signal interruption. The cycle slip can be
detected by inspecting the signal-to-noise ratio of the receiver tracking loops,
because if receiver loses signal lock, the signal-to-noise ratio should be zero,
and can therefore be used as the indicator of cycle slip occurrence. The cycle
slip can be repaired using a knowledge of the Doppler counts if the interval of
signal interruption is small compared to the averaging time of the Doppler
measurement, and considering the high internal data sampling rate of the

receiver.

The carrier phase measurement, including cycle slips, can be expressed as :

D(t) = (1) + 3, Csu(t-ts)
s=1 (4.14)

where u is a step function. Cycle slip amplitude Cg, occurrence time tsand
occurrence number m are all random variables and do not follow a Gaussian

distribution.

The Doppler and range-rate measurements are derived from the averaged
internal carrier phase change of the receiver. The averaging length depends on
the internal data rate of the receiver. If the receiver can detect the cycle slip, it
can be “over jumped" and actually has no effect on the averaging if the cycle slip
occurs over a short time period compared to the averaging time, otherwise the
cycle slip will also be averaged and will lose its integer character. For delta-
range measurements, which can be considered to be the integral or summation
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of the Doppler or range-rate between epochs, the cycle slip will affect the output
at that epoch as an integer if it cannot be detected by the receiver.

4.2.5 Summary of GPS Errors

From the point of view of error theory, each error source consists of systematic
component and random component. The different definitions in the time and
frequency domain can be summarized according to Fig.4.1.

In this thesis, the systematic error component is defined as a bias irrespective of
it's time-variant or time-invariant nature, and the random error component as
noise. Therefore each error source such as atmospheric error, clock error, etc.,
consists of bias and noise, called atmospheric bias, clock bias, clock drift bias
and atmospheric noise and clock noise respectively. The error definition
adopted here is not only for the purpose of clarity but also considers the
distinction between the stochastic properties of the systematic and random
errors, and the different processing strategies for GPS measurements.

Except for the ambiguity of the phase measurement, all biases of GPS
measurements are generally non-stationary. The biases are temporally or
spatially correlated, hence also called coloured noise. The dominant part of the
biases generally changes slowly and its power is concentrated in a narrow
frequency area, hence the bias can be referred to as low frequency noise
(narrow band noise). The bandwidth of the power spectrum density (PSD)
depends on the bias correlation time. A wide bandwidth corresponds to-a short
correlation time and a brief time-averaging for the bias smoothing.The PSD of
the biases are generally mixed together and have some overlap. The biases
can be eliminated or significantly reduced by differencing in time or space, or
modelled mathematically. The prominent and consistent changing features in
time and space of the biases can be modelled partly by deterministic functions
and the remaining part may be modeled stochastically (Chatfield,1989). For
navigation applications, the practical method for correcting the biases is through
the use of deterministic models and the remaining errors are considered as
noise.
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Compared to the bias models, the noise can only be modelled as white noise or
a purely indeterministic process whose only characteristics in time domain is
uncorrelated (independent for Gaussian noise) and its power spectrum spreads
across the whole frequency range (wide-banded). Here, the noise is defined as
being zero mean, stationary white noise and its PSD is constant across the
whole frequency range. Because most of the noise power is distributed in the
high frequency region, the noise can be referred to as high frequency noise
which can be suppressed by a low-pass filter. The total GPS measurement
noise is modelled as Gaussian white noise with a standard deviation:

2 2 2 2
On = '\/o%phem + Gjon t Otrop + Omut + OSA + Ofes + Ofn
(4.15)

where On is the standard deviation of the measurement noise. The terms under
the square root are the variances of the noises for ephemeris, ionospheric,
tropospheric and multipath errors, SA, and the variances of measurement
resolution and receiver noise. The receiver clock biases are estimated directly
within the navigation solution and their residuals are hence absorbed by the
receiver noise. It is assumed that the above terms are all noise-like, with zero
means and limited standard deviations, and that they are independent of each
other and none has a dominating effect on the resultant noise. Hence the
resultant total measurement noise will follow a Gaussian distribution with zero
mean as the Lindberg-Feller Theorem claimed.

For Doppler measurement noise, the same relationship exists:

Y ) 2 2 2 2 2 2
OnD = W/GephemD + GjonD t OtropD T Omuitd T OSAD + OresD T OrnD
(4.16)

where the terms in the square root are the change rate (or gradient) noise of
ephemeris, ionosphere, troposphere,etc..

Generally, except for SA and sometimes the ionospheric effect, the remaining
biases are modelled in practice as noise on the Doppler or range-rate.

If the UERE (User Equivalent Range Error) is known, the point positioning error

is approximated by the UERE timing the corresponding DOP value. The same
procedure is valid for velocity determination using Doppler measurements and
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the DOP values for Doppler and range measurements can be considered to be
the same (Fu, 1993).

4.3 The GPS Observation Equations

The linearized observation equations for code and carrier phase can be written

as:
[Ax 5
p-po=H|Ay|+ ) bias + noise
Az (4.17)
Po =V(Xs - X0)? + (Ys - yo)? + (zs - 20)? (4.18)

where P, Po are the measured and nominal geometric range values. Xxs, Vs, Zs
are the coordinates of the satellite antenna, and xo, yo, zo are the nominal
coordinates of the receiver antenna. AX, Ay, Az are the position errors of the
receiver antenna. The observation matrix is:

H =PB 9P QE} =[-cosa -cosP -cosy]
dx dy 0z (4.19)
where cosa, cosf, cosy are the direction cosines of the sateliite.
The linearized observation equation for range-rate is :
[Ax]
Ay
P - po=Hp ﬁ),z( + bias + noise
Ay
LAZ]
(4.20)
where
p= (Xs = X)(Xs - X) + (Ys - Y)(¥Ys - V) + (25 - 2)(2s - 2)
Y
(4.21)
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and

=|9P 9p 9p 9p Jp Ip

0X dy 0z oX dy oz

=[H1 H] (4.22)
where
H, =% 9P Qfl}
oXx oy 0z
_|(X%s-X)+pcosa (ys-y)+pcosp  (zs-2)+pcosy

p P p
(4.23)

Usually the body's speed is much smaller than that of the satellite
(approximately 4km/sec), the magnitude of the elements in eqn (4.23) is of the
order of 10°4, and a 1 km position error will cause 0.1m/sec Doppler
measurement error. Neglecting H1, the geometric strength of the Doppler
measurement will therefore be the same as that of range.

4.4 The Secondary Observables

The secondary observables are the linear combinations of the primary
observables: range, phase and Doppler. Their main function is to eliminate or
reduce some of the biases, which have close cross-correlation across different
sites, satellites and frequencies. They can be expressed as a linear
transformation of the primary observables:

Z;=DZ, (4.24)

where:
Zs; secondary observable
Zy primary observable
D transformation matrix

81



The measurement noise of the secondary observable becomes:
Rs=D Rm D' (4.25)

where Rs, Rm are the variances of the secondary and primary observables. The
correlation introduced by the transformation is usually ignored in practice.

About the commonly used secondary observables, single, double, triple
differenced measurements and L3, L4, L5; L6 and other linear combinations of

the dual-frequency measurements, see Rizos (1991).

4.4.1 Code, Phase and Doppler Combination

To make full use of the information contained within afl the GPS observables,
and in an optima! manner, linear combinztions of the differert GPS observables
can be used to create new observables. One class of these is what we refer to as
the "smoothed code measurements”. There are several forms of smoothed code
measurements: Doppler smoothed, phase smoothed, or via digital filter (DF)
algorithms. The smoothad code measurements preserve the basic properties of
the code signals, and their bias errors largely remain, only the high frequency
noise of the code measurements is reduced.

Real data processing results are presented to support the performance analysis
of phase smoothed code and the DF methods. Because there were no dual
frequency Doppler data available, only a theoretical analysis of the Doppler
smoothed code technique is presented.
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4.4.1.1 Doppler Smoothed Code

The Doppler smoothed pseudo-range algorithms are based on the following
relations (Hatch, 1982):

D1(K) = Ap(K) + AB(K) - Eﬂ Al(K)

(4.26)
where
Ap(k) = p(Kk) - p(k-1)
AB(K) = B(k) - B(k-1)
AI(K) = I(k) - I(k-1)
D1 L1 Doppler measurement
p geometric range between satellite and receiver
range measurement biases, excluding ionospheric bias
! ionospheric bias
k, k-1 the current and previous epoch
f1 = 1575.42 MHz, fo = 1227.6 MHz
The L2 Doppler measurement is:
Da(k) = Ap(K) + AB(K) - [h} Al(K)
fo (4.27)

D1 and D2 in eqgns (4.26) and (4.27) are in fact delta-range and can be obtained
directly from the Doppler measurements if the receiver outputs Doppler count
instead of delta-range. No distinction is made between the definitions of delta
range and Doppler measurements, and are all referred to as Doppler in order to
hence preserve the notation of Hatch's paper.

The L3 Doppler measurement (the so-called ionospheric free combination) is:

2 2
1 D1(k) - =2 Da(k)

Da(k) =
- f;- 5 (4.28)
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The equivalent code range differences My, Mo for L1 and L2 can be mapped from
the above equations as:

M4(K) = 2 D3(K) - D1(K) = Ap(K) + AB(K) + H_ﬂ Al(K)

(4.29)

Ma(k) = 2 Da(k) - Da(K) = Ap(K) + AB(K) + H—;J Al(K)

(4.30)

The initial range values can be smoothed using N Doppler measurements
(modified from Hatch, 1982):

P1(i) - D M4(j)

N { }
B3 (0) == Ni=0 = p(0) + B(0) + Eﬂ 1(0)

(4.31)

Pa(i) - 3, Ma(j)

[ 0 Lp<o)+B(o>+[§;] (0)

Mz

P2(0) =~

Il
o

(4.32)

where M4(0)=0, M»(0)=0, and P4, P2 are the L1 and L2 pseudo-range
measurements. The superscript bar denotes the mean value.

The smoothed code measurements are (modified from ibid):

P1i)=Pal0) + 3 Ma(i) = pl) +B() +[{2] 1)
=1
(4.33)

Ba(i) = P20) + 3 Ma(j) = p(i) +B(i) + [%} 10
=
(4.34)
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A recursive algorithm derived from eqns (4.31) and (4.32) for real-time
applications is:

Po(N+1) = L [P1(N) + M{(N+1)] + S Pa(N+1)
(4.35)

Po(N+1) = [PQ(N) + Mao(N+1)] + N% Po(N+1)
(4.36)

There are some problems with the above algorithm. For example, there must be
both L1 and L2 Doppler measurements in order to form the ionospheric-free
range changes M1 and Ms. The method assumes that the noise of the Doppler
measurement is small compared to that of the code measurement and can
therefore be neglected. In fact the Doppler can only considered to be of the order
of 100 times better than the P code measurements. From eqn (4.31) it can be

seen that:

N i
z[ma - «j)}
P1(0) == N’=°

N

Y Py(i) -[N My(1) + (N -1) M1(2) + (N -2) M1(3) +- - - + My(N)]
_i=0
- N

(4.37)

Assuming the code and Doppler measurements are independent and the
measurement errors are white noise, the variance of P4(0) can be written as:

vaP;(0))= (N+1)0B, + +[N? + (N-1)2 + (N2 +---+ 1] &,

N2
_(N+1)cB, 17 [N(N+1)(2N+1)] od,
N2 6 N2

(4.38)

where
ofy, = 4 o, + 6f, = 1708,
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and G%,, GS,, 653 are the variances of the L1 code, Doppler and L3 Doppler
measurements.

1500 T T

1000

- CIA, - P

500

.

F T 1
OD 500 1000 1500
epoch (second) '

Figure 4.2 Initial state of Doppler smoothed code
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Figure 4.3 Doppler smoothed code

Assuming that for the P code measurements Op, = 100 Op, and for C/A code
measurements Op, = 1000 Op,, then by differentiation of eqn (4.38), the best
smoothed initial values (also the best smoothed values) are obtained at N = 43
for P code and N = 430 for C/A code. Fig.4.2 illustrates this, where the standard
deviation is normalized by the standard deviation of the Doppler measurement,
and the standard deviations of the initial value are 22.02 ©p, and 34.87 Gp,,
while the standard deviation of the best smoothed values are 69.07 Gp, and
109.91 Op, respectively. The standard deviations of the smoothed initial values
will increase approximately at a rate of Y17N/3 opy. This suggests that the
recursive algorithms (4.35) and (4.36) should only be used when N <43 and N <
430. Beyond that point the initial values should be fixed at the best smoothed
values and the subsequent smoothed values should be obtained from eqns
(4.33) and (4.34).
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The summation of M1 and Mo causes the standard deviation of the smoothed
code measurement to increase at a rate of Y17N op; (see Fig.4.3). Hence for N >
588 in the case of P code and N 2 58824 for C/A code, the Doppler will no longer
contribute to the smoothing of the code measurements.

If the noises of My and M2 are white, it is obvious from egns (4.33) and (4.34) that
the noise of smoothed code becomes a random walk series. The covariance for
two smoothed code measurements at epochs N1 and N2 is approximately
17 Nm[%1 for N1 < N2 and hence the Doppler smoothed code measurement is no
longer independent. The same analysis can be applied for the L2 code
smoothing.

4.4.1.2 Phase Smoothed Code

The carrier phase measurement can be used to define the range change
quantity to overcome the problem of the increasing noise intensity of Doppler
smoothing. If there are L1 and L2 carrier phase measurements, and there are no
cycle slips during smoothing, the range change can be derived from two phase
measurements:

ADy(K) = D1 (K) - 1(0)
=MM+B®-%erumymm-mm

(4.39)
ADB(K) = Do(K) - B(0)
= p(K) + B(K) —ﬂ—;}[l(k) - 1(0)] - p(0) - B(0)
(4.40)
AD(K) = 1 A1) - T2 Ada()
2-% ?-8
= p(K) + B(K) - p(0) - B(0)
(4.41)

where®q, ®,, @3 are L1, L2 and L3 carrier phase measurements.
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The ionosphere-corrected range changes can be formed from the L1, L2 and L3
observables:

AM1(K) = 2A®3(k) - AD1(k)
= p(K) + B(K) + L‘Zﬂmk) - 1(0)] - p(0) - B(0)

(4.42)
AM3(K) = 2AD3(K) - AD,(K)
= p(K) + B(K) + Lf—;][l(k) - 1(0)] - p(0) - B(0)
(4.43)
and the phase smoothed code range is:
N
S [P1(i) - AM1(i)]
P1(N) = =2 + AM;(N)
N
= p(N) + B(N) + [{f—} I(N)
(4.44)
N
Y [Pafi) - AMa(i)]
Po(N) = =0 + AMy(N)
N
= p(N) + B(N) + [;;-] I(N)
(4.45)

Note the similarity of these formulae to eqns (4.33) and (4.34), except that there
is no summation term for the AM quantities.

The recursive forms are:

PaN+1) = L[By(N) + AM1(N+1) - AMy(N)] +—~P’$§”

(4.46)
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)]+ P2(N+1)

Po(N+1) = NN?{ Po(N) + AMa(N+1) - AMo(N pe
(4.47)

Under the assumption that the noise of the carrier phase measurements is white,
the standard deviation of phase smoothed code measurements will decrease
and converge to a steady state error of Y17 times the standard deviation of the
phase measurement, and the uncertainties of the initial values decrease with
increasing N (see Fig.4.4). Another contrast with the Doppler smoothed code
measurements is that the noise of phase smoothed code measurements is
dominated by the noise of AM; and AM> as well as the code measurement which
are white noise, and hence the noise of the phase smoothed codes can be
considered to be white noise and the phase smoothed codes can be considered
to be independent measurements which will simplify subsequent data

processing.

N

Q

0

Q
I

- CiA, - P

std

Ay

]

()}
T

g

%o 500 1000 1500
epoch (second)

Figure 4.4 Phase smoothed code

If cycle slips are present in the phase measurement, or a restart of the smoothing
at the time of occurrence of cycle slip is required, or the cycle slip can be
detected and repaired using Doppler measurements as
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AM1(k+1) = 2A(I)3(k+1) - A(I)1(k+1)
= p(k+1) + B(k+1)

+[f_2}[|(k+1) -1(0)] - p(0) - B(0)
fy
= AMy(K) + Ap(k+1)

+AB(k+1) + E?—} AI(k+1)
1

= AM; (k) + My (k+1 )

~ AM;(K) + App(K)
(4.48)
and

tie1
Apo(K) = f D1 p(t) ot = D2l Dualp g
&
(4.49)
where D1 (k+1) and D1 2 (k) are the L1 or L2 Doppler measurement at time ty.1
and tk, tky1 - tk is the epoch interval.

For a high data sampling rate, the ionospheric effect change is small between
epochs, hence single frequency Doppler measurement can be considered to be
equivalent to the phase-rate at that instant and the error introduced thus is
negligible:

D1 2(k+1) - D1 ,2(k) = App(K) (4.50)

4.4.1.3 Digital Filtered Code

In the case of single frequency GPS receivers the code measurements can be
smoothed in the frequency domain using a frequency discriminating digital filter
which will be simply referred to here as the DF. The intention of using a DF is the
same as for the Doppler and phase smoothing algorithms, that is to ensure that
the code biases are left unchanged but that the large code measurement noise is
smoothed. In the frequency domain it is assumed that the low frequency
components consisting of GPS measurement dynamics and measurement
biases should be preserved, but that the high frequency noise must be
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depressed, hence the DF should be a low-pass filter. There are basically two
kinds of low-pass DF (LDF) for this task: the IR (Infinite Impulse Response) DF
and FIR (Finite Impulse Response) DF (Proakis & Manolakis, 1992). The direct
computation algorithms of eqns (4.33), (4.34), and (4.44), (4.45), are actually a
type of FIR DF, while the recursive algorithms (4.35), (4.36), and (4.46), (4.47),
are similar to an lIR DF.

In contrast to the Doppler and phase smoothing code methods, the DF for single
frequency measurements filters the code measurements directly, using the
characteristics of the PSD (Power Spectral Density) of the code measurements,
and hence no other measurements (such as Doppler and phase) are needed.

Considering the simplicity and stability characteristics of the FIR DF, a low-pass
FIR DF to smooth the GPS data is preferable.

In order to compute the PSD of the data by discrete Fourier transformation, a
second order differencing is used to make the measurement data stationary,
otherwise the PSD components of the deterministic trends caused by the satellite
motion, antenna dynamics and the close-correlated biases will dominate the

periodogram.

Concerning the PSD distribution in the periodogram of the GPS measurements
the following comments can be made under a high measurement sampling
frequency:

1) The constant components and deterministic trends of the measurements are at
zero, or near zero, frequency (Chatfield, 1989).

2) The bandwidths of the measurement biases can be estimated by their
correlation times, assuming they are approximately the system constants of the
biases (Norman, 1992). The larger the correlation time, the narrower the
bandwidth.

3) The correlation time of SA is assumed to be 3-5 minutes, and atmospheric
delay a few minutes to few hours and their PSDs are concentrated in a narrow
band near zero frequency under a high measurement rate.

4) The correlation time of the multipath effect can be zero to a few tens minutes,
and its PSD can spread across the whole frequency range.
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5) The PSD of antenna dynamics depends on the period of the antenna state
change. As the trajectory of the antenna mainly consists of first and second order
curves with limited period, its PSD is band-limited and mainly in the low
frequency region. Generally speaking the attitude change of the antenna has a
shorter period than other antenna states.

6) There is a lengthy transition of the PSD from low frequency to high frequency
and there is no distinct and explicit boundary between them.

Figures (A.6.29) to (A.6.32), (A.6.45) to (A.6.49) and (A.6.61) to (A.6.64) are the
periodograms of C/A code measurement acceleration for individual satellites.
The frequency axis is from 0 to the Nyquist (0.5 Hz for a 1 Hz sampling rate).

The cut-off frequency, or the main lobe, of the LDF for GPS measurement
smoothing should be larger than the widest bandwidth of the biases. The
transition region of the LDF amplitude response is not required to decline
sharply, hence no high order DF is needed. The stop-band should have lower
sidelobes and the pass-band should have a unit gain with linear phase

response.

A FIR LDF of order 12 is chosen for code measurement smoothing. The order 12
is chosen so as not to cause a long delay of the data output of the LDF. The cut-
off frequency is 0.4 = based on the assumption that the shortest period of the
antenna attitude change is caused by a ship's roll, and for a ship of moderate
size its rolling period is approximately 10 seconds which is equivalent to a
frequency of 0.2 &. This cut-off frequency makes the LDF pass-band inciude the
lengthening transition up to 0.4mw of the PSD of C/A code measurement
acceleration. The LDF is designed by Hamming window because it has a
moderate transition width of the main lobe and has a lower sidelobe (- 43 dB)
compared to other windows such as rectangular, Hann and Blackman (Norman,
1992). The LDF system function H(z) is:

6
Hz) = ¥ b(k) z-k
k=6 (4.51)

b(k) = [0.004,0,-0.0233,-0.0335,0.0716,0.2824,0.3976,0.2824,
-0.0335,-0.0233,0,0.004]
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where z is the z transform operator.

In eqn (4.51) the system function H(z) is written in non-casual form because the
LDF output is delayed for half of its order steps to compensate the phase
response delay of the DF.

The LDF amplitude response and phase response are shown in Fig.4.5 and
Fig.4.6, respectively.

Assuming the measurement noise is white, then the noise of the LDF smoothed
code measurement is no longer white and its covariance sequence is:

6
y(m) =o% > b(k) b(k+m)
k=-6 (452)

and its variance is:

6
10) =o% Y, b3(k) = 0.330%
=6 (453)

where o% is the code measurement variance.

The autocorrelation of the noise is:

_y(m)
o(m) _y(—O) forjm|<12

o(m)=0 Im|>12 (4.54)

where (1) = 0.7 and when |m| 2 2, a(m) < 0.22,

The performance of the LDF is tested using the filtered data residuals. Assuming
only the C/A measurement noise, which is supposed to be white, is depressed by
the LDF, the residuals (the difference of the C/A measurement and the smoothed
C/A measurement) should also be white noise with zero mean. The whiteness of
the residuals can be checked by Bartlett and Portmanteau tests (Vandaele,

1983).
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4.4.1.4 Data Processing

The following examples illustrate the performance of the smoothed code using
the phase smoothing algorithm and the LDF. Receivers which have dual-
frequency Doppler output are comparatively rare, and no data from such
receivers was available for analysis.

The data for the test were collected by two Trimble SST receivers, one of which
was stationary (Gas station), and the other one was sited onboard a ship sailing
along the east coast of Australia (Bow station), during the time 0200-0300 UTC,
24/05/91. Satellites 2, 6, 15 and 19 were tracked at the 1 Hz rate. The
measurements were C/A code, L1 and L2 carrier phases. Cycle slips in the
phase data were cleaned up prior to smoothing.

The performances of the phase and LDF smoothing algorithms are shown in the
plots in Appendix 3: residual plots show the convergence of long term smoothing.
The RMS values of the residuals can be considered as the improvements of the
C/A measurements after smoothing. The acceleration plots show the smoothing
effects and the data fitting. The autocorrelation plots show the residual whiteness.
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In each of the autocorrelation plots two dashed lines are added to show the limits
of the Bartlett test. If the autocorrelation curve is inside the limits, the
autocorrelation is supposed to be zero with a probability of 98%.

Fig.A.6.1 to Fig.A.6.4 and Fig.A.6.13 to Fig.A.6.15 are the plots of the
accelerations of C/A (thin lines) and phase smoothed C/A (bold lines) for the Gas

and Bow stations.

In the case of the phase smoothed C/A measurements for the Gas station, the
mean values of the residuals are biased (see Fig.4.7), and the autocorrelations of
the residuals for Gas station are not fading rapidly, hence the residuals are not
white noise according to the Bartlett test (see Fig.A.6.9 to Fig.A.6.12). Although
the phase smoothing code measurements try to preserve the original behaviour,
only the ionospheric bias is considered during the smoothing. In fact the
multipath effects of the code measurements are depressed along with the noise
during smoothing, thus a correlation and bias are introduced into the residuals.
The autocorrelation of satellite 19 shows an undamped sine wave pattern which
indicates there was a high intensity component with period 60 seconds in the
satellite 19 C/A measurements, and this periodicity is also seen in its residual
(see Fig.A.6.8). This long period component does not appear in the
periodograms (the PSD is in units of metre2/(sec2Hz), and 0 to 64 of the abscissa
correspond 0 to ) because it is deleted by the data differencing before the PSD
is computed. From the PSD plots, Fig.A.6.29 to Fig.A.6.32, it appears that the
position information of the GPS phase and code measurement is confined in a
very narrow low frequency region and the corresponding frequency pass-band
width of the phase smoothing is very narrow.

For the Bow station, the autocorrelations of the residuals for satellites 2, 6 and 15
are small for large lags and passed the Bartlett test, see Fig.A.6.25 to Fig.A.6.27.
The Q statistic values of the Portmanteau test for lag 23 are 45.4, 42.38 and
85.26 respectively for satellite 2, 6, 15. The x> statistic value for degree of
freedom of 23 is 44.2, given a significant level of 0.005, hence only the residuals
of satellite 6 are uncorrelated. There are dominant frequency components of 7
and 30 second periods in the residuals of satellite 19, see Fig.A.6.32. It indicates
that the pass-band is widened now compared to the stationary case. The
component of the 30 second period is not presented in the PSD plots because of
the impact of differencing, and note the larger high frequency components in
Fig.A.6.32 than those in Fig.A.6.30, which include the ampilification of high
frequency noise and aliasing effects.
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The smoothing effect of the LDF on code measurement is illustrated in Fig.A.6.33
to Fig.A.6.64.The LDF smoothed C/A measurements follow the patterns of the
C/A measurements very closely. The mean values of the residuals are much less
than those of phase smoothing, see Fig.4.9, and the smoothing is unbiased.
There is a large high frequency component in the C/A measurement of satellite
19, along with the 30 second period component (see Fig.A.6.40), and the pass-
band is wider than that of the phase smoothing (see Fig.A.6.45 to Fig.A.6.48 and
Fig.A.6.60 to Fig.A.6.64). The autocorrelations of the residuals for satellites 2, 6
and 15 of large lags are decaying rapidly and passed the Bartlett test, but not the
Portmanteau test for small lags. Considering the large autocorrelation values of
lag 1, the residuals of satellite 2, 6 and 15 can be modelled as an MA(1) series
with coefficient 1 because the autocorrelations of lag 1 is -0.5 and the
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autocorrelations for lag > 1 can be considered to be zero (see Fig.A.6.41 to
Fig.A.6.43 and Fig.A.6.57 to Fig.A.6.59).

The low frequency component of 60 second period appeared in satellite 19 can
be eliminated by a notch filter cascaded with the LDF.
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Figure 4.10 RMS of FIR smmothed C/A residuals

4.4.1.5 Summary Comments on Smoothing
If dual-frequency Doppler or phase measurements are available, the GPS code

measurement can be smoothed using these measurements, and most of the
code measurement biases remain unchanged.
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The Doppler smoothing technique is unstable. After a short period the error of
Doppler smoothing is increasing with time and the smoothed data is correlated.
The Doppler smoothing technique however is insensitive to the presence of cycle
slips. High data sampling rate is preferable to obtain accurate delta-range or
integrated Doppler.

The phase smoothing technique is stable if cycle slips are detected and repaired.
The error of the smoothing is decreasing with time and converges to a fixed
value, and the convergence time is dependent on the uncertainty of the initial
value. High data sampling frequency is preferable to accelerate the smoothed
data convergence.

Both Doppler and phase smoothing techniques are insensitive to the antenna
dynamics. The pass-band width of their frequency response is changed
automatically when the antenna dynamics change. Both Doppler and phase
smoothing algorithms can be implemented easily for real-time applications.

The FIR LDF is one of the large family of digital filters. The smoothing by the FIR
LDF of order 12 is stable. The smoothing is purely based on the frequency
response of the code signals themselves and no other information is needed. In
order to avoid distortion of the smoothed data, correct choice of the pass-band
width is important. The accuracy of the smoothed data is independent of the
uncertainty of initial value, and the variance of the smoothed data is mainly
dependent on the pass-band width, the wider the bandwidth, the larger the
variance and vice versa. The LDF algorithm is easily implemented. High data
sampling rate is preferable to obtain more, and accurate, frequency information
of the signals and assists in designing an appropriate DF with good performance
and real-time application.
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4.4.2 Doppler Created Phase Data (Doppler Phase)

There are a number of low-cost GPS navigation receivers on the market which
output C/A code pseudo-range and L1 Doppler only. Although DGPS can
increase the positioning accuracy of C/A code to the few metre level, a further
improvement in accuracy appears difficult in view of the high noise of the C/A
code measurements. On the other hand, the noise of Doppler measurement is
much less than that of C/A code measurements. A reason for this is that the
resolution or the quantization error of the Doppler is the same as that of a carrier
phase measurement and the Doppler measurement error due to receiver noise
is Y2 that of carrier phase measurement (which is typically only a few
millimetres). In principle, GPS Doppler has a distinct and simple relationship
with the phase measurement: the integration of Doppler is the carrier phase
measurement assuming the initial phase value is zero. It therefore seems
plausible that a sort of “synthetic" phase data with much small measurement
noise than that of C/A code could be derived from the Doppler measurements.
Furthermore, this phase data could then be used as the direct observable for
baseline determination using algorithms similar (if not identical) to those
developed for high precision carrier phase GPS navigation (Fu, 1995).

4.42.1 GPS Doppler and Phase
The Doppler effect on the GPS signal is illustrated in Fig.4.11.

satellite antenna

receiver antenna

Figure 4.11. The GPS Doppler effect.
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The Doppler frequency is:

___fc+Vacos[3}:f1_lg_s_
o {C-VSCOSOL { C t}

(4.55)
where:
f nominal frequencies of L1 or L2
c velocity of GPS signal propagation
V. velocity of receiver antenna
Vs velocity of transmitter antenna
S  range between the receiver antenna and transmitter antenna

An approximation for range-rate is:

p=04S-v, cosf + Vscoso

dt (4.56)
The Doppler shift is:
DS = ul_d_S_
A dt (4.57)

where A is the wavelength of the L1 or L2 carrier.

The physical relationship between the carrier phase and the Doppler shift is :
t

() = D(to) - f Ds(t) dt

to (4.58)

The Doppler shift or range-rate measurements usually are the averaging values
of the delta-range or phase over a short period (generally not larger than half
second) to reduce the influence of random noise and are independent
observables.

Theoretically the nearly circular orbit and extreme distance of GPS satellites
make the range change of the satellites exceptionally smooth. Clock and
propagation effects do not normally destroy this smoothness, with some
exceptions, such as sudden ionospheric disturbances or highly dynamic
receiver motion. For a static receiver the theoretical (geometrical) value of the
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maximum Doppler shift +5 kHz can be observed at latitude 60 degrees. The

maximum Doppler shift rate is 175 mm/sec?, or less than 1 Hz/sec and the
maximum Doppler acceleration is 0.025 mm/sec3, or less than 2x10™* Hz/sec?

(Wells et al.,1987).
The range-rate measurement can be modified from that given in eqgn (4.4):

D =p+ dephem +C (dt - dT) - dion + dtrop + dmu| + bD + 8D
(4.59)

A bias term bp is included to account for such effects as the group delays of the
receiver tracking channels which may cause a sampling output of
unsynchronized Doppler signals. For velocity determination bp is neglected
because of its small value. For Doppler phase data which involves the
integration of the Doppler measurement, the long term effect of bp has to be

considered.

From eqgn (4.58) a Doppler created phase measurement (referred to here
simply as "Doppler phase") can be obtained:

t

Dp(t) = Pp(to) + f D(t) dt = Pp1(t) + Ppa(t)
to (4.60)

where
Dp+(t) = Pp(to) +
f [p(T)'Fdephem(T)'*'C{dt.(T)'dT(T)J ‘dion(T)+dtrop(T)+dmul(T) } dt
to

(4.61)
and

Ppy(t) = f [ bp(T) + ep(t)] dt
t (4.62)

Assuming the integration of the Doppler biases, except for bp and €b, equal the
biases of corresponding phase measurements, eqn (4.61) can be written as:
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Do (f) = Polto) +

P(t)+dephem(t)'*'c[dt(t)'dT(ﬂ ‘dion(t)‘l"dtrop(t)'*‘dmul(t)
(4.63)

The form of eqn (4.63) is similar to that of the phase measurement model of egn
(4.3). The difference is that the initial phase value ®p(to) of Doppler phase is not
an integer multiple of the carrier wavelength anymore. A more important
difference is the additional error terms in eqn (4.62). The unmodelled Doppler
bias bp depends on the receiver mechanization and is generally a small value
and nearly constant though it has a different value for different tracking channels
of the receiver. After integration of bp a trend appears. epis the Doppler
measurement noise and is assumed to be white and its integration is a random
walk noise.

Because the real Doppler output of a GPS receiver is a discrete time series, the
integration is replaced by the summation of the Doppler measurements in
discrete time to obtain the Doppler phase. Over a short time period the Doppler
change can be considered as linear. The real Doppler phase measurement in
discrete time can therefore be written as:

k

Dp(tk) = Dp(lo) + Y,
i=1

[D(ti) + D(ti-1) |
2

[t - ti1] + vp(tk)

)+ [D() + Dtics)

5 [tk - tk-1] + vp(ty)

= Op(tk-1

= Op1(tk) + Ppa(ti) + Vp(lk)
(4.64)

where vp(tk) is an additional noise to account for unmodelled error and is
assumed to be white noise.

More sophisticated numerical integration algorithms, such as Simpson
integration etc., can be used. For static receivers and high data sampling rate (1
Hz), eqn (4.64) is adequate. An alternative is to use eqgn (4.64) to integrate
differenced Doppler measurements to obtain the differenced Doppler phase
measurements directly.
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The general model for ®pa(tx) can be written as:
to(tk) = to(ti-1) + B(tk-1) + n(t) (4.65)

B(tk) = Bltk-1) + &(t) (4.66)

where:
to(tk), B(tk) trend and slope
n(t), &{tk)  white noise series

Eqns (4.65) and (4.66) can be written in the state equation form as:
ro(tk)}:{1 1“ to(tk-1) }{T}(tk)}
B(te) ] LO 11 B(tk-1) C(ty) (4.67)

Eqn (4.67) is a model of a random trend and random walk. If n(t) and {(t) are
zero, eqn (4.67) becomes a deterministic trend with a constant slope.

The biases of ®p; can be eliminated by data differencing as in the case of
normal phase processing. However, this is not the case for ®p, because for
different receivers (different channels) the corresponding ®py are different. The
effects of dp, could cause the baseline length to increase with observation time
(for example using double or triple-difference processing methods a 20 metre
baseline could increase in length to 160 metres in a nearly linear fashion over a
20 minute observation session). To control this baseline divergence, the error
model (4.67) has to be augmented within an estimation procedure.

If the data sampling frequency is larger than the Nyquist frequency, Doppler
phase data can also be obtained by the integration of the Doppler
measurements in the kinematic case. It can be done more precisely by
reconstruction of the continuous Doppler data first using the sampling equation
(modified from Daubechies, 1992):

D D(t, sinm(t - t,)
= Z (tn) 7(t - tn) (4.68)

where t, tp are the continuous and discrete time arguments.
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4.4.2.2 Data Processing

Three sets of experimental results are presented here based on the following
system model:

[XW)H F1 0 HXW)HMN

X2(t) 0 F2 Il X2(1) o2(t) (4.69)

where:
X1(t) state vector for the remote site location
X2(t) augmented state vector for the trend and slope

For the static case F1 is a zero matrix and w1(t) is a zero vector. F2 can be

written as:
01 00 ---0 ]
00 00 0
Fo=| ...... ... ...
00 O 0 1
. 00 O 00 | (4.70)

The observation equation is:

Z1(tk) J__ { X1(tx) V1(tk) }
za(g | = M) 2 | o || vaqhy
(4.71)
where:
Z1(tx), Z2(tx) double-differenced Doppler phase and Doppler

measurements
V1(tk), V2(tc) Doppler phase noise and Doppler measurement noise
which are assumed to be uncorrelated to each other
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Experiment 1:

The experiment was carried out at the School of Geomatic Eng., UNSW, on the
6th April, 1995. Two NovAtel receivers, which are 10 channel receivers with L1
phase, code and Doppler output were sited on surveying pillars of known
location. The baseline length was 22.579 .metres.

During the session of this experiment 5 satellites were tracked: PRN 1, 14, 15,
21, and 25 and the data output rate was 1 Hz for both receivers with less than
half-hour of data collected. The Doppler output of one receiver was used to
create phase data and double-ditferenced Doppler phase and Doppler data
were used as the observation within a Kalman filter. The static model was used
for F1. The measurement noise was 2 cm for both Doppler and Doppler phase

data.

The results of the baseline length are illustrated in Fig.4.13 to Fig.4.16. The
difference between the phase measurements and the Doppler-created phase
measurements for the remote site receiver is illustrated in Fig.4.12. Note the
small differences of the slopes of the different satellites in Fig.4.12 which cannot
be eliminated by differencing methods. Fig.4.13 to Fig.4.16 illustrate the results
using the algorithms mentioned above. After a short transition period (a quite
accurate initial position can be obtained from NovAtel C/A code measurements),
the baseline and baseline components were converged to the nominal true
value within less than 1 cm (the baseline of Doppler phase solution is 22.586 m)
and the RMS was better than 1 cm. The results of the baseline and components
were quite smooth. The maximum oscillation of the results in steady state was
less than 1 cm, this means a high precision Doppler phase data (noise less than
1 cm) was obtained from the Doppler measurement. Actually during the
integration of the Doppler measurements the noise of the Doppler
measurements are also smoothed.
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Experiment 2:

One NovAtel receiver was sited on a surveying pillar of School of Geomatic
Eng., UNSW, and another site was selected nearly 4 km away. In the first
session a NovAtel receiver was used. In the second session the receiver at the
remote site was replaced by a Trimble SV-6 GPS receiver whose output is L1
C/A code and Doppler, and Doppler phase data was created for the remote site.
The data rate was 1 Hz for both sites, and the second session was 1 hour started
at 0 hour of the 10th May, 1995. During the second session 6 satellites were
observed: PRN 9, 17, 21, 23, 28 and 31. The phase data collected in the first
session was processed using Leica's SKI software, and the data of the second
session was processed using the Doppler phase algorithms, and the results are
presented in the Fig.4.17 to Fig.4.20. There was a "Doppler jump" in epoch 193
which caused a “cycle slip* in the Doppler phase. The Doppler phase steady
state results converged within 3 cm of SKi results. The slower convergence than
the case for the first experiment was attributed to the large initial state uncertainty
of over 10 metres and the large Doppler measurement noise (RMS 5.2 cm) of

the SV-6 receiver.
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Experiment 3:

Two Ashtech-Z12 GPS receivers were used, one was static and another was
fixed aboard a moving train in South Australia. The distance between the two
receivers was nearly 300 km. The Doppler phase data was used from both sites,
for tracked satellites PRN 7, 2, 16, 19 and 27 collected at 1 Hz data rate.
Considering the large mass and turning radius of the train, it can be assumed
that 1 Hz data rate is fast enough to recover the phase measurement envelop.
The results were compared with the P code solutions. The constant velocity
model was used with 1m/sec*sec acceleration. The results are shown in Fig.4.21
to Fig.4.37, and Table 4.1. The mean values of the velocity difference between
the P code and Doppler phase solutions is 0.0003 m/sec. The divergence
between the P code and Doppler phase solutions of the baseline and
components is apparently caused by the P code measurement bias (see
Fig.4.26. to Fig.4.29 and Table.4.1). The nearly zero mean values of the Doppler
phase innovation series indicates that the measurement bias was absorbed by
the augmented bias-estimating model of egn (4.70), and the innovation series,
except of PRN 7-16, can be assumed white because they have passed the
Bartlett test at a 95% confidence level (see Fig.4.34. to Fig.4.37 where the two
straight lines above and below the autocorrelation are the 95% confidence limits

of the Bartlett test).
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Table 4.1. Mean values of innovation series !
PRN 7-19 7-27 7-2 7-16
Type
P-code 0.6628 m -1.054 m 0.5907 m 0.1484 m
Dppler-phase | 0.0028 m | -0.0039 m 0.0019m 0.0008 m

4.4.2.3 Concluding Remarks

1) A pseudo-phase data type can be created using Doppler measurements.

2) A random trend is the primary bias for this "Doppler phase".

3) A special estimation algorithm was developed to handle the trend and cm
level accuracy was obtained for a short baseline determination carried out by
using Doppler phase.

4) The Doppler phase is receiver dependent.

5) If a higher than the Nyquist frequency data sampling rate is available, the
method can be used in kinematic GPS applications.

6) There is "Doppler slip" when cycle slip occurs, though it can be overcome by
filtering or smoothing.

Investigations are proceeding and several further static and kinematic tests are
being carried out.
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CHAPTER 5

THE INTEGRATED NAVIGATION SYSTEM (INNS)

The integrated navigation system makes use of modern control theory and
computer technology. It consists of navigation and other associate sensors,
processors, and system controllers. Among them the key devices are the
processors which process the navigation information derived from the
independent sensors and derive the optimal estimation and control of the body's
state.

Generally INNS can be divided into two categories: global and local systems.

Positioning Dead
System Reckoning
Loran-C, Omega INS, Compass,
GPS Log, IMU
CcDuU Collision
Operators, SN\ L~ Avoidance
Pilots N Multipurpose ~~1 Radar
A/C System | _~ Computer \ Map
Autopilot, Desplay
Engine Digital,
Control Projected
Communica- Meteo-Oceano
tion -graphic
System System

Figure 5.1. Global Integrated Navigation System.




There are a variety of global INNS depending on application, such as INA
(Teldix) and Databridge (Norcontrol) systems. In the case of the INA system
each local sensor processor is controlled by a central processor, and it is
reported 48% of the computer time is used for data transfer and interface control,
while the navigation computation only takes 9% of computer time (Terheyden &
Zickwolff,1986). Another approach is the parallel implementation of muitisensor
integration, which can reduce the central processor work load and forms an
artificial neural architecture (Bowman & Snashall, 1987).

In this thesis, only the local INNS consists of sub-systems of the global INNS (the
positioning system and the DR system, and associate processors and interfaces)
will be considered.

The main characteristics of an INNS is :

a) The system is robust and the performance of independent navigation sensors
can be cross-checked. The integrity and reliability of the INNS is therefore

increased.

b) The accuracy of navigation is higher than that of any individual navigation
sensor for there is more redundant information which can be processed by the
optimal filter-controller. The error sources of the navigation sensors which are
independent and have different frequency characteristics can be isolated and
eliminated. INNS has a good frequency response across a wide frequency
range.

¢) Operation of individual navigation sensors is improved and more navigation
functions and a highly automatic navigation operation can be performed by the

INNS.

116



5.1 Mechanization of INNS

There are two types of INNS mechanization: open-loop (Fig.5.2) and closed-
loop (Fig.5.3) modes.

5.1.1 Open-Loop Mode

Sensort

3

Sensor 2

Z2

f—————= Navigation

Filter

n

Position, Velocity
'

Sensorn

Attitude

Figure 5.2. The open-loop INNS.

The open-loop mode is the simplest way to combine navigation sensors. The
sensor outputs Z1, Z2, .., Zn may be the measurements of the sensors (in the
case of a centralized filter), or full or reduced order estimates of the state derived
from the local processors of the sensors (in the case of a decentralized filter).
Generally the open-loop mode applies to the positioning system integration, and
the initial alignment of INS and functions as a low-pass filter.
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5.1.2 Closed-Loop INNS
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Figure 5.3. The closed-loop INNS.

The difference between the closed-loop mode and the open-loop mode is the
feedback corrections F1, F2, ..., Fn, to the sensors. The feedback corrections are
derived from the optimal estimation of the sensor errors and state, and are used
to improve the operation of the sensors. The closed-loop mode is mainly applied
to the integration of INS with other navigation sensors and functions as a low-
pass or band-pass filter whose pass-band depends on the body's dynamics.

5.1.3 Decentralized Implementation

Although the centralized Kalman filtering methods can be applied to multisensor
system integration, the typically large dimension of the system model and the
high data rates have led in recent years to the development of decentralized
parallel processing methods. Among them, one particular method of
considerable usefulness to navigation was introduced by Bierman (1985), Kerr
(1987) and Carlson (1990), and is called the federated Kalman filter. Algorithms
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for the federated Kalman filter for the general case, modified from Carlson (1990)
and Minkler (1993), are presented in Appendix 5, and its implementation is
illustrated in Fig. 5.4.
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)
)
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Figure 5.4. Decentralized filter architecture.
Some comments to the decentralized filter:

1) The computations of the global estimates and covariances are carried out
under the dimension of local systems, especially the matrix inverse, hence the
computation work load is significantly reduced compared to that of the
centralized filter, see egns (A.5.25) to (A.5.37). The algorithm provides an N-fold
speed-up over a single, global filter due to parallel processing by the N local
filters.

2) In most navigation applications the unique state vector is independent of the
common state vector. In this case, the algorithms can be simplified further as
(modified from Minkler, 1993):
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P, (4 0
Pi(tk)z{ ol }

0 Pi.u(tk) (5.1)
Xiu(t) = Xiu(te) ,i=1,--, N (5.2)
R N 4N A
X<(t) =[Z Pi-}:(tk)jl Y Pi(t)Xic(tk)

i=1 i=1 (5.3)

and the estimated covariances are:

N -1
Pq(ty) = {Z P;,‘c(tk)}
i=1

(5.4)
Pisc(t) = Picu(t) =0 , i=1,.- N (5.5)
Pi,U(t ) ’ I :j
Piju(tk) = | - , l
\0 I ¢J/ (5.6)

Block-diagonalizing is only applied to the initial and system noise covariances of
the common state vector, and the estimate covariances of the common state
vector for local filter resetting, see egns (A.5.14), (A.5.18) and (A.5.38).

3) The global and local filters can operate in-step and synchronous, and all
filters share a common processing cycle. Often, in practical applications, they
can also operate asynchronously, usually the global filter operates at a slower
rate than the local filters by using the local filters as prefilters to “compress” the
local sensor data.

4) The transition matrix, observation matrix, covariances of the system noise and
measurement noise of the global filter are all block-diagonal matrices, see egns
(A.5.10), (A.5.11), (A.5.14), and the global filter is completely block-observable
and block-controllable. If each local filter is stable the global filter is also stable.
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5) The system fault detection, identification and recovery can be carried out at
several levels. First, the local filters can perform legitimate and effective
screening of the local sensor measurements via residual checks. Second, the
global filter incorporates each local filter output and computes a residual that can

likewise be used for fault detection.

6) From a fault-tolerance viewpoint, the federated filter exhibits one serious
drawback. In particular, feeding back (resetting) the estimates and covariances
from the global filter introduces the possibility of cross-contamination. A fault in
one sensor, if undetected by both the local and global filters, will contaminate the
global solution. Feeding the solution back to the local filters will then
contaminate each of them. In order to avoid this problem, a sub-optimal filter can
be implemented which simply by-passes the global to local filter feedbacks, and
the precision of the resultant estimates will still exceed those of any of the stand-
alone local filters.

7) The merits of the decentralized filter is at the cost of filter optimality. The
federated filter is conservatively optimal due to the possibility of losing
information by the covariance block-diagonalizing and more emphasis is put on
the measurements by setting the covariances to their upper bounds, see egns
(A.5.14), (A.5.18). For a comparative study of the performance of centralized and
federated filters, see Carlson et al. (1994).
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5.2 Integration of DR and GPS

The Dead Reckoning (DR) system for a ship generally comprises of
gyrocompass, speed log and associated processors. The navigation function
can be improved significantly by an optimal integration of DR and other
navigation sensors which are based on different physical principles. The
integrated navigation system can be implemented in either the open-loop or

closed-loop modes.

5.2.1 Open-Loop Integration

Most radio navigation systems such as GPS, Omega and Loran-C have
interfaces to operate in the open-loop mode. The navigation processor, typically
a Kalman filter, may be part of a primary sensor, or functions as an independent

processor as illustrated in Fig.5.5.
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Omega |measurements
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Figure 5.5. Open-loop DR integration.
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The open-loop Kalman filter is based on the following model of a body's

dynamics:

X(t) = F X(t) + W(1)

where

X(1t) = [X1(1), X2()]"

W(t) = [(W1(t) W2(t)I"
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m
i

W1, W2 white noise representing the dynamic noise for X1, X2

Fi1, F2  constant matrices

X1 state vector for the body's state

X2 augmented state vector, whose content depends on the
measurement type and the autocorrelation functions of
measurement errors

The discrete measurement equation is:

Z(tx)= h[X(ty), t] + AB(tx) + V() (5.11)

where:
\' white noise
AB(tk) systematic error or bias which can be modeiled as shaping
filter or in the form of an ARMA model

The linearised measurement equation is generalily written as:

0Z (tx) = Hltx] 6X(t) + V(t) (5.12)
0Z(tk) = Z(t) - Zn(tk) (5.13)
where
dh[X;t] |

HItd = =3% ™ I x=xn(tw) (514)

Xn(tk), Zn(tk) are the nominal values.

An open-loop system is easy to implement, however the filter performance may
be sensitive to the body's dynamics. For example, if the trajectory is a straight
line the filter will give a good estimate of the trajectory if a small dynamic noise
w1 is put into the filter. On the other hand if the trajectory is not a straight line, the
filter response to the change of trajectory is slow and an apparent lag and
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estimation divergence from the true trajectory will occur during the body's
manoeuvre. The extended Kalman filter is not very sensitive to the variation of
the states because the higher order derivatives associate with the body's states
other than first order terms are usually neglected in the process of linearisation
of the equations. For a typical navigation problem, the dynamic equations of the
system are linear, but for most measurements such as those of GPS, Omega,
Loran-C and radar, they are non-linear. If a large dynamic noise is put into the
filter, the constraint of the trajectory is relaxed, but the filter is more sensitive to
the measurement errors and noise. Although the mean estimated trajectory of
the filter can follow the body's manoeuvre, a large estimation error and an
oscillation of the estimated trajectory about the true trajectory will occur, even
though the true trajectory is a straight line (Meijer, 1983).

A chi-square test for the normalized innovation series of the filter was proposed
as a method of monitoring the system dynamics (modified from Wolfe & Satzer,
1982):

Y2(te) =0ZT (tlter) [H(t) Pt HT(t) + R(to)] ' 0Z (tltic1)

(5.15)
where:
dZ(tkltk-1) innovation series
Piik-1 one step prediction of the estimate covariance
R(tk) variance of measurement noise

Under the assumption that the measurement noise and dynamic noise are
Gaussian white noise and the overall system model is perfect, the innovation
series 0Z(tkltx.1) is also a Gaussian white noise with zero mean:

9Z(tilt1) ~ N[O, H(t)Puk-1HT(t) + R(t)] (5.16)

The innovation series can be exploited for sensor failure detection and quality
control (Salzmann, 1993), and for checking the reasonableness of the data and
of the parameter estimation (Maybeck, 1982). Eqn (5.15) shows that a
normalized quadratic form of the Gaussian variable 0Z(tlt.1) follows the chi-
square distribution. Preliminary runs over the data serve to eliminate spurious
measurement data. When obviously bad data have been removed from the data
series, the threshold value of the chi-squared statistics can be set high.
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Furthermore, an assumption is made that the remaining data are all sound.
Then, if there are residuals which have chi-squared values exceeding the
threshold, it is assumed that it is caused by the body's manoeuvre and the
covariance of system dynamic noise is increased to account for the uncertainty
of the manoeuvre.

There are some problems with the above method. Firstly, the chi-squared
statistic is used for both data rejection and manoeuvre detection, the distinct
threshold values for both purposes are difficult to determine and the effects of
abnormal measurements and sudden changes in system dynamics are difficult
to separate. Secondly, the increase of the covariance of body's dynamic noise
will induce an increase in the filter estimation errors. If the body changes course
and speed rapidly and frequently, the filter will function poorly because the
driving noise is now non-stationary and the filtering steady state cannot be
achieved. The optimal estimation by the Kalman filter is only obtainable at the
filter steady state. Furthermore, the gain matrix of the filter will become motion
dependent and large estimation error will be expected during the manoeuvre.
Finally, a high data rate and a high filter updating rate are needed for the filter to
follow the rapid and frequent change in the trajectory.

5.2.2 Closed-Loop Integration

A partial feedback system, or a closed-loop filter, can avoid the problems
mentioned above (Fu, 1994). The state prediction of the body (position, velocity)
is now derived from the outputs of dead reckoning, which in the case of a marine
application are the outputs of the gyrocompass, speed log and ocean current
estimation corrected for their biases by the filter feedback. As mentioned in
section 3.3.1.1, the errors of the gyrocompass: the latitude error, the velocity and
course error and the acceleration error, are nearly constants or have a
oscillation with a comparatively long period (greater than the 84.4 minute
Schuler period). The gyrocompass is very sensitive to the high frequency
components of a body's state and can measure accurately the change in
heading. This is also true for the speed log (Doppler log) whose error is mainly
dependent on the speed of propagation of sound waves in the water (see
section 3.3.2.2). In addition to the vessel's position and velocity, the errors of
dead reckoning and the errors of the gyrocompass and speed log are included
in the state vector and those errors estimated by the Kalman filter are fed back to
the dead reckoning system to compensate their slow changing biases and
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constant errors. The errors in the vessel's trajectory are now a function of the
errors of the gyrocompass and speed log, which can be measured by GPS or
other navigation sensors.

This configuration isolates the vessel's dynamics, which are not estimated
directly by the filter. The driving noise of the filter is now the noise of the
gyrocompass, log, etc., and are all stationary processes. After a short transition
period, the filter will be in steady state and the innovation series can be used to
monitor the quality of the measurement data and the integrity of the navigation
sensors.

The filter is actually an estimator of dead reckoning errors which can be
considered as constants for certain time periods, and a high filter update rate is
not necessary. Furthermore, the temporary interruption of the measurement does
not affect the navigation accuracy and the vessel's state can still be obtained
from the dead reckoning output. The output of the dead reckoning can also be
input into the navigation sensors for sensor initialization and other support
functions. The closed-loop DR integration is illustrated in Fig. 5.6.

AG,AL,AVCN,AVCE
* Pe, Ac ;
Dead reckoning V. H
Gyro L C
Log Ven,Veey, -
Ac,Ve,He,C Kalman —®
B C' Po, Ao Filter v
GPS ZGPS o —>
Loran-C  |Zoran g H, Co
z —
Omega | “Omegag,
Radar ZRadar >
Figure 5.6. Closed-loop DR integration for a vessel.
where:
AG, AL, AVn, AVce gyrocompass error, log error, north and
east velocity errors of current
Qe Ac latitude and longitude of DR
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Vi, Ve, He, Ce log speed, speed relative to ground,
heading and course of DR

Ven, VeE north and east velocities of current

¢, A, V, H, Co estimated latitude, longitude, speed,
heading and course

ZGPS, ZLoran, ZOmegas ZRadar mMeasurements of GPS, Loran-C, Omega

and radar
00, Ao initial position
The DR position is:
V(1) cos[Hu(1)] + Vet
9e(th) = Polticr) + f 0 0SB+ Veld g,
ti-1 PN
(5.17)
% V() sinHe(®] + V.
Ao(tk) = Ac(t-1) + f L(t) sinf F‘{S)] + Vee(l) 1
b1 (5.18)
The log speed is:
VL(te) = Vit + AL(t) (5.19)
Vi, is the output of log.
The current velocities are:
Ven(tk) = Ven(tk) + AVen(ti) (5.20)
Vee(tk) = Vee(tk) + AVee(ty) (5.21)
Hc is the heading of dead reckoning:
Hc(tk) = Har(t) + AG(t) (5.22)

where Hg; is the the gyrocompass réading.
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Speed relative to the ground and course are:

Ve(ti) = VIVL(tk)cosHe(t) 1+ Ven B+ [ VL (tk) sin[He (t) 1+ Vee ()2
(5.23)

and

Vi(tk)sin[He(t)] +Vee(t) | | 1o
Vi (tk)cos[He(tk) [+ Ven(tk) (5.24)

Cc(tk) =1g !

Eqgns (5.17) to (5.24) complete the dead reckoning procedure.

The output data rate of DR is usually high, of the order of 1 to 100 Hz. The
update rate of the filter can be much lower than that of the DR, between 0.001 to
1 Hz depending on applications. During the interval of filter updating, AG and AL
can be considered as constants, AV¢y and AVqg as constants or changing
linearly, and the values at tx are easy to obtain by linear extrapolation. If the filter
breaks down, the dead reckoning block can still function as a pure dead
reckoning system.

Although the state equation of the Kalman filter for closed-loop DR integration
can be expressed in the same form as those for the open-loop one, see eqns
(5.7) to (5.10), the state vector of the closed-loop mode is different from that of
open-loop one. For the DR, the state vector is:

AN = N;- N¢  north component error of position of DR
AE = E; - Ec east component error of position of DR
X1 AL =V; -V velocity error of log

| AG= H: - Hc gyrocompass error

AVen = Vien - Ven  north component velocity error of current

| AVcg = Viee - Ve east component velocity error of current |
(5.25)

The subscripts t and c refer to the true values and the dead reckoning output
values. X1 is expressed in the geographic frame for which the system driving
noise is decoupled and stationary, and its covariance matrix is diagonal. The
coefficient matrix F1 is not a constant matrix, because V| and Hc¢ vary with time.
The total system model is time-variant. The filter is a combination of linearised
and extended Kalman filters.
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[0 0 cos(H,)  -Visin(H) 1 0

0 0 sin(H) Vi cos(Hc) 0 1

0 ?1 0 0 0

Fi= L
0 0 0 -1 0 0
1G
0 0 0 0 -1 0
TeN

0 0 0 0 -1

L TcE _|

(5.26)

TL. TG» TeNs TcE are the time constants of log, gyrocompass and current errors. TG
can be chosen as the damped oscillation period of gyrocompass, which is about
100-120 minutes depending on the type of gyrocompass. T, Ten @nd Tcg are
dependent on the oceanographic state and are usually chosen as being a few
hours.

From eqgn (5.26) it can be seen that the errors of log, gyrocompass and current
are all assumed to be first order Markov processes with long correlation times.

The system driving noise is:

0
0

wi (1)
wa(t)
wen(t)
_WcE(t)J

Wi(t) =

(5.27)

Q1 = E[w1 wi1T] =

(5.28)

wi(t) is zero mean white noise.
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Generally speaking, the transition matrix of a time-variant system cannot be
expressed by a matrix exponential. For short time intervals ts-t+.1(DR output
interval) it can be assumed that the heading and velocity are constant, hence
eqgn (5.26) is a constant matrix during that interval and the transition matrix can

be computed as:
DO1(t,tr-1) = | + F1(tr.q) (t - t-1) (5.29)
Assuming there are m DR outputs during a filter updating interval, then:

D1 (tk, tk-1) = D1, tk-14ma) D@1 (tk-1+mat, tk-14(m-1)a6) .. @1 (tk-1 445, tk-1)
(5.30)

where Af is the DR updating interval. F1(tx) is determined by the output of DR.

The position transition is just a dead reckoning procedure and the transition
matrix computation corresponding to the position terms can be simplified by
using the intermediate speed and course as illustrated in Fig.5.7.

Figure 5.7. Intermediate course and speed of dead reckoning.
In Fig.5.7 V¢(1), ..., Ve(m) and Cg(1), ..., Ce(m) are the speeds and courses during

DR updating intervals, obtained from egns (5.23) and (5.24). Sjnt and Cjnt are the
intermediate distance and course during the updating interval of the filter:
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Cin(t) = 19 |5 + ke

N(t) (5.31)
Vin(tg = YN + E2(6) __Sin
tk -tk tk - it (5.32)
where
m
N(t) = ). Ve(n)cosCe(n)Af
n=1 (5.33)
m
E(t) = D, Vc(n)sinCq(n)Af
n=1 (5.34)
The transition matrix can now be written as:
@1 (ti tic1) =1 + F1[Cim(t), Vint(t)] (t - ti1) (5.35)

For long time intervals eqn (5.35) can still be used as an intermediate step for
the computation of the transition matrix to reduce the computational burden. After
the transition matrix is computed, the standard computation procedure of the
Kalman filter is followed.

5.2.3. Measurements

The measurement equations of the navigation sensors are:

1) Omeqga:
For two transmitters i and j, the phase difference of the Omega is:

Z4(t) = —4é°mega pi(t) - pj(ti)] + A0 (t) + Avel(ty)
Omega

(5.36)
where:
fOmega Omega signal frequency
COmega Omega signal propagation speed
Pi. Pj geodesic lengths from receiver to i and j Omega
transmitters
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For hyperbolic navigation systems such as Omega and Loran-C, their principles
are similar to the between-satellite difference mode of GPS. Omega transmitters
are functioning independently and the propagation errors of the radio wave and
the transmitting errors of different transmitters can be considered independent.
The undifferenced Omega measurement equation can be written as:

Zb(t) = fomega [%H + O(t) + Vh(ty)

(5.37)

After correction of the propagation error by PPC tables (phase propagation
correction), the first order terms of the correlated residual error Oi(tk) can be
modelled as two first Markov processes (one weakly and the other strongly
correlated), and one periodic exponentially decaying process with a period of 24
hours which is modelled as a second order Markov process (Liang & McMillan,
1982). In most cases the periodic error can be neglected. The author prefers two
first order Markov process models with the correlation time T1>>T2, hence for
each Omega station there are two variables augmented to the state vector. The
LOP (Line Of Position) of Omega is formed by differencing the one-way
measurements using a differencing operator D. For four stations the sequential

operator D is:

1 100
D=0 1-10
0 0 1 -1 (5.38)

The linearised form of (5.37) is:

- AN(ty) |
§Zb(ti) = 12m52. [-cosyi(n) -sinyis) 1 11] 2= Lt
Comega B1b(t
B2o(t).
(5.39)
where:
v bearing from the DR position to the ith Omega transmitter
B1b, B2h augmented state variable for the two Markov processes
Vi (tk) white noise
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For four Omega stations the measurement equation is:

| 525(t)
8525(tx)
823 (tk)
| 8Z4(tk). (5.40)

0Zo(tk) =D

The covariance of measurement noise is:

D E[vo(t) vo(t)'] DT =D Ro(ti)D"8; (5.41)
where
1 =K
.y
0 | (5.42)
volt) =[vb(t) VB(t) VB vA®] , i=1,..k
(5.43)
2) Loran-C:

The Loran-C measurement is much like that of Omega except that the
measurement is the arrival time difference of the pulse signals from master-siave
pairs of transmitters. After the correction for deterministic propagation errors SPF
(Secondary Phase Factor) and ASF (Additional Secondary Phase Factor) for
each station, the remaining propagation and measurement errors can be
modelled as a first order Markov process and white noise:

Zpmsi(ty) =%@ + Cwm.si(tk) + vm,si(t)
Loran (5.44)

where Cioran is the propagation speed of Loran-C signal, Zm si, PM,si, Cm,si and

vm,si are the arrival time of the signal, range, measurement bias and noise of the
master or ith slave stations.
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The linearised Loran-C measurement equation is:

AN(t)
SZM,Si(tk)=C—1—['COSWM,Si(tk) -sinym si(t) 1]| AN(tk) Hvmsi(ty)
Loran
Cwm si(tk)

(5.45)

For a one master and three slave Loran-C chain, the differencing operator is:

1-100
D=10-10
10 0 -1 (5.46)

The Loran-C measurement equation can be written as:

- dzm(ty) |
8zs1(tk)
8zso(tk)
| 6zs3(tk) |

dZc(tk) =D

(5.47)

The expression of the covariance of the measurement noise is the same as eqgn
(5.41).

Besides the hyperbolic mode as indicated in eqn (5.47), Loran-C can be used in
the range-range mode, much like the GPS pseudo-range. The Loran-C pseudo-
range equation is:

Zi(t) = gfr';)n + [be(ti) - bi(t] + Ci(t) + Vi(t)
(5.48)

where by and bj are the clock errors of the receiver and the ith transmitter.

The transmitter clock offset depends on what type of chain time control is used,
and whether the transmitter is a "master" or "slave". In any event, if the station
(master or slave) is under TOT (Time Of Transmission) control, then offset bj can
be assumed a constant. If the station (slave only) is under SAM (System Area
Monitor) control, the offset is not a constant. The benefit of the range-range mode
is that more measurements can be obtained, even from transmitters of another
Loran-C chain, and the ASF can be estimated and predicted directly from the
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measurements. But this mode introduces an additional error source due to
clocks. Even integrated with GPS pseudo-range, the positioning accuracy is not
high, 300 m to 1400 m (2dRMS) under good geometry of HDOP=2 (Enge &

McCullough, 1989).

3) Radar:
Radar range can be expressed as:

ZRadard(tk) = p(tk) + VR(t) (5.49)

where:
P range to the radar detected object

vr white noise

The linearised radar measurement equation is:

ANR(t)

AER(th + VAt

8ZRrd(tk) =|-CosyR(ty) -SinWR(tk)][

(5.50)

where:
AER, ANR the east and north range differences between radar
antenna and object
VR bearing of the object

The radar azimuth measurement is:

ZRadarb(lk) = 19 '{MQ} + VRp(tk)
ANg(ti) (5.51)
where VRb is white noise.
The linearised measurement equation is:
, ANR(t)
0Zpp(t =1lcos r(tk) -sinyr(ix [ + VpRp(t
b(tk) p[ WR(t) -sinyr(ty)] AER() b(tk)
(5.52)
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4) GPS:

The pseudo-range measurement in the geographic frame is:

p(t) = V[Ns(tk) - Ne(ti) 2 + [Es(t) - Ec(ti)]2 + [Hs(t) - Hre(t)?

+ X bias + vg(ty)
(5.53)

where:
Ng, Es, Hs coordinates of GPS satellite in the geographic frame
N¢, Ec, Hc DR coordinates of GPS receiver in the geographic frame
VG white noise

The linearised GPS range measurement is:

AN(ty)
SZGps(tk)z[- coso(ty) - cosp(ix) 1] AE(t) [+Va(ty)

ao(ti)
(5.54)

where

_ Ns(ti) - Ne(ti) _ Es(t) - Ec(t)
O R T Y

ag is the receiver clock bias.

coso(iy)

The range-rate measurement in the geographic frame is:

ZD___[NS - NC][NS - Nc] HEs - EJ] [Es - Ec] +[Hs - Hc][Hs - Hc]

Y
+ Y bias+w
(5.55)
where vp is white noise.
The linearised GPS Doppler measurement equation is:
0Zp(t) =[H1(tk)  Hz(tk)] Xp(tk) + vp(ty) (5.56)
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H, = (Ns - N¢) + pcosa (Es - Ec) + pcosp
P P (5.57)

| -cosacosH. - cospsinH,

Vi (cosasinH; - cosBcoch)

HT, = -COSo
-cosf3
L 1 J (5.58)
X'b=[AN AE AL AG AVen AVee ay (5.59)

where a1 is the receiver clock drift.

5.2.4 Augmented State Vector

The state vector X2 depends on the sensors being integrated. It is composed of
the augmented state variables, two for each Omega transmitter and one for each
Loran-C transmitter, and the receiver clock errors when GPS is also integrated:

Bo11 Omega bias (closely correlated) of transmitter 1]

Bo21 Omega bias (closely correlated) of transmitter 2
X2(t) = Boz2 Omega bias (weakly correlated) of transmitter 2
Bc1 Loran - C bias of transmitter 1
Bc1 Loran - C bias of transmitter 2
ao GPS receiver clock bias
L aq GPS receiver clock drift

)

Bo12 Omega bias (weakly correlated) of transmitter 1
)
)

(5.60)
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and

1 00000
To11

o1 0000
To12

0 01 000
To21

ooo-T1 00

F2= 0221

0 0 0 0-10

Tcq

0 0 0 0 0--1

Tco

0 0 0 O

.0 0 0 0 0 O

(5.61)

where Toijj, Tci are time constants for the Omega and Loran-C biases.

Egn (5.61) is a constant matrix for two Omega and two Loran stations. The
transition matrix is easy to obtained by Laplace transformation. The diagonal
terms of the transition matrix for discrete time corresponding to Omega and

Loran-C are:

e-AtToj i, e-AVTc;

The transition matrix for the GPS part is:
{1 At]
0 1

the other elements of F2 are zero, and

W2 ~ N (0, Q)

where Q2 is a positive-definite diagonal matrix.
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5.2.5 Some Comments

1) Navigation systems such as Omega and Loran-C are under the control of
different authorities and operate in different reference systems. For INNS the
transformation between local reference systems to a single computational
system is essential and can be carried out in the DR block. The choice of the
computational system for the specific task is essentially one of convenience. For
example, the WGS-84 system may be an obvious choice from the point of view
of the dominant role of GPS navigation. But in practice, nearly all marine
navigation procedures are carried out on or based on the nautical chart (the
digital nautical chart in future), hence the local reference system of the nautical
chart may be preferable for practical applications. Here the geographic frame is
selected to simplify computations by avoiding the time-varying parameters of
latitude and longitude and the correlation of the system driving noise, and for the
convenience of DR computation. The same reasoning applies to the time
reference transformation because GPS uses GPS Time, and Omega and Loran-

C are based on UTC.

2) When GPS measurements are to be integrated, more sophisticated model for
the GPS measurement biases can be augmented to the system model, or the
DGPS mode can be used. When using GPS carrier phase measurement, cycle
slips can be detected more effectively because the effects of body's dynamics on
the phase measurement are isolated by the DR.

3) The azimuth y of Omega and Loran-C measurement is the geodesic angle
between meridian and the geodesic. For a range of 200 nm, the difference
between the true spheroidal and the spherical angles is less than 1 second of
arc. Usually the position of DR is very close to the true position, so for the
linearisation of Loran-C measurement, the use of spherical angle instead of
geodesic angle is a reasonable simplification, (even using plane angle
corrected for spherical excess by the "Legendre Rule", Clark (1968), and the
error introduced is much less than the signal propagation error). For Omega, the
geodesic angle can be obtained from the Bessel equation and in most cases
second order approximation is good enough.

4) The geometrical strength of the radio positioning aids of the INNS can be
determined by HDOP (Horizontal Dilution Of Precision) :
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HDOP = \/trace(ATA)'1 (5.65)

A consists of the terms corresponding to the two horizontal position errors
AN, AE of the GPS, Omega, Loran-C and radar observation matrices.

5) The quality control of INNS can be simply performed using egn (5.15),
because the manoeuvre of vessel is now isolated and the statistics of eqn (5.15)
can be used for the detection of measurement outliers and the failure of devices.
There are two thresholds: the error tolerance and the time tolerance. If the
residual of the measurement is larger than the error tolerance, then the
measurement is rejected. If the time of bad measurement occurrence for a
certain device is larger than the time tolerance, then device failure is declared.

6) The model is developed in two dimensions under the assumption that the
vessel's vertical displacement (precisely, the mean vertical displacement) is
zero. However expansion to three dimensions is straightforward.

7) The model is different from the AN\SYN-501 (MINS-B Il) system which is also
a DR integration with radio navigation systems used by Canada Navy (McMillan,
1988). Firstly MINS-B Il is actually an open-loop implementation. Futhermore,
the gyrocompass error, which is assumed can be absorbed by the ocean current
model, is not included in the state vector for computation simplification. Actually
the gyrocompass error is one of the main error sources of the DR and the effect
and dynamic model of the gyrocompass error should be treated differently from
that of ocean current. The gyrocompass error is the vessel's attitude error and
causes an equivalent course error. The correlation time of ocean current,
depending on the type of the current (such as tide current or constant current), is
different from that of a gyrocompass. Furthermore, the north and east velocity
errors AVnaG, AVeG caused by the gyrocompass are:

AVng = - Visin(Hc) AG (5.65)

AVgg = Vicos(Hc) AG (5.66)

AVnag, AVEg are heading-dependent and the current errors are not. Assuming
egns (5.65) and (5.66) are part of the ocean current errors, then the variances
and correlation times of their north and east current components would also be

heading-dependent.
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8) During a short transient period of the filter, the filter output and the DR output
is different for the closed-loop system. When the filter is in steady-state, both
outputs of the filter and DR are nearly the same and the filter is now operating as
a system monitor. The increase in computational workload for the closed-loop
implementation is trivial compared to that of the open-loop implementation.

5.3 INS/GPS Integration

All practical INS are aided by some external navigation system$ to perform the
INS calibrations. The calibrations are carried out using the position, velocity,
attitude information, or their combinations obtained from the external navigation
systems. Especially by using range and range rate measurements of GPS it can
be realized position and velocity calibrations at the same time.

5.3.1 Closed-Loop INS/GPS Integration

A closed-loop INS/GPS integration based on a centralized filter is illustrated in
Fig.5.8, in which the INS is calibrated by the position and velocity obtained from
the GPS range and Doppler measurements Zp and Z4, and a negative state.
feedback -gf( forms a closed-loop control for the INS, see eqn (A.3.8.20).

corrected position

velocity and attitude
INS >
-gX
* g Kglman
filter
GPS Zy T
receiver Z4

Figure 5.8. Closed-loop INS/GPS integration.
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The INS itself follows the high frequency motion of the body quite accurately,
and there is no need to model those dynamics explicitly in the filter. Instead, the
dynamics upon which the filter is based is a set of inertial system error equations
which depend on the INS mechanization, see eqns (A.3.3.2) to (A.3.3.4),
(A.3.4.11) to (A.3.4.13) and (A.3.5.3) to (A.3.5.4). These are relatively well
developed, well behaved, low frequency and adequately represented as linear.
Because the filter is out of the INS loop and is based on linear dynamics of low
frequency, its sample period can be made as long as a half minute or longer,
thereby achieving practicality with respect to the amount of computer time
required. The filter operates as a low-pass filter on the GPS and the high
frequency noise of the GPS measurements is suppressed. At the same time, the
low frequency noise of the INS is attenuated. The Kalman filter generates
estimates of the errors in INS, and these are fed back into the INS to calibrate
them. In this way the inertial errors are not allowed to grow unchecked and the
adequacy of a linear model is enhanced.

There is a potential to feedback the estimated position and velocity into the GPS
receiver which is not shown in the Fig.5.8. Although the tracking loop bandwidth
of the receiver can be reduced by the direct state feedback, it is a positive
feedback and the loop gain has to be controlied to be small, otherwise the INS-
to-GPS-to-INS loop will become instable.

A closed-loop north-directed INS/GPS integration based on a centralized filter
algorithm is presented in Appendix 3.8. More details concerning INS/GPS
integration can be found in such texts as Cox, 1980; West-Vukovich et al.,1988;
Eissfeller & Spietz, 1989; Henkel, 1992, Schwarz & Wei, 1994, Schwarz &

Zhang, 1994.
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CHAPTER 6
NAVIGATION MODELS

The navigation model, consisting of a dynamic model and an observation
model, is the mathematical description of a body's motion in both the state space
and the measurement space. Although the navigation model is generally well
established and has been used in various implementations, for many years its
dynamic characteristics and behaviour were rarely described in detail. As an
example of a dynamic system, from the navigation point of view, the important
characteristics of the navigation model that need to be understood are its
stability, observability and controllability. Model stability is concerned with the
effect of random or deterministic inputs on the model outputs. Model
observability is concerned with the impact of varying model states upon the
system output, and controllability is related to the effect of input upon states of the
model. In the case of navigation filters, if the navigation model is not observable,
the filter estimation errors along certain directions of the state space would not
decrease, regardiess of how many measurements are processed. For a Kalman
filter if the navigation model is completely observable and controliable, this is
sufficient condition to ensure the filter is stable (Maybeck,1979).

In this chapter the navigation models for GPS navigation, for both the point and
differential positioning modes, are discussed. Various bias models: random
constant, random walk and first order Markov process, which can be used for the
improvement of the navigation filters are also discussed.

6.1 Navigation Models

Filtering in the time domain requires a navigation model consisting of the body's
dynamic model and the observation model, and is expressed in state space and
measurement space.

6.1.1 The Dynamic Model

Body's state: position vector r(t), velocity vector v(t) and acceleration vector a(t),
are generally described in a R3 Euclidean space, and is decomposed to
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orthogonal coordinate components. Each coordinate component of the R3 space
can comprise of a state space of one (position), two (position and velocity) or
three (position, velocity and acceleration) dimensions, or higher, depending on
the body's dynamics. The state space is an orthogonal system spanned by the
state variable and the state variables are linearly independent. The state vector
used in GPS navigation usually comprises the correction components
representing the deviation of the true trajectory from a reference (or nominal)
trajectory, and obtained as a results of the linearization of the system. The
correction (or the relative trajectory) to the reference trajectory in this thesis is
defined as:

Ar(t) = r(t) - ro(t) =[x(t), (), z(t)]T 6.1)

AV(t) = v(t) - volt) =

d[Ar(t)}_[dx(t) dy(t) dz(t)F
dt L dt’ dt’ dt

(6.2)

d2x(t)  d2y(t) dzz(t)F

Aa(t)=a(t)-aO(t)=d2{Ar(t)}={ d? - de | de?

dt@

(6.3)
where g, Vo, @ are the reference (apriori) values of the body's state.

The reference trajectory should be sufficiently accurate so that the high order
terms of the system linearization can either be neglected, or modelied as random
noise. Under that condition the choice of the reference trajectory is arbitrary, it
may be a: planned trajectory, the output of other navigation sensors, or derived
from the output of GPS navigation filter. If the reference trajectory is assumed to
be deterministic (for example, planned trajectory or derived from polynomial
fitting), the relative trajectory and the true trajectory have the same stochastic
properties, apart from their mean values. For a stochastic reference trajectory
(such as the output of dead reckoning by gyrocompass and log or an inertial
system), the relative trajectory is affected by low-frequency noise, and a
diverging relative trajectory can result if the errors of the inertial sensors are not
corrected. In any case, stationary processes Ar, Av, Aa are preferable because
a simple dynamic model and a long sampling interval can be used.
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The following models are expressed in terms of the relative trajectory and
Ar, Av, Aa are simply referred to as position, velocity and acceleration vectors
respectively.

6.1.1.1 Third Order System (state space of three dimensions)

Ar(t) + aAr(t) = wj(t) (6.4)

®a(S) ®v(S)

0i(S) O

ua(S) uy(S)
Figure 6.1. Signal flow chart of third order system.

where:
Wj, Wa, Wy 3 x 1 white noise vector
Uz, Uy 3 x 1 bias vector

o 3 x 3 diagonal matrix, the diagonal elements
[1/txa, 1tya, 1/tz5) are the inverse of acceleration time
constants

S the Laplace operator

For the x component the state equation is:
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x| [0 1 ol [XV] 11 o
X(t) =[o 0 j X(t) J{o 1M“vx<t>}
x(t)] LO 0 -1hal [X()] LO O Uax(t)

1 0 0] |®x1(t
+ {O 1 O} M®xo(t)
0 eyt (6.5)

E([ox(t), oxa(t), oxa®)]T , [x1(t), oxa(ts), oxa(ts)])

1 O 0
= Oz 0]0(t-t)
0 0 Qs
(6.6)
The discrete time solution of eqn (6.5) is:
X(ted)] |1 AK et 4 AK - 12| ()
{X(tkn)J= o 1 tea(1 - 4Ka) X(tk)}
X(tee)] LO 0 gtha X(tk)
—Ux1 (tk) Wi4 (tk)
+| Uxa(t) | +| Wxa(ti)
| Uxa(ti) Wyis(ty) (6.7)

where Ak is the sampling interval.

Qu(t) = E{[Wiet (ti), Wiea(ti), Waea(ti)]T, [Waet (t), Waca(ti), Waca(ti)]]
Qy11(ty) Qxi2(t)  Qxaa(t)
Qx21(tk) Quo(t)  Queas(ti)
Qxa1(tk) Qao(t)  Qxas(ti)

where
Qx11(tk) = Qx11AK + Qxo2 AK3/3 + x33C11

Qu12(tk) = Qua1(tk) = Qxo2 AK?/2 + GxasCr2
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3
Qx13(t) = Quar(ti) = qﬁ{t’(?a“ - @28Kfta) - AK{Z,08K/ka

Q) = GeatK

+ QxaatZa(AK - 3tya/2 + 2tyae 2Kt - 1, 024K /e/2)
Quo3(tk) =Qxa2(tk) = QuaatZa(1/2 - e4Ktka 4 g-28KMte/2)

Qxas(tk) = t—?‘ Ox33(1 - e-24Kta)
C11 =‘Zﬁ[ 1+25LAK-262AK?+253AK3/3- 4t AKe-8Ktra_¢-28K o)

Cia =%{1 -2t AK+H2AK2+ 2t AK e AK b0 g 8K ba . 28Kt

and the system bias and noise U and W are the convolutions of the transition
matrix and the system input.

The state equations and covariances of the y and z components take the same
form as those of the x component.

When a is a zero matrix, the third order system is usually referred to as a
constant acceleration model, and its state equation for the x component is:

xt] o 1 o] X 11 0
X(1) ={o 0 1} X(t) +[o 1} {“VX“)}

%) 0 0 o) [x(t)] Lo o LUax(®)
1 0 0] oxi1()
-{o 1 o} @xa(t)
0 0 Tlaa® (6.9)

The discrete time solution is:

X(tke1)] |1 AK  AKZ2{[X(1)] [Uxi(t)] [Wia(ty)
X(tk+1)|=|0 1 AK [ X(t) [+ | Uxa(ti) |+ Wio(tk)
x(tk+1 ) 0 0 1 X(tk) st(tk) WX3(tk)

(6.10)
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where
Qx11(tk) = Gx11AK + QrooAK?/2 + Qy33AK®/20

Qxr2(t) = Qua1(t) = Gx22AK?/2 + GyasAK?/8
Qu13(tk) = Quai(tk) = GxazAK/6

Quz2(tk) = Gx22AK + Ox3sAK®/3

Quzs(tk) = Quaz(tk) = CxazAK?/2

Quas(tk) = axa3AK

6.1.1.2. Second Order System (state space of two dimensions)

At(t) + BAE(t) = ma(t) (6.11)

O)V(S)

1 1

S S

®a(S) O =0
AF(S) Ar(S)
-B

uy(S)

Figure 6.2. Signal flow chart of second order system.
B is a 3 x 3 diagonal matrix, the diagonal elements [1/txv, 1/, 1/tz] are the

inverse of velocity time constants. The other components are as previously
defined.
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The state equation of the x component is:

[X(t)}:{o 1 {x(t)}ﬂu +[1 0} {wm(t)J
X)) [0 ) X)) ol o 1 e
(6.12)
and
E( [(Ox1(t), mXZ(t)}T ) [(Dx1 (t1), 0)x2(t1)])
_ [QXH OJ 8t-t;)
0 Qe (6.13)

The system model in discrete time is:

{X(tkn)}zr to(1-674K) Hx(tk)} J{Um (tk)} +[Wx1 (tk)}
0

X(tk+1) e MKy X (1K) Uxa(tk) Wia(tk)
(6.14)
Qu(ti) = E{[Waet (t), Waa(ti)]T, [Wiea(t), Waca(t)]]
:{Qﬂ 1(t) Qxi Q(tk)}
Qx21(tk) Quxoa(ti)
(6.15)

where
Qa1(t) = a1AK
+ OxootZ(AK - Bta/2 + 28 M - t,,6-24K/2)
Qx12(tk) =Qx21(tk) = Qxootiav(1/2 - e2K 4 g-24K/w/D)
Qua2(tk) = xotev (1 - €28K)/2

When B is a zero matrix, the second order system is referred to as a constant
velocity model, and its state equation for the x component is:

eI | N O
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The discrete time solution is:

{X(tkn)}zr AKHX(tk)} . [Ux1(tk)} +[Wx1(tk)}

X(tk+1)] LO Ux(t)]  [Uxa(t)] [Wxa(ts)
: (6.17)
where
_ AK®
Qx11(te) = Ax11AK + G222
2
Qx12(tk) = Qx21 (tk) = QX22A5——
Qua2(tk) = Oue2AK
6.1.1.3. First Order System (state space of one dimension)
AF(t) + yAr(t) = ou(t) (6.18)

Yis a 3 x 3 diagonal matrix, the diagonal elements [1/, 1/, 1/tz] are the
inverse of the position time constants.

1

S
0v(S) O-——U )
-~ AF(S)

Figure 6.3. Signal flow chart of first order system.
When an(t) = 0, ¥ = 0 the first order system degenerates to a static model.
The first order model is a first order Markov process and is often used for attitude

determination by GPS when the baseline length is known.

The state equation of the x component for the static model is:

x(t)=0 (6.19)
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6.1.1.4 Stability

The above models are linear, time-invariant systems and the stability of these
models can be determined by the system pole position, node-by-node for each
integral branch from left to right of the system signal flow charts (Fig.6.1, 6.2, 6.3).
The stability referred to here is defined as the zero-input asymptotic stability,
which is equivalent to the BIBO (Bounded-input/Bounded-Output) stability for
linear, time-invariant system (Maybeck, 1979), used to investigate the effects of
the initial uncertainty of the system state. All system inputs are assumed to have
finite covariance (finite power). A class of stable states is a linear sub-space of
the state space and a system is stable if all its states are stable. For a stable state
the effect of the state initial uncertainty is decreasing with time, in contrast to an
unstable state in which the uncertainty of the state increases with time, and for
marginally stable state the initial uncertainty remains unchanged with time at
system steady state.

In the case of the third order system model (Fig.6.1) there is a first order pole -a
at the real axis of the left half-complex plane (S plane) for the first branch hence
the acceleration is stable. The second branch which consists of the two integral
branches before the velocity node has two first order poles, one of which is -o
and the other is at the zero point of the complex plane, hence the velocity is
marginally stable. Similarly for the position, there is a second order pole which is
at the zero point of the complex plane and position is therefore unstable. For the
constant acceleration model, the acceleration is marginally stable because -a =
0, and velocity and position are both unstable.

Aa a result of a similar analysis to that of the third order system, the velocity is
stable and position is marginally stable for the second order system, and the
velocity is marginally stable and the position is unstable for the constant velocity
model.

In the case of the first order system, the position is stable and the static model the
position is marginally stable.

The system stability under white noise input can be seen from the diagonal terms
of the covariance matrices of eqns (6.8) and (6.15). Except for the acceleration of
the third order system, the velocity of the second order system and the position of
the first order system, the rest of the states are unstable. All states of constant
acceleration and constant velocity models are unstable.
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6.2 Observation Model

The observation (measurement) space is a mapping of the completely
observable sub-space of the state space. The linearized observation equation
can be expressed:

Z(ti) = Hq(ti)X+(t) + n(t) + V(t) (6.20)

where V is the measurement noise and n is the bias, which can be modelled by
a shaping filter driven by white noise wa(t) as:

Xa(t) = Fa(t)Xa(t) + Ba(t)oa(t) (6.21)
n(t) = Ha(t)Xa(t) (6.22)
In discrete time eqgn (6.21) can be expressed as :

Xa(tke1) = Patiet, 1) Xaltk) + Wal(tk) (6.23)

The observation equation can now be written as:

Z(t) = H(t)X(t) + V(%)

mmo

where
E[V(t)]=0 (6.25)
E[V(ty) , VT(ty)] = R(t) 8k (6.26)

where 3kJ is the Kronecker delta function, R is a positive-definite matrix, and the
norm of R satisfies 0 < |R| < .
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6.2.1 Pseudo-Range Observation

The observation matrix H1 can be obtained from the Jacobian matrix J:

" OP4(t) 9P4(t) IP4(t) |
orT(t)” ovT(t) oaT(t
dP,(t) OP,(t) oPa(t
orT(t)” ovT(t) daT(t
OPn(t) 9Pn(t) 9Pa(1)
orT(t) ovT(t) daT(t) | t=t, (6.27)

J(tk) =

where

dPi(t) _ {'{rsix(t) - Iex(t)] {rsiy(t) - rry(t)] {Fsiz(t) - re(t)]

arT(t) Pit)y Pit) Pi(t)

=[-coso; -COsp; -COSY]
(6.28)

where cosai, cosfj and cosy; are the direction cosines for the ith satellite. rgix, siy,
rsiz are the ith satellite coordinates and rx, rry, rrz the receiver antenna
coordinates, and P;is the pseudo-range measurement from the ith satellite.

Pi(t) _ 9Pi(t) _
ovT(t) odaT(t) o 0 0 (6.29)

6.2.2 Range-Rate Observation

The observation matrix Hy can be obtained from the Jacobian matrix J:
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where

and

| 9P4(1) aP1(t) IP4(t)

orT(t)” avT(t)” 2aT(t)
dPs(t) dPa(t) dPa(t)
orT(t) " ovT(t)” 2aT(t)

J(t) =
P, (1) 9Pn(t) 9Pn(t)
| orT(1) ovT(t) 2aT(t) | = (6.30)
5.4 _ dPi(t)
Pilt) ==5 (6.31)

OPi(t) _ | tndt)+Pi(t)cosa Fry(t)+Pi(t)cosB i (t)+Pj(t)cosy

orT(t) Pi(t) ’ Pi(t) ’ Pi(t)
(6.32)

oPi(t) _ 1. ]

N [-coso -cosf CcosY] 659

oPi(t) [ 0]

Ja’(t) (6.34)

The form of the augmented state vector for a GPS observation depends on how
the measurement biases n are dealt with. The popular bias models are random
constant, Markov process and random walk, or the ARMA model.

6.3 General Dynamic Model

The dynamic models of a body can now be expressed in state space as:

X1(t) = F1Xq1(t) + Ga(t)uq(t) + B1(t)oq(t) (6.35)
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where:
X4 body's state
F, system matrix
u{, 1 systematic error and dynamic noise
G+, By input coupling matrices and for most navigation applications
they are constant and consisted of 1s and Os

The systematic error or bias, such as sea or air current, can either be
compensated as a deterministic function and have hence no influence on the
stochastic estimation of the vessel's state, or they can be modelled as a shaping
filter, which is also a linear time-invariant system, and augmented to the system
state. The general dynamic model can be written as:

X(t) = FX(t) + B(t)oo(t) (6.36)

where:

X  nx1 state vector
n x n constant system matrix
nxp input coupling matrix
p x 1 white noise

e W m

and

Elo(t), oT(t1)] = q(t) 8(t - ti) (6.37)
where q is the power spectrum density matrix of the dynamic noise.
The discrete time solution of egn (6.36) is :

X(tki1) = k41, t)X(tk) + W(tk) (6.38)

For linear, time-invariant systems, the transition matrix ® can be considered to
be in the form of a matrix exponential. A convolution form of W(ty) is:

ticet
W(ty) =f O (tk+1, T)B(T)od(T)dT
tk (6.39)
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Egn (6.39) is the less rigorous form of a stochastic integral under the assumption
that the differentiation of a Wiener process is a Gaussian white noise. If an
assumption can be made that o(t) is constant during the integration interval, the
Gaussian requirement for o(t) can be dropped, and eqn (6.39) becomes a
Riemann integral:

tice1
W(ty) = f D(ty+1, T)B(T)dTO0 (1K) |
t (6.40)

and

E[W(t), WT(t)] = Q(t) 8 6.41)

F and & are in the forms:

Fk 0 0 O
|0 F 0 0 _{H OJ
10 0 F, 01| o Fa
0 0O 0 Fa
(6.42)
() =[ox(t), oy(t), @z(t), 0a®)]
=[(t), @a®)]’ (6.43)
Bty O 0 0 |
B(1) - 0 Byt 0 0
0 0  Byt) 0
. 0 0 0  Ba(t) |
_{Bﬁt) 0}
0 Ba(t) (6.44)
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i (Dx(tk+1, tk) 0 0 0 |
0 (Dy(tk+1, tk) 0 0
DO(tk,1, ) =
S 0 @ (tee, ) 0
0 0 0 Da(tkysr, ).
:!: (I)T(tk+1’tk) O }
0 D a(tks1, t)
(6.45)
and
Xt | Xt
_ te)  _ | Xq{tk
X =" %t -| xm.o}
Xa(tx) (6.46)
Wi | 1w
1 Wyt | 1(tk
W=l Wi | wit |
Wa(ti) (6.47)

The terms with subscript A correspond to the augmented state vector
representing the identified measurement biases. The state variables of system
bias input augmented into the model are included in the X1 for each dimension
respectively. Thus the sub-matrices corresponding to the x, y, z and augmented
state vectors are decoupled and the sub-matrices corresponding to the state
vectors of x, y and z coordinate components generally have the same form.
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, Wy(t) + U(tker) » G
I + :
| |
| system ult
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Figure 6.4. Block Chart of navigation model.

6.4 Controllability of the Navigation Model

All navigation models, except for the static model are stochastically controllable
because they satisfy the condition (modified from Maybeck, 1979):

al< Y Ot t)Qulti-1)Dx(ti t) <Pl
J=i-N+1 (6.48)

O<o<PB<oo, i=N
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where @y is a full rank matrix and Qy is positive-definite matrix with limited
strength. The same conclusion can be reached for the y, and z sub-spaces, and
hence X1 is completely controllable. The conclusion is obvious because B1
matrix is full rank and every state variable is under the control of the input.

Sometimes the input coupling matrices By, By and B; are in following forms:

0 0 0 0 O
{ Jor 0O 0 O
O 1 g o 1

Assuming the driving noise is the control input, the systems are completely
controllable and the rank of the controllability matrix equals the dimension of the
state vector n, because the systems are now in the standard controllable form
and each sub-block of F1 is a companion matrix (see eqns (6.5), (6.9), (6.12)
and (6.16)), and is completely controllable which is equivalent to the uniformly
stochastic controllability matrix (Maybeck, 1982) of eqn (6.48) for a linear and
time-invariant system.

Through an analysis, the following commends on the controllability of the
augmented shaping filter can be made:
- Random constant is uncontrollable and marginally stable.
- First and second order Markov processed are completely
controllable and stable.
- Random walk is completely controllable and unstable under random input.

For details on shaping filter structures, see Maybeck (1979), Gelb (1974).

Time series models can be used to model the biases in discrete time. For a
stationary series the AR(p) (AutoRegressive) model is:

Xa(tk) = 01Xa(tk-1) + 02Xa(tk-2) + - - - + OpXa(tip) + Wa(tk)

(6.49)

or
O(B) Xa(t) = Wa(ty) (6.50)
0(B) =1-0¢1B-¢2B%- ... - ¢,BP (6.51)
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where B is the delay operator. W is stationary white noise and p is the order of
the series.

$1,---, Op are estimated by Least Squares or Kalman filter and their values
should satisty the condition that the absolute values of the characteristic roots of
¢(B) = 0 lie outside the unit circle to make the process stationary (stable). When
'4)1[ <1, AR (1) is called a first order Markov series. The first order Markov series is
different from the first order Markov process in that when 0<o¢1<1, the
autocorrelation function of AP(1) is in the exponential decaying form as that of
the first order Markov process, when -1 <¢1 <0 the autocorrelation function has
an exponential decay with oscillation which can only be modelled by a second
order Markov process created by a underdamped second order shaping filter.
When ¢1 =1, AP(1) is a random walk series which is non-stationary because the
characteristic root is at the unit circle.

Eqgn (6.49) can be written in a state equation form:

Kaltps) | TO 1 ... 0 07 Xaltp) ] 0]
Xateps2) | [0 0 ... 0 0| Xaltkps1) | | @

. e e Wa(tia)
Xa(t) 0 0 -« 0 1) Xa(tkr) 0
| Xa(tert) | [0p @p1--- 02 O1)l Xat) ] -1

(6.52)

Eqgn (6.52) is in the standard controllable form and the system is completely
controllable.

The observation equation of an AR(p) is:

| Xa(tip)

Xa(tk-p+1)
Yat) = [9p @p-1--- 02 01]] - |+ Wa(t)
Xa(tk-1)
L Xatt)

(6.53)
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For mean value non-stationary series Za(k), it can be made stationary through

differencing:

Ya(te) = (1 - B)® Za(t) (6.54)

where d < 2 (usually).

Here only the AR model is given because of its equivalence to the shaping filter
which is generally used within a Kalman filter. The parameter estimation of the
AR model is a linear estimation and is easy to implement for real-time
applications. The AR model identification by Least Squares (especially the
sequential Least Squares techniques) is not only convergent for both stable and
unstable systems, but its convergence rate and robustness to round-off errors is
better than or equal to any other methods. The AR model has a useful structure
in the general case of no a priori information compared to MA (MovingAverage)
and ARMA models, and there is equivalence between the AR and MA or ARMA
models. For more details see Graupe (1989).

6.5 Observability of the Navigation Model

The GPS observation equation of eqn (6.24) can be partitioned as fellows:

Zp(tk) }
Z(ty) =
(1 Zp(t) (6.55)
The corresponding observation matrix is:
Hip(t)  Hpa(t) 0 |
Hiw =) 1
Hio(t) 0 Hpa(td | (6.56)
The partitioned parameter vector is:
X1 (1)
X(te) = | Xpa(tx)
Xpa(tx) (6.57)

The noise vector is:
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Vit = { Vp(tx) J

Vo(tx) (6.58)

and

VarV(i]=| B O =R, 0<R(tg <o

(6.59)

where V(ti) is white noise

Subscripts P, D and A refer to pseudo-range (or phase), Doppler and
augmented state terms for the measurements respectively.

For the deterministic system, which has no control input, the state equation is:
X(tke1) = D(tket,te) X(t) (6.60)
Z(t) = H(t) X(t) (6.61)

The observability matrix of the deterministic system is (modified from Maybeck,
1982):

H(to)
H(ty)D(t4, to)
L(to, tn-1) =

| H(tN-1) @ (tn-1, to) (6.62)

where to <in.1 <o, L is a | x n matrix, | is the total number of observation in N
measurement epochs.

If the rank of the observability matrix L is equal to the dimension of the state
vector n, then the system is completely observable. It means that the system state
at to can be uniquely determined by the observation series Z(to), Z(t1), ...., Z(tN-1).
It also means the total observation number | must be equal to or larger than the
state vector dimension n in N measurement epochs.
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The complete observability can be expressed in another form:

Z

L"(to, t-1) L(to, tn-1) =2 @ (tk, to)H' (t)H(ti) D (t, to) > 0

(6.63)

The transition matrix ® is invertible and egn (6.63) can be re-written as:

k
Y, @'(t, HTWHM)®(, t) > 0
I = k-N+1 (6.64)

where O, ty) = 1(tk1 ()

Eqgn (6.64) means that if the system is completely observable, the state at tx can
be uniquely determined by the present and past observations Z(tk), Z(tk-1), ......,

Z(tk-N+1)-

For a stochastic system model (eqns (6.24) and (6.38)) its observability can be
related to egns (6.62) and (6.63), as for any positive-definite matrix D there are
two positive numbers p andA which are the maximum and minimum

eigenvalues of D and satisfy the condition:
(k) 1 = D(k) = (k) |

where | is the identity matrix with the same dimension as D. Therefore:

Z

Y @ (tk, to)HT(t)D(K)H (t) (1, to)

N-1
> Y @ (t, to)HT(t)AK)H(t)D(tk, to)
k=0
N-1

>(K) Y, @'(t, to)HT (t)H(t)D(tk, to) > O
k=0
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If D is replaced by the inverse of the covariance matrix of measurement R, the
stochastic observability condition is obtained:

N-1
> @ (t, to)HT(t) R (t)H(t)D(tk, to) > 0
k=0 (6.65)
and
k
Yy @(ty, t)HT(H)R(t)H()D(, t) > 0
I = k-N+1 (6.66)

When R is positive-definite and O < |R| < =, it is apparent that if the condition for
deterministic complete observability is satisfied, so is the stochastic observability.

Eqn (6.66) is equivalent to the normal matrix of the Least Squares estimation as
for the static case eqn (6.66) becomes:

Kk
Z HT(t)R(t)H(t) > 0
= el (6.67)

The following analysis concentrates on the kinematic case.

For short periods of time the geometry of the GPS satellite constellation does not
undergo significant change and the observation matrices H(tn-1)- - -H(to) can be
considered to be constant. For a time-invariant system, N can be replaced by n in

eqgn (6.62). This means that if in n epochs the rank of L is equal to n, the system
is completely observable.

6.5.1 Pseud-Range Positioning Model
First, the observability of the constant acceleration model for pseudo-range point

positioning is discussed. The clock error is modelled as a constant acceleration
model. The total state variables are:

X=[xx%V,V,V,222TT7T
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By elementary transformation I" the observability matrix L1 can be transformed to
Lri:

I'Ly)=Lm =

hyy O O hyp O O hgs O 0O 1 0 O

O hy 0 O hyp O O hg 0O 01 O
0O 0 1

O 0 hyy 0 O hyp O 0 hys
(6.69)

It is obvious the rank of Ly is three. For m satellites observed in n epochs, the
observability matrix can be written as:

L =

"hyy 0O 0 hp 0O O hg3 O 0 1 O
O hy 0 O hp 0 O hg 0O 0 1

0 0 hy O O hz O O hg O O

_ O O

b 0 O bhp O O hyg O O 1 0 O
O hwyw 0 O he O O hg O O 1 O
L0 0 hw 0O O hee 0O O b O O 1 |

(6.70)

where hi1, hj2, hjz are the direction cosines for the ith satellite andi=1, 2, ..., m.
Lrmis a 3m x n matrix. The rows and columns of Lry are all linearly
independent, and this is guaranteed as the satellites observed are not in the
critical area.

From eqn (6.70) it can be seen that the rank of the observability matrix Ly, is
dependent on the total number of different satellites m observed in n epochs:

number of satellite m rank of Ly
1 3
2 6
3 9
4or>4 12
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For the constant velocity model the rows and columns corresponding to the
acceleration terms are not present and for each satellite there are only two rows
in egns (6.69) and (6.70). The relationship between satellite number m and the
rank of the observability matrix is:

number of satellite m rank of L
1 2
2 4
3 6
4or>4 8
In summary:
mx SD if m<dm
rank of Ly =
n ifm >dm

(6.71)

where:

SD order of the navigation model which is equivalent to the
dimension of the state space. The order of the clock error is the
same as the order of the navigation model used

n dimension of the state vector

m  number of satellites observed in n epochs

dm dimension of total coordinate system (equal to the dimension of
the coordinate system of the navigation model plus one
corresponding to the clock error augmented to the navigation
model)

The above observability matrix has been derived for the constant acceleration
and constant velocity models. The same analysis can be carried out for the third
order, second order and first order system models because the transition
matrices of the these models are also constant and upper-triangular matrices,
and an observability matrix in the similar form as eqgn (6.70) can be obtained. In
the following discussions only the constant acceleration and constant velocity
models are dealt with but the conclusions drawn are valid also for the other
models.
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The conclusion that is drawn for GPS pseudo-range point positioning is that if
the number of satellites observed in n epochs is equal to or larger than dm, then
the navigation models are stochastically completely observable. This means that
not only are the position parameter and clock bias observable but in addition the
velocity, acceleration, clock drift and drift-rate can be determined from pseudo-
range measurements if second order (or constant velocity) models and third
order (or constant acceleration) models are used. The physical reasoning for this
is obvious: the pseudo-range measurement is the direct observable of position
and the position displacement is obtainable from two positions, hence the
pseudo-range measurement is the indirect observable of velocity. Acceleration is
the differentiation of the position displacement and this relationship is reflected in
the system and transition matrices of the navigation models and the observation
information is accumulated to the present epoch.

In contrast to the traditional Least Squares navigation solution of three
dimensional position and clock bias from pseudo-range measurements, four or
more satellites during each epoch are necessary because the Least Squares
algorithm is actually working in the static mode and the system state at each
epoch is considered to be independent of those obtained at other epochs, hence
no velocity, acceleration, clock drift and drift-rate information is available.

6.5.2 Doppler Measurement Model

A similar procedure can be used to analyse the observability of GPS Doppler
measurements. For the constant acceleration model the observability matrix for
Doppler measurement can be written as:
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For a short time period the Doppler observation matrix Hp can be assumed to be
constant. It is obvious that the rank of the observability matrix for Doppler
measurements Lpn, is less than n, because there is a zero column corresponding
to the clock bias terms, hence the system is not completely observable.
Furthermore, if we assume the terms of Hpi1, Hpia, Hpiz which contain the Doppler
effect due to the changing rates of the line-of-sight of satellites are zero during
the n epochs because their values are at 10-4 level, then the largest possible
rank of Lpm is eight. This corresponds to a sub-space consisting of velocity,
acceleration, clock drift and drift-rate which is completely observable. The null-
space corresponds to the position and clock bias which are not observable, that
is, the Doppler or range-rate measurements make no contributions to the
determination of the position and bias terms. The physical explanation is that the
Doppler measurement is a direct observable of the velocity (or position
displacement) and an indirect observable of acceleration, not of the position,
because the initial position cannot be determined by the Doppler measurement,
and the acceleration can be derived from the differentiation of the velocity which
is determined directly from the Doppler measurement. This property of the
observability of Doppler measurements can be seen after an elementary
transformation of egn (6.72):

I_‘(I-Dm) = LI“Dm

[0 hyy O 0 hp, O 0 hs O 01 0

0 0 h11 0 0 h12 0 0 h13 O 0 1

O hm O 0 bhpe 0 O hg O 010
10 0 bhm O 0 he O O hgg 0 0 1 ]
(6.73)

mx (SD -1 if dn

rank of Lpm = x( ) <

n-dm ifm >dm

(6.74)

Finally, for the model consisting of both range and Doppler measurements, it can
be shown that the rank of the observability matrix Lrp is equal to the rank of Ly, :
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rank of Lgp = rank of[ Lm } = rank of[ Lrm }
Dm Dm

= rank of Ly = rank of L (6.75)

Note that each term of the rows of Lrpm becomes zero by elementary
transformation. Hence for the determination of position, velocity, acceleration in
terms of three dimensional coordinates and the clock bias, clock drift and drift-
rate using pseudo-range and Doppler, there should be at least four satellites

observed in n epochs.

6.5.3 Measurement Bias Model

1)First order Markov process:
Sometimes it is required to model the measurement bias using Markov

processes. These augmented state variables are decoupled from the rest of the
state variable set:

Kwnltee)] | S 00 O ()]
Xma(tk+1) 0 e¥= 0 ... 0 Xna(ti)
Xma(tks+1) |= 0 0 et ... 0 Xma(ti)
| Xmiltks1) | | 0 0 0 ... e || Xmi(ty) |
[Wm1(k) |
Wpma(tk)
+ | Wns(tk)
| Whi(tk) _
(6.76)

Egn (6.76) is derived from the following shaping filter:
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[ 0o o ... o

Xwi(t) | | T "X ()]
. -1

e | |0 7, 0 O X

Xms(t) |=| 0 T—1 0 || Xwma(t)

3

o 0 0 0 ... A Xt

| Xmi(t) _ i T |- mi(t) |
R 0 0 O T om(t)]
0 1 0 O |l oma(t)
+|0 0 1 0 || oms(t)
0 0 0 . 1 L omi(t)_ (6.77)

where T; is the time constant. The sub-system represented by egn (6.76) is
completely controllable as the transition matrix and input coupling matrix are all
diagonal matrices.

For the augmented first order Markov process model, the observation equation
can be written as:

X(tk)

Z(tx) =[H1(tw), HM(tk)]{ X )} + Vim(ty)

Mtk (6.78)

Hum(tk) is a m x m identity matrix.

The observability matrix for this model of the augmented first order Markov
process is:

Lm=[L , Lwui] (6.79)

where Lp1 contains the terms corresponding to the augmented Markov process:
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"Lmi1]
L
Ly = M12
LLmim] (6.80)
and |
_ 0 .
0
Lmi1 =
0 0 1] (6.81)
[ e (-1)AKT 0 0 i
0 e(-1)AKT 0
LM‘”: ’ j=2:3"")m
0 0 coo e (FAKT

(6.82)

The rank of Ly is equal to m, the number of satellites observed. By elementary
transformation eqn (6.79) can be expressed as:

Hkw) E[ s HOM }

(6.83)
where L is the observability matrix eqn (6.70) and Hpy is the m x m identity
matrix.

Assuming the dimension of the body state and clock state vector is k and the
augmented state vector has the dimension m (the number of satellites observed),
then the dimension of the total state vector is n =k + m. If the number of satellites
observed in n epochs is equal to or larger than dm, the rank of Lrm is k and the
rank of Ly is k+ m = n, and hence the system with augmented Markov process is
completely observable.

The same situation occurs with Doppler measurements, there are still zero
columns corresponding to the position and clock bias parameters in the
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observability matrix, and hence the system is not completely observable
although the augmented state vector is observable.

As a conclusion it can be stated that the augmented first order Markov processes
do not affect the system observability for either pseudo-range and Doppler
measurements in point positioning, because the augmented Markov process
belong to the completely observable and controliable sub-space and the
augmented state is decoupled from other state. If the original system is
completely observable, then the augmented system is also completely
observable, and vice versa.

The above conclusion can be easily extended to models which have more than
one first order Markov process augmented for each measurement. For example,
two first order Markov processes which have different time constants to model
slow and fast changing biases, as in the case of atmospheric effects and
Selective Availability respectively. In this case the transition sub-matrix
corresponding to the augmented Markov processes is of full rank diagonal one,
as in eqns (6.76) and (6.77), with white noise as system driving noise and an
identity input coupling matrix. Hence this augmented sub-system is completely
controllable. The observation matrix ( for four satellites) for the augmented sub-
system is:

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
Hu =
0 0 0 0 1 1 0 0
LO 0 0 0 0 0 1 1.
(6.84)

The observability matrix now is in the same form as for eqn (6.83) except that Hpy
is replaced by a unit matrix with dimension (2 x m)x(2 x m) and, as before, the
augmented first order Markov processes do not change the observability of the
original system.

2) Random walk:

Another popular bias model is the random walk process, which is the first order
system model with Y = 0 (egn (6.18)) and can be used to model non-stationary
random processes. The point positioning model, which is the navigation model
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with augmented clock error and augmented random walk, is not completely
observable in a short time interval. The reason is that the position state and bias
term of the clock error and the augmented random walk cannot be separated
from each other. The sub-matrices of the transition matrix and observation matrix
corresponding to the random walk are all identity matrices, as the same is the
random constant, and the observability matrix takes the form of eqn (6.88), which
is used for the augmented random constant model. Although both augmented
random walk and random constant models are not observable in a short time
interval, the random walk model is completely controllable and the random

constant model is not.

6.5.4 Differential Mode

In the case of differenced observations some measurement biases which are
augmented in the point positioning mode are eliminated. The differenced
observations are a linear combination of the original measurements and hence
have similar forms of observation matrices as the original ones, and the terms of
the transition matrix and the observation matrix corresponding to the biases
which cancel out as a result of the differencing vanish. For double-differenced
pseudo-range measurements, the observation matrix can be written as:

hd, 0 o nd, 0o 0 hi; 0 O

h&. o o nd, 0 0 hd; 0 O
H(t,) = 21 22 23

'hd, 0 0o h, 0 O hG O O
(6.85)

where k = (m-1) x (s-1), s is the GPS receiver number. For the remote receiver

the measurement number is m-1 and the dimension of the coordinate system is

dm = 3 because the receiver clock error is eliminated. The observability matrix
for constant acceleration now takes the form:
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d
LFm =

'hd, 0 0 H,0 0 H; 0 O
0 Hh 0 0 fH 0 0 iz 0
0 0 H; 0 0 H, 0 0 Hy

h,, o o H, 0 0 Hs; 0 o0
o, o o0 H, 0 0 Hy 0
0 0 H, 0o o0 H, 0 0 Hy]

(6.86)

The criteria for determining observability is the same as for eqn (6.71), that is if k
2 dm the system is completely observable.

For triple-differenced carrier phase measurements the observability matrix is of
the same form as eqn (6.86) and dm = 3, hence if k 2 3 the system is completely
observable. For between-site or between-satellite differenced pseudo-range
measurements, the clock error is still present in the augmented state space and
dm =4, so k 2 4 in order to make the system completely observable.

For differenced Doppler measurements, the position is still unobservable, and
velocity and acceleration is completely observable if k 2 dm.

The system model of differenced measurement mode with augmented first order
Markov processes is completely observable, as in the case of point positioning, if
the original system model is completely observable. The augmented random
walk model is still not completely observable in a short time interval.

For phase measurements there is another augmented state vector representing

the initial cycle ambiguities. Ambiguities are modelled as random constants,
which are the same as the static model:

Xat)=0 (6.87)
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The observability matrix for double-differenced phase measurements for the
constant acceleration model is:

d

LFm=

0 0 0 0 0 O O O 0O 1 0 0 0]
O 0 00O 0O 0O 00O 0 0 10O
0O 0 00 0O 0 0 0 0 O0O010
o 0 00 0O 0 0 0O O O OO0 1
o H, o o H, 0 0o 3 0 0 0 0 O
o Hy o 0 H, 0 0 Hs 0 0 0 0 O
O h 0 0 hp 0 0 hg 0 0O O O O
o H, o o H, 0 0 s 0 0 0 0 O
o o H, 0o o H, 0 0 H; 0 0 0 O
o 0 H, o o H, 0 0 H; 0 0 0 O
0O 0 H, 0 0 H, 0 0 H; 0 0 00
0 0 H,y 0 0o H, 0 0 g 0 0 0 0 |

(6.88)

Egn (6.88) involves 5 satellites and it can be seen that the system is
unobservable because columns 1, 4 and 7 of the observability matrix,
corresponding to the position state, are always zero no matter how many
satellites are observed. The interesting fact is although the the position is not
observable, the velocity and acceleration are still observable over a short time
interval because they are irrelevant to the initial position state.

It is important to emphasize that the above analysis assumes that for short time

periods the observation matrices are constant. For long time periods eqn (6.88)
takes the form:
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Assuming the direction cosines have significant change between epochs, or
during N epochs, there will be n columns and rows of the observability matrix
which are linearly independent. The rank of the matrix will be equal to the
dimension of the state vector, that is, the system can become completely
observable if the observation time is long enough. This observability time is
dependent on the satellite geometry and the number of satellites observed and it
can range from a few minutes for six or more satellites to a few tens of minute for
five observed satellites. This suggests that for ambiguity determination a low
sampling frequency is preferable.

The same conclusion can be reached for the augmented random walk model for
triple-differenced phase or double-differenced pseudo-range measurements,
because the observability matrices are the same as eqgn (6.89).

For the second order system, or constant velocity model, the same conclusion
can be drawn by the above analysis procedure.

For single-differenced phase measurements, the system is unobservable even
after a long measurement time interval because the ambiguities are mixed
together with the clock bias and the observability matrix has always one zero
column which corresponds to the clock bias term.

For long distances between the reference station and the remote station, the first
Markov processes can be augmented to the phase observation model to model
measurement biases and estimated along with the ambiguities (about the errors
in long range kinematic GPS, see Colombo, (1991)). The system is completely
observable if the original system is completely observable. The augmented
Markov process does not change the observability of the original system as
stated before. For the augmented random walk model it will be mixed together
totally with the ambiguities and the system has rank defect k, and the system is
unobservable even after a long time interval because the random constant and
the random walk, which are augmented together to the system model, can be
replaced by one model and cannot be separated by the system:
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Figure 6.5. System model of random constant and random walk.

Considering the equivalence of the AP(1) model to the first order Markov process
and random walk, both in the physical sense and mathematical expression, the
effect of the augmented AP(1) model is the same as that of the augmented
Markov or random walk process. That is if the AP(1) is stable, then the system is
completely observable.

6.6 Concluding Remarks and Summary
6.6.1 The Stability and Controllability of Navigation Models

All navigation models, except for the case of the first order system model, are
unstable or marginally stable and the uncertainty of the initial state is non-
decreasing with time.

All navigation models, except for the case of the first order system model and
static model, are unstable with random noise input and the error of the state is
increasing with time.

All navigation models, except for the case of the static model, are stochastically
completely controllable if the covariance of the input dynamic noise is positive-
definite and has limited strength.

6.6.2 The Observability of Navigation Models

Navigation model observability analysis is made under the assumption that the
covariance matrix of the GPS measurement noise is positive-definite and has
limited strength.
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6.6.2.1 Observability in Short Measurement Time Interval

During short time intervals, the geometry of the observed satellites undergoes no
significant change and the observation matrix is time-invariant.

6.6.2.1.1 For Point Positioning

If four or more satellites are observed in n epochs (n is the dimension of the state
vector), all the body's state and the receiver clock state are completely
observable using pseudo-range measurements alone.

Doppler measurements give information on the body's velocity and acceleration,
clock drift and drift-rate, but not the position and clock bias.

The first order Markov process can be augmented to the model and does not
affect model observability.

Augmented random walk and random constant modeis will mix together with the
position state and clock bias, and the resulting system is unobservable.

6.6.2.1.2 For Differenced Pseudo-range and Doppler Measurements

If the observation number reduction is equal to the reduction of dimension of the
augmented state space, the model can be considered completely observable.

The first order Markov process can be augmented to the model and do not affect
the model observability.

Random constant and random walk augmented parameters make the system
unobservable.

Differenced Doppler measurements still contribute to the velocity and
acceleration, clock drift and drift-rate.
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6.6.2.2 Observability in Long Measurement Time Intervals

During long time spans the geometry of the observed satellites is considered to
have undergone significant change and the observation matrix is time-variant.

If the model is completely observable in a short measurement time interval, it will
still be completely observable in a long time interval.

The contribution of the Doppler measurements to position determination is
negligible in practice.

Random walk model of measurements can be augmented to the original system,
and the augmented system is completely observable if the original system has
no random constant variables (ambiguities and clock bias).

6.6.2.3 For Differenced Phase Measurements

In the case of double-differenced data, the double-differenced ambiguities are
completely observable in long measurement time interval both in the static and
kinematic modes.

For single-differenced data the ambiguities are unobservable because the clock
bias and the ambiguity terms are mixed together.

The first order Markov process can be augmented to the model and does not
affect the observability of the model.

The random walk model augmented parameters will mix together with the
ambiguities and the system model is then unobservable.
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CHAPTER 7
NAVIGATION FILTERS

The navigation filters referred to in this chapter are the low-pass filter and high
pass-filter used for navigation data processing and the estimation of a body's

state.
7.1 Low-Pass Digital Filter (LDF)

The LDF is mainly used for state estimation, data smoothing and curve fitting.

7.1.1 Least Squares Polynomial Fitting (LSPF)

For GPS data processing, the LSPF used on a piecewise basis is very popular,
especially for carrier phase cycle slip detection and repair, and for data

smoothing.

The LSPF minimizes:

F(ag, a1, ..., an) = i {uk-[ao+ i aik‘}}z
k=1

i=1 (7.1)

where m is the number of data points, uk is the data value at point k, n is the
polynomial order and m 2 n. Usually n is less than 6 to avoid the polynomial

"wiggle" effect (Mathews, 1992).

The coefficient of the polynomial is a solution of:

a=[H™H]" Hu 7.2)
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where

IR P I
ao | [ Uq 7
a Up 1 2___2n-1 on
a=|3d2|, u=| Us , H= 1 3...3m1 g3n
Lan | L Um |
L 1 m,__mn-1 mn ]

and H is the Vandermonde matrix with rank n.

The polynomial fitting value is:

n
yk=ao+ D, ak
=1 (7.3)

Assuming that the input series u is non-casual and is composed of unit impulse
functions, the system function of eqn (7.3) in the Z domain can be written as:

Y(Z) _1+0:Z" + D522 + - + bpaZ (™

ma:wa zt

(7.4)
where b1, by, ..., bm1 are constant, and f is the delay step.
The polynomial fitting for m data points is equivalent an (m - 1) order FIR filter.
The system function and frequency response of the filter depends on the order of

the polynomial n, the fitting data point m and the output delay f.

Forn=1andm =5, it is can be shown from eqn (7.2) that:
11 5 3 5
LES = ku
og 102%

1 . 3 .
a1=10 2 KUk-qg 2 ¢

(7.6)
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When f = 0 this is equivalent to a fit of the first data point. By substituting eqn (7.6)
into egn (7.3) and applying the Z transformation, the system function is:

HE mes(2) =3 + 2271 4122 4 0- 124

(7.7)
Following the same procedure with f = 4, the system function is:
1 410+1z24273,4374
Hf=4 (2) = 5 5 5 5
n=1,m=5 4
Z (7.8)

Note the symmetry of the system function coefficients between eqns (7.7) and
(7.8), and the fact that the amplitude responses of the two systems are the same
and the group delays are symmetrical, see Fig.7.1 and Fig.7.2.

Similarly, when f = 1 and f = 3 the system functions are:

23714172, 173,40
Hf=1 (2) = 5 10 o) 10
nhmes A (7.9)

o+ 1lz14172, 373,274
_Y*90° 55 T10° s

Z-3

(7.10)

and for the middle point f = 2:

141z 172 178, 174
_5'5 5 5- 5

Z72 (7.11)

HE2 o5(2)

The amplitude responses and group delays of the five data points for LS first
order polynomial fitting for different data fitting points are shown in Figs. 7.1 and
7.2 where the frequency is from 0 to =, and the group delay is defined as
(Proakis & Manolakis, 1992):

_46(w)

T9(®) = dw (7.12)

185



where O(w) is the system phase response and wis the frequency. The group
delay is interpreted as the time delay that a signal component of frequency ®
undergos as it passes from the input to the output of the system. Note that when
O(w) is linear, Tg(®) = constant, and all frequency components of the input signal
undergo the same time delay. An ideal filter will have a constant magnitude and
linear phase characteristics within its passband, and no data distortion.

The system function of higher than first order can be obtained following the
above mentioned procedure.

From the amplitude response and group delay plots (Fig.7.1 to Fig.7.6) it can be
seen that the frequency response is different for different fitting points. The
middle point fitting has the best performance and the least fitting error because it
has the smallest sidelobe of amplitude response and has a linear phase
response. Apart from the middle point, the fitting error increases because of the
nonlinearity of the phase response. The sidelobe of the amplitude response and
the passband width are also increased. The worst situation occurs near the end
point fitting, not only because of its large sidelobe in the stopband, but also for
the large distortion of the passband in both the amplitude and phase response.
The situation becomes worse when the order of the polynomial increases, see
Fig.7.1 to Fig.7.6. The above analysis demonstrates that the cause of the
polynomial "wiggle" effect is due to the phase response nonlinearity and the
amplitude response large sidelobe. This effect could cause the data
extrapolation occur in the wrong direction.

Fig.7.7 to Fig.7.9 are the amplitude response plots of different data points LSPF
for middle point fitting. Because they are middle point fitting, the phase
responses are linear and the group delays are zero.

If middle point fitting is adopted, the algorithms can be simplified. In this case the
fitting data number is chosen as an odd number and the middle point is defined
as the zero point and the other points before and after the middle point are
defined as being minus and plus symmetrical to the middle point: -m, -(m-1), ..., -
2,-1,0,1,2, ..., m-1, m for 2m + 1 data points. The polynomial fitting now can be

expressed as:

n
Yo=4ag+ 2 a;k‘=ao
i=1 (7.13)
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The computation of ag can now be derived by minimizing:

F(ap, a1, ..., an) = i {uk{aw En: a;k‘:l}z

k=-m i=1
(7.14)

and the computation is simplified because all summation terms involving odd
powers of m are zero:

m m m
Y ao+ Y D aki= D uk
k=-m k=-mi=1 =-m
m m n ] m
D aok?+ Y k) aki= Y K2ug
k=-m k=-m i=1 k=-m
m m n . m
D> ack?+ Y KLY aki= Y kPlu
k=-m k=-m i=1 k=-m (7.15)

lfniseventhenL=n/2,ifnisoddthenL=(n-1)2. Whenn=2andn=3,L=1,
whenn=4andn =35, L =2, etc, hence for the same fitting data number 2m + 1,
the middle point LS polynomial fittings forn =2 andn=3,n=4and n =5, etc.,
are the same.
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Figure 7.2. Group delay of first order poly-fitting for 5 data points.
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Remarks to LSPF:

1) The higher the order of the polynomial, the wider is its frequency response
passband, the higher degree is the amplitude response tangency at © =0 and
narrower is the transition region between the passband and stopband, see
Fig.7.7 to Fig.7.9. The passband width is defined as the frequency where the
amplitude response decays from 1 to 0.707 (-3 dB).

2) As more data points are used for the LSPF, the narrower is the passband and
the transition region and more rapid are the sidelobe "wiggles" and hence the
more the envelope of the "wiggles" is squeezed towards the frequency axis (see
the amplitude response plots).

3) The higher the order of the polynomial and the more data points used for the
fitting, a larger deviation of the extrapolation from the real data can result
because of the polynomial "wiggle" effect.

The performance of polynomial fitting can be improved by using a modified
Least Squares method (Hamming, 1989), or it can be replaced by other DFs
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designed in the frequency domain with a specified frequency response and filter
length.

7.1.2 IIR LDF

A low-pass lIR (Infinite Impulse Response) filter known as elliptic filter, which is a
combination of Chebyshev type 1 and type 2 filters exhibiting equiripple
behaviour in both passband and stopband, is used for phase data fitting and
cycle slip detection (Fu, 1992). The specification of the filter is based on the PSD
analysis of the GPS phase data of 1 Hz sampling frequency. As an instant data
jump (step function, or impulse and couple of impuise if the data is
differentiated), the cycle slip behaves like high frequency noise and its power is
concentrated in the high frequency area.

The specification of the filter is:

order=5

cut-off frequency = 0.3 &

passband ripple = 0.1dB
stopband decay = 40 dB
transition region = 0.16 &

The cut-off frequency chosen is based on the consideration that there is about a
7 second roll period for a small sized ship, and that the transition region of the
filter approximates the slow changing of the signal PSD transition towards the
high frequency. The frequency response of the filter is shown in Fig.7.10 and
Fig.7.11, and the system function is:

H(Z) = .0347+0.02227°1+0.05292?+0.052973+0.022274+0.03472°5

1-2.465621+3.273322-2.43852-3+1.0509Z4-0.20082Z°5
(7.16)

Cycle slip detection and repair can carried out in two ways: one is similar to the
LS polynomial fitting and prediction method where the DF is used to fit and
predict the phase data, which can be one-way or differenced depending on the
data sampling rate. The DF takes the form of an ARMA series:
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y(k)+a(1)y(k-1)+a(2)y(k-2)+a(3)y(k-3)+a(4)y(k-4)+a(5)y(k-5)
=b(0)x(K)+b(1)x(k-1)+b(2)x(k-2)+b(3)x(k-3)+b(4) x(k-4)

+b(5)x(k-5)
(7.17)

The one step prediction is (Vadaele, 1983):
y(k+1) =-a(1)y(k)-a(2)y(k-1)-a(3)y(k-2)-a(4)y(k-3)-a(5)y(k-4)

+b(1)x(k)+b(2)x(k-1)+b(3)x(k-2)+b(4)x(k-3)+b(5)x(k-4)
(7.18)

Another approach is to directly filter the phase data, and the cycle slip (being
high frequency noise) is eliminated by the low-pass filter. Generally the cycle slip
value should be less than 10 cycles to reduce the sidelobe effect of the DF.
Large cycle slip is easy to detect and repair using the DF prediction method. This
is similar to data smoothing and the high frequency noise and cycle slips are all

eliminated, or depressed, by the filter.
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Figure 7.10. Amplitude response of the 5th order elliptic filter.
15 ; ?\ T T T ;
g i i i i : ;
a 0.5 1 1.5 2 25 3 3.5

frequency
Figure 7.11. Group delay of the 5th order elliptic filter.
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7.1.3 Least Squares Filter

Least Squares filter (LS) is very popular for GPS navigation, and is used within
many receivers. The reason is that LS requires no information on the body's
dynamics and a priori statistics of the state and measurement, except that of the
second moment of the measurement noise if Markov estimation is used. If the
complete observability condition is fulfilled, LS filtering is stable and convergent.
The variance of LS estimation is only dependent on the satellite geometry and
the variance of measurement noise. LS can be considered as a weighted-
averaging procedure that smooths the random noise and its low-pass property is
obvious.

The problem of LS for navigation applications is that LS operates on the static
mode principle and the body's states at different epochs are considered as being
totally independent. There is no information accumulation from past
measurement, and only the body's position and measurement bias, which can
only be modelled as random constant or white noise, can be estimated using the
pseudo-range and carrier phase measurements. If the velocity and bias-rate are
to be estimated, the Doppler measurements have to be used. Generally, the
trajectory obtained from LS positioning is not smooth. For more details see, for
example, Cross (1983).

7.1.4 Kalman Filter (KF)

For the navigation model mentioned above, the Kalman filter algorithm is (
modified from Maybeck,1979):

one step prediction:

X() = Dltoter) X(tr) 7.19)

P(ti) =®(ti,te1)P (1)@ (t, te1) + Q1) (7.20)
updating:

K(t) = P()HT(t)[H(t)P (G HT (1) + R(t)]” (7.21)
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X(t) = X(6 + K(t)|Z(t) - H(tX ()] (7.22)

P(t0) =P(to) - K(t)H(t)P(t) (7.23)
or

P(tc) = I - K(t)H(t)] P(ty) (7.24)

or

P(ti) =[1 - K(t)H(t)] P(ti) [1 - K(tH(t)]" + K(t)R(t) KT (t)

(7.25)

with initial condition:
X (to) = E [X(to)] (7.26)
P(to) =cov [X(to)] (7.27)

Eqgns (7.19) to (7.27) describe the basic Kalman filter algorithm for a linear
system and for which P(1§) is given in the three forms commonly used. Eqgn (7.23)
involves two symmetrical matrix subtractions, and if the measurements (carrier
phase and Doppler) are very accurate, this can cause serious numerical
problems, even to the extent of not assuring the positive definiteness of the P
matrix because of the small difference between the subtrahend and minuend.
Not only does eqn (7.24) fail to assure positive definiteness of the results, but it
suffers additionally from the fact that the symmetry is not well preserved, because
it is in the form of a product of a non-symmetric matrix and a symmetric one. Eqn
(7.25), known as the Joseph form, is in the form of the sum of two symmetric
matrices. The first part of (7.25) is positive-definite and the second part is positive
semi-definite (n-by-n, and of rank at most m; n, m are the dimensions of state and
measurements). Consequently numerical computations based on this form will
be better conditioned, and better at assuring both the symmetry and positive-
definiteness of P(tk) than alternate forms (eqn (7.23), (7.24)). Furthermore, it is
insensitive, to first order, to small errors in the computed filter gain K(ts). For a
first order error in K(t), the error in P(tk) computed by eqn (7.25) is of second
order, while the error in the alternate forms is of first order. Similarly, it is less
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sensitive to arithmetic truncation error than the alternate forms, especially in the
case where the measurement noise is small. Hence eqns (7.23) and (7.24) wili
- be subject to first order truncation error effects, while eqn (7.25) will only be
affected to second order. This becomes a crucial consideration for real-time
applications in which the minimum computer wordlength that achieves adequate
performance is sought. Although the Joseph form has some desirable
characteristics, it requires considerably greater number of computations. In fact,
in some cases, especially those characterized by long periods of essentially
steady state behaviour, the inherently greater number of additions and
multiplications leads to larger numerical errors in the Joseph form than in the
alternate forms.

If the state initial conditions in some or all directions of the state space are totally
unknown, the filter can be started by using the equations:

P(t5) =[P (t) + HT(t)R " (t)H(ty)] (7.28)
K(tx) = P(tHT (t)R " () (7.29)

If P (to) is singular, that is certain eigenvalues of P(tp) go to infinity, then until
P (t) attains full rank, a unique estimate of the full state cannot be obtained.

Under the assumption that P"'(to) = 0 and no system driving noise, that is Q(tx) =
0, the Fisher information matrix:

f(tits) = Y @7(t;, t)HT ()R (t)H(t)D(t;, t)
j=1 (7.30)

has a simple relationship with the estimate covariance (Maybeck,1979):
f(t,t1) = P(t) (7.31)

Note that the Fisher information matrix is directly related to the observability
matrix. Eqn (7.31) shows that the larger the eigenvalues of f(t;,t1) the smaller the
eigenvalues of P(tf), and the more accurate the estimate is. If any eigenvalues of
f(ti,t4) are zero, these are the directions in the state space along which the
measurements give no information for the corresponding state.
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The linear discrete-time Kalman filter structure is illustrated in Fig.7.12.

Before measurements are input into KF, they need to be linearized, either about
the reference trajectory, or the one-step predicted trajectory. The KF
corresponding to former mode is known as the linearized KF, and the later one is
referred to as the extended KF (EKF). Both operate under the assumption that
the deviations from the nominal trajectory are small enough to allow linear
perturbation techniques to be employed. Generally, a first order approximation to
the measurement equation is adopted, and a linearization error which is of
second order of the series expansion is introduced by the process of the
linearization. This linearization error can be considered as an additional
measurement noise. For the EKF the linearization error is large at the beginning
of filtering and decreases with increasing filtering time because the filter
prediction becomes more accurate. The linearization error of the EKF can be
reduced by iteration or higher order expansion.

The statistical characteristics of the KF can be summarized as follows. If the
system driving noise, measurement noise and the initial state are all Gaussian
processes and variables, the estimate of the KF is the minimum variance
estimation:

X(t,1) = E [X(tka1)/Z(ta1), Z(t), - -, Z(t1)] (7.32)

If the Gaussian assumption is removed, the KF becomes a linear minimum
variance estimation which is the projection of the state onto the measurement
space, hence the estimation error is orthogonal to the measurement space:

e(ty) = X(t) - X(t)] LZ(te.tr) (7.33)
E[e(t)/Z(t, t1)] =0 (7.34)

where Z(l.t1) is the measurement space spanned by the measurements Z(ty),
Z(tk.1), ...., Z(t1) and the KF is an unbiased estimator which produces the smailest
unconditional error covariance matrix among a class of linear estimators,
whether or not the initial state, system driving noise and measurement noise are
Gaussian (for more details see Anderson & Moore, 1979). The low-pass property
of the KF is obvious considering that the KF estimate is the weighted mean value
of the past and present measurements.
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The innovation (residual) series of the KF can be written as:

F(t) = Z(t) - H(t)X(t)
= H(t)X(t) + v(te) - H(t)X(t)
= H(ty) [(D(tk,tk-1)x(tk) + W(tk-1) - <D(tk,tk-1))A((t§-1)} + V(t)

= H(t) P(tk, tk-1)e(ti-1) + H{t)W(t1) + v(ty)
(7.35)

where e(ti.1), W(te1) and V(t) are independent of the measurements
Z(t-1), Z(tk-2), ..., Z(t1), or orthogonal to the sub-space Z(ik.1.t1). By definition,
r(ts), r(t2), ..., r(tk-1) are linear functions of the previous measurements, so r(t) is
independent of previous r(tj)'s. In other word, the innovation series r(t) is a white
noise series and:

E[r(t)]=0 (7.36)
E{r(te) rT(te)] = Ht)PEIHT(t) + R(t) (7.37)

Eqns (7.35) to (7.37) are based on the assumption that the mathematical model
of the KF accurately depicts the real system behaviour, hence the whiteness of
the innovation series and its statistics are important performance indicators of the
KF. They can be exploited for KF model testing, navigation sensor failure
detection or reasonableness checking of measurement data. The whiteness of
the innovation series can be tested by its sample autocorrelation. If
X(tx) and Z(ty) follow the joint Gaussian distribution, the innovation series is a
Gaussian series and the statistic can be formed as:

%2(t) = ZT(t) [H(t) P (t)HT (t) + R(t)] "Z(t)
(7.38)

and hypothesis testing of x? with degree of freedom m can be carried out.

The stability of the KF can be derived by transforming the updating equation
(7.22) as:
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X(t7) = X(t) + K(t)|Z(t) - H(t)X (t)]
=[1 - K(te)H(t)] D (ti,te1)X (1) + K(t)Z(te)

= Wt te1) X (t7-1) + K(t)Z(t)
(7.39)

The stability of the KF depends on the homogeneous solution of eqn (7.39). If the
system represented by eqn (7.39) is uniformly asymptotically stable, then there
exist positive constants B and y such that (modified from Maybeck, 1982):

[ (ti.t)] < Be-1tct) (7.40)

where k2120 .

If the navigation model is completely controllable and observable, then condition
of eqn (7.40) will be satisfied. The KF based on the navigation model is uniformly
asymptotically stable, even though the navigation model itself is unstable or
marginally stable. This means that the initial state uncertainty does not affect the
KF estimate. Suppose P1(t§) and Pa(tf) are derived from two different initial state
and if the KF is stable then:

and P4(tf) or Po(t}) are convergent and lower-bounded, which can be defined by
the Cramer-Rao Lower Bound (CRLB).

Generally speaking divergence of the KF is caused by the following three
phenomena:

1)The modelling error:

Since any mathematical model of a system is an approximation to reality there
will always be a discrepancy between the mathematical model used to define
the filter and the actual conditions under which the filter must operate. As a
general rule, to avoid filtering-divergence, the modelling error should have white
noise characteristics. Although the KF computes the error covariance internally,
this is a valid depiction of the true errors committed of the filter only to the extent
that the filter's own system model adequately portrays true system behaviour.
Sometimes the estimated covariance indicates a good performance of the KF yet
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the KF estimate is deviating from the true state. Generally divergence can be
detected by innovation series testing.

2)The non-observability of the system:

There may be one or more state variables (or their linear combinations) that are
‘hidden" from the external measurements. In general, the eigenvalues of P(t})
corresponding to the non-observable state variable will increase and the filter is
instable. It can be avoided by correctly selecting the state variable (as the choice
of state variable is not unique) to make the system completely observable.

3) The numerical error:

This is the integrated effect of round-off errors due to finite wordlength effects in
the computer. This is particularly true for on-line applications, where computer
constraints may dictate the use of fixed-point arithmetic. The numerical error
mainly affects the updating of the covariance matrix, which must preserve the
symmetry and positive-definiteness of the matrix. Although it is theoretically
impossible for the covariance to have negative eigenvalues, such a condition
can and often does result due to numerical computation effects, especially when
the measurements are very accurate (eigenvalues of R(tk) are small relative to
those of P(ty), this being accentuated by large eigenvalues of P(ty)); or some
state variable, or their linear combination, is known with great precision while
others are nearly unobservable; or some state variables are random constants
(or pure biases) with no driving noise. In all of the above cases the covariance
matrix is ill-conditioned, and this ill-conditioning can also be caused by the non-
observability of the state variables. In order to overcome the divergence problem
caused by numerical error square root filter algorithms can be used. Instead of P,
the square root filter algorithm results in term of p'2 which can always be
defined for a symmetrical and positive-definite matrix P as P = P'2p1/2_ A
related technique, known as U-D covariance factorization, in which P is factored
as P = UDUT with U being upper triangular and D being a diagonal matrix,
provides the same numerical benefits (double-precision is archived using single-
precision algorithm) but with considerably less computational load (see

Bierman,1977).

7.1.5 Separated-Bias Kalman Filter (SBKF)

For carrier phase measurements the ambiguities are modelled as random
constants which are uncontrollable, for they have no driving noise. Similarly, the
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gyrocompass and log errors, gyro drift, scale factor error of an INS can also be
modelled as constant biases, or slow-changing biases. It is a common practice to
augment the bias terms to the original system state vector. The filter then
estimates the bias terms as well as those of the original system. The basic
navigation models are completely controllable and observable and the filtering is
stable, but as soon as the biases are augmented to the navigation models, the
system becomes uncontrollable and there is an increased tendency for the
calculated quantities (particularly the covariance matrix) of the filter to become ill-
conditioned with time. In addition, the computational load, which can be
assumed to be proportional to n3 (n is the dimension of the state vector),
increases due to the presence of augmented state variables, especially the
dimension of the augmented state vector is comparable to the original one.

SBKF was first proposed by Friedland (1969). Since then it has being developed
by Bierman (1973), Mendel (1976), and others, and successfully applied to
various areas such as satellite orbit determination, inertial navigation etc (see,

Friedland, 1983).

The SBKF flowchart is illustrated in Fig.7.13 (modified from ibid, 1983).

bias B bias estimate
. " estimator '
r=2-2
residuals '
\')
Z bias - free X R + X
— state . ———
observation estimator bias - free bias - corrected
estimate estimate

Figure 7.13. Block chart of separated bias estimator.

The SBKF consists of two KF's, the bias-free state estimator and the bias
estimator. The bias-free estimator is a standard KF assuming no bias is present.
The difference between the actual observation Z and the bias-free estimator
estimated observation Z is the input of the bias estimator, which outputs the
optimum estimate b of the unknown bias b. The desired optimum state estimate
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X is the addition of the bias estimate l; multiplied by the correction matrix V, to
the bias-free estimate X.

With the SBKF technique the estimation of the bias is essentially decoupled from
the computation of the bias-free estimate of the state. Hence the bias-free
estimator is a stable filter for it is based on the navigation model only, and the
uncontrollable bias terms which have the same statistic property are estimated
separately by the bias estimator.

The discrete-time SBKF used in GPS navigation is based on the following model
equations:

X1 (tkst1) = D1 (tket,ti) X1 (te) + Wo(ty) (7.42)
Z(t) = H1(t)X1(t) + C(t)b(te) + v(te) (7.43)
b(tk.1) = b(t) (7.44)

where the dimensions of Xy andb arenand r respectively, and

E (W1 (t)WI(h)] = Qu(tdg (7.45)
E[v(tvT(t)] = R(t)3y (7.46)
E[W(tvT(t)] =0 (7.47)

The initial state is:
X1(to) =E[X1(to)] , Pua(to) = cov [X1(to)] (7.48)
and the bias initial state depends on a priori knowledge, and generally
b(to) =0 , Py(to) = cov[b(to)] (7.49)

cov [X1(to), b(to)] = Pxo(to) =0 (7.50)

For the standard KF, the bias b is augmented to the system model:
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X(t) =[ x1(tkk) }

b(tx) (7.51)
X(tir1) = D(tee1,t) X (t) + W(t) (7.52)
Z(t) = H(t)X(tk) + v(ty) (7.53)
where

Oteor t) = Di(t+1,te) O ]

I ] (7.54)
_ _| Wi(t) |

HIO=[ i C . Weo= Wi

® has dimension (n+r)x(n+r), @4 is nxn, | is rxr, H is sx(n+r), Hq is sxn, C is sxr,
W is n+r and W1 dimension n.

The state estimate X1(tk) can be obtained using a conventional KF and the
covariance and gain matrices can be partitioned as:

Pxib(tc) Po(ti) (7.56)
_| Kx1(t) }
K(t _[ X1
(t Kob(tk) (7.57)
Supposing that the bias b is ignored, then:
Z(t) = Hy(t) X (tk) + v(ty) (7.58)

and the bias-free estimate Xi(tf), Xi(tk), P1(td), Pi(t) and Kx(t) can be
obtained using the conventional KF:

X1 (th) = @1t te1)X1 (1) (7.59)
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Py1(tk) = @1(ti, ti-1) Pt (t1) P (tio tie1) + Q1 (te)
(7.60)

K (t) = Pt (6)HT (8 H1 (t) Pyt () HT(t) + R(t)]”

(7.61)
X1 () = X1 (t) + Kyal Z(ti) - H1 (1) X4 (t)] (7.62)
Pyt (t) ={1 - Kya (ti) H1 () [P (t) (7.63)

Now supposing that the bias b is perfectly known, then the recursive estimate of
X1 would take the form:

X1(t) = @1 (tioticr) X (tiE+) (7.64)

X () = X1 () + Keal Z(t) - Ha (8% () - Cltb(t)]
(7.65)

and the gain matrix for this estimator is clearly identical to that of the bias-free
case, as are the a priori and a posteriori error covariance matrices.

Since eqns (7.64) and (7.65) are linear in nature, the component of )N(1 (k) due to
the observation Z(tx) is identical to the solution Xi(t) obtained from eqn (7.59)
and (7.62), which allows the following relationship between the two estimates to
be written immediately as:

X1 (t) = X1(tp) + U(t)b(ty) (7.66)
X1(t0) = X1 (t) + V(t)b(t) (7.67)
From eqns (7.59), (7.62), (7.64 and (7.65) it can be seen that:

X1(t) - X1(ti) = Ut)b(t)
= @1t tier) X1 (t.4) - X1 (t9)]

= @1 (t, tk-1)V (t-1) b(tk-1)
(7.68)
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U(tk) = @1(t,tk-1)V (tk-1)
- Similarly, one can find that:

X1(t) - X1(t) =V(tJbitd
=X (ti1) - X1 (ti1)

+ Kot (t)[-H 1 (t) (X1 (t4) - X1 (t24)) - C(t)b(t)]
=[U(tx) - Kxr(t)(H1(t) + C(t))] bt

V(t) = U(t) - Kx1(tk)S(ty)
S(t) = H1(t)U(t) + C(tx)

The measurement residual of the bias-free estimator is:

r(te) = Z(t) - Hi(t) X1 ()
= 2(t) - Ha(t)[ X1 (ti) - U(t)b(ty)]
= S(tgb(td + {(t)

where
L(te) = Z(t) - Hi(t)X(tk) - C(t)b(t)

E[5t)C (1] = Hi(t)Px (R)H] (t) + R(t)

&(t) is the measurement residual of the optimal estimator assuming a perfect
knowledge of the bias, and is a white noise series. It can be seen from eqn (7.73)
that the measurement residual of the bias-free estimator r(tx) provides a
measurement relationship from which the bias vector may itself be estimated.

The bias estimator can be derived from the conventional KF assuming the
measurement residual of the bias-free estimator r(ty) is the measurement of the
bias estimator for which S(tk) is the observation matrix and &(t) is the

measurement noise:
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b(ti) = b(ti..) (7.76)

Pb(ti) = Pb(tk.1) (7.77)

Kb(t) = Po(t)ST(t) S (k) Po(t)ST(t) + Hi(tdPrr (t)HT (1) + R(t)]”

(7.78)
Po(ti) =[1 - Ko(tk)S(tk) [Pb(ti) (7.79)
b(ti) = b(t) + Ko(t[Z(t) - S(t)b(t) ] (7.80)
Now the final estimate of the state can be obtained:
X1(ti) = X1(ti) + U(t)b(t.q) (7.81)
X1(t}) = X1 (1) + V(t)b(t) (7.82)
and
P (0= E{[R1(60) - Xo(8] [K1(te) - Xs (8]
=Pxi(ti) + Ut)Po(t)UT(t) (7.83)
Pun(ti) = E{ [X1(t0) - Xo(60] [B(t) - bt
= U(tk) Po(ty) (7.84)
Paa(t) = E{ [X1 () - Xa(00] [Ka(t2) - Xa(te)]'
=P (tf) + V(t) Po(t) VT (t) (7.85)
Parn(tt) = E{[X1() - X1(t] [B(t5) - bt)]']
= V(t)Pu(tQ) (7.86)
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By expanding the covariance matrices obtained by the augmented KF and the
bias-separated KF, it is easy to prove the equivalence of the two solutions

- (lgnagni, 1981) :
Kyt (tk) = Kyt (t) + V(t) Ko(t) (7.87)

If Kn, Ky are chosen optimally, the estimate of the bias-separated KF is an

optimum.

The bias-separated KF procedure can be summarized as following:
The bias-free estimator: eqns (7.59) to (7.63).

The matrices U, V and S: eqns (7.69), (7.70), (7.71).

The measurement residual of the bias-free estimator: eqn (7.73).

The bias estimator: eqns (7.76 ) to (7.80).

The updating of the final estimate: eqns (7.81) to (7.86).

The initial state of the bias-free and bias estimators is the same as the
original system model.

The bias-separated KF implementation requires fewer numerical operations than
the augmented-state implementation (Samant & Sorenson, 1974). Another
advantage of the bias-separated KF implementation is that it avoids numerical ill-
conditioning resulting from a state vector of large dimension. In the augmented-
state implementation the overall process is of the order n + r, and all n + r state
variables are coupled in the filter and in the covariance matrix propagation. In
the bias-separated KF implementation, the maximum dimension required is the
largerof norr.

The bias-separated KF is suitable for carrier phase ambiguity estimation
considering the inherent constant bias characteristics of the ambiguity. The
ambiguity is now defined as the bias b and is separated from the body's state,
and estimated separately by the bias estimator. The threshold values for the
variance (the diagonal terms of the bias estimate error covariance Py(tf)) and
the tolerance of the integer of the wavelength are set up before the filtering. If the
bias estimate is within the variance threshold and integer tolerance, the
ambiguity can be fixed to the nearest integer and the column and the row of
Pu(tk) corresponding to the ambiguity is then set to zero. When all ambiguities
are fixed, the bias estimator can be isolated and stopped, and the bias-
separated KF now operates as an estimator with a perfectly known bias, which is
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essentially the same as the bias-free estimator except the estimate update
equation is eqn (7.65) instead of eqn (7.62).

By using the bias-separated KF the body's state and ambiguities, which are
different in their stochastic characteristics and dynamic behaviour, are estimated
separately and the error covariance estimation of the body's state and the
ambiguities are also isolated from each other. Hence the eigenvalues of Pp(tf)
are comparable, so are Pxi(tf), although the eigenvalues of Pp(tf) and Py (ti)
could still have large differences. After some or all of the ambiguities are fixed,
Pu(tk) becomes positive semi-definite, but this does not affect the Py1(tf)
computation, which retains its positive-definiteness.

The implementations of the bias-free estimator and the bias estimator are
actually isolated and can be operating on different steps. For example, the
estimation of the ambiguity depends on the change of satellite geometry and the
bias estimator can be adjusted so as to operate on a low update rate while the
bias-free estimator operates on a high update rate. Otherwise a data
compression technique have to be used (Colombo, 1992).

The bias-separated KF is based on a linear system and a linear observation
model and is suitable for the navigation model in which the observation is
linearized about a predetermined trajectory. If the the observation is linearized
about the filter estimated trajectory (the EKF algorithm), some modifications
need to be made. Since the linearization of the EKF is always made about the
complete state estimate, the easy way to overcome the non-linear effects on the
difference between X and X is to reset the bias computation from time to time,
i.e., by setting X to X and, simultaneously, b to zero. This operation merely
resets the bias mean values and the uncertainty in the bias is not changed.

7.2 Digital Filter (DF)

The DF referred to here is the frequency discriminating DF. There are two types
of DF used in GPS navigation: the high-pass DF (HDF) and the low-pass DF
(LDF). The high-pass DF is used for depression of the measurement bias, while
the low-pass DF is intended for the depression of the measurement noise. Both
HDF and LDF can be implemented as FIR (Finite Impulse Response) or lIR
(Infinite Impulse Response) filters.
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The FIR filter can be described by the linear difference equation (modified from
Proakis & Manolakis, 1992) :

M
y(tn) = Y. bix(tn - t)
k=0

(7.88)
where M is the filter order.
The system function of the FIR filter is:
M
HZ) =Y beZ!
k=0 (7.89)
where Z is the Z transform operator.
The unit impulse response of the FIR fiiter is:
f bk 0<k SM\
"= I
0 else (7.90)
x(t
( n) - Z-1 Z-1 — Z-1
bo by b2 bm
y(tn)

Figure 7.14. FIR filter structure.

The IIR filter can be described by the linear difference equation (ibid, 1992):

N

M
y(tn) =- D, ay(tn - t) + Y bix(tn - t)
k=1 k=0 : (7.91)

and the system function is:
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M
2 ka'1

H(Z) = k=0
1+ Z akZ’1
k=0 (7.92)
X(tn) - + bo y(tn)
Z~1
-a1 bs
Y
Z—1
-ao b2
|
| : |
-aN-1 *| Bt -
Z-1
-an bn

Figure 7.15. IR filter structure.

Fig.7.14 and Fig.7.15 are only two of many different implementations of the filter,
which depend on the application requirements.

The mean and covariance of the filter output can be expressed as (modified from
Proakis et al., 1992) :

my(tn) =E { >, h{k)x(tn - tk)}
k=0

(7.93)

where h(k) is the filter unit impulse response function.
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where h(k) is the filter unit impulse response function.

- If x is a stationary series with mean my, then the output series is also a stationary
series with mean value:

my=myx 3 h(k)
k=0 (7.94)

The covaiiance of the output series is :

Tyy(M) = Z Z h(k)h(j)yxx(k - j + m)
K=0j=0 (7.95)

where Yxx is the covariance of the input series x.

The choice of the FIR or IIR filter parameters ay and by is based on the analysis of
the PSD of the GPS measurements. The main differences between IIR DF and
FIR DF can be summarized as follows:

IR DF is a closed-loop system and there is a potential stability problem. FIR
DF is a open-loop system and is generally stable.

For the same required system amplitude response the order of the FIR DF is
at least 2 times that of the IIR DF, hence for real-time applications IIR DF is
preferable if some phase distortion is tolerable or unimportant.

The system phase response of the IIR DF is, in general, non-linear and
will cause a distortion of the filtered data, hence an all-pass DF has to be
cascaded to compensate for the distortion if high filtering precision is
required.

The system phase response of the FIR DF is linear and will cause filtered
data delay for a casual filter.

As a MA series, the correlation length of the FIR DF is equal to the order of the
filter. In contrast, the correlation function of the IIR DF generally exhibits a
exponential decay feature.
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7.2.1 HDF

The commonly used HDF in GPS is the difference operator: single, double and
triple-difference. The GPS measurements can be considered as three
dimensional series x(tk, n, m), where ty is the discrete time or epoch number, n is
the site number and m is the satellite number. The single, double and triple-
difference can be considered to consist of independent first order differences
between time, station and satellite, and the system function can be written
equivalently as the first, second and third order differences:

single-difference:

Di(2)=1-2Z" (7.96)

double-difference:
D»(2)=|1-Z[1-Z7] (7.97)

triple-difference:

D3(Z)=[1-Z[1-Z[1-27] (7.98)

The amplitude response of the operators is shown in Fig.7.16, while the
frequency scale of the plot is from 0 to «.

From the plot it can be seen that the low frequency components of the signals,
which are the components with the frequencies less than the lower 1/3 Nyquist
frequency, are attenuated and the high frequency components, which are those
with the frequencies inside the upper 2/3 Nyquist frequency interval are
amplified.

There is potential to use other type HDF which has better frequency response
than those of difference operators.
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Figure 7.16. Amplitude response of first, second and third differencing operators.
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CHAPTER 8
DATA PROCESSING

In this chapter a short description of the software packages used in GPS data
processing is presented. The software is primarily concerned with GPS
navigation, and the integration of GPS and dead reckoning technologies. The
algorithms are based on the filter models discussed in previous chapters.
Examples of data processing are presented as evidence of the validation of the
models and the algorithms. The data processing about smoothing code
measurements and baseline computation using Doppler phase are presented in
section 4.4.1.4 and section 4.4.2.2 already.

8.1 Software Development

The software can be divided into two categories (Fig.8.1): the preprocessing
software and the data analysis software.
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PREPROCESSING SOFTWARE

GPS raw
data file

DATA REFORMATTING

GPS
navigation
file

UNSW UNSW UN$W
Log file Archive Archive
J data file BE file
Optional
I-— —_—— —
l
|
I
|
i
I
| — — —>.
el
> GPSMERGE
Gyro & log Merge data Header
data file file
N
N
DATA ANALYSIS
State file St.atistics
file

Figure 8.1 The UNSW GPS navigation software.
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The navigation software developed in this thesis is influenced by the pre-existing
UNSW data format and software modules. The dark-blocks in Fig. 8.1 are the
newly developed software modules. The function of the navigation software is
the determination of a platform's state: position, velocity, acceleration and
attitude through the processing of a variety of GPS measurements: pseudo-
range, phase and Doppler; and the integration of other navigation sensor data
such as from a gyrocompass and speed log.

8.1.1 Preprocessing Software
8.1.1.1 Software FIL

The software FIL is a cycle slip editing program based on a 5th order elliptic IR
DF (see section 7.1.2). The IR DF is designed for a 1 Hz data rate with cut-off
frequencies of 0.1, 0.07 and 0.05 Hz corresponding to 10, 15 and 20 second
oscillation periods of the platform. The lIR is implemented in the form of a lattice-
ladder structure because of its build-in stability and robustness to finite-word-
length effects (Proakis & Manolakis, 1992). The functional steps with this
software are illustrated in Fig.8.2.

218



*set threshold value SCT
*set cut-off frequency

'

*initialize L1, L2 phase

UNSW
Archive
data file

*correct cycle slip

;

*one step prediction PD1,PD2
*compute residals
Z1=PD1-D1, Z2=PD2-D2

N Z1 2 8CT?
Z2 > SCT?

*compute cycle slip SP1,SP2

data D1,D2 .

Cycle slip
file

*correct cycle slip
*display cycle slip

l

- IR

—® *create data file

UNSW
Archive
file

Figure 8.2. Flowchart of the program FIL.
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8.1.1.2 Software FIL1

The software module FIL1 is intended for data smoothing. The pseudo-range
data is smoothed using either dual-frequency Doppler data (if available), or
dual-frequency phase data (if available), or using the FIR DF described in
section 4.4.1.3. The phase and Doppler data can be smoothed by the FIR

UNSW
Achive
data file

*data initialization

FIR 4& Doppler

Phase

*set cut-off frequency

' '

FIR *phase smooth *Doppler smooth

Ny

*create output file

UNSW
Achive
data file

Figure 8.3. Flowchart of the program FIL1.
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The function of the "data initialization" step is to remove a constant value from
the measurements to be smoothed in order to reduce numerical error. The
statistics file contains the residuals, the mean and RMS values of the residuals,
the autocorrelations of the residuals and the results of the whiteness test of the

residuals.

Both programs FIL and FIL1 operate in sequential (one data epoch at a time)
mode. After initial set up and definition of the nominal values, the program can
operate automatically and can be easily modified for real-time applications.

8.1.2 Data Analysis Software

There are two data analysis software packages: BASELK and DR, principally
based on the bias-separated Kalman filter algorithm described in section 7.1.4.
Although the data preprocessing procedures for both BASELK and DR are the
same as illustrated in Fig. 8.1, the mathematical models of BASELK and DR are

based on different strategies.

The BASELK is, in general, a "GPS-mainly" program. Its mathematical model
and algorithms are based on the navigation and observation models discussed
in chapter 6. The platform's position, velocity and acceleration are determined
using undifferenced or double-differenced GPS measurements. The program
can process the data from up to three GPS antennae and ten satellites
simultaneously. If the data of two or three antennae mounted on the platform are
available, the platform's attitude can be determined. If other navigation sensors
such as gyrocompass and speed log are present, they can be integrated as
extra measurements in open-loop mode. BASELK can also be used for static
baseline computations. A flowchart showing the main features of BASELK is Fig.

8.4.
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Header
file

*choose processing mode
*choose dynamic model
*set initial state

*create TE-file

<
=
Gyro & log UNSW
data file merge data
file
4

*correct time tag

*compute transition matrix
*compute model noise
*interpolate TE-file

*integrate gyro & log

*compute observation matrix
*correct measurement biases
*compute measurement residuals
*compute platform's attitude
*create output files

v

*bias-free filter

Phase?

*bias filter

Figure 8.4. Flowchart of the BASELK program.
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The state file includes the platform's estimated state: position, velocity,
acceleration, attitude and baseiine length. The statistics file includes residuals,
residual statistics and statistical tests.

The flowchart of the DR program is basically the same as that of BASELK, except
that DR is a "Dead Reckoning mainly" program and the GPS measurements are
used simply for the purpose of correcting the errors of the dead reckoning
sensors forming a closed-loop structure, as discussed in section 5.2. The state
file now includes the platform's position, sea current correction and the
corrections to the gyrocompass and speed log.

8.2 Data Processing

A kinematic data processing example is presented for a ship's state estimation.

8.2.1 Ship's Data

The ship's data were collected aboard the R.V. FRANKLIN, the oceanographic
research vessel of the Division of Oceanography, CSIRO. The ship's dimensions
are: overall length 55.2 m, breadth moulded 11.8 m, draft 3.8 m, displacement
1187 t. The FRANKLIN has a design speed of 13 knots. The navigation
equipment aboard includes: an Arma-Brown Mk.10 gyrocompass, a Doppler
speed log, two Marconi radars, a Trimble GPS receiver, a radio direction finder
and an echo-sounding system. In addition there is a Vax mini-computer along
with several PC's.

An Acoustic Doppler Current Profiler (ADCP) employing the Doppler principle to
remotely measure speed and direction of water current over a depth range from

30 to 700 metres is also installed.

The ship's attitude can be measured by a pitching-rolling meter, and heading by
gyrocompass. The ship's speed can be measured by ADCP or speed log. The
accuracies of the gyrocompass, ADCP and speed log affect directly the accuracy
of the current profile determination because the current vector is the difference
between the ship's earth referenced speed vector and the ship's speed vector
relative to water (see Fig.1.2). The speed log accuracy is approximately at the
same level as that of the ADCP, the current direction accuracy is better than 1
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degree and the speed accuracy is about 2% if gyrocompass, speed log and
ADCP only are used. For oceanographic research into water volume
temperature exchange, more accurate water current information is required. In
particular the direction error of the current should be less than 0.3 degree, hence
requiring that the ship's heading accuracy be better than 0.3 degree.

An investigation of ship-track and heading information for the FRANKLIN, using
shore-based and ship-mounted GPS receivers was carried out during a
FRANKLIN cruise, May 1991, sponsored by CSIRO and UNSW. Different data
processing strategies were tested and the results were compared with the
recorded ship's log, gyrocompass and ADCP data. This investigation was part of
the FRANKLIN research plan for the May cruise, which included the investigation
of submarine siope failure on the NSW continental margin and the
biostratigraphy of the continental shelf off Sydney.

8.2.2 Equipment Implementation and Data Acquisition

Two Trimble-SST GPS receivers were installed aboard the FRANKLIN. One
antenna was mounted on an extension pole rigidly fixed to the bow mast
(referred to here as the Bow antenna). Another antenna was installed on top of
the funnel mast (referred to here as the Fun antenna) which was about 4 metre
higher than the Bow antenna. The antennae were mounted above the ship's
centreline and the alignment was checked against the lumber line of the ship's
standard compass. The antennae were more than 15 metre above the waterline
and were well above the ship's superstructure. One 30 metre and one 20 metre
fong antenna cable connected the Bow and Fun antennae to the two receivers
respectively, which were located inside the ship's bridge. The antenna of the
third Trimble-SST receiver was set on the Mather pillar on top of the Geography
and Surveying building, the University of New South Wales, Sydney. All
antennas were fitted with ground planes. The GPS measurements were
collected at 1 second interval during the period when a maximum number of
satellites were visible. 5 satellites were observed for less than 40 minutes during
the period 1430-1510 GMT each day (see Fig.8.5), and the GDOP values were
all greater than 5.
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SKYPLOT for SITE —--> Mather Pillar

LATITUDE -33 55 08.06
LONGITUDE 151 13 S52.1S5
HEIGHT 88.19

X -4644372.11
Y 2549977.79
f Z -3539034.91

Start tine is
f 27 May 1991 0:00:00

. Stop tinme is
Ol 27 May 1991 2:00:00

GMT + 10.00

Figure.8.5 Skyplot of day 26
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The nominal performance of the Arma-Brown MK. 10 gyrocompass was:
static accuracy 0.150
repeatability 0.259
follow-up speed  209/sec

These values assume no latitude, velocity and shock errors.

The sampling frequencies of the gyrocompass and log were 1 Hz and the data
were stored on a Vax-tape. The time tag of the file is GMT and the units of the
gyrocompass and log outputs are degree (0° to 360°) and knot.

Because the water depth was more than 750 m during the ADCP tracking
periods, and no bottom-track available, that is no ground speed is available, and
hence the log speed was also the speed relative to water. There were no pitch
and roll data available.

The cruise began on 24 May, 1991, departing Port Jackson, Sydney at 0900 hrs
and ended at 1500 hrs, 30 May, 1991, at the same port. The research area was
between latitude 340 01' S to 350 10' S and longitude 1500 50' E to 1510 50' E

(see Fig.8.6).
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Figure 8.6. Voyage of the Franklin.

8.3 Ship's Data Processing

The measurements made can be summarized as follows:
1) The primary observable of GPS:

C/A code

L1 phase
2) The secondary observable of GPS:

L1 phase-rate
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3) The gyrocompass and log outputs:
heading
speed relative to water

Here only two day's results for day 26 and 28, which had the longest observation
session and for which gyrocompass and log data were available, are presented.

Cycle slips in the one-way GPS phase measurements were repaired using the
elliptic DF. The threshold values for cycle slips was 1 cycle for static data and 3
cycles for kinematic data which were smoothed by a FIR DF with 0.4 1t cut-off
frequency. In reality there were quite a few outliers in the phase data with
amplitudes that were under 10 cycles and the cycle slips took pretty large values
(over 1000 cycles). Although the phase data can be smoothed using the DF,
only the cycle slips and outliers were cleaned up or smoothed in order to
preserve the original phase measurement signature. Most cycle slips occurred
for low elevation satellites at the end of each observation session.

The gyrocompass and log data were synchronized to the GPS measurement
time tag.

Three different kind of data processing strategies were used: differential
positioning mode, attitude mode and DR mode.

8.3.1 Differential Positioning Mode

This mode was used for differential position determination using the BASELK
program. The reference station was the Mather pillar, and two remote stations
were the Bow and Fun antennas. The state variables were: position, velocity.
The ship's heading was derived from the position vectors of Bow and Fun. The
dynamic model was the constant velocity model with 1 metre/sec*sec dynamic
noise, and floating and fixed ambiguity solutions were obtained using double-
differenced L1 phase data with 0.01 metre standard deviation. The distances
between the reference and remote stations were 71 km and 185 km for day 26
and 28 respectively. The initial position and velocity errors were assumed to be
10 metre and 1 metre/sec respectively. The initial ambiguity uncertainty was set
to 3 metres, corresponding to the C/A code measurement noise.
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The results are shown in the series of Fig.8.7 to Fig.8.33 and Tabie 8.1 and 8.2.
“M-B", "M-F" and "B-F" refer to the vectors between Mather and Bow, Mather and
Fun, and Bow and Fun antennas respectively. The frequency range of the PSD
plots is from O to . Because only 5 satellite were observed and the satellite
geometry was poor (PRN 2 and PRN 6 nearly in the same plane, and GDOP
larger than 5§ and 10 at the beginning and the end of the sessions), the solutions
converged very slowly due to the variance of the bias estimate decreasing very
slowly. Nearly 1500 epochs were needed for the solution to approach the steady
state and to fix the ambiguity to integers, and the decreasing gradient of the bias
variance is approximately 0.01 m2/epoch (see the baseline plots and the
heading comparison plots). The standard deviation of the estimates of the
baseline components (east, north and height) of the ambiguity-fixed solution
were 0.03 m, 0.067 m and 0.016 m respectively.

From the plots it can be seen that the mean value of the baseline and the
heading difference between the GPS solution and the gyrocompass reading are
stationary series, and the innovation series have a small bias which is less than
4 centimetre (due to the long distance between the reference and remote
antennas). These remaining biases are nearly the same for both the Bow and
Fun measurements and cancel out by differencing the two sets of results.
Actually the separated-bias filter would deal with the slowly changing
measurement bias (due to such effects as the inospheric delay) during bias
estimation, and the effect of the measurement bias on ambiguity fixing was the
same for both the Bow and Fun antennas (they were nearly at the same distance
from the Mather antenna), hence there was no effect on the final results of the
baseline between the Bow and Fun antennas. The repeatability of the baseline
and heading for the two days is less than 3 mm and 0.05 degree respectively.
The periodic oscillation appearing in the baseline and heading solutions is due
to the ship's pitching (see the PSD and autocorrelation plots for day 28), with a
period of about 5 seconds for day 28. Although periodic oscillation can be
modelied by a second order underdamped system model, it will mean a
doubling of the size of the bias state variable. Because only the ship's heading is
of interest here, not the GPS antenna's instantaneous attitude, and the ship's
rolling has no influence on the antenna pair's direction, a simple navigation
model can be used and the ship's heading can be derived from the
gyrocompass reading and its error correction, which is the mean value of the
difference between the antenna pair direction and the gyrocompass reading.
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Figure 8.10. Heading difference (day 26, differential mode, ambiguity fixed).
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Figure 8.14. Baseline between Bow & Fun (day 28, differential mode, ambiguity fixed).
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Figure 8.18. Innovation series of PRN 2-13 M-B (day 28, ambiguity fixed).
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Figure 8.22. Innovation series of PRN 2-13 M-F (day 28, ambiguity fixed).
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Figure 8.25. Innovation series of PRN 2-15 M-F (day 28, ambiguity fixed).
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Figure 8.27. PSD of innovation series of PRN 2-13 M-B (day 28, ambiguity fixed).
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Figure 8.28. Autocorrelation of innovation series of PRN 2-19 M-B (day 28, ambiguity fixed).
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Figure 8.29. PSD of innovation series of PRN 2-19 M-B (day 28, ambiguity fixed).
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Figure 8.30. Autocorrelation of innovation series of PRN 2-6 M-B (day 28, ambiguity fixed).
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Figure 8.31. PSD of innovation series of PRN 2-6 M-B (day 28, ambiguity fixed).
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Figure 8.32. Autocorrelation of innovation series of PRN 2-15 M-B (day 28, ambiguity fixed).
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Figure 8.33. PSD of innovation series of PRN 2-15 M-B (day 28, ambiguity fixed).

Table 8.1. Mean values of ambiguity fixed solution.

Date day 26 day 28
Type
Baseline 29.8328 m 29.8302 m
Heading difference -0.6123 deg. -0.5658 deg.

Table 8.2. Mean values of the innovation series (day 28).

PRN 2-13 2-19 2-6 2-15
Antenna
Bow -0.0396 m 0.0112m 0.0139m 0.0211 m
Fun -0.0400 m 0.0119m 0.0155m 0.0205m
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8.3.2 Attitude Mode

This mode was used for heading determination. The first order navigation model
was used, and the position time constant was chosen to be 10 seconds (the
approximate period of the ship's yaw). The "reference station" was the Bow
antenna and the "remote station" was the Fun antenna. The measurements used
were the L1 phase data and the ship's gyrocompass output, and the baseline
length that was obtained as the mean value from the differential mode results.
Both gyrocompass and baseline length uncertainties, 2 degrees and 10
centimetres respectively, were set to their upper bound values and used for the
ambiguity initialization and constraints.

Fig.8.34 and Fig.8.35 show the baseline and heading results without heading
and baseline length constraints, that is using the GPS measurements only. It can
be seen that a long observation time (nearly 1500 epochs) is still needed to fix
the ambiguities to integers. When the heading and baseline length constraints
were applied, the ambiguities were fix to integers within 1000 epochs from the
beginning of the session (see Fig.8.36).

Because the attitude determination is insensitive to the reference antenna's
location, the position of the Bow antenna was chosen the location derived from
the differential position mode solution. From the plots of ambiguity fixed solutions
(see Fig.8.40 to 8.43. and Table 3), it can be seen that nearly the same baseline,
heading and pitch results as those of differential positioning mode were

obtained.

Table 8.4 shows that the mean values of the innovation series, which can be
considered to be zero (comparing those of differential positioning mode which
were biased), hence the estimation is clearly unbiased. There were still the pitch
oscillation effect in the innovation series (see the PSD and autocorrelation

plots).
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Figure 8.37. Heading difference (day 26, attitude mode, constraints).
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Figure 8.46. Innovation series of PRN 2-6 (day 28, attitude mode, ambiguity fixed).
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Figure 8.48. Autocorrelation of innovation series of PRN 2-13 (day 28, attitude mode).
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Figure 8.49. PSD of innovation series of PRN 2-13 (day 28, attitude mode).
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Figure 8.50. Autocorrelation of innovation series of PRN 2-19 (day 28, attitude mode).
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Figure 8.52. Autocorrelation of innovation series of PRN 2-6 (day 28, attitude mode).
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Figure 8.53. PSD of innovation series of PRN 2-6 (day 28, attitude mode).
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Figure 8.54. Autocorrelation of innovation series of PRN 2-15 (day 28, attitude mode).
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Figure 8.55. PSD of innovation series of PRN 2-15 (day 28, attitude mode).

Table 8.3. Mean values of ambiguity fixed solution (day 28).

Date day 26 day 28
Mean value
Baseline 29.8327 m 29.8295 m
Heading difference -0.6131 deg. -0.5664 deg.
Table 8.4. Mean values of innovation series (day 28).

PRN 2-13 2-19 26 2-15
Antenna
Fun 0.00044m | 0.00132m | 0.00169m | 0.00045 m
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8.3.3. DR mode

This mode makes use of the closed-loop DR model, introduced in section 5.2.
The DR is calibrated by the C/A code and phase-rate measurements, which is
similar to position-velocity calibration of an INS. The “reference station" was the
Mather pillar and the “remote station" was Bow antenna. As there were no
Doppler data available, the phase-rate was derived from the L1 phase
measurements. The time constants of the errors of the gyrocompass, log and sea
current were set to 120 minutes, 2 hours and 0.4 hours respectively. The
measurement accuracies for the C/A code and phase-rate were selected as 6
metre and 1 centimetre/sec respectively. A large measurement noise was
assigned to the code measurements in order to reduce their error influence, and
the main contribution of the code measurements was position initialization.
Because there were no information on the sea current its initial uncertainty was
set to 0.5 metre/sec. 0.1 m/sec and 1 degrees were the initial uncertainties
assigned to the log and gyrocompass, and small dynamic noise was put into the
filter (0.2 degree, 0.001m/sec, 0.0001m/sec for gyrocompass, log and current

respectively).

The resuits are shown in Fig.8.56 to Fig.8.83 and Tables 8.5 and 8.6. About 800
epochs were needed for the estimation to become steady, due to the
requirement to separate sea current and the ship's velocity. Except for PRN 2-19,
the remaining innovation series of the double-differenced C/A code
measurements were nearly white with non-zero means, as shown in the
autocorrelation and PSD plots, and Table 8.6. The autocorrelations of the C/A
code innovation series, except of the PRN 2-19, passed the Bartlett test, but not
the Portmanteau test, and the autocorrelations of small lags appear an
exponential decay feature showing an AP(1) process with a positive coefficient
in the C/A code measurements.The 60 second period component of the PRN 2-
19 C/A code innovation series was likely cause by the SA for PRN 19, because
the same phenomenon also occurred for the PRN 19 C/A code measurements of
the Gas receiver (see Fig.A.7.12). The phase-rate innovation series include the
ship's pitching component whose period is about 8 seconds, and also have
relative large power in frequency range 0 to 0.02 &, hence there were biases in
the phase-rate measurements with oscillation periods larger than 100 seconds.
The biases of the double-differenced phase-rate measurements were due to the
long distances between the Mather and the Bow stations.
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Generally speaking, the estimated error of the gyrocompass is inversely
proportional to the vessel's speed, and it can be expressed as:

e =0V - PDOP*op
\ \Y ‘ (8.1)
where:
eg gyrocompass estimate error
ov velocity error
op Doppler (or phase-rate) measurement error
V  vessel's speed

For example, 0.1m/sec velocity error can causes a 0.1 degree of gyrocompass
estimate error while the vessel's speed is 10 knots. The greater is the vessel's
velocity, the faster is the convergence speed of the gyrocompass error estimate.
in the case of day 26 and day 28 the vessel's speeds were 2.2 and 3 knots
respectively, hence a long observation time was needed to obtain the steady

state solutions.
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Figure 8.57. Gyrocompass error (day 26, DR)

-10 i i i i i H H |
g 200 400 600 800 1000 1200 1400 1600
epoch (second)
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Figure 8.59. Innovation series of PRN 2-6 C/A code (day 26, DR).
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Figure 8.61. Innovation series of PRN 2-15 C/A code (day 26, DR).
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Figure 8.62. Innovation series of PRN 2-13 phase-rate (day 26, DR).
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Figure 8.63. Innovation series of PRN 2-6 phase-rate (day 26, DR).
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Figure 8.64. Innovation series of PRN 2-19 phase-rate (day 26, DR).
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Figure 8.65. Innovation series of PRN 2-15 phase-rate (day 26, DR).
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Figure 8.66. Autocorrelation of innovation series of PRN 2-13 C/A (day 26, DR).
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Figure 8.67. PSD of innovation series of PRN 2-13 C/A (day 26, DR).
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Figure 8.68. autocorrelation of innovation series of PRN 2-6 C/A (day 26, DR).
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Figure 8.70. autocorrelation of innovation series of PRN 2-19 C/A (day 26, DR).
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Figure 8.71. PSD of innovation series of PRN 2-19 C/A (day 26, DR).
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Figure 8.72. autocorrelation of innovation series of PRN 2-15 C/A (day 26, DR).
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Figure 8.73. PSD of innovation series of PRN 2-15 C/A (day 26, DR).
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Figure 8.74. autocorrelation of innovation series of PRN 2-13 phase-rate (day 26, DR).
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Figure 8.75. PSD of innovation series of PRN 2-13 phase-rate (day 26, DR).
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Figure 8.78. autocorrelation of innovation series of PRN 2-19 phase-rate (day 26, DR).
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Figure 8.80. autocorrelation of innovation series of PRN 2-15 phase-rate (day 26, DR).
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Figure 8.81. PSD of innovation series of PRN 2-15 phase-rate (day 26, DR).
Table 8.5 Mean values of steady state
Date 26/05 28/05

Type

Gyrocompass error -0.6536 deg. -0.5824 deg.
Log error 0.0092 m/sec 0.0253 m/sec
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CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

Extensive software development and GPS data analyses complement the
significant theoretical studies undertaken and reported in this thesis. In the
process of investigating GPS attitude determination several other worthwhile
topics were identified and the results of these studies were incorporated into the
thesis work. This thesis is a record of these investigations, and the following
conclusions are drawn:

1)

GPS measurement noise and biases can be depressed in the frequency
domain using low-pass filters, and high-pass filters, respectively (Chapter 4,
section 4.4.1.3; Chapter 7, section 7.2.1) .

Only constant components of the bias in time or space (zero frequency
components) can be eliminated by the time-differencing or space-
differencing operators. The time-differencing or space-differencing operators
will only depress those components whose frequency is less than 0.25 T,
while the other components will be amplified by the operators in a nearly
linearly fashion (Chapter 7, section 7.2.1).

Dual-frequency phase smoothed code measurements have the narrowest
pass-band among the phase, Doppler and Finite Impulse Response digital
filter (FIR DF) smoothing processes, and its pass-band can be adjusted
automatically to follow the body's dynamics (Chapter 4, section 4.4.1.2).

FIR DF smoothing design is dependent on the body's dynamics. A good FIR
DF design and implementation will ensure the original data characteristics
are not changed (the phase response of the FIR DF is linear), but introduce
an output delay which is equivalent to the half-length of the DF order. A data
rate which is higher than the Nyquist frequency is necessary for good DF
performance. For 1 Hz code measurements, a two third noise intensity
depression can easily be achieved using a 12th order FIR DF (Chapter 4,
section 4.4.1.3).
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5) Doppler-created phase data is an alternative application of the GPS Doppler
measurements. For short baselines, centimetre accuracy is achievable in the
static processing model. The additional bias introduced into the Doppler-
created phase data is only receiver dependent, and for most receivers it is a
constant and quite small, hence a technique has been developed for
kinematic positioning, achieving cm accuracy better than that expected of a
P-code solution (Chapter 4, section 4.4.2).

6) Least Squares polynomial fitting (LSPF) operates like a low-pass FIR DF. The
"wiggle effect" is caused by the large sidelobe and phase distortion of the
LSPF frequency response of near end point fitting. The choice of the LSPF
order and fitting data point number can be easily made after studying the
frequency response characteristics of both the LSPF and the data (Chapter 7,
section 7.1.1).

7) The LSPF middle point fitting has the smallest sidelobe and no phase
distortion. It introduces an output delay, as in the case of a FIR DF (Chapter 7,
section 7.1.1).

8) A fifth order elliptic Infinite Impulse Response digital filter (IIR DF) can be used
for cycle slip detection and repair of one-way GPS phase data at the 1
second data rate for low dynamic body. The cut-off frequency of the IIR is
dependent on the body's dynamics (Chapter 7, section 7.1.2).

9) For all navigation models introduced here, the position variable is unstable
(Chapter 6, section 6.1.1.4).

10) With the exception of the static model, all navigation models are
stochastically completely controllable. This means that all of the body's state
is affected by the input noise and the state can be changed by changing the
input (Chapter 6, section 6.4).

11) For the navigation models introduced here, the GPS code and phase
measurements are observable for all the body's states (position, velocity
and acceleration), but the Doppler is only sensitive to the body's velocity and
acceleration (Chapter 6, sections 6.5.1, 6.5.2, 6.5.4).
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12) For the augmented measurement bias model, stationary models such as the
first order Markov process are preferable from the system stability point of
view. The augmented models for each bias should not have common
components, otherwise the augmented models can not be separated by the
filter (such as for the augmented random walk and ambiguity) (Chapter 6,
sections 6.5.3, 6.5.4).

13) For the navigation models introduced here, the constant measurement bias,
such as the double-differenced phase ambiguity, is observable for both the
static and kinematic cases if the observation time is long enough. The
observability time for the ambiguity is mainly satellite geometry dependent
(Chapter 6, section 6.6.2.3).

14) The Separated-Bias Kalman Filter (SBKF) can be used for floating and fixed
ambiguity estimation and for slowly changing bias estimation of GPS
measurements. The filter is stable and computational efficient. For single
frequency data to five observed satellite, 1500 epochs (at 1 Hz) were needed
to fix the ambiguity in the kinematic case in our experiments (Chapter 7,
section 7.1.4; Chapter 8, sections 8.3.1, 8.3.2).

15) The gyrocompass error estimation accuracy of the closed-loop Dead
Reckoning (DR) and GPS integration implementation depends on the
velocity estimation accuracy obtained from the GPS Doppler or phase-rate
measurements, and is insensitive to the body's dynamics. A 0.1 degree
accuracy is achievable if the velocity error is 1 cm/sec for a body of 10 knot
speed (Chapter 8, section 8.3.3).

16) The same accuracy of heading is achieved using differential and attitude
data processing modes, and the repeatability of the heading accuracy is
better than 0.01 degree (Chapter 8, sections 8.3.1, 8.3.2).

These are several recommendations for future work, including:

1) GPS Doppler data is a very useful observable as it contains information on
the GPS measurement bias-rate and the body's velocity (position change-
rate) and acceleration information. Investigations should be made
concerning the Doppler measurement characteristics, such as: the
measurement noise and correlation, the cross-correlation with code and
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phase measurements, the measurement bias model, and the effects of signal
loss-of-lock on the Doppler measurement for different types of receivers.

2) A more sophisticated Doppler-created phase algorithms can be developed in
order to overcome the effects of different biases and to make the Doppler-
created phase behave more like "real" phase data that can then be
processed using standard GPS phase reduction software.

3) Digital filters are useful tools for GPS data processing, and are especially
suitable for real-time receiver applications. There are a variety of digital filters
with different performance characteristics that can be used for GPS data
processing. These include amplitude-limiting filters for data smoothing, notch
filters for eliminating biases with periodic oscillation, etc. A further
investigation of the application of digital filters to GPS data processing will
therefore be rewarding.

4) Separation of the body's dynamics, measurement biases and noise can be
made more effectively in the wavelet domain. The main defects of the Fourier
transform, used for time-frequency domain transformation, are that the
resolution for the different frequency components of the signal are the same,
and there is no direct connection between the frequency components to the
signal location in the time domain. The wavelet transform can overcome
these problems by transforming the one-dimensional signal to a two-
dimensional wavelet series in the wavelet domain (transiation and scale).
Hence representing the signal in both the time and frequency domains
simultaneously, and the scale, or resolution, can be changed according to
the signal frequency. The potential applications of the wavelet transform for
GPS data processing are many, such as cycle slip detection and repair, data
smoothing, ambiguity resolution, data compression and even replacing the
correlator of the receiver itself because the wavelet function is itself a wide-
band correlation (ambiguity) function. This is a potentially exciting area of
research.

5) The ambiguity search methods (Lambda, Cholesky factorization, etc.) can fix
the ambiguity to its integer value in a matter of millisecond period. The
problem is that the quality, or reliability, of the fixed-ambiguity is not
guaranteed. The ambiguity search methods are based on the assumption
that the measurement residuals are Gaussian and white, but in reality it is
rarely the case considering the residual bias effects such as multipath and
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measurement correlation. The correctness of the fixed-ambiguity is difficult to
verify because the statistical distribution of the ambiguity (conditional and
unconditional) is difficult to establish. Therefore a long observation time (few
minutes to a few tens of minutes) is still needed for real-time kinematic
ambiguity resolution in order to depress the measurement noise and low
frequency bias effects. As stated above, using a well-chosen mother wavelet
both the low frequency bias and high frequency noise can be detected and
eliminated effectively because the high frequency component of the signal
can be "zoomed", and this operation can be done quite fast because the
wavelet transform operates like a scaled-windowed Fourier transform and the
signal is decomposed and analysed under the window bases. Hence a
robust and fast ambiguity resolution can be obtained using wavelet transform

technique.

6) The Separated-Bias Kalman Filter (SBKF) can be easily applied to the
detection and repair of bias-jumps, such as cycle slips, and for time-varying
(deterministical) bias estimation for Wide Area DGPS. A combination with
traditional ambiguity search methods can reduce the ambiguity resolution
time and work as a monitor of the fixed-ambiguity quality.

7) Models of the body's dynamics can be modified for non-Gaussian input noise,
such as uniformly distributed noise and Possion processes which are more
appropriate for low dynamics and "jinking" manoeuvres. These would need
further investigation.

8) Closed-loop GPS and Dead Reckoning (DR) integration can be implemented
as non-feedback federated filters. The system integrity and quality control can
then be easily performed by a non-feedback federated filter implementation
which separates the individual sensors and facilitates error detection and
identification.

9) More and more inexpensive inertial sensors such as optic-fibre gyro and
solid-state accelerometer are now available on the market. Using these
sensors a cheap DR or a simple Strapdown Inertial Navigation System
(SINS) can be implemented by users, and integrated with GPS. The DR and
the SINS operate on a computer platform and no specific and sophisticated
hardware is involved for system implementation. The integrated navigation
system is assumed to be a GPS-mainly system, the DR or SINS is used to
support the GPS, hence only the high frequency performance of the DR or
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SINS (stability over a few seconds) is of interest. That is, only the information
of the change of body's state is obtained from the inertial sensors, and this
information is useful for GPS signal recovery and body's manoeuvre
detection. For example, if the angle change can be measured by the inertial
sensors to better than 5.5 degree during the period of GPS signal loss, there
will be no necessity for ambiguity resolution for a GPS attitude determination
system with 1 metre distance between the antennas. The low frequency
biases, such as gyro drift and accelerometer bias, can be measured regularly
by the GPS measurements and calibrated by the computer. Tests and error
model developmet for the inertial sensors, in both static and dynamic bases,

are necessary.

10) The GPS measurement biases are usually modelled by a deterministic
function, and the bias residuals can be further modelled by time series
models such as Auto-Regresive Moving-Average (ARMA) or Kalman Filter
(KF), to improve the measurement precision. The ARMA and KF models are
based on the analysis of the autocorrelation functions or power spectra of the
measurements, and the models and the bias prediction can be updated
when new measurements are available. The time series models are very
useful for real-time applications, especially the KF model which can more
easily deal with the non-stationary biases than the ARMA model does. For
example, there are several DGPS monitor stations around the Australian
coast and some ionosphere monitors stations inland. Multiple time series
models of GPS ionospheric delay which are functions of time and location
can be established using the measurements obtained from these stations,
and used for the ionospheric delay correction for vehicles long distances
away from the monitor stations.

The development of new algorithms for GPS data analysis is a never ending
challenge!
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APPENDIX 1 INS NAVIGATION EQUATION AND
MECHANIZATION

A.1.1 Navigation Equation

The semi-analytic (platform) and analytic (strapdown) systems are based on the
output of accelerometer:

Q.

r’ . Ge
t (A.1.1.1)

a-=—

N

d

where:
a the output of accelerometer (specific force)
r body's position vector in inertial frame
Ge gravitational force of the earth.

For navigation near or on the earth's surface only the gravitational force caused
by the earth needs to be considered. Hence it can assumes the non-rotating
earth-centred coordinate system is an inertial frame for INS. In this earth-centred
inertial system, the velocity of the body relative to inertial frame can be

expressed as:

ar _viQxr
dt (A.1.1.2)

where V is the velocity relative to earth, Q is the angular velocity of the earth's
rotation and x denotes the vector product. The angular velocity of a body relative
to the inertial frame is:

pP=Q+® (A.1.1.3)

where o is the angular velocity of the body relative to earth, and hence the time
differentiation of eqn (A.1.1.2) relative to the inertial frame can be written as:

ﬁ=V+(2Q+m)xV+Qx(Q><r)

The general INS navigation equation is obtained by combining egn (A.1.1.1)

274



and egn (A.1.1.4) as:

V=a-2Q+w)xV+g (A.1.1.5)

where 9 is the acceleration due to earth gravity:

g=Gc-Qx(Qxr) (A.1.1.6)

2Q x V results from a body's motion on the rotating earth and is called the
Coriolis acceleration.

A.1.2 Mechanization Equation of North-Directed System

fowd

Z gt e

Figure A.1.1. The earth frame and the geographic frame.

In Fig. A.1.1 XYZ is the earth frame, ENU is the geographic frame and Q is the
angular velocity vector of the earth,s rotation.

The body's motion relative to the earth can be expressed as:
p = Aig - @ie (A1.2.1)
where ig and ie are the unit vectors in the earth pole and east directions.
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The projections of the angular velocity of the body relative to the earth in the
geographic frame are:

. V,
We =-Q=-=N
° =T R (A1.2.2)
' \'
®p =A COSQ = =&
" ¢ Rm (A.1.2.3)
oy = Optgoe (A.1.2.4)

where e, O, @y are the eastern, northern and up components of the body's
angular velocity relative to the earth.

The mechanization equation of the north-directed system can be derived by
expansion of egn (A.1.1.5):

Ve = 0te + (2Q sing + wntgp) Vi - (2Q cose + on)Vy

(A.1.2.5)
Vh=on - (2Q Sing + ontgp)Ve + 0V, (A.1.2.6)
V=0 - @eVin + (2Q cosp + @p)Ve - g (A.1.2.7)

where:
Vh, Ve, Vu  north, east and up components of platform's velocity
On, Ole, Oy outputs of accelerometers
g acceleration due to earth gravity

Obviously the platform command which is equal to the angular velocity of the
geographic frame relative to the inertial frame is:

Wec = Ve (A.1.2.8)

Wnc = Wp + 2COSQ (A.1.2.9)
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Ouc = WtgY + Qsing (A.1.2.10)

A.1.3 Mechanization Equation of Wander-Azimuth System

For this system @u of egn (A.1.2.4) is not compensated for, and it appears as a
platform azimuth wandering:

o =- o tge (A.1.3.1)

where a is the platform azimuth wandering angle. The platform frame xyz now
rotates o around the vertical axis of the geographic frame. The angular velocity
of the body's rotation relative to the earth in the platform frame has to be
calculated according to the earth curvature in the wandering direction and the
body's latitude:

Ox = - [—1— - —LJ Vxcosasino - [szo‘ + 00320‘} Vy

Ry Rwm Rn Rum

(A.1.3.2)
Wy = {RLN Fg—NJ Vycosasino, [Sigio‘ + C%SJOC} Vy

(A.1.3.3)
w; =0 (A.1.3.4)

The projection of earth rotation to the platform frame is:

Qy = C0oSPCcosa (A.1.3.5)
Qy =- Qcosesina (A.1.3.6)
Q, = Qsing (A.1.3.7)

Using eqns (A.1.3.2)-(A.1.3.7) the mechanization equation can be derived from
eqn (A.1.1.5) as:

Vy = ax - (2Qy + o)V + 2Q,V, (A.1.3.8)
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Vy = ay - 2Q,Vy + (2Qx + 0x)V; (A.1.3.9)
V, = az - (2Qx + o) Vy + (2Qy + &)Vx - ¢ (A.1.3.10)

The platform commands are:

Wxc = Qx + O (A.1.3.11)
Wye = Qy + Oy (A.1.3.12)
Wzc = 3 (A.1.3.13)

A.1.4 Mechanization Equation of Free-Azimuth System

Because the angular velocity of earth rotation is not compensated for the
azimuth gyro, compared to eqn (A.1.3.1), the azimuth angle changing rate is:

a = - ©n tge - Qsing (A.1.4.1)
The projections of the angular velocities of the body's rotation relative to the
earth and earth rotation, as well as the platform command, are in the same forms
as egns (A.1.3.2)-(A.1.3.7) and (A.1.3.11)-(A.1.3.13), except that:

Wzc = O (A142)

The angular velocity of the azimuth relative to the geographic frame is:

w7 = -Qsing (A.1.4.3)
The mechanization equations are:

Vy = ax - (2Qy + oy)V; - QVy (A.1.4.4)

Vy = ay + Q;Vx + (2Qx + 05V, (A.1.4.5)
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Vz = az - (2Qx + a)Vy + (2Qy + wy)Vx - g (A.1.4.6)

A.1.5 Mechanization Equation of Rotating-Azimuth System

A constant torque is applied to the azimuth gyro to make the platform rotate
around the azimuth axis with an angular velocity ®zo. The vertical angular
velocity of the platform is now:

Oz = Wz0 - QSINE (A.1.5.1)

and the azimuth changing rate is:

O = Wz0 - QSINP -~ OtgE (A.1.5.2)

Compared to the free-azimuth system, the mechanization equations can be
expressed as:

Vy = ax - (2Qy + oy)V; + (070 - Q)Vy (A.1.5.3)

Vy = ay +(0z0 - Q)Vx + (2Qx + 0V, (A.1.5.4)

V, = a; - (2Qx + 0)Vy + (2Qy + @y)Vx - g (A.1.5.5)
and

Wzc = 020 (A.1.5.6)

The other equations for angular velocity projections and platform command are
the same as those of free-azimuth system.
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APPENDIX 2 STRAPDOWN SYSTEM MECHANIZATION

According to eqn (A.1.5) the output of the accelerometer of a strapdown system
can be expressed as:

b
af, = Vep + (2QR + ®8,) x V&, - g3, (A.2.1)

where:
a,% output of accelerometer in the body frame
Qﬁ’; angular velocity of earth rotation in the body frame
wgb angular velocity of the body relative to earth in the body
frame
ng velocity of the body relative to earth in the body frame

b . o
9deb acceleration of the earth gravity in the body frame
Assuming the direction cosine matrix from the body frame to the platform frame is
CE, which functions as a mathematical platform, the output of the accelerometer
can be transformed to the platform frame as:
—CP 4b

af, = Cy, ajp, (A.2.2)

The acceleration of the body relative to the earth in the platform frame is:

Vep =af - (2Qk + 0By) x VB, + g8, (A.2.3)

Usually the platform frame that is used is one of the local level frames and hence
9% is the acceleration due to earth gravity.

After initial alignment, the velocity of the body can be obtained directly by
integration of eqn (A.2.3). The angular velocity of the platform relative to the

earth in the platform frame can be expressed as:

= P
@fp = CV Vep (A.2.4)
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where

I .
Ta R
co= !
1 1
Rx Ta (A.2.5)

and

1 _cos?a . sina

Rx Rn Rm (A.2.6)
1 _sina  cos?a
Ry, Rn Rwm (A.2.7)

J—z[i - 1—} cososing,
Ta

Rn Rwm (A.2.8)

o is the platform azimuth rotating angle.

The measurement of the gyro of a strapdown system is 0)|bb, the angular velocity
of the body relative to the inertial frame, and it can be transformed to the platform
frame:

_ aPob
wf, = Cpof (A.2.9)

The angular velocity of the platform relative to the inertial frame is:
ofy, = Qfe + 0Fp (A.2.10)
and hence the angular velocity of the body relative to the platform is:
O)Sb = ofy - (OI% (A.2.11)
Finally C{ is obtained by integration of the following equation:

AP p p
Cb = ap Cp (A.2.12)
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where:

and
CY4 = c0s0,c0s0;
CY, = cos0,sin6psindr
CY, = c0s0,5inB,SiNdR - SiN6,COSHR
CY5 = €0s0,5iNB,COS6R + SiNB,SINBR
C34 = sind,cosH,
C3, = sinB,sinB,sindR + COSO,COSOR
C23 = sind,sinB,cosR - COSO,SiN6R
C3; = -sin@,
CY, = cosBpsinegr
C35 = COSOpCOSOR

The pitching, rolling and course angles 6p, Or, 07 are simply:

i )
ep — tg- 1 '2031 2}

V(Ch)° + (Ch) (A2.13)
OR = tg' 1~_C&:|

CG

L\~33 (A.2.14)
ez = tg' 1!:C_g1}

Cl (A.2.15)

Similarly, the transformation matrix from the platform frame to the earth frame is
obtained by integration of the following equation:

- ©
— p
Cp=Cp w8, (A.2.16)
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where:

and

The platform's position and azimuth rotating angle o are:

Ci1 Ci2 Gy
6=1C1 Cp Cgx
Cs1 Csx C

C11 = -Sinasin@cosA - cosasini
C12 = -sinasing@sinA + COSaCOSA
C13 = sinacose

C21 = -CcOSaSiNQECOSA + sinasini
Coo = -cosasingsini - SiNOLCOSA
Co3 = COSOCOSQ

C31 = COSQCOSA

Cap = COSQSINA

C33 = Sin(p

¢= sin’ 1[033]

% =tg- 1|Ca2
J 1Ca1

o=1a 1—9ﬁ-
J |Caa

(A.2.17)

(A.2.18)

(A.2.19)

When a body manoeuvres, its attitude matrix CE changes rapidly. To reduce the
computational burden, the direction cosine matrix can be replaced by quaternion
operators (Farrell, 1976).
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APPENDIX 3 PLATFORM INS ERROR ANALYSIS

A.3.1 Frames for INS

1) True frame (Xt, Yt , Zt):
A local level frame whose origin is at the location of the INS.

2) Platform frame (Xp, Yp, Zp):

The platform frame is a right-hand orthogonal triad which can be thought of as
three fiducial lines physically inscribed on the platform. The origins of true frame
and the platform frame are the same but the directions of their axes are different

due to platform drifting.

3) Computer frame (X¢, Yc, Zc):

The computer frame is a local level frame which origin is at the computed
location. Not only are the origins of the true frame and the computer frame
different but their axis directions also.

4) Gyro frame (Xg, Yg, Zg):
Origin is that of the platform frame, but it is a non-orthogonal frame due to gyro
assembly errors.

5) Accelerometer frame (Xa, Ya, Za):
Origin is that of the platform frame, but it is a non-orthogonal frame due to

accelerometer assembly errors.

6) Transformation of the frames:
The deviation angles between all frames mentioned above are small, the

transformation of the frames is (see eqn (2.24)) :

1 q)z '¢y
Cf =| -0 1 dx
dy  -Ox 1 (A.3.1.1)
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C? is the transformation matrix from the true frame to the platform frame, and the
platform misalignment angles are:

o=[0x 0y 0 (A.3.1.2)
1 ez 'ey

Cf = -92 1 9)(
6y By 1 (A.3.1.3)

C¢{ is the transformation matrix from the true frame to the computer frame, and
the deviation angles between the true frame and the computer frame are:

0=[6x 6y 0 (A.3.1.4)
1 Yz Yy

Ct=| -y 1 Wx
Wy Y 1 (A.3.1.5)

CB is the transformation matrix from the computer frame to the platform frame,
and the platform drift angles are:

]T

v=[Wx Yy VY (A.3.1.6)

The relationship between the true, platform and computer frames are:

d=y+6 (A.3.1.7)

and

CP=CECy (A.3.1.8)
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The transformations of the gyro and accelerometer frames are (eqn (2.26)):

1 "ze ny
Cg = Gyz 1 ‘ny
-Ozy  Ox 1 (A.3.1.9)

C} is the transformation matrix from the gyro frame to the platform frame, and
Oxz, Oxy» Oyz,» Oyx, Ozy, Ozx are the gyro assembly errors.

1 Hxz -Hxy
Cp = -Uyz 1 Hyx
Hzy  -Hax 1 (A.3.1.10)

Cp is the transformation matrix from the accelerometer frame to the platform
frame, and Hxz. Hxy. Hyz. lyx. Hzy, Hzx are the accelerometer assembly errors.

A.3.2 Gyro and Accelerometer Errors
Regardless of attitude errors, the accelerometer errors can be expressed as:

a, = (I + Ka)Cap + V (A.3.2.1)

where:
@a accelerations in the accelerometer frame
ap accelerations in the platform frame
V accelerometer biases

kax O 0
Ka=| O kay 0
0 0 (A.3.2.2)

kax, Kay, Kaz are the scale factor errors of the accelerometers.
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Similarly, the platform drift rate E can be written as:

E =& + Kqe + Zoxg (A.3.2.3)

where ¢ is the gyro drift-rate, consisting of two parts: a constant bias and a
random error. The random error can be well modeiled as a stationary random
process with zero mean and a autocorrelation function o2eB, where Gis the
standard deviation of the gyro drift-rate and B is the correlation frequency.

ke O 0
Ko=| 0 ky O
0 0 K (A.3.2.4)

where Kgx, Kgy, Kgz are the scale factor errors of the gyros. Supposing the scale
factor error of the north gyro is 0.001 and 9=45°, it causes an equivalent
platform drift-rate of about 0.01deg/h.

r=Cf-1 (A.3.2.5)

Tw. is the equivalent platform drift-rate caused by the assembly errors of the
gyros. Assuming there is an assembly error of 2 arc seconds, this causes a
platform drift-rate of approximately 0.0001deg/h.

According to eqgn (2.34) and the definition of V¥, the platform drift can also be
written as:

d—w+a)cxw=E

dt (A.3.2.6)

A.3.3 Attitude Errors

From eqgns (A.3.1.6) and (A.3.2.6) the attitude error equations of the platform can
be expressed as:

0=0+yxaw+E (A.3.3.1)
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or in component form:

Ox = Ox + Yytcz - Y200y + Ex (A.3.3.2)
¢y = é)y + Wz0cx - WxWcz + Ey (A.3.3.3)
¢z =0, + WxWey - YWyWex + E7 (A.3.3.4)

A.3.4 Velocity Errors

Considering the platform misalignments, the output of the accelerometers in the
platform frame ac is:

ac=(1+Ky)C3 Cla+V (A.3.4.1)

where:
a accelerations in true frame
ac accelerations input into the computer

By first order approximation, egn (A.3.4.1) can be expanded as:

Acx = ax + ¢z8y - Ppyaz + N (A.3.4.2)

Acy = Ay + OxAz - ¢zAx + Ny (A.3.4.3)

Acz = Az + Gyax - OxAy + Nz (A.3.4.4)
where:

Nx = Kax@x + Hxz8y - Uxydz + Vx (A.3.4.5)

Ny = Kay8y + Myx@z - Hyzax + Vy (A.3.4.6)
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Nz = Kaz8z + Uzyllx - Und@y + V7 (A.3.4.7)

Defining
3V = Vex - Vx (A.3.4.8)
SVy = Vey - Vy (A.3.4.9)
V,=Ve - Vs (A.3.4.10)

Substituting eqns (A.3.4.2) to (A.3.4.4) and (A.3.4.8) to (A.3.4.10) into eqgn
(A.1.1.5), and neglecting high order terms, the velocity error equations can be

written as:
SVy = ¢ [Vy + (2Q; + 0,)Vy - (2Qy + (DX)VZ]
- Oy [Vz + (2Qc+ @0Vy - (29, + o)V +g]
+(2Qz + 02)0Vy + (20027 + dwz)Vy

SV, = 0 [Vz + (29x + @)Vy - (2Qy + my)Vx + g]
- 07 [V + (2Qy + @)V, - (2Q; + 0V,
+ (2Qx + 0x)OVz + (20Q + dx)V;
- (2Q7 + ©2)0Vx - (28Q; + dwz)Vx + Ny (A.3.4.12)

8V, = by [V + (2Qy + &)V, - (2Q; + )V,
- 0x [Vy + (2Qz + 02V - (2Qy + 0V
+ (2Qy + 0y)0Vy + (20Qy + dwy)Vy
- (2Qx + 0x)0Vy - (200 + dwx)Vy + 6g + N,

(A.3.4.13)
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Generally, only a numerical solution can be obtained for egns (A.3.4.11)-
(A.3.4.13). For the stationary case, where Vx=Vy=V,=Vy=V,=V, =0, and
assuming §V, = 0, these equations can be simplified as:

8Vx = -dyg + 2 Q,8Vy + Vi (A.3.4.14)
8V, = dxg - 2 Q8Vx + Vy (A.3.4.15)

The deviation angle rates between the true frame and the computer frame are:

o _ .Yy
Rx (A.3.4.16)

b, =0V
Ry (A.3.4.17)

where Ry, Ry are the earth curvature in the x and y direction, see eqgns (A.2.6)
and (A.2.7). By differentiation of eqn (A.3.4.16) and (A.3.4.17) and assuming the
earth is a sphere with radius R, the angular acceleration error can be written as:

-Ox + 2Q,0, - I%—Bx— Yy 4 9y,

R R (A.3.4.18)
20 9g,= ¥x_9
Oy +2Q:0c+ RO = - gW (A.3.4.19)

The azimuth errors can be obtained from egns (A.1.2.14), (A.1.3.1), (A.1.4.1) and
(A.1.5.2) for the different mechanization modes.

A.3.5. Position Errors

According to eqns (A.1.2.1) and (A.1.2.2) the latitude and longitude errors are:

VN -V
S = YN N
?=7R (A3.5.1)
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3 = Vee .__VE
Rcos(p + Ag) Rcos(o)

(A.3.5.2)

where A9 js latitude error and VenN, Vce are the north and east computed
velocities. Supposing the true and computed azimuths are o and o, and 6, is
the azimuth error, then the latitude and longitude errors can be expressed as:

8¢ = %— (8Vxcos o - 8Vysin o) - 1ﬁ (Visin o + Vycos o),

= 60,0080 + BxSinaL - (ySiN o - WxCOS @) 6,
(A3.5.3)

SA = - sel;:(p (8Vxsin a + 6Vycos )

Seco

(Vxcos a - Vysin o) 8,
- ii—n—%f’l(vxsin o + VyCos o) AQ

= (B4COS0. - BySiNa)sece
- (0yCOS o + wxSIN ) Seceo,

- (@ySin o - 0xCOS o) tJESECPAQ
(A.3.5.4)

For the stationary case, the latitude and longitude errors are:

8¢ = B,cosa + Bysina (A.3.5.5)

S\ = (8xcOS0L - B,8iN0L)SECE (A.3.5.6)

A.3.6 Error Propagation

For the stationary case, eqns (A.3.3.2) to (A.3.3.4) and (A.3.4.18) and (A.3.4.19)
form a group of linear-constant coefficient differential equations, by Laplace
transformation they can be written as:
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S -Q 0 0 ]
. ] ‘ 3 . Wx(S)
z \Ily(S)
-Qy Qy S 0 0
. g Y2(S)
2 - i 2,9
R 0 0 2QsineS S+ = 0x(S)
g 2 _g_ i 0 (S
] 0 2 0 S+ R 2QsineS 1+ y(S) ]
% + yx(0)
E
_SX +yy(0)
= ESZ— + yz(0)
-Z_é +5 8,(0) + 6(0) - 2Qsings,(0)
% +S 6,(0) + 6(0) + 2QsinE6(0)
(A.3.6.1)

where Wx(0), wy(0), wz(0), 6x(0), 8,(0), 6x(0), 8y(0) are the initial values. The
eigenfunction of eqn (A.3.6.1) is:

S(S% + Q%) [(S? + w8)? + 45%Q° sin%p] = 0 (A.3.6.2)

where the Schuler frequency is:

@s = \/g (A.3.6.3)

The roots of eqn (A.3.6.2) are:
S1=0 (A.3.6.4)

Sp3=1]Q (A.3.6.5)
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Sa 5= H(V 02 + QZsin2p + Qsing = *j(ws + QsiNg)
(A.3.6.6)

S6.7 = J_rj(\[cog + stinch - Qsing = tj(ws - Qsing)
(A.3.6.7)

S1 corresponds to the terms of integration which increase with time. Sy 3, S4 5
and Sg 7 are all in the imaginary axis of the S plane and correspond to
undamped oscillations. The oscillation period of Sp 3is 24 hours, S4 5 and Sg 7
form two beat frequencies:

W = %[(@s + Qsing) + (ws - QsiNg)| = s (A.3.6.8)

Wy = %{(ws +Qsing) - (s - Qsing)] = Qsing (A.3.6.9)

where the period T4 of mq is nearly 84.4 minutes and is known as the Schuler
period, the period T2 of wp, known as the Foucault period, depends on the
latitude. When @ = 45° T, is about 34 hours, when ¢O= 0° there is no Foucault
oscillation, and when @ = 90°, Tz is 24 hours.

In egn (A.3.6.1) the platform drifts and accelerometer biases are assumed to be
step functions. The initial values of ¥. 8 can be chosen according to a certain
azimuth for different mechanization modes. The solutions of the errors
corresponding to the system error sources such as platform drift, accelerometer
bias and initial state are contained in Tables A.3.6.1 to A.3.6.9.

A.3.7 Random Errors of INS

Eqn (A.3.6.2) shows that each individual term of the transfer function matrix
consists of a second order loop, or a cascade of second order loops. We choose
one loop as an example. Assuming the bias of the east accelerometer is white
noise with zero mean and its autocorrelation is 1628(T) , | is time factor, G is
standard deviation of the noise and &(7T) is the impulse function. For a second
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order loop we have:

3Vx(8) = —S5— Vi(s)
s2+m2 (A.3.7.1)

From this equation it can be seen that the impulse response, or the weight
function, of the second order loop is COS®s. By using the convolution theorem

the variance of §Vy is given as:

t t
cs%vx = f f cosws(t-k)cosws(t-Huozd(k-1)dkdl
0 JoO

_ 02[1—t+Lsin2wt
HO% ot 56, ® (A.3.7.2)

egn (A.3.7.2) indicates that the east velocity error caused by the random bias of
the east accelerometer is divergent, and it's speed of divergence is proportional
to Vt. The same conclusion can be drawn for other random error source inputs.

294



O O (6] (6)
2 2 (¢) z O 2
109800 (5— — | ) + <= 9 _ O _
($) Awa 1) 75 R uis x (115500 :Nc& ac_fci&moo :chc 24
¢) 1) 20 0 (¢) 19
YO UIS —— + (175 S00 — 15800 (r—=—1|) + uIS w— — (175 S09 —
xmu A :NG\AG md MG 10 . NG CG _.v >Gxd 37
6) 0 ¢) 18 20 20
1o uIs+— - (115 00 — uiIs v— + (115800 - 11 s00 —1)+ *M
% (16 :Naxa ouIs s $16) :56 ch 1) >
M
0Z 0A 0X fhy 10119
Si041s eniul wuoged o} enp ejBue Bunjup wioeld 2'9°C'Y o|qe
($) ($) O %) O ($) () $)
uls £ ¢ 1) . 1)_2 _1)2 ) 2
¥ ul MG-NGLLMG (3¢5 00 :xG OIS :NG\ﬂG (15500 :>G+rdc_m :NGXG "
(6] $) O eO 2O O O O
(Y5500 -1) =+ ( -1)% 1w uis +1 15500 -1) 22 - -1) 2
o HOUS zshs MG-NG 25 A vNG fcc_m v>GxG M
O, 0 O ., 0 O O O
s00-1)22 . } z 1) 2 . z £ 2
(15 s0 :>G (U :NGXG (15500 :Ndiésm faxa 1 uls wc-mciwc <
‘3 ‘3 =
10118

18] Jup wiopeld o3 enp ss|bue Bunjup wiopeld |'9'g'y 8jqe]

295



'sewel} wiopeld peindwod sy pue wiopeld sy) ussmleq ssjbue ayy se pauijep aie sejbue Jous uosod ey

S

S

z S M z S M
FUS00 ¥ muls —— Fousyouls .- fg
*m Sm
1Yo usi®m uis —— 1°55001°m uis —— X0
0
o>o 0 $90In0S JoLiB
10418 [Bl}IUl S} 0} Bnp se|Bue 108 UOISOd ¥'9°E"Y 8|ae
135 5001°M s00 PO uws1*msoo— 13 UIs1°®s00 — 1°155001°MS00 — | ‘o
1ouis1*msoo 175 5001°® S09 | —1%75S001°™ s09 1Yo uIs1°*msoo 0
§) B 9
0A 0X K X
0 9 A A $82IN0S 10148

S8SE|q I8}8W0I8[800. pUE S104I8 |BIIIUI S)I 0} anp S8|Bue 10118 UoIISOd £°9'C'Y S|q.

296



S
Fous *m c_mIFs;t
NM S
4
choolslxmw: #NGEwwswool%Jr chool:mer
O O
(us Vi~ | 1"ouss T (s ) T -
00 NG NG _ NG wcc_w >Gxd >®
¥4 s M
1"puls SC_WI_.I..T
(w5500 -1) 22 0 ©
% (35500 - :Nlmwl 1735500 Sm us —~
O 2O O O O O
(s — V) 7re - ( -V~ VoS -1 -
oul RS oS sy "o o 0
z A
= 3 *3 S92IN0S 0.1

918) Ylp wiopeid o) enp se|Bue Jolis UoISOd S'9'E'Y 9|qe

297



YD uUIS1*® S0 -

O ($)
OS5 1°35 S001° ™S00 + oS 75+
O 20 20 O
(15500 - 1) == 175 SOD — S00 —1)=22_ _
25t IO~ ,0 50 (o H S ae ‘9
1D uUIs1*ms00 +
O O
15 UIS —— + uls >— —
s ou ¢ 175 5001°M 00 +
O 20 20 20
185 S00 — | ) 54— — 175 S00 — - 175 S00 Ltz
A G _.v NGxG A G _.v >Gxd G MG.I NG MG x@
0Z oA 0% by $92.N0S 10O

sio0die [enuy wioyield 03 anp so|fue 10118 UOHISOd 9°9'E'Y OB

298



(1 =11 s001° ™ $02)hB) 1’5 uis1°m soo hby— o)
o us*msoo— 1°155001°ms00 — | Ao
4 S Y4 S X
I —1'1S03]1"MS0D 1 UIS1 ™S00 )
Yousi*ous So 12155001 uis Sm Ang
1*0s001°muls *m- Yousi®ous ‘o *mQ
(L -1*55001°ms09)dhoos 1755 UIs1°m s09 d 0as Q
' UIS} M S00 - 1715 S001°MS00 — | hQ
SloL8

5 6

>> A | s82inos ious

SOSEIQ 191BWO0IB[8IJ. 0} NP S101I8 BPNIIE PUE ANIOOJBA ‘UONISOd £'9'E"Y 8|qe

299



S

S

®
5 hS00 (5 O
ToUS (185500 —} ) —p—- U 01— %)
z S m8 Z S ms
51qiBi[Bou FUs0o muls Vousyous - £
~ Sm Sm
Z S z S
a1qibiBou Fousyous—— VU soo1ous —— X
1 uIs1°msoo —
15 UIs ds00 - 1°13S001°®M S00 — 17y SO0 — 1 uIsbuis— fig
O uIs1*msoo + (*155001°® 500 — | )-
(115500 — | )b uis b s09 — Ky uIs duis (1ysoo - )b ,uis *mQ
, . $»s00 *m St
1735800} sc_ml.lﬂllr SNGwoSwsc_mAil )b oos -
¢) N9 _ 9)
("yurs — Vo uIs - (15 s00 :99 (e5urs — VOBId Ui e
*m
HNGc_m%sc_mlval
)9 2 ‘ ) $)
(15 s00 N 5505 FUS001 O UIS |~ ~ st — (155800~ )b uis T g
S10119

f3

X

3

§80.IN0Ss IoL8

81l Jlp wiope|d o] Bnp siolie spnye pue AJoojen ‘LoNISOy 8'9'e'V 9|qe |

300



a1qi61Bau 1o uis b oos o)
e|q1616au a|qibyiBau Ao
2|qi611Bau 8|qib1|Bau 0
(1*855091°®M S0 — 175 S0 ) uIs ®'soo 5 9]qiBi|Bau fng
(o us1*mso0o + 15 uis duis)d uis d soo s STIIE *oQ
! 1 uis b Q
8|qibiBau 135 SO0 hQ
Slolld
vQ %%Q $80IN0S 10418

$10118 UolISOd [BlliUI 0} NP $10118 BPNIIE PUB ANDO|BA ‘UOINISOd B'9°E"Y a|qey -

301



(1*uIs1°msoo b uis —

175 SO0 15 uIs)d 08s — (1275 5001°M S0 — 175 S00) BB~ 20

81qiB1|Beu 1775 S091°M SO0 15 uUIS1°m s00 — Ao

a|qibi|Bau 1775 5001°® SO0 1775 S001°®M S00 X0

(1*158001°m s00 —

105 S00)h SO0 - 1Y s001°muls Sm— oulsi*ouls ‘o dule
(o uisi*®soo +

15 uis duis)d soo - 1puisi*ouls Sm- 1¥usooi*ours So— *mQ

1P uIs1°*msoo d 08s + (o uisi*msoo —| )b oses —
(115s00 - )b uis - 1G5 uls bB) -~ (155800 — 1) 0B UIs R
1’5 uIs1*msoo -
15 uIs &S00 — 1°75S001°M S0 + 175 SO0 — 1 uIsbuls— dQ
Slollo
%24 04, 0X $90IN0S 10119

10418 BPNINE |BI}IU| O} 8NP SI0LIB 8pNliie pue A}JI00j8A ‘UOINSOd 0} '9'E'Y 8|9 L

302



Appendix 3.8 North-Directed INS/GPS Integration

For marine applications, the state vector of the system can be chosen as:

X = (6Vx 6Vy 0L 0p o B yex ey €7 Ao ay)’

(A.3.8.1)

where ag, a{ are the clock bias and drift of GPS receiver.

When neglecting the assembly errors of the gyro and accelerometer the

coefficient matrix A is obtained from Appendix 2 and 3:

A1 Az 0 Ais O

0O A7 000O0O
A,y O 0 A4 0 OA700O0O0DO
Ass 0O 0 A0 OO0 0O000O0O
0O Ao 0O O O 00O OO0OO0OO0O
O Ao O 0 O AsAss1 00 0O
0 AssAss O As70 1 00O

A(t) = Asi O
A71 0 0O Az Ass A0
0O O 0 0 0O O
O O 0 O O O
0O O O 0 0 O
O 0 O O O 0 o
. 0 0 O 0 0O 0 O
where:
V,
A11=ﬁytg(p

Ao =VFX tgo + ZQsin(p

A14 = Vy (2Qcose +-\é-’£ sec?p)
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00100
%0 0 00
0Oty 0 00
00 00O

00 00O

00 001
(A.3.8.2)




A7 = Vy + (2Qsing +—\F%X— tge) Vx =Y accelerometer output

Vi

R tge)

Aoy =-2 (Qsin(p +

Aoy = -V (2QC0s +—\é—><- sec2p)

As7 = Vy - (2Qsing +% tge) Vy = X accelerometer output

Agy =SECO

R

Asa =% secotgo

Asg = -Ags = Qsing +yRTX tgo

As7 = -A7s = -(QC0SQ +¥%)
Agg = -QSiNE

As7 = -A76 = %

A71 =%§B

Az4 = QCOSQ +%’S sec?p

The gyro drift-rates are modelled as a first order Markov process and the clock
errors of GPS receiver as white noise and a random walk. The system noise is:
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W(t) =(Vx Vy0 0 0 0 0 f fy T, Wo Woid)'  (a3.8.3)

where the accelerometer biases are considered white noise. fy, fy, f; are the
white noises of the east, north and azimuth gyros, We, Wcid are the driving

noises for the clock bias and drift.

The range and range-rate observation equations are:

dp _ dp X + dp dY; + op 0Z;

¢ X, 0 IY; 9¢ 9Z ¢ (A.3.8.4)
dp _9p X dp dYr  dp 9Z

oL oX; dh  9dYr dh  0Z; JA (A.3.8.5)
dp _ 9dp 8Xr+ ap 8Yr+ dp dZ;

0 0X; 09 dY; 9@ 9Zr JQ (A.3.8.6)
dp _ 9p 8Xr+ ap E)Yr+ dp dZ;

dp _ dp E)Xr ap dY; N p 9Z,

Ny 9% Vs 3V, MV 32, IV (A.3.8.8)
op _ dp X ap Y, + p 9Z

Vy 9% Vy Y, dVy oz, aVy (A.3.8.9)

where:
p GPS range

X, Y, Z; coordinates of GPS receiver antenna

and
Xr = Rmcos@cosh, Y= RmcososinA ,

Z; = Rnsing (A.3.8.10)

X, = - VSina - Vyc:os}usm(p,Yr VCOSA - Vy8|n7\,5|n(p
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Z; = VyCoso (A.3.8.11)
apzap:_)%'xr , ap:apz_le-YrI,

X 9%, P aY, ay, |

ap :ap :_Zs‘Zr

Zr 97, p (A.3.8.12)

Xs, Ys, Zs are the coordinates of the satellite in the earth frame of the WGS 84

system.

X _ RmsingcosA
L)
a_ZL = - RNCOS(p
0
oXr :
=2 = - RmCOSo@SinA
o Meese
9 _g
oA

[Xe- %] - p 22
ap _ oX;
oX; p

. . . ap

Zs-2Z| -
3p =[ S Pz,
oZ; p
X =- SinA oY
dVx 1Y

Y = - RusingsinA
(A.3.8.13)
Q% = RMCOSQCOSA
(A.3.8.14)
. - . ap
Ys- Yyl -
0 Ry,
oY, p ’
(A.3.8.15)
dVx (A.3.8.16)
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X . CcosAsing , % = - SinAsing , -g—\Z/L = COSQ

oVy y y (A.3.8.17)

The range observation equation of GPS is:

p 2 ae
V4 p :{ _a_E a_p 1 } A x + Vp
ao (A.3.8.18)

and the range-rate observation equation is:
AV,
AV

Zd:i_@_a_p@_‘] AA + V4

L ay | (A.3.8.19)

where Vp, Vd are zero mean white noise.

The feedback control component U(tx) is obtained from the estimation of the
system state X(tx) as:

[100..-.000 |
010 ..-000
001...000

Utd =-gX(t) , g=
000..-100
000...000O0
000 -.-000]p2x12

(A.3.8.20)
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APPENDIX 4 BARTLETT AND PORTMANTEAU TESTS

For lags k greater than some value q beyond which the theoretical
autocorrelation function may be deemed to have died out, Bartlett has shown
that an approximate of the sample autocorrelation variance is given by
(Vandaele, 1983):

q
Var(ry) :%{1 +2) r?} ,  k>q

i1 (A.4.1.1)

n-k

rk=% , Ck=%2 ZiZi+k
(A.4.1.2)

where:
n data length
zy residual

and ri is asympototically normally distributed a under weak condition. Its mean
value is (Kendall & Steuart, 1966):

=-1
E(n) =-7 (A.4.1.3)
If the residuals are white noise series, the population autocorrelation and

covariance of the series should be zero for the lag k > 0. If the residual series is
white, the variance of sample autocorrelation for large k can be written as:

~ 1
Var(nd =~ ,  k>q@ (A.4.1.4)

If the value of ry falls outside the 95% confidence limits of -1/n + 2/vm1, which is
often further approximated by * 2/yf1, the ri is 'significantly' different from zero at

the 5% level.

The Portmanteau test is based on the Q statistic:
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Q(k) = n(n+2) Z n-i (A.4.1.5)

k

?
=1
For white a noise series, the Q(k) is distributed approximately as a chi - squared
distribution with k degrees of freedom. If the computed value of Q(k) is less than
the table value of the chi - square statistic with k degrees of freedom, given a
pre-specified significant level, the group of autocorrelations used to calculate
the test can be assumed to be not 'significantly different’ from zero.
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APPENDIX 5 FEDERATED KALMAN FILTER

Assuming there are N local sensors or systems, the ith local system model can
be expressed as:

Xi(tir1) = Piltet, ) Xilti) + Gilti) wi(ti) (A.5.1)

Eqgn (A.5.1) can be written as:

Xi(tkr1) = Di(tis1, 1) Xi(t) + Gi(t) wity) (A.5.2)
Zi(ty) = Hi(ti) Xi(tx) + vi(ty) (A.5.3)
where:
Xi(t) = [xic(tk)}
Xiu(tk) (A.5.4)

Xic is the common state vector, which contains the state variables common to all
local systems. Xjy is the unique state vector, which contains the state variables
that are unique to the ith local system. vj, w are white noise series, and w is the
global system noise with a covariance Q and:

w1 (tx)
w(t) =
w(tk) (A.5.5)

Gi(t) = Gi(ti) | Opixp; - Opoxprs Tppi Opipis Opipn]
(A.5.6)

where p; is the ith local system noise dimension. Using conventional Kalman
filter algorithms, a local estimate f(i(tk) and associated covariance matrix Pi(tx)
for each local system, based on the local system model, can be obtained. Those
local estimates will be input into a global system to obtain the global estimates

of the global state X(t) and:
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X1(tx)

X(tx) =
Xn(tk) (A.5.7)
The global system model is:
X(ti1) = D(tks1, 1) X(t) + Gt)w(ty) (A.5.8)
Z(ty) = H(t)X(t) + v(t) (A.5.9)
where:
O(tirst) - O
D(ter ) =| ' :
0 - Dn(tker,ti) (A.5.10)
Hith) - O
Hit=| = :
. 0 - Hn(t) (A5.11)
' Gi(tk) Z4 ()
G(te)=| - |, Zt)=| --- |, Vv(t)
| Gin(tk) Zn(ty)
(A.5.12)

The one-step prediction of the estimate covariance of the global system is:

P(ti) = @ (ti,ti1)P (k1)@ (tio ti1) + Gtice1)Qti-1) G (k1)

(A.5.13)

For simplification of the global system computation, the input of the global
system is decoupled by a diagonally-blocked system noise matrix with its upper
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bounds:

G(tIQ(tIGT(t) =
Git) --- 07[ Q) --- Qt) ]| Gittkd --- O

0 .- Ga(t)ll Q) - Qt) 0 --- Gt

Y1G1 (1) Q(tk) G (1) 0
< : T : = B(ix)
0 YNGN(t)Q (L) G (t)
(A.5.14)
where:
_1_ P -1_ = . = N <-1— < i = }...
Wit T e N O‘%‘“ 1N (A.5.15)

Generally Yi can be chosen to be equal to N. The predicted covariances can now
be written as:

P(ti) = D (ti tic1)P(tiet) @ (tio tier) + B(ti-1) (A.5.16)
where P(tk) is a block diagonal matrix with diagonal elements:

Pi(ti) = i(ti,tc1)Piltk- 1)@ (i, ti-1) + YiGi(t-1) Q1) G (tie1)
(A.5.17)

If the covariance of the global system initial state is not diagonal, it has to be set
to its upper bounds:

Plt) --- Pl VWPto) -~ O

P(to) --- P(to) 0 -~  yP(to)
(A.5.18)

where P(to) is the covariance of the initial state of the local systems.

312



" Using egns (A.5.16) to (A.5.18), the covariance of the global estimate P(t) is a
block diagonal matrix, and the global estimate can be obtained from the Least
Squares solution to minimize the performance index:

AP Y9\ p-171 ) % Y9
Pi= Y [Xi(td - X7 (k)] P (1] Xict) - Xt
- (A.5.19)

where the global estimate of the ith local system state is partitioned into common
and unique states:

9
X7 (t) = ,)fc (tk)J
Xin(t) (A.5.18)
Pi ol Pi cult
Pi(tk>=[ W el }
Piuw(tk)  Piu(ty) (A.5.19)
Pic(t=E ”Xc(tk) - Xic(ti)] [ Xo(t) - )A(ic(tk)m (A.5.20)

Picu(t) =E {[xc(tk) - Xio(ti)] [ Xiu(t) - )A(iu(tk)]T} (A.5.21)

Piuc(ti) = Picu(ty) (A.5.22)

Piu(tk)=E {[xiu(tk) - Xiu(t)] [ Xiu(t) - )A(iu(tk)m (A.5.23)

Assuming

Pi_1(tk)= ﬁc(tk) ﬁi,cu(tk) J

ﬁJi,uc(tk) IA:;i,u('[k)

(A.5.24)
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The global estimate can be expressed as:

Xin(t) = Xiu(ti) + |3i-,1u(tk)5i,uc(tk)[iic(tk) -X¢ (tk)]

X3(ta) = ‘

N
X 2 [PI o(tk) + PI cu(tk)Pl u(tk)Pl uc(tk)] Xic(ty)

i=1

Se——
Z

>

-

The covariance of the global estimate is:

where:

P(tk){

Pij(t) =

Pc(tk) =

Piuc(tk) =

Piu(ty) =

Pt -+ Pt

Pni(te) -+ Pnn(t)

Pc(ty) Pl () }
Piuwc(tc)  Piju(ti)

El[Xu(t) - X5t [Xet

E{[xiu(tk) - )A(i%('fk)] [Xju(tk)
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[ﬁi,c(tk) + ﬁi,cu(tk)isi-,L(tk)ﬁi,uc(tk)J}

|

E{[Xc(tk) - X3t [ Xe(t) - X2 (tk)m
- XS (tk)m

xSl

-1

(A.5.25)

(A.5.26)

(A.5.27)

(A.5.28)

(A.5.29)

(A.5.30)

(A.5.31)



_IyTs + P o PP, "
= ‘Z [Phc P|,cuP|,uPI.UC]f

i=1

N P 1
Z [Pi,c + Pi,cupi,1upi,chPi,c{Pi,c + Pi,cul-'.'i,1upi,uc]

=1

[Noo o o )T
lz {Pi,c + Pi,cupi,upi,uc}f
i=1

(A.5.32)
I:,iuc = Pi,ucM + ﬁi-,Lﬁi,ucPi,ch - Ir‘si-,usi,mpc (A.5.33)
- S
I:,i,ucM \‘Z [ch + P] ctu tu uc}f {Pi,c + Pi,cupi,upi,uc} Picu
=1
(A.5.34)
L
Piccm = \2 [P] ct P; cuP] uP;j, uc]{ {Pi,c + Pi,cupi,upi,uc} Pic
j=1

(A.5.35)

fori=j
= =1 =1z = -
Piju = Piy + PiucPicuPiu + Pi.uPiucPicu - PiccmPicuPiu

S o =1 = -1
- Pi,uPi,ucPi,ucM + P uPiucPicPicuPiu

- 5;,1u§i,ucpi,ucMﬁi,cuﬁ; u- Pl uPI ucp| ucMPi,curji-,L

(A.5.36)
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fori=]j
T e o
Piju = - Pi.ucMPicuPiu - PiuPiucPiccMPjcuPiu
P PP lom - PiuPiucPieomPicPi.
- FLuriucliceM T FiuFiuct i ccM¥ j,culju
= o
+ Pi,uPi,ucPch,ctu,u

(A.5.37)

The estimates of the local systems are reset by the estimates of the global
system, and the estimate covariances of the local systems are reset by the upper
bounds to make the local systems decoupled:

Putd - Pin(te)
P(t) = S :
Pni(tk) - Pnn(t)
vPut) - 0
< ' ' ' = Pug(tk)
0 - ynPnn(t)

(A.5.38)
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APPENDIX 6 PHASE AND FIR SMOOTHED CODE PLOTS

A.6.1 Phase smoothed code plots of Gas station
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Figure A.6.1. PRN 2 accelerations of C/A and phase smoothed C/A(Gas).
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Figure A.6.2. PRN 6 accelerations of C/A and phase smoothed C/A (Gas).
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Figure A.6.3. PRN 15 accelerations of C/A and phase smoothed C/A (Gas).
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Figure A.6.4. PRN 19 accelerations of C/A and phase smoothed C/A (Gas).
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Figure A.6.5. PRN 2 phase smoothed C/A residual (Gas).
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Figure A.6.6. PRN 6 phase smoothed C/A residual (Gas).
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Figure A.6.7. PRN 15 phase smoothed C/A residual (Gas).
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Figure A.6.8. PRN 19 phase smoothed C/A residual (Gas).
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Figure A.6.9. PRN 2 phase smoothed C/A residual autocorrelation (Gas).

0 50 100 150
lag

200

Figure A.6.10. PRN 6 phase smoothed C/A residual autocorrelation (Gas).

200

Figure A.6.11. PRN 15 phase smoothed C/A residual autocorrelation (Gas).
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Figure A.6.12. PRN 19 phase smoothed C/A residual autocorrelation (Gas).
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Figure A.6.13. PRN 2 PSD of C/A and phase smoothed C/A accelerations (Gas).
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Figure A.6.14. PRN 6 PSD of C/A and phase smoothed C/A accelerations (Gas).
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Figure A.6.15. PRN 15 PSD of C/A and phase smoothed C/A accelerations (Gas).
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Figure A.6.16. PRN 19 PSD of C/A and phase smoothed C/A accelerations (Gas).
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A.6.2 Phase smoothed code piots of Bow station
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Figure A.6.17. PRN 2 accelerations of C/A and phase smoothed C/A (Bow).
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Figure A.6.18. PRN 6 accelerations of C/A and phase smoothed C/A (Bow).
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Figure A.6.19. PRN 15 accelerations of C/A and phase smoothed C/A (Bow).
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Figure A.6.20. PRN 19 accelerations of C/A and phase smoothed C/A (Bow).
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Figure A.6.21. PRN 2 phase smoothed C/A residual (Bow).
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Figure A.6.22. PRN 6 phase smoothed C/A residual (Bow).
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Figure A.6.23. PRN 15 phase smoothed C/A residual (Bow).
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Figure A.6.24. PRN 19 phase smoothed C/A residual (Bow).
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Figure A.6.25. PRN 2 phase smoothed C/A residual autocorrelation (Bow).
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Figure A.6.26. PRN 6 phase smoothed C/A residual autocorrelation (Bow).
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Figure A.6.27. PRN 15 phase smoothed C/A residual autocorrelation (Bow).
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Figure A.6.28. PRN 19 phase smoothed C/A residual autocorrelation (Bow).
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Figure A.6.29. PRN 2 PSD of C/A and phase smoothed C/A accelerations (Bow).
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Figure A.6.30. PRN 6 PSD of C/A and phase smoothed C/A accelerations (Bow).
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Figure A.6.31. PRN 15 PSD of C/A and phase smoothed C/A accelerations (Bow).
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Figure A.6.32. PRN 19 PSD of C/A and phase smoothed C/A accelerations (Bow).
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A.6.3 FIR smoothed code plots of Gas station
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Figure A.6.33. PRN 2 accelerations of C/A and FIR smoothed C/A (Gas).
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Figure A.6.34. PRN 6 accelerations of C/A and FIR smoothed C/A (Gas).
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Figure A.6.35. PRN 15 accelerations of C/A and FIR smoothed C/A (Gas).
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Figure A.6.36. PRN 19 accelerations of C/A and FIR smoothed C/A (Gas).

325



metre

metre

metre

200 400 600 800 1000
epoch (second)

Figure A.6.37. PRN 2 FIR smoothed C/A residual (Gas).
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Figure A.6.38. PRN 6 FIR smoothed C/A residual (Gas).
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Figure A.6.39. PRN 15 FIR smoothed C/A residual (Gas).
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Figure A.6.40. PRN 19 FIR smoothed C/A residual (Gas).
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Figure A.6.41. PRN 2 FIR smoothed C/A residual autocorrelation (Gas).
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Figure A.6.42. PRN 6 FIR smoothed C/A residual autocorrelation (Gas).
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Figure A.6.43. PRN 15 FIR smoothed C/A residual autocorrelation (Gas).
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Figure A.6.44. PRN 19 FIR smoothed C/A residual autocorrelation (Gas).
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Figure A.6.45. PRN 2 PSD of C/A and FIR smoothed C/A accelerations (Gas).
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Figure A.6.46. PRN 6 PSD of C/A and FIR smoothed C/A accelerations (Gas).
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Figure A.6.47. PRN 15 PSD of C/A and FIR smoothed C/A accelerations (Gas).
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Figure A.6.48. PRN 19 PSD of C/A and FIR smoothed C/A accelerations (Gas).
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A.6.4 FIR smoothed code plots of Bow station
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Figure A.6.49. PRN 2 accelerations of C/A and FIR smoothed C/A (Bow).
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Figure A.6.50. PRN 6 accelerations of C/A and FIR smoothed C/A (Bow).
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Figure A.6.51. PRN 15 accelerations of C/A and FIR smoothed C/A (Bow).

20

10,

i S 1

i3 B &

i, 3 Hh
D oy < Xt H

KR AR i

] i

50 100 150 200
epoch (second)

Figure A.6.52. PRN 19 accelerations of C/A and FIR smoothed C/A (Bow).
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Figure A.6.53. PRN 2 FIR smoothed C/A residual (Bow).
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Fig.A.6.54. PRN 6 FIR smoothed C/A residual (Bow).
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Figure A.6.55. PRN 15 FIR smoothed C/A residual (Bow).
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Figure A.6.56. PRN 19 FIR smoothed C/A residual (Bow).
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Figure A.6.57. PRN 2 FIR smoothed C/A residual autocorrelation (Bow).
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Figure A.6.58. PRN 6 FIR smoothed C/A residual autocorrelation (Bow).
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Figure A.6.59. PRN 15 FIR smoothed C/A residual autocorrelation (Bow).
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Figure A.6.60. PRN 19 FIR smoothed C/A residual autocorrelation (Bow).
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Figure A.6.61. PRN 2 PSD of C/A and FIR smoothed C/A accelerations (Bow).
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Figure A.6.62. PRN 6 PSD of C/A and FIR smoothed C/A accelerations (Bow).
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Figure A.6.63. PRN 15 PSD of C/A and FIR smoothed C/A accelerations (Bow).
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Figure A.6.64. PRN 19 PSD of C/A and FIR smoothed C/A accelerations (Bow).
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