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ABSTRACT

Carrier phase-based long-range GPS kinematic positioning can potentially provide sub-
decimetre accuracy trajectories even when the separation between the roving receiver
and reference receiver is many hundreds of kilometres. To realise this potential, three

techniques have been proposed in this thesis.

An ambiguity resolution on-the-fly algorithm, using data from multiple reference stations
for medium-range kinematic positioning (<100 km), is proposed. This technique is based
on a linear combination functional model, formed from the single-differenced functional
equation for baselines from the roving receiver to three or more reference receivers. In
this way, the orbit bias and ionospheric delay can be eliminated, and, in addition, the
tropospheric delay, multipath and observation noise can be significantly reduced. Hence,
the ambiguity resolution technique similar to that used for the short-range case can be
employed. This technique requires that the reference stations be located such that they
surround the survey area and the roving receiver is less than 100 km from the nearest
reference station, in order to effectively account for the ionospheric delay. Experiments

have shown that ambiguities can be resolved using a single epoch of data.

Ambiguity recovery techniques for long-range kinematic positioning (up to many
hundreds of kilometres) have been proposed. One of the techniques requires precise
pseudo-range observations, which when combined with carrier phase observations can
estimate the cycle slips on the widelane and an observable combination with maximum
wavelength (14.65 m). All integer ambiguity candidates derived from the cycle slip
estimates can be tested by validation criteria to determine the correct integer ambiguity
set. This technique can repair data gaps up to 1-5 minutes in length depending on the
receiver type and the ionospheric conditions. If the dual-frequency, full wavelength
carrier phase observations are available, but no precise pseudo-range data, the Ambiguity
Function Method with Kalman filtering is a powerful combination for detecting and
repairing cycle slips. This technique can repair data gaps up to a few seconds in length.
These two ambiguity recovery techniques require the precise ephemeris in order to

determine sub-decimetre accuracy positions.



Abstract

The third technique assumes that only the trajectory of the roving receiver relative to
itself is required to be of high accuracy. The biased position derived using incorrectly
fixed ambiguities can be corrected to sub-decimetre accuracy using the known position
of the start point and end point of the survey, based on the approximately linear
characteristic of the effect of biases on results over a short period (half hour or so).

In the process of deriving the above three techniques in this thesis, important
contributions have been made, and new algorithms developed, in the areas of orbit bias
elimination procedures, ionospheric delay interpolation technique using an epoch-by-
epoch and satellite-by-satellite model, three-step quality control improvements, a new
method for constructing multi-satellite ambiguity combinations, a study of the effect of
temporal correlation on ambiguity resolution, and mulﬁpath extraction and mitigation

methods.
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Chapter 1

INTRODUCTION

s
s—

FI

1.1  GPS Background

The Global Positioning System (GPS) is a satellite-based radio-positioning navigation
and time transfer system designed, financed, deployed, and operated by the U. S.
Department of Defense (DoD). The GPS system consists of three segments, the Space
Segment comprising the 21+3 satellites which transmit the signals, the Control Segment
consisting of the ground facilities carrying out the task of satellite tracking, orbit
computations, telemetry and supervision necessary for the daily control of the space
segment, and; the User Segment which includes the entire spectrum of applications
equipment and computational techniques that must provide the users with the positioning
results. GPS was developed as a military force enhancement system and will continue to
play this role. However, GPS has also demonstrated a significant benefit to the civilian

community.

The GPS ranging signal is broadcast at two L-band frequencies: a primary signal at
1575.42MHz (L1) and a secondary signal at 1227.6MHz (L2). Modulated onto the L1
carrier wave are two pseudo-random noise (PRN) ranging code: the 1-millisecond-long
C/A-code with a chipping rate of about 1.023MHz, and a week-long segment of the P-
code with a chipping rate of 10.23MHz. Also modulated on the carrier is the navigation
message which, among other items, includes the ephemeris data describing the predicted
position of the satellite and the predicted satellite clock correction terms. The L2 carrier
is modulated by the P-code and the navigation message, but no C/A-code. The pseudo-
random binary sequences of C/A-code (C(t)), P-code (P(t)) and GPS message D(t) are
modulated on the L1 and L2 carrier phase, and hence the two carrier signals leaving the

satellite antenna can be represented by (Wells et al., 1987):

S11() = A ,C(D(t) sin(27f,t +, ) + A P()D(E) cos2nfyt + ¢ ) (1-1)
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S1.2(t) = A P()D(t) cos(2nf,t + ) (1-2)

The C/A code is used by the Standard Positioning Service (SPS). The P-code is used by
the Precise Positioning Service (PPS). Because of its higher modulation bandwidth, the
P-code ranging signal has higher measurement resolution and is therefore more precise.
The GPS navigation message is a data sequence with a bit rate of 50 bps. One frame of
D(1t) has a length of 1500 bits, and hence a period of 30 seconds. The code and data

phase modulation sequences can be modelled as sequences of +£1 amplitude states.

The U. S. DoD has encrypted the P-code under a policy known as "Anti-Spoofing"
(AS). The resulting Y-code is the modulo-two sum of the P-code and a substantially
lower rate encrypting code W(t). It is difficult for civilian receivers to decode the Y-
code, and hence the Y-code pseudo-ranges and L2 carrier phase measurements are
difficult to obtain. In addition, the military operators of the system have the capability to
intentionally degrade the accuracy of the C/A code by desynchronizing the satellite clock
(8 — process), or by incorporating small errors (g — process) in the broadcast ephemeris.
This degradation is known as "Selective Availability" (S/A). The magnitude of the
resulting range errors is typically 20 m, and results in rms horizontal position error of
about 50 m, at the one sigma level. The DoD claim that horizontal errors will be less
than 100 m, 95% of the time.

1.2  GPS Receivers and Observables
1.2.1 GPS Receivers

A GPS receiver consists of the antenna, radio frequency (RF) section, signal trackers,
microprocessor, input control device, storage device and power supply. The antenna of
a GPS receiver converts the energy in the electromagnetic waves arriving from the
satellites into an electric current that can be handled by the electronics within the
receiver. The RF section will combine the incoming signal with a pure sinusoidal signal
generated by a local oscillator to transform the frequency of signals arriving at the
antenna to a lower one, an intermediate frequency (IF), upon which measurements are
made. The actual pseudo-range measurements are performed in tracking loop circuits.
The code ranges are typically determined in the delay lock loop (DLL) using a code
correlation technique. After removing the pseudo-random code from the incoming
signal, and some filtering, the unmodulated {Doppler shifted) carrier wave is obtained.

2
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The carrier wave is then passed to the phase lock loop (PLL) where the phase
measurement is made. The observable is the (fractional) phase offset between the
received signal and the reference signal generated in the receiver, and integer changes to
the phase. Therefore, the initial phase measurement is ambiguous by an integer number
of cycles (Langley, 1993).

If Anti-Spoofing were turned off, the C/A, P1 and P2 pseudo-ranges and L1 and L2
carrier phase observations are easily obtained. Unfortunately, under AS, the P-code has
been changed to a Y-code, and this code sequence is not available to civilian users.
What can GPS receiver measure when AS is turned on ? Recent developments in GPS
receiver technology have focussed on extracting the precise pseudo-range and carrier
phase information on L2. Typical techniques include the narrow-correlation technique,
squaring, code correlation squaring, cross-correlation and P-W tracking (Hofmann-
Wellenhof et al., 1994).

Narrow-Correlation technique. Code correlation technologies have been enhanced
during the past few years. The most notable one is the development of the so-called
narrow correlator, which improves the resolution of C/A code pseudo-ranges to the 10
centimetre level, compared with standard C/A code noise levels of 1-2 metres (Fenton et

al., 1991). An example of such a receiver is the NovAtel family of instruments.

Squaring. Squaring, or auto-correlating L2, produces a half-wavelength carrier signal at
twice the carrier frequency, resulting in a very low signal-to-noise ratio, approximately
30 dB lower than that obtained by correlation with the code (Counselman, 1987). A
typical receiver was the Trimble 4000SST.

Code Correlation squaring: This technique involves correlating the L2 Y-code signal
with a locally-generated replica of the underlying P-code, narrowing the bandwidth and
subsequently squaring the signal (Hatch et al., 1992). This results in a half-wavelength
carrier phase observable and a signal-to-noise 17dB lower than that obtained by
correlating with the P-code. A typical receiver of this variety was the Leica SR299.

Cross-Correlation: This technique uses the fact that the unknown Y-code is identical on
both L1 and 1.2 carriers, which enables cross correlation of the L1 and L2 signal
Because the velocity of Y-code on L2 is slightly slower than the Y-code on L1, the time
delay necessary to match the L1 signal with the L2 signal in the receiver is a measure of

the travel time difference of the two signals. The observables resulting from the

3
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correlation process are the range difference between the two signals obtained from the
time delay of the Y-Code on the two carriers and a beat frequency carrier (L2-L1).
Consequently, two full wavelength carrier phase observables, Y-code pseudo-range
difference between L2 and L1, and the C/A pseudo-range are available (Hofmann-
Wellenhof et al., 1994; Leick, 1995). Cross correlating results in a signal-to-noise 27dB
lower than that obtained by correlating with the P-code. Typical receivers are the
Trimble 4000SSE, Rogue SNR 8000.

P-W tracking: This technique takes advantage of the fact that the Y-code is the modulo-
2 sum of the P-code and the W-code, which is a substantially lower rate encryption code
of 512 kHz. The .1 and 1.2 signals are correlated with locally generating P-codes, and
the bandwidth is reduced to that of the encryption code. The encryption code is
estimated and removed from the received signal to allow locally generated code replicas
to be locked with the P-code signals of L1 and L2 (Ashjaece & Lorenz, 1992).
Consequently, two full wavelength carrier phase observables, L1 and L2 Y-code pseudo-
ranges and the C/A-code pseudo-range can be obtained. This technique results in a
signal-to-noise 14dB lower than that obtained by correlating with the P-code directly.
The typical receiver is the Ashtech Z12.

1.2.2 GPS Observables

Based on the available observations that can be made from civilian receivers, GPS
receivers can be classified into five classes, as listed in Table 1-1 (Han & Rizos, 1996g).
New generation GPS receivers such as the Ashtech Z12, Leica GPS SR399 and Trimble
400088, provide precise pseudo-range and full wavelength L1 and L2 carrier phase
observations, even under AS. GPS receivers such as the Rogue SNR 8000 and Trimble
4000SSE provide C/A pseudo-range, L1 and L2 carrier phase and the so-called "sixth
observable": the difference between the P2 and P1 pseudo-ranges. Older generation
GPS receivers output C/A pseudo-range, .1 carrier phase and half-wavelength L2
carrier phase {due to the use of the "squaring”" technique). The single frequency GPS
recetver outputs C/A pseudo-range and I.1 carrier phase. GPS navigation receivers
output C/A pseudo-range, though some of them provide L1 Doppler observations as
well, or just coordinates in the WGS-84 datum.

The performance of the ambiguity resolution algorithm employed depends on the type of
GPS recerver used. For short-range static or kinematic positioning, phase ambiguities

can be resolved using a single epoch of data if receiver type 1 is used, a few minutes of
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observations if receiver type 2 is used, about 10 minutes of observations if receiver type
3 is used, and more than 10 minutes of observations if receiver type 4 is used, assuming
state-of-art algorithms are implemented (Han, 1996; 1994c). For long-range static or
kinematic positioning, receiver types 1 and 2 are preferred (Han, 1995b; Han & Rizos,

19954),

Table 1-1. GPS receiver classification scheme

No. | Types

Type of Observations available

Typical receivers

1 New generation

receiver (precise

P1 (Y1), and/or P2 (Y2), and/or
precise C/A pseudo-ranges, L1

Ashtech Z12, Leica SR
399, Trimble 4000SSi,

receivers (signal

squaring type)

phase and half-wavelength L2

carrier phase

pseudo-range and L2 carrier phase (and and NovAtel
available) sometimes L1 and L2 Doppler) Millennium
2 Dual-frequency C/A pseudo-range, L1 and L2 Rogue SNR 8000,
receiver {Cross- carrier phase and the difference Trimble 4000SSE
correlation type) | between the P2 and P1 pseudo-
ranges
3 Dual frequency C/A pseudo-range, L1 carrier Leica SR 299

(WM102), Trimble
4000SST, etc.

4 Single frequency

receivers

C/A pseudo-range and L1 carrier
phase

Trimble 4000SE,
WM101, Ashtech 3DF,
GSS1, NovAtel, etc.

5 Navigation

receiver

C/A pseudo-range, though some
also provide L1 Doppler

Magnavox MX200,
Magellan 1000, etc.

1.3 Modelling GPS Observations

1.3.1 Pseudo-Range Observation Equation

The basic pseudo-range observable is the difference between the time of transmission
from a satellite (in the satellite time scale t) and the time of arrival at a receiver (in the
receiver time scale T) of a particular signal. The mathematical expression is (e.g., Wells
et al., 1987):
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R=p+dp+c-(dt—dT)+d,, +dy, +dn, T8r (1-3)
where R: the pseudo-range observation
p: = ”XS — X|i, X® is the satellite position vector, X is the station

position vector
dp:  the effect of ephemeris errors, including S/A effects

dt:  the satellite clock error with respect to GPS time, including S/A effects
dT: the receiver clock error with respect to GPS time
d,,: the ionospheric delay on the pseudo-range

dyp:  the tropospheric delay
dff]p: the multipath on the pseudo-range

eg. the pseudo-range measurement noise

1.3.2 Carrier Phase Observation Equation

The basic carrier phase observable is a measure of the difference between the carrier
signal generated by a receiver's internal oscillator and the carrier signal from the satellite.
Although the observable is essentially the number of full carrier cycles, and the fractional
cycle, between the antennas of the satellite and the receiver, the problem is that a GPS
receiver has no way of distinguishing one carrier cycle from another. The best it can do
is to measure the fractional phase and keep track of changes to the phase; hence the
initial phase is undetermined, or ambiguous, by an integer number of cycles. To use the
carrier phase as an observable for positioning this unknown number of cycles, or the

phase ambiguity, must be estimated or accounted for in some way (Wells et al., 1987).

¢=p+dp+e-(dt—dT)+A-N—d;,, +d, +db +84 (1-4)
where ¢ the carrier phase observation in unit of metres
@) . . .
d,: the multipath on the carrier phase
£4:  the carrier phase observation noise
A the wavelength of the carrier phase

N: the integer ambiguity

The other terms, p, dp, dt, dT, d,,, and d,, are the same as in equation (1-3). Note

trop
that the ionospheric delay for carrier phase observations is the same magnitude as the
ionospheric delay for pseudo-range, but has the opposite sign.
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The data processing necessary to determine the value of the integer ambiguity is referred
to as "Ambiguity Resolution". Ambiguity resolution without requiring a GPS receiver to
remain stationary for any length of time is also referred to as Ambiguity Resolution On-
The-Fly (OTF), and ambiguity resolution using a single epoch data is referred to here as
Instantaneous Ambiguity Resolution.

1.4 GPS Positioning and Applications
1.4.1 Point Positioning

GPS point positioning, sometimes also called absolute positioning, employs one receiver
to output position information in the World Geodetic System 1984 (WGS-84) datum
(the system in which the satellite ephemeris is derived). Using one-way ranging data
from four or more GPS satellites (that are also broadcasting their positions), four
unknowns must be determined; typically, they are: latitude, longitude, altitude, and a
correction to the receiver's clock. If altitude or time are already known, a lower number
of satellites can be used. Carrier phase observations can be used to contribute to the
velocity determination for kinematic applications, or improve the pointing accuracy for
static point positioning. GPS point positioning is easy to implement for real-time

applications such as navigation in the air, at sea, or on land.

Note that the ephemeris bias and satellite clock bias are ignored in the point positioning
processing model. Therefore, if S/A is turned on the positioning accuracy is
significantly reduced. DoD state that horizontal errors will be limited to less 100 m, 95%
of time. Therefore, the applications using one GPS receiver in point positioning mode

will be restricted to those with low accuracy requirements.
1.4.2 Relative Positioning

GPS relative positioning requires the determination of the coordinates of an unknown
point with respect to a known (reference) point which, for most applications, is
stationary. Relative positioning is most effective if simultaneous observations are made
at both the reference and the unknown point because the differenced observable can be
formed between two points and the biases due to imprecise ephemeris information
(including the S/A g —effect), satellite clock (including the S/A & —effect), ionospheric
and tropospheric delays, can be reduced, to an extent that is largely dependent on the
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distance between the points. Hence, relative positioning, also refered to as differential
positioning, yields positioning accuracy that is much higher than point positioning .

Pseudo-range-based DGPS

Differential GPS (DGPS) is a technique that significantly improves both the accuracy and
the integrity of GPS. DGPS requires high quality GPS reference receivers at known
surveyed locations. The reference station estimates the slowly varying error components
of each satellite range measurement and generates a correction for each GPS satellite.
This correction is broadcast to all DGPS users over some convenient communication
link. With differential corrections, the SPS navigation accuracy can be improved to
better than 1m, one sigma, provided the correction data age is less than 10 seconds, and
the user is within 50 km of the reference station. As the correction data age, or the
distance from the reference station increases, the accuracy of DGPS degrades. DGPS
can still provide improvements greater than that of the PPS accuracy. DGPS using one
reference station is suitable for operations over a small area, typically about 150 km
across, and is often referred to as Local Area DGPS (LADGPS)

If a network of reference stations can be used to form a vector correction for each
satellite, consisting of individual correction components for the satellite clock, three
components of the satellite ephemeris, and parameters of an ionospheric delay model, the
correction is valid over a much greater geographical area. This concept is generally
referred to as Wide Area DGPS (WADGPS). The accuracy of WADGPS is almost
independent on the geographical separation of the user from the nearest reference
station, though the validity of the correction still decreases with an increase in latency, or

age, of the correction data (Kee, 1996).

The Wide Area Augmentation System (WAAS) consists of geostationary satellites to
augment GPS satellites and ground reference stations. Geostationary satellites provide a
ranging signal that is GPS-like and which can be received by slightly modified GPS
receivers, and therefore provides additional range measurements for the GPS user. The
reference stations are widely dispersed data collection sites that receive and process
signals received from the GPS and geostationary satellites, and forward their
measurements to data processing sites, referred to as wide area master stations. The
master stations process the raw data to determine integrity, differential corrections,
residual errors, and ionospheric delay information for each monitored satellite. They also

compute ephemeris and clock information for the geostationary satellites. All these data

8
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are packed into the WAAS message, which is sent to Navigation Earth Stations (NES).
The NES uplink this message to the geostationary satellites, which then broadcast the
"GPS-like" signal. The WAAS therefore augments GPS with the following three
services: a ranging function (which improves availability and reliability); differential GPS
corrections (which improve accuracy); and integrity monitoring (which improves safety)
(Enge & Ven Dierendonck, 1996).

The LADGPS, WADGPS and WAAS applications include land vehicle navigation and
tracking, marine applications, air traffic control, aircraft automatic landing approach, etc.

Carrier phase-based DGPS

Carrier phase-based DGPS uses carrier phase observations for high precision positioning,
and therefore involves an ambiguity resolution procedure. Carrier phase-based DGPS
can be categorised according to applications or positioning mode:

Short-Range Vs. Long-Range: The short-range positioning mode generally refers to
scenarios where the baseline length (between reference and user receiver) is short enough
s0 that the residual ionospheric delay and orbit biases in single-differenced observations
between receivers can be ignored. Typically this is of the order of about 15km, but very
dependent on the variability of the ionosphere and the amplitude of orbit biases. Hence
the constraint introduced by the ionospheric delay and orbit biases in the cases of
medium-range (up to 100 km) and long-range (up to many hundreds of kilometres)

applications cannot be neglected, as is done for the short-range case.

Static Positioning Vs. Kinematic Positioning: For static positioning a GPS receiver can
collect at least two epochs of data at a survey mark and only three coordinate parameters
will be contained in the observation equation(s). However, in the case of kinematic
positioning, the antenna is not stationary, and hence the number of coordinate parameters

will be three times the number of observation epochs,

Real-Time Processing Vs. Post-Processing: Real-time processing requires the use of a
causal filter, such as a Kalman filter, or sequential least squares. In the case of post-
processing there is no such requirement. Theoretically, a non-causal filter will result in
better accuracy than a causal filter. In general, the transmission latency for real-time

applications is a very restrictive specification.
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Attitude Determination:  Attitude determination is an important GPS application,
requiring the use of multiple GPS antennas and/or receivers, with the receiver(s) typically
in motion. Tt is possible to use external information such as known (inter-antenna)
baseline lengths, fixed antenna configurations and perhaps independent attitude-related
information from external non-GPS sensors (Lu, 1995). There are two ways to specify
the reference receiver for relative positioning of the GPS array: the reference receiver

maybe static or in motion as well.

Applications of carrier phase-based DGPS include precision landing of aircraft using
integrity beacons, spacecraft attitude control using GPS carrier phase data, GPS
surveying, attitude determination, orbit determination, definition and maintenance of
earth-centred, earth-fixed Cartesian coordinate systems such as the International
Terrestrial Reference Frame (ITRF).

1.5 Motivation

Differential GPS navigation generally refers to the pseudo-range based systems, such as
Wide Area Differential GPS (WADGPS) or Wide Area Augmentation Systems (WAAS),
which are designed to deliver accuracies at the few metre level. WADGPS or WAAS
requires a network of master/monitor stations spread over a wide area. Because the
biases will be modelled and corrected, the positioning accuracy will be almost
independent of baseline length. Carrier phase observations in these systems will
generally be used to smooth the pseudo-range data (Feng & Han, 1996, Feng et al,,
1996). However, for some applications requiring decimetre or sub-decimetre accuracy,
carrier phase-based techniques for medium-range and long-range GPS kinematic

positioning, in post processed or real-time mode, will be necessary.

The adoption of GPS kinematic positioning techniques has been growing rapidly for
precise marine and airborne applications. However, there is a significant challenge when
the GPS reference receiver(s) cannot be set up near the survey area, such as out on the
continental shelf areas, and in remote and inaccessible land areas such as Antarctica,
Australia's outback, Central Asia, Siberia, Greenland, etc. The distance from the fixed
reference receiver(s) to the mobile user receiver(s) may range from tens to many
hundreds of kilometres, vet the accuracy requirement may be at the decimetre level or
higher. Once Wide Area DGPS systems or Wide Area Augmentation Systems are
established and the appropriate data is transmitted, GPS carrier phase-based medium-
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range or long-range kinematic positioning techniques may allow a user (with a single
GPS receiver) to precisely position a moving receiver, even in real-time. Therefore,
carrier phase-based long-range GPS kinematic positioning increasingly becomes a useful

topic.

1.6  Previous Research on Carrier Phase-Based Long-Range GPS
Kinematic Positioning

1.6.1 Error Mitigation for the Long-Range Case

The main problem in carrier phase long-range kinematic positioning is error mitigation.
There are many on-the-fly ambiguity resolution techniques which are applicable for
short-range GPS kinematic positioning, but all are based on the assumption that the orbit
bias and ionospheric delay for double-differenced observations can be neglected. For
long-range GPS kinematic positioning however, orbit bias and ionospheric delay cannot
be ignored, and on-the-fly ambiguity resolution becomes a much more difficult problem

to overcome.

The orbit bias is a baseline length dependent bias which must be reduced before
implementing any ambiguity resolution procedure for long-range positioning. The
precise ephemeris from the International GPS Service for Geodynamics (IGS) can be
used, but there is a 10 day delay if 10cm accuracy is required, or a one day delay if 25cm
accuracy is acceptable (Neilan, 1996). Colombo et al. (1995) proposed a two-step
Kalman filter procedure to reduce the effect of orbit bias. The first step is to estimate the
orbit bias using compressed observation data, and the second step is to hold fixed the
corrected ephemeris while estimating the mobile receiver's trajectory on an epoch-by-
epoch basis. This method is very difficult to implement in real-time. An alternative
approach 1s to use reference station GPS data, the parameters of an appropriate error
model which describes the distance dependent errors, including orbit bias, can be
estimated and then disseminated to users in real-time (Wiibbena et al., 1996). Wu (1994)
has suggested that the linear combination of single-differenced observations between
different reference stations and the mobile receiver can reduce the orbit bias. Han &
Rizos (1996¢) have proposed this method to reduce the effect of orbit bias for long-
range ambiguity resolution. This method requires: (a) two reference receivers if the
mobile receiver is on a line joining the two reference receivers; (b) three reference

receivers if the mobile receiver is on the plane defined by the three reference receivers,
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or; (c) four reference receivers if the mobile receiver is arbitrarily located. If more than
four reference receivers are available, linear coefficient parameters can be determined
which make the standard deviation of the linear combination of single-differenced

observations a minimum.

Reference stations are sites with known coordinates, which typically are equipped with
dual-frequency GPS receivers. The data from reference receivers should be processed in
real-time in order to estimate the integer ambiguity set, and subsequently for ionospheric
delay model determination. The initial ambiguity set for dual-frequency data should be
determined when the system is first set up, and then real-time ambiguity recovery
techniques (Blewitt, 1990, Han, 1995b) should be employed to maintain ambiguity
continuity. The ionospheric delay value on the L1 carrier phase can be determined
relative to the reference station, and the reference satellite, at each epoch. This is the so-
called local epoch-by-epoch and satellite-by-satellite ionospheric delay model (Webster
& Kleusberg, 1992; Wanninger, 1995).

1.6.2 Current Research on Ambiguity Resclution

The carrier phase observable has much higher measurement precision than the pseudo-
range, and has been widely used in high accuracy static and kinematic positioning.
Ambiguity resolution (AR} is therefore crucial and becoming increasingly important as
GPS applications grow. The simplest AR method is to round off the estimated real-
valued ambiguities to the nearest integer, but only if the real-valued ambiguity estimates
are good enough. Typically this requires an observation span of at least 0.5 to 1 hour for
short baselines (less than 15km), hence making high precision GPS positioning relatively
meflicient. However a variety of AR techniques have been developed in the last decade.
Generally speaking, there are five different kinds of AR techniques: (1) ambiguity
resolution through a special operational mode, such as antenna swap, re-occupation, or
"stop & go"; (2) ambiguity resolution using the pseudo-range data directly, in which use
is made of linear combinations of L1 and L2 carrier phase with longer wavelength, and
linear combinations of L1 and L2 P-code pseudo-ranges with lower noise; (3) AR
through a search in the "coordinate domain", requiring the use of accurate initial
coordinates, such as the Ambiguity Function Method; (4) AR through a search in the
"estimated ambiguity domain", through first estimating ambiguities as real-valued
parameters, and then determining the integer ambiguity through an integer least squares
estimation process, and; (5) the integrated technique which uses other physical sensors

to aid GPS ambiguity resolution.
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Antenna swap and re-occupation modes are only suitable for short-range or static
positioning. The "stop & go" mode can be used for long-range kinematic positioning,
but it requires initialisation at the beginning of a survey session, and re-initialisation if

cycle slips occur during the period the antenna is in motion.

The search technique in the measurement domain determines the L1 and L2 whole-cycle
ambiguities with the aid of P-code pseudo-range data on L1 and L2, and was first
suggested by Hatch (1986). However, it requires a comparatively long time to resolve
the ambiguities due to the short wavelengths of the L1 and L2 carrier waves.
Subsequently, Wiibbena (1989), Dong & Bock (1989), Blewitt (1989), Abidin & Wells
(1990) and Goad (1992) proposed the use of P-code pseudo-range data on L1 and L2 to
determine the integer ambiguities of the widelane observations. The main advantage is
that the ambiguities of widelane phase observables are easily determined, and largely
independent of the baseline length. But for precise positioning the L1, L2 or ionosphere-
free observations are used, not widelane observations. Hence the integer ambiguities of
other independent combined observations should be resolved in order to determine the
ambiguities for the L1 and L2 observations. The extra-widelaning technique
(Wiibbena, 1989) uses the widelane, narrowlane and the ionospheric signal phase
combinations to determine the integer ambiguity of the widelane and narrowlane
observations, aided by P-code pseudo-ranges on L1 and 1.2, for static positioning. Abidin
& Wells (1990) also use this technique - for kinematic positioning. Because the
ionospheric effect dramatically increases with increasing baseline length, it is difficult to
determine the integer ambiguities of the narrowlane carrier phase observation for long
baselines. However, Dong & Bock (1989), Blewitt (1989) and Goad (1992) have used
this technique to determine the integer ambiguity of the widelane carrier phase
observable using dual-frequency precise pseudo-range data for long-range static
baselines first, and then the ionosphere-free combination with L1 ambiguities and the
known widelane ambiguity are used to compute the coordinates of the static site and the
L1 ambiguities. In this way, the ionosphere-free combination can be processed with free
ambiguity parameters, and the real-valued ambiguities can be obtained. Because a bias of
10.7cm in the real-valued ambiguities will cause a 1 cycle bias in the L1 ambiguities, the
second step requires a relatively long static observation period to obtain high precision
real-valued ambiguity estimates (less than a quarter of 10.7cm). Hence, the L1 ambiguity
is not easy to determine for the long-range kinematic positioning mode (see Appendix
B).
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The search techniques in the coordinate domain, which are particularly suitable when
good initial estimates of the coordinates are available, mainly use the Ambiguity Function
Method (AFM) suggested by Counselman & Gourevitch (1981) and Remondi (1984).
Mader (1992) proposed the ionospheric correction technique within the AFM using a
trial suite of integers. Han (1993) suggested an integrated technique where the search
region for the AFM is defined by the predicted position, and uncertainty, output by the
Kalman filter used for kinematic position processing. A highly efficient computation
procedure for the AFM using dual-frequency carrier phase observations was described
by Han & Rizos (1996b). However, the ionospheric effect is the main obstacle for long-
range kinematic applications, even if the precise ephemeris can be obtained, or the orbit

biases estimated.

The search technique in the estimated ambiguity domain, using integer least squares
estimation, is the most important technique for short-range applications, including for
kinematic and rapid static positioning (Han, 1995c). Many practical searching
procedures based on integer least squares estimation have been suggested, such as: Fast
Ambiguity Resolution Approach (FARA) (Frei & Beutler, 1990); Cholesky
Decomposition method (Landau & Euler, 1992); Spectral Decomposition method
(Abidin, 1993); Least Squares Ambiguity Search Technique (Hatch, 1990);, Fast
Ambiguity Search Filter (FASF) (Chen, 1993), and; Least-squares AMBiguity
Decorrelation Adjustment (LAMBDA) (Teunissen, 1994). The main reason these
procedures are restricted to short-range applications are the orbit bias and ionospheric
delay. For long-range applications, the ionosphere-free combination observable and the
integer ambiguity should be searched, if the widelane ambiguity is fixed. However, the
short wavelength will result in a large search region, and hence the searching will be

difficult for long-range applications.

The integrated technique, such as using a combination GPS/INS, uses GPS observations
with the addition of other physical sensors to aid ambiguity resolution. The physical
sensors can provide relative information, and have no absolute information (Schwarz et
al., 1994). Therefore this technique is suitable for cycle slip repair, even in the kinematic
case, but makes no contribution to initial ambiguity resolution. If the initial ambiguities
can be resolved by an initialization procedure, this technique is quite useful for long-
range kinematic positioning. The main disadvantage is that the accurate physical sensor

1s usually very expensive.
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The concept of using multiple reference stations, similar to the WADGPS system, has
been proposed by several investigators, but few details have been presented (Han &
Rizos, 1996e; Wibbena et al, 1996). Although the bias modelling using multiple
reference stations has been developed for WADGPS (Kee, 1996), for the pseudo-range-
based system, the accuracy is not good enough for ambiguity resolution. Though this
concept can be used for carrier phase-based systems, the accuracy of the corrected
observations will be degraded. A more efficient algorithm is needed for carrier phase-

based long-range kinematic positioning.

1.7 Methodology

Current GPS research has concentrated on ambiguity resolution on-the-fly for short-
range kinematic positioning on the one hand, and long-range static positioning on the
other. Ambiguity resolution on-the-fly for long-range kinematic positioning is therefore
a significant challenge. Carrier phase-based long-range GPS kinematic positioning
requires that the integer ambiguity set be fixed and all biases, especially the baseline
length-dependent biases, be reduced. In order to tackle this challenge, all ambiguity
resolution techniques, and bias elimination and mitigation methods have been
investigated and compared. Based on these current techniques, and some new
innovations to these developed by the author, three techmiques are suggested for
achieving centimetre, or sub-decimetre, accuracy for long-range kinematic positioning in

the data post-processing or real-time processing modes.

The first suggested technique is to resolve integer ambiguity directly using multiple
reference stations. Although this idea is suggested by research into WADGPS or
WAAS, the current bias mitigation procedure is not accurate enough, and a new method
need to be developed. Based on the method suggested by Wu (1994) and Han & Rizos
(1996e), the linear combination of the single-differenced observations between the roving
receiver and every reference stations will eliminate orbit bias. The ionospheric delay can
be interpolated by using the epoch-by-epoch and satellite-by-satellite model within a
medium-sized area. An impressive result that was obtained is that the linear combination
suggested for elimination of the orbit bias, can also eliminate ionospheric delay, and
reduce tropospheric delay, multipath and observation noise. The functional model,
which is very similar to the short-range kinematic positioning functional model, has been
developed. An integrated method, with improvements to the real-time stochastic model,

new criteria to verify the correct ambiguity set, and a fault detection and adaptive
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procedure, is proposed for use with this functional model. Instantaneous ambiguity

resolution or AR on-the-fly is possible.

The second suggested technique is to resolve cycle slips and recover integer ambiguity,
using a search procedure in the observation domain. However what is resolved is the
"relative” ambiguity, rather than the "absolute" ambiguity. This method uses full
wavelength carrier phase, and precise pseudo-range observations on L1 and L2, The
orbit bias, receiver and satellite clock biases can be eliminated, and the ionospheric delay
can be predicted from the previous data epochs for which it is assumed that the integer
ambiguity has been resolved. It is found that the widelane (0.86 m) and ¢_;4
(wavelength 14.65 m) combinations are best for cycle slip candidate determination.
Validation criteria for the search procedures in the estimated ambiguity domain, and in
the coordinate domain, can be used here to verify the correct cycle slip set. If precise
pseudo-range observations are not available, the AFM with Kalman filtering is used for

cycle slip detection and repair.

If the ambiguity set is fixed, but to the incorrect integer ambiguity values, the baseline
from the reference receiver to roving receiver will be biased. The baseline biases are
almost linear with time if the ambiguity bias is constant (that is, no cycle slips). From
this error behaviour, the third suggested technique is developed for trajectory
determination relative to itself. If a user receiver, which is far away from the reference
receiver, moves around and back to the starting point at the end of a session, the
trajectory can be corrected using the misclosure differences. The corrected trajectory
will be of sub-decimetre accuracy relative to the trajectory itself, although a few metre
bias may result relative to the reference station. This technique can be used for GIS
database generation, profile surveying, or other surveying within a smaller area, and
where the user simply uses a single receiver and the nearest permanent GPS base station

is within a few hundreds of kilometres of the user.

1.8 Outline of the Thesis

This thesis consists of seven chapters and two appendices.

Chapter 1 gives some of the GPS background, state-of-the-art receiver techniques, and

typical applications. After the research motivation on carrier phase-based long-range
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GPS kinematic positioning is presented, and previous achievements discussed, the

methodology and contributions of this research work are outlined.

Chapter 2 reviews and compares all current ambiguity resolution techniques. The four
general classes have been classified and reviewed. The search procedures in the
observation domain, in the coordinate domain and in the estimated ambiguity domain are
related by using the integer least squares estimation technique. A new method to
compute the transformation matrix for the LAMBDA method is suggested. The physical

correlation and its effect on ambiguity resolution is also discussed.

Chapter 3 describes the orbit bias elimination and the ionospheric delay elimination
procedures for medium-range or long-range kinematic positioning. The tropospheric
delay correction methods are reviewed. The muitipath characteristics have been analysed

and a FIR filtering method is suggested to extract and mitigate multipath bias.

Chapter 4 presents a new technique for ambiguity resolution on-the-fly, for medium-
range GPS kinematic positioning. The functional model is suggested, in which orbit bias
and ionospheric delay have been eliminated and the tropospheric delay, multipath and
observation noise have been reduced. A three-step quality control method is then
developed to enhance the reliability of ambiguity resolution, which includes real-time
improvement of the stochastic model, new criteria to verify the correct ambiguity set,
and a fault detection and adaptive procedure. Short-range and medium-range

experiments are described.

Chapter 5 presents an ambiguity recovery technique for long-range GPS kinematic
positioning, which includes cycle slip detection and repair, with and without precise
pseudo-range data. The implementation procedure and experiments using this technique

are described.

Chapter 6 presents a long-range kinematic positioning algorithm which is biased relative
to the reference station, but the trajectory of the user's roving receiver has sub-decimetre

accuracy relative to the trajectory itself.

Chapter 7 summarises findings, draws conclusions, and makes recommendation topics
for future investigations. Some points related to real-time positioning, ltmitations,
prospects and potential of carrier phase-based long-range GPS kinematic positioning are
also presented.
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Appendix A derives the ionosphere interpolation formula using the epoch-by-epoch and
satellite-by-satellite model, based on the ground Gauss plane coordinate system, from the
interpolation based on the intersection point position between the line from the satellite
to receiver and the single ionosphere layer. This derivation illustrates how the
ionospheric delay term is eliminated in the functional model, using the multiple reference

stations method described in Chapter 4.

Appendix B summarises the ambiguity resolution techniques for long-range static
positioning, which can be used for data processing between reference stations, or for

ambiguity imtialisation.

1.9. Contributions of the Research

The three techniques that deal with ambiguity resolution and bias mitigation for carrier
phase-based long-range GPS kinematic positioning are the most significant contributions
of this research. In addition, the three-step quality control method, improvements to the
fast ambiguity search technique using the LAMBDA method, and the new computation
procedure for the transformation matrix which can be used for short-range kinematic or
rapid static positioning, are also important new findings. A multipath extraction and
mitigation method, and some other innovations which are not restricted to long-range
methods, are also described. The contributions of this research can therefore be

summarised as follows:

+ The functional model using multiple reference stations has been developed, in which
the orbit bias and ionospheric delay are eliminated, and the tropospheric delay,
multipath and observation noise are reduced, for medium-range GPS kinematic

positioning,.

» The ambiguity recovery technique has been developed for long-range GPS kinematic
positioning, using the widelane and ¢_;, combinations if the precise pseudo-range

observations are available, or using the AFM and Kalman filtering if the precise

pseudo-range observations are not available.

» A method of determining a trajectory with sub-decimetre accuracy relative to the
trajectory itself, rather than relative to the reference station, has been developed,

which makes use of the nearly linear behaviour of the baseline bias caused by fixing
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the wrong integer ambiguity set. This technique allows single receiver positioning
with the aid of a permanent GPS receiver which may be located hundreds of
kilometres away.

» A three-step quality control method has been developed which can be used with the
suggested functional model, using multiple reference stations, for medium-range GPS
kinematic positioning, but which can also used with a single reference station for

short-range GPS kinematic positioning.

» A new method of constructing the multi-satellite ambiguity combination has been
suggested, which provides an easy way to obtain the LAMBDA transformation
matrix. A comparison of the current ambiguity resolution techniques in the original
ambiguity domain and the transformed ambiguity domain has been made, which will

be helpful for future research on ambiguity resolution techniques.

« Multipath characteristics in the frequency domain have been investigated, and a Finite

Impulse Response (FIR) filter suggested for extracting and eliminating multipath.
» Formulae for ionospheric delay interpolation from an ionosphere single layer to the

ground Gauss plane coordinate system have been derived. This will sigmficantly

reduce computation effort, and can be used for other applications.
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Chapter 2

A STUDY OF
AMBIGUITY RESOLUTION TECHNIQUES

2.1 Introduction

Ambiguity resolution is the mathematical process of converting ambiguous ranges
(integrated carrier phase) to unambiguous ranges of millimetre measurement precision
(Rizos, 1996).

It is very difficult, if not impossible, to determine integer ambiguity for one-way data
because it is indistinguishable from other, non-integer, biases such as satellite orbit
uncertainties, multipath and atmospheric refraction (ionosphere and troposphere), and is
in fact “contaminated” by them. Thus, ambiguity resolution, as it is generally known, is
only possible after all biases are eliminated or otherwise accounted for to better than half

a cycle of the carrier phase wavelength.
2.1.1 Double-Differenced Carrier Phase Observations

The commonly used method to eliminate non-integer biases is by double-differencing
data between satellites and between receivers. The double-differenced observation
equation can be derived from equation (1-4):

AV = AVp+AVdp+A-AVN-AVd, +AVd,  +AVd? +&,q, (2-1)

trop
where AV is the double-differencing operator. From the equation above it is obvious
that the satellite clock bias and receiver clock bias have been eliminated. Furthermore,
the other biases (orbit bias, ionospheric delay and tropospheric delay,
AVdp — AVd,,, + AVd,, ) will be reduced, but the degree to which this occurs is

20



Chapter 2 A Study of Ambiguity Resolution Techniques

dependent on the distance between the two receivers, and normally the total magnitude
of these biases will be less than half a wavelength if the separation between receivers is
less than 15km. The double- differencing operator cannot reduce the multipath effect,
and most probably increases it compared with the one-way observation. The noise
standard deviation of the double-differenced observation will be twice that of the one-
way observation. The double-differenced ambiguity remains an integer, and can be

determined in some way.

The non-differenced method (¢.g. Goad, 1985) or centralized method (Shi & Han, 1992)
use carrier phase observations in the non-differenced mode, but define the ambiguities in
the double-differenced form in order to make use of their integer characteristic. The

equivalence of the methods has been proven in Han (1991).

Although the initial integer ambiguity is unknown, the GPS receiver can keep track of
the changes to the carrier phase from one epoch to the next if the signal is tracked
continuously. Therefore, the integer ambiguity should be the same over a session of
tracking if the receiver is locked onto the signal. The triple-differenced observation
method implements a differencing operator between epochs, on the double-differenced

carrier phase, and results in the integer ambiguity term being eliminated.
2.1.2 Geometric Constraints

An ambiguity resolution procedure should make use of all possible constraints provided
by the observations. The main geometric constraints can be categorised as follows (Han
& Rizos, 1996g):

Integer Constraint: In theory, the initial ambiguities of the carrier phase observations on
L1 and L2 should be integers, and this constraint will play a significant role in the
ambiguity resolution process of fixing the ambiguities to known values. In practice many
sources of systematic error will bias the observations. If the biases cannot be reduced to
a level that is insignificant, relative to the wavelengths of the L1 and L2 carrier phase, the

ambiguities cannot be fixed reliably to the correct integer values.

Short-Range Constraini:  The ionospheric delay, tropospheric delay and orbital biases
can be neglected in double-differenced carrier phase observations as far as the ambiguity

resolution process is concerned. This constraint will make the observation equation
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Chapter 2 A Study of Ambiguity Resolution Techniques

much simpler than in the long-range case, and ambiguity resolution will therefore be

much easier.

L1 and L2 Carrier Phase Constraint: If the ionospheric delay, multipath and
observation noise can be neglected, the L1 and 1.2 carrier phase observations and the
pseudo-range observations are subject to the same bias effects. This constraint has the
effect of resulting in a set of dual-frequency observations with only half the number of
ambiguities. If the ionospheric delay, multipath and observation noise cannot be
neglected, the L1 and L2 carrier phase have very strong correlations, and this correlation
may be useful for ambiguity resolution (Frei & Beutler, 1990). The use of this constraint
can be applied through the least squares system directly, through linear combinations of
dual-frequency carrier phase observations outside of the least squares adjustment system,
or via a LAMBDA transformation within the least squares system (Teunissen, 1996a;
1996b).

Instantaneous Satellite Geometry Constraint: The instantaneous satellite geometry has
generally been measured by such factors as GDOP, PDOP, etc. These measures were
first suggested for point positioning using pseudo-range data. If the reference receiver
has known coordinates in the WGS-84 datum, these measures will also be suitable for
describing the quality of the instantaneous satellite geometry in the case of relative
positioning, as well as for carrier phase observations if the integer ambiguities are
determined (or "resolved"). In the case of the ambiguity resolution process itself, these
measures will reflect the geometric condition in a different way depending upon the

ambiguity resolution technique being used.

Satellite Change Geometry Constraint: 1f all the satellite positions were not to change,
the integer ambiguity resolution process, using carrier phase observations alone, will be
impossible to carry out unless very accurate a priori receiver and satellite coordinates are
available (typically, better than 5cm). Fortunately, the satellite positions change with
time and the Doppler observations can be characterised by the difference in the distances
from receiver to the satellite between epochs. This information can be used for
positioning, as in the case of the Transit Doppler System, as well as for the ambiguity
resolution process. This constraint will become stronger if longer spans of data are
available. BDOP1 defined in Merminod (1990} is one such indicator of satellite change
geometry.
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Chapter 2 A Study of Ambiguity Resolution Techniques

2.2 Ambiguity Resolution Techniques

The simplest procedures to account for the ambiguities are to either use triple-
differenced observations to remove the ambiguity terms from the observation equation,
or to process the double-differenced phase observations with the ambiguities as real-
valued estimable parameters (the solution is often referred to as an "ambiguity-free" or
"bias-float" solution). Due to the application of only the satellite change geomeiry
constraint in these two procedures, the potential accuracy of the carrier phase
observations is not fully exploited. The earliest method used to determine the integer
ambiguities required the estimated real-valued ambiguities to be "rounded-off* to the
nearest integer, but was attempted only if the real-valued ambiguity estimates were
precise enough. Typically this required an observation span of at least 0.5 to 1 hour for
short baselines (less than 15km), which resulted in GPS high precision positioning being
relatively inefficient for most applications, apart from the establishment of first order
geodetic control networks. To overcome this inefficiency different AR techniques have
been developed over the last decade. Generally speaking, the following classes of AR
techniques can be identified, with the exception of the aforementioned triple-differenced

solution or double-differenced float solution:

» AR through the use special operational modes, such as antenna swap initialisation,
re-occupation and "stop & go" procedures.

» AR using the pseudo-range data directly, in which use is made of linear
combinations of L1 and L2 carrier phase (with longer wavelength), and linear
combinations of L1 and 1.2 P-code pseudo-ranges (with lower noise).

» AR through a search in the "Coordinate Domain", such as in the case of the
Ambiguity Function Method.

* AR through a search in the "Estimated Ambiguity Domain", by first estimating the
ambiguities as real-valued parameters, and then determining the likeliest integer

ambiguities through an integer least squares estimation process.

Each of these classes of AR techniques are briefly discussed in the following sub-

sections.

23



Chapter 2 A Study of Ambiguity Resolution Techniques

2.2.1 Operational Mode

Antenna Swap: The "antenna swap" or "antenna exchange" technique is performed as
follows. Place GPS Antenna 1 on Mark A and GPS Antenna 2 on Mark B, several
metres apart. When tracking is acquired on at least four satellites (five or more are
recommended) move Antenna 1 to Mark B and Antenna 2 to Mark A, taking care that
there is no loss of carrier phase tracking (ie., no cycle slips). One can, within seconds,
measure the vector between the two unknown points to an accuracy of a couple of
millimetres. In this way, the integer ambiguity can be effectively eliminated from the
observation equation. This procedure uses the instantaneous satellite geomeltry
constraint and the short-range constraint. Tt is not necessary to use the infeger
constraint, L1 & L2 carrier phase constraint or the satellite change geometry
constraint. GPS receiver types 1-4 are suitable for this operation (Table 1-1). Due to
the constraint of requiring the maintenance of satellite signal lock during the exchange of
antennas, this technique is mostly used for static ambiguity initialisation for "stop & go"

and kinematic surveys (Remondi, 1988).

Stop & Go: If a GPS receiver can maintain lock on the satellite signal, the integer
ambiguity does not change, even while the antenna is moving. If the integer ambiguity
has been determined at a site, the integer ambiguity will be same at any other site, as long
as satellite signal lock has been maintained. The integer ambiguity at the first site can be
determined using the antenna swap technique, or any other AR method. The infeger
constraint, instantaneous satellite geometry constraint and the short-range constraint
are used in this procedure. It is not necessary to use the LI & L2 carrier phase
constraint or the satellite change geometry consitraint. GPS receiver types 1-4 are
suitable for this operation {Table 1-1). This technique is efficient for GPS surveys if lock
on the satellite signal is easy to maintain during the surveying. The trajectory of the
antenna is also determined to a high accuracy if used in the kinematic positioning mode
(Ibid, 1988).

Re-occupation: Reliable real-valued ambiguity estimation requires about one hour of
observations. The reason for this has been known for many years: what is important is
that the receiver-satellite geometry changes, not because of the need to suppress the
observation noise. So the question naturally arose: "Can anything be done while we are
waiting for the receiver-satellite geometry to change?" and "Can we visit other nearby

survey marks while we are waiting for the geometry to change?". The answer to both
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questions is "YES", and this mode is now referred to as re-occupation or "pseudo-
kinematic". This mode requires that each baseline should be occupied at least twice and
the interval between occupations should be of the order of a half to one hour (Ibid,
1988). The integer, short-range and satellite change geometry constraints will be most
important for ambiguity resolution. It is not necessary to use the LI & L2 carrier phase
or the instantaneous satellite geometry constraints. GPS receiver types 1-4 are suitable
for this operation (Table 1-1). The operation is normally applied for post-processed,

short-range, static positioning.
2.2.2 Search in the Observation Domain

The ambiguities can be determined using pseudo-range and carrier phase data directly.
Unfortunately the accuracy of the C/A or P-code pseudo-ranges is not good enough, on
their own, to determine the integer ambiguities because the wavelength of the carrier
phase observable is only 19.03¢m for L1 and 24.42cm for L2. Therefore, integer linear
combinations of the L1 and L2 observations which have a relatively long wavelength,
low noise behaviour and a reasonably small ionospheric delay, such as the "widelane"
($, —b,, with wavelength 0.86m), "narrowlane” (¢, +¢,, with wavelength 0.11m) or
"extra-widelane" (—3-¢, +4-¢,, with wavelength 1.63m), and the longest wavelength
combination (—7- ¢, +9-¢,, with wavelength 14.65m), are used. If the baseline is short
enough, the differential ionospheric delay can be ignored and the P-code pseudo-ranges
can be used to determine the initial integer ambiguity of the combined observable, and
then used to decouple the integer ambiguity of L1 and 1.2 carrier phase. Some useful
linear combination observables are listed in Table 2-1 (Han & Rizos, 1996b). f and A

are frequency and wavelength of the carrier phase combination i-¢; +j-¢,; o;, o,

o are the ratio values of the ionospheric delay, noise in cycle and noise in metres, of

the carrier phase combination with respect to the L1 carrier phase observation,

respectively.

For the many applications, the baseline is not short enough to neglect the differential

ionospheric delay and the ionosphere-free combination has been used (Blewitt, 1989):

f, - f, (AVRl AVRZJ

AVN,_ =A - -
1,-1 Vd)l Avd)Z fl +f2 xl + A“Z

(2-2)
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where AV is the double-differencing operator; ¢,, ¢,, R;, R, and N, _, are the L1 and
L2 carrier phase, L1 and L2 pseudo-ranges, and the widelane integer ambiguity,
respectively. This technique uses the integer constraint, the L1 & L2 constraint and
requires precise pseudo-range observations on I.1 and L2. GPS receiver type 1 is
required (Table 1-1). This technique can be used for widelane ambiguity determination
in the post-processed, long-range, static positioning case. ~ The ionosphere-free
combination will be used to determine a 10.7cm wavelength integer ambiguity, making
use of the instantaneous satellite geometry and the satellite change geomelry
constraints. This requires a relatively long observation session, perhaps two or three
hours. The orbit bias should be considered during data processing, or a precise
ephemeris may be used instead. The accuracy can reach the 0.01 ppm level, if the

observation time for each baseline is over several days.

Table 2-1. Characteristics of certain dual-frequency combinations
(full- & half-wavelength L2}

i| j | f(MHz) | *(m) o L2 full-wavelength | L2 half-wavelength

(14, OtL OL¢ OLL

0 157542 0.1903 1.0000 | 1.0000 1.0000 - -
1227.60 | 0.2442 1.6469 | 1.0000 1.2833 - -

2 245520 | 0.1221 1.6469 | 2.0000 1.2833 | 1.0000| 0.6417

771 -60 | 47651.34 | 0.0063 0.0000 | 97.6166 3.2273 | 82.6378 | 2.7321
Il -1 34782 | 08619 -1.2833| 14142 6.4056 - -

1 1} 2803.02| 0.1070 1.2833 | 14142 0.7948 - -

-1 2 879.78 | 0.3408 2.8054 | 22361 4.0041 | 14142 | 2.5324
21 -2 695.64 | 04310 -1.2833| 2.8284 6.4056 | 2.2361 5.0640

-3 4 184.14 | 1.6281| 18.2518| 5.0000| 427778 | 3.6056 | 30.8475

-7 9 2046 | 14.6526 | 350.3500 | 11.4018 | 877.9350 - -

2.2.3 Search in the Coordinate Domain

If the initial coordinate estimate is accurate enough, the integer ambiguity can be
computed using these initial coordinates. This means that if the initial coordinate is a

good approximate, the integer ambiguity can be determined using only one epoch, or
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perhaps a few epochs, of data. For some applications, such as a deformation survey, this
method is quite useful. After the integer ambiguity set is determined, the high precision

baseline can be estimated.

However, if the initial coordinate bias is a few decimetres, the integer ambiguity cannot
be determined using the coordinates directly. Alternatively, a search procedure in the
coordinate domain can be applied. The commonly used method is known as the
Ambiguity Function Method (AFM). The ambiguity function is defined as (Remondi,
1984):

m n

AFX) =22,

k=1 1=1

g

Y exp(T(80%, (09 - AL, (k. X))

1

(2-3)

where AdL (k) and Adl_(k,X) are the single-differenced carrier phase observables
between receivers and its computation value using the trial baseline vector X with
respect to satellite j, frequency | and epoch k. m,, is the number of single-differenced
carrier phase observations, while m and n are the number of epochs and frequencies,
respectively. Different trial baseline vector X results in a different ambiguity function
value. The search seeks to find the baseline vector X which causes the ambiguity
function value to be a maximum. It can be shown that the ambiguity function value is

not affected by the magnitude of the integer ambiguities and cycle slips (Ibid, 1984).

It is preferable to use the linear combination observables in Table 2-1 in the
implementation of the AFM (Han & Rizos, 1996b). All combination observables have
the same geometric configuration. They have the same distribution of AF maxima, and
the distance between these maxima are proportional to their wavelength. The distance
between these maxima depends on the satellite geometry, including the instantaneous
satellite geometry and satellite change geometry. If the GDOP is bigger for the same
number of satellites, the distance between these maxima will be larger, but the
positioning accuracy will be lower. This technique uses all the constraints, but the
satellite geometry constraint is applied in only a weak form because only the fraction of
the carrier phase observation is used, not the integer cycle part incremented between
epochs., The advantage is that this technique is insensitive to the size of the integer
ambiguities or the presence of cycle slips. However, the disadvantage is that the satellite

geometry constraint is weak. GPS receiver types 1-4 are suitable for this technique
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(Table 1-1). The most common application is for post-processed, short-range, static

positioning, or other applications in a modified form.
2.2.4 Search in the Estimated Ambiguity Domain

There are two steps within the search procedure. The first step is to obtain the "float”
solution, where the ambiguities are obtained from a least squares estimation process: the

real-valued ambiguity estimate X, and its co-factor matrix Qg - The second step is to

search for the integer ambiguity set which satisfies the following relation:
N T 1 .
Ry = (Xy -Ny) Q. (Xy — N, )= min (2-4)

The derivation of the above relation, and also the validation criteria derived from it, is

presented in Section 2.3.

Several fast ambiguity search methods have been suggested based on the above relation.
On the other hand, the transformed form of the integer ambiguities has been introduced
in order to reduce the computation, in the so-called Least-squares AMBiguity
Decorrelation Adjustment (LAMBDA) method. This will be discussed further in Section
2.4.

This technique uses all the constraints for short-range applications. This technique can
also be used for long-range applications, but the short-range constraint cannot be
applied. GPS receiver types 1-4 are suitable for this technique (Table 1-1). The
applications of this technique cover almost all applications of GPS precise positioning,
including attitude determination (which has some special constraints due to the fixed
configuration of the GPS antenna array). However, ambiguity resolution for long-range

kinematic positioning is very difficult using this technique.
2.3 Integer Least Squares Estimation

Integer least squares estimation includes both least squares estimation with integer

conditions, and the validation and rejection criteria.
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2.3.1 Least Squares Estimation with Integer Constraints

Linearization of the double-differenced carrier phase observations leads to the following

system of equations:

V=AX-L (2-5a)
where

A=[A. A] (2-5b)
s

and the weight matrix of the observations P with respect to the unit weight variance
factor . The integer least squares criteria for solving this linearized system of

observation equations are:

VPV = min (2-6a)
X, eR* (2-6b)
X, eZ" (2-6¢)

where X.. is the t x 1 real-valued parameter vector which includes coordinate parameters
(and any other real-valued parameter that may be estimated); X is the m x 1 integer-

valued parameter vector; L is the n x1 residual vector between the double-differenced
carrier phase and/or pseudo-range observations and their computed value vectors; R'

refers to t-dimensional real space and Z™ refers to m-dimensional integer space.

The above integer least squares problem may be solved in two steps. The first step

consists of solving the problem with R™ replacing Z™ using the traditional least squares
theory. That is (Cross, 1983, 1996; Harvey, 1995):
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X=(ATPA) TATPL (2-7)
Tp a1 %o ez

Q, = (ATPA) - {Qm; Q;Nﬂ (2-8)

Q=V, PV, (2-9)

my = ﬁ (2-10)

In this step, the accuracy estimation is always over-optimistic. In order to obtain more
reliable accuracy estimations, the observation correlations between epochs should be
considered (El-Rabbany, 1994), or the standardization procedure for the co-factor matrix
and a posteriori unit weight variance factor should be used (Han & Rizos, 1995c). On
the other hand, the following test should be employed in order to check the fidelity of the
stochastic and functional models.

The null hypothesis H, and the alternative hypothesis H, are:

H, m? =0} (2-11a)
H;:m} o} (2-11b)
and the corresponding test statistic is:

Q (@-t-m-mg

e 2-12
G @-12)
The rejection regions of H, are:
(n—t—m)-m?
2 ) = g 2 J1—o/2 (2"133')

[9) 0 An-t-m
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o2 < E"xi_t_m w2 (2-13b)
where axﬂ ., and &x,” o are the lower and upper boundary of the 1-«

confidence interval for the 7’ -distribution statistic with n-t-m degrees of freedom.

If the a posteriori unit weight variance factor is rejected by equation (2-13a), a check
should be made for outliers in the observations, such as cycle slips, multipath, system
biases (eg., the ionospheric or tropospheric delay effects not eliminated in double-
differencing), or the a priori standard deviations of the observations do not reflect the
accuracies of these observations. If the a posteriori unit weight variance factor is
rejected by equation (2-13b), a check should be made as to whether there are too many
parameters (eg., the ionospheric or tropospheric delay parameters are included in the
functional model, even though the ionospheric/tropospheric delay effects are
insignificant), or the a priori standard deviations of the observations do not reflect the

accuracies of these observations.

The second step requires a constraint to be added:
Xy =N, (2-14)

where N, is an integer vector. The results can then be obtained as follows:

5Zc,k =Xe - QXCXN Q;N (XN B Nk) (2-15)
Qu, = Q. Qs %, Qs 2-16)
V. PV, =Q+R, (2-17)
where

R, =Xy -N) QF (Xy -N,) (2-18)

and the standard deviation m,, can be represented as:

VTPV,
m,, = ﬁ (2-19)
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The equivalent relations can be obtained:

VPV, = min (2-20)

~

(Xy - Ny) Q¢ (Xy ~Ny) = min (2-21)

For a different integer set N,, a different value of R,, and associated V,/PV, and m,, will
be obtained. Then the optimal integer set, which satisfies the following validation and

rejection criteria, should be searched for.
2.3.2 Validation and Rejection Criteria

The correct integer vector N, in the constraint equation (2-14) should satisfy the

following conditions:
N, should be within the confidence region of X N
This condition for the integer vector N, can be expressed as:

(% -NYTQE Ry Ny

: (2-22)
m- mo

F,

m,n—t—m;l_a

where £¢ ., is the one-tailed boundary of the 1-a confidence interval for the

Fisher's distribution statistic with m and n-t-m degrees of freedom.

This condition, for each element (n;), (i=1,2, ..., m) in the integer vector Ny, can be

represented as:

(2-23)

and m,-QY? are the i-th element of the vector X, and its standard

Xn

where X,
1

deviation; (ni)k 1s the i-th element of the integer vector N ; i=1,2,... m; €, a 1s
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the one-tailed boundary of the 1-o confidence interval for the Student's distribution

statistic with n-t-m degrees of freedom.

This condition, for a linear combination f((nl)k,---,(nm)k) of the elements in the

integer vector N, , can be represented as:

o ) 00

<
av? =6t mla
m, - Qf

(2-24)

where m, - Q}? is the standard deviation of the linear combination f ()En1 R f(nm) :

X c,x Should be within the confidence region of X,

This condition for the vector Xc,k can be expressed as (Frei & Beutler, 1990):

t- m?. = E'Ft,n—t—m;l_[’" (2-25)
0
and for each element in the vector can be represented as:
(%), (%)
i/c i/ck
= gtn_t_m;l—cc (2_26)

1/2
Mg 'Q(ii)c

where(:&i)C and m, -ng_)c are the i-th element of the vector }A(C and its standard

deviation; (il) oy 18 the i-th element of the vector ic,k; i=1,2,..,t &g 4o 18 the

one-tailed boundary of the 1 — o confidence interval for the Fisher's distribution statistic

with t and n-t-m degrees of freedom.,

m}, should be compatible with '}

This condition can be expressed as:
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(n—t)-mg
E“xift;afi = o2 < gxﬁ_t;l—mz (2-27)
0

and & , are the lower and upper boundary of the 1- o

where gxﬁ-t;mﬂ An-t3l-o/2

confidence interval for the %> -distribution statistic with n-t degrees of freedom.
If mj, is rejected, the corresponding integer vector will be rejected.

R, = min in order to obtain V] PV, = min

All integer vectors which are consistent with the above conditions should be selected as

integer vector candidates and the two integer vectors which make R, a minimum and

the second minimum should be found.

Contrast test between sec( R, ) and min( R;)

All other candidates, especially the second smallest sec(R, ), should be significantly
larger than the min(R, ) to ensure that a reliable unique result can be obtained. This

condition can be expressed as the test:

2
secLim
,(—02“) >F (2-28)
min(mg, )

where F is an empirical value. Frei & Beutler (1990) assume that the ratio value 1s a F-
distribution statistic, and F can be chosen as the boundary of the 1—a confidence
interval for the Fisher's distribution statistic with degrees of freedom n-t and n-t. Landau
& Euler (1992) suggest 2 as the critical value.

Several search procedures based on all or some of the abovementioned validation and

rejection criteria have been developed in the past few years. The next section will

discuss these techniques and make some comparisons.
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2.4 Fast Integer Ambiguity Search Techniques
2.4.1 Fast Integer Search in the Original Ambiguity Domain

The ambiguity search problem has been investigated over the past decade. The earliest
and simplest method is to round off the real-valued ambiguities to the nearest integer. A
long observation session is normally required in order to ensure that even one integer is

in the confidence region of the real-valued ambiguities.

Trei & Beutler (1990) suggested the Fast Ambiguity Resolution Approach (FARA),
which uses equation (2-23) to define the initial search region and then reduce the number
of candidate sets by making use of the correlations through all combinations of the
difference between two ambiguities and the relations between two ambiguities on L1 and
1.2 to create the candidates (equation (2-24)). The linear functions in equation (2-24)
are selected as:

ERy R, ) = Ry — (2-29)

m

for any combinations of i=1,2,... m-1 and j=i+1,...,m and

£Ry o Ry )= Ry —o2-R (2-30)

Ny n; k l‘lj
1

for dual-frequency observations, where %, and %, are the real-valued ambiguities for

L1 and L2 carrier phase observations for the same pair of satellites.

The tests of equations (2-26), (2-27) and (2-28) can be used to determine the final

unique solution from the candidate sets.

Hatch (1990) has suggested the Least Squares Ambiguity Search Technique (I.SAST),
which makes use of the fact that four satellites are sufficient for positioning and for
determining the other satellites' ambiguities if the three double-differenced ambiguities
for these four satellites have been resolved. This technique separates the satellites into

two groups. The first or primary group consists of a set of four satellites which are used
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to generate a set of potential solutions that lie within some uncertainty region. After one
set of three ambiguities is fixed, the remaining ambiguities can be estimated (real-values)

and then rounded to the nearest integer to form the ambiguity candidate sets.

Euler & Landau (1992) have suggested Cholesky decomposition of the Q;(IN matrix (the

computation of R, will be very efficient) and then form the vector which derives R, by

squaring and adding the vector elements. The rejection can be performed for some
integer combinations at a very early computation state when the partly summed squaring
elements exceed a previously found second minimum. The candidates are constructed

using equation (2-23). The ratio test will be employed to determine the final solution,

Chen (1993) and Chen & Lachapelle (1994, 1995) have suggested the Fast Ambiguity
Search Filter (FASF), which uses a Kalman filter and a recursive computation of the
search range for the ambiguities (RCSR). The concept of RCSR is described as follows.

Assuming the ambiguity series is n,,n,,--+,n_, the search range of the ambiguities is
computed from n, to n,_. The search range of the possible integers for ambiguity
parameter n; are computed for each specific integer set of the ambiguities on the left of
n;, ie., n,,n,,---,n, ;, which is treated as being known, while n;,n; ,---n are the

estimated parameters. The search range for n; can be expressed as:

~

X /nyny,ni “ni| 5§tfi;1~a/2 "My -4

(2-31)

where mg - 4/q; is the standard deviation of X, /, , ...  for thefixed nj,n,,«,n;;

~

X, /ny,ny,--n;, 15 the float estimation of n; corresponding to a specific integer set for

ny,N,, =, N_; &tfi;l_a has the same meaning as in equation (2-23) but with £ degrees

of freedom.

Teunissen (1994) has suggested the LDL' decomposition method to search the
transformed ambiguities (now generally referred to as the LAMBDA method). But it can

be used to search the original ambiguities as well. Q)-(N can be decomposed as:
_ T
Qg =LDL (2-32)
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where
1 0 _
_Lml Lm2 Lm3 1_
D = diag(q,,9;,, ) (2-34)

can be represented as follows, for i>1:

n

X, isnot changed and %

n; /0,0y, 0,0

i-1
ini/nl,nz,--v,ni T Ani _Z[Lg (inj/n],nz,--‘,nj_l 7nj)] (2_35)
1

Equations (2-32 to 2-35) define the other computation method of X, /, o ... 2nd q;
for the FASF method. The following relation should hold from equation {2-22):

R 2
Z (Xﬂi’,“lvnzs"',niq _ni) < mmg 'E.'F (2-36)
i=1

q i m,n—t—m;l"a

The search region is defined as:

( 2

i-1 )'& —n.

" 2 ﬂj/ﬂbnz,'“sﬂj—l J)

Xﬂi/nlsnzf“,niq _ni < m-mo -t:'men_t_m;I_a — Z qJ (2'37)

Fl1

2.4.2 Fast Integer Search in the Transformed Ambiguity Domain

The abovementioned search procedures are directly or indirectly dependent on the
diagonal elements of the variance-covariance matrix obtained from the real-valued
ambiguity estimation. If the mvertible integer transformation matrix can be obtained and
the diagonal elements of the variance-covariance matrix of the transformed integer
parameters are much smaller than the original ones, the search methods will become

37



Chapter 2 A Study of Ambiguity Resolution Techmques

much more efficient. This idea was first suggested by Teunissen (1994) as the Least-
squares AMBiguity Decorrelation Adjustment (LAMBDA) method, which uses an

ambiguity transformation matrix Z that reformulates the original ambiguity vector )A(N

into the transformed ambiguity vector Z,, , whose variance-covariance matrix has much

smaller diagonal elements:
Zy=Z-X, (2-38)
Q;, =2ZQ4 Z" (2-39)
and equation (2-18) can be rewritten as:

~ T i {=
R, =(Zy ~NE) QF (2y -NF) (2-40)

The original ambiguity estimation problem has therefore been changed. The new problem
is to search N for an integer set that makes R, =min, and passes the validation and

rejection criteria tests.

In order to ensure that the transformed ambiguity has integer characteristics, the
transformation matrix Z has to have integer elements. In order to ensure that the original
ambiguity can be determined from the transformed ambiguity, the inverse of the
transformation matrix also has to have integer elements. Therefore, matrix Z is an
admissible ambiguity transformation if and only if matrix Z has integer elements and its

determinant equals +1 (Ibid, 1994). The original ambiguities are transformed:
N, =Z7'.N¢ (2-41)

The key to the LAMBDA method is to find the admissible ambiguity transformation
which makes Q 5 have almost the same diagonal values and det[diag(QzN )} as small

as possible, and then search the optimal integer solution.
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The number of integer ambiguity candidate sets is dependent on the variance-covariance

matrix, especially the determinant of the diagonal matrix of the variance-covariance
matrix of the real-valued ambiguity estimates, det[diag(RgN )} The transformation

matrix, which has integer elements and determinant equal to +1, should make the
diagonal elements as small as possible. In order to quantify the extent of the

decorrelation, the correlation matrix and decorrelation number are introduced.

The correlation matrix for the co-factor matrix Q, is defined as:
N

-1/2

v, oo ] o, fondos ]

and its determinant is defined as the decorrelation number (Ibid, 1994):

Ty =1 /det(R}n(N ) (2-43)

Due to the fact that Q>”<N and Q 2, have the same determinant, the following relation

can be obtained:

rzzN -det[diag(Q I )] = r}%N -det[diag(Qf(N )] = const. (2-44)
In order to make det[diag(Q 2 )] as small as possible, Iy should be made as large as
possible.

This can be easily achieved using the following procedure to compute the integer

transformation matrix Z, which is used to construct multi-satellite ambiguity combination
(Han & Rizos, 1995b).

The first step is the unit upper triangular factorization (UDUT) for QRN ;

Qy, =UDy, Uy (2-45)
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and compute the integer matrix Zy :

-1
Zy, = [mt(U,)] (2-46)
where Int is an operator to round all elements in U, to the nearest integer, and then

Q; =Zy Q)A(Nz{]l (2-47)

Zyu,

The second step is the unit lower triangular factorization (LDLT) for Q B
U1

=L,D, L] (2-48)

Znuy

and compute the integer matrix Z,

-1
2y, =[mi(L,)| (2-49)
and
_ T
P, = Zy, sz,ul ZLl (2-50)

An iterative procedure is used for the first and second steps to create Zy from

Q;, . (or Qg wheni=l)and Z, from Q,  untilboth integer matrices Int(U,)
»Liog ! A

and Int(L,) become unit matrices. The integer transformation matrix can be obtained

using the following relation:

.Z:ZL].(_l -ZUk—I "'ZL 'ZUI (2"51)

1
Z can be used to transform the original ambiguities to the transformed ambiguities and to
cause the variance-covariance matrix to have a large decorrelation number in order to
carry out the search in an efficient way. The suggested procedure therefore provides an

easy way to implement the LAMBDA approach.
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Four examples are given in Table 2-2 to compare the original variance-covariance

(VCV) matrix and the transformed VCV matrix. €5 and e, are the ratios of the

length of the largest principal axis with respect to the length of the smallest principal axis
of the confidence ellipsoids for the original VCV matrix and the transformed VCV

matrix, respectively, min(c¢ ) and max(cy ) are the minimum and maximum values
N N
of the standard deviations of the original ambiguity estimates; min(c 7 ) and max(cszN)

are the mmnimum and maximum values of the standard dewviations of the transformed
ambiguities. Comparing the original and transformed ellipsoid it is obvious that the
transformed ellipsoid is much more like a sphere, the decorrelation number is much
larger and the maximum value of the standard deviation of the transformed ambiguities is
much smaller. The transformation time is from a few milliseconds to a few tens of
milliseconds using a 486 DX4-100MHz PC. Note that the variance-covariance matrices
in the examples have been standardized using the procedure suggested by Han & Rizos
(1995¢).

Table 2-2. Comparison of the original VCV matrix and
the transformed VCV matrix

Original VCV Matrix Transformed VCV Matrix Time
e 2 Il‘liI(G}n{N) max(cr)—(n) T €. m'l{czw) HEX(UZN) (ms)

Ex1|526x10™|2069.1 | 5.88 14.11 033 [3.86 | 0.18 0.26 58.8
Ex2 | 1.14x107 | 468 .54 | 0.88 2.39 029 1392 10.08 0.12 325
Ex3 [ 6.99x107 | 29364 [2.02 21.93 0.80 | 3.65 | 0.26 0.81 11.5
Ex4 [ 216x107° | 448.19 | 0.04 3.65 0.72 | 3.08 | 0.12 0.31 93

Example 1: Dual-frequency phase data, 5 satellites, 30 sec session with 1 sec data rate.
Example 2: Dual-frequency phase data, 5 satellites, 4 min session with 1 sec data rate.
Example 3: Single frequency phase data, 6 satellites, 1 min session with 1 sec data rate.

Example 4: Single frequency phase data, 6 satellites, 5 min session with 1 sec data rate.

2.4.3 Comparison of the Different Search Techniques

All fast search approaches are just different mathematical procedures to find the integer

ambiguity set which makes R, minimum. They do not change the reliability of
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ambiguity resolution. The only criterium that can be used to compare these techniques is
the computation speed. Therefore, two tests have been carried out using all the
suggested AR search techniques, and the results are listed in Table 2-3 for a single
frequency experiment, and in Table 2-4 for a dual-frequency experiment. For each test,
the AR search techniques have been employed to search the original integer ambiguities
directly, and to then search the transformed integer ambiguities. The computation times
are listed in the column “Time” in Table 2-3 and Table 2-4. The “Number of
Candidates” refers to the number of integer ambiguity sets are considered, from which

the minimum R, and second minimum R are selected. Although the Fortran

software was developed by this author (not the original authors), the implementations are

as faithful as possible to the original authors’ ideas.

Table 2-3. Test 1: Comparison of the different methods for searching the original

ambiguities and for searching the transformed ambiguities

Searching the Onginal Searching the Transformed
Search Ambiguities Ambiguities
Methods | Number of | Time (sec) | Number of | Time (ms)
Candidates Candidates

FARA 24095934 1195.46 1051 35.37
LSAST 83720 2.91 N/A N/A
Cholesky 6.85 x10° 341 2250 4.23
FASF 24637 1.15 1906 60.20
LT 978 1.54 977 49.76

Note: Single frequency phase data from 6 satellites, 1 minute session and 1 second data
rate are used. The variance-covariance matrix has been standardized using the
Han & Rizos (1995¢) procedure. The confidence level is selected as 0.997. The

volume of the ellipsoid determined by equation (2-22) is 987.44 cycle>. The
search time for the transformed ambiguities does not include the transformation
time. A 486 DX4-100MHz PC running Fortran code written by this author (not

the original authors) has been used.
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Table 2-4. Test 2: Comparison of the different methods for searching the original
ambiguities and for searching the transformed ambiguities

Searching the Original Searching the Transformed
Search Ambiguities Ambiguities

Methods Number of Time Number of | Time (ms)

Candidates (sec) Candidates
FARA 788 2.08 88 9.45
LSAST 370175 28.29 N/A N/A
Cholesky 5.55x10" 522 1296 8.68
FASF 85227 7.80 624 4498
1DLT 10 0.27 10 434

Note: Dual-frequency phase data from 5 satellites, 30 second session and 1 second data
rate are used. The variance-covariance matrix has been standardized using the
Han & Rizos (1995¢) procedure. The confidence level is selected as 0.997. The

volume of the ellipsoid determined by equation (2-22) is 10.573 cycle®. The
search time for the transformed ambiguities does not include the transformation
time. A 486 DX4-100MHz PC running Fortran code written by this author (not

the original authors) has been used.

For the LSAST method, if three transformed ambiguities are fixed, the other transformed
ambiguities, in general, cannot be rounded to the nearest integer. Therefore, the LSAST

method is not used to search the transformed ambiguities.

The performance characteristics are quite different for these two tests. Although the
FARA method is not efficient for single frequency data, it is comparatively efficient for
use with dual-frequency data, and is implemented within the SKI commercial GPS
software. The LSAST and FASF methods are quite good for single frequency data. The
Cholesky decomposition method has been significantly improved by searching the

transformed ambiguities, and appears to be one of the best methods when combined with

the LAMBDA transformation procedure. Although the LDLT decomposition search

method is suggested for searching the transformed ambiguities (Teunissen, 1994), it is
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also one of the most efficient methods to search the original ambiguities, especially in

cases of a huge search region.

Using the suggested method for constructing the multi-satellite ambiguity combinations
and searching the transformed ambiguities, search methods such as FARA, Cholesky,
FASF and LDL” will be significantly improved.

2.5 Stochastic Model Effects on Ambiguity Resolution Techniques

The reliability of ambiguity resolution is mainly affected by unaccounted for biases. If
the biases have not been reduced to a small enough level, or the stochastic model does
not reflect the error (statistical) characteristics, the estimation results will be biased and
therefore lead to the wrong integer ambiguity set being identified (based on the minimum
quadratic form of the residuals). Multipath and ionospheric effects are the main sources
of these biases, and it is difficult to model them, or correct for them. These biases can be

accounted for in the stochastic model.
2.5.1 Spatial Observation Correlation

Least squares estimation requires that the correct functional and stochastic models are
specified. The biases in the observations can, in principle, be modelled in the functional
model as parameters. Due to the range of complex biases in GPS observations it is often
too difficult to incorporate them within the functional model. An alternative is to
account for the biases within the stochastic model. If biases affect the GPS observations,
a larger standard deviation can be specified for the observations. This procedure will
make least squares estimation more reliable. The stochastic model for one-way GPS
observations has been investigated by Jin (1995). However, the stochastic model here
not only reflects the stochastic characteristics of the observation noise, but also the
residual biases due to atmospheric delay and orbit error that remain after double-
differencing the data. This will make stochastic model estimation more difficult, and
dependent on the baseline length and antenna environments. The definition of a real-time
stochastic model with an adaptive improvement feature is an important innovation, and a

detailed description is given in Chapter 4.
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On the other hand, the variance-covariance-components of the double-differenced
observations can be estimated directly using the previous segment of data. The elements
of the symmetric variance-covariance matrix of the double-differenced observations can
be considered to be the same within a segment (of a few minutes in length), and
estimated using the variance-covariance-component estimation method. The estimated
variance-covariance matrix can then be applied to the current epoch (Han & Rizos,
1996f).

2.,5.2 Temporal Observation Correlation

From an analysis of the biases in GPS carrier phase observations it can be seen that the
carrier phase observations between epochs are correlated. The smaller the interval
between epochs (i.e., the higher the data rate), the stronger the correlation. Not
accounting for this correlation, known as temporal physical correlation, usually leads to
an over-optimistic estimate of the accuracy of the baseline results (Cross & Roberts,
1992). Hence, in order to obtain realistic results it is necessary to consider the between-
epoch correlations in all cases (with exception of instantaneous ambiguity resolution).
El-Rabbany (1994) has studied the temporal physical correlation in time and concludes
that an exponential function of time is the best approximation for the covariance function
for the GPS carrier phase errors, in the least squares sense. Roberts & Cross (1993)
investigated DGPS temporal correlation and account for the effects within a Kalman
filter. Although these procedures for accounting for the unmodelled biases yields a fully
populated vartance covariance (VCV) matrix for the GPS double-differenced carrier
phase observations, Han & Rizos (1995¢) have derived a simple technique to account for
this correlation by scaling the co-factor matrix (which neglects the correlations) and re-
computing the unit variance factor (using the residuals, obtained from neglecting the
correlations). This method has been successfully used for GPS network adjustment and
baseline outlier detection (Han & Rizos, 1995e; 1995f). Although the temporal
correlation will have a significant effect on the a posteriori VCV matrix, rather than on
the parameter estimation results, this will affect the size of the search region for
ambiguity resolution, and hence impact on the reliabilty of the ambiguity resolution

process.
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Chapter 3

ERROR ANALYSIS FOR
LONG-RANGE GPS KINEMATIC POSITIONING

3.1 Introduction

In equation (2-1), note that there are four bias terms (orbit bias, ionospheric delay,
tropospheric delay and multipath) remaining in the functional model after application of
the double-differencing operator. If the separation between receivers is small enough
(e.g. <15km) and there is no serious multipath effect, all of these biases can be neglected.
But the use of GPS kinematic positioning has been growing for precise marine and
airborne positioning applications, circumstances where the GPS reference receiver(s)
cannot be set up near the survey area. The distance from the fixed reference receiver(s)
to the roving receiver(s) may range from tens to many of hundreds of kilometres.
Although the pseudo-range-based systems such as the Wide Area Differential GPS
(WADGPS) or Wide Area Augmentation Systems (WAAS) are intended to deliver
accuracies at the few metre level, further bias mitigation will become a serious problem
for sub-decimetre accuracy long-range applications. In this chapter, error analysis and

error mitigation for long-range kinematic positioning will be studied.

3.2  Orbit Bias

The orbit bias is a baseline length dependent bias which must be reduced before
implementing any ambiguity resolution procedure for long-range positioning. There are
two ways to resolve orbit bias. One is to use precise satellite ephemerides, estimated to
be of 10 cm accuracy with 10 day delay, or 25 cm accuracy with 1 day delay (Neilan,
1996). This method is suitable for post-processed, long-range positioning. The other
way is to estimate the ephemeris bias using multiple reference stations and then correct
the effect of orbit bias on user receiver positioning, similar to the approach used in
WADGPS or WAAS. Colombo et al. (1995) propose a two-step Kalman filter
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procedure to reduce the effect of orbit bias. The first step is to estimate the orbit bias
using compressed observation data, and the second step is to hold fixed the corrected
ephemeris while estimating the roving receiver's trajectory on an epoch-by-epoch basis.
This method is difficult to implement in real-time. On the other hand, using multiple
reference station GPS data, the parameters of an appropriate error model which
describes the distance dependent errors, including orbit bias, can be estimated and then
disseminated to users in real-time (Wiibbena et al., 1996). Wu (1994) has suggested that
a linear combination of single-differenced observations between different reference
stations and the roving receiver can reduce the orbit bias. Han & Rizos (1996¢) have
proposed this method for reducing the effect of orbit bias for medium-range ambiguity
resolution. This section will give further details of this techniques

3.2.1 Effects of the Orbit Bias on Single-Differenced Observations

As first step it is necessary to derive the effect of an orbit bias on single-differenced
observations. Let's assume that a few reference stations (Ref;) have coordinates that

have been determined very precisely from standard post-processing, using the precise
ephemeris and appropriate geodetic software. In the case of a user receiver (U), the
single-differenced observation between the reference station (Ref,) and the user

receiver will be affected by any orbit bias. Assume that the orbit bias in the direction
from the GPS satellite to the user receiver is £ , and the other component in the plane (O)
that is perpendicular to the direction from the satellite (S) to the user receiver (U) is 7.
1 can be further partitioned into 7, in the direction of the section line between the two
perpendicular planes of RSU and O, and 7, in the direction perpendicular to 7, in the
plane {O). Figure 3-1 illustrates the geometric relations.

If the orbit bias is known, the computed range p with orbit bias can be represented by

the range without orbit bias p', which is represented as p+dp in equations (1-3) and (1-

4), and the orbit bias term can be represented as follows, from Figure 3-1:
dp=p'—p =g (3-1)
for the user receiver, and

dp; =p'j—p; = ‘E( -cosfi— |ﬁ1| -sin f3 (3-2)
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for the reference station Ref;. Considering the relation:

p'-sinf3= ’Af(i

-cosB (3-3)
the following relation can be derived:

-cosB (3-4)

dp, ~dp=—f1-cosp)-fa||a%

where p';, in the last term of the right hand of equation (3-4), has been approximated by
a constant p. Within a region of 100 km radius, the angle B should be less than 1/100

radian and therefore

’E‘-(l—cosﬁ)<5.0><10'5-|é| (3-5)

Hence a 20 m orbit bias in the direction from the satellite to the receiver will result in less
than a 1.0 mm bias from the first term on the right hand of equation (3-4), in the single-
differenced range between receivers separated less than 200 km. Therefore, this term
can be ignored. The maximum value that the second term can reach is 0.2 m, if the orbit
bias 1s 20 m and the baseline length 1s 200 km:

-20m-200km=0.2m

1. = 1
max(g ’T]l| {AXI d COS@J = m

For the second term, € is the angle between the two vectors 7, and AX;, and as 7, and
AX; are orthogonal:

1,2 N _ N o
—-|'nl|-|AXi|-cose:l-'n]-AXi:l-n-AXi (3-6)
P p P
and finally
1 _ o
dp; —dp=——-7-AX; (3-7)
P

The orbit bias effect on the single-differenced range is the product of the baseline vector
and the orbit bias component in the plane (O), orthogonal to the direction from the
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satellite to the user receiver. If there are several reference stations whose positions are
known with high precision, the orbit bias term in the single-differenced range will be
eliminated through a particular linear combination. This idea was suggested by Wu
(1994).

Figure 3-1. Geometric representation of the orbit bias

3.2.2 Elimination Procedure for the Qrbit Bias

If the parameters o, can be found which satisfy the conditions:

2.0, -AX =0 (3-8)
and
>Ya, =1 (3-9)

i

the linear combination of the single-differenced range can be formed as:
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Zai'(dpi_dp):zai'(_é'ﬁ'AXi)zo (3-10)

Therefore, the single-differenced observation Zai -((’pi —¢) will not be affected by

1

ephemeris bias, and the standard deviation of the linear combination of single-differenced

observations is

0’2=00-1de?+1 (3-11)

where o, is the standard deviation of one-way carrier phase observations. In order to

minimize o, another constraint should be added:
> o =min (3-12)

In order to satisfy equations (3-8) and (3-9), the minimum number of reference stations
is two if a user receiver is on a line joining the two reference stations;, the minimum
number of reference stations is three if a user receiver is on the plane defined by three
reference stations; and the minimum number of reference stations is four if a user
receiver is arbitrarily located. If more reference stations are available, equation (3-12)
should be used to uniquely determine the linear coefficient parameters which make the
standard deviation of the linear combination of single-differenced observations a

minimuim.

Three examples of a three reference station network are discussed below, all assume that
the user receiver is on the plane defined by the three reference stations. Example 1: The
three reference stations form an equilateral-triangle, with the user receiver located at the
centroid (Figure 3-2a). Example 2. Using the same reference stations, the user receiver
is located midway along one baseline (Figure 3-2b). Example 3: Using the same
reference stations, the user receiver is located outside the triangle (Figure 3-2¢). The
results for o; and the standard deviations of the linear combination of single-differenced

observations are given in Table 3-1.
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Ry Ri R4
U
U
Ro Rs R R 3 Rs

(a) Example 1 (b) Example 2 (c) Example 3

Figure 3-2. Three cases of network configurations

Table 3-1. Linear combination coefficients resulting from

the network examples in Figure 3-2

0l s Oy Oy
Ex 1 0.3333 0.3333 0.3333 1156,
Ex 2 0.5000 0.5000 0. 1.226,
Ex 3 1.0000 1.0000 -1.000 2.000,

From these examples, it is obvious that the user receiver should be located within the
triangle formed by the reference stations. Tt is easy to generalise this to four reference
stations, that is, the user receiver should be located within the tetrahedron formed by the
four reference stations. Because the earth is approximately an ellipsoid and the active
area may be in a mountainous region, it could be difficult to set up a user receiver within
the tetrahedron. Therefore, it is necessary to investigate whether the height component
should be neglected, and to determine how much effect it has on the linear combination

of single-differenced ranges.

The baseline vector AX, can be separated into two components, AX, which is on the
Gauss plane coordinate system, and the other component AX® which is orthogonal to

this plane. The constraint of equation (3-8) is relaxed as:

20y AXT =0 (3-13)

and the orbit bias component 7 can also be partitioned into two components (nP ,nH) in

the same way. Equation (3-10) becomes:
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| R 1
Zai-(dpidp)—zai-[——AnAAXiJ:——-nH-AX? (3-14)
i i P P
The maximum magnitude of L - AX]! can be computed by
p

max l-nH-AXiH L 20m-1785m=18mm
P 20000km

if the orbit bias is assumed to be 20 m, the height of the receiver above the ellipsoid is
1000 m, and there is a 785 m height difference caused by the curvature of the earth
across an area with radius 100 km. Therefore, for most cases, the user receiver can be
assumed to lie on the plane formed by the reference stations, and the height component

can be ignored.

If a data gap occurred at one of the external reference stations, the linear coefficient
parameters can be redetermined using the other reference stations. Therefore, the linear
coefficient parameters should be determined for each epoch. If there are no data gaps
for all reference stations, or a few short data gaps which can be ignored, the linear

combination can be determined from the estimated coordinate correction vectors:

SAX = o, SAK, (3-15)

The estimated coordinates of the user roving receiver are:

X=X, + (34K, (3-16)

3.3 Ionospheric delay
3.3.1 Ionospheric Delay and Interpolation

The ionosphere is that region of the earth's atmosphere in which ionising radiation causes
electrons to exist in sufficient quantities to affect the propagation of radio waves. The
height at which the ionosphere starts is about 50 km and stretches to heights of 1000 km
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or more. The ionosphere is a dispersive medium for radio waves, that is, its refractive
index is a function of the frequency. By ignoring the effect of the longitudinal
components of the earth's magnetic field and the higher order terms, the phase refractive
index of the ionosphere, appropriate for carrier phase observations, is approximated by
(Langley, 1996):

ny=1-25s (3-17)

and the ionospheric group refractive index, appropriate for pseudo-range observations, is
approximated by (ibid, 1996}

=142 (3-18)

where o is a constant; N_ is the electron density and f is the frequency of the radio

e

wave. If N_ has units of reciprocal metres cubed and f'is given in Hz, then o = 40.28.

The integration of the expressions for n, and n; along the path followed by a radio

signal yields the electromagnetic path lengths:

J“qadszf(l—a}je)dsip—d,—m (3-19)
S 3 f

and

[neds=] (1 + 0‘} )ds =p+d,, (3-20)
s S

where p is the true geometric range and d. is the ionospheric range error which

(ignoring path bending) is given by:

aTEC

o (3-21)

d, :%ichs_

won

with TEC (total electron content) being the integrated electron density along the signal
path. The VEC (vertical electron content) at the ionospheric intercept point to the line-
of-sight at the receiver location can be approximated as (Klobuchar, 1987):
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VEC = TEC- cos|sin(0.94792 cosE)]| (3-22)

where the height of the ionospheric layer is assumed to be 350 km.

For a dual-frequency GPS receiver, which outputs pseudo-ranges R"' and R™, or
carrier phase observations ¢, and ¢, in metres, TEC can be estimated by:

_ 1 ££] 12 _pll -
TEC*a—ff—fj (R2 -RM) (3-23)
or
TEC= LI ((411_ o Nt)— (o2 a,N12) (3-24)

o ff —f;

Figure 3-3. An ionospheric model for all satellites and for

an observation session of several hours

Models of the absolute TEC have been suggested using one set of coefficients derived
from dual-frequency GPS observations at one or several receivers, as shown in Figure 3-
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3. Such a model can be used to reduce single frequency baseline coordinate errors
(Georgiadou & Kleusberg, 1988a; Wild et al, 1989), and to improve ambiguity
resolution on long baselines and for observation sessions of several hours (Mervert et al.,
1994). Many functions can serve this purpose. First order spherical harmonic functions
were used by Cohen et al. (1992) to model the vertical electron content. A third order
polynomial was found to produce satisfactory results for periods of three to four hours
by Qiu et al. (1995).

These models are used for WADGPS or WAAS, or other pseudo-range-based
applications. However, the accuracies are not good enough to estimate integer
ambiguities in carrier phase-based applications because the ionosphere fitting area at the
ionospheric layer is much larger than the ground station network and the model with a
few coefficients, e.g. the first order spherical harmonic functions or a third order
polynomial, can only represent the large-scale structure of the ionospheric electron
content, and cannot reproduce the small-scale or medium-scale structure of the

1ionospheric electron content.

An example can illustrates this. Assume a ground area with radius r,, the ionosphere

fitting area can be derived from the following relations, according to Figure 3-4:

sin(180—90—E—0) = RCR:H -$in{90+E) (3-25)

where E is the cutoff elevation angle in degrees. The radius of the ionospheric area can

be expressed as:

y 0
L, =| =+— 7 |-(R_+H 3-26
ian (R 180 TCJ( e ) ( )

[+

For an area with r, = 100km radius, the ionosphere fitting area at the ionospheric layer is
the area with radius r,, = 1397km if the height of the ionospheric layer is assumed to be

350 km and the cutoff elevation angle is selected as 10 degrees. This means that the
radius of the ionosphere fitting area is 14 times that of the radius of the ground area !
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Figure 3-4. Fitting region on the ionospheric layer for a certain area on the ground

3.3.2 Epoch-by-Epoch and Satellite-by-Satellite Ionospheric Model

The epoch-by-epoch and satellite-by-satellite ionospheric model has been suggested as a
candidate for a high accuracy ionospheric model (Webster & Kleusberg, 1992;
Wanninger, 1995; Han & Rizos, 1996e). The ionospheric delay at a user receiver is
estimated from the interpolation of ionospheric delays at three or more surrounding
reference stations, using the intersection points of the GPS signal paths with an

ionospheric single-layer model at a height of 350 km (Figure 3-5). In this case, for the
area with 1, = 100km radius, the ionosphere fitting area at the ionospheric layer is an

arca with radius r_ <100 km. The lower the satellite elevation, the smaller the
lonosphere fitting area, if the height of the ionospheric layer is assumed to be 350 km and
the satellite height is about 20,000 km.

The actual implementation of this will require the computation of the intersection points,
and the transformation from TEC to VEC and from VEC to TEC. As precise TEC can
only be computed in the double-differenced form, an approximation will also be
necessary in the computation. For an area of 200x200 km?, the computation
procedure reduces simply to the interpolation of the single-differenced TEC between
receivers, or double-differenced TEC, based on the receiver positions in the Gauss plane

coordinate system. The proofis given in Appendix A.
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If there are three reference stations set up surrounding the survey area, the TEC values
for a satellite at reference stations 1 and 2, relative to the TEC value at reference station

3, can be represented by (equation (3-24)):

2
ATEC, (k) = é flszf; {(Apt00 -1, ANH) (4012 () -2, - ANE2)) (327

where i=1,2. The TEC value at the user receiver, refative to reference station 3, can be

interpolated as (see equation (A-14)):

-1
X, Y ATEC13
_ . . ; - 3-28
ATEC,; =[x, ¥ [x2 yj { ATEC,, (3-28)

where (x,,y,), (X,,y,) and (x,,y,) are coordinates of the reference stations 1 and 2,
and the user receiver, respectively, in the Gauss plane coordinate system, relative to
reference station 3. From equation (3-21), the single-differenced ionospheric delay on

L1 or L2 can be derived as:

X1 Vi - dion,l Tdion,3
dion,u - dion,3 = [Xu YU] ' d d (3'29)

X2 V2 ion,2 ~ Y%ion 3

Note that the single-differenced TEC interpolation coefficients are not dependent on the
satellite, and only dependent on the user receiver and reference stations positions.
Therefore, for any two satellites, the double-differenced TEC can be derived from the
interpolated single-differenced TEC (equation (3-28)) as:

-1

VATEC

VATEC,, =[x, v.]| ' '] - b (3-30)
x, v, |VATEC,,

where VATEC, ; and VATEC, ; can be determined by:

VATEC, (0= - ((Vagti(io -2, VANE) - (VA3 (-2, VANE)

1 L

(3-31)
if the double-differenced integer ambiguities for reference stations 1 and 3, and for
reference stations 2 and 3 are known.
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The data from reference stations should be processed first in order to determine the
integer ambiguity set and subsequently for the ionospheric model determination. The
initial ambiguity set for dual-frequency data can be determined when the system is
initially set up, and then real-time ambiguity recovery techniques can be employed to
maintain ambiguity continuity (Blewitt, 1990; Han, 1995b). The double-differenced TEC
can be determined relative to the reference station and the reference satellite at each
epoch. The reliable fixing of the double-differenced ambiguities of a newly risen satellite
may require a half hour, or longer, period of observations. As long as the ambiguities of
a particular satellite cannot be fixed, no ionospheric corrections can be applied to
determine the ionospheric model for this satellite. This procedure can be implemented in

real-time, or near real-time.

Satellite

lonosphetic single
layer model
(350km height)

7

R —AR,

Figure 3-5. Differential model of the ionospheric delays

3.3.3 An Example of Ionospheric Delay Interpolation

An experiment was carried out on the 2nd July, 1996, using two stationary dual-
frequency GPS receivers and a receiver on a car (a dual-frequency receiver which can be
used to check the accuracy of the ionospheric delay interpolation). The trajectory was
almost a straight line and is shown in Figure 3-6. If the roving receiver offsets from the
line joining the two reference receivers are ignored, the ionospheric delay for the moving
receiver can be interpolated using the ionospheric delay of one fixed receiver relative to

the reference receiver.
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Figure 3-6. Trajectory of the moving receiver on 2 July, 1996, Sydney, Australia

The double-differenced ionospheric delay on L1 for the fixed receiver and satellite
PRN18 can be computed using equations (3-31) and (3-21) relative to the reference
receiver and reference satellite PRN14. This is plotted in Figure 3-7a. The elevations of
the two satellites are also plotied in Figure 3-7a. Linear interpolation was used to
estimate the ionospheric delay on L1 for the roving receiver and satellite PRN18 at each
epoch, and the results are also plotted in Figure 3-7b. The distances from the roving
receiver to the reference receiver are plotted in Figure 3-7b. Since the roving receiver is
a dual-frequency receiver, the ionospheric delay on L1 can be computed directly, and this
is plotted in Figure 3-7c, if the integer ambiguity set for the roving receiver is
determined. It can be seen that the ionospheric delay on L1 increases with increasing
distance between the roving receiver and the reference receiver. The difference between
the measured ionospheric delays and the interpolated values are plotted in Figure 3-7d.
The ionospheric delay residuals do not depend on distance, and most likely reflect

multipath and random noise. The mean value of the offset is about 4mm.
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Figure 3-7d. Differences between the interpolated double-differenced ionospheric delays

and the measured values

3.4 Tropospheric Delay

The neutral atmosphere is a non-dispersive medium at microwave frequencies. The
effect of the neutral atmosphere is represented by the tropospheric refraction, which also
includes stratospheric refraction (Brunner & Welsch, 1993). The delay therefore has to
be measured, or estimated, from one of a number of models. The requirement of the
model is the ability to estimate the integral of refractivity along the line-of-sight. The
refractivity can be represented as:

N=N,+N, (3-32)

N, is a dry component of refractivity which is proportional to the total density of air,

and its variability is very small. The height can be extended to 40 km, which is in the
stratosphere region. N, is the wet component of refractivity which is mainly dependent

on the density of the water vapour contained in the air. Wet refractivity profiles show
quite strong variations with height, time, and location. Hence the wet component of

refractivity is very difficult to predict.

The range bias experienced by a signal propagating from a GPS satellite to the ground
may be expressed by an integration of refractivity along the line-of-sight:

(3-33)
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yepa =10°- [Nods (3-34)

o =107+ [N, ds (3-35)

trop, w

Approximate models for the dry and wet refractivity at the earth's surface are expressed

as.

N, (0) = 77.64-% (3-36)
e s €

N, (0) = 12,96 2 +3.718x10° (3-37)

where p is the atmospheric pressure in millibar (mbars), T is the temperature in Kelvin

(K) and e is the partial pressure of water vapour in mbars.

The Hopfield model assumes that the dry and wet refractivity can be represented as
functions of the height h above the surface (Hopfield, 1969):

N,(h) =N, (0)-[h°‘h‘ h] (3-38)
and
N, (h) =Nw(0)-(h“1’]—h) (3-39)

respectively, and the heights associated with the dry and wet refractivities is
approximated by (in metres):

h, = 40136 +148.72(T —273.16) (3-40)

h, =11000 (3-41)

The integral can be solved if the delay is calculated along the vertical direction.
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107°

yop.a (90) =107° -thd (h)dh = N, (0)-h, (3-42)

10°

hy,
Aoy (90) =107 j N, (h)dh= N, (0)-h, (3-43)
4]

For an arbitrary elevation angle E (in degrees) at the observing site, the following
mapping functions for dry and wet components are used by Hopfield model:

(B e 044

m_(E)= L (3-45)
YU sinE 4225

The troposphere delay at an elevation angle E can be expressed (in metres) as:

digop (E) = dirop,¢ (90) my(E) + dirop, w (90) - m, (E) (3-46)

The dry component delay accounts for about 90% of the total tropospheric delay and can
be modelled with sub-millimetre accuracy, provided accurate pressure measurements are
available (Davis et al., 1985). The accuracy of the zenith wet delay as computed by
models using surface meteorological measurements is typically no better than a few
centimetres (Mendes & Langley, 1995). Many other tropospheric delay models, such as
the modified Hopfield model (Goad & Goodman, 1974), Saastamoinen model (1973),
Black model (Black, 1978), Shi model (1988) have also been proposed.

For high precision, static applications, the tropospheric delay can be accounted for by
measurement correction using a meteorological model, such as the Hopfield model, plus
the estimation of local tropospheric scale factors. Local tropospheric scale factors can
be modelled as first order Gauss-Markov or random walk processes with temporal
correlations (Dodson et al., 1996; Chen, 1994).

For precise airtborne GPS navigation, the Altshuler model, NATO model and UNBI1
model are preferred, which do not need input of surface meteorological data. The UNB1
model is denved from the Saastamoinen zenith delay model and uses the Niell mapping
function, and has demonstrated good performance (Coilins & Langley, 1996).

63



Chapter 3 Error Analysis for Long-Range GPS Kinematic Positioning

3.5 Multipath and Antenna Phase Centre Biases
3.5.1 Characteristics of Multipath

Multipath is a phenomenon whereby a signal arrives at a receiver site via two or more
different paths due to reflections from nearby objects such as buildings, the ground,
vehicles, etc. These effects are periodic features and are repeated if the antenna
environment is constant. For example, flat ground reflection will cause multipath, with a
particular frequency characteristic (Johnson et al., 1995), and the multipath effect will
repeat every sidereal day for a static GPS receiver if the environment is unchanged.

If the direct and indirect signals interfere at the antenna electrical centre, they may be
represented by (Leick, 1995):

V, =Acoso (3-47)
V. =aAcos(p + A} (3-48)
the measured signal is:

V.=V, +V,=A_cos(p+Ap,) (3-49)
where A and ¢ denote the amplitude and phase of the direct signal; o is the attenuation
factor of the indirect signal, which is dependent on the reflected surface and ranges from

0 to 1, and Ao is the phase shift, which is a function of the geometric configuration. A
and Ag_ can be represented by:

A, = A-\/1+oc2 +20cos{Ap) (3-50)
Ap_ =tan™ M (3-51)
1+acos(Ap)

It can be shown that there is no multipath effect if o =0, but there is a maximum effect

1 .
on phase measurements when Ap_ = 90° = chcle if oo =1 and Ap =180°.
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The different reflecting surfaces and geometry will cause different indirect signals. If the
only reflected signals come from the ground, as shown in Figure 3-8, the phase shift can

be derived as:

(3-52)

where H is the height of the antenna above the ground, and E is the satellite elevation

angle. The reflection will cause 180° phase shift.

Direct Signal

Antenna A Reflected Signal

Ground

-
v

Antenna
Image “& &R (Extra path length)

Figure 3-8. Multipath caused by ground surface

If it is assumed that H=1.7 m, A=1.0 and o = 0.1, the multipath on L2 carrier phase can
be computed by equations (3-51) and (3-52), and plotted in Figure 3-9a. The frequency
representation is shown in Figure 3-9b using discrete Fourier transformation (DFT). Ina
similar way, the amplitude of the measured signal is plotted in Figure 3-10a, and the
spectrum in Figure 3-10b. The main frequency component is in the band from 1/300Hz
to 1/2000Hz, and is almost the same for amplitude and phase shift.
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3.5.2 Multipath Mitigation Methods

Several methods to mitigate multipath have been suggested in the last few years.
Preparing maps of the multipath environment surrounding an antenna has been
suggested, to determine multipath corrections for each satellite signal as a function of its
azimuth and elevation (Haji, 1990; Cohen & Parkinson, 1991, Clark, 1992). The
limitation of such methods is that they only work well if the antenna environment remains
constant. Georgiadou & Kleusberg (1988b) describe methods for identifying the
presence of multipath by looking at the difference between L1 and L2 phase observation.
Axelrad et al. (1994) suggest that it may be possible to identify and eliminate multipath
sources by analysing SNR values of the GPS signals. They propose to identify multipath
reflectors by isolating sections of the SNR data with strong spectral peaks. From the
frequency of these peaks, it would then be possible to genecrate a model of the phase
errors introduced. Due to the periodic feature of the multipath, if the observation span is
one hour or more, the multipath effect can be significantly reduced for static positioning.
But the multipath will affect the positioning results by up to a few centimetres for rapid
static positioning (observation span of the order of a few minutes) and kinematic

positioning,.

Multipath can be reduced significantly by using a Finite Impulse Response (FIR)
bandstop filter for a particular frequency band, or extracted using a FIR bandpass filter.
For example, the multipath model can be determined by analysing residual sequences
from the data collected over the previous days using a FIR bandpass filter, and applying
this multipath correction to the current day's data. The ionospheric delay in Figure 3-7a
has been filtered using a FIR filter. Since the high frequency terms are expected to be
filtered out, the FIR lowpass filter is designed using the Parks-McClellan method, with a
cutoff frequency of 1/600 Hz, a stop frequency of 1/300 Hz, a passband ripple of 0.01
and a stopband ripple of 0.1 (Kraus et al., 1994). The length of the filter is 810, and
hence the filter delay is 405 seconds. The magnitude of the response is shown in Figure
3-11. The filtered double-differenced ionospheric delays on I.1 for the fixed and
reference receivers are plotted in Figure 3-12. It can be seen that although the high
frequency (multipath and noise) effects have been removed, the low frequency

ionospheric delay signal is preserved.
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Figure 3-12. Filtered sequences of Figure 3-7a

Multipath can also be exfracted by assuming that the multipath should be within the
frequency band from 1/600 Hz to 1/60 Hz, and that only multipath influences are located
in this band. The FIR bandpass filter can be designed using the Parks-McClellan method,
with the passband from 1/600 Hz to 1/60 Hz, with a 1/1200 Hz transition band, passband
and stopband ripples of 0.1. The magnitude of the response is shown in Figure 3-13.
The length of the filter is 848, and hence the filter will have a 424 second delay. The
filtered sequence is plotted in Figure 3-14 (which is assumed to be the multipath, under
the assumptions made above). In practice, the multipath numerical model would be
extracted from the residual sequences of the previous days' data, and then used to correct
the current day's data. For kinematic positioning, the multipath can be extracted from
the residuals and then the trajectory can be computed using the corrected observations to
improve the trajectory accuracy. However, the FIR filter will have a delay (half the
length of the FIR filter delay - normally a few minutes) for the estimated ionospheric

delay and therefore can only be used for nmear real-time applications. The cutoff
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frequency can be determined from the spectral analysis of the signal-to-noise ratio output
by GPS receiver (Axelrad et al., 1994).
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Figure 3-14. Multipath extraction by FIR bandpass filter from Figure 3-7a

3.5.2 Offset Biases Dependent on Receivers and Antennas

The offset bias which is dependent on the antenna is the antenna phase centre offset and
variation. The phase centre of the antenna is the point to which the radio signal
measurement is referred and generally is not coincident with the physical antenna centre.
The offset depends on the elevation, azimuth, and intensity of the satellite signal, and is
different for L1 and L2. The antenna phase centre offsets for different kinds of GPS
receivers relative to the Turbo Rogue receiver with the Dorne Margolin T antenna have
been determined by the International GPS Service for Geodynamics (IGS report on
http://igscb.jpl.nasa.gov/, 1996). The offset components in the north and east direction
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can reach 5mm. The antenna component in height can reach 3cm, and changes
significantly with elevation angle. Figure 3-15 is an example of the antenna offset
component in height as a function of satellite elevation from IGS report referred to
earlier. The north, east and height (90 degree) components are 1.5mm, -1.2mm and
5.1mm for L1 and -1.1mm, 1.7mm and 1.2mm for L2 (ibid, 1996).
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Figure 3-15. Antenna offset change in height component with satellite elevation

If the same kind of GPS receivers and antennas are assumed to have the same antenna
offset characteristics, and the antennas are oriented in the same direction, the antenna
offset can be ignored for baseline determination using the data double-differencing
algorithm. But if different kinds of GPS antennas are used for baseline determination,
antenna offsets should be considered carefully in order to achieve millimetre accuracy.
Therefore, GPS antenna offset determination and correction will become necessary for

precise GPS positioning.

The bias which is dependent on the type of GPS receiver is due to the manner in which
different receivers internally process the carrier phase signals. A zero baseline
experiment has been performed by Braun & Rocken (1995) using the same antenna
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(Trimble 4000ST L1/L2 Geod antenna) and two different types of GPS receivers from
the same manufacturer (Trimble 4000SST and Trimble 4000SSE). The results indicate
that vertical height error can be up to five centimetres, even when using one hour
observation spans! The mixed receiver problem seems to average out over 16 hour
observation sessions. Intensive research on this bias is required if millimetre accuracy
positioning using mixed GPS receivers is to be routine. Long-range kinematic

positioning should also avoid using different GPS receivers.
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Chapter 4

AMBIGUITY RESOLUTION ON-THE-FLY FOR
MEDIUM-RANGE

GPS KINEMATIC POSITIONING

4.1 Introduction

Ambiguity resolution on-the-fly for short-range kinematic positioning assumes that the
orbit bias and differential ionospheric delay can be ignored, and the integer ambiguities
can be resolved easily. For medium-range or long-range static positioning, the widelane
integer ambiguities can be resolved if precise pseudo-ranges on L1 and L2 are available.
Then the ionosphere-free combination can be used to resolve the integer ambiguity with
wavelength 10.7 em. Using dual-frequency data sessions of half to one hour in length,
with no cycle slips, the integer ambiguities can be resolved (see Appendix B). For long-
range kinematic positioning, however, much longer observation spans with no cycle slips
will be needed, something which is very difficult in practice (if not impossible) to
achieve. Furthermore, this algorithm requires precise ephemeris information, and

therefore cannot be used for real-time applications.

A bias analysis has been described in Chapter 3. It was shown that using more than three
reference stations with known coordinates, the orbit bias can be eliminated for medium-
range applications (less than 100 km to the nearest reference station) through the use of
a linear combinations of single-differenced observations. The ionospheric delay relative
to one reference station can also be interpolated if the relative tonospheric delay for three
or more reference stations are known. Although the bias modelling using multipie
reference stations has been developed for pseudo-range based system such as WADGPS
(Kee, 1996), the accuracy is not good enough for ambiguity resolution. Even when this
concept is used for carrier phase-based systems, the accuracy of the corrected
observations will be degraded. In this chapter, a linear combination method has been
used to account orbit bias and ionospheric delay. The tropospheric delay, multipath, and
observation noise will also be mitigated using this method.
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After the distance-dependent biases are eliminated or mitigated, an integrated method
which incorporates a three-step quality control procedure is proposed. The integrated
method combines the search procedures in the coordinate domain, the observation
domain and the estimated ambiguity domain, and uses data from the latest generation of
GPS receivers. The three-step procedure for enhancing the quality of ambiguity
resolution is as follows. The first step is to improve the stochastic model for the double-
differenced functional model in real-time. A default model is used at the beginning of a
kinematic survey, and then adjusted adaptively by the data. This feature will lead to an
improvement in the fidelity of the stochastic model for a specified functional model. The
second step is to discriminate between the integer ambiguity sets which generate the
minimum quadratic form of the residuals and the second minimum one. The proposed
procedure has a rigorous mathematical definition and is more reliable and practical than
the standard tests. Numerical comparisons will further support this conclusion. The
third step is the fault Detection, Identification and Adaptation (DIA) procedure. In this
step a global measure, the TEC value test, using the current and previous results, will be
employed. If the ambiguity resolution is unsuccessful, the adaptation procedure will
eliminate the identified outlier observations and improve the functional model.

Experimental results will demonstrate the utility of the proposed procedure.

4.2  Functional Model for Ambiguity Resolution On-The-Fly using
Multiple Reference Receivers

From the earlier analysis of the nature of the orbit bias and its effect on baseline results, it
was concluded that the reference stations should be placed outside the survey area.
However, for the interpolation of the ionospheric delay, the reference stations should be
as close as possible. Figure 4-1 shows a three reference station network with one roving
receiver. (A denotes the reference stations and ® denotes the local monitoring stations.)
It 1s preferable that one of the reference stations is connected to the IGS network in
order to obtain precise positions in the global ITRF frame. Data processing for the
reference stations is necessary in order to determine the double-differenced integer

ambiguities between them. The methods are described in Appendix B.
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Figure 4-1. Configuration of the reference stations and the roving station

4.2.1 Single-Differenced Functional Model

The single-differenced carrier phase observation can be derived from equation (1-4):

where A(-). = (), — ()., i indicates the reference station i, and u the user station. A set of

parameters o; can be determined, based on the conditions in equations (3-9) and (3-13),

that is:
3
oy =1 (4-2)
i=1
3 . — — —
ZO(.]--AXLUIXLI—(XI-XI—GQ-XQ:0 (4'3)

i=1

where X, and X; (i=1,2,3) are the coordinates in the Gauss plane coordinate system.
(The original point is set up at the reference station 3 in order to simplify the derivation.)
Equation (4-3) can be represented as:

Xy X X flo

I .
Yu Yi Y2 %2

and then o; and o, can be computed as:
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R

The linear combination of the single-differenced observations can be formed as:

3 3 3 3 3
Zai Ad)l = Zai Apl -I-ZOLlAdpl —C‘Zai AdTl'i‘?\;ZG.IANI -

i=1 i=1 i=1 i=1 i=1
3 3 3 N
_Z C(i M Adion,i +Z 051 - Adtrop,i +ZOL1 * Admp,i +8 3

i=1 i=1 i=1 Elai'ﬂ‘i’i

Ovrbit bias elimination

The orbit bias term can be easily seen to be:

3

i=1
from equation (3-14).
ITonospheric delay elimination

The ionospheric delay term can be deduced as:

S Td.  —d.
Zai : Adion,i = dion,u _dion,3 _|:0£1:| |:dlon,1 dmn,3:|

i=1 Gy ior,1 ~ “ion,3

Considering equations (4-5) and (3-29), the above equation can be written as:

; rd.  —d.
Z(xj . Adion,i _ dion,u — dion,3 —[Xu yu:||:xl YI1| |:dlon,1 dlon,S:] =0

i=1 X2 V2 jon,]1 ~— “ion,3

Tropospheric delay

(4-5)

(4-6)

@-7)

(4-8)

(4-9)

The tropospheric delay should be corrected using a tropospheric delay model such as the
Hopfield model. The residual part of the tropospheric delay is denoted by dy,,. Ina
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similar manner to the ionospheric delay, the residual part of the tropospheric delay can be

expressed as:

2 XS | B dtrop,l - dtrop,3
Z o - Adtrop,i = dirop,u - dtrop,S "[Xu Yu] (4-10)

i=1 X Y2 dtl‘op,l o dtrop,3

If it can be assumed that the residual tropospheric delay can be interpolated by the
residual tropospheric delay at the reference stations, the residual tropospheric delay
should be close to zero. The problem is that the residual tropospheric delay is mostly
contributed to by the wet component of the troposphere, which shows strong variation
with height, time and location. Geiger et al. (1995) suggest a mitigation method suitable
for local and regional GPS networks. From the spatial distribution of water vapour over
Treland (25-28 April, 1995), described by Dodson and Shardlow (1995), a strong spatial
correlation still exists and a linear interpolation procedure can be used to predict the wet

vapour over an area with 100 km radius with reasonable accuracy. Therefore, the term
3

> oy -Ad . should be mitigated to some extent.
i=t

Multipath mitigation

The multipath term can be rewritten as:

mp,i mp,u mp,i

3 3
Soy-ad =d > o -dd (4-11)
i=1 i=1

3
The last term Z o;-d® . onthe right hand side of equation (4-11) is the weighted mean

mp,i
i=1

value of the multipath values at the three reference stations for this satellite. Due to the
random nature of the multipaths at the different stations, the weighted mean value will be
significantly reduced if all o; (i=1,2,3) are positive and less than 1, although the weight
o; is not derived from its standard deviation. On the other hand, the multipath at the
roving station will become a high frequency bias, and mostly close to random noise
(Zhang & Schwarz, 1996). Therefore, the multipath term has been significantly reduced
and will be ignored in the functional model. The residual part of the multipath can be

accounted for in the stochastic model.
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Observation noise

The standard deviation of the one-way carrier phase observation can be approximated as
a function of the elevation angle. Because all stations are located within a region of
about 100km radius, the elevation of a satellite is approximately the same. The standard
deviation of the one-way carrier phase observation can also be approximated as ¢! and
then the standard deviation of the linear combination of single-differenced observations

€3 can be expressed as:
oA
i=1
G, = Jl+a? +al+al o (4-12)

oAy
i=]

Comparing the standard deviation of the single-differenced carrier phase observation
V2 .o the standard deviation will become smaller if the roving station is located within

the triangle formed by the reference stations (Table (3-1)).

The single-differenced carrier phase observation functional model can be simplified as:

3 3 3 3
Dot Ad; =D 0 Ap; —c- Doy - AdT, +A- > o, -AN; +e 4 (4-13)

i=1 i=1 i=1 i=1 Z oAb

I

The single-differenced pseudo-range can be derived in the similar way:

3 3 3
Zai.ARi:Zai'Api_c'Zai'AdTi'i-S] (4_14)
i=1 i=1 i=1 Zop ARy

i=]

4,2.2 Double-Differenced Functional Model

Considering the relation:

Z;Of-i -Ad; = (4, —433)_[051 (b —d3)+ay '(¢2 _¢3)]= Adys ”"[‘11 Ady 5 +00, 'A¢2,3]

(4-15)
equation (4-13) can be written as:
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3
Adys— [(11 Adyz+at, ‘A¢2,3] = Ap,3— [Otl “Apy s+, -Apm]- C- Zoci -AdT, +
i1

+K-ANU3—[a1-AN13+cx2-AN23]+a3 N (4-16)
’ ’ ’ oA

i=1
The double-differenced observation model can be written as:

VA, ;- [al VAp 5 +a,- VA¢2,3] = VAp, ;- [011 “VApy 3 +a,- VApz,a] +

- —la, - -VAN 5 4-17
+A VAN, 3 [0, VAN 3 + 0,V 2,3]+82aiwi (4-17)

i=1
Define the residual vectors:

Viz = VA¢1,3 - VAN1,3 - VAPl,s (4-18)

V;3 = VA, 3 - VAN, 3 —VAp,; (4-19)

The double-differenced observation model can then be written as:

VAG, 3 [0y Vig+ 0ty - Vo3 | = VAP, 5 + A- VAN, 5 +€ 5 (4-20)
’ | ’ ’ ’ oy VA

=]

The data processing techniques applicable for the reference stations, and the more
dispersed continuous GPS stations (e.g. IGS stations) are well known (Dong & Bock,
1989; Blewitt, 1989; Chen, 1994). This mode of data processing is implemented in post-
processed mode and the precise ephemeris is used. The first step in the data processing
is the detection and repair of cycle slips in the carrier phase data. The procedure for
repairing cycle slips is to compute the widelane slip at each observation epoch formed by
the widelane carrier phase and the narrowlane precise pseudo-range data, which is also
an ionosphere-free combination. Once the wide lane slip is resolved, polynomial fitting
to the ionospheric combination is used to extract the cycle slips in the L1 and L2 carrier
phase data (e.g. Blewitt, 1990), or by polynomial fitting to the carrier phase combination
with the maximum wavelength (14.65m), and using the even-odd relationship to
decouple the cycle slips on L1 and L2 (Han, 1995b). The second step is to resolve the
integer ambiguities. Since the baseline lengths are typically from tens to hundreds of
kilometres (between the reference stations and the wider area continuous GPS stations),
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the ambiguity resolution process is not trivial due to the presence of ionospheric and
tropospheric delays, even though the external station coordinates are well known and the
precise ephemeris is available. A long observation span (at least one hour) will be
necessary to determine the integer ambiguities, and then the integer ambiguity set should
remain valid for the whole observation span. For rising satellites, new integer ambiguity
parameters will have to be estimated, again requiring a sufficiently long observation span.
The coordinates of the reference stations should be derived using the ionosphere-free
phase combination, and the integer ambiguities should be fixed. Using these positions
and the known integer ambiguities, the correction vectors Vf,gl, fo, Vf;‘ and Vf}; for

the double-differenced carrier phase observations and pseudo-ranges on L1 and L2 can
be computed for reference stations 1 and 3. V;3, V,3, V,3 and V,3 are computed in

the same way for reference stations 2 and 3.

For real-time applications, the precise positions should be determined in a previous step.
The real-time ambiguity recovery technique should be implemented to ensure that the
integer ambiguities remain known, and the correction vectors can then be computed in
real-time. The correction vectors, together with the carrier phase and pseudo-range data

at reference station 3, can be sent to the roving receiver in real-time.

In summary, the double-differenced functional model for carrier phase observations and

pseudo-ranges on L1 and L2 can be written as;

VAGY, [0 Vi3 o, - ViA] = VAp, 5 + 4, - VAN, + T (4-21a)
VAYE — oy Vi +ay - ViE | = VAp, 5 + 1, - VANLS ST (4-21b)
V’AR&I3 — [ocl . VIIB‘ +a, -V,fg ] = VApu’3 +8§;a..VAR.L1 (4-21c)
VAR, —[o- V3 4o, Vy5 | = VAp, e St (4-21d)

i=1l

In order to efficiently remove orbit bias and ionospheric delay, and reduce tropospheric
delay, the distance from roving receiver to the nearest reference GPS should be less than
100 km.
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4.3 Integrated Method for Ambiguity Resolution

Centimetre accuracy GPS kinematic positioning applications are most appropriately
addressed if the estimation of the integer ambiguity parameters can be carried out either
instantancously (on a single epoch basis), or on-the-fly. Three general classes of
ambiguity resolution techniques have been developed in the last decade: scarch
techniques in the measurement domain (Abidin & Wells, 1990; Goad, 1992; Han,
1995b; Han & Rizos, 1995a; Teunissen, 1996b; Wiibbena, 1989); search techniques in
the coordinate domain (Han, 1994b; Han & Rizos, 1996b;, Lachapelle et al, 1992;
Mader, 1992; Mok, 1996; Mok & Cross, 1996, Remondi, 1989, Remondi & Hilla,
1993), and; search techniques in the estimated ambiguity domain using least squares
estimation (Chen & Lachapelle, 1995; Frei et al., 1993; Han, 1995a; Han & Rizos 1995b;
Hatch, 1990; Landau & Euler, 1992; Teunissen, 1994). New generation GPS receivers
such as the Ashtech Z12, the Leica System 300 and the Trimble 4000SSi output precise
pseudo-range and full wavelength carrier phase observations on both frequencies, even
with Anti-Spoofing on. All three general classes of ambiguity resolution techniques can
be integrated so as to take advantage of their most positive characteristics, such as
search efficiency or reliability, and hence make ambiguity resolution more certain (Han &
Rizos, 1996¢).

4.3.1 The Integrated Method

The traditional functional model for ambiguity resolution used carrier phase observations
only because the C/A pseudo-range data was not precise enough to contribute very much
to improving the ambiguity-float solution. This meant that quite a long observation
session (a few minutes in the case of dual-frequency receivers, or more than 15 minutes
for single frequency GPS receivers) was typically required to obtain an ambiguity-float
solution which was accurate enough for the reliable resolution of the integer ambiguities
(Han, 1994c). However, the new generation GPS receivers output precise pseudo-range
data on L1 and L2, and these observations will significantly improve the ambiguity-float
solution using only a short period of data or, at an extreme, even using only a single
epoch of data (Han, 1996; Han & Rizos, 1996c¢).

If only one epoch of data is used, the float solution (using precise pseudo-range and

carrier phase measurements) will have no contribution from carrier phase measurements.

Hence, relative positioning using pseudo-range data on L1 and L2 will be used to

30



Chapter 4 Ambiguity Resolution On-The-Fly for Medium-Range Kinematic Positioning

estimate the coordinate parameters )A(C and the co-factor matrix Q)‘(C' The float

solution for X,; can then be computed, with variance-covariance matrix:

| 1
A—Z(QL,+A1Q5<CA1T) ?L_?L;AIQ:;‘(CA;
U, =" 3 Loy . (4-22)
e A,Qq Ay ?L—ZZ(QL2 +A2Q5<CA2)
Qo . =|Lq. AT Lq.ar (4-23)
XeXy ?“1 X Ay X2

Where Q and Q, are the co-factor matrices for the L1 and L2 carrier phase

observations respectively; A, and A, are the design matrices for the L1 and L2 carrier

phase observations; and A, and X, are the wavelengths of the L1 and L2 carrier waves.

If more than one epoch of data are used, X, X, and the covariance matrices Q.-

QXN and Qf{cﬁN should be estimated using all the available observations, and the

number of coordinate parameters will become three times the number of epochs.

In order to simplify the computation for the test at equation (2-25), the Cholesky
decomposition of Q; :
C

Q;;C =C-c* (4-24)

is used and then yields (see equation (2-380 and (2-39)):

f, =CTQ 2 z7(XE - NE) (4-25)

Ko Xy Q Xy
which can be used to simplify equation (2-25) as:

fgfk S t * mé * gFt,n—t—m;l_ (4_‘26)

o,

where CTQXC XNQ;»(;Z“I is computed outside the search loop. After the integer

ambiguities are fixed, equations (2-15, 2-16 and 2-17) can be used to compute the
ambiguity fixed solution.
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4,3.2. Comparison with Existing Methods
Search procedure in the coordinate domain

The usual search procedure in the coordinate domain is the Ambiguity Function Method
(Han, 1994b; Remondi & Hilla, 1993; Mader, 1992). The relationship between the AFM
and the least squares method has been discussed in Lachapelle et al. (1992), Han (1993
& 1994a). The 5(C makes the Ambiguity Function's value a maximum if and only if 5(0
causes the quadratic form of the residuals V'PV to be a minimum. The initial search
region for the AFM is formed using equation (2-25), and the criterium for the optimal
solution is that which makes the ambiguity function value a maximum. This means that
the optimal solution should satisfy equation {2-25) with VTPV as minimum. These two
criteria have been included in the integrated procedure. The problem for the AFM is that
it requires a comparatively long computation time, and it is not easy to consider the

stochastic model! of the observations.
Search procedure in the observation domain

Ambiguities can be determined directly uvsing pseudo-range and carrier phase
observations (Abidin & Wells, 1990; Goad, 1992; Han, 1995b; Han & Rizos, 1995a;
Wiibbena, 1989). The problem is that the noise of the pseudo-range data is generally
very large, compared to the carrier phase wavelength, to effectively determine the
integer ambiguities using pseudo-range data alone.  Therefore, integer linear
combinations of the L1 and L2 observations which have a relatively long wavelength,
low noise characteristics and a reasonably small ionospheric delay, such as the so-called
widelane, extra-widelane combinations, and others, have generally been used. However,
these techniques are all restricted to integer linear combinations of the single-channel
variety.  This implies that the relative receiver-satellite geometry, which is so
emphatically present in the ambiguity vanance-covariance matrix, is not taken into
account in the linear combinations (Teunissen, 1994). All combinations of L1 and L2
carrier phase can be considered as special cases of LAMBDA (Teunissen, 1996b). The
integrated method uses multi-channel integer linear combinations formed by the
LAMBDA transformation, rather than single-channel integer linear combinations which
is the general case of the traditional search procedure in the observation domain (ibid,
1996b).
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Search procedure in the estimated ambiguity domain

The proposed integrated method is based on the search procedure in the estimated
ambiguity domain. The first difference is that the search procedure in the estimated
ambiguity domain normally uses the carrier phase observations only, due to the low
accuracy of C/A pseudo-range data output by the older generation GPS receivers. The
second difference is that the test (2-25) is added as a criteria, as is used in the AFM. The
third difference is that the LAMBDA method is used in the search procedure, which is
the generalised form of the search procedure in the observation domain when the carrier
phase and pseudo-range observations are used together. Therefore, it is possible for the
integrated method to resolve integer ambiguity using a single epoch of data. In addition
to the above improvements, the integrated method will use a more precise stochastic

model, which makes the ambiguity-float solution more reliable.

4.4 Real-Time Stochastic Model Improvement
4.4.1 Characteristics of the "Noise"

Least squares estimation requires that the correct functional model and stochastic model
be specified. The biases in observations can be modelled in the functional model as
parameters. Due to the range of complex biases in GPS observations, it is often too
difficult to incorporate them within the functional model. An alternative is to account for
the biases within the stochastic model. If biases affect the GPS observations, a larger
standard deviation for the observations can be specified so as to ensure they still have
normal distribution characteristics (albeit with a larger uncertainty). This procedure will
make the precision of the least squares estimation results more realistic. The stochastic
model for one-way GPS pseudo-range observations has been investigated by Jin (1995).
However, the stochastic model in this paper not only reflects the stochastic
characteristics of the observation noise, but also the residual biases in the functional
model of equation (4-21). This will make stochastic model estimation more difficult.
The definition of a real-time stochastic model with an adaptive improvement capability 1s

therefore an important innovation.

The functional model has been defined in equation (4-21), which eliminates or mitigates
the biases due to orbit error, ionosphere, troposphere, and multipath effects. However,

the residual biases from these sources still exist, and contribute to the noise terms. This
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makes the noise characteristics more complicated. It is well known that most of the
residual biases are dependent on the satellite elevation, and expressed by several models,
such as an exponential function of the elevation, or the inverse of the sine of the
elevation, and can be used to model the standard deviation of the noise. Here, an
exponential function of the elevation is used to represent the standard deviation of the

one-way L1 observations for satellite j:

ol = s-(a.;J +a,-exp(~E’ /EO)) (4-27)

where o is the standard deviation of the L1 observations for satellite j with elevation
angle E'; a,, a, and E, are approximated by constants, which may be experimentally
determined for both carrier phase and pseudo-range observations using different kinds of
GPS receivers. Table 4-4 gives some values for one-way carrier phase and pseudo-range
observations. The s is a scale factor which is determined from an analysis of real data
under the assumption that it is the same for all carrier phase observations (or pseudo-
range observations) over a short period. The estimation is carried out using the double-
differenced observations in which error propagation is applied to account for the
correlations. The standard deviation for one-way L2 carrier phase observations can be
roughly approximated by G-,/ A,, and the standard deviation for one-way L2 pseudo-
range observations can be assumed to be the same as for L1 pseudo-range observations

for receivers such as the Leica System 300 or Ashtech Z12.

Note that the stochastic model will be influenced by such factors as environmental
conditions within the troposphere, the volatility of the ionosphere, multipath effects and
receiver type. This model is appropriate for instantaneous ambiguity resolution. For
ambiguity resolution on-the-fly however, which seek to determine ambiguities using
several minutes of data before the current epoch, the improvement of the stochastic
model should include the temporal correlation. The simplified model has been given in
Han & Rizos (1995¢). Although the temporal correlation will have a significant effect on
the a posteriori VCV matrix, rather than the parameter estimation results, this will affect
the size and shape of the search region for ambiguity resolution, and hence further impact
on the reliability of ambiguity resolution.

4.4.2 Geometric Correlations

From the linear combination of the single-differenced observation model for satellite J,
the standard deviation of this combination has been derived in equation {4-12). For the
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other satellites, similar linear combinations can also be formed and they are independent

if their spatial correlation are ignored:

_(01)2 0 0 |
vev, | o (@) -~ o {1+02 +02 +a?) (4-28)
Elai-élili : . . :
o0 (™)’

1 -1 0 0
1 0 -1 - O

Vm=[. . - (4-29)
1 0 0 -1 (m-1)xm

1 -1 0 0
0 1 -1 - 0

A (4-30)
0 0 0 -1

for sequential satellite differencing. The variance-covariance matrix of the double-

differenced observations can be derived as:

VCV, =V, -VCV, VI (4-31)

o VA Togdy
i=1

i=1

If the variance-covariance matrix for one reference station can be formed as VCVy,, ,
u,.

the variance-covariance matrix VCV , can be derived from VCVy,,
T oy VA, *

i=1

2 2 2
VCV, =VCVyy, - 1+o] +o; +0o

Zai'VA‘bi 2 (4-3 2)
i=1
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4.4.3 Temporal Correlations

The temporal correlation is normally ignored in GPS data processing. However, it really
affects the variance-covariance matrix of the estimated real-valued ambiguities and
subsequently affects the ambiguity search region and the reliability of ambiguity
resolution. If the temporal correlation is ignored, the variance-covariance matrix of the
estimated real-valued ambiguities is estimated as Qg - The effect on the co-factor

matrix of the estimated real-valued ambiguities by considering the temporal correlation
can be approximated by a scale factor sy,,,, where Sy, can be represented (Han &

Rizos , 1995c¢) for the static case by:

_ m(1+f) (4-33)

Semp = (- f)+2f

where m is the number of the epochs which are used to estimate real-valued ambiguities,
f is the temporal correlation coefficient between epochs. The unit weight standard
deviation can be re-computed using the residuals ignoring the temporal correlation (ibid,
1995¢). On the basis of experimental data, El-Rabbany (1994) derived an exponential
covariance function that describes the temporal physical correlations for at a stationary

receiver:
T
f(v) =exp(-2) (4-34)

where 7T is the time period between epochs in seconds and T is the correlation length in
seconds, with a typical value of about 250-350 seconds, for the static case (ibid, 1994).
Table 4-1 gives the correlation coefficient for different data rates.

Table 4-1. The correlation coefficient for different data rates (T=260 seconds)

i (sec) 1 5 15 30 60 300 600 900
f{1;) 0.996 | 0,981 | 0.944 | 0.891 | 0.794 | 0.315 } 0.099 | 0.031

4.4.4 Real-Time Stochastic Model Estimation

Although the standard deviations for carrier phase observations and pseudo-range
observations are defined by equation (4-27), the magnitudes of the scale factors for
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carrier phase and pseudo-range observations have not been determined. The scale
factors will weight the contribution of the carrier phase and pseudo-range observations,
and also affect the tests in equations (2-22, 2-25 and 2-27). These values are sensitive to
the real data (both receiver type and measurement circumstances), and cannot be

considered constants.

The scale factor for pseudo-range observations can be estimated using different sections
of data. For the first section, s=sp = 1, the default stochastic model is used. For the Lth

section, s can be estimated as slg, using the following relation based on the (L-1)th

section of data:

K -1
Z Qléloat
S]l; _ Klz:_IfL—x (4'3 5)
> (1)
k=K,

where K; | and K, —1 are the first and last epoch number for section L-1; k is the epoch
number; nk, t* and QF_ ., are the number of pseudo-range observations, the number of
real-valued parameters and the quadratic form of the residuals for the ambiguity-float
solution at epoch k, respectively. The section length is selected as 2-5 minutes.

The scale factor for carrier phase observations is derived as:

K,-1

Z ﬁgix
s; = % (4-36)
n§ —t

where nj is the number of carrier phase observations; Qf, is the quadratic form of the

residuals using carrier phase observations only and the fixed integer ambiguities at epoch
k.

4.5 Criteria to Validate the Integer Ambiguity Set

Based on the results of the ambiguity-float solution, a large number of integer ambiguity

sets will be included within the search region in the estimated ambiguity domain. In
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principle, the ambiguity set corresponding to the minimum quadratic form of the
residuals should be the correct one. However, due to the presence of noise and
unmodelled biases, the quadratic form of the residuals will be biased as well. This will
make the discrimination of the integer ambiguity sets more difficult. The standard
procedure is to use the ratio test, defined as the ratio of the second minimum quadratic
form of the residuals to the minimum quadratic form of the residuals. The critical value
is empirically derived or chosen arbitrarily. Although this ratio value is assumed to be an
F-distributed statistic (Frei & Beutler, 1990), in reality it is not an F-distributed statistic
and, furthermore, the upper boundary defined by the F-distribution is too conservative.
Euler & Schaffrin (1990) have derived another ratio test, but the critical value is still too
conservative and is often experimentally specified as being the value 2 (Wei & Schwarz,
1995), or 1.5 (Han & Rizos, 1996¢). Tiberius & de Jonge (1995) suggest another test to
discriminate between the integer ambiguity sets which give the minimum and second
minimum quadratic form of the residuals, but the critical value is also experimentally

specified.

After the search procedure has been performed using the conditions (equations (2-22, 2-
25 and 2-27)), there are three resultant cases: (1) no integer ambiguity set satisfied the
above tests and hence ambiguity resolution has failed; (2) only one integer ambiguity set
satisfied the above tests, assumed to be the correct integer ambiguity set and used to
derive the positioning result; or (3) two or more integer ambiguity sets satisfied the
above tests, requiring the application of another test to discriminate the correct set from
the others.

4.5.1 Current Procedures

Frei & Beutler (1990) assume that Qg ... and Qg ., are % —distributed and

independent statistics, and the F-distribution statistic can then be derived. The following
test was employed to distinguish the ambiguity sets:

QFix,sec
T (4-37)

Fix,min

If the above test is passed, the integer ambiguity set which causes the minimum quadratic
form of the residuals will be selected as the correct one. Otherwise ambiguity resolution
has failed. This test has been extensively used by Abidin (1993), Corbett & Cross
(1995), and others. The comparison between equation (4-37) and equation (2-22) has
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been discussed in Han & Rizos (1996d). If there are two or more integer ambiguity sets
which satisfy equation (2-22), equation (4-37) will automatically not be satisfied under
certain conditions (ibid, 1996d). This means that this test is too conservative and
sometimes the correct ambiguity resolution is considered to have failed. The reason for
this is that Q and Qp;, min are dependent. A modified ratio test has been suggested

by Landau & Euler (1992), using the critical value of 2.

Fix,sec

A rigorous ratio test has been suggested by Euler & Schaffrin (1990):

R (0., o) (4-38)

min

However, the critical value y(a,p,,B,) is also too conservative to ensure higher success
rates. A modified ratio test has been suggested by Wei & Schwarz (1995), using an
experimental critical value of 2. If the more accurate stochastic model is used, the

critical value can be chosen as small as 1.5 (Han & Rizos, 199%6c¢).
An alternative to the ratio test has been suggested by Tiberius & de Jonge (1995):
Rsec - Rmin > 03 ) K2 (4_39)

where K, is selected as 15, based on experimental data. However, the theoretical basis

for K, has not been presented.

4.5.2 New Criteria for Discrimination

After the integer ambiguity set N giving Qg .. has been identified, the observation

model with the fixed integer ambiguity set is:

L-AWN, +V=AX (4-40)
The null hypothesis is:
HyE((L-AyN,)/Hp)=AcX (4-41)

and the alternative hypothesis is:

H, E((L- AN, /H,)=AX+A\V (4-42)
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where V is an outlier parameter vector; and ~ denotes the expectation of the quantity. In
order to find the outlier in the direction of (N, ~ N, ) and therefore discriminate N

from N, assume that:

V=y-(N,-N_) (4-43)
where v is a real-valued parameter and equation (4-40) becomes:

L-AN_ +V=AX,+A (N, -N_)¥ (4-44)

where N, is the integer ambiguity set which corresponds to Qr;, .. If the alternative

hypothesis is assumed to be true:

(Ns _Nm)TQ;{IN (XN _Nm)

TN N (N, Ny 4
and the inverse of the co-factor matrix is:

P =(N,-N,) Qx, (N,-N,) (4-46)
The a posteriori variance factor can be estimated as:

o i
and the standard deviation of ¥ will be:

6,=60-P, " (4-48)
Constructing a t-distribution statistic T under H:

1= ~t(n-t_1) (4-49)

Gy

If the integer set corresponding to Qup, ,;, is selected, it is equivalent to y <0.5. The

probability of the selection of H,, will be:
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05/6,
P(('y <0. 5)|H0) = jftH,l (t)dr=1-0, | (4-50)

If H, is assumed to be true, T will become the non-central t-distributed statistic

t'(n—t—1,8). Although H, is assumed to be true with non-centrality parameter g ,
¥

the probability of the selection of H,, is required to be larger than B, (Figure 4-2):

05/5, R 05/8,
P((y<09)iL)= [ £ (n0)de=p= [f, (58 (4-51)
—o0 T —o0
0.5 ¥ e .
Therefore, 6, =7—-&, 4, =< 8,, and subsequently the discrimination test will be
o} E o
¥ ¥
derived as follows:
(0.5-7)>&, S, (4-52)

Note that the selection of B, should be less than 1-a, and is normally suggested as
being 0.8.

: ftn-H (1? 51)

E Sl [] 5}&? >

Figure 4-2. Maximum non-centrality in acceptance region

~

On the other hand, if H, is assumed to be true with non-centrality parameter Ay , the
o
T

probability of the selection H, is required to be smaller than 13, (Figure 4-3):
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(05-7)/5, (05-7)/5,

P((y<osiH,)= | £, (r,él)d'c <1-By= [ (58;)dv (4-53)
—a0 ¥ —o0
Therefore, 8, = 9'5 & pyo :/ >3, and subsequently the following relation will be
G, T o,
derived:
¥>05+E, 4 -G, (4-54)

0.5+&, . -G, is the minimal bias which can be detected by means of hypothesis

testing (referred to as internal reliability, with significance level o, and the power of the
test B,). In order to find the outlier y =1, which means V=N _-N_ another

discrimination test will be derived, from equations (4-46, 4-48 and 4-54):

(N, -N, ) QY (N, -N,)>4-£ . -6 (4-55)

ft 01 (T ft, 1 10(t.52)

0.53, & T

Figure 4-3. Minimum non-centrality in rejection region

4.5.3 Comparisons
The relationship to the existing criteria can be derived (Figure 4-4):

Rsec _Rmin = (1_2"?)(Ns _Nm)TQ)_{lN (Ns _Nm) (4'56)

and considering the discrimination test equation (4-52), test equation (4-39) will be:
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Rsec —Rin < 267 ’ atn—t—l;ﬁl ’ (Ns - Nm )T Q;(IN (Ns - Nm) (4'57)

The relationship to the other criteria (equations (4-37) and (4-38)) can be derived in the

same way:

R N 267 "tntnftfl;ﬁl : (Ns —Nm)TQ)_{lN (Ns _Nm) +1

4-58)
ij.n Rmin (
o T -1
QFix,sec - 20’)’ ) E"tnﬂt—lgﬁl ) (NS — Nm) QXN (NS —Nm) +1 (4-59)
QFix,min QFiX,ijl
Xy

“|IRSBC

ml N,
dm,s = V((Ns'Nm)TQ—;:N(Ns'Nm)

Figure 4-4. Geometrical relations

4.6 Adaptive Procedure to Improve Reliability

The third problem is the definition of the Fault Detection, Identification and Adaptation
procedure which must guard against wrong integer ambiguity determination. This is an
increasingly important aspect of instantaneous ambiguity resolution for centimetre

accuracy real-time GPS positioning due to the small number of degrees-of-freedom.
4.6.1 Fault Detection Using TEC Values

If the above procedure uses only one epoch of data, the relational information between
epochs has not been used. In order to further ensure that the final solution is correct,
global information should be used. As is well known, the Total Electron Content (TEC)
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of the path through the ionosphere has very strong correlation in space and time. The
TEC value for the neighbouring epoch should therefore be very close and this
information will be considered as the basis for a global test. The difference between the
double-differenced ionospheric delay on L1 and L2 carrier phase observations is defined
as A., which can be represented as follows (assuming known integer ambiguities):

A, = MAVO — AV, — A AVN +A,AVN, (4-60)

If the integer ambiguities are resolved correctly, the A, sequence should change

smoothly. Otherwise, a jump will occur due to wrong ambiguity resolution at an epoch.
The jump can be found from the difference 8A,,,, between A, at the current epoch and

at the previous epoch. If wrong ambiguity resolution at the current epoch occurs, 04;,,

can be represented as:

where SAVN, | and 8AVN,, are the magnitudes of the integer biases caused by wrong
ambiguity resolution. Note that 6A, , is not affected by cycle slips. If the instantaneous
ambiguity resolution is correct at the current epoch and the previous epoch, 8A,,, will be
small, even though cycle slips occurred between these two epochs. If the integer biases

of the resolved ambiguities are assumed to be within +20cycles and the criterium
8A, , <5.0 cm (4-62)

is used for fault detection, the integer biases which cannot be discriminated are listed in
Table 4-2. Obviously, if ambiguity resolution is correct, equation {4-62) will be satisfied.
However if equation (4-62) is satisfied, the ambiguity resolution cannot be assured as
being correct. Therefore the TEC test is a necessary condition, but not a sufficient
condition. The critical value is selected as 5 cm for the experiments described in this
report. If the critical value is selected too large, more ambiguity biases will not be found.
If the critical value is selected too small, the ionospheric change will possibly be
considered as the ambiguity biases, and the magnitude of ionospheric change between

epochs depends on the sampling rate.

The last column of Table 4-2 gives the effect of the integer biases on the mean value of
L1 and L2 carrier phase ranges, which has been used to verify the successful results in
Section 4.7.2.
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Table 4-2. Ambiguity biases causing 8A;,, <35.0 cm

8N, (cycle) | 8N, (cycle) | 84, (cm) ';_(lIBAVNUJrKZSAVNLZ) (cm)
* + F2.85 + 74.69
+5 +4 +2.54 ' + 96,42
+ + 70.31 +171.11
+13 +10 73.17 +245 80
+14 +11 +223 +267.52
+18 +14 F0.63 +342.21
+19 +15 +4.76 +363.94

4.6.2 Adaptation

If the resolved integer ambiguities are incorrect, in general the wrong integer ambiguities
will refer to more than one satellite, and it is almost impossible to identify which
ambiguity is incorrect. But one thing can be confirmed, and that is that some biases are

present in the observations.

If instantaneous ambiguity resolution is to be attempted, the minimum number of
sateflites should be five. If six or more satellites are observed, some of these
observations could be eliminated. All combinations of five or more satellites from all
observed satellites should be tested. This procedure has been implemented in software if
the ambiguity resolution has failed by eliminating one (or more) satellite (at least five
satellites are kept), starting with the one with the lowest elevation, and the procedure
repeated until ambiguity resolution is successful. If all possible sets of five or more
satellites are combined and the ambiguity test still fails, the ambiguity resolution
procedure is considered to have failed. This procedure ensures that the ambiguity

resolution success rate increases significantly.
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4.7 Experiments

The results of short-range experiments are presented in order to test the improvements
due to the real-time stochastic model, new criteria, and the fault detection and adaptation
procedure, which can be used for medium-range positioning as well. The functional
model using multiple reference station to eliminate or mitigate the biases due to orbit
errors, ionosphere, troposphere, and multipath will be tested in the medium-range

experiment.
4.7.1 Short-Range Experiments

The suggested functional model for multiple reference stations can be easily simplified to
the one reference station case, for which orbit bias and ionospheric delay cannot be

eliminated, but they can be ignored due to the short-range mode being tested.

Three experiments have been carried out to test the proposed technique. The first one is
a static experiment using data collected between 8:00am-11:00am on 21 August, 1995,
in Bandung, Indonesia, using two Ashtech Z12 GPS receivers. The data rate is 15
seconds and a total of 720 epochs were observed. The baseline length is 11287.450
metres. The instantaneous ambiguity resolution results can be easily checked by studying

the repeatability of the baseline results determined at each epoch.

The second experiment was carried out on 17 January, 1996, using an Ashtech Z12 GPS
receiver mounted on a car. A permanent GPS station on the Mather Pillar, on the roof
of the Geography & Surveying Building, at The University of New South Wales,
equipped with an Ashtech Z12 GPS receiver, was selected as the reference station. The
data rate was 1 Hz. After about 20 minutes of static occupation (approximately 5.2km
away from the reference station), the roving receiver started to move along Foreshore
Road, Sydney, and then returned to the starting point. This was done for a total of five
runs. The trajectory of the first run is shown in Figure 4-5 (the subsequent four runs are
almost identical). The number of satellites observed during the experiment is illustrated
in Figure 4-6. The maximum velocity was 27.6m/sec, and the maximum acceleration
was 2.9 m/sec2. The continuity of the integer ambiguity is used to check whether the
instantaneous ambiguity resolution is correct or not.
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Figure 4-5. Trajectory of Ashtech receiver during run 1 on 17 January, 1996
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Figure 4-6. Number of satellites observed during experiment on 17 January, 1996

The third experiment was carried out on 7 April, 1996, using one Ashtech Z12 GPS
receiver and one Leica System 300 GPS receiver, both mounted on a car with antennas
separated by about 60cm. A Leica System 300 GPS receiver was set up at Ollie Webb
Reserve, Sydney, and operated as the reference receiver. The data rate was 1 Hz. After
about 25 minutes of static occupation (approximately 7.5km away from the reference
station at the beginning), the roving receivers started to move along the M3 Freeway,
Sydney, then back to the closest point on the other side of the road. The trajectory is
shown in Figure 4-7 (the maximum distance from the reference receiver was 13.7km).
The number of satellites observed during the experiment is illustrated in Figure 4-8. The
maximum velocity was 26.5m/sec, and the maximum acceleration was 2.9m/sec2. Care
was taken to keep satellites locked on during the total observation span, but cycle slips
did occur several times. Fortunately the Ashtech Z12 receiver kept tracking at least five
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satellites on the L1 frequency throughout the observation span, although PRN 21 and 22
lost a few epochs of data. A reliable trajectory for the Ashtech Z12 antenna can be
determined using the L1 carrier phase observations. This is considered to be the true
trajectory for checking the instantaneous ambiguity resolution results for the roving
Ashtech Z12 receiver. The constant distance (about 60cm) between the Ashtech Z12
and Leica System 300 antennas is used to check whether the instantaneous ambiguity

resolution is correct for the roving Leica System 300 receiver.
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Figure 4-7. Trajectory of the car on 7 April, 1996
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Figure 4-8. Number of satellites observed during experiment on 7 April, 1996
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Firstly, all data processing has been carried out using the same observation weights. The

a priori standard deviations for the carrier phase observations were carefully selected

because the tests are sensitive to these values. Six different discrimination tests were
Q.

used: (1) select the integer ambiguity set which gives Qg nin; (2) test —Exse 52, (3)

Fix, min

R -
test Eﬂ >2; (4) test Rﬂ >15;(5)test R —R_;. >G5 K,, and K, =12 (because
min min

K, =15 is too conservative in these experiments); and (6) the new discrimination tests
(equations (4-54, 4-57)) with B, = 0.8 and 3, = 0.8. The results are listed in Columns 3
to 8 in Table 4-3. For each experiment, three sub-rows are included. The first sub-row
is the number (and percentage) of epochs for which ambiguity resolution is successful on
an epoch-by-epoch basis; the second sub-row is the number of epochs (and percentage)
which pass the validation criteria tests, but for which the result is incorrect, and; the third
sub-row is the number of epochs (and percentage) which do not pass the validation
criteria tests. Column 9 in Table 4-3 gives the mean computation time for one epoch
processing using a 486 DX4-100MHz PC (from input of the raw observation data to the
final positioning results), and shows that the integrated method has high computational
efficiency. On the other hand, it also shows that quite a large percentage of epochs
(2.8%) give the wrong ambiguity for test 1 on the Leica-Leica baseline. If discrimination
tests 2 and 5 are used on this baseline, Columns 4 and 7 indicate no wrong ambiguity,
but a large percentage of epochs are rejected (maximum values 31.6% and 22.5%,
respectively, for all baselines). The other tests result in some wrong integer ambiguity

sets being accepted.

Secondly, the real-time stochastic model improvement procedure has been tested. The
values of a,, a; and E, in equation (4-27) are listed in Table 4-4. The results of the
real-time estimation of the scale factors of the pseudo-range and carrier phase
observations for the Leica-Ash experiment are plotted in Figure 4-9. (The scale factor
for the other experiments has a similar signature.) The positioning performance is shown
in Table 4-5. Note that the mean computation time is not much changed. However, the
percentage of wrong ambiguity sets being accepted has been significantly reduced. All
discrimination tests do not accept any wrong integer ambiguity set, and the percentage of
successful single epoch positioning results has increased significantly. Although the test

?R-Si> L5 and the new discrimination tests both give a higher percentage of success
min
rates than the others, the new discrimination test is more theoretically rigorous. It also

shows that false ambiguity resolution for some epochs cannot be avoided by
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improvements to the stochastic model. For example, there is still wrong ambiguity

resolution 38 times for the Leica-Ash experiment. Functional model improvements,

using an adaptive procedure, will therefore still be necessary.

Thirdly, the TEC test, which makes use of the correlation information between
neighbouring epochs, has been applied for further testing of the ambiguity resolution
results. The TEC value should not change by very much within a short time span (Figure
4-10). This test is a necessary condition, but not a sufficient condition. If the ambiguity
resolution cannot pass this test, the ambiguity resolution will also be considered wrong.
Figure 4-10 shows that some of the incorrect ambiguity resolution epochs can be

identified when test equations (4-62) is used.

Table 4-3. Positioning performance using different discrimination tests (same weight for

all carrier phase observations and same weight for all pseudo-range observations)

100

Baseline wittout | Huwe o | Ry Ree 015 | ReRup@K| NewTest | Time
Name Test Chionin R ' (ms)
Static Correct | 690 (95.8) | 582 (80.8y | 597 (82.9) | 658 (91.4) | 666 (92.5) | 685 (95.1)
Baseline | Wrong | 2 (@©3) |0 0 0 0 0 99
(21895 | Reject | 28 (395 | 138 (92| 123 a7.1) | 62 86 | 54 (75| 35 (49
Ash-Ash Correct | 3656 (99.1) | 3436 (93.1) | 3551(96.3) | 3657(99.1) | 3593 (97.4) | 3662 (99.3)
(17.1.96) | Wrong | 25 (07| 0 0 0 0 0 80
Reject | 8 (02)] 253 (69| 138 37 [ 32 9] 9% @6 | 27 @7
Leica-Ash | Correct | 2761 (98.6) | 2503 (89.4) | 2534(90.5) | 2738 (97.8) | 2542 (90.8) | 2751 (98.2)
(7496 | Wrong | 40 (19 |0 0 4 onlo 4 1| 89
Reject | 0 298 (106) | 267 (95| 59 (21| 259 @2 | 46 (D
Leica- Comrect | 2702 (96.5) | 1915 (68.4) | 2143(76.5) | 2576 (92.00 | 2172 (77.5) | 2656 (94.8)
Leica Wrong | 79 @8) |0 4 n]|14 @©s]o 10 04| o1
(7.4.96) Reject | 20 (0.7) | 886 (31.6) | 654 (23.4) | 211 (7.5 629 (22.5) | 135 (4.8
Table 4-4. Standard deviations of the observations
a, (cm) a, (cm) | E, (degree)
Carrier Phase
Observations 0.3 2.6 20
Pseudo-range
Observations 7.0 60.0 20
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Figure 4-9. Scale factors for pseudo-range observations (Upper) and scale factors for

carrier phase observations (Lower) in Leica-Ash (7.4.96) data
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Finally, the adaptive procedure is implemented if ambiguity resolution fails using the new
discrimination test and/or fault detection based on the TEC test, and ambiguity resolution
is attempted until it is successful or the number satellites is less than 5. The experimental
results are listed in Table 4-6. The positioning success rates are now 100%, 100%,
99.7%, 98.4% for the four sets of data considered. Compared with the standard results
(Column 4 in Table 4-3), 80.8%, 93.1%, 89.4%, 68.4% for the four sets of data, the

improvement in performance is very significant.

Table 4-5. Positioning performance using different discrimination tests

(weights are determined using proposed stochastic model)

Baseline Without ﬁ 2 -iR—sei =32 ;Rﬁ >15 K“—M'KZ New Test Time
Name Test (ms)
Static Correct | 720 (100) 711 (98.8) | 715 (99.3) 719 (99.9 [ 718 (997 | 719 (99.9)

Baseline Wrong | 0 0 0 0 0 0 98

21.8.95) | Reject | 0 o anl| 5 wnl 1 on]| 2 ©n| 1 o

Ash-Ash | Cotrect | 3685(99.9) | 3461 (93.8) | 3626 (98.3) | 3686(99.9) | 3616 (98.0) [ 3682 (95.8)

(17.196) | Wrong | 2 (0.05) | 0 0 i 0 0 79

Reject | 2 (005)] 228 (62)| 63 (7| 3 @©H]| 3 @0 7 ©

Leica-Ash | Correct | 2763 (98.6) | 2586 (92.3) | 2645(94.4) | 2736 (97.7) | 2494 (89.0) | 2683 (95.8)

(7.4.96) Wrong 38 (14 |0 0 0 0 0 87
Reject | O 215 (7N | 156 (5.6) ) 65 {(23) | 307 (11.0) [ 118 {4.2)
Leica- Correct 2794 (99.8) | 2340 (83.5) | 2469(88.1) | 2703 (96.5) [ 2399 (85.6) | 2619 (93.5)
Leica Wrong 7 (@0 0 0 0 0 88
{7.4.96) Reject | 0 461 (1635) | 332 (119 | 98 (3.5 [ 402 (144) | 182 (6.5)

Table 4-6. Instantaneous ambiguity resolution using adaptive procedure

Total Fix Ambiguities Mean

(Adaptive Procedure) Time

Number Correct Wrong | Reject {(ms)
Static Baseline (21.8.95) 720 720 (100) 0 0 98
Ash-Ash (17.1.96) 3689 3689 (100) 0 0 80
Leica-Ash (7.4.96) 2801 2794 (99.7) 0 7 90
Leica-Leica (7.4.96) 2801 2757 (98.4) 0 44 93
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4.7.2 Medium-Range Experiment

The medium-range experiment is described to test the efficiency of bias elimination in the
functional model, using multiple reference stations for ambiguity resolution and precise
trajectory determination. The experiment was carried out on 14 December, 1996, using
four Ashtech Z12 GPS receivers. A permanent GPS station, the Mather Pillar, on the
roof of the Geography & Surveying Building, at The University of New South Wales,
was selected as one of the reference stations. The other two reference stations were
located at Stanwell Park, to the south of Sydney, and at Springwood, to the west of
Sydney. The roving receiver was mounted on a car and the experiment started at the
side of the M3 Freeway, 31.44 km, 34.11 km and 46.5 km distant from the Mather Pillar
station, Springwood station and Stanwell Park station, respectively. After about 15
minutes of static occupation (although only the data from the last one minute was used
because there were not enough visible satellites during the other 14 minutes), the roving
recetver started to move along the M3 Freeway, and then back to nearly the same point
as the start point, with a further 15 minutes of static occupation. The data rate was 1 Hz
and a total of 1903 epochs were used. The locations of the reference stations and the
trajectory of the roving receiver are plotted in Figures 4-11a and 4-11b. The skyplot of
the observed satellites is shown in Figure 4-12a. The number of observed satellites is
plotted in Figure 4-12b.

The Mather Pillar reference station is equipped with a permanent Ashtech Z-12 GPS
receiver, managed by the Australian Surveying and Land Information Group as part of
their AUSNAYV network. This network is being established in ali capital cities, and other
centres, to satisfy user requirements for real-time DGPS corrections, transmitted by the
federal government's Australian Broadcasting Corporation (ABC) on the sidelobe signals
of certain of their FM radio stations. The coordinates of this station in the W(GS-84
datum are accurate to half a metre or better.

The coordinates of the other two reference stations, Springwood and Stanwell Park,
were determined using the traditional long-range static positioning procedure (Appendix
B), and are referenced to the known position of the Mather Pillar. After the integer
ambiguities for the L1 and L2 carrier phase observations are resolved, the ambiguity-
fixed solution is determined using the ionosphere-free phase combination and the IGS
precise ephemeris extracted from "igscb.jpl.nasa.gov". As a result, the locations of the
reference stations can be considered as being known.
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Assume that the Mather Pillar is reference station 3, and Springwood and Stanwell Park
are reference stations 1 and 2, respectively. The correction terms [ocl Vi3 +at, V}‘é]

and [al . V11:32 +a, V}%] in equations (4-21a) & (4-21b) for the L1 and L2 carrier phase

observations are plotted in Figures 4-13a, 4-13b, 4-13c, 4-13d and 4-13e, for satellite
PRNs 4, 5, 9, 10, 30 (PRN 24 is the reference satellite). In a similar way, the correction
terms [al -fo; +0, -Vf;] and [Otl . Vf}f +a, AVZ'?] can also be determined.
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Figure 4-11a. Configuration of the reference GPS stations and the roving GPS receiver
trajectory
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Figure 4-11b. Trajectory of the roving GPS receiver
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Figure 4-13a. The corrections for double-differenced carrier phase observations for
satellite pair PRN 24 and PRN 4
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Figure 4-13b. The corrections for double-differenced carrier phase observations for
satellite pair PRN 24 and PRN 5
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Figure 4-13d. The corrections for double-differenced carrier phase observations for
satellite pair PRN 24 and PRN 10
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Figure 4-13e. The corrections for double-differenced carrier phase observations for
satellite pair PRN 24 and PRN 30

The observation equations (4-21a) to (4-21d) have been formed and the integrated
method with three-step improvements has been implemented. The computation
procedure for the one-epoch solution can be simplified in the integrated method. The

mean value of the corrected pseudo-range observations on L1 and L2 is used to estimate
the coordinate parameters X and the co-factor matrix Qg . The ambiguity-float
C

solution for X, and the associated variance-covariance matrix, can be estimated using

equations (4-22) & (4-23), in which the double-differenced carrier phase observations
are replaced by the corrected double-differenced carrier phase observations.

There are three improvements used within the integrated method: (1) new criteria to
validate the integer ambiguity set, (2) the real-time stochastic model and (3) the adaptive
procedure (reference to Sections 4.4, 4.5 and 4.6). The results have been separated to
illustrate the improvements from these three steps. Firstly, the integrated method with
step (1) is used, and the results are presented in Row 2 of Table 4-7. Then, the integrated
method with steps (1) and (2) is used and the results are presented in Row 3 of Table 4-
7. Finally, the integrated method with all three steps is used and the results are presented
in Row 4 of Table 4-7. The adaptive procedure (step (3)) requires the elimination of
satellites from the solution. The number of satellites used is plotted in Figure 4-14, and
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should be compared with the original set of observed satellites in Figure 4-12b. The last
column in Table 4-7 gives the mean computation time for one epoch processing using a
486 DX4-100MHz (from input of the raw observation data to the final positioning
results, excluding the computation of the correction sequences illustrated in Figures 4-
13a to 4-13e).

Table 4-7. Instantaneous ambiguity resolution for medium-range kinematic positioning
using the integrated method with three-step improvements

Total Fix Ambiguities Mean
Number | Correct | Wrong | Reject | time (ms)
Integrated method with (1) 1903 1840 0 63 62
Integrated method with (1, 2) 1903 1849 0 54 63
Integrated method with (1, 2, 3) | 1903 1903 0 0 71
? T 1 1 1 1 T T T 1 T
&6 ]
s st :
| 1 | 1 1 1 | 1 | [

4
1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600
Secends Counted from 11:00am on 14 Dec., 1996 (Local)

Figure 4-14. Number of the satellites used for ambiguity resolution

Independent verification of the successful ambiguity resolution is difficult to obtain for
this experiment. The orginal design of the experiment called for the use two receivers on
the car, and the constant distance between the two antennas could be used to verify the
results. However, due to a problem with the portable PC computer, the NovAtel
Millenium receiver could not be used. In addition, there were not enough GPS receivers
to allow for an extra set up at site close to the roving receiver, which would have
provided a short-range solution. Fortunately there are four satellites (PRNs 4, 5, 9, 24)
tracked during the whole observation session and the comtinuity of the resolved

ambiguities for these four satellites can be used to verify the results. The double-
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differenced A,,, and 84, , sequences for each pair of satellites, and the two receivers at
Mather Pillar reference station and on the car, can also be used as a necessary condition
for successful ambiguity resolution. Figures 4-15a to 4-15¢ illustrate the A, (equation
(4-60)) sequence and the change 8A.  (equation (4-61)) between epochs. From these
sequences it can be seen that the resolved ambiguities should be correct or have the
values listed in Table 4-2. The residual series of the double-differenced carrier phase
observations can also be used as the other necessary condition for sucessful ambiguity
resolution. Because the integer ambiguity values for the four satellites (PRNs 4, 5, 9,
24) should be correct, if the ambiguities for the other two satellites (PRNs 10 and 30) are
biased by the values listed in Table 4-2, the mean value of the L1 and L2 carrier phase
ranges used for positioning will therefore be biased by the values listed in the last column
of Table 4-2. Consequently the residuals will be quite large. The residual sequences are
plotted in Figures 4-16a to 4-16e, and the sucessful results can be verified because the

residuals are very small for all epochs.
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Figure 4-15a. A, , and 8A, , sequences for the satellite pair PRNs 4 and 24
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Figure 4-15b. A,,, and 8A,,, sequences for the satellite pair PRNs 5 and 24
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Figure 4-15c. A,,, and 8A,, sequences for the satellite pair PRNs 9 and 24
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Figure 4-15e. A, and 8A,, sequences for the satellite pair PRNs 30 and 24
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Figure 4-16a. Residuals of the mean values of the corrected carrier phase observations
on L1 and L2 (PRNs 4 and 24)
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Figure 4-16b. Residuals of the mean values of the corrected carrier phase observations
on L1 and L2 (PRNs 5 and 24)
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Figure 4-16c¢. Residuals of the mean values of the corrected carrier phase observations
onL1 and L2 (PRNs 9 and 24)
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Figure 4-16d. Residuals of the mean values of the corrected carrier phase observations
on L1 and L2 (PRNs 10 and 24)
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Figure 4-16e. Residuals of the mean values of the corrected carrier phase observations
onL1 and L2 (PRNs 30 and 24)

4.8 Concluding Remarks

Based on the error analysis presented in Chapter 3, a linear combination functional model
is proposed, formed from the single-differenced functional equation for baselines from
the user roving receiver to three or more reference stations. In the functional model the
orbit biases and ionospheric delay terms can be eliminated and, in addition, the
tropospheric delay, multipath and the observation noise can be reduced. Because the
linear ionospheric delay interpolation model has been used in the derivation, the
separations between reference stations should be less than about 200 km, a distance that
1s dependent on the ionospheric conditions even though the satellite-by-satellite and
epoch-by-epoch method is used. The roving receiver should be located within the figure
formed by the reference stations so that the coefficients are less than 1, and the muitipath
and observation noise are reduced.
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From the computational point of view, the proposed integrated method using pseudo-
range and carrier phase observations makes instantaneous ambiguity resolution possible.
The computation time is sufficiently short to support real-time applications. With the
integrated method, a three-step quality control procedure is used to derive reliable
results. The suggested real-time stochastic model estimation procedure is a refinement
of the fidelity of the functional and stochastic models and makes the estimation results
more reliable. The suggested procedure for discriminating between the integer ambiguity
sets which generates the minimum quadratic form of the residuals and the second
minimum one has rigorous statistical meaning and is very efficient for practical use. The
global measure related to the neighbouring epochs (the variation in the TEC quantity)
has been used to define necessary conditions to enhance the reliability of the results. The
adaptive procedure is very powerful and leads to maximum positioning success rates.
Using the proposed integrated method with the three-step quality control procedure,
positioning success rates of 100%, 100%, 99.7% and 98.4% have been obtained for the
four sets of data considered. These are a significant improvement on the success rates of
80.8%, 93.1%, 89.4% and 68.4%, obtained using the standard ratio test. In the case of
the medium-range experiment the improvement is also significant, there is a 100%

success rate.

This algorithm has been designed for real-time applications. Although the data has been
post-processed, all calculations were carried out in a simulated real-time processing

mode.

Although in the case of the medium-range experiment there were not enough GPS
receivers to allow for verification, and the observation session is very short {one hour for
the reference stations and 32 minutes for the roving receiver), and the separations
between the three reference stations are 40.0 km, 65.6 km and 70.7 km, and the distance
from the roving receiver to Mather Pillar reference station ranges from about 31.5 km to
37.5 km, impressive results were nevertheless obtained. This experiment has
demonstrated the power of the proposed technique for medium-range kinematic
positioning. Greater separation between the roving receiver and reference stations will

be tested in the near future.
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Chapter 5

AMBIGUITY RECOVERY TECHNIQUE FOR
LONG-RANGE GPS KINEMATIC POSITIONING

5.1 Introduction

Long-range GPS kinematic positioning to sub-decimetre accuracy requires that the
carrier phase ambiguities be resolved to their integer values. There are many techniques
for on-the-fly ambiguity resolution for short baselines {<20km), but none have been
proposed explicitly for long-range kinematic applications (100s to 1000s km). Colombo
et al. (1995) suggested a two-step procedure. The first step is an initialisation which can
fix the initial integer ambiguity using static data at the beginning of a kinematic session.
The second step is to compute the trajectory using a Kalman filter and smoothing
algorithm. This technique requires a re-initialisation procedure if cycle slips occur during
the period the antenna is in motion. This involves a cycle slip repair procedure, or
ambiguity resolution on-the-fly, for the long-range kinematic positioning case.

A cycle slip repair algorithm using undifferenced, dual-frequency carrier phase data and
P-code pseudo-range data was suggested by Blewitt (1990). This algorithm requires a
smoothly varying ionospheric electron content and the algorithm was successfully
applied for single static station data when Anti-Spoofing (AS) was off. When AS is on,
the precise pseudo-range data output by receivers such as the Ashtech Z12, Leica SR
399 or Tnimble 4000SSi is not accurate enough to determine the widelane cycle slips,
and subsequently the ionospheric combination does not have an integer ambiguity
characteristic. Therefore, another combination of carrier phase observations
(=79, +9¢,), together with the widelane observable, was suggested by Han & Rizos
(1995a). However, for a mobile receiver, especially where the satellite elevation is
relatively low (< 40 deg ), or when a few tens of seconds of data gap exist, the cycle slip

cannot be uniquely determined.
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Another way of recovering cycle slips is to use ambiguity resolution techniques. Using
the search procedure in the measurement domain (Blewitt, 1989; Abidin & Wells, 1990)
it is difficult to determine the widelane integer ambiguity using precise pseudo-range data
when AS is on. On the other hand, it is also difficult to obtain high precision real-valued
ambiguity estimates using the ionosphere-free combination even when the widelane
ambiguity is known. In the case of the search techniques in the coordinate domain (Han
& Rizos, 1996b; Mader, 1992; Mok, 1996) the ionospheric effect is the main obstacle for
long-range kinematic positioning. Using the search technique in the estimated ambiguity
domain based on integer least squares estimation (Han, 1995c; Teunissen, 1994), the
ionosphere is considered an unknown parameter, which results in the geometry being
significantly worse and the resulting large search region makes this technique difficult to
apply for long-range GPS positioning.

If the cycle slip repair procedures and ambiguity resolution techniques are combined to
resolve the cycle slip, it is found that all of these ambiguity resolution techniques will
make contributions to the cycle slip repair process. The problem of cycle slip detection
and repair does not involve "absolute" ambiguity determination, but rather "relative"
ambiguity determination over time. The concern is only with the biases on phase
observattons that change with time. It is then possible to carry out cycle slip detection
and repair using one-way data within a short time period. If the integer ambiguities at
previous epochs are known, the ionospheric delay can be computed and these biases at
the current epoch can be predicted with high precision. This means that the Ambiguity
Function Method (AFM) can then be used to detect and remove cycle slips, even for the
long-range kinematic positioning case. If integer ambiguity candidates are available from
the cycle slip repair procedure, the search in the estimated ambiguity domain will become
easier and validation criteria can be used to verify that the selected integer ambiguity set
1s significantly better than others. /n this chapter, an ambiguity recovery procedure that

integrates ambiguity resolution and cycle slip repair techniques is proposed.
5.2  GPS Long-Range Kinematic Positioning using
Single Reference Stations
The observation equations and the ambiguity resolution procedure for high precision

long-range static positioning were described in Blewitt (1989), and are based on the
following equations:
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I
f) !
|
1
1
£y
I
Qyhy =p- F“}“Nzlz +Ey, (5-4)

2

where R, and R, are the one-way precise pseudo-ranges on L1 and L.2; ¢, and ¢, are

the one-way carrier phase observations in units of cycles; p is the geometric range from

station to satellite; I is a function of the Total Electron Content (TEC) of the ionosphere;
f,, £, and A,, A, are the frequencies and wavelengths of the L1 and L2 carrier waves

respectively; N; and N, are the integer cycle ambiguities of the L1 and L2 carrier phase

observations; and ¢ is the observation noise with respect to the observation type
indicated by its subscript. The carrier phase combination (i, j) can be represented as (Han
& Rizos, 1996b):

@;;=1-0;+] 0, (5-3)
and its integer ambiguity and wavelength are:
Ni,j :i'N1+j'N2 (5'6)

Aij=c/(-fi+)f) (5-7)

where ¢ in equation (5-7) is the speed of light in a vacuum, i and j are arbitrary integer
numbers. The double-differenced ionosphere-free combination observation can be
represented by the formula:

AV _soh77-60 = AVP+AVN Ay 60+ EAVer sohr g0 (5-8)

If the integer ambiguities AVN, and AVN, have been determined in an initialisation

procedure, the integer ambiguity for the ionosphere-free combination can be determined
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as AVN,; ¢ =77-AVN, —60-AVN, . The double-differenced ionospheric delay can be

also computed using the following relation:

2
av] L) - [(ave - AN (890, -AVX)) (59
1 1 12

If there are no cycle slips during the whole observation session the integer ambiguity will
remain a constant. If cycle slips do occur, a cycle slip repair or ambiguity recovery

technique should be implemented.

5.3 Cycle Slip Detection and Repair using
Precise Pseudo-Range Data

Cycle slip detection and repair for one-way data was first suggested by Blewitt (1990)
for static environment. For the kinematic environment, especially when AS is on, a more

efficient cycle slip detection and repair procedure is suggested by Han & Rizos (1995a),
based on the widelane and ¢_; o combinations.

5.3.1 Selection of Carrier Phase Combinations for
Cycle Slip Detection and Repair

Ionosphere-free combination

Based on equations (5-1) and (5-3), the geometry-free and 1onosphere-free combination

of pseudo-range observations can be derived:

1 __—f,f (R, -R,) (5-10)
£27 g2t 7
f} fy
= R, - R 5-11
p f12 B f22 1 f12 _ f; 2 ( )

Based on equations (5-2) and (5-4), the carrier phase combination @, ; can be expressed

as:;
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. . 1 i ff} I
Cmieg g, = —a—p—| eI 5-12
Pi,; ¢TI Al P [7“1 A f22 2 i, ( )

Substituting equations (5-10) and (5-11) into equation (5-12) gives:

Ni.,j = (pl,] +a'R1 +b'R2 (5'13)
where
-G f2+f2 . 2fif, ) _9240( +j)+289-i (5.14)
fz—fz f2—f2 A 23291,
2 2 . .
b= §f1f22+j_f12+f22 1 9240( +j) +289- j (5-15)
ff—f; T fl-f} A, 2329,

The standard deviation my, . of the computed ambiguities N; ; can be represented as

follows:

_ 2 2 2 2 2 1 12 2 N
mNi’j—\/l mg, +j°-my +a°-mp +b° my (5-16)

Note that for some combinations (i, j) this is dominated by the uncertainty in the pseudo-
ranges. Table 5-1 summarises the characteristics of some useful dual-frequency carrier

phase combinations suggested by Han & Rizos (1996b). In particular note the range of
values of my, in the last column of Table 5-1. The "best" combination, or that with the

smallest standard deviation my, 18 Qp .

Table 5-1. Standard deviation of real-valued ionosphere-free ambiguities

Obs. Type A (m) a b my (5)
Py 0.190 | 21.501 16.246 8.085
P2 0.244 |  20.849 16.754 8.024
P77,-60 0.006 | 404.638 | 245.690 | 142.020
P1,-1 0.862 0.652 -0.508 0.248
P 0.341 20.197 17.262 7.971
P34 1.628 18.892 18.278 7.886
P79 14.653 37.133 | 37.065 15.740

* assume that my, =m, =00lcycle and my =m =03 metre
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Hence, using equation (5-13), it appears that N, _; can be well determined, but it is

difficult to compute any other ambiguities, including the L1 and L2 integer ambiguities.
Substituting i =1 and j=—1 into equation (5-13), the following relation can be derived:

17 17

R, — R 5-17
137-%,  © 137-h, G-17)

Nl,—l =Qy—

which is one combination used for cycle slip detection and repair if precise pseudo-
ranges R, and R, are available.

Ionosphere-biased ambiguity estimation

In order to derive the N, and N,, other combinations should be selected, which will be

biased by the ionospheric delay. Another formula that includes the ionospheric delay

term and minimises the pseudo-range contribution is:

I

— 5-18
i (5-18)

R=p+pB-
where R can be chosen as being either R; or R,, or the mean value of R; and R,, and
[ is defined as:

1 for R =R,

B=41647 for R=R, (5-19)
1323 for R=(R;+R,)/2

Combining equations (5-12) and (5-18), the following relation can be derived:

R I
Nii= 0 —— 7 (5-20)
] L] A’i,j J f12
where
y..z(LJri.f_lz]Jr B :(4620-i+5929-j+ﬁ)_ 1 (5.21)
MM Ay £7) 0 Ay \46204i-+3600- M

The standard deviation of the computed N; ; (with the ionospheric effect removed) can

be expressed as:
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. . 1
my, . = \/12 -mil +j -mfp? +—?—-m§ (5-22)

1.]
1,]

The smaller the observation noise of R and the larger the wavelength A, ;, the smaller the

noise of the computed N,;. For a single pseudo-range, the raw pseudo-range

measurement has minimum noise. For two pseudo-range observations, the mean value of
R, and R, has the minimum noise. Table 5-2 gives the noise of the computed N, _,,

N_;4 and N_,; o and their ionospheric parameters y using R;, R, or the mean value of
R, and R,.

Table 5-2. Standard deviation of real-vatued ionosphere-biased ambiguities

R N1,-1 N-3,4 N 7.9

my, Y11 My, , Y34 my Y79
R, 0.348 -0.329 0.191 11.825 0.116 | 23.979
R, 0.348 0.422 0.191 12.222 0.116 | 24.023

mean 0.247 0.047 0.140 12.024 0.115 24,001

Note to Column my, assume that m, =m, =0.01 cycle and

mp =my =03 metre

If the ionospheric bias can be predicted with high precision over a short period, the
computed value of N_,, will be of high precision. If only one precise pseudo-range R,

or R, is available, equation (5-20) should replace equation (5-13) to compute N, _,, but
considering the odd-even relationship between N, _; and N_;,.

Although the ionospheric combination:

I I
- _(f_z —~ f—zj +N; _ A~ Ny(h, —4y) (5-23)
1 2

has no pseudo-range noise effects, it has no integer characteristic. If and only if N, _, is
known, the equivalent wavelength becomes A,—Ai;~54cm. But N,_, cannot be

determined when AS is on and the antenna is moving. Therefore, the best choice is
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N_;, and equation (5-20) can be used to compute N_;, by substituting i=-7 and =9.
If only one of R, and R, is available, equation (5-20) is also selected to compute N, _; .

5.3.2 Cycle Slip Detection and Repair for One-Way Data
Real-valued cycle slip estimations

If precise pseudo-ranges on L1 and L2 are available, equation (5-17) can be used to
compute the widelane ambiguity sequence N;_;(k) and equation (5-20) can be used to

compute the N_; 4(k) using the mean value of the two precise pseudo-ranges. If only

one of the precise pseudo-ranges on L1 and L2 is available, equation (5-20) can be used
to compute the sequences N; ;(k) and N_;4(k).

The biases caused by the ionospheric delay have very strong correlation between epochs
and can be represented as a linear function of time, for short periods of up to a few
minutes. If some epochs are used to fit the ionospheric delay as a linear function of time
and to predict the value at the next epoch, the differences between the predicted value
Ni_1(k) (or NZ;4(k)) using previous epochs and the computed value N, _,(k) (or
N_;4(k) ), using observations at this epoch by equations (5-17) and (5-20), can be

obtained:
DNi,—l (k) = Nl,—l(k) - N1_,—1(k) (5‘24)
DN_; 4(k) = N_7o (k- No7s (k) (5-25)

The standard deviations of DN, _;(k) and DN_;4(k) can also be obtained. If no cycle
slip or multipath effect is present, the noises of DN, _,(k) and DN_;4(k) are dependent

on the correlations of the ionospheric delay and the noise of the observations. If the
ionospheric delay changes rapidly, the noises will be larger. This has been verified by the

experimental results in Section 5.6,
Determination of the integer cycle slip candidates

Based on the cycle slip estimates (equations (21) and (22)) and their standard deviations,
all candidates for integer cycle slips on ¢, ; and ¢_,, can be formed using the odd-

even relationship, which can be derived from the definitions of N; _; and N_;,:
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if N, ; is even — N_; , has to be even

if N,_, isodd —> N ;4 has to be odd

This odd-even relation implies that when one of these is resolved, the effective

wavelength of the other is doubled, and can therefore be resolved more easily. The cycle
slips CS, _; and CS_, ; are subject to the same conditions:

if CS, _; is even — CS_;, has to be even
if CS, _; is odd — CS_; 4 has to be odd

Obviously it is easy to determine CS,;_, when CS_,, is determined, and vice versa. The

cycle slips on @, and ¢, can then be determined using the following relations:

CS, = %(cs_.,,9 +9-CS, ) (5-26)

CS, = %(CS_Z9 +7-CS, ) (5-27)

For a static recetver, this step can detect and repair almost all cycle slips due to the low
noise. However, for a roving receiver, especially where the satellite elevation is relatively
low (< 40°), or when a few tens of seconds data gap exist, the cycle slip cannot be
determined as a unique set. Therefore, many cycle slip candidate sets will be formed. The

following tests will be necessary.
5.3.3 Cycle Slip Detection and Repair for Double-Differenced Data

If the cycle slip in one-way carrier phase cannot be determined as one set using the above
procedure, the geometric constraints and Kalman filter prediction information should be
used to create validation and rejection criteria in order to resolve the correct set of cycle
slips. Using equations (5-24) and (5-25), the real-valued cycle slip estimates and their
standard deviations can be computed. The search regions for DN, , and DN_;, can be
formed in the one-way case and then used to create the search region for the double-
differenced observable. The satellite with the highest elevation is selected as the
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reference satellite. For each double-differenced cycle slips, the following tests should be

applied:

Test 1: Tests on the innovation sequences of AV ; gand A Vﬁ?_w

The ionospheric delay value for each double-differenced observable can be predicted

using the ionospheric delay values computed at the previous epochs (equation (5-9)), and
the ionosphere-corrected observable of AV(f)L_l and AVp_;, can be obtained. The

innovation values can be computed using the following equations:

AVL, = (Avél,—l —AVCS, DA - HX(-) (5-28)
AVL_?,Q = (AV(’|\)_7,9 - AVCS__»'?!g)?\‘M-/’g - I_D((_) (5"29)

If AVL,_; ~N(0,D,_, +HP(-)H") or AVL_;, ~ N(0,D_;, +HP(-)H"), AVCS,_,
or AVCS_;, will pass the tests, otherwise AVCS, ; or AVCS_;, should be rejected.

X(—) and P(-) are the Kalman predicted position and its variance matrix; H is the
design matrix in the Kalman filter; D, _, and D_,, are the variances of AV®, _;-A;_,

and AV(E,—'?,Q 'A-_-;r,g .

Test 2: Test on the quadratic form of the residuals of AV,

Using the ionosphere-corrected double-differenced widelane observable and the Kalman

filter predicted position, the update position and the quadratic form of the residuals
(QF,_); with respect to a cycle slip candidate set i can be computed. The following test

should then be applied:

(QFl,—l)i = VfﬁlDf,1_1V1,_1 +6X1T,-1P - (-)8X, 4 (5-30)
QF _,).

(;1)1 <F (5-31)

(QF_,)

where 'V, _, is the residual vector of the widelane observable at this epoch; 8X, _; is the
correction to X(—) using the widelane observable; F is an empirical value normally

chosen as being the value 2. If a cycle slip candidate set does not pass the test (equation
(5-31)), this set should be rejected.
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Test 3: Contrast tests on quadratic form of the residuals of AV@,, 4

Using all cycle slip candidate sets that have passed the previous tests, the cycle slip
candidates of the ionosphere-free observable can be formed. Table 5-3 gives an example
in which AVN, _; and AVN_,, are [-2,2], and all possible candidate sets are formed for
the ionosphere-free observable. The minimum discrepancy among these candidates is

10.7cm.  Fixing one set of cycle slips, the current epoch data should be used within the
Kalman filter and the quadratic form of the residuals QF;; 4, should be computed for

each set of cycle slips. If the smallest (QF;; ¢y)mn and (QF,;; 4); with respect to a

cycle slip candidate set 1 are not consistent with the relation:

(QF 77,60 )i

<F (5-32)
(QF77,—60 )mm

the cycle slip candidate set i should be rejected. F is also normally chosen as 2. If all
other sets, except the one that has the smallest (QF,; )i, are rejected, the cycle slip

set derived (QF;; g0 )n, is selected as the correct cycle slip value. Otherwise all cycle

slip sets that have passed the test (equation (5-32)) should be treated as candidates for
the next epoch.

Table 5-3. Biases of different candidates on double-differenced ranges

AVN 1-1 AVN—7,9 AVNI AVNZ AVN77,—60 ) 7\".7'7,—60

{cy) (cy) {ey) (cy) (m)

2 _10 8 11.827

2 0 9 7 21720

2 8 6 1613

1 1 5 4 0913

1 -4 3 20.806

2 1 1 20.107

0 0 0 0 0

2 11 +1 0.107

+1 1 T4 3 0.806

1 5 +4 0913

2 8 16 1.613

+2 0 9 +7 1.720

+2 10 +8 1.827
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5.4 Cycle Slip Detection and Repair
Without Precise Pseudo-Range Data

If there are more than four double-differences for L1 and L2 carrier phase and precise
pseudo-range, the above procedure will be very powerful. However, precise pseudo-
range data are not always available. Many GPS receivers do not output precise pseudo-
range data when AS is on, including the Trimble 4000SSE, Leica System 200, and
others. Although some receivers, such as the Ashtech Z12 and the new Leica System
300, output two precise pseudo-ranges on L1 and L2, the signal-to-noise ratio is
relatively low, and the precise pseudo-ranges may not always be available even when L1
and 1.2 carrier tracking are maintained. If precise pseudo-range data are lost for a
relatively long period, cycle slip detection and repair using the abovementioned
procedure will become difficult. If the carrier phase observable is maintained, but no
precise pseudo-range data is available, the cycle slip detection and repair step can be
performed using a combination of the Ambiguity Function Method (AFM) and Kalman

filtering. Details are presented below.
5.4.1 Cycle Slip Repair using the AFM and Kalman Filter

The Ambiguity Function Method is insensitive to integer biases such as cycle slips, and
hence quite suitable for kinematic positioning applications. The equivalence of the AFM
and least squares search methods has been proven (Lachapelle et al., 1992; Han, 1993).
The AFM requires good initial positioning information in order to define the search
region, and a relatively long wavelength carrier phase observable (formed from
combinations of dual-frequency phase observations), in order to reduce the maxima
points and the computation time (Ilan & Rizos, 1996b). The ionospheric effect is the
main obstacle for its application in the long-range kinematic case, even when the precise
ephemeris is available. If the AFM is not used for positioning, but rather for cycle slip
detection and repair, the ionospheric delay can be computed at the previous epochs
(equation (5-9)) using dual-frequency carrier phase observations and the known integer
ambiguities. The ionospheric delay at the current epoch can be predicted with high

precision if the prediction period is no more than a few minutes.

After the integer ambiguities are initialised, Kalman filter processing will be used to
determine the position using the double-differenced carrier phase observations. The

current version of the software considers the orbit as being known. The ionospheric
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delay can be computed using equation (5-9). For the next epoch the ionospheric delay

can be predicted, and the ionosphere-corrected carrier phase combination observations of
AV, _, and AV(p_;, at the current epoch k can be used to compute the Ambiguity

Function value:
mk . .

AX)=>. exp{i -[ZTCAV(pi’j (k) - ?%_EAVPS (X, k)} }‘ (5-33)
s=1 i,j

where X is the trial position within the search region defined by the Kalman predicted
position X(-} and its variance P(-); AVp*(X,k) is the computed double-differenced

range for the double-differenced observation pair s at epoch k using the trial position X;
m, is the number of double-differenced observations at epoch k. When A(X) is larger
than 95% of its expectation value, X will be considered to be a maxima point. If only one
maxima point is obtained, this point is assumed to be the optimal position.

First, the AFM should be performed using the double-differenced observation AVQ_;,

and the maxima positions obtained. The new search region should be centred at each
maxima position and the AFM should be performed using AV@,_,, and then a set of

cycle ship candidates can be obtained for each maxima position. The minimum distance
among the maxima points is about twice the observation wavelength (A_; , = 1628m)
for six visible satellites, and about 1.2 times the observation wavelength in the case of
five satellites (Han & Rizos, 1996b).

If only L1 carrier phase is available, the AFM can be performed using the L1 carrier
phase observations. Because the wavelength is only 0.190m, the number of maxima

points will be greater than for the dual-frequency case.
5.4.2. AFM with Constraints

Using the AFM, only fractions of the carrier phase observables are used, and hence the
data processing is easily implemented. However, there is still other information valuable
to positioning, such as the integer ambiguity values, which are not used. If two or three
satellites are still tracking with no cycle slips, or cycle slips that can be repaired using the
relevant precise pseudo-range data, their integer ambiguities can be used as constraints in
the Ambiguity Function Method described above.,
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Assume the double-differenced observation s has known ambiguities (AVN; ;) and has

been corrected. The constraint can be written as:

AVE? (k+1)~ AVNE, f%AVpS(X,l‘Hl) <EPS (31)

1,)

where EPS is a threshold value dependent on the observation accuracies, normally
selected as three times the standard deviation of the observation. This constraint will
make the search space reduce from three to two dimensions. If three satellites have no
cycle slips, two constraints can be constructed and the search space will be reduced to
one dimension. Figure 5-1 shows the search space reduced from two dimensions to one

dimension. The maxima points will be reduced from 68 to 4.

Figure 5-1. Maxima points reduced from two dimensions to one dimension

5.4.3 Validation Criteria for AFM in Long-Range Applications

Using all cycle ship candidate sets, the ionosphere-free observable at the current epoch

can be formed and used in the Kalman filter. The quadratic form of the residuals
QE;; _g; should be computed for each set of cycle slips. The same test with equation (5-

32) should be performed. If all sets except the one that has the smallest (QF,; ), are

rejected, then the identified cycle slip set is selected as being the correct one. Otherwise
all cycle slip sets that passed the test (equatton (5-32)) should be treated as candidates
for the next epoch.
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5.5 Ambiguity Recovery Procedures

All data lost at certain epochs will cause gaps. This will occur if all satellite signals are
obstructed or a failure within the receiver occurs. In general, the best observation
environment should be selected for long-range kinematic positioning, and hence data
gaps seldom occur and are usually only of short duration. The most frequent causes of
data loss are due to obstructions of the signal, or a low signal-to-noise ratio caused by
bad ionospheric conditions, multipath, high receiver dynamics, or low satellite elevation,
Except in the case of a data gap, the data available at an epoch can be divided according
to the three cases in Table 5-4.

Table 5-4. Cases of data loss

Data Available
Casel C/A, @, ¢,, P1, or/and P2
Case Il C/A, 01,0,
Case II1 C/A, ¢,

Case I: If four or more satellites have Case I data, it is considered that no data loss has
occurred because one precise pseudo-range is enough to detect and repair cycle slips

after a short data gap using the one-way cycle slip detection and repair procedure.

Case II: If less than four satellites have Case I data, but more than four satellites have
Case 1I data, the Kalman filter and AFM procedure for the detection and repair of cycle
slips can be used. If two or three satellites have precise pseudo-ranges which can be used
to determine any cycle slips, the AFM with constraints procedure can be implemented.
¢y and ¢_; , will be used in this procedure. If the biases in the observations and the
vehicle trajectory can be predicted with high precision, this procedure will be very
powerful.

Case I11: If four or less satellites have Case II data, but more than four satellites have
Case 1II data, the Kalman filter and AFM with constraints procedure can be used for the
single frequency case, but the maxima points will be more numerous than for the dual-
frequency case due to its shorter wavelength (0.190m).
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Receiver 1 Receiver 2

|
s o

D

Input Initial KF Prediction
Integer Ambiguity Equations
One-Way Cycle Slip Yes No
Detection and Repair < - ’
Procedwre
Form DD Obs.
Y
Form DD Obs. KE & AFM es Caseb
Test1 &2
Procedure
No
Case 75
0
Yes
Test 3 Using ¢ ,, Form DD Obs.
KF & AFM
Procedure
One CS? Test 3 Using the
No Corrected ¢ |
Yes
KF Update Equations No
Using §, One C8?
Yes
Compute lonospheric KF Update Equations
Delay at This Epoch Using Corrected ¢,

No _—EhdofFile?
Yes
End

Figure 5-2. Cycle slip detection and repair procedure
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Based on the above discussions, the ambiguity recovery procedure is summarised in
Figure 5-2. After Test 3, if more than one candidate set is left, the current software
deletes this epoch and then processes the next epoch. From data processing experience,
this normally is due to multipath and having less than four precise pseudo-ranges
available {Case II or III).

The one-way cycle slip detection and repair procedure can also be used in the ambiguity
initialisation step. The cleaned data will then be used in the initialisation procedure.

5.6 Experiments
5.6.1 Aircraft Experiment

This experiment was carried out on 4 June, 1992, using Trimble 4000SST GPS receivers
capable of measuring a single P-code pseudo-range on L2 (R2). The precise ephemeris
was available. One receiver was mounted on a plane and the other was fixed at a site
about 57.5 metres from the initial aircraft location. After 4-5 minutes static tracking the
aircraft took off and its trajectory and height are plotted in Figures 5-3a and 5-3b.
Equation (5-20) was used to compute Nl,_l(k) and N_;4(k), and then to predict
Ni (k) and NZ; (k) using the previous several epochs (ten epochs are chosen here).

The differences between the predicted value and the computed value using real P-code
pseudo-range data on L2 and dual-frequency carrier phase observations are plotted in
Figures 5-4a and 5-4b for the aircraft receiver, and Figures 5-5a and 5-5b for the

stationary receiver. For the roving receiver (Figures 5-4a and 5-4b), it can be seen that
the noise of DN ;,(k) is less than 0.25 cycles and CS ;4(k) normally has one

candidate set. If the noise of DN_ (k) is greater than 0.5 cycles, CS,_,(k) normally

has more than one candidate set. The odd-even relationship will be very powerful for
reducing the cycle slip candidate sets. For the stationary receiver (Figures 5-5a and 5-
5b), the noise of DN _,4(k) and DN_;(k) is small enough to determine cycle slips. The

elevation of this satellite (PRN 23) is plotted in Figure 5-5a. It can be seen that the lower
the elevation, the higher the noise of DN_, (k) . Based on the cycle slip candidates in the

one-way data, the double-differenced cycle slips can be formed and Test 1 and Test 2
then applied using the Kalman filter predicted position and the predicted ionospheric
delay value. After Test 3 is applied, only one cycle slip candidate set is left at each epoch

for this experiment.
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Figure 5-3a. Aircraft trajectory relative to fixed receiver for 4 June, 1992, experiment
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Figure 5-3b. Aircraft height relative to fixed receiver for 4 June, 1992, experiment

133



Chapter 5 Ambiguity Recovery Technique for Long-Range GPS Kinematic Positioning

2 T T T T T T T T T
i} _
=0 T
O

Ak i

) 1000 2000 3000 4000 5000 600DO 7000 6000 S000 10000

(a) Epoch (1 second data rate)

2 T T 1 L] T ] 1 L 1
i} -
03
EDWWWM 1
[}

Ak _

1000 2000 3000 4000 5000 000 7000 8OO0 S000 10000
(b) Epoch (1 second data rate)

Figure 5-4. Real-valued cycle slip estimates (DN, _; (a) and DN_,, (b)) for

aircraft receiver, 4 June, 1992, experiment
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In order to test the power of this procedure, a 60 second data gap after epoch k is
simulated. The predicted Nj_;(k+60) and N2, ,(k+60) using 60 epochs of data
before epoch k can be obtained. The computed real-valued cycle slips DN,_;(k+60)
and DN_; 4(k+60) at each epoch are plotted in Figures 5-6a and 5-6b. It can be seen
that the noise of DN,_,(k) does not change much, but the noise of DN_,4(k) has

increased significantly. The cycle slip detection and repair procedure can successfully
determine one cycle slip candidate set. A 5 minute data gap simulation was then selected,

but the data processing was not successful.
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Figure 5-6. Real-valued cycle slip estimates (DN, ; (a) and DN_,, (b)) for

atrcraft receiver assuming 1 minute of data gap, 4 June, 1992, experiment

The Kalman filter and AFM procedure neglecting P2 pseudo-range is also used to detect
and repair cycle slips. For 1-2 second data interval observations, the Kalman predicted
position bias is less than 2.5 metres and the cycle slip detection and repair process was
successful. For data sample interval greater than 2 seconds, more than one set of cycle

slips are left and the process was not successful.

The initialisation is carried out using the first and last 5 minutes of static data (baseline
length of the order of tens of metres), and the same double-differenced integer
ambiguities were obtained, hence furnishing proof that indeed there are no cycle slips left
in the data.
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5.6.2 Train Experiment

This experiment was carried out on 6 October, 1994, using Ashtech Z12 GPS receivers,
capable of measuring dual P-code pseudo-ranges when AS is on. The precise ephemeris
was available. Two receivers were set up, separated by about 272 kilometres at the start.
One was mounted on a train. After static tracking, the train receiver moved over a period
of about 50 minutes. The trajectory and height are plotted in Figures 5-7a and 5-7b.
Equations (5-17) and (5-20) were used to compute N, (k) and N_;4(k) and then to
predict N, _;(k) and N_;4(k) using the previous several epochs of data (ten epochs are
chosen here). The differences between the predicted value and the computed value
(DN,_;(k) and DN_;4(k)) are plotted in Figures 5-8a and 5-8b for the train receiver.
The noise of DN _;(k) and DN_;,(k) is less than about 0.1 cycles. This satellite (PRN

16) has the lowest elevation of the five satellites tracked, and is plotted in Figure 5-8a. It
can be seen that cycle slip detection and repair is very easy for 1 second data rate
observations if there is no data gap.
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Figure 5-7. Train trajectory (a) and height (b) relative to
fixed receiver for 6 October, 1994, experiment
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Figure 5-8. Real-valued cycle slip estimates (DN, ; (a) and DN_;, (b)) for

train receiver for 6 October, 1994, experiment

A data gap of 5 minutes was simulated at each epoch, similar to what was done for the
aircraft experiment, and the real-valued cycle slip estimates are plotted in Figures 5-9a
and 5-9b. The suggested procedure can successfully determine one set of cycle slip
values. The 5 minute cleaned data are used to predict Nj_; and N_; 4 when DN,

and DN_;, are computed.

Muitipath and the bias caused by receiver internal filtering will cause the real-valued
cycle slip estimates to be biased. Figure 5-10 gives an example of a cycle slip during a
short data gap. The problem is that there are multipath effects or other biases before and
after the data gap. In this case, the current sofiware will delete all affected data which
can be identified by the linear fitting procedure.
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Figure 5-9. Real-valued Cycle slip estimates (DN, _, (a) and DN_, 4 (b)) for

train receiver assuming 5 minutes of data gap for 6 October, 1994, experiment
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Figure 5-10. Cycle slip occurred in PRN 18 of train receiver
for 6 October, 1994, experiment
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The Kalman filter and AFM procedure is also used to detect and repair cycle slips. For
data with 1-3 second sample rate selected from this data set, the predicted position biases
are less than about 2.5 metre, and cycle slip detection and repair is successful. For the
data with larger interval than 3 seconds, more than one set of cycle slip candidates will

remain and the result is therefore not successful.

5.7 Concluding Remarks

If precise pseudo-range data are available, the combined carrier phase observations ¢,
and @_;, are very useful for cycle slip detection and repair in kinematic data. The

suggested procedure can repair data gaps up to 1-5 minutes, depending on the receiver

type and the ionosphere conditions.

If dual-frequency, full wavelength carrier phase is available, but no precise pseudo-range
data, the Kalman filter and AFM procedure will detect and repaire cycle slips. The length
of data gap that can be repaired depends on the receiver dynamics and the antenna
environment. Normally, if the predicted position bias is less than about 2.5 metres, the
cycle slips can be repaired. For GPS receivers outputting precise pseudo-ranges, the
Kalman filter and AFM procedure can be used together with the first procedure in order
to detect and repair cycle slips during any period when pseudo-range data is not

available.

The suggested procedure needs ambiguity initialisation at the beginning of a session. For
short receiver separations at the beginning of a session, the traditional ambiguity
resolution method for the static case, or ambiguity resolution "on-the-fly" for the
kinematic case can be used. For large receiver separations at the beginning of a session,

static methods are needed to initialise the ambiguities.

Multipath and the bias caused by receiver internal filtering are the main obstacle to the
suggested procedure. In the current software all data seriously affected by multipath will
be deleted.

This method can be used for real-time kinematic positioning. After initialising at the start
of the session, and if there are no data gaps longer than a few minutes, the integer
ambiguities can be resolved instantaneously and the roving receiver position can be

determined in real-time.
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Chapter 6

LONG-RANGE GPS KINEMATIC POSITIONING
FOR SURVEYS WITHIN A SMALL AREA

6.1 Introduction

Centimetre accuracy GPS rapid static or kinematic positioning using current techniques
requires fast ambiguity resolution (for the former) or ambiguity resolution "on-the-fly"
(for the latter), in order to convert the ambiguous carrier phase data into unambiguous
ranges with millimetre measurement precision. The use of two single frequency GPS
receivers, which output C/A pseudo-range and L1 carrier phase measurements, separated
by less than about 10km, with station occupancies of the order of 10-15 minutes, will
generally permit rapid static positioning (Han, 1994¢). However, ambiguity resolution
on-the-fly for kinematic applications is difficult and unreliable. If the incorrect
ambiguities are fixed, outliers will occur in the baseline, or trajectory, results and hence
the accuracy will be significantly reduced. There are several remedies to this, including
the use of dual-frequency instrumentation, longer station occupation times, and the
requirement to keep baselines comparatively "short". Because of these constraints, GPS
applications requiring high accuracy will therefore suffer from high cost and inefficiency.

Although there has been considerable progress recently in the development of "smart"
ambiguity resolution algorithms, there are still several algorithmic and operational
constraints (see Chapter 2). For example, although the Ambiguity Function Method
does not require ambiguity resolution directly, it does require quite accurate apriori
coordinates in order to define the initial search region that contains the sole maximum
point (Remondi, 1989). The "stop & go" technique requires ambiguity resolution at the
initial point (by whatever method), and these integer ambiguities are then valid for the
subsequent survey points only if the satellite tracking is maintained (Remondi, 1985). All
of these techniques require two receivers in order to determine the baseline vector

between receivers. In addition they are very sensitive to systematic biases such as the
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ionospheric delay and multipath (Sauer, 1994). These limitations tend to restrict the
application of these techniques.

Continuously operating GPS reference receivers are being established at a rapid rate all
over the world, and are expected to have quite a dense coverage within a few years.
These receivers can therefore assist surveyors to perform GPS positioning with only one
field receiver. Unfortunately, the surveyor's receiver is often more than 20km from the
nearest GPS reference receiver, making conventional GPS rapid static positioning, or
kinematic positioning, almost impossible because of the difficulties of ambiguity
resolution for such baseline lengths using single frequency receivers. On the other hand,
the known coordinated points for many applications such as detail surveys, profile
surveys, large scale mapping, cadastral surveys, etc., are generally expressed in a local
geodetic datum, with the baseline vector to the GPS reference station generally being
required to a much lower accuracy than that necessary for determining the initial integer
ambiguities. Even if a reference receiver were close to the surveyor's receiver (say
within a few kilometres), the initial ambiguities must still be resolved using standard

techniques.

Clearly, for such scenarios, GPS is unlikely to be favoured over traditional surveying
techniques based on total stations. Developing a reliable and efficient GPS positioning
technique for such applications is therefore a considerable challenge. In this chapter a
new operattonal mode is suggested (Han & Rizos, 1996a; 1996h) which:

« makes use of permanent GPS reference stations, permitting the surveyor to employ
just one single frequency receiver in the field (and only one technician!),

» requires only that the GPS receiver start and end the survey at known points in the
local datum (not necessarily a geocentric datum),

« does not require ambiguity resolution in the normal sense,

« 1s not dependent on the distance from the surveyor's receiver to the reference
receiver, and

o isinsensitive to systematic biases such as ionospheric delay and multipath if the
survey area is small (eg., 10kmx 10km), no matter how distant the GPS reference

receiver is.

The data processing will give centimetre accuracy relative coordinates between all points
visited by the surveyor's roving receiver, rather than baselines from the surveyor's

receiver to the reference receiver.
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6.2 Principles of the Concept
6.2.1 Biased Vectors
GPS double-differenced carrier phase observations can be expressed as (equation (2-1)):

where AVN is the double-differenced integer ambiguity set estimated from using the

initial coordinates or pseudo-range data; B is the bias term expressed in the form:

B=-3VAN-A (6-2)

8VAN is the bias vector of the estimated integer ambiguity set. The linearization of
equation (6-1) gives:

Vi =A8X; - (L; +B) (6-3)

where L, :VA(pi-k—VAp?—VAN .%; and VAp! is the double-differenced range

implied by the initial coordinates X?. The least squares estimate of the parameters is:

8X; = (APA,))'ATP(L, + B) = 8X; +8X; (6-4)
where

80X, = (ATPA)'ATPL, (6-5)
8X; = (ATPA,) 'ATPB (6-6)

and the coordinate results are:

~ . 0 i “

It can be seen that X; = X! +8X; is easily estimated, and 8X; is the coordinate bias

caused by the ambiguity bias component B .
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6.2.2 Corrected Vectors

Approximate linearity of the elements in A; with time

A GPS satellite is at an altitude of approximately 20,000km, and moves smoothly with an
alongtrack velocity of about 4km/sec. The direction cosine therefore changes very

slowly and this change is approximately linear (Sauer, 1994),

If it is assumed that the direction cosine at time t, is fi,, the direction cosine n; at time t;

can be approximated by:

n

;= T -+ (t; — )i (6-8)

The elements of matrix A, are formed by differencing the direction cosines between two

satellites, and they are also approximately linear with time:

over short periods of time, such as about half an hour, where A is the mean rate of
change of A for this period. Figure 6-1 illustrates the change of the elements of the
design matrix A with time. It is obvious that they exhibit very good linearity.
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Figure 6-1. Linearity of the elements of the design matrix with time
Approximate linearity of 5X; with time
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From equation (6-6) it is possible to derive §X; at t,:
86X, = (AgPA,) A PB (6-10)
and at time t,

(A{PA;)5X; =A{PB (6-11)

Substituting equation (6-9):

5X, =8X, +(t, —tg )N'I[ATPB— (ATPA, + AGPAYSX; | +0°(AA)) 612

where

0(AA;) = —N-I[AA?PAA@X';, +(ATPAA, + AATPA, + AATPAA)(OX, — axg)]

(6-13)
and N=A PA,. 0°(AA,) is a function of AA; and B=-8VAN-LA. It is necessary to

make the bias 8VAN as small as possible, and the period as short as possible, in order to
make 0°(AA,) so small that it can be neglected.

A new GPS operational mode and the determination of

the correction terms AéX;,,—

Consider the case of kinematic positioning from known station 1 in the local datum,
while maintaining satellite tracking during movement of the antenna (Figure 6-2). The
determination of the position of the GPS receiver at epoch i is of interest. In this
example, two known stations are used (station 1 and station N, visited by the receiver at
the beginning and then at the end of the field session). The known station coordinates in
the local datum are not required with high accuracy relative to the reference station.
However, these known stations should have centimetre accuracy relative to each other.
(Alternatively, only one known station need be used, but it should be visited twice, once
at the beginning and then at the end of the survey session.) It is the baseline vectors
from station 1 to i which are required, not the baselines between the surveyor's receiver
and the reference receiver. This can be expressed as (refer to equation (6-7) and Figure
6-2):
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where

Ail,i = }A{i - }21

ASXy; = 8X; —8X,

Vectors are biased by ASX']".
i

Figure 6-2. Configuration of the suggested GPS operational mode

(6-14)

(6-15)

(6-16)

(6-17)

If the known baseline vector from station 1 to statton N is AX| y, then ASXI’N can be

estimated from:

ASX;,N = AX].,N - Aj\(ILN

8X; can then be determined using the linearity property of 5X;:
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ASX,, =N ASX
th—h (6-19)

Equation (6-14) can therefore be used to determine the position of station i relative to

station 1.

Data processing will give centimetre accuracy relative positions between all visited points
by the single surveyor's receiver, rather than baselines from the surveyor's receiver to the
reference receiver. The operational mode is similar to that of the "stop & go" technique,
however there is no requirement for initialisation, or to have the receivers close together.
This procedure does not require the integer ambiguities to be resolved, and hence it is
not sensitive to systematic GPS biases such as ionospheric delay and multipath, which

are the most common reasons for incorrect ambiguity resolution.

6.3 Experiments
6.3.1 Kinematic Positioning
Short-range kinematic experiment

The first experiment was carried out on 19 January, 1996. After a few minutes of static
observation at the known station, the roving GPS receiver (a Leica GPS System 300, but
only C/A code pseudo-range and L1 carrier phase observations were used) started to
move along Foreshore Road, Sydney, and then back to the same known station. The
Mather Pillar station {(a permanent station located on the roof of the Geography &
Surveying Building, at The University of New South Wales, equipped with an Ashtech
Z12 GPS recciver) was chosen as the reference GPS station, approximately 6km away
from the roving receiver. The trajectory computed using the L1 carrier phase
observations and fixing the integer ambiguities is considered to be the true trajectory,
against which the suggested procedure's results will be compared, is plotted in Figure 6-
3, in ISG (Integrated Survey Coordinates) coordinates.

Applying the suggested procedure, the biased vector from Mather Pillar to the rover

recetver can be determined from equation (6-5). The initial ambiguity set can be
determined using C/A pseudo-range observations from the first few epochs of data.

146



Chapter 6 Long-Range GPS Kinematic Positioning for Surveys within a Small Area

Figure 6-4 gives the offsets (5X;) of the biased vector as East, North, and Height

components.

The second step is the correction of the biased vector using equations (6-14, 6-18 and 6-
19). The difference between the corrected vector and the true trajectory at each epoch is
illustrated in Figure 6-5. If the errors of the known points at the start and the end are
ignored, the differences shown in Figure 6-5 is the o?(AA,) term in equation (6-13).

For some applications, such as profile surveys, these effects can be ignored.
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Figure 6-3. The user receiver trajectory on 19 January, 1996
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Figure 6-5. Biases of the corrected trajectory on 19 January, 1996

Medium-range kinematic experiment

This experiment was carried out on 7 April, 1996. After one minute of static
observations at the known station (start point indicated in Figure 6-6), the roving GPS
receiver {an Ashtech Z12 receiver, though only the C/A code pseudo-range and L1
carrier phase observations were used} mounted on a car started to move along a freeway,
travelling west out of Sydney, and then back to the other known station (end point in
Figure 6-6). The Mather Pillar was again chosen as the reference station, approximately
31.5 to 37.5 km away from the roving receiver. The data collection interval was 1

second for both receivers.

In order to compare the trajectory solution with results determined independently, a
static GPS recetver (this time a Leica GPS 399 receiver) was set up close to the roving
receiver. The trajectory of the roving receiver was then accurately determined relative to
this static receiver using the L1 carrier phase observations, after fixing the integer
ambiguities. This solution is the "standard" mode of data processing, and this trajectory
(Figure 6-6) is considered to be the true trajectory against which the results of the
suggested procedure are compared. Note, all coordinates are expressed in the TM
projection system known as the Integrated Survey Grid (ISG) (Manual of the New South
Wales Integrated Survey Grid, 1976).
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Figure 6-6. The user receiver trajectory

The first step is to compute the vectors 5(, using the fixed ambiguities determined by

C/A pseudo-range and carrier phase observations over the whole obervation span.
Because the estimated ambiguities are not correct (they maybe in error by several cycles,
the "ambiguity bias"), the computed vectors will have biases (5X), including an offset
term, linear drift term and non-linear term as indicated in Figure 6-7 (refer to equations
(6-7 and 6-12)). The second step is to compute the vectors relative to the start point
(refer to equation (6-14)). This step will remove the offsets in the vectors relative to the
start point, but they are still affected by the linear drift term and non-linear term. The
third step is to correct the linear drift term using equation {6-19), based on the known
coordinates of the start and end point. With these three steps the vectors relative to the
start point will be only affected by the non-linear effect caused by the ambiguity biases,
and this term can be neglected for centimetre-level accuracy surveys if the observation
span is comparatively short (say, <30 minutes), and the ambiguity biases are smaller
enough (say, <15 cycles). The difference between the corrected vector and the true
trajectory at each epoch is plotted in Figure 6-8. This includes the errors of the known
coordinates at the start and the end of the survey, errors of the assumed true trajectory
determined from the L1 carrier phase observations, and errors due to the non-linear term.
The maximum error in any component is about 3cm, certainly adequate for many large
scale mapping applications. Note that the reference GPS receiver was from 31.5 to 37.5
km away from the roving receiver, yet centimetre accuracy positioning results were

obtained relative to the trajectory itself.
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6.3.2 Rapid Static Positioning

This experiment was carried out at Queens Park, in Sydney, on 19 January, 1996, using
one Leica GPS 399 receiver (though only the C/A pseudo-range and L1 carrier phase
observations were used). The Mather Pillar was again used as the reference station. The
data collection interval was 1 second for both receivers. The experiment started from
permanent mark PM58855, and involved visiting ten other sites before returning to
PM58855. These sites are permanent survey marks with precise horizontal coordinates
in the TSG system and heights in the Australian Height Datum {(AHD). This survey mode
is similar to the standard "stop & go" technique, although in this technique the distance
from the surveyor's receiver to the reference receiver could be tens of kilometres. The
initialisation procedure as employed in the standard "stop & go" techmque is not
required. For the first stage, the data processing procedure is the same as for the
kinematic case. The second stage is to identify which epochs are collected at the survey
marks, and compute the mean position of the positions using the data collected at each
mark. The differences between the estimated coordinates and the known ISG/AHD

coordinates are listed in Table 6-1. The maximum error is 2.6cm.

Table 6-1. Differences between the estimated ISG/AID coordinates and
the known coordinates at each site for the 19 January, 1996, experiment

Site Name East North Height | Occupation
(cm) {cm) (cm) time (sec)
PM58856 0.70 -1.50 1.90 160
PM58858 -0.30 -1.90 0.90 75
PM58859 -0.30 -2.20 0.80 71
PM58860 0.00 -2.50 1.70 74
PM58861 -0.50 -2.60 0.30 74
PM58863 -0.50 -2.10 -0.40 73
PM58864 -0.20 -1.30 -0.70 73
PM58865 0.10 -1.50 -0.90 76
PM58867 -1.00 -1.90 -1.70 66
PM58868 -0.40 -1.80 -0.90 131
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The fixed integer ambiguity results were also computed using the L1 carrier phase data
for each of the sites, and the differences with the results determined using the suggested
procedure are listed in Table 6-2. These differences are primarily caused by the non-

linear term in equaton (6-13). The maximum error is 1.1cm.

Table 6-2. The effect of the non-linear term in the corrections, a comparison with

fixed ambiguity solution for the 19 January, 1996, experiment

Site Name East North Height | Occupation
(cm) (cm) (cm) time (sec)
PM58856 -0,80 -.60 -0.30 160
PM58858 -1.00 -.70 -0.30 75
PM58859 -1.10 -.80 -0.30 71
PM58860 -1.10 -.90 -0.30 74
PM58861 -1.10 -.90 -0.30 74
PM58863 -1.10 -.90 -0.30 73
PM58864 -1.10 -.80 -0.30 73
PM58865 -0.90 -.80 -0.30 76
PM58867 -0.90 -.70 -0.20 66
PM58868 -0.70 -.50 -0.10 131

6.4 Concluding Remarks

A new GPS operational mode and processing procedure for precise rapid static and
kinematic positioning that does not require the fixing of the ambiguities to their integer
values is described in this chapter. With the aid of data from a permanent GPS reference
station (not necessarily located close to the surveyor's receiver), only one GPS single
frequency receiver is needed to ensure centimetre to sub-decimetre-level accuracy
relative to all visited points (in the case of the "stop & go" mode), or the trajectory itself
(for the kinematic positioning mode), rather than for the vector from the surveyor's

receiver to the reference receiver.

It must be emphasised that this procedure is an alternative to standard GPS surveying
H N

methods such as "rapid static", "stop & go", etc., which require a pair of dual-frequency

instruments. It is, however, a low-cost alternative because of the need for only one
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single frequency receiver (and a reference station that does not need to be within a few
tens of kilometres of the survey site). Therefore, this technique is not only a lower cost
and more efficient GPS method for some applications than the standard fixed integer
ambiguity positioning methods ("rapid static", "stop & go", and kinematic positioning),
but also traditional survey methods based on total stations. However, the technique is
not suitable for real-time applications and requires that no cycle slips occur on at least
four satellites while the antenna is moving. Potential applications of this techmque
include detail surveys, GIS database generation or update, profile surveys, large scale

mapping, etc.
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CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary and Conclusions

There are two main problems that must be overcome for carrier phase-based medium-
range or long-range GPS kinematic positioning to be accurate and reliable: error or bias
mitigation and appropriate ambiguity resolution technique. Successful ambiguity
resolution requires that the magnitudes of all biases should be reduced to less than a
quarter of the carrier wavelength. Three different ways to resolve integer ambiguity for
medium-range or long-range kinematic positioning have been proposed. The first
technique is to directly resolve ambiguity on-the-fly, or instantaneously, using multiple
reference stations. The second technique is to resolve cycle slip, and hence to recover
ambiguity on-the-fly, or instantaneously. The third technique is to leave the ambiguity

parameters "free" and to then correct the baseline biases that result.

7.1.1 Ambiguity Resolution On-The-Fly for
Medium-Range GPS Kinematic Positioning

Ambiguity resolution on-the-fly using multiple reference stations is based on a linear
combination functional model, formed from the single-differenced functional equation for
baselines from the user roving receiver to three or more reference stations. The linear
coeflicients are determined based on the location of the reference stations and the user's
receiver. In this way, the orbit biases and ionospheric delay can be eliminated, and in
addition, the tropospheric delay and multipath can be significantly reduced. If the
double-differenced ambiguity sets for the reference stations have been determined, the
double-differenced integer ambiguity set for the user roving receiver and one of the
reference station can be determined using the suggested functional model. In addition,
the improvements of the refined real-time stochastic model, a new criteria to verify the
correct ambiguity set, and a fault detection and adaptive procedure, result in more

reliable real-valued ambiguity estimates and their variance-covariances, and subsequently
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a more reliable ambiguity resolution can be expected. This technique requires that
reference stations be located such that they surround the survey area in order to
efficiently account for the ionospheric delay by linear interpolation. The reference station
positions should be known accurately. For real-time kinematic positioning, the integer
ambiguity sets for the reference stations should be determined first and then used to
correct the double-differenced observations between the user roving receiver and one of

the reference stations.

The algorithm used for short-range and medium-range carrier phase-based kinematic
positioning can resolve ambiguity resolution with one epoch of data. The average
computation time for one epoch is less than 0.1 second. Four short-range experiments
were carried out and the algorithm gave positioning results with success rates 100%,
100%, 99.7% and 98.4% over the total length of the data. These represent significant
improvement on the rates 80.8%, 93.1%, 89.4% and 68.4% obtained using traditional
ambiguity resolution techniques. The algorithm used for medium-range kinematic
positioning gave similar results. The success rate for the experiment described in Section
4.7.2 is 100%, and the average computation time 0.071 seconds for each epoch. This
algorithm can also be used for short-range or medium-range real-time GPS kinematic

positioning.

For medium-range kinematic positioning, the reference stations are required to be dense
enough in order to ensure that the linear interpolation for the ionospheric delay is
accurate enough. Typically, the survey area of the interest should be located inside the
triangle or quadrilateral formed by three or four reference stations, and these reference
stations should be no more than about 200 km apart. Otherwise the ionosphere
interpolation is of low accuracy, and the orbit bias and ionospheric delay will not be
effectively eliminated. Furthermore, the tropospheric delay, multipath and observation

noise will become larger, and subsequently ambiguity resolution becomes impossible.

7.1.2 Ambiguity Recovery Technique for
Long-Range GPS Kinematic Positioning

The ambiguity recovery technique resolves the cycle slip(s) using a combination of cycle
slip repair and ambiguity resolution procedures. This technique effectively involves
"relative" ambiguity determination, rather than "absolute" ambiguity resolution. The
concern is only with the biases affecting the carrier phase observations which change
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with time. Two procedures have been implemented. One requires precise pseudo-range

data and the other one does not.

The first procedure uses a combination of precise pseudo-range and carrier phase
observations, which can eliminate the receiver and satellite clock biases, and the user
receiver's movement, The remaining biases due to orbit error, ionosphere, troposphere
and the static receiver's multipath change quite smoothly and can be fitted by a linear
function for a short period of time. The selected widelane (wavelength 0.86 m) and
®_79 (wavelength 14.65 m) combinations used for cycle slip detection minimise the
effect of the noise from the pseudo-range data. Cycle slips in the carrier phase
observations for satellites whose elevation is 40 degrees or higher can be detected in the
one-way receiver-satellite data. If more than one set of one-way cycle slips are
identified, the double-differenced cycle slip candidates will be formed. Because the
double-differenced integer ambiguities at previous epochs are known, the ionospheric
delay can be computed and this bias at the current epoch can be predicted with high
precision if the data gap is shorter than about tens of seconds up to a few minutes. This
means that the Ambiguity Function Method can then be used to detect and remove cycle
slips. On the other hand, from the double-differenced cycle slip candidates derived from
one-way data the integer ambiguity candidates can be derived, and the validation criteria
used for the ambiguity search procedure in the estimated ambiguity domain can be used
to vertfy the correct integer ambiguity set. This procedure can repair data gaps up to 1-5
minutes in length depending on the receiver type and the ionospheric conditions.

If dual-frequency, full wavelength carrier phase observations are available, but no precise
pseudo-range data, the Ambiguity Function Method (AFM) with Kalman filtering will be
a powerful combination for detecting and repairing cycle slips. The AFM can be used to
determine the position and recover double-differenced integer ambiguities at the current
epoch by using the ionosphere-corrected widelane and ¢_;, carrier phase observation
combinations. The initial coordinates are provided by the Kalman filter. In general, if
the predicted position bias is less than about 2.5 metres, the cycle slips can be repaired.
For the experiments described in Chapter 5, the procedure can repair data gap up to a
few seconds. For GPS receivers outputting precise pseudo-range data, the AFM and
Kalman filter procedure can be used together with the first procedure in order to detect
and repair cycle slips during any period of pseudo-range data loss. For GPS receivers
without precise pseudo-range data, this procedure can be used to repair cycle slips, but
the data gap must be short enough to ensure that the coordinate prediction accuracy
from the Kalman filter is high enough.
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The ambiguity recovery technique requires precise ephemeris data, such as is available
from the International GPS Service for Geodynamics (IGS). The accuracy requirements
are listed in Table B-1. This technique can be used for real-time kinematic positioning if
the predicted precise ephemeris were available, as may be provided by the IGS in the
near future. After initialising at the start of the session, and if there are no data gaps
longer than a few minutes, the integer ambiguity can be resolved instantaneously and the

roving receiver positioning can then be determined in real-time.
7.1.3 Long-Range GPS Kinematic Positioning for Surveys within a Small Area

The third technique assumes that only the trajectory of the roving receiver relative to
itself is required to be of high accuracy. The biased position derived using biased or
incorrect fixed ambiguities can be corrected to sub-decimetre accuracy using the known
positions of the start point and end point of the survey. It is well known that the
direction from a GPS antenna to a satellite changes slowly, hence the direction cosines
also change slowly, in an approximately linear manner during a short period. Making use
of this property, it can be shown that the incorrect initial ambiguity results bias the
baseline vectors approximately linearly with time, provided the ambiguity error is small
(a few cycles), and the time span is short (up to about half an hour). If the survey is from
a known point to another known point, or back to the starting point, the biased vectors
can be corrected relative to the first survey point using this linearity property. Therefore,
this mode can give the centimetre to sub-decimtre accuracy vectors between all visited
survey marks, or the trajectory relative to the first visited mark, rather than with respect
to a distant reference GPS receiver. With the aid of data from a permanent GPS
reference station (not necessarily located close to the surveyor's receiver), only one GPS

single frequency receiver is required to carry out the survey.

The satellite change geometry is very important The smaller the satellite geometry
changes, the better accuracy the positioning. The short-range constraint is required for
distances between the points visited by a roving receiver, not the distance between the
roving receiver and the reference (normally permanent) receiver. Any kind of GPS
receiver that outputs carrier phase observations can be used in this operational mode.
The applications include post-processed, small area, static or kinematic positioning, using
one user receiver, with the aid of a continuously operating reference receiver (no matter
how far it is from the user). However, the technique is not suitable for real-time
applications and requires that no cycle slip occur on at least four satellites while the

antenna is moving. This technique can be considered a low-cost alternative to standard
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GPS surveying methods such as "rapid static", "stop & go", etc., because of the

requirement for only one single frequency GPS receiver.
7.1.4 Other Contributions of the Research

Orbit bias elimination procedure

A well known "rule-of-thumb" states that the orbit bias dp will cause the baseline to be

degraded by (d—p 106) ppm. Local Area DGPS positioning will suffer from the effect of
p

orbit bias and can be improved using the procedure suggested in Section 3.2. For high
precision short-range positioning, e.g. such as for real-time deformation monitoring of
engineering structures, volcanoes, etc., the orbit bias effect can be eliminated by the
appropriate data processing of stable reference stations surrounding the survey area of

interest.

Ionospheric delay interpolation using the

epoch-by-epoch and satellite-by-satellite model

The ionospheric delay interpolation at the ionosphere layer using an epoch-by-epoch and
satellite model was suggested by Webster & Kleusberg (1992); Wanninger (1995); Han
& Rizos (1996e). The contribution in this thesis is a technique for interpolation in the
ground Gauss plane, which is computationally much easier than the standard techniques
interpolated at the single ionosphere layer. Based on this innovation, the ionospheric
delay is eliminated in the suggested functional model using multiple reference station (see
Section 4.2). Furthermore, the technique can be used to eliminate the ionospheric delay
in high precision GPS positioning using single frequency receivers. For high precision
short-range positioning, e.g. as in real-time deformation monitoring (Rizos et al., 1996),
the ionospheric delay can be eliminated using data from the surrounding reference

stations.
Three-step quality control improvements

A three-step quality control procedure which includes real-time stochastic model
improvement, a new criteria for verifying the correct ambiguity set, and a fault detection
and adaptive procedure, was developed to improve the performance of ambiguity

resolution, and is suitable for both short-range or medium-range positioning. If precise

158



Chapter 7 Conclusions and Recommendations

pseudo-range observations are available, the integrated model with the three-step quality
control procedure can resolve integer ambiguity instantaneously. If precise pseudo-range
observations are not available, the three-step quality control procedure can also be used
to improve the performance of ambiguity resolution and significantly enhance the
rehability of GPS carrier phase positioning.

A new method to construct multi-satellite ambiguity combination and

comparison of the ambiguity resolution techniques

A new method to construct the multi-satellite ambiguity combinations for implementing
the LAMBDA method is suggested, which can make the variance-covariance matrix
significantly decorrelated. The transformation time is very short, typically between a few
milliseconds and a few tens of milliseconds. Search methods such as FARA, Cholesky
decomposition, FASF and the LDL" decomposition methods are employed to search the
transformed ambiguities and the results are shown to have been significantly improved.
Hence, if the existing software packages employing such search methods were modified
to implement the suggested transformation method, the data processing will become
much more efficient. On the other hand, a comparison between the search procedures in
the original ambiguity domain and the transformed ambiguity domain shows that the
suggested transformation method can be easily combined with the Cholesky
decomposition search procedure or the LDL" decomposition search procedure, resulting

in a procedure that is highly efficient in terms of computation time.
The effect of temporal correlation on ambiguily resolution

It is well known that the estimated variance-covariance matrix for an estimated GPS
baseline vector is over-optimistic. Although the most realistic results can be obtained by
considering between-epoch correlations, this will make the computation much more
complicated. The differences in the GPS baseline vectors, between considering and
neglecting between-epoch correlation, are very small, but the effect on the magnitudes of
the variance-covariance terms is large. This will affect the search region for ambiguity
resolution, and subsequently affect the reliability of the ambiguity resolution. The
suggested procedure for accounting for the temporal correlation is to scale the variance-
covariance matrix by a factor. This can be used for rapid static positioning or kinematic

positioning.
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Multipath extraction and mitigation method

Multipath is a periodic bias whose frequency characteristics are within a certain
frequency band. The frequency band can be determined from a spectral analysis of the
signal-to-noise ratio output by a GPS receiver. Therefore, the multipath can be extracted
using band pass filtering, and can be mitigated using band stop filtering. The extracted
multipath can be used for multipath correction if the antenna environment is unchanging.
The multipath biases can therefore be corrected for at reference stations when
preforming carrier phase-based medium-range or long-range kinematic positioning. The

suggested method can be used for other applications such as deformation monitoring.

7.2  Limitations, Prospects and Recommendations
7.2.1 The Limitations

There are several constraints to current carrier phase-based medium-range or long-range
kinematic GPS positioning systems. In terms of hardware, new generation GPS
receivers such as the Ashtech Z12, Leica SR 399, or Trimble 4000SSi are required
because the algorithms use precise pseudo-range data on L1 and/or L2 to assist in the
recovery or resolution of the integer ambiguities. Multipath, or the biases caused by the
receiver internal filtering, on carrier phase and pseudo-range observations will degrade
the performance of the algorithms, even though pseudo-range accuracy has been
improved significantly and multipath elimination technologies have been developed.

From the algorithm point of view, on-the-fly ambiguity resolution for medium-range
kinematic positioning is possible if multiple reference receivers are used to significantly
reduce the distance dependent errors. This technique requires a dense network of
reference receivers in the survey area in order to ensure that the linear combination
parameters are positive and less than 1, and that the linear interpolation of the
ionospheric delay at a user receiver is of high accuracy. Ambiguity recovery techniques
can repair the integer ambiguity for data gaps up to a few minutes in length for long-
range GPS kinematic positioning. However, an integer ambiguity initialisation procedure
will be required at the beginning of the survey, and any data gaps should be kept as short
as possible during the observation session. The precise ephemeris is required if using the

ambiguity recovery technique.
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Although these two techniques can be used for real-time positioning, data latency will
still be the main problem. The position output latency is mainly caused by: (a) receiver
data download delay (about 0.2 seconds using serial communication with 38400 baud
rate); (b) data link transmission delay (which may reach about 1 second using 9600 data
link baud rate), and; (c) baseline computation delay (which is about 0.1 second for
baseline computation and ambiguity recovery after signals are obstructed). There are
two ways to resolve this problem: (a) synchronise reference data and mobile receiver
data, which gives the maximum precision but a substantial delay; (b) use the latest
reference data and extrapolate them to the time of the mobile receiver data, which will
cause some additional error. The former is better for the carrier phase ambiguity
resolution process, as all errors have to be minimised for maximum reliability and
performance. However, the kinematic position will suffer due to a time delay of up to 1-
2 seconds (which may be crucial for some real-time applications). The latter solution
will introduce additional errors due to observation extrapolation. Experimental results
show that the linear extrapolation model will introduce an additional double-differenced
error of about 2cm for a 1 second delay and about 8cm for a 2 second delay. A
quadratic extrapolation model will introduce an additional double-differenced error of
about 4cm for a 2 second delay (Landau et al., 1995; Lapucha et al., 1995).

7.2.2 The Prospects

In the near future, the performance of medium-range or long-range kinematic GPS
positioning will be improved because of the following factors: (1) It is possible that an
additional civilian frequency will be transmitted by Block IIF satellites. The additional
civilian signal will significantly improve the reliability of ambiguity resolution. (2)
Selective Availability (S/A) may be turned off. Without S/A, double-differenced carrier
phase extrapolation will be possible to a higher accuracy, and the extrapolation period
may be much longer than the current 1-2 seconds. (3) IGS may soon provide predicted
precise ephemerides with 30cm accuracy (Neilan, 1996). (4) New GPS receivers will
have the ability to track the Glonass satellite signals, which means that almost twice the
number of observations at each epoch will be available, hence improving reliability and
availability. (5) Wide Area DGPS or Wide Area Augmentation Systems will require a
dense network of permanent reference stations, which will also support centimetre-
accuracy real-time kinematic positioning using one receiver. (6) It may be possible to
improve the pseudo-range observation accuracy and reduce multipath effects by
developing new GPS receiver and antenna technologies, thus improving the reliability of

on-the-fly ambiguity resolution, or instantaneous ambiguity resolution, for medium-range
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positioning applications. (7) Algorithm improvement is possible as well as improved

characterisation of GPS errors.
7.2.3 Suggestions and Recommendations for Future Research

Carrier phase-based medium-range or long-range kinematic GPS positioning, in post-
processed or real-time mode, has many applications, particularly for marine and airborne
positioning where GPS reference receivers cannot be set up near the survey area. Once
Wide Area DGPS systems or Wide Area Augmentation Systems are established, this
technique will allow a user to precisely position a moving receiver in real-time. From the
possible improvements of GPS and Glonass systems, user hardware and other facilities,
such as the IGS service, the following investigations are recommended as a continuation

of this research.

1. The impact of the third frequency on the carrier phase-based medium-range or long-
range kinematic positioning systems should be investigated. It is possible to find
other carrier phase combinations, which minimise the effect of pseudo-range noise,
and which are optimised for ambiguity recovery or ambiguity search in the

observation domain.

2. The differential correction message requirements from WADGPS or WAAS for
carrier phase-based medium-range or long-range kinematic positioning should be
investigated, so that the user may use these messages for sub-decimetre accuracy

GPS kinematic positioning,

3. Ambiguity resolution for GPS/Glonass carrier phase data should be investigated.
The amount of carrier phase and pscudo-range observation data will be almost
double that of GPS alone.

4. The reliability of the ambiguity resolution, especially for the instantaneous case,
should be further investigated. This includes stochastic model refinement for

different functional models, and new detection and adaptive procedures.
5. System development using the suggested algorithms for real-time implementation

should be carried out, and careful analysis of the data latency problems should be

preformed.
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6. The final output should be a user-friendly, carrier phase-based, medium-range or
long-range GPS real-time kinematic positioning system. All technical problems

should therefore have been addressed.
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Appendix A

IONOSPHERE INTERPOLATION USING
AN EPOCH-BY-EPOCH AND
SATELLITE-BY-SATELLITE MODEL

The epoch-by-epoch and satellite-by-satellite ionospheric model has been proposed for
use as a high accuracy ionospheric delay prediction model (Webster & Kleusberg, 1992;
Wanninger, 1995; Han & Rizos, 1996e). The ionospheric delay of a user receiver is
estimated from an interpolation of ionospheric delay observations at three or more
surrounding reference, dual-frequency GPS receivers, using the intersection points of the
GPS signal paths with an ionospheric single-layer model at a height of 350 km (Figure 3-
5).  Actual implementation will involve the computation of the positions of the
intersection points, and the transformation from TEC to VEC and from VEC to TEC.
Due to the fact that precise TEC can only be computed in the double-differenced form,
an approximation will also be necessary. For an area of approximately 200 x 200 km? in
extent, the computation procedure can be reduced simply to that of the interpolation of
the single-differenced TEC between receivers, or double-differenced TEC based on the
receiver positions in the Gauss plane coordinate system. This appendix will give the

proof.

For a satellite with elevation angle E at a reference station, the plane containing the
satellite, the station and the earth's centre will intersect with the earth's surface as the line
AB. AB =200 km is selected in the thesis. Also C and D points can be found to form a
square. The intersection points A', B, C' and D' can be found by the lines from A, B, C,
D to a satellite and the ionospheric layer with height H. Because the area is very small
compared with the earth's radius, the point on the earth within ABCD can be considered
to lie within the square ABCD. Any point within the square ABCD can be mapped onto
the plane AB'C'D".
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Appendix A Tonosphere Interpolation

Figure A-1. Geometry relation between the coordinate systems
on the ground and on the ionosphere layer

From the similar triangles, the following relations can be derived:

_ 20,000-BB BC

(Fall A_l

20,000 (A1)

and

AD' = ME (A-2)
20,000

The distance AA' can be expressed as:

sina = R, -sin(90+ E) (A-3)

R +H
AA'= _Re—+H-SiII(90—E—OL) (A-4)
sm(90 + E)
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Appendix A Tonosphere Interpolation

and BB' can also be expressed as a function of the elevation angle (E—¢,—¢,) at B.
The maximum distance BB'<1303km if the lowest elevation angle is selected as 10
degrees. The maximum value of the difference BB'-AA'<100km if H=350 km.
Therefore the relations (A-1) and (A-2) can be simplified to:

A'D'=S,-AD (A-5)
and

B'C'=S, BC (A-6)
where

~ 20,000-AA' 20,000—BB'

Y 20,000 20,000
Based on the geometry in Figure A-1, the following relation can be derived:
i (Eee — - L
A'B'=S - S.ll‘l( €, 85) .AB = Sx .AB (A-S)
¥ sin(90+a +¢,)
A similar relation for CD and C'D' can be derived:
C'D'=S,.CD (A-9)

The mapping from plane ABCD to the plane AB'CD' can be performed through a
scaling by S, and S, and then ABCD can be translated to Gauss plane coordinate

system, as shown in Figure A-2. x is the North axis and y is the East axis. The
coordinate origin is at the point B. © is the satellite azimuth.
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Appendix A Ionosphere Interpolation

Y
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Figure A-2. Coordinate Transformation from the Gauss plane to ionosphere layer

From equations (A-5, A-6, A-8, A-9), the coordinates in a Gauss plane coordinate

system can be transformed to the ionospheric layer coordinate system, and vice versa:
x7_[s. 0] c()-s(9—90) sin(6 - 90) IR (A-10)
y' 0 S, ||- sin(6-90) cos(6 - 90) y y

Assume that B is the reference GPS receiver and the other two reference receivers are
located at (x,,y,) and (x,,y,) in the Gauss coordinate system. The transformed

coordinates at the ionospheric layer coordinate system are (x',,y',) and (x',.,¥%),
respectively. The single-differenced AVEC, and AVEC, at points 1 and 2 relative to

point B can be represented by a linear model:

AVEC, Xy e
_ . (A-11)
AVEC, LI Y N
where o, and o, are the VEC change rate at the axis X' and y' and can be determined if
AVEC, and AVEC, are known:

o ]_[xn v [AaVEC]_ () [ Y " [AVEC, (A12)
o, b R A AVEC, X, ¥, AVEC,

For any point (x,y) in the Gauss coordinate system, the intersection point at the
ionospheric layer is (x',y"), and the single-differenced VEC can be interpolated as:
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Appendix A Tonosphere Interpolation

AVEC =[x’ y']|:zx:|:[x y].TT.[zx:'—[x y].[z; ;’jlmvvgg;] (A-13)

¥y ¥y

This means that the single-differenced VEC can be obtained by interpolating in the Gauss

coordinate system, which is equivalent to an interpolation at the ionospheric layer.

Furthermore, the maximum difference angle between sin’l(O. 04792 cosE) for any point

within the area ABCD is smaller than 2.2 degrees for a 200 km square area. Therefore,

1
the TEC interpolation formula can be derived by multiplying b :
P Y PYImE DY cos{sin’l(0.94792cosE)]
-1
ATEC
ATEC=[x y]- AN I ' (A-14)
X, ¥, ATEC,

where ATEC, ATEC, and ATEC, are the single-differenced total electron content

referenced to station B.

Note that the single-differenced TEC interpolation function is not dependent on the
satellite, and only dependent on the GPS receiver positions. Therefore, for any two
satellites, the double-differenced TEC can be derived from the interpolated single-
differenced TEC as:

-1

VATEC

VATEC=[x y]-{* 7| - ! (A-15)
Xy, VY, VATEC,

Although the single-differenced TEC cannot be accurately determined, the double-
differenced TEC can be determined using dual-frequency carrier phase observations with
known double-differenced integer ambiguities:

1

VATEC(k) =+~ 2 (VA (k) 4, - VAN) = (VAG, (k) -2, - VAN,)) - (A-16)

If there are three reference GPS receivers set up around the survey area of interest, and

the integer ambiguity can be determined relative to one of the reference station, the
double-differenced TEC (VATEC,, VATEC, for the other two stations) can be used to

interpolate double-differenced TEC at the roving receiver.
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Appendix B

AMBIGUITY RESOLUTION FOR
LONG-RANGE GPS STATIC BASELINES

r———

Appendix B will mainly discuss the ambiguity resolution technique for long-range static
positioning. Cycle slip detection and repair techniques are described in Blewitt (1990)
and Han (1995b).

B-1. Fundamental Observation Equations
The observation equations and the ambiguity resolution procedure for high precision

long-range static positioning were described by Blewitt (1989), Dong & Bock (1989)
and Goad (1992), and are based on the following equations:

R, = p+oteg B-1)
f; !
I
Ok =p- E +NA +E,, (B-2)
I
f; ?
! _
@A, = P*fTJerkz TEg, (B-4)

2

where R, and R, are the one-way precise pseudo-ranges; ¢, and ¢, are the one-way
carrier phase observations in units of cycles; p is the geometric range from station to
satellite; I is a function of the Total Electron Content; f,, f, and A, A, are the
frequencies and wavelengths of the L1 and L2 carrier waves respectively; N, and N, are

the integer cycle ambiguities of the L1 and L2 carrier phase observations; and € is the
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Appendix B Ambigutiy Resolution for Long-Range GPS Static Baseline

observation noise with respect to the observation type indicated by its subscript. The
carrier phase combination (i, j) can be represented by (Han & Rizos, 1996b):

P =10y +]-0y (B-5)

and the integer ambiguity and wavelength are expressed by:

N11J:1NI+JN2 (B—6)
=g 7
Mi= it in) &

where ¢ in equation (B-7) is the speed of light in a vacuum.

The ionosphere-free combination of the L1 and L2 carrier phase observations can be

derived as:

©77-60M77-60 = P+ N77_60M77-60 T80y s o (B-8)

and subsequently the double-differenced ionosphere-free observations are:
AVQ7;_gohg7, g0 = AVP+AVNZ; ooh7r 60 T Eavey gin e (B-9)

Although AVN,,; ¢, is an integer, it is almost impossible to resolve it using the above
observation directly due to the small value of the wavelength A,  (=0.63cm).

Therefore the following ambiguity resolution techniques for AVN,, 4, are considered.

B-2. Widelane Integer Ambiguity Determination Methods

There are different way to determine widelane integer ambiguities using available
observations. If the precise pseudo-range observations on L1 and L2 are available, e.g.
as output by GPS receivers such as the Ashtech Z12, Leica SR 399 or Trimble 4000SSi,
Method 1 can be used, as discussed in Section B-2-1. If the precise pseudo-range
observations on L1 and L2 are not available, but the difference between the precise
pseudo-range observations on L1 and L2 is available, e.g. as output by GPS receivers
such as the Rogue SNR 8000 or Trimble 4000SSE, Method 2 can be used, as discussed
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Appendix B Ambigutiy Resolution for Long-Range GPS Static Baseline

in Section B-2-2. If the precise pseudo-range observations are not available or cannot be

used, Method 3 can be used, as discussed in Section B-2-3.

B-2-1. Method 1 - Using Precise Pseudo-Range Observations on L1 and L2

Based on equations (B-1 to B-4), the real-valued ambiguity (N, ;) estimation formula for

a carrier phase combination ¢; ; can be written as:

N.. c o, 2240-(1+))+2891 o | 9240- (i +j)+289-1

N R B-10
bi = P 23294, ! 23292, ? (B-10)

Hence the double-differenced widelane ambiguity can be written as:

17 17

AVN, , =AVo, | ——— —
bt T, T BT,

AVR, (B-11)

For static data, AVN,;_; can generally be determined by time-averaging a few tens of

minutes of data. Using this technique, widelane integer ambiguity determination is
independent of the knowledge of orbits, station location, etc., and so can be applied to
baselines of any length provided there is sufficient common visibility of satellites.

B-2-2. Method 2 - Using Differences of the Precise Pseudo-Ranges on L1 and L2

In order to overcome Anti-Spoofing, GPS receivers such as the Trimble 4000SSE and
Rogue SNR 8000 use the cross-correlation tracking technique to output full wavelength
L1 and L2 carrier phase and the difference between the two precise pseudo-ranges
(R, —R,). Therefore, the following equation can be derived from equations (B-1 to B-4).

_(Rl _Rz) =0 — A, + N —NyA,

ff-f
fle

= QA —Pahy — [N1,—17"1,—1 — N77,—507L77,-50] (B-12)

and can be represented by the following double-differenced form:

4620

AVN, | =——"—
B 23290,

1
'[(AVR1 - AVRz) + (AV(N?H —AVo,A, )] + TV AVN.; _sohr1-60

1,-1
(B-13)
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The term AVN, A;; 4 can be easily estimated from the ambiguity-float solution of

the ionosphere-free carrier phase observation with an accuracy better than 10 ¢m, and
hence the effect of this term can be neglected.  The effect of the term
(AV(pl?ul—AV(pz?uz) can also be neglected due to its noise being less than a few
centimetres. The significant effect is therefore the noise of (AVR, — AVR,), which needs
quite a long observation period in order to average out this noise and the pseudo-range
multipath.  Using this technique, widelane integer ambiguity determination is also
independent of the knowledge of orbits, station location, etc., and hence can be applied

to baselines of any length provided there is sufficient common visibility of satellites.

B-2-3. Method 3 - No Precise Pseudo-Range Observations

The widelane carrier phase observation equation can be derived from equations (B-2)
and (B-4) as:

77 AVI
AV(pl,—lll,—l = AVp +AVN1,_1?\41,_1 +@.F+SAVCPL—IA‘L—1 (B'14)
AVI
f?
AVN, | will be biased by 0.3636 cycles. Therefore, from the point of view of

ambiguity resolution, AVN, _; has a smaller ionosphere effect. Hence, the maximum

If the ionospheric delay is =},, then the AVN, will be biased by one cycle, but the

baseline length for which the ionospheric delay can be neglected when resolving AVN, _;
is longer than that for which the ionospheric delay can be neglected when resolving
AVN,. 1If the ionospheric delay is neglected, the widelane integer ambiguity can be
resolved for baselines up to about 30 km in length using equation (B-14), while the L1

integer ambiguity can be resolved for baselines up to 15 km in length using equation (B-
2).

AVI :
Dong & Bock (1989) have proposed that —f—g— be considered an unknown parameter
' 1

with zero mean value and a small uncertainty. The method is expected to derive the

more reliable results than simply neglecting ionospheric delay term.

The functional model of equation (B-14) is also affected by orbit bias. The effect of the
orbit bias on AVN, _; can be approximated by:
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1

- (4 (dx* - d4x7) + AY-(dY' -ay!)+ az-(a7’ - az7)| (B-15)
1-1P

dAVN, _, =

where (AX, AY, AZ) is the baseline vector; (dXi, dy’, dZi) and
(de, de, de) are the orbit errors for the three components of the satellites i and J;

p (+20,000km) is the mean distance from receivers to satellites. Ifit is assumed that the

orbit errors at the three components are the same, and are random for different satellites,
the effect of an orbit bias on AVN,_, can be approximated by:

J6

My, , = 3%_15-[)-1115 (B-16)

where D is the baseline length; mg is the standard deviation of the satellite orbit
information and myy  is the standard deviation of the effect of the orbit bias on the

value AVN, ;. If it is assumed that m,yy _ <0.25 cycles, the maximum length of the

baseline for different magnitudes of orbit bias are listed in Table B-1.

Table B-1.Maximum length of baseline for different magnitudes of orbit bias

Orbit Bias (m) 0.2 0.5 1.0 | 20 | 50 {100
Maximal Length (km) for AVN, _; | 26391 | 10556 | 5278 | 2639 | 1056 | 528
Maximal Length (km) for AVN, 3275 1310 655 328 ] 131 66

B-3. Ambiguity Resolution for Long-Range Static Positioning

Using the double-differenced ionosphere-free combination observation equation (B-9),
AVN; 4 is very difficult to determine because the wavelength of the ionosphere-free

combination is very small (0.63cm). However, after the widelane ambiguities AVN,
are fixed, AVN,; ¢, can be represented by:

60-i+77-
AVN?T,—GO = L‘i . AVN].,—I +':'1"'7""‘ AVNI;J (B"].7)

14] i+]j
and then substituting in equation (B-9), the following form of the observation equation
can be obtained:
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17 60-1+77-
AVP7_soh77_ 60 = AVPp+AVN, ;- (m ‘ x?‘l,ﬁﬂ) +AVN, ;- ( i+] . 177’6"] T B AV _gohr-e0

(B-18)

The third term on the right hand side is therefore a known quantity. The search
techniques in the estimated ambiguity domain can be used to resolve AVN; ;. The larger

the coefficient of AVN|;, the smaller the search region for AVN; ;. The maximum value
is obtained when i+j=1, hence AVN;; can be represented by AVN;, AVN, or other

combinations which satisfy the condition i+j=1, and the same search region will result. If
AVN; is used, equation (B-18) can be simply expressed as:

AV _sohrr—s0 = AVP+AYN, (170 _g0) + AVN, 1 (60277 60) +E aver, sitm_a
(B-19)

Comparing this equation with the L1 double-differenced phase observation equation, the
wavelength of AVN, in equation (B-19) is equivalent to 10.7cm (17A4; ¢ = 10.7cm).
On the other hand, the orbit bias will affect the ambiguity determination and though this
can be neglected in the short-range positioning mode (due to the assumptions for
differential processing), the precise ephemeris should be used for long baselines. The
effect of orbit bias on AVN, can be approximated by equations similar to equations (B-

15) and (B-16):

dAVN, = ——Jm%[Ax-(dXi - dxt)+ AY-(aY - dYI)+ Az {dZ' -dzi)]  (B-20)
77,-60
and
e
M gy, ~W.D.ms (B-21)

Assuming that myy <0.25 cycles, the maximum length of the baseline for different

magnitudes of orbit bias are listed in Table B-1.

After determination of the initial ambiguities AVN,, 4, from AVN;_; and AVN, the

double-differenced ionosphere-free combination observation equation (B-9) can be used
for GPS long-range static positioning.
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